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Abstract 

In adaptive clinical trials, the conventional confidence interval (CI) for a treatment effect is 

prone to undesirable properties such as undercoverage and potential inconsistency with the 

final hypothesis testing decision. Accordingly, as is stated in recent regulatory guidance on 

adaptive designs, there is the need for caution in the interpretation of CIs constructed during 

and after an adaptive clinical trial. However, it may be unclear which of the available CIs in 

the literature are preferable. This paper is the second in a two-part series that explores CIs for 

adaptive trials. Part I provided a methodological review of approaches to construct CIs for 

adaptive designs. In this paper (part II), we present an extended case study based around a two-

stage group sequential trial, including a comprehensive simulation study of the proposed CIs 

for this setting. This facilitates an expanded description of considerations around what makes 

for an effective CI procedure following an adaptive trial. We show that the CIs can have notably 

different properties. Finally, we propose a set of guidelines for researchers around the choice 

of CIs and the reporting of CIs following an adaptive design. 

 

Keywords: Bootstrap; Conditional inference; Coverage; Estimation; Group sequential; 

Interim analysis. 

 

1. Introduction 

 

Clinical trials are traditionally run in a fixed manner that does not allow for interim looks at 

the data within the trial itself. In contrast, an adaptive design (AD) allows for pre-planned 

modifications to the course of the trial based on interim data analyses1–3. This added flexibility 
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can lead to improved trial efficiency (e.g., in terms of sample size, time and cost) while still 

maintaining scientific rigour. ADs have seen increasing use in clinical trials in recent years, 

and in particular master protocols leveraging ADs are becoming increasingly popular4,5. 

 

A wide variety of different types of AD have been proposed in the literature, including the 

following common broad classes:  

 

● Early trial stopping: Group sequential designs (GSD) allow the trial to stop early at 

interim looks for efficacy or futility/lack-of benefit. 

 

● Treatment selection: Multi-arm multi-stage (MAMS) designs test multiple treatment 

options in parallel (typically against a common control arm), allowing the dropping of 

treatment arm(s) that are not performing (as) well. 

 

● Population selection: Adaptive enrichment designs allow the clinical (sub)population 

of interest to be selected (‘enriched’) at interim looks, typically using pre-defined 

patient subpopulations based on biomarker information. 

 

● Changing randomisation probabilities: Response-adaptive randomisation (RAR) 

allows updates of the randomisation probabilities based on patient responses, for 

example to favour treatment arm(s) that are performing well6. 

 

● Changing trial sample size: Sample size re-estimation allows the sample size of the 

trial to be adjusted, for example based on interim conditional power calculations. 

 

Further educational material on all of these ADs can be found in Burnett et al. (2020)7, 

Pallmann et al. (2018)1, and the PANDA online resource (https://panda.shef.ac.uk/)8. 

 

Regardless of the type of AD, it remains crucial that the integrity and validity of the trial is 

maintained. Appropriate estimation of treatment effects is a key part of trial validity, which 

includes not only point estimates (see Robertson et al. 2023a,b9,10) but also quantification of 

the uncertainty around the estimated treatment effects as given by confidence intervals (CIs). 

Intuitively, CIs capture this uncertainty by offering an interval that is expected to typically 

contain the unknown parameter of interest. 

 

An important consideration in practice then is whether proposed methods to construct CIs have 

desirable properties. Most importantly, this relates to the CI having the desired coverage 

probability (i.e., the long-run probability that the CI contains the true unknown treatment effect 

of interest). However, there are numerous other considerations, including the width of the CI 

(all else being equal, narrower CIs are preferred as they are more informative), whether the CI 

will always contain an associated point estimate, and whether the CI will always be consistent 

with the decision rule (i.e., with an associated hypothesis test). The fundamental problem for 

ADs is that use of standard CI methodology (i.e., CIs constructed using methods that do not 

account for the fact an AD has been used) may not necessarily result in desirable properties. 

https://panda.shef.ac.uk/


 

 

Recent regulatory guidance highlights these concerns, with the U.S. Food and Drug 

Administration (FDA) noting that “confidence intervals for the primary and secondary 

endpoints may not have correct coverage probabilities for the true treatment effects” and thus 

“confidence intervals should be presented with appropriate cautions regarding their 

interpretation”11. The same guidance also highlights the need to pre-specify methods used to 

compute CIs after an AD, see also the Adaptive designs CONSORT Extension (ACE) 

guidance2,3. Meanwhile, the European Medicines Agency (EMA) guidance states that 

“methods to … provide confidence intervals with pre-specified coverage probability are 

required” if an AD is used in a regulated setting12.  

 

These concerns and regulatory guidance motivate the growing body of literature proposing 

‘adjusted’ CIs that are specifically tailored for use with a particular AD. However, in our 

experience there is at best limited uptake of adjusted CIs in practice (with the possible 

exception of ‘repeated’ CIs in GSDs; see part I of the paper series and Section 3.1 of this current 

paper for a definition), with many adaptive trials continuing to only report the standard CI. 

Evidence for this in the context of two-stage single-arm trials can be found in Grayling and 

Mander (2021)13, where only 2% of 425 articles reported an adjusted CI. This limited uptake 

of adjusted CIs for ADs is due to a number of reasons, including the lack of awareness of 

methods in the literature, available software/code and guidance around the choice of adjusted 

CI in practice. 

 

This paper is the second in a two-part series that explores the issue of CIs for ADs. In part I of 

the series, we reviewed and compared methods for constructing CIs for different classes of 

ADs and critically discussed different approaches. In the current paper (part II), we consider 

CIs for ADs from a practical perspective, and propose a set of guidelines for researchers around 

the choice and reporting of CIs following an AD. We first briefly describe performance 

measures of CIs in Section 2. We introduce the case study in Section 3 and show how to 

calculate different types of CIs (with R code provided). We use the case study as a basis for a 

simulation study in Section 4. We conclude with guidance for researchers and discussion in 

Sections 5 and 6, respectively. 

 

2. Performance measures for CIs 

 

As introduced in part I of this paper series, different desirable properties for CIs have been 

proposed, which we recapitulate below. To fix ideas, suppose we have a random sample 𝑿 

from a probability distribution with parameter 𝜃, which is the single parameter of interest in 

the trial. A CI for 𝜃 with confidence level 1 − 𝛼 is a random interval (𝐿(𝑋), 𝑈(𝑋)) that has the 

following (claimed) property: 𝑃(𝐿(𝑋)  <  𝜃 < 𝑈(𝑋))  =  1 − 𝛼  for all 𝜃. 

 

The coverage probability (often shortened to just ‘coverage’) of a confidence interval (L(X), 

U(X)) is given by 𝑃(𝐿(𝑋)  <  𝜃 < 𝑈(𝑋)). This is the key performance measure for a CI, given 



 

that the definition itself of a CI is based around actually having the claimed ‘nominal’  1 − 𝛼 

confidence level. 

 

Alongside coverage, other criteria for CIs (generally, and specifically for ADs) have been 

proposed in the literature. The main criteria/performance measures include: 

 

● Correct coverage (arguably essential) 

● Width (all other things being equal, a smaller width is desirable) 

● Consistency/compatibility with the hypothesis test (see below) 

● Contains the point estimate of interest 

● Is in fact an interval (i.e., not a union of disjoint intervals, or the empty set) 

● Is computationally feasible/simple 

 

A CI is consistent/compatible with the hypothesis testing decision if it excludes the parameter 

value(s) that are rejected by the hypothesis test, and conversely excludes the parameter value(s) 

that are not rejected by the hypothesis test. If a CI is not consistent/compatible with the 

hypothesis testing decision then this can lead to problems with study interpretation and the 

communication of results. 

 

3. Case study 

 

As an example, we use the phase III MUSEC (multiple sclerosis and extract of cannabis) group 

sequential trial (Bauer et al., 201614; Zajicek et al., 201215). MUSEC investigated a standardised 

oral cannabis extract (CE), assessing its effect on muscle stiffness in adults with stable multiple 

sclerosis compared to placebo. Its primary outcome was whether or not a patient had “relief 

from muscle stiffness” after 12 weeks of treatments, based on a dichotomised 11-point category 

rating scale. MUSEC utilised a two-stage GSD, with early stopping for superiority assessed 

using an O’Brien-Fleming (OBF) type boundary. The unblinded interim analysis was planned 

after 200 participants (100 per arm) had completed the 12 week treatment course, with the final 

analysis planned after 400 patients (200 per arm) if the interim stopping rule was not met. The 

actual trial did plan for sample size re-estimation too, but for simplicity we will focus on the 

group sequential aspect here. 

 

Ultimately, the trial did continue to its second stage; Table 1 summarises the study data at the 

interim and final analyses, as well as the OBF efficacy stopping boundaries. As can be seen, at 

the interim analysis the boundary for early rejection of the null hypothesis (no difference in the 

proportion of subjects with relief from muscle stiffness between treatment arms) was almost 

crossed, with the standardised test statistic being close to the stopping boundary. 

 

 

 



 

 Interim analysis Final analysis 

Placebo Cannabis 

extract 

Placebo Cannabis 

extract 

Number of patients with relief from 

muscle stiffness 

12 27 21 42 

Total number of subjects 97 101 134 143 

Standardised test statistic 2.540 2.718 

O’Brien-Fleming stopping 

boundary  

2.797 1.977 

 

Table 1: MUSEC trial observed data, by analysis stage. The O’Brien-Fleming efficacy stopping boundaries are 

also shown. 

 

Typically, at the final analysis a 100(1 − 𝛼)% CI will be desired for the difference in the 

response rates in the placebo and CE  arms (the measure of the treatment effect of interest). A 

common method of achieving this is to use a standard two-sided interval, e.g., based on Wald’s 

methodology16. For MUSEC, denoting the final sample sizes in the two arms by 𝑛𝑃 = 134 and 

𝑛𝐶𝐸 = 143, and the MLEs for the rates by �̂�𝑃 = 21/𝑛𝑃 and �̂�𝐶𝐸 = 42/𝑛𝐶𝐸 , this gives for 𝛼 =

0.05 

(�̂�𝐶𝐸 − �̂�𝑃) ± Φ−1(1 − 𝛼/2)𝑉𝑎�̂�(�̂�𝐶𝐸 − �̂�𝑃) = (�̂�𝐶𝐸 − �̂�𝑃) ± Φ−1(1 − 𝛼/2)√
�̂�𝐶𝐸(1 − �̂�𝐶𝐸)

𝑛𝐶𝐸

+
�̂�𝑃(1 − �̂�𝑃)

𝑛𝑃

 

             = (0.040,0.234), 

 

where Φ−1(𝑥) denotes the inverse cumulative distribution function (CDF) of a standard 

normal random variable. 

 

If the interim analysis was not present, this CI would have a number of desirable properties (as 

discussed in Section 2): it would be guaranteed to be an interval containing the MLE for �̂�𝐶𝐸 −

�̂�𝑃, would (at least asymptotically) have the desired coverage, would be consistent with the 

associated hypothesis test, and would evidently be easily computed. 

 

In this Section (as well as the simulation study in Section 4), we illustrate how different types 

of CIs (both unconditional and conditional) can be used in practice for a GSD, based on the 

MUSEC trial. We use a GSD as our case study in order to illustrate the widest range of different 

CIs. 

 

 



 

3.1 Calculation of CIs when continuing to stage 2 

 

Using the observed data from the MUSEC trial, we now show how to calculate various CIs for 

the treatment difference, denoted 𝜃 =  𝑝𝐶𝐸 − 𝑝𝑃, from both a conditional and unconditional 

perspective (see explanation on the difference below) when the trial continues to stage 2, as 

happened for the MUSEC trial. R code to obtain all CIs considered is provided in the data files. 

 

As already seen above, the standard/naive CI for the treatment difference (i.e., the Wald 

CI), is given by  

𝜃 ± Φ−1(1 − 𝛼/2)𝑉𝑎�̂�(�̂�) = (�̂�
𝐶𝐸

− �̂�
𝑃

) ± Φ−1(1 − 𝛼/2)√�̂�
𝐶𝐸

(1 − �̂�
𝐶𝐸

)/𝑛𝐶𝐸 + �̂�
𝑃

(1 − �̂�
𝑃

)/𝑛𝑝 

Other methods than Wald are available to calculate standard/naive CIs for the difference of 

two proportions17,18, but none of these will be able to account for the AD used. 

 

From an unconditional perspective, we want to estimate θ regardless of the stage that the trial 

stops, and are interested in the properties of the CI as averaged over all possible stopping times 

(weighted by the respective stage-wise stopping probabilities). Note that the standard/naive CI 

above is an unconditional CI. 

 

In what follows, we let e1, e2 denote the efficacy stopping boundaries, I1, I2 the (observed) 

information, at stages 1 and stage 2, respectively, and T the stage the trial stopped at (so T = 2 

for the MUSEC trial). The definitions of the information I1 and I2 for the MUSEC trial are 

given in Appendix A.1, which depend on the number of observed successes.  

The exact unconditional CI depends on a choice of the ordering of the sample space with 

respect to evidence against the null hypothesis. In what follows, we use stagewise ordering, 

which has desirable properties described by Jennison and Turnbull (1999)19. This allows the 

use of the p-value function P(θ) to find the lower and upper bounds for the 95% CI, �̂�𝑙 and �̂�𝑢, 

which are the solutions to the equations P(�̂�𝑙) = 0.025 and P(�̂�𝑢) = 0.975. The formula for the 

p-value function for stopping stage T = 2 (with observed second stage test statistic 𝑍2 = 𝑧2 ) is 

as follows: 

 
 

where 𝑓2((𝒙𝟏, 𝒙𝟐), 𝜇, 𝛴) is the density of a bivariate normal distribution with mean vector 𝜇 

and covariance matrix 𝛴 evaluated at the vector (𝒙𝟏, 𝒙𝟐). Note that the associated point 

estimator of this method, the median unbiased estimator (MUE), �̂�𝑀𝑈𝐸 ,  is the solution to the 

equation P(�̂�𝑀𝑈𝐸) = 0.5. If the distributional assumptions hold exactly (i.e., the joint canonical 

distribution of test statistics holds exactly), then the exact unconditional CI guarantees 

consistency with the test decision. 

 



 

The repeated CI (RCI) follows a simple form: 𝜃 ± 𝑒𝑇 / √𝐼𝑇 , see Jennison and Turnbull 

(1999)19. Note that there is no explicit associated point estimator with this method (although 

one could of course just use the standard MLE 𝜃). Since 𝜃 = 𝑍𝑇/√𝐼𝑇 , the RCI guarantees 

consistency with the test decision. 

 

The adjusted asymptotic CI adjusts the standard CI, giving a CI of the form 

 

(𝜃 − �̂�(𝜃)) ± Φ−1(1 − 𝛼/2)�̂�(𝜃)/√𝐼𝑇 

 

where �̂�(�̂�) and �̂�(�̂�) are functions of 𝜃 given in Todd et al. (1996)20: 

�̂�(�̂�) = 𝐸(�̂�) − �̂� 𝐸(√𝐼𝑇) 

�̂�(�̂�) = 𝐸(𝑍𝑇
2 /𝐼𝑇) − 2�̂� 𝐸(𝑍𝑇) + �̂�

2
 𝐸(𝐼𝑇) − �̂�(�̂�)2

. 

 

The associated point estimator for this method is the bias-adjusted estimator 𝜃 − �̂�(�̂�) . 

 

One subtlety with the use of the adjusted asymptotic CI (for trials that continue to stage 2) is 

that it is possible for the information levels to actually decrease from stage 1 to stage 2 i.e., 

𝐼2 < 𝐼1. This can happen in trials with a binary outcome when the pooled estimated response 

rate is very close to zero (or 1) at stage 1, but further away from zero (and 1) at stage 2. In this 

situation, it is not possible to calculate the adjusted asymptotic CI, although this happens very 

rarely (i.e., one or two times out of 10
5
 simulation replicates) for trials with success rates similar 

to those observed in the MUSEC trial. It is similarly possible for this to occur in trials with, 

e.g., normal (if the estimated standard deviation differs greatly between stages) and time-to-

event data (typically when the number of events that occur between analyses is smaller), though 

again is a rare occurrence. 

 

For the parametric bootstrap CI we use the a simple bootstrap algorithm to generate B 

bootstrap MLEs �̂�
(𝑏)

 for b = 1, …, B. In the interests of space, we defer the details to Appendix 

A.1. Note that the associated point estimator for this method is given by the mean of 

�̂�
(1)

, . . . , 𝜃(𝐵). 

 

Finally, the randomisation-based CI follows a different bootstrap procedure in order to 

calculate an adjusted p-value, based on the randomisation distribution (this being an example 

of randomisation-based inference i.e., a randomisation test). The idea is to reproduce the group 

sequential analysis for each allowable allocation of patients to treatments, but keeping the 

observed patient outcomes fixed. The adjusted p-value is then the proportion of these potential 

results that are as extreme or more extreme than the actual trial result. Note that at the interim 

analysis, exactly the same set of patients are used each time (although with different treatment 

allocations). 

 

More precisely, the procedure is defined as follows (Snapinn, 199421). Suppose a group 

sequential trial has been completed, and let X denote the set of all observed patient outcomes. 



 

Let the vector T denote the set of all possible allocations of patients to treatments (given the 

randomisation procedure used). Let 𝑡𝑖 denote a potential allocation of patients to treatments 

and 𝑡∗ denote the actual allocation used in the trial. Then let F(X, 𝑡𝑖) be the measure of strength 

of evidence against the null hypothesis. The adjusted p-value is then 

 

  
 

For the measure of strength of evidence against the null hypothesis, we use stagewise ordering 

of the sample space (like for the unconditional exact CI). The randomisation-based CI is based 

on the adjusted p-value as follows:  

 [ Φ−1(1 − 𝑝𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑) ± Φ−1(1 − 𝛼/2) ] √�̂�𝐶𝐸(1 − �̂�𝐶𝐸)/𝑛𝐶𝐸 + �̂�𝑃(1 − �̂�𝑃)/𝑛𝑝 

 

The associated point estimator for this CI is then  

 Φ−1(1 − 𝑝𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑)√�̂�𝐶𝐸(1 − �̂�𝐶𝐸)/𝑛𝐶𝐸 + �̂�𝑃(1 − �̂�𝑃)/𝑛𝑝 

In practice, it is not feasible (except for small sample sizes) to use the entire set of possible 

random allocations T and we use N random samples from the set instead. However, a problem 

arises when 𝑝𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 0 i.e., no allocations are sampled that give results as extreme as or 

more extreme than those actually observed, which gives  Φ−1(1 − 𝑝𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑) = ∞. Even when 

N = 10,000 this can occur as discussed later in the simulation study. 

 

 

Conditional CIs 

 

From a conditional perspective, we are interested in estimation conditional on the stage the trial 

stops at (so for the MUSEC trial, conditional on the trial continuing to stage 2). 

 

The exact conditional CI uses the conditional density of the MLE, and is defined as: 

 

𝐶𝐼𝑐  = {𝜃 ∶  𝛼/2 < 𝑃𝑟𝑜𝑏(𝜃  ≥ 𝜃𝑜𝑏𝑠 | 𝑇 = 𝑡, 𝜃) < 1 − 𝛼/2} 

where �̂�𝑜𝑏𝑠 is the observed value of the MLE, see Fan and DeMets (2006)22. More explicitly, 

for a trial continuing to stage 2  (so 𝑡 = 2) the lower and upper and bounds for the CI, �̂�𝑙 and 

�̂�𝑢 , are the solutions to the equations 

 

        and   

 



 

where 𝑓(𝜃 | 𝜃 , 𝑇 = 2) is the conditional density of the MLE (conditional on continuing to 

stage 2), see Appendix A.1 for further details. The associated point estimator is the conditional 

MUE, �̂�𝐶𝑀𝑈𝐸 , which is the solution to the following equation: 

 

 

Like for the adjusted asymptotic CI, if the information levels decrease from stage 1 to stage 2 

i.e., 𝐼2 < 𝐼1 , then the exact conditional CI (and hence the restricted exact conditional CI, see 

below) cannot be calculated. 

The restricted exact conditional CI, as the name suggests, restricts the range of the exact 

conditional CI. Given the exact conditional CI (𝐶𝐼𝑐) defined above, the restricted exact 

conditional CI is defined to be 𝐶𝐼𝑐 ∩ 𝐶𝐼𝑟 , where  

𝐶𝐼𝑟 = {𝜃 ∶  𝑃𝑟𝑜𝑏(𝑇 ≤ 𝑡 | 𝜃) > 𝛼/2  and 𝑃𝑟𝑜𝑏(𝑇 ≥ 𝑡 | 𝜃) > 𝛼/2} , 

see Fan and DeMets (2006)22. For a trial continuing to stage 2 (so 𝑡 = 2), the upper bound of 

the restricted exact conditional CI is set equal to 𝑚𝑖𝑛{�̂�𝑢 , (𝑒1 − 𝛷−1(𝛼/2))/√𝐼1}, where �̂�𝑢 is 

the upper bound of 𝐶𝐼𝑐. 

The conditional likelihood CI is based on the conditional MLE i.e., the maximiser of the 

conditional log-likelihood. As shown in Marschner et al. (2022)23, the conditional log-

likelihood, conditioning on the trial stopping at stage T = t is given by 

 

𝐿𝑐(𝜃 ;  𝑧𝑡 , 𝑡) =  −
1

2
(𝑧𝑡 − 𝜃√𝐼𝑡 )2 −𝑙𝑜𝑔𝑃𝑟 (𝑇 = 𝑡 | 𝜃). 

 

Using the results of Fan and DeMets (2006)22, we can show that the conditional MLE, �̂�𝑐 , is 

the solution of the following equation when T = 2: 

 

�̂�𝑐  = 𝜃𝑜𝑏𝑠 −
√𝐼1 𝜙(𝑒1 − 𝜃𝑐  √𝐼1)

𝐼2𝛷(𝑒1 − 𝜃𝑐 √𝐼1)
  

 

where 𝜙 and 𝛷 are the probability density function (pdf) and cdf of the standard normal 

distribution, respectively. The conditional MLE is the associated point estimator for the 

conditional likelihood CI. The conditional likelihood CI is calculated using a conditional 

bootstrap procedure, with full details provided in Appendix A.1. 

 

The penalised likelihood CI is equal to the conditional likelihood CI when the trial continues 

to stage 2, see Section 3.2 for details of how it is different when in fact the trial stops at stage 

1. 

 



 

3.2 Calculation of CIs when stopping early 

In this subsection we detail how the various CIs are calculated when the stopping stage is T = 

1 (rather than T = 2 as in Section 3.1), which will be needed for the Simulation study in Section 

4. 

The standard/naive CI for the treatment difference (i.e., the Wald CI) is given by  

𝜃 ± Φ(1 − 𝛼/2)𝑉𝑎�̂�(�̂�) = (�̂�𝐶𝐸 − �̂�𝑃) ± Φ(1 − 𝛼/2)√
�̂�𝐶𝐸(1 − �̂�𝐶𝐸)

𝑛1,𝐶𝐸
+

�̂�𝑃(1 − �̂�𝑃)

𝑛1,𝑃
 

 

where �̂�𝑃 and �̂�𝐶𝐸 are the mean stage 1 response rates for the placebo and CE arms, 

respectively. 

 

Unconditional CIs 

For the exact unconditional CI we again use the p-value function P(θ) (based on stagewise 

ordering of the sample space) to find the lower and upper and bounds for the 95% CI, �̂�𝑙 and 

�̂�𝑢, which are the solutions to the equations P(�̂�𝑙) = 0.025 and P(�̂�𝑢) = 0.975. This admits a 

closed-form expression when T = 1, with �̂�𝑙 =
Φ−1(𝛼/2)+Z1

√𝐼1
 and �̂�𝑢 =

Φ−1(1−𝛼/2)+Z1

√𝐼1
. 

The repeated CI (RCI) and adjusted asymptotic CI are given in Section 3.1, since they are 

written in terms of a general stopping stage T.  

The parametric bootstrap CI procedure is the same as before, except that now �̂�𝐶𝐸 and �̂�𝑃 

represent the stage 1 response rate estimates on the CE and placebo arm, respectively. 

 

Conditional CIs 

When T = 1, the exact conditional CI has the same definition as given for 𝐶𝐼𝑐 in Section 3.1. 

More explicitly, for a trial stopping at stage 1, the lower and upper bounds for the CI, denoted 

�̂�𝑙 and �̂�𝑢 , are the solutions to the equations 𝛼/2 =
1−Φ(√I1[θ̂obs−θ̂l])

1−Φ(e1−√I1θ̂l )
  and  1 − 𝛼/2 =

1−Φ(√I1[θ̂obs−θ̂u])

1−Φ(e1−√I1θ̂u )
 . 

 

Similarly, the restricted exact conditional CI has the same definition 𝐶𝐼𝑐 ∩ 𝐶𝐼𝑟 with 𝐶𝐼𝑟 as 

given in Section 3.1. For a trial stopping at stage 1, the lower bound of the restricted exact 

conditional CI is set equal to 𝑚𝑎𝑥{�̂�𝑙 , (𝑒1 − Φ−1(1 − 𝛼/2))/√𝐼1}, where �̂�𝑢 is the upper bound 

of 𝐶𝐼𝑐. 

 



 

The conditional likelihood CI is based on the conditional log-likelihood as given in Section 

3.1. Again using the results of Fan and DeMets (2006)22, the conditional MLE, �̂�𝑐 , is the 

solution of the following equation when T = 1:  

 

�̂�𝑐  = 𝜃𝑜𝑏𝑠 −
𝜙(𝑒1 − 𝜃𝑐  √𝐼1)

√𝐼1𝛷(𝑒1 − 𝜃𝑐 √𝐼1)
  

 

The conditional likelihood CI is calculated using a conditional bootstrap procedure, with full 

details given in Appendix A.1. 

 

Finally, the penalised likelihood CI is different from the conditional likelihood CI when the 

trial stops at stage 1. As described in Marschner et al. (2022)23, the penalised log-likelihood is 

given by 𝐿𝜆(𝜃 ;  𝑧𝑡 , 𝑡) =  −
1

2
(𝑧𝑡 − 𝜃√𝐼𝑡  )2 − 𝜆 𝑙𝑜𝑔  𝑃𝑟𝑜𝑏(𝑇 = 𝑡 |  𝜃). Hence the MLE and 

the conditional MLE correspond to maximising the penalised log-likelihood when 𝜆 = 0 and 

𝜆 = 1, respectively. For a given choice of 𝜆 ∈ [0,1] this gives a penalised likelihood estimate 

𝑃(𝜆 , 𝑧𝑡 , 𝑡) = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 𝐿𝜆(𝜃 ; 𝑧𝑡 , 𝑡). The choice of 𝜆 proposed for t =1 is 𝜆∗ = {𝜆 ∈ [0,1] ∶

 𝑃(𝜆 , 𝑒1 , 1) = 0}. With this choice, the penalised MLE is defined as �̂�𝑝 = 𝑃(𝜆∗ , 𝑧1 , 1). The 

penalised likelihood CI is then calculated using the same bootstrap procedure as above for the 

conditional likelihood CI, with the bootstrap conditional MLE �̂�𝑐
(𝑏)

 replaced by the penalised 

MLE �̂�𝑝
(𝑏)

.  Note that by conditioning the bootstrap sampling on early stopping, each bootstrap 

replication satisfies �̂�𝑝
(𝑏)

> 0, which therefore guarantees that the associated CI lies above zero, 

consistent with the decision to stop the study early for benefit. 

 

3.3 Results from the MUSEC trial 

Table 2 gives the values of all of the CIs described in Section 3.1, calculated using the observed 

data and OBF stopping boundaries from the MUSEC trial, with Figure 1 giving the graphical 

representation. When there is an associated point estimate (as described above in Section 2.1), 

this is also shown. For the methods requiring repeated sampling/simulation (i.e., the 

unconditional parametric bootstrap CI, unconditional randomisation-based CI and conditional 

(penalised) likelihood CI), we used N  = 106 trial replicates. 

  



 

 

Type of CI CI method Point estimate 95% two-sided CI CI width 

Standard/naive Wald test 0.137 [overall MLE] (0.040, 0.234) 0.194 

Unconditional Exact 0.134 [MUE] (0.034, 0.234) 0.200 

Repeated - (0.037, 0.237) 0.199 

Adjusted asymptotic 0.137 (0.039, 0.235) 0.196 

Parametric bootstrap 0.143 (0.041, 0.253) 0.212 

Randomisation-based 0.130 (0.033, 0.226) 0.194 

Conditional Exact 0.185 [conditional MUE] (0.052, 0.358) 0.306 

Restricted exact 0.185 [conditional MUE] (0.052, 0.269) 0.217 

(Penalised) likelihood 0.191 [conditional MLE] (0.034, 0.304) 0.271 

Table 2: Confidence intervals (and associated point estimates) calculated using the observed data and O’Brien-

Fleming efficacy stopping boundaries from the MUSEC trial. 

 



 

 
Figure 1: Graphical representation of confidence intervals (and associated point estimates) calculated using the 

observed data from the MUSEC trial. RCI = Repeated Confidence Interval. 

 

 

The Wald (standard) CI is (0.040, 0.234) with a width of 0.194, and is the comparator for all 

the other CIs in Table 2, since it is the conventional end-of-trial CI. Starting with the 

unconditional CIs, all of them are very similar to the standard CI, with the exception of the 

simple bootstrap method which is wider (an increase of 9%) than the standard CI. In contrast, 

the conditional CIs all are substantially wider than the standard CI, with an increase of 58%, 

12% and 40% for the conditional exact, restricted exact and (penalised) likelihood CIs, 

respectively. This reflects the loss of information associated with conditioning on the stopping 

stage T = 2. The conditional point estimators are also substantially higher than the 

unconditional point estimators. This upward correction is intuitive from a conditional 

perspective: there is downward ‘selection pressure’ on the MLE calculated at the end of stage 

1, since if this is large then the trial does not continue to stage 2. For the conditional CIs, this 

is also reflected in their upper confidence limits being substantially higher compared with the 

standard CI. Finally, there is a marked asymmetry in the restricted exact CI around its 

associated point estimate, reflecting how the upper confidence limit of the conditional exact CI 

is adjusted. 

 

For the MUSEC trial data, the use of different methods can give noticeably different CIs for 

the treatment effect, particularly when considering a conditional versus unconditional 

perspective. This could influence the interpretation of the trial results, and highlights the 

importance of pre-specifying which CI(s) will be reported following an AD. The choice of 

CI(s) will depend on what the researchers wish to achieve regarding the estimand24 in question. 



 

There will be pros and cons for the different CI methods, which we explore further in the 

simulation study in Section 4. We also note that there is a strong link between design and 

estimation - the CIs above depend on the design of the trial, and would be different if (for 

example) the design had also included futility stopping boundaries. 

 

4. Simulation study 

4.1 Simulation set-up 

Since the CIs calculated above are one realisation of the trial data given the trial design, in this 

Section we carry out a simulation study to investigate the performance of the CIs under 

different scenarios. Note that we have not used assumed values for the underlying treatment 

effects to calculate the CIs given in Table 2. As can be seen from the formulae in Section 3.1, 

these CIs only depend on the observed data and efficacy stopping boundary. 

To demonstrate the properties of the CIs when averaged over many trial realisations following 

the two-stage design of the MUSEC trial, we ran simulations under different values of 𝑝𝐶𝐸 , 

the assumed true value of the response rate for the CE arm. For simplicity, we kept the value 

of 𝑝𝑃 , the assumed true value of the response rate for the placebo arm, equal to the value 

observed in the MUSEC trial, i.e. 𝑝𝑃 = 𝑝�̂� = 21/134 ≈ 0.157. 

We used the following procedure for our trial simulations: 

1) Given the assumed value for 𝑝𝐶𝐸 , denoted 𝑝𝐶𝐸
∗  , generate N stage 1 trial replicates 

S1,CE
(1)

 , . . . , S1,CE
(N)

  and S1,P
(1)

 , . . . , S1,P
(N)

 , where S1,CE
(i)

 ~ 𝐵𝑖𝑛(𝑛1,𝐶𝐸 , 𝑝𝐶𝐸
∗  ) and 

𝑆1,𝑃
(𝑖)

 ~ 𝐵𝑖𝑛(𝑛1,𝑃 , �̂�𝑃 ). 

 

2) For i = 1, …, N calculate the bootstrap standardised stage 1 test statistic 𝑍1

(𝑖)
 from the 

bootstrap values S1,CE
(i)

  and S1,P
(i)

 . 

a) If Z1
(i)

> e1 then calculate all CIs (conditional and unconditional) with T = 1. 

b) Otherwise, generate a stage 2 trial replicate 𝑆2,𝐶𝐸
(𝑖)

  and 𝑆2,𝑃
(𝑖)

  , where 

𝑆2,𝐶𝐸
(𝑖)

 ~ 𝐵𝑖𝑛(𝑛𝐶𝐸 − 𝑛1,𝐶𝐸  , 𝑝𝐶𝐸
∗  ) and 𝑆2,𝑃

(𝑖)
 ~ 𝐵𝑖𝑛(𝑛𝑝 − 𝑛1,𝑃 , �̂�𝑃 ). Then calculate 

all CIs (conditional and unconditional) with T = 2. 

For each value of 𝑝𝐶𝐸, we simulated N = 105 trial replicates. For the CI methods requiring a 

bootstrap procedure, we used B = 104 bootstrap samples. For the randomisation-based CI, even 

with 104 samples we still frequently ran into the issue of 𝑝𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 0. Hence we did not 

consider this CI method further in the simulation study. 

For each of the CI methods considered, we evaluated the following properties: 



 

1) Mean coverage 

2) Mean width and standard error (se) 

3) Consistency 

4) Lower coverage: probability that the lower confidence limit is above the true value of 

𝜃, denoted 𝑃(𝐿(𝑋) > 𝜃). 

5) Upper coverage: probability that the upper confidence limit is below the true value of 

𝜃, denoted 𝑷(𝑼(𝑿) < 𝜽). 

6)  

4.2 Simulation results 

 

Table 3 shows the overall (unconditional) simulation results with the true success rates 

(𝑝𝑝 , 𝑝𝐶𝐸  ) on the two arms equal to the overall observed means in the MUSEC trial i.e., 𝑝𝑝 =

21/134 ≈ 0.157 and 𝑝𝐶𝐸 = 42/143 ≈ 0.294. The probability of stopping early for efficacy in 

stage 1 is 0.308. Note that with N = 105 trial replicates, the Monte Carlo standard error for the 

coverage and consistency results is less than 0.0016. 

 

Overall (unconditional) results 

Type of CI CI method Coverage Mean width (se) Consistency 𝑷(𝑳(𝑿)

> 𝜽) 

𝑷(𝑼(𝑿)

< 𝜽) 

Standard/naive Wald test 0.945 0.203 (0.017) 0.989 0.029 0.026 

Unconditional Exact 0.952 0.211 (0.019) 0.998 0.022 0.026 

Repeated 0.973 0.240 (0.063) 1.000 0.002 0.025 

Adjusted asymptotic 0.945 0.205 (0.020) 0.985 0.022 0.034 

Parametric bootstrap 0.926 0.210 (0.010) 0.988 0.056 0.018 

Conditional Exact 0.954 0.386 (0.268) 0.732 0.024 0.022 



 

Restricted exact 0.954 0.227 (0.041) 0.985 0.024 0.022 

Likelihood 0.988 0.485 (0.363) 0.693 0.002 0.010 

Penalised likelihood 0.988 0.271 (0.028) 0.992 0.002 0.010 

 

Table 3: Simulation results showing the performance of various CIs with 𝑝𝑝 = 21/134 ≈ 0.157 and 𝑝𝐶𝐸 =

42/143 ≈ 0.294. There were 105 trial replicates. The probability of stopping at stage 1 is 0.308. 

 

Starting with the coverage of the CIs, the standard CI has a very slight undercoverage, which 

is caused by two factors: 1) the distributional assumptions underlying the Wald CI are no longer 

met due to the stopping rule, and 2) the quality of the (asymptotic) normal approximation used 

for binomial outcomes. As expected, the exact unconditional CI attains the nominal coverage 

of 95% (within Monte Carlo error). In contrast, the RCI has conservative coverage, which is 

driven by the trial replicates that stop early at stage 1 (see the following tables). The adjusted 

asymptotic CI has the same coverage as the standard CI. The parametric bootstrap CI has 

particularly low coverage of <93% in this scenario.  

 

Turning to the conditional estimators, both the conditional exact CI and conditional restricted 

exact CI attain the nominal coverage of 95% (with a very slight overcoverage). This is to be 

expected, since if a CI attains (or exceeds) the nominal coverage conditional on stopping at 

stage 1 and conditional on continuing to stage 2, then it will also attain (or exceed) the nominal 

coverage unconditionally (averaged over the two stopping possibilities). In contrast, the 

conditional likelihood and penalised likelihood have a notably conservative coverage, which is 

at least partly due to the choice of the conditional bootstrap procedure (using the bias-corrected 

bootstrap, for example, would give different results but is out of scope of this paper). 

 

Looking at the mean CI width, the CI methods with higher mean coverage compared with the 

standard CI also have a higher mean width. However, even though the parametric bootstrap CI 

has a lower coverage than the standard CI, ist also has a slightly higher mean width. The mean 

widths of the unconditional exact, adjusted asymptotic and parametric bootstrap CIs are all 

within +4% of the mean width of the standard CI. In contrast, the RCI has a substantial increase 

of +17%. As for the conditional CIs, what is striking is the huge increases in mean width for 

the conditional exact and conditional likelihood CIs, of +90% and +139%, respectively. These 

are also accompanied with very high standard errors, reflecting a very high variability in the 

confidence limits. Such results have previously been noted in the literature22,23,25. In contrast, 

the conditional restricted exact and penalised likelihood CIs have mean widths much closer to 



 

that of the standard CI, although there is still an increase of +12% and +33%, respectively. 

Again, this reflects the loss of information associated with conditioning on the stopping stage. 

 

In terms of consistency, the standard CI has consistency just below 99%, with instances of non-

consistent CIs being caused by the same reasons as for the undercoverage. The unconditional 

exact CI has a coverage just below 100%, with the non-consistency caused by the the quality 

of the (asymptotic) normal approximation used for binomial outcomes, see also Lloyd (2021). 

The RCI is the only CI method with 100% consistency. Both the adjusted asymptotic and 

unconditional parametric bootstrap CIs have very similar consistency to the standard CI. For 

the conditional CIs, again it is striking how low the consistency is for the conditional exact and 

conditional likelihood CIs, which is driven by how they are so wide (on average) that they often 

will include zero even when the null hypothesis of no treatment effect is rejected. In contrast, 

the conditional restricted exact and penalised likelihood CIs have consistencies much closer to 

100%, comparable to the consistency of the standard CI. 

 

Finally, looking at the upper and lower coverages, these are approximately equal for the 

standard, unconditional exact, conditional exact and conditional restricted exact CIs. The upper 

coverage is (sometimes substantially) greater than the lower coverage for the RCI, adjusted 

asymptotic, conditional likelihood and penalised likelihood CIs. The unconditional parametric 

bootstrap CI is the only method to have the lower coverage higher than the upper coverage. 

 

In order to show more clearly the differences between the CIs in repeated realisations of the 

MUSEC trial, Figure 2 shows the CIs from the first 10 simulation replicates of the simulation 

study. Note that in simulation replicates 2, 3, 6, 8 and 10, the trial stopped early at stage 1 (and 

hence with rejection of the null hypothesis). In simulation replicates 1, 4, 5, 7 and 9, the trial 

continued to stage 2, with rejection of the null hypothesis in simulation replicates 1, 7 and 9. 

 

Looking first at coverage (i.e., whether the CI contains the true value of the treatment 

difference, shown by the red horizontal line), in simulation replicates 1, 2, 3, 6, 7, 8 and 9, all 

CI methods contain the true value, whereas in simulation replicate 5 all CI methods do not 

contain the true value. However, in simulation replicate 4 we can see a discrepancy in the 

coverage, with the standard, unconditional exact, RCI and adjusted asymptotic CIs not 

containing the true value, whereas the other CIs do contain the true value. In simulation 

replicate 10, all CI methods contain the true value except for the bootstrap CI. Similarly, in 

terms of consistency, in simulation replicates 2, 3, 6 and 8, the conditional exact and conditional 

likelihood CIs contain zero (with the conditional likelihood CI additionally containing zero in 

simulation replicate 10), despite the null hypothesis of no treatment effect being rejected. 

 

Finally, in terms of CI width, in all of the simulation replicates where the trial stopped early in 

stage 1 (apart from simulation replicate 10), it is striking how much wider both the conditional 

exact and conditional likelihood CIs are compared to any of the others. In the trial replicates 

that continue to stage 2, the CI widths are much more similar, although the conditional CIs are 

wider than the unconditional ones (as would be expected). 

 



 

Figure 2: Confidence intervals from the first 10 simulation replicates of the simulation study. The horizontal red 

dashed line shows the true value of the treatment difference. RCI = Repeated Confidence Interval.  

 

 

Results conditional on stopping at stage 1 

 

Apart from the overall (unconditional) results, it is informative to also report results conditional 

on the stopping stage of the trial. Table 4 shows the simulation results conditional on stopping 

early at stage 1, with the true success rates (𝑝𝑝 , 𝑝𝐶𝐸  ) on the two arms again equal to the overall 

observed means in the MUSEC trial. With a probability of early stopping of 0.308, these results 

are based on 3.08 × 10
4
 simulation replicates, giving a Monte Carlo standard error of less than 

0.0028 for the coverage and consistency results. 

 

Type of CI CI method Coverage Mean width (se) Consistency 𝑷(𝑳(𝑿)

> 𝜽) 

𝑷(𝑼(𝑿)

< 𝜽) 

Standard/naive Wald test 0.907 0.225 (0.010) 1.000 0.093 0.000 

Unconditional Exact 0.930 0.234 (0.011) 1.000 0.070 0.000 



 

Repeated 0.995 0.334 (0.015) 1.000 0.005 0.000 

Adjusted asymptotic 0.930 0.232 (0.011) 1.000 0.070 0.000 

Parametric bootstrap 0.820 0.207 (0.010) 1.000 0.180 0.000 

Conditional Exact 0.970 0.673 (0.331) 0.179 0.017 0.013 

Restricted exact 0.970 0.242 (0.054) 1.000 0.017 0.013 

Likelihood 0.995 0.992 (0.229) 0.030 0.005 0.000 

Penalised likelihood 0.993 0.298 (0.017) 1.000 0.007 0.000 

 

Table 4: Simulation results showing the performance of various CIs with 𝑝𝑝 = 21/134 ≈ 0.157 and 𝑝𝐶𝐸 =

42/143 ≈ 0.294, conditional on the trial stopping early at stage 1. There were 105 trial replicates. The probability 

of stopping at stage 1 is 0.308. 

 

Conditional on stopping at stage 1, the coverage of the standard CI is substantially below the 

nominal, at less than 91%. The coverage of the unconditional exact and adjusted asymptotic 

CIs also decreases to 93%, while the parametric bootstrap has the largest drop to only 82%. In 

contrast, the RCI has a very conservative coverage of 99.5%. These results demonstrate that 

even if unconditionally the unconditional CIs may have near nominal coverage, the conditional 

coverage properties can be poor. In contrast, all of the conditional CI methods (as expected) 

have coverage above the nominal 95%, with the conditional exact and restricted exact CIs 

having conservative coverage of 97%, and the conditional likelihood and penalised likelihood 

CIs having a very conservative coverage comparable to the RCI. 

 

In terms of mean CI width, similar patterns are seen as for the unconditional results. Some 

noticeable features are that the RCI has a substantially higher mean width than either the 

conditional restricted exact or penalised likelihood CIs. The very large mean widths of the 

conditional exact and conditional likelihood CIs are even more extreme conditional on stopping 

at stage 1, with increases of +199% and +340%, respectively, compared with the mean width 

of the standard CI. This agrees with the literature22,23 that does not recommend the use of these 



 

two methods when a group sequential trial stops early for benefit. The very large mean widths 

also correspond with very low consistencies of the test decision (which is always to reject the 

null). In contrast, all other CI methods have 100% consistency (with this holding by design for 

the RCI and penalised likelihood CI). Finally, all CI methods except for the conditional exact 

and restricted exact CIs have an upper coverage of zero. 

 

 

Conditional on continuing to stage 2 

 

Table 5 shows the simulation results conditional on continuing to stage 2, with the true success 

rates (𝑝𝑝 , 𝑝𝐶𝐸  ) on the two arms again equal to the overall observed means in the MUSEC trial. 

With a probability of continuing to stage 2 of 69.2%, these results are based on 6.92 × 10
4
 

simulation replicates, giving a Monte Carlo standard error of less than 0.0019 for the coverage 

and consistency results. 

 

 

Type of CI CI method Coverage Mean width (se) Consistency 𝑷(𝑳(𝑿)

> 𝜽) 

𝑷(𝑼(𝑿)

< 𝜽) 

Standard/naive Wald test 0.962 0.193 (0.008) 0.984 0.000 0.038 

Unconditional Exact 0.962 0.200 (0.010) 0.998 0.001 0.038 

Repeated 0.963 0.198 (0.008) 1.000 0.000 0.036 

Adjusted asymptotic 0.951 0.193 (0.008) 0.978 0.000 0.049 

Parametric bootstrap 0.973 0.211 (0.009) 0.983 0.000 0.027 

Conditional Exact 0.947 0.258 (0.040) 0.978 0.027 0.025 

Restricted exact 0.947 0.220 (0.031) 0.978 0.027 0.025 



 

(Penalised) likelihood 0.985 0.258 (0.023) 0.989 0.000 0.015 

Table 5: Simulation results showing the performance of various CIs with 𝑝𝑝 = 21/134 ≈ 0.157 and 𝑝𝐶𝐸 =

42/143 ≈ 0.294, conditional on the trial continuing to stage 2. There were 105 trial replicates. The probability of 

continuing to stage 2 is 0.692. 

 

Conditional on continuing to stage 2, the standard CI and all the unconditional CIs now have 

slightly conservative coverage of around 96 - 97% (with the exception of the adjusted 

asymptotic CI which achieves the nominal 95% coverage). In contrast, the coverage of 

conditional exact and restricted exact CIs is just below the nominal 95%. The conditional 

likelihood CI (which is the same as the penalised likelihood CI in this case) has the most 

conservative coverage of 98.5%. What is noticeable is that the mean widths of the conditional 

exact and conditional (penalised) likelihood CIs are much lower than the mean widths 

conditional on early stopping at stage 1, with increases of +14% and +34% compared with the 

standard CI. 

 

In terms of consistency, there is a drop of up to around 2% (compared with the 100% 

consistency conditional on stopping at stage 1) for the standard CI, conditional restricted exact 

and all unconditional CIs, with the exception of the RCI which maintains 100% consistency 

and the unconditional exact CI which has almost 100% consistency (with inconsistency again 

caused by the normal approximation). Meanwhile, the consistency of the conditional exact and 

conditional likelihood CIs are around 98 - 99%, compared with only 18% and 3% consistency, 

respectively,  conditional on stopping at stage 1. Finally, all CI methods except for the 

conditional exact and restricted exact CIs now have a lower coverage of zero. 

 

If however we run the simulations with a higher true success rates for 𝑝𝐶𝐸 i.e., 𝑝𝐶𝐸 = 42/143 +

0.08 ≈ 0.374 so that the probability of continuing to stage 2 is only 0.239, the coverage results 

conditional on continuing to stage 2 look rather different. Table 6 shows these simulation 

results, with the Monte Carlo standard error for the coverage and consistency results less than 

0.0032.  

 

Type of CI CI method Coverage Mean width (se) Consistency 𝑷(𝑳(𝑿)

> 𝜽) 

𝑷(𝑼(𝑿)

< 𝜽) 

Standard/naive Wald test 0.897 0.202 (0.007) 0.994 0.000 0.103 

Unconditional Exact 0.902 0.218 (0.012) 0.997 0.000 0.098 



 

Repeated 0.910 0.209 (0.007) 1.000 0.000 0.090 

Adjusted asymptotic 0.895 0.205 (0.007) 0.992 0.000 0.105 

Parametric bootstrap 0.959 0.221 (0.008) 0.995 0.000 0.041 

Conditional Exact 0.945 0.310 (0.043) 0.989 0.031 0.024 

Restricted exact 0.945 0.203 (0.055) 0.989 0.031 0.024 

(Penalised) likelihood 0.987 0.288 (0.019) 0.996 0.000 0.013 

Table 6: Simulation results showing the performance of various CIs with 𝑝𝑝 = 21/134 ≈ 0.157 and 𝑝𝐶𝐸 =

42/143 + 0.08 ≈ 0.374, conditional on continuing to stage 2. There were 105 trial replicates. The probability of 

continuing to stage 2 is 0.239. 

 

This time, the standard CI and all the unconditional CIs, including the RCI, now have coverage 

substantially less than the nominal 95%, ranging from 89 - 91%. The exception is the 

parametric bootstrap CI, which has a slightly conservative coverage (96%). In contrast, the 

coverage of conditional exact and restricted exact CIs remains just below the nominal 95%, 

while the coverage of the conditional (penalised) likelihood CI remains rather conservative 

(almost 99%). Again these results demonstrate that unconditional CIs can have poor coverage 

properties conditional on the stopping stage (regardless of whether the trial is stopped early or 

continues). Tables showing the simulation results unconditionally and conditional on early 

stopping at stage 1 for this choice of values for 𝑝𝑝 and 𝑝𝐶𝐸 can be found in Appendix A.2. 

 

Simulation results across a range of values for 𝒑𝑪𝑬 

The results given in Tables 4-6 above are only for a particular fixed value of 𝑝𝐶𝐸 and so we 

now explore the performance of the various CI methods across a range of values of 𝑝𝐶𝐸 from 

�̂�𝐶𝐸 − 0.07 ≈ 0.224 to �̂�𝐶𝐸 + 0.14 ≈ 0.434, which corresponds to a probability of early 

stopping ranging from 0.05 to 0.94, as seen in Figure 3 below. 

 



 

 

Figure 3: Probability of early stopping at stage 1 as the value of 𝑝𝐶𝐸  varies from �̂�𝐶𝐸 − 0.07 ≈ 0.224 to �̂�𝐶𝐸 +

0.14 ≈ 0.434 . The value of 𝑝𝑝 = 21/134 ≈ 0.157. 

 

For each value of 𝑝𝐶𝐸 (22 in total), we ran N = 105 trial replicates for each of the CI methods, 

except for the standard CI where we ran N = 106 trial replicates in order to more accurately 

assess whether there was any undercoverage. For the CI methods requiring a bootstrap 

procedure (unconditional parametric bootstrap, conditional likelihood and conditional 

penalised likelihood), we again used B = 104 bootstrap samples. Figure 4 shows the overall 

(unconditional) coverage of the CI methods as a function of 𝑝𝐶𝐸. The shaded areas around the 

lines for the CI methods correspond to ±1.96 times the Monte Carlo standard error. The red 

dashed line denotes the nominal 95% coverage. 

 

Starting with the standard CI, the coverage is (just) below the nominal 95% for most of the 

range of 𝑝𝐶𝐸 except for 𝑝𝐶𝐸 > 0.40 when it goes just above 95%. In contrast, the unconditional 

exact CI has coverage (just) above the nominal 95% for the whole range of 𝑝𝐶𝐸 , with the 

coverage becoming increasingly conservative (up to 96%) as 𝑝𝐶𝐸 increases. The RCI has rather 

conservative coverage for the whole range of 𝑝𝐶𝐸 , with the coverage also becoming 

increasingly conservative (>98%) as 𝑝𝐶𝐸 increases. The adjusted asymptotic CI has very 

similar undercoverage to the standard CI for 𝑝𝐶𝐸 < 0.33 but then has increasingly conservative 

coverage as 𝑝𝐶𝐸 increases above 0.33. The unconditional parametric bootstrap CI has rather 

low coverage (<93%) for 𝑝𝐶𝐸 < 0.32 but quickly switches to having increasingly conservative 

coverage for 𝑝𝐶𝐸 > 0.34.  These results demonstrate that whether a particular CI method has 

the correct coverage can strongly depend on the true (unknown) underlying parameter values. 

The conditional CIs all have conservative coverage, but the conditional exact and conditional 



 

restricted exact CIs have coverage close to the nominal (95-96%). In contrast, the conditional 

likelihood and penalised likelihood CI have rather conservative coverage (98-99%). 

 

 

Figure 4: Coverage as the value of 𝑝𝐶𝐸 varies from �̂�𝐶𝐸 − 0.07 ≈ 0.224 to �̂�𝐶𝐸 + 0.14 ≈ 0.434 . The value of 𝑝𝑝 =

21/134 ≈ 0.157. The shaded areas around the lines for the CI methods correspond to ±1.96 times the Monte 

Carlo standard error. The red dashed line denotes the nominal 95% coverage. The restricted conditional and 

conditional exact lines are almost completely overlapping. 

 

 

Figure 5 shows the (unconditional) mean width of the CI methods as a function of 𝑝𝐶𝐸. The 

unconditional exact, adjusted asymptotic and unconditional parametric bootstrap CIs all have 

similar mean width as the standard CI (within ±6%). The conditional restricted exact CI has a 

slightly higher mean width than the standard CI (between 8-13%), with the penalised likelihood 

CI having a mean width between 23-33% higher than the standard CI. In contrast, the 

conditional exact and conditional likelihood CI mean widths are dramatically larger than the 

standard CI, up to 106% and 203% larger, respectively. Finally, the RCI has a similar mean 

width as the standard CI for small values of 𝑝𝐶𝐸 but becomes substantially higher as 𝑝𝐶𝐸 

increases (up to 43% larger). 



 

Figure 5: CI width as the value of 𝑝𝐶𝐸  varies from �̂�𝐶𝐸 − 0.07 ≈ 0.224 to �̂�𝐶𝐸 + 0.14 ≈ 0.434 . The value of 𝑝𝑝 =

21/134 ≈ 0.157. 

 

As before, it is informative to also report results conditional on the stopping stage of the trial. 

Figure 6 shows the coverage of the CI methods conditional on early stopping at stage 1 as a 

function of 𝑝𝐶𝐸. This time, for smaller values of 𝑝𝐶𝐸 the coverage of the standard CI, adjusted 

asymptotic CI, unconditional exact and unconditional bootstrap CI is very low. The standard 

CI coverage can even be less than 50%. Note though that the lowest coverages are also achieved 

when there are the lowest probabilities of actually stopping at stage 1. The coverage of the 

standard CI does go above the nominal 95% when 𝑝𝐶𝐸 > 0.33. In contrast, all the conditional 

CIs and the RCI have conservative coverage throughout the range of 𝑝𝐶𝐸, with the conditional 

exact and restricted exact CIs being (much) closer to the nominal level of coverage compared 

to the RCI, conditional likelihood and penalised likelihood CI.  



 

Figure 6: Coverage conditional on early stopping at stage 1 as the value of 𝑝𝐶𝐸  varies from �̂�𝐶𝐸 − 0.07 ≈ 0.224 

to �̂�𝐶𝐸 + 0.14 ≈ 0.434 . The value of 𝑝𝑝 = 21/134 ≈ 0.157. The shaded areas around the lines for the CI methods 

correspond to ±1.96 times the Monte Carlo standard error. The red dashed line denotes the nominal 95% 

coverage. The unconditional exact and adjusted asymptotic lines completely overlap, as do the restricted 

conditional and conditional exact lines. The conditional likelihood and penalised likelihood lines are also very 

close together. 

 

Figure 7 shows the mean width of the CI methods conditional on early stopping at stage 1 as a 

function of 𝑝𝐶𝐸. There are similar patterns as for the unconditional results, except that the RCI 

now has substantially greater mean width than the standard CI across the range of 𝑝𝐶𝐸 values 

(consistently between 47-52% larger). Also, the extreme widths for the conditional exact and 

conditional likelihood CIs are even more striking for smaller values of 𝑝𝐶𝐸. This reflects the 

results in the literature that these CIs have poor properties conditional on early stopping, with 

much better properties seen with the conditional restricted exact and penalised likelihood CIs. 



 

 

Figure 7: CI width conditional on early stopping at stage 1 as the value of 𝑝𝐶𝐸  varies from �̂�𝐶𝐸 − 0.07 ≈ 0.224 

to �̂�𝐶𝐸 + 0.14 ≈ 0.434 . The value of 𝑝𝑝 = 21/134 ≈ 0.157. The unconditional exact and adjusted asymptotic 

lines are almost completely overlapping.  

 

Figure 8 shows the coverage of the CI methods conditional on continuing to stage 2 as a 

function of 𝑝𝐶𝐸. For larger values of 𝑝𝐶𝐸 the coverage of the standard, adjusted asymptotic, 

unconditional exact and unconditional bootstrap CI is very low. The coverage of the standard 

CI can be below 70%. This time, the RCI is no longer conservative throughout the whole range 

of larger values of 𝑝𝐶𝐸, with also a very low coverage for larger values of 𝑝𝐶𝐸 (as low as 73%). 

These lowest coverages are achieved when there are the lowest probabilities of actually 

continuing to stage 2. The coverage of the standard CI is above the nominal 95% when 𝑝𝐶𝐸 <

0.33. The conditional likelihood CI (which is the same as the penalised likelihood CI) and the 

RCI again have conservative coverage throughout the range of 𝑝𝐶𝐸. This time the conditional 

exact and restricted exact CIs essentially match the nominal 95% level of coverage. 



 

 

Figure 8: Coverage conditional on continuing to stage 2  as the value of 𝑝𝐶𝐸  varies from �̂�𝐶𝐸 − 0.07 ≈ 0.224 to 

�̂�𝐶𝐸 + 0.14 ≈ 0.434 . The value of 𝑝𝑝 = 21/134 ≈ 0.157. The shaded areas around the lines for the CI methods 

correspond to ±1.96 times the Monte Carlo standard error. The red dashed line denotes the nominal 95% 

coverage. The conditional exact and restricted conditional lines are almost completely overlapping. 

 

Finally, Figure 9 shows the mean width of the CI methods conditional on continuing to stage 

2 as a function of 𝑝𝐶𝐸. The adjusted asymptotic CI has a very similar mean width as the standard 

CI (within ±2%). This time though, the RCI also has a similar mean width as the standard CI, 

only up to 4% greater. Meanwhile, the unconditional exact CI has an increasingly large mean 

width compared with the standard CI as 𝑝𝐶𝐸 increases (up to 12% larger). The unconditional 

bootstrap CI has a consistently higher mean width than the standard CI of between 7-9%. The 

mean width of the conditional restricted exact CI has an interesting pattern, being up to 15% 

greater than the standard CI for 𝑝𝐶𝐸 < 0.38, but then having a smaller mean width than the 

standard CI for 𝑝𝐶𝐸 > 0.38, with even up to a 16% decrease. In contrast, the conditional exact 

and conditional likelihood CI mean widths remain much larger than the standard CI, up to 64% 

and 46% larger, respectively. This implies that the penalised likelihood CI also has much larger 

widths than the standard CI conditional on continuing to stage 2 (as it is equal to the conditional 

likelihood CI). 



 

 

Figure 9: CI width conditional on continuing to stage 2 as the value of 𝑝𝐶𝐸  varies from �̂�𝐶𝐸 − 0.07 ≈ 0.224 to 

�̂�𝐶𝐸 + 0.14 ≈ 0.434 . The value of 𝑝𝑝 = 21/134 ≈ 0.157. 

 

Summary 

Our aim with the simulation study was not primarily to suggest that one method is the ‘best’ 

overall and should be used in the MUSEC trial context, as which method is ‘best’ very much 

depends on the trial aims and relative importance of relevant metrics of interest (including 

coverage, consistency and CI width), see the following Sections. However, we can draw the 

following general observations: 

● There is often (but not always) the following trade-off in metrics: a high(er) coverage 

implies high(er) mean CI width, and vice-versa. The trade-off between coverage and 

consistency is much less clear. 

● While unconditional CIs can have good performance unconditionally, the conditional 

performance (especially in terms of coverage) may be poor. 

● To guarantee conditional performance in terms of coverage, conditional CIs are a must. 

However, this can come at the price of (very) wide CIs. 

● For conditional CIs, as has been discussed in the literature, the restricted conditional 

exact CI is to be preferred to the conditional exact CI, and the penalised likelihood CI 

is to be preferred to the conditional likelihood CI (particularly for trials that stop early 

at stage 1). 



 

● Some of the undercoverage and inconsistency is driven by the quality of the 

(asymptotic) normal approximation used. However, this is not unique to ADs, with such 

issues also seen for CIs for binary endpoints in fixed trial designs17. 

● The only CI methods that guarantee consistency in all cases in this trial context are the 

RCI, and the penalised likelihood CI (when stopping at stage 1). 

● The simulations highlight the importance of looking at a wide(r) region of the parameter 

space, as some CI methods may perform well in some parts of the parameter space and 

not in others. 

● More ‘extreme’ conditional results can be seen as the probability of stopping at that 

stage gets closer to zero or one. 

 

 

5. Guidance: best practice for CIs in ADs 

 

In this Section, we give guidance on the choice and reporting of CIs for ADs. This builds on 

the relevant parts of the FDA guidance for ADs11 and the ACE guidance2,3, and closely follows 

the guidance for best practices for point estimation in ADs given by Robertson et al. 

(2023a,b)9,10. The choice of CIs should be considered throughout an adaptive trial, from the 

planning stage to the final reporting and interpretation of the results. Indeed, the design and 

analysis of an adaptive trial are closely linked, and should ideally go hand-in-hand. In what 

follows, our main focus is on the confirmatory setting where analyses are fully pre-specified, 

but some of the principles can also apply to more exploratory settings (e.g. the CONSORT 

Dose-Finding Extension guidelines mention the reporting of confidence intervals26).  

 

5.1 Planning stage 

 

The context, aims and design of an adaptive trial should all inform the analysis strategy used, 

including the choice of CIs. These decisions are not only for trial statisticians, but should also 

be discussed with other trial stakeholders to ensure consistency with what they want to achieve. 

Firstly, it is necessary to decide on what exactly is to be estimated (that is, the estimands of 

interest24). Secondly, the desired characteristics of potential CIs should be decided. Some key 

considerations are as follows: 

 

● Conditional versus unconditional perspective: The choice of whether to look at the 

conditional or unconditional properties of CIs will depend on the trial design. For example, 

in a drop-the-losers trial where only a single treatment is selected for analysis in the final 

stage, a conditional perspective reflects the primary interest being in estimating the 

treatment effect of the selected treatment. On the other hand, for group sequential trials, the 

unconditional perspective is recognised as being an important consideration10. As seen in 

the simulation study in Section 4, the conditional properties of unconditional CIs can be 

poor, while the conditional CIs can have (much) larger widths than the unconditional CIs. 

A general framework of viewing the question of conditional versus unconditional inference 



 

is provided by Marschner (2021)27. Rather than advocating for or against unconditional 

inference over conditional inference in general, the framework allows for the exploration 

of the extent to which conditional bias is likely to be present within a given sample (using 

meta-analysis techniques). 

 

● Trade-off in metrics: As highlighted at the end of Section 4, typically there will be a trade-

off between the coverage and the width of CI methods. In terms of 

interpretability/communication, consistency with the test decision is key. Depending on the 

context and aims of the trial, different relative importance may be given to the other criteria. 

For example, in a phase II trial where a precise estimate of the treatment effect is needed 

to inform a follow-up confirmatory study, the CI width may be of greater concern, whereas 

in a definitive phase III trial more emphasis may be placed on having the correct coverage 

to satisfy regulatory concerns. We are not aware of clear proposals in the literature on how 

to combine these different metrics into one overall criterion (as opposed to, say, the mean 

squared error (MSE) for point estimators). 

 

● Link with point estimation: As highlighted in Sections 3 and 4, all of the CI methods (apart 

from the RCI) have a natural associated point estimator. Hence the considerations and 

guidance around choice of point estimators given in Robertson et al. (2023a,b)9,10 can also 

play a role in the choice of CI method. Ideally, these choices should go hand-in-hand to 

avoid the (rare) situations where the chosen point estimator lies outside the chosen CI. 

 

In trials with multiple outcomes (e.g., primary and secondary outcomes), there may be different 

criteria and hence CIs needed for different outcomes. As well, in some trial settings such as 

multi-arm trials where more than one arm can reach the final stage, the CI of each arm’s 

comparison with control could be considered separately, but there may also be interest in 

calculating e.g., the simultaneous coverage across all arms that are selected. Once the criteria 

for assessing CIs have been decided, the next step is to find potential CIs that can be used for 

the trial design in question. Part I of this paper series is a starting point to find the relevant 

methodological literature (and code for implementation). 

 

For certain (more common) types of ADs, such as GSDs, a review of the literature may be 

sufficient to compare the different types of adjusted CIs. Otherwise, we would recommend 

conducting simulations to explore the properties of potential CIs given the AD. It is important 

to assess the CIs across a range of plausible parameter values and design scenarios, taking into 

account factors such as the probability of early stopping. The simulation-based approach can 

also be used when there are no proposed alternatives to the standard CI for the trial design 

under consideration. Even in this setting, we would still encourage an exploration of the 

properties of the standard CI. If there is undercoverage or inconsistencies with the hypothesis 

test decision (for example), then this can impact how the results of the trial are reported (see 

Section 5.4). Exploring a bootstrap approach as an alternative to the standard CI may be an 

option in such a scenario. 

 



 

5.2 Pre-specification of analyses  

 

The statistical analysis plan (SAP) and health economic analysis plan (HEAP) should include 

a description of the CIs that are planned to be used when reporting the results of the trial, and 

a justification of the choice of CIs based on the investigations conducted during the planning 

stage. This reflects FDA guidance, which states that there should be “prespecification of the 

statistical methods that will be used to […] estimate treatment effects…”11. The trial statistician 

and health economist should work together to develop plans that are complementary to both 

their analyses. 

 

In settings where multiple adjusted CIs are available and are of interest, one CI should be 

designated the ‘primary’ CI for the final reporting of results, with the others included as 

sensitivity or supplementary analyses (depending on the estimand of interest). This is to aid 

clarity in the interpretation of the trial results, and to avoid ‘cherry-picking’ the most favourable 

CI after observing the trial results. We have avoided making general recommendations on 

which CI method to use in practice because this depends on the context and goals of the trial, 

as well as the type of AD in question. In addition, given that CIs for ADs is an ongoing research 

area, there is a risk that any such recommendations may become outdated. 

 

5.3 Data Monitoring Committees (DMCs) 

 

When presenting interim results to DMCs, the choice of CIs should also be considered. For 

example, for GSDs the RCI has been suggested as a useful data monitoring tool28. 

 

5.4 Reporting results for a completed trial 

 

When reporting results for a completed adaptive trial, there should be a clear description of the 

“statistical methods used to estimate measures of treatment effects”2. Hence, it should be made 

clear what CI method is used, along with any underlying assumptions made in their calculation 

(for example, being conditional on the observed stopping time). These discussions would 

naturally link back to the planning stage literature review and/or simulations (which could 

potentially be updated in light of the trial results and any unplanned adaptations that took 

place). For example, if the potential undercoverage of the standard CI is likely to be negligible, 

this would be a reassuring statement to make. On the other hand, in a setting where no adjusted 

CIs currently exist in the literature and there is the potential for undercoverage or any other 

performance issue of the standard CI, a statement flagging up this potential concern would 

allow appropriate caution to be taken when using the CI to inform clinical or policy decisions, 

future studies or meta-analyses. As discussed in Section 5.2, it should be specified in advance 

(i.e., in the SAP for a confirmatory study) which CI will be used for the primary analysis and 

which (if any) CI(s) will be used as a sensitivity analysis. 

 



 

6.  Discussion 

 

There is a growing body of methodological literature proposing various adjusted CI methods 

for a wide variety of ADs, with GSDs in particular having a large number of different options, 

as illustrated in our case study and simulation results. However, in our experience there is at 

best limited uptake of adjusted CIs in practice, with many adaptive trials continuing to only 

report the standard CI. 

 

It is our hope that this paper series will encourage the increased use and reporting of adjusted 

CIs in practice for ADs wherever possible. As described in our guidance in Section 5, 

estimation issues should be considered in the design stage of an adaptive trial. The estimation 

strategy should take the design of the trial into account, which motivates the use of adjusted 

CIs. In terms of trial reporting, statements about the potential undercoverage (for example) of 

the reported CIs can indicate where more care is needed in interpretation of the results and the 

use of these CIs for further research. 

 

For future research, it would be helpful to have stronger guidance on how to choose CIs in 

practice for a given AD type, especially in terms of proposals around how to appropriately 

combine different metrics/performance measures of interest. There is also the need for the 

further development of user-friendly software and code for calculation of adjusted CIs in 

practice and to aid in simulations. 
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Appendix 

A.1 Case study: Group sequential design 

 

Definition of the information at stages 1 and 2 

 

At stage k (k = 1,2), let 𝑝�̃� denote the pooled estimate of the mean overall success probability, 

i.e., the total number of observed successes divided by the total number of subjects. Then the 

observed information Ik is given by 

 

𝐼𝑘 =
1

pk̃(1 − pk̃)(1/n0k + 1/nCEk)
 

 

where n0k and nCEk are the number of subjects on the placebo and CE arms, respectively, at 

stage k.  

 

 

Definition of the conditional density of  𝜃 

The conditional density of 𝜃, conditional on continuing to stage 2, is given by the following 

expression: 

 
 

 

Unconditional parametric bootstrap procedure 

 

1) Given the end-of-trial response rate estimates �̂�𝐶𝐸 and �̂�𝑃 , generate B bootstrap stage 

1 samples S1,CE
(1)

 , . . . , S1,CE
(B)

  and S1,P
(1)

 , . . . , S1,P
(B)

 , where S1,CE
(b)

 ~ Bin(𝑛1,𝐶𝐸  , p̂CE ) and 

S1,P
(b)

 ~ Bin(𝑛1,𝑃 , �̂�𝑃 ) represent the bootstrap number of successes on the CE and 

placebo arm, respectively, at the end of stage 1 for b = 1, …, B. Here 𝑛1,𝐶𝐸 and 𝑛1,𝑃 are 

the stage 1 sample sizes for the CE and placebo arm, respectively. 

 

1) For b = 1, …, B calculate the bootstrap standardised stage 1 test statistic 𝑍1

(𝑏)
 from the 

bootstrap values 𝑆1,𝐶𝐸
(𝑏)

  and 𝑆1,𝑃
(𝑏)

 . 

a) If Z1
(b)

> e1 then the bootstrap MLE θ̂
(b)

 is set equal to the stage 1 MLE i.e.,  

θ̂
(b)

= S1,CE
(b)

 / 𝑛1,CE − S1,P
(b)

 / 𝑛1,P 

 

b) Otherwise, generate a bootstrap stage 2 sample S2,CE
(b)

  and S2,P
(b)

  , where 

S2,CE
(b)

 ~ Bin(𝑛CE − 𝑛1,CE , p̂CE ) and S2,P
(b)

 ~ Bin(𝑛𝑝 − 𝑛1,P , �̂�𝑃 ) represent the 



 

bootstrap number of successes on the CE and placebo arm, respectively, for 

stage 2 only. Then the bootstrap MLE θ̂
(b)

 is set equal to the overall MLE i.e.,  

θ̂
(b)

= (S1,CE
(b)

 + S2,CE
(b)

 )/ 𝑛CE − (S1,P
(b)

+ S2,P
(b)

)/ 𝑛P 

 

2) The bootstrap CI is then given by (qα/2 , q1−α/2 ) where  qα/2 and q1−α/2 are the α and 

(1 − α/2) quantiles, respectively, of the set θ̂
(1)

, . . . , θ̂(B) . 

 

 

Bootstrap procedure for the conditional likelihood CI (conditional on continuing to 

stage 2) 

 

1) Set b = 1. 

 

2) Given the end-of-trial response rate estimates �̂�𝐶𝐸 and �̂�𝑃 , generate bootstrap stage 1 

sample S1,CE
(b)

   and S1,P
(b)

  , where S1,CE
(b)

 ~ 𝐵𝑖𝑛(𝑛1,CE , �̂�𝐶𝐸  ) and 𝑆1,𝑃
(𝑏)

 ~ 𝐵𝑖𝑛(𝑛1,P , �̂�𝑃 ). 

 

3) Calculate the bootstrap standardised stage 1 test statistic 𝑍1

(𝑏)
 from the bootstrap values 

S1,CE
(b)

  and S1,P
(b)

 . 

 

a) If Z1
(b)

> e1 , go back to step 2. 

 

b) Otherwise, generate a bootstrap stage 2 sample 𝑆2,𝐶𝐸
(𝑏)

  and 𝑆2,𝑃
(𝑏)

  , where 

𝑆2,𝐶𝐸
(𝑏)

 ~ 𝐵𝑖𝑛(𝑛𝐶𝐸 − 𝑛1,CE , �̂�𝐶𝐸  ) and 𝑆2,𝑃
(𝑏)

 ~ 𝐵𝑖𝑛(𝑛𝑝 − 𝑛1,𝑃 , �̂�𝑃 ). The bootstrap 

conditional MLE �̂�𝑐
(𝑏)

 is calculated following the equation above, using the 

bootstrap values S1,CE
(b)

  , S2,CE
(b)

 , S1,P
(b)

 and 𝑆2,𝑃
(𝑏)

 . Set b = b + 1 and go to step 2. 

 

4) The bootstrap CI is then given by (𝑞𝛼/2 , 𝑞1−𝛼/2 ) where  𝑞𝛼/2 and 𝑞1−𝛼/2 are the 𝛼 and 

(1 − 𝛼/2) quantiles, respectively, of the set �̂�𝑐
(1)

, . . . , 𝜃𝑐
(𝐵)

. 

 

 

Bootstrap procedure for the conditional likelihood CI (conditional on early stopping at 

stage 1) 

 

1) Set b = 1. 

 

2) Given the stage 1 success probability estimates �̂�𝐶𝐸 and �̂�𝑃 , generate bootstrap stage 1 

sample S1,CE
(b)

   and S1,P
(b)

  , where S1,CE
(b)

 ~ 𝐵𝑖𝑛(𝑛1,CE , �̂�𝐶𝐸  ) and S1,P
(b)

 ~ Bin(𝑛1,P , �̂�𝑃 ) 

 



 

3) Calculate the bootstrap standardised stage 1 test statistic 𝑍1

(𝑏)
 from the bootstrap values 

S1,CE
(b)

  and S1,P
(b)

 . 

a) If Z1
(b)

> e1 then the bootstrap conditional MLE �̂�𝑐
(𝑏)

 is calculated following the 

equation above, using the bootstrap values S1,CE
(b)

  and S1,P
(b)

 . Set b = b + 1 and go 

to step 2. 

 

b) Otherwise, go back to step 2. 

 

4) The bootstrap CI is then given by (𝑞𝛼/2 , 𝑞1−𝛼/2 ) where  𝑞𝛼/2 and 𝑞1−𝛼/2 are the 𝛼/2 

and (1 − 𝛼/2) quantiles, respectively, of the set �̂�𝑐
(1)

, . . . , 𝜃𝑐
(𝐵)

. 

 

A.2 Additional simulation results 

 

Simulations with the true success rates (𝑝𝑝 , 𝑝𝐶𝐸  ) given by 𝑝𝑝 = 21/134 ≈ 0.157 and 𝑝𝐶𝐸 =

42/143 + 0.08 ≈ 0.374. The probability of stopping early for efficacy in stage 1 is 0.761. 

 

Overall (unconditional results) 

Type of CI CI method Coverage Mean width (se) Consistency 𝑷(𝑳(𝑿)

> 𝜽) 

𝑷(𝑼(𝑿)

< 𝜽) 

Standard/naive Wald test 0.948 0.227 (0.016) 0.999 0.028 0.025 

Unconditional Exact 0.958 0.240 (0.015) 0.999 0.019 0.023 

Repeated 0.977 0.318 (0.062) 1.000 0.001 0.022 

Adjusted asymptotic 0.956 0.236 (0.019) 0.998 0.019 0.025 

Parametric bootstrap 0.960 0.218 (0.009) 0.999 0.029 0.010 

Conditional Exact 0.954 0.456 (0.261) 0.587 0.020 0.026 



 

Restricted exact 0.954 0.258 (0.061) 0.997 0.020 0.026 

Likelihood 0.988 0.698 (0.356) 0.351 0.009 0.003 

Penalised likelihood 0.986 0.308 (0.024) 0.999 0.011 0.003 

Table 7: Simulation results showing the performance of various CIs with 𝑝𝑝 = 21/134 ≈ 0.157 and 𝑝𝐶𝐸 =

42/143 + 0.08 ≈ 0.374. There were 105 trial replicates. The probability of stopping at stage 1 is 0.761. 

 

 

Conditional on stopping at stage 1 

 

Type of CI CI method Coverage Mean width (se) Consistency 𝑷(𝑳(𝑿)

> 𝜽) 

𝑷(𝑼(𝑿)

< 𝜽) 

Standard/naive Wald test 0.964 0.235 (0.009) 1.000 0.036 0.000 

Unconditional Exact 0.975 0.246 (0.009) 1.000 0.025 0.000 

Repeated 0.998 0.352 (0.013) 1.000 0.002 0.000 

Adjusted asymptotic 0.975 0.246 (0.009) 1.000 0.025 0.000 

Parametric bootstrap 0.961 0.218 (0.009) 1.000 0.039 0.000 

Conditional Exact 0.957 0.501 (0.283) 0.461 0.017 0.026 

Restricted exact 0.957 0.275 (0.052) 1.000 0.017 0.026 



 

Likelihood 0.988 0.826 (0.312) 0.149 0.012 0.000 

Penalised likelihood 0.986 0.314 (0.022) 1.000 0.014 0.000 

Table 8: Simulation results showing the performance of various CIs with 𝑝𝑝 = 21/134 ≈ 0.157 and 𝑝𝐶𝐸 =

42/143 + 0.08 ≈ 0.374. There were 105 trial replicates. The probability of stopping at stage 1 is 0.761. 
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