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Human group connectome analysis relies on combining individual connectome
data to construct a single representative network which can be used to describe
brain organisation and identify differences between subject groups. Existing
methods adopt different strategies to select the network structural features to
be retained or optimised at group level. In the absence of ground truth, however,
it is unclear which structural features are the most suitable and how to evaluate
the consequences on the group network of applying any given strategy. In this
investigation, we consider the impact of defining a connectome as representative
if it can recapitulate not just the structure of the individual networks in the cohort
tested but also their dynamical behaviour, which we measured using a model of
coupled oscillators. We applied the widely used approach of consensus
thresholding to a dataset of individual structural connectomes from a healthy
adult cohort to construct group networks for a range of thresholds and then
identified the most dynamically representative group connectome as that having
the least deviation from the individual connectomes given a dynamical measure
of the system. We found that our dynamically representative network recaptured
aspects of structure for which it did not specifically optimise, with no significant
difference to other group connectomes constructed via methods which did
optimise for those metrics. Additionally, these other group connectomes were
either as dynamically representative as our chosen network or less so. While we
suggest that dynamics should be at least one of the criteria for
representativeness, given that the brain has evolved under the pressure of
carrying out specific functions, our results suggest that the question persists
as to which of these criteria are valid and testable.
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1 Introduction

Diffusion weighted imaging (DWI) lies at the heart of various
pipelines for the systematic mapping of the structural connectivity
between brain regions (Jones, 2008; Soares et al., 2013). Such
approaches have been extensively used to build models of the
brain as a network (the human “connectome”). Studies of the
human connectome utilise tools from graph theory to describe
principles of brain structural organisation (Hagmann et al.,
2012). These approaches help elucidate the relationship between
brain structure and function in healthy and diseased brain states,
facilitating comparisons that can shed important light on the
pathophysiology of human brain disorders (Deco and
Kringelbach, 2014; Meunier et al., 2010; van den Heuvel and
Sporns, 2011).

DWI pipelines aiming to reconstruct the human connectome
lead to the creation of individualised networks from each of the
subjects’ fibre-tracking data. However, a common practice in
network neuroscience has been the construction of a
representative group network by collating structural brain
network data from a cohort of individual subjects (Hagmann
et al., 2008; van den Heuvel and Sporns, 2011; Cabral et al.,
2011; Cabral et al., 2014; Schirmer et al., 2019). This step aims to
minimise individual variability and outliers by constructing a
“blueprint” brain network that, while still inevitably
contaminated by the biases introduced from the processing
pipeline (Schilling et al., 2019), is expected to facilitate the
accuracy of quantitative analyses. The conclusions to be drawn
are thought to be more applicable to the general characteristics
of the brain. The aims of the various studies that utilise group brain
networks range from characterising the healthy human connectome
and describing universal brain topology (Hagmann et al., 2008; van
den Heuvel and Sporns, 2011; Betzel and Bassett, 2018) to making
meaningful comparisons between pre-defined groups, such as
healthy and diseased populations (Wang et al., 2021), and
between healthy subjects across a large age range (Buchanan
et al., 2020).

In early brain network studies (Hagmann et al., 2008; Cabral
et al., 2011; Cabral et al., 2014), averaging each element in the
adjacency matrix across all subjects to obtain a group network was a
common technique. However, a simple average can be problematic;
for example, elements in a few subjects’matrices that may represent
outliers due to noise will inevitably be represented in the average,
while the resulting group network will have a much higher binary
density than any of the subjects due to inherent cohort variability
(e.g., one can imagine “overlapping” different adjacency matrices
where different elements are equal to 0 in each matrix).

As such, more sophisticated techniques have been developed to
create group brain networks. Most of these can be said to be variants
of one of the following three approaches.

In consensus thresholding (van den Heuvel and Sporns, 2011;
van den Heuvel et al., 2012; Schirmer et al., 2019; Parkes et al., 2023),
only those links present in any given percentage of the individuals
(the percentage consensus threshold) are retained in the group
connectome. However, there is no “consensus” regarding which
is the appropriate percentage threshold, leaving this decision to the
discretion of the researcher. The choice of a threshold can
differentially affect the outcomes of investigations, making

comparisons between different studies difficult. For example, in a
study by Buchanan et al. (2020), the stringency of the threshold
applied had significant consequences on the association of brain
network properties with age. de Reus and van den Heuvel (2013)
devised a model that helps make an informed choice about a
particular threshold based on determining an acceptable trade-off
between the assumed false positive and false negative connections in
the group network. They suggested that a wide range of thresholds
between 30% and 90% would be appropriate. However, their model
was based on two assumptions: 1) that most of the variation in the
connectomes represents noise; 2) that the level of certainty regarding
the existence of a link depends on its prevalence in the cohort (de
Reus and van den Heuvel, 2013). Neither of these assumptions is
necessarily true because we do not know howmuch variability exists
in the human connectome. Furthermore, consistency in the presence
of a connection can easily result from a systematic error. de Reus and
van den Heuvel (2013) reported a large variability of global network
properties within the “acceptable” threshold range, including
characteristic path length, clustering coefficient, and the degree
assortativity. Differences in network structure can influence
network dynamics, so this variability is expected to significantly
affect the dynamical behaviour of networks within a range (Arenas
et al., 2008; Rodrigues et al., 2016).

A significant source of bias introduced by consensus
thresholding is that in each individual brain network, the
probability that a connection exists decays monotonically with
anatomical distance (Alexander-Bloch et al., 2013; Betzel and
Basset, 2018). Tractography algorithms contribute to this issue
due to the premature termination of streamlines (Yeh et al.,
2021). The uniform application of a single threshold across all
connections (as is the case with consensus thresholding) will
result in the reconstructed group network overestimating the
presence of short-range connections whilst underestimating the
proportion of long-range connections. To mitigate this problem,
the distance-dependent consensus threshold Betzel et al. (2019)
includes the application of a “restricted” rather than a uniform
threshold on each link. This “restricted” threshold is calculated
based on the length of that connection (see Section 2.7.2. for more
detail). This approach results in a group network that closely
recapitulates the inter-areal Euclidean distance distributions of
the individual networks. Applying this form of threshold has also
been shown to better recapitulate several local and global network
features compared to uniform consensus thresholding (Betzel et al.,
2019), including the network degree, clustering coefficient, and
betweenness centrality. However, distance-dependent consensus
thresholding operates on the assumption that the long-range
connections preserved do indeed represent existent connections
and are not spurious links. Furthermore, it cannot be performed
on fully weighted brain networks with very high levels of density and
hence nomeaningful consensus between links, since all, or nearly all,
links, are present in all subjects (Betzel et al., 2019). We note here
that even if a matrix of inter-areal Euclidean distances is not
explicitly used in any given model of the brain (such as the non-
spatially embedded model we use here), it is impossible not to be
biased by the implicit topological information that is carried in the
inter-areal Euclidean distances (which are here used as a proxy for
connection lengths). For example, the 50–100 mm bracket of
connection lengths between brain regions contains major
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association fibres which connect different brain lobes: any
thresholding strategy with an effect on this length bracket
would, therefore, also affect binary interlobular connectivity (for
a detailed map of the topology of brain connections of different
lengths, see Bajada et al. (2019)). This argument can also be applied
to the weights of the links, even if the final model of the brain only
deals with binary connectivity. As such, if one decides to threshold
a brain network with a strategy based on weights before binarizing,
the final binarized network will suffer from a specific bias, which
originates from the “weighted topology” of the network. For
example, the links with the highest weights in our dataset are
links that connect hubs together, corresponding to rich-club
connections–data not shown.

The last method of group network construction we describe does
rely on weighted connectivity. Consistency-based thresholding
(Roberts et al., 2016) retains those links with weights that have
the lowest variation across the subjects, up to a desired group
density. As such, it can deal with even nearly fully connected
networks, such as those that can be produced by probabilistic
tractography (Roberts et al., 2016) where a consensus cannot be
established (i.e., nearly all subjects possess all connections).
Networks constructed with this method have been found to
better capture the edge length distribution of the original
networks, retaining a greater proportion of long-range
connections and, consequently, inter-hemispheric connections
when compared with a group connectome constructed via
thresholding by weight (Roberts et al., 2016). However, the
choice of the threshold (density) is still an arbitrary parameter:
Mccolgan et al. (2018) showed that different thresholds can impact
the detection of important group differences between healthy and
diseased groups.

Each of the methods described above utilise different criteria to
determine which connections are retained in the group connectome,
based on assumptions about which links represent noise and which
represent individual variability. Due to the absence of a ground truth
connectome, there is no in-principle way to determine the accuracy
of these assumptions. As networks are integrated systems, there is
also a real possibility that optimising certain aspects of the group
connectome may lead to unexpected changes in other aspects, some
of which may lead the group connectome to deviate from the cohort
in terms of representativeness.

In this investigation, we develop a novel method to choose the
most representative group network based on the metastability of the
individual networks. Using this method, we test the notion of cohort
representativeness by asserting that for a group network to be
considered representative of the individuals from which it is
constructed, then given a dynamical process running on the
network, the resulting behaviour should also be representative of
that of the individuals. In what follows, we describe the rationale
behind the choice of signature for the dynamical behaviour (Section
2.2), the construction of a set of group networks that served as
candidates from which to choose the one that was most dynamically
representative (2.3), and the method we used to find the optimum
(2.4). Upon choosing the most dynamically representative
connectome, we assessed the quality of the fit of its dynamical
signature to those of the individual subjects (3.1), and we compared
this fit with that of group connectomes constructed with alternative
methods (3.2.1). Finally, we also compared the structural

representativeness of all the group networks in this study (3.2.2),
and we discuss the implications of these findings in Section 4.

2 Methods

2.1 Simulating network dynamics with the
Kuramoto model

To characterise the dynamics of the group and individual
(subject) networks, we used a modification of the classical
Kuramoto model of synchronisation (Arenas et al., 2008). In the
context of the Kuramoto model, each node of the network i,
representing a brain region, is regarded as a phase oscillator with
its own intrinsic frequency—ωi. Each phase oscillator interacts with
the other oscillators in a manner dependent on its phase difference
with them, as well as the existence of a structural connection
between them in the network.

The equation that describes the time evolution of the phase θi of
each oscillator in the Kuramoto model is the following (1):

_θi � ωi + λ∑
N

j�1
Ai,j sin θj − θi( ), (1)

whereN is the number of oscillators in the system, A is the adjacency
matrix of the connectivity and is binary (unweighted), with Ai,j

denoting either the presence (Ai,j ≠ 0) or absence (Ai,j = 0) of a
connection. The diagonal elements of the matrix were equal to 0.
The coupling term λ, which can take a variety of forms depending on
the normalization of the global coupling (Arenas et al., 2008), was set

to K
Nd, with d = 1

N∑i,jAi,j, the density of the adjacency matrix A, in

order to mitigate the impact of different densities between networks.
K is a constant determining the strength of global coupling between
the oscillators.

The presence of noise (Botcharova et al., 2014) or conduction
delays (Cabral et al., 2014) is sometimes incorporated into the
Kuramoto model to increase its neurobiological realism. Here, for
the sake of simplicity, no noise or delays were incorporated.

The degree of synchronisation amongst the oscillators was
quantified by the order parameter, r, calculated as follows
(Equation 2):

r eiΨ � 1
N

∑
N

j�1
eiθj , (2)

where Ψ is the average phase of the oscillators and r describes the
global agreement or coherence between the phases of the oscillators.
It takes the value of [0,1], with 0 denoting complete incoherence
between the oscillators and 1 complete synchrony.

2.2 Preserving the metastability profile as a
dynamical signature: significance
and rationale

Metastability is a concept that has gained much traction in
neuroscience and brain dynamical modelling in the last 15 years or
so. Whilst there are various definitions of metastability in the
literature (Hancock et al., 2023), it is generally agreed that it
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expresses the concomitant tendencies for dynamical network
integration and segregation (Kelso, 2008; Tognoli and Kelso,
2014; Deco et al., 2017; Lord et al., 2017). The significance of
metastability in brain dynamical modelling has been underscored
by the finding that the optimal working point of various models
coincides with the point in the parameter space where metastability
is maximised (Cabral et al., 2011; Váša et al., 2015; Deco et al., 2017).
Consequently, neuroscientists have hypothesised that the brain at
rest optimally functions within a metastable regime (Hellyer et al.,
2015; Kringelbach et al., 2015; Alderson et al., 2020). According to
the metastable brain hypothesis, metastability provides the
necessary state flexibility that the brain requires to timely and
“flexibly” respond to external stimuli and to manage the
changing coordination needed between different regions to
accomplish different tasks (Tognoli and Kelso, 2014).

The most ubiquitous measure of metastability in dynamical
brain models has been that of the variability over time of the
Kuramoto order parameter (KOP) (Shanahan et al., 2010).
Metastability has been shown to be sensitive to structural
network alterations, including lesions of single nodes from a
model brain network (Váša et al., 2015) and disease-induced
changes in mean BOLD signals (e.g., Alderson et al., 2018).

In this investigation, we used metastability as a dynamical
signature which, when preserved in a group network, would
evidence its representativeness of the cohort. We measured
metastability as the STD of the global KOP, which we calculated
from Kuramoto simulations of brain networks (see Section 2.6 for
the precise model parameters we used). We measured metastability
for a wide range of coupling parameters—the entire range needed to
drive the network from incoherence to synchrony.

We name the entire curve of metastability values for each of the
couplings tested the “metastability profile”. We hypothesise that it
can inform us of the network structure and its interaction with a
specific dynamic more holistically than simply choosing a specific
metric or statistic of the network. This idea is supported by research
indicating that network structure may differentially affect the
dependence of the synchronisation process on coupling (e.g.,
Gómez-Gardeñes and Moreno, 2006; Gómez-Gardeñes et al.,
2007). For example, hubs in scale-free networks lead to a faster
(with respect to K) onset of synchronisation compared to random
networks, but they resist global synchronisation for higher K values
(Gómez-Gardeñes et al., 2007).

2.3 Constructing the candidate networks

To generate a pool of group network candidates from which to
determine the one with the least deviation in terms of metastability
profile from the cohort, we used uniform consensus thresholding
(Heuvel and Sporns, 2011) for the entire range of thresholds from
2.5% (where a link was retained if it was present in at least one
subject) to 100% (where a link was retained only if it was present in
all subjects in the cohort). The total number of group networks
generated was thus equal to the number of subjects in the cohort; in
our case, that was 40, the size of our original dataset.

For reference, we also determined the acceptable range of
thresholds as per the method proposed by de Reus and van den
Heuvel (2013), which aims to make a choice that optimises the

trade-off between false positives and false negatives in the group
reconstruction (see Introduction). Along with proposing the
acceptable threshold range to be 30%–90%, de Reus and van den
Heuvel (2013) further suggested that 60% consensus threshold
constitutes a suitable choice.

The code implementing uniform consensus thresholding and
the method of de Reus and van den Heuvel (2013) was developed in
MatLab (Version: 9.8.0.1359463 (R2020a) Update 1).

2.4 Identifying the most dynamically
representative network

The metastability profile was constructed for each of the group
networks from the candidate pool (Section 2.3) as well as the
individual subject networks. For each of the 40 group networks
constructed by consensus threshold GT, with threshold T = 2.5, 5, . . .
100%, the mean squared error (MSE) was calculated between its
metastability profile (MP) and that of each of the individuals, si, as
follows (Equation 3):

MSET � 1
n
∑
n

i�1
MPGT-MPsi( )2, (3)

where n is the number of individual networks considered.
This quantified the average dynamical deviation of each group

network from the subjects it purports to represent. The most
dynamically representative connectome was then chosen as that
which minimised the MSET—that is, the group network with the
metastability profile closest to that of the individual subjects. We
called this connectome the “dynamics-based consensus” (DBC). We
note that using the MSE versus a higher-order criterion likely strikes
a balance between emphasising regions of the curve where the
differences are larger without obliterating areas of smaller difference.

2.5 Connectome dataset

The structural connectivity matrices from n = 40 healthy adult
participants (Kyriazis, 2022) were used (28 females). The participants’
mean age was 44.97+/-3.07 years. The participants were scanned using a
3-Tesla MRI scanner with a 64-channel head coil (Siemens Prisma
scanner; Siemens, Erlangen, Germany) with a protocol that included T1-
weighted and multi-shell diffusion-weighted sequences. The anatomical
data were processed using FreeSurfer 6 (http://surfer.nmr.mgh.harvard.
edu/) and parcellated into 84 regions using the Desikan–Killiany atlas
(Desikan et al., 2006). The diffusion data were processed using MRtrix3
(Tournier et al., 2019), relying on multi-tissue constrained spherical
deconvolution (Jeurissen et al., 2014). Probabilistic tractography was
performed using a probabilistic algorithm (iFOD2) and anatomical
constraints (Smith et al., 2012), followed by a filtering step (Smith
et al., 2013). Finally, connectivity matrices were reconstructed by rigidly
aligning the anatomical and diffusion datasets and counting the
streamlines interconnecting each pair of regions. The edges were
weighted by the number of streamlines connecting two regions. For
this investigation, we binarized the networks, with Ai,j = 1 denoting the
presence of an edge between regions i and j and Ai,j = 0 denoting its
absence.We discarded the information in the weight distribution as only
considering the binary connectivity between regions (the existence or
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absence of an edge), bypassing the issue of the lack of agreement on the
best weighting scheme for brain networks (Yuan et al., 2019) and
increasing the simplicity and interpretability of the model.
Additionally, limiting ourselves to binary connectivity enables us to
carry out comparisons with previously published results on the
construction of representative group connectomes (de Reus and van
den Heuvel (2013); Betzel et al., 2019).

Prior to analysis, the regions of interest (ROIs) covering the
cerebellum were removed, resulting in a final structural connectivity
matrix of 82 nodes.

2.6 Kuramoto simulation parameters

For each realisation of the system, the oscillators were assigned
random initial phases in the interval (-π, π) and natural frequencies
randomly drawn from a standard normal distribution with a mean
frequency of 40 Hz (~251 rad/s) and a standard deviation of
~0.16 Hz (1 rad/s). This frequency was chosen because it is often
used in published brain network simulations (see Cabral et al. (2011)
and Váša et al. (2015), for examples). However, the choice of
frequency does not affect the metastability profile since this
characterises the relative behaviour of each oscillator with respect
to a rotating frame in which the phase average over all oscillators is 0.
A small standard deviation was chosen to reduce the likelihood of
the results being determined by a particular arrangement of natural
frequencies to oscillators. Indeed, it has been shown that
microscopic correlations between the structure and dynamics of
the network—such as hubs of the network being assigned higher
frequencies—can alter the nature of the transition, leading to effects
such as an explosive synchronisation in some complex networks
(Gómez-Gardeñes et al., 2011). We assumed that a smaller standard
deviation would be sufficient to circumvent this possibility, making
the results more dependent on the structure of the network. Setting
the standard deviation to 0 (i.e., assigning identical frequencies to
the oscillators) would not be a viable option as it would abolish the
transition, leading to complete synchronisation in the network
(Ponce-Alvarez et al., 2015).

Total simulation time per realisation was 100 s, as this was long
enough for the order parameter to reach a steady state. The first 50 s
were excluded from analysis to discard the transient. The system of
equations was solved numerically using Euler integration and an
integration time step of dt = 0.001 s; this choice did not affect the
results. The range of coupling strengths used was K = 0–3, with a
step increment of 0.125 for a total of 25 values. This range of K values
was chosen to capture the full transition from incoherence to nearly
full synchrony.

Our simulations were implemented using the code made
available by Cabral et al. (2014) at https://sites.google.com/site/
cvjoanacabral/codes as amended to reflect our choice of λ (see
Equation 1 and text underneath).

2.7 Group connectome construction
methods based on structural optimisation

For reference purposes, we also constructed group networks
using consistency-based thresholding and distance-dependent

thresholding. These were compared to the DBC in terms of how
well they represented the individual subjects dynamically (via the
metastability profile) and structurally.

2.7.1 Consistency-based thresholding
This method (Roberts et al., 2016) generates a group

connectome of a given network density (free parameter that
varies between 0 and 1) which retains those links with weights
with the lowest coefficient of variation (SD/mean) across the
individuals. To implement this method, we used the weighted
version of our brain networks as inputs (and binarized the
output group network). A single output group network was
constructed, with a density set to be equal to that of the DBC for
comparison purposes (~0.62). This density is higher than that used
in Roberts et al. (2016) for most measurements (30%). However,
such a difference is not unexpected considering that that study dealt
with networks with a substantially finer parcellation (513 nodes
versus 82 here). The binary density of any network representation of
the connectome critically depends on the resolution of the
representation; as the resolution becomes finer, the number of
regions represented increases, causing an increase in the possible
number of network links without an equal increase in the number of
actual links. Using an extreme example, in a network where every
single neuron is represented by a node, with the edges representing
the neuronal processes that make synaptic connections, the density
would be extremely low, given that out of 1022 possible links that
could exist between the ~8.6 × 1010 neurons, only 1015 synaptic
connections actually do exist (Gerum et al., 2020).

The method was implemented using the code made available by
the authors at https://github.com/breakspear/threshold-consist.

2.7.2 Distance-dependent thresholding
To apply this thresholding method (Betzel et al., 2019), the

coordinates for the Desikan–Killiany atlas were obtained from the R
package brainGraph, version 3.0.0. Using these coordinates, a
distance matrix was obtained containing the Euclidean distances
between nodes. Although the use of the Euclidean distance may
underestimate the true connection length between two brain regions
(due to being the straight-line distance), it was chosen for its
consistency with the method applied in Betzel et al. (2019).

The algorithm that implements the method divides all edges in the
distance matrix (containing the Euclidean distance between the
centroids of the connected regions) into linearly spaced bins (here,
41 bins were used) based on their Euclidean distance. The edges in the
final group network are then chosen separately for each bin: the mean
number of edges m across subjects in each bin is calculated, and the m
most common edges in that bin are retained in the group matrix. This
process is performed separately for inter- and intra-hemispheric
connections to ensure that the latter are not under-represented;
from all three methods used, this step is unique to this particular
thresholding technique. The result is a group network with an inter-
areal Euclidean distance distribution that closely corresponds to that of
the subjects and a density approximately equal to the average subject
density. Here, the average subject density is ~0.59 (STD: ~0.04), and the
density of the distance-dependent network is ~0.59.

This method was implemented using the code made available by
the authors at https://github.com/brain-networks/distance_
dependent_consensus.
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2.8 Network measures

We used a number of graph measures to assess the degree to
which structural similarity predicted the dynamical
representativeness of the group networks. Specifically, the
following local network metrics were calculated: nodal degree,
clustering coefficient, betweenness centrality, and eigenvector
centrality. Global metrics included network density,
modularity (Newman, 2006), average nodal clustering
coefficient, and characteristic path length. For the definitions
of these metrics, see Betzel et al. (2019). We note that the average
nodal clustering coefficient, where the nodal clustering
coefficient is a measure of the number of triangles relative to
triples around a node, has been used before as a measure of the
general “cliquishness” of the neighbourhood of a node in the
network (Watts and Strogatz, 1998). The choice of some of these
metrics was partially informed by literature that associated the
features they quantify with metastability, such as the presence of
community structure (Friston, 1997; Wildie and Shanahan, 2012)
and the eigenvector centrality of nodes (Váša et al., 2015).
However, it has been shown that one or a few of these
features alone are not enough to generate dynamical
behaviour of the magnitude of complexity generated by the
human connectome (Zamora-López et al., 2016). As such, we
followed an inclusive approach and supplemented the analysis
with additional metrics (see Section 3.2.2) that have been widely
assumed to be fundamental in terms of describing the
organisation of brain networks (Rubinov, 2016; de Reus and
van den Heuvel, 2013; Betzel et al., 2019).

All measures were calculated using the Brain Connectivity
Toolbox https://sites.google.com/site/bctnet/(Rubinov and
Sporns, 2010).

2.9 Statistical comparisons of
network measures

To compare subject-level with group-level network metrics, we
followed the approach proposed by Betzel et al. (2019) and used
Kolmogorov–Smirnov (KS) tests to compare the empirical
distribution functions of metrics defined at the nodal level as well
as the z-score for global metrics.

For each of the above local network metrics and for each of
the group networks considered, the KS test statistic was
calculated between the group network and each of the
individuals. These statistics were then averaged to obtain a
mean KS statistic. As the KS test calculates the maximum
distance between two cumulative distributions, a lower value
was interpreted as closer correspondence between these.
Significant differences between mean KS tests were evaluated
using either Welch’s t-test (when comparing two means) or a
one-way ANOVA (when comparing multiple means).

For global network measures, the z-score was employed to
compare the difference between each group network and the
individual networks, with a small z-score (in absolute value)
indicating similarity between group network and individual
networks. All statistical tests were implemented using native
MatLab functions.

3 Results

3.1 Validation using ground truth
synthetic data

Because the absence of ground truth in empirical networks does
not allow for an objective measure of the effectiveness of our
method, we constructed a synthetic data set in which the ground
truth network was known. The dataset was constructed as follows.
Firstly, we randomly picked a subject network from the empirical
dataset as a “seed” network (ground truth). Then, after binarizing it,
we generated 40 synthetic networks through random additions and
deletions of edges. The number of edges modified for each synthetic
network was drawn (after rounding) from a normal distribution
with a mean and standard deviation derived from the statistics of the
Manhattan distances between the individual networks in the
empirical dataset. Finally, to ensure that a) all synthetic networks
retained some features of the ground truth network, and b) for very
high thresholds, the surviving networks would have the density
observed in the empirical dataset, we implemented an immutable
core by excluding a randomly picked set of 30% of the edges of the
ground truth network from the re-wiring process. As will be further
discussed in Section 4.7, we wish to stress that, whilst we have tried
to capture some quantitative feature of the between-subject
variability observed in the empirical dataset, our synthetic data
construction process should in no way be construed as a
suggestion that in empirical connectomes, between-subject
variability arises from some random deviation from a putative
blueprint or ground truth network. That is clearly not the case.

We applied our method to the dataset thus constructed, generating
40 group networks by applying consensus thresholding as per Section
2.3. We then identified the DBC by choosing the network that
minimised the mean squared error (MSE) between its metastability
profile and that of the synthetic networks, as per Section 2.6.

As shown by Figure 1A, the DBC was found to correspond to the
37.5% consensus thresholded network, with a metastability profile
showing excellent agreement with the average of the synthetic
dataset (Figure 1C).

We then used the Manhattan distance to identify which of the
individual networks (ground truth or rewired) was closest to the
DBC. As shown by Figure 2, the minimum Manhattan distance was
found to be with the ground truth network.

3.2 The metastability profile of the
dynamics-based consensus (DBC) is a very
good fit to those of the individuals

The DBC network is the group network constructed by
consensus thresholding which minimises the mean squared error
(MSE) between its metastability profile and that of the individuals
(see Methods, Section 2.4). Plotting the 40 group networks
constructed in the range 2.5%–100% produced a relatively flat-
bottomed U-shaped curve (Figure 3A), with the highest MSEs found
for the lowest (2.5%) and highest (100%) consensus thresholds.

A global minimum (the DBC) was identified within the “flatter”
region of the MSE curve, corresponding to 42.5% consensus
threshold, a group network retaining all edges incident in at least
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17/40 subjects (MSE: 0.27 × 10−4; Figure 3A). The tight standard
deviation around the average of the individual metastability profiles
(grey shaded area, Figures 3B, C) indicates high consensus amongst
subjects in terms of dynamical behaviour, allowing for an individual
average that effectively represents the cohort. The DBC shows a
remarkably good fit with the individual subjects’ data average
(Figure 3C). The location of the peak at K = 1.25 was
maintained in the DBC, although the peak height deviated
slightly from the subject average. The peak location is likely to
signify an important point for network synchronisation dynamics as
it is proximal to the transition from incoherence to synchrony
(Wildie and Shanahan, 2012).

It is worth mentioning that the extended flat region covers a
range of thresholds (here, 30%–70%, Figure 3A) that is consistent
with the acceptable range identified via the method of de Reus
and van den Heuvel (2013) (25%–70%). Note too that these
results do not qualitatively change upon excluding from the
calculation of the MSE a region of the metastability profile
with very high similarity to the subjects, from K = 0 to K = 1
(data not shown).

Given the tight standard deviation around the subject average
(Figure 3B), we used the edge prevalence amongst the cohort to gain
a general overview of structural inter-subject variability by
quantifying how many links they have in common. Figure 4

FIGURE 1
(A)MSE between themetastability curve of each percentage consensus group network and that of the individual synthetic networks. TheMSE for the
DBC connectome is indicated in green. (B)Metastability profiles for the DBC (green), consensus-thresholded group networks (blue to pink) and synthetic
dataset average (black). The shaded area around the synthetic average corresponds to the standard deviation of the individual synthetic network
metastability profiles. (C) Synthetic dataset average and standard deviation, with DBC (green).

FIGURE 2
Manhattan distance between DBC and all networks in the synthetic dataset, including the “seed” ground truth network (shown in red). Distances
sorted in increasing order.
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below shows a “prevalence” histogram, illustrating the percentage of
links shared by each percentage of the subjects.

Our cohort consists of 40 equally sized matrices S encoding the
same structure. Therefore, each link Si,j represents the same
connection in each matrix. If Si,j does not exist in any of the
subjects, it is counted in the leftmost bin of the histogram in
Figure 4 (corresponding to 0% subjects in the cohort), while if
Si,j exists in only one of the subjects, it is counted in the second
leftmost bin (corresponding to 2.5% or one subject in the cohort). If,
on the other hand, it exists in all 40 of the subjects, it is counted in
the rightmost bin in Figure 4. One can imagine overlapping the
binary adjacency matrices of the subjects and adding up the 1 and
0 results in each element to produce a matrix with the data plotted in
this histogram.

Figure 4 shows that there is a higher degree of global agreement
amongst the subjects (links that exist in 100% of the subjects) than

absolute disagreement (links that are found in only one subject), and
at least 44% of the topology is constant amongst the subjects (since
the links in the leftmost bin do not exist in any of the subjects, which
also constitutes agreement), suggesting a significant core of
conserved edges. Whilst this core may account for the relatively
low variability in terms of the subjects’ metastability profiles, it
remains true that over half of the network structure is variable
amongst the subjects (to different degrees), thus suggesting that the
dynamical signature may be somewhat insensitive to some of the
structural differences (see also Discussion).

3.3 How different is the DBC from the
structurally optimised group connectomes?

In this section, we compare the dynamical representativeness of
the DBC with that of the other group networks (Section 2.7). We
then proceed to assess whether focusing on matching the dynamical
behaviour incurred any cost to the structural representativeness of
the group network. Finally, we examine whether representativeness
in terms of structural metrics predicts the dynamical
representativeness of the networks.

3.3.1 Dynamical representativeness of the different
group connectomes

We compared the DBC with the group networks constructed
using the consistency-based and distance-dependent methods
(Section 2.7). An additional comparison was made with the
group network obtained by the 62.5% consensus threshold. This
threshold was chosen so that it was well within the “safe range” of
25%–70% determined by applying the de Reus and van den Heuvel
(2013) model while additionally being close to their more specific
recommendation of 60% consensus threshold constituting a
suitable choice.

Figure 5A shows the metastability profiles of the structurally
optimised group networks overlayed on the subject average, with
the DBC plotted for comparison. A fit almost as good as that of
the DBC is indicated in the plot for those networks, albeit less so
for the 62.5% consensus threshold, for which there is an increased

FIGURE 3
(A) MSE between the metastability curve of each percentage consensus group network and that of the individual networks. The MSE for the DBC
connectome is indicated in green. (B) Metastability profiles for the DBC (green), consensus-thresholded group networks (blue to pink) and subject
average (black). The shaded area around the subject average corresponds to the standard deviation of the individual metastability profiles. (C) The subject
average and standard deviation plotted separately with the DBC (green) to clearly illustrate the quality of the fit.

FIGURE 4
Edge prevalence histogram. This histogram shows the
percentage of edges that are shared amongst each percentage of the
subjects in the cohort represented in the dataset.
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mismatch on the right side of the peak. We compared the quality
of the fit around the peak region, which is especially important in
the process of network synchronisation due to the peak being
proximal to the transition (Wildie and Shanahan, 2012). The
inset of Figure 5A shows that the two networks constructed via
consensus thresholding, the DBC and 62.5% consensus,
maintained the same peak location with a slightly increased
peak height. In contrast, the peak heights of the distance-
dependent and consistency group networks were lower, with
the precise values of metastability in these regions being closer
to the average subject profile—within the shaded STD region.
This may indicate that the structural features maintained by
consensus thresholding affect the dynamics differently compared
to the distance- and consistency-based thresholds. It is also worth
noting that the actual maximum of the consistency-based
network is one value after the others, at K = 1.375, which
could indicate differences in the pathway to network
synchronisation compared to the rest—although at this stage,
this remains conjecture (see Discussion for more details).

To obtain a more quantitative estimate of the differences
between the group networks in terms of their average distance to
the subjects, we statistically compared the mean Euclidean distances
squared between the metastability profiles of each of the group
networks and those of the subjects (Figure 5B). The results showed
no statistical difference between the distance-dependent,
consistency, and DBC in terms of the proximity of their profiles
to the subjects. The only group network that significantly deviated
was the 62.5% consensus threshold, F (3,156) = 8.33, p < 0.001, with
a medium effect size of η2 = 0.1381, indicating that the safe region of
representativeness may be narrower than what a visual inspection of
the MSE curve in Figure 3A indicated, as well as the safe range of
25%–70% determined by the method in de Reus and van den Heuvel
(2013). Overall, these results suggest that selecting for dynamical
proximity amongst networks constructed in the absence of distance
or weight information achieves an equivalent degree of dynamical
representativeness as those networks constructed by primarily
utilising this information.

3.3.2 Comparing the structural representativeness
of the different group networks

We compared the consistency-based, distance-dependent, and
62.5% uniform consensus network to the DBC in terms of their
proximity to the subjects in several local and global network metrics
(see Section 2.8).

In terms of nodal metrics, there was no significant difference
found between the DBC and the distance- and consistency-based
networks. Therefore, choosing a network from consensus
thresholding based on minimising dynamical similarity recovered
a very similar structure to group networks which were constructed
by placing deliberate constraints on the distance distribution or
weight variability—at least as far as these nodal metrics
were concerned.

With respect to uniform consensus thresholding, there were
statistically significant differences associated with the 62.5%
threshold—specifically, a medium effect size of η2 = 0.092 for the
degree, F (3,156) = 5.25, p < 0.05, and a large effect size of η2 =
0.187 for the clustering coefficient, F (3,156) = 11.94, p < 0.001
(Figure 6A). The degree distribution of the 62.5% consensus
network significantly deviated from the subjects compared to the
distance-dependent network, although not from the others. This was
despite there being a statistically significant difference in terms of
dynamics, indicating that selecting for dynamical representativeness
may place constraints in terms of connectivity that cannot always be
captured by differences in the degree distribution. Interestingly, the
clustering coefficient distribution was significantly closer to the
subjects in the 62.5% consensus network than the DBC. This
apparent lack of relationship between dynamics and clustering is
consistent with a recent investigation by Stegehuis and Peron (2021)
showing that, given a high enough average degree (at least 6)—as is
the case for the networks examined here—the dynamics on some
networks become insensitive to differences in clustering. Suffice to
say that, if the goal is to construct a representative group network by
placing structural constraints, significant consideration of clustering
is not necessary. Finally, there was no significant difference in the
betweenness, F (3,156) = 1.38, p = 0.25, or eigenvector centrality, F

FIGURE 5
(A) Metastability profiles of the dynamics-based consensus, 62.5% consensus threshold group network, distance-dependent and consistency-
based group networks, overlapped with the subject average. Grey shaded area denotes subject standard deviation. Inset: Focus on the area around the
peak. (B) Statistical comparison of the mean Euclidean distances squared between the metastability profiles of each of the group networks and those of
the subjects. Significance lines for p < 0.01, Bonferroni corrected.
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(3,156) = 0.38, p = 0.77, between the 62.5% consensus network and
the rest, indicating that the dynamical signature chosen in this
investigation is more sensitive to potential differences amongst
group networks than these two metrics.

The representativeness of the group networks in terms of global
metrics is shown in Figure 6B. The distance-dependent network was
closer overall to the subjects in terms of global statistics than other
networks, having the smallest absolute z-score (<0.1) for nearly all
global metrics examined (Figure 6B). The only exception was the
average clustering coefficient, where consistently with the nodal
clustering distribution, the network with the highest similarity to the
subjects was the 62.5% uniform consensus network. This was also
the network that deviated the most in terms of all other global
metrics, consistently being the furthest to the subjects in terms of
dynamics (Figure 5B). These results indicate than when placing
constraints on dynamical representativeness, the effects on structure
may be more obvious in terms of global metrics than nodal
metrics—referring specifically to the 62.5% consensus network.
However, there is still a degree of leeway, with optimal
dynamical representativeness still allowing for some degree of
structural deviation, albeit small.

We used the Euclidean distance matrix (Section 2.7.2) to extract
the link distance distribution of each of the group networks (the

group networks were used as logical masks on the distance matrix to
extract the distances between the nodes with existing links). The
representativeness of the networks in terms of inter-areal Euclidean
distance distribution is shown in Figures 6C and D. There was no
statistical difference between the DBC, distance-based, and
consistency-based networks. This interesting result shows that
matching dynamical behaviour led to a group network that was
just as representative in terms of length distribution as one that
explicitly minimised this feature. As far as the consistency-based
network goes, Roberts et al. (2016) showed that constructing a group
network via this method better represented the length distribution of
the cohort versus thresholding via weight (see Introduction), but
here we show that it did not demonstrate any advantage in
recapturing this feature compared to the DBC.

The only network that differed significantly from the rest in
terms of inter-areal Euclidean distance representativeness was the
62.5% uniform consensus network. Fewer long-range links survived
in the network, and the retained links were occupied primarily by
shorter-range connections (Figure 6C). As discussed in the
introduction, this is a direct result of increasing the stringency of
the % consensus threshold: in the (real) brain, the probability that a
link is present decays monotonically with interareal distance, and
this is reflected on reconstructed brain networks across multiple

FIGURE 6
(A) Mean KS statistic (and STD) between each group network and the individual networks for the nodal-defined measures of degree, clustering
coefficient, betweenness centrality and eigenvector centrality. Significance lines for p < 0.01, Bonferroni corrected. (B) Z-scores for the global measures
of density, modularity, average clustering, and characteristic path length for each group network calculated against the individual networks’ distributions.
(C) Comparison between the cumulative distributions of inter-areal Euclidean distances of the four group networks and that of the individual
networks pooled. (D) Mean KS statistic (and STD) between each group network and the individual networks for the inter-areal Euclidean distance
distribution. Significance lines for p < 0.01, Bonferroni corrected.
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reconstruction methodologies (Alexander-Bloch et al., 2013; Betzel
and Basset, 2018). Increasing the percentage consensus threshold
increases the minimum enforced agreement for the existence of
links, gradually minimizing the permitted variability; if the
probability for the existence of long-range links is smaller in the
individuals, then given the variability among them, it will be further
minimised in a consensus group network. As pointed out in Betzel
et al. (2019), this will result in group networks with an
overrepresentation of short-range connectivity.

4 Discussion

4.1 Summary

In this investigation, we chose a group connectome that
minimised the dynamical deviation from the subjects from a
range of networks constructed by uniform consensus
thresholding (the dynamics-based connectome, or DBC).
Whether applied to a synthetic dataset with known ground truth
or to an empirical dataset, we confirmed that this approach
successfully led to the selection of a group network with a
dynamical signature that closely fitted that of the subjects in the
cohort. In the empirical dataset, selecting another consensus
threshold (62.5%) which belonged to the safe range identified by
de Reus and van den Heuvel (2013) led to a network that
significantly deviated in terms of dynamics, despite the threshold
not being substantially removed from that corresponding to the
DBC (42.5%). Group connectomes constructed with both distance-
dependent consensus (Betzel et al., 2019) and consistency-based
consensus (Roberts et al., 2016) —techniques that placed structural
constraints regarding the connection length distribution (via the
inter-areal Euclidean distance) and the variability amongst edge
weights, respectively—did not significantly differ from the DBC in
terms of dynamics. In terms of structure, nodal metrics between the
distance-dependent and consistency-based group networks and the
DBC were not significantly different (Figure 6A). Small differences
were seen in global metrics (Figure 6B), with the distance-dependent
network being the closest to the subjects—something that did not
translate into increased dynamical representativeness.

4.2 The implications of preserving dynamical
behaviour on the structure of the
group network

Our results show that preserving dynamical behaviour with our
chosen signature could recover structural information that was not
directly accounted for in the methodology. This was reflected in the
lack of significant differences in the nodal metric distributions
(Figure 6A), which were preserved just as well in the DBC as in
both the distance-dependent and consistency-based networks. The
inter-areal Euclidean distance distribution (Figures 6C, D) was also
preserved equally well in the DBC as in the distance-dependent
group network, which specifically optimised for this structural
feature. Part of the reason for this could be the low variability
amongst the individuals (Figure 4), which is likely a correlate of the
high density of these networks. Datasets constructed via

deterministic tractography—rather than the probabilistic
tractography for the dataset used here—are generally sparser and
are unlikely to feature such a high degree of inter-subject
consistency.

We note that the density, average clustering, and characteristic
path length of the DBC were higher than those of the subjects
compared to the distance-dependent network (Figure 6B). The
differences in the two latter metrics were most likely an expected
effect of the increased density. This relationship to density was
further supported by the fact that the consistency-based network,
which had a density chosen to be equal to that of the DBC, was
different from the subjects in nearly identical ways to the DBC when
compared to the distance-dependent network in terms of global
metrics. An increased network density implies a higher probability
of the existence of short paths (characteristic path length) and closed
triangles (clustering). It is noteworthy that our dynamics-based
criterion selected for a density that was higher than the average
of the subjects: with a chosen threshold of 42.5%, the DBC contained
more links than the number existing in at least half of the subjects
(on the contrary, the distance-dependent thresholding method
preserves the average density of the subjects by
construction—Betzel et al. (2019)). Clearly, to replicate a
metastability profile that was as close as possible to that of the
average of the subjects, some extra links were required, for which
there was a slightly lower than average degree of agreement amongst
the subjects. The higher characteristic path length (Figure 6B)
suggests that these extra links contributed to higher structural
network integration. However, the effects of the differences in
density were not reflected particularly well on any other metrics,
such as modularity (another metric that quantifies the balance
between integration and segregation). Overall, the results indicate
that preserving dynamics using our metastability signature is an
efficient way of recapturing a network with high structural
representativeness. Of course, by design, the method also comes
with the important implication of dynamical representativeness—a
very important characteristic when it comes to brain dynamical
modelling studies.

4.3 Optimising for structure: principal
limitations and lessons from our results

For researchers interested in creating group connectomes by
preserving specific aspects of structure, our results suggest that
different strategies may yield different combinations of
characteristics, and choosing for a specific feature may be risky.
This was most obvious in the case of the 62.5% uniform consensus
threshold (Figure 6). The principle in de Reus and van den Heuvel
(2013), based on balancing the number of false positives and
negatives, is parsimonious and sound. However, our results
showed that the dynamics of the network significantly deviated
(already) by consensus threshold 62.5% and that the differences in
nodal and global structure started to become significant.

The central issue with any approach relying on consensus
thresholding is the lack of ground truth. In the case of de Reus
and van den Heuvel (2013), the acceptable range proposed (30%–
90%) may be overly permissive given that we do not have certainty
about which of these connections constitute errors or individual
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variability. We stress the point that the lack of ground truth makes it
impossible to conclusively assess whether a particular threshold is
too low or too high since we do not know howmuch actual variation
exists in the human connectome. As such, the considerable deviation
within this range in terms of both structure (as shown by the
authors) and dynamical behaviour (as can be seen in Figure 3A)
is problematic. As regards how one should go about choosing a
threshold, we note that in the absence of an extra source of
information such as the dynamical criterion proposed here,
consensus thresholds that deviate from 50% can easily lead to a
group network that is no longer structurally representative of the
group. For example, the addition or removal of many edges would
change density, which in turn would affect many graph metrics (e.g.,
local and global clustering; path-related measures like characteristic
path length and betweenness centrality). A different problem, which
nonetheless adds to the issue of selecting an appropriately
representative group connectome is that of our incomplete
understanding of brain networks in terms of graph analysis,
reflected in our current lack of a generative model for structural
brain networks. When choosing to optimise for one or more
structural metrics, the technique becomes a black box if the
knowledge about how the structural features precisely interact is
missing—a problem that could be approached using null models
(Váša and Mišić, 2022).

Even if the chosen network is a very satisfactory structural match
to the cohort, detailed analysis of the structural feature interplay is
required if high confidence in the global applicability of the method
is desired. Finally, another relevant issue is the large number of
pipelines that exist to construct structural connectomes (Maier-Hein
et al., 2017), which further increases our uncertainty about which
structural criterion should be optimised for in terms of
representativeness. What would be the consequences of selecting
for specific structural features across different levels of resolution,
brain atlases, tractography algorithms, and post-processing steps
(see Daducci et al., 2012)?

An example of the interplay between graph properties was seen
in our specific networks in terms of the proximity of the group
networks to the subjects in clustering coefficient and average
clustering (Figures 6A, B). The outlier in dynamical proximity
62.5% consensus threshold network paradoxically showed the
highest similarity to the subjects in terms of clustering, a feature
for which the dynamically representative networks showed the
largest difference from the subjects compared to all other
metrics. While this is broadly consistent with Stegehuis and
Peron (2021), who showed that clustering did not affect
dynamics when the average degree of the network was above 6
(as is the case with all networks used here), considering the issue of
structural feature interplay may be more informative. Figure 6B
shows the smallest difference in clustering, with the subjects for the
62.5% consensus threshold network accompanied by the highest
difference in terms of characteristic path length, suggesting that the
degree of “small-worldness” of the network was substantially
decreased (Watts and Strogatz, 1998). This would decrease the
overall integration in the network and affect its metastability.

Some discrepancies that raise questions about
structure–dynamics interactions as well as structure–structure
interactions were seen in our results. For example, the
betweenness and eigenvector centrality distributions of the 62.5%

consensus network did not significantly differ from that of the
others, despite significant differences in dynamics, while
significant differences in the degree were only seen between the
62.5% consensus network and the distance-dependent network. This
is consistent with studies showing that centrality measures can fail to
highlight dynamically important nodes in a network (van Elteren
et al., 2019; Dablander and Hinne, 2019).

In general, the dynamical network behaviour showed both
increased and decreased sensitivity to structural metrics,
depending on the metric. The metastability profile demonstrated
some tolerance in terms of changes in density, modularity, and
characteristic path length, which “broke” for consensus threshold
62.5%. On the other hand, the metastability profile demonstrated
significant differences not reflected in the distribution of
betweenness, eigenvector centrality, and in some cases, degree
(Figure 6A). The question must be asked as to which are the
most important structural characteristics for the dynamical
behaviour of the networks in this study.

4.4 The role of community structure in
metastability

Comparison of the shape of their metastability profiles
(Figure 5A) shows that metastability for the deviating 62.5%
threshold network, which was higher in modularity (Figure 5B),
was increased relative to the subjects, and most notably in the region
of the metastability profile after the phase transition (on the ordered
side). Higher metastability largely reflects higher resistance to full
network synchronisation, or “frustration” in network dynamics
(Villegas et al., 2014). A toy example of a two-block network
model in Villegas et al. (2014) underscores the importance of
high inter-modular coherence due to, in part, structural
bottlenecks in terms of preventing global synchronisation and
generating dynamics that are highly metastable. If one
hypothesizes perfect synchronisation within the modules/blocks,
with differences in frequency only in their interface (in Villegas et al.
(2014), that interface consists of only two nodes), the emergence of
high metastability can be expected trivially as the two frequency
clusters meet one another on the unit circle. Where the phases of the
oscillators are represented, the order parameter will be equal to 1,
while where they oscillate with a difference of pi, the order parameter
will be equal to 0. This will give rise to maximum-amplitude
fluctuations of the Kuramoto order parameter over time. These
fluctuations are what the Shanahan (2010)-derived metastability
metric used here and in other studies (Cabral et al., 2011; Cabral
et al., 2014; Váša et al., 2015) quantifies; as such, higher modularity
translates in a straightforward manner into higher metastability.

As mentioned before, structural modularity can control the
balance between segregation and integration in the network,
which has been emphasised before in terms of its importance for
metastability (Tognoli and Kelso, 2014; Zamora-López et al., 2016;
Caprioglio and Berthouze, 2024). However, there are different ways
to quantify this balance that were not used in this investigation.
Betzel et al. (2019) divided structural connectivity group networks
into subnetworks corresponding to the different resting state
networks that have been identified through functional
connectivity (FC). The finding was that of higher structural
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connectivity density between resting state networks than within
them in the group network produced with the distance-dependent
consensus method compared to the uniform consensus method.
This characteristic points to a more integrated pattern of
connectivity produced by the distance-dependent method—at
least with these specific biologically relevant partitions chosen. As
discussed in the introduction, the characteristic of real brains to be
dominated by short-range connectivity is over-represented when
applying consensus thresholding (Betzel et al., 2019). Short-range
connections tend to be intra-modular (Bajada et al., 2019). As such,
the balance between intra- and inter-modular connectivity is likely
to be different in these networks (individual and group networks
constructed by uniform consensus thresholding). The difference in
the peak height and location of metastability (Figure 5A) may be
associated with these differences, which were not reflected on the
global metric of modularity (Figure 6B) —with the caveat that the
identification of the precise peak location depends on the resolution
of the metastability profile, which limits our confidence in how
precisely that peak location can be identified. Such differences
between the networks could also be biologically relevant.

The biological relevance of our results hinges not just on the
methodology of this particular study but also on the universal
problem of the lack of ground truth connectome, an issue which
affects most, if not all, studies that simulate brain dynamics on top of
empirical brain connectivity. As such, regardless of how well a
dynamical model performs, it will always be intrinsically limited as a
result of the imposed network structure.

4.5 Strengths and limitations of our model

Our specific choice of the Kuramoto model has been motivated
by several factors, including its simplicity—indeed, it allows for an
entire behavioural profile for a network to be traced by tuning a
single parameter (the coupling constant, K)—and the success of the
model in reproducing empirical data (Cabral et al., 2011; Hellyer
et al., 2015; Deco et al., 2017; Nguyen et al., 2020).

It should be clear that the simple implementation we used in this
study means that one should not draw biological conclusions from
either the metastability profiles or the inferred connectome. The
absence of spatial embedding and noise and the discarding of
weights remove most of the components used in the studies
where the Kuramoto model showed its capacity to replicate real
brain dynamics (Cabral et al., 2014; Hellyer et al., 2015; Deco et al.,
2017). Regarding the specific use of binary topology, assigning the
same weight to all existing connections bypasses elements of the
structure that could drastically affect the dynamics. In weighted
networks, the edge-weight distribution of a variety of weighting
schemes (such as streamlines) tends to be heavy-tailed (Nelson et al.,
2023). Such heterogeneity in edge weights, even with a Gaussian
(weighted) degree distribution (Ivković et al., 2012), can give rise to
complex dynamical phenomena, including “rare-region” effects
(Moretti and Muñoz, 2013) and the enhancement of the
separation of time scales in the dynamics of different regions
(Pang et al., 2021). This could also affect the variability in the
dynamics amongst the subjects due to the interactions of the
heterogeneous weight distributions with the Kuramoto model. In
addition, we considered a relatively tight distribution of natural

frequencies. A wider natural frequency distribution would introduce
more frustration in the synchronisation process and likely a
metastability profile with a wider and possibly later peak (higher
K value). This, and also incorporating delays and noise, could
potentially amplify the impact of structural differences between
the networks on the dynamics. In fact, any of these changes
would likely result in a different DBC.

If the inferred representative connectome depends on the
chosen dynamic, does it then mean that it has no informative
value? On the contrary, we share the view (e.g., Zamora-López
and Gilson, 2024) that the interpretability of dynamic brain
simulations is contingent on network topology and not
necessarily on being abstracted from network dynamics. In other
words, in studies involving brain dynamical simulations, any
insights will necessarily be conditional on the dynamic being
used. In this respect, the value of our approach is that it selects
for the network that is most sensitive to the interaction between
structure and the chosen dynamics (here, as assessed by the
metastability profile being preserved). Our definition of
representativeness is therefore to be understood as
“representative given the chosen dynamic”.

4.6 Strengths and limitations of our
dynamical signature

Our rationale for choosing to preserve the entire metastability
profile as a dynamical signature was described in Section 2.2 and
hinges on the sensitivity of metastability to structural network
alterations and, specifically in the case of the Kuramoto model,
the fact that network structure differentially affects the dependence
of metastability on coupling. Of course, many alternatives are
possible, depending on experimenter biases. For example, an
alternative choice could be to use a scalar measure, such as the
peak of the metastability profile. As mentioned in Section 2.2, one of
the factors that has facilitated the emergence of metastability as a
dynamical measure in the neuroscience literature has been the
coincidence of the optimal working point of various brain
dynamical models with the “peak” in metastability (Cabral et al.,
2011; Váša et al., 2015; Deco et al., 2017). This finding fits nicely with
the critical brain hypothesis (Beggs and Timme, 2012), according to
which the brain operates close to a critical point; this characterises
the dynamics of systems undergoing a phase transition. Shanahan
(2010) observed that metastability peaks in the narrow region
around the critical transition, thus making it a possible marker of
proximity to critical dynamics (although note that it is possible to
have metastability away from the critical point, as shown by
Caprioglio and Berthouze (2024)). As such, the peak of the
metastability profile can be seen as a central indicator of the
system’s dynamics, and peak deviations relative to healthy states
have been correlated with measures of decreased cognitive capacity
(Hellyer et al., 2015; Alderson et al., 2018; Alderson et al., 2020).

Nevertheless, our position remains that the entire metastability
profile provides a significantly more comprehensive characterisation
of the dynamics emanating from a structural brain graph because
the network structure can differentially affect the dependence of
metastability on coupling (Section 2.2.). For example, the route to
synchronisation of two networks of different structure could be
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different, with nucleation clusters and oscillator interactions
occurring at a different order with regards to coupling (Gómez-
Gardeñes 2007). This may mean that a single snapshot of the
dynamical state of two networks, even if characterised by the
same metastability value, may look very different. However, a
dynamical profile that contains a measure of the state of the
network for every coupling value has a much higher capacity to
discriminate between two different networks than a single number.
This can be observed in the results of studies such as Gómez-
Gardeñes (2007) and Zamora-López et al. (2016).

Still, the possibility remains that specific parts of the profile may
be more informative than the entire curve, and the MSE does not
disambiguate between different regions of the curve. Additionally,
metastability, as measured here, constitutes a global average of the
dynamics of the network and could overlook differences in more
localised dynamics. This is a measure of the fluctuations of the global
order parameter and it does not provide information regarding the
origin of those fluctuations, which could have different functional
or—given a more realistic version of the model—biological
implications. Finally, the metastability profile could “favour”
aspects of network structure that may not have a real impact in a
more biologically realistic setting (as per the previous section).

Future research could address the value of different dynamical
signatures. In a system of synchronising oscillators, the metrics of
local/nodal synchronisation, or even local “metastability” or
“vorticity” (Escrichs et al., 2022), give similar information—while
also tending to be averaged across the entire network—but could
potentially exhibit different levels of sensitivity or be shown to
provide complimentary information to metastability in terms of
disambiguating between networks. As such, they could be used
along with metastability to generate a more comprehensive “profile”
(or signature) of network dynamics—ideally upon some type of
validation. Other metrics, such as those used in Arenas et al. (2008)
to quantify the number of connected components and the size of the
largest synchronised component, have been shown to be very
informative in terms of tracing the structure-dependent pathway
to synchronisation (Gómez-Gardeñes et al., 2007). Such metrics
could also be considered to construct a dynamical “signature”.

4.7 Strengths and limitations of our
validation study

Our validation study showed that the proposed method could
recover the ground truth network. This suggests that the
metastability profile, which is sensitive to the dynamics of the
network, can successfully highlight those characteristics that are
critical for identifying the ground truth, even in the presence of
variability introduced by a noisy generative process.

It is important to note that, whilst our generative process for
creating the synthetic dataset sought to preserve some of the
quantitative features of the between-subject variability observed
in the empirical dataset, it should be clear that this method does
not purport to model the true sources of variability observed in
human brain networks. In fact, the notion of the existence of a seed
or blueprint network is dubious. Secondly, in addition to intrinsic
variability between human brain networks, both acquisition and
processing of the signals introduce structural biases that cannot be

captured by uncorrelated random perturbations. This difference in
noise characteristics is actually reflected in the curve showing the
distance between the MSEs of the synthetic and group networks
(Figure 1A) which displays a dramatically different shape to that
obtained with the empirical dataset (Figure 3A).

4.8 On the value of composite measures and
a multi-objective optimisation approach to
mitigate structural bias

Our results indicate that relying on one or only a few
structural metrics could be uninformative and/or misleading.
Both the distance-dependent and the consistency-based methods
relied on metrics that we have shown can capture a number of
different network properties at once. We took this thinking one
step further by utilising a measure that, at least theoretically,
relies on the capacity of the entire network to produce a
dynamical (metastable) behaviour, which should be a result of
the integrated structure of the network. It is important to note
that our method is not intended as a substitute for the
aforementioned structurally based approaches. Rather, by
turning to dynamics, we attempt to bypass the issue of
selecting amongst different structural criteria which will
inevitably carry different biases. This is aligned with the
general emergentist idea behind complexity science, that the
“whole is more than the sum of its parts”, or indeed very
different from it (Anderson, 1972). Specifically in terms of the
brain, Park and Friston (2013) observed that the function-to-
structure relationship in the brain is degenerate, implying that a
(relatively) static substrate can produce a variety of functional
patterns. This variety can be missed if one neglects dynamical
behaviour. Additionally, given the discussion around the benefits
of examining dynamic, rather than static, brain functional
connectivity (Hutchison et al., 2013; Elton and Gao, 2015),
utilising a measure such as the metastability profile, which
reflects fluctuations, can provide more information about the
dynamical repertoire that can be generated.

There are other composite measures that, whilst not relying on
dynamics, aim to capture the structure of the network as a whole. A
measure of this type which incorporates topological features of the
network at all scales is the network portrait divergence (NPD)
(Bagrow and Bollt, 2019). The NPD is a measure that is based
on information theory, built on a graph invariant to allow
comparison between networks strictly based on topology.
However, using this measure presents some challenges—for
example, a comparison between the NPD of two networks can be
done fairly only when they have a common average degree (Bagrow
and Bollt, 2019). Whilst this is true for some of the group
connectomes considered, it is not when considering a wide range
of uniform consensus thresholds or indeed between individual
connectomes.

A different approach to modelling a representative group
connectome could be a weighted graph, where each edge weight
would encode the prevalence or probability of the edge occurring in
the group. Whilst this would reduce the dimensionality of the
representation, its use in dynamical simulations would not allow
comparison with those obtained using subject connectomes since
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the edge weights would represent the probability of occurrence
rather than any of the metrics normally used in the construction of
human brain graphs, such as fractional anisotropy or number of
streamlines (Yuan et al., 2019). A corresponding issue would arise
with characterizing such a representation with graph theory-derived
metrics. Very frequently present low-weight connections in the
individual graphs would have very high weights in the proposed
weighted network, underscoring the fact that this network
constitutes a different model/representation than that of a graph
representing the structure of a single human brain. Whilst such a
network would not be a representative network in the sense
discussed in our work, it could be more suitable for other types
of analyses, such as comparisons of relative edge prevalence
between groups.

It may be that a multi-objective optimization approach is a
solution in terms of capturing a truly representative network. Given
that the brain has evolved to support functional patterns of activity
(i.e., dynamical behaviours) and assuming that building generative
models of brain dynamical activity is a worthy endeavour, we
suggest that the simultaneous inclusion of dynamical measures
along with structural characterizations of the network makes for
a more powerful approach.

4.9 How useful is the concept of a group
network (and how possible is its
implementation)?

Building a group network is useful in terms of increasing the
statistical power and interpretability of studies in neuroscience while
decreasing their computational expense. Perhaps the most
promising instantiation of this concept is in its extension to
building reference brain group networks for developmental or
disease states and stages, ideally under an open science
framework (Burns et al., 2013). At present, there are important
obstacles to this goal. Regarding the nature of the empirical/
biological data, there may be more heterogeneity within the
“healthy” ”neurotypical” human population than the scientific
community appreciates in terms of, for example, the anatomical
localization of the neural substrates that support particular functions
(Gray and Nachev, 2022). If the heterogeneity is large enough, the
notion of a common blueprint becomes more elusive. Additionally,
there are many different decisions for the specific research team at
each step of the methodological pipeline towards building a human
brain network; each of these decisions can have its own
consequences on the resulting network. In fact, Kiar et al. (2017)
found that even after controlling for reported study variables, there
was a large amount of variability amongst structural connectomes
from 25 different studies, suggesting that “hidden” variables affect
these results. Under such circumstances, it is easy to imagine how a
group connectome approach could introduce significant, distorting
biases. Perhaps the answer lies in specifying a different approach
according to the study or research question. Steps towards the
standardization of human connectome pipelines are necessary.
The ultimate goal of establishing the human brain connectome
like that of the human genome is one of the greatest in science, but,
as in genome projects, acknowledging and systematizing
connectomic diversity is key.

5 Conclusion

Given the capacity demonstrated by a dynamical signature to
produce an adequately representative network that could recover
aspects of structure for which the technique did not explicitly
optimize, the question remains as to what constitutes valid and
testable criteria for representativeness. Since the brain is an organ
whose role in nature depends on its function, we believe that network
dynamics should be part of the solution. Dynamics offers a way to
evaluate structuremore holistically, as per the spirit of complexity science.
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