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ABSTRACT

We explore the relative percentages of binary systems and higher-order multiples that are formed by pure stellar dynamics,
within a small subcluster of N stars. The subcluster is intended to represent the fragmentation products of a single isolated core,
after most of the residual gas of the natal core has dispersed. Initially, the stars have random positions, and masses drawn from
a lognormal distribution. For low-mass cores spawning multiple systems with Sun-like primaries, the best fit to the observed
percentages of singles, binaries, triples, and higher-order systems is obtained if a typical core spawns on average between N =
4.3 and 5.2 stars, specifically a distribution of N with mean u, ~ 4.8 and standard deviation o, ~ 2.4. This fit is obtained
when ~ 50 per cent of the subcluster’s internal kinetic energy is invested in ordered rotation and ~ 50 per cent in isotropic
Maxwellian velocities. There is little dependence on other factors, for example mass segregation or the rotation law. While
such high values of N are at variance with the lower values often quoted (i.e. N =1 or 2), very similar values (N =4.3 £ 0.4
and N =4.5 £ 1.9) have been derived previously by completely independent routes, and seem inescapable when the observed

distribution of multiplicities is taken into account.
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1 INTRODUCTION

Most field stars more massive than the Sun are not single (Whit-
worth & Lomax 2015; Offner et al. 2023). They exist in multiple
systems, i.e. gravitationally bound groups in which the individual
stars are on more-or-less constant and stable orbits about one another.
The most common multiple systems are binaries: two stars orbiting
their mutual centre of mass on elliptical orbits. However, there is an
increasing recognition that there are also many higher-order multiple
systems in the field (and even more in regions of recent star formation;
Chen et al. 2013). Stable, long-lived triple systems comprise two stars
in a relatively close binary system with a third star on a significantly
wider orbit about the binary. Quadruple systems come in two variants:
‘242’ quadruples comprise two relatively close binary systems on
a wide orbit about one another; and ‘planetary’ quadruples comprise
a triple system (as define above) with a fourth star on an even wider
orbit about the triple. The highest-order multiples known are septu-
ples. An example of a septuple is 65 UMa (11551+4629), in which
a central binary is orbited not only by three companions on planetary
orbits, but a distant binary pair as well (see Tokovinin 2021).

A young subcluster comprising N stars may evolve into A,
possible end states, where A, increases rapidly with N.For N < 10:

N n
A, =Z{1+Z{ L—NnjnJ +H(N —(n+n' +2)

n'=2
n'—1 N — ,
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Here, | | is the floor operator, and H is the Heaviside function. Thus,
a subcluster with N = 7 members can evolve into A, = 14 different
end states, as enumerated in Section 3.1. A derivation and explanation
of equation (1) is given in Appendix A.

1.1 Observational perspective

Recent advances in observational technology and capability have lead
to the discovery of additional members in known star systems, and
thereby greatly increased the inventory of higher-order multiples in
the solar neighbourhood. When Duquennoy & Mayor (1991) studied
the multiplicity of solar-type stars in a 22-pc sample, they found
that only 5 per cent hosted triple or higher-order systems. For a 25-
pc sample, Raghavan et al. (2010) found this percentage to be 13
per cent, and it increased to 17 per cent when Tokovinin (2021) and
Hirsch et al. (2021) studied the sample in 2021.

The Tokovinin (2021) statistics for nearby systems with solar-type
primaries, in the field (hereafter the T21 sample), are

S:B:T:0"=54:29:12:5. )

Here, S is the percentage of single stars, B the percentage of binaries,

T the percentage of triples, and Q™ the percentage of quadruples plus

higher-order systems (i.e. quintuples, sextuples, and septuples).
Thus, in this sample, the fraction of stars that are single is

s
T S+2B+3T +40%

fs ~ 32.1 per cent; 3)

the fraction of stars that is in binaries is

B 2B
T S4+2B+3T +40+

fs =~ 34.6 per cent; “)
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and the fraction that is in triples or higher-order systems is

B 3T +40*
T S+2B 43T +40+

These percentages should be qualified with two caveats. First, we
have assumed that all the systems contributing to Q" are quadruples.
If account were taken of the systems that are quintuples, sextuples,
and septuples, f,. would increase slightly, at the expense of f;
and f,. Secondly, although these percentages are uncertain, due to
selection effects and observational bias, the expectation must be that
in the future they will shift towards higher orders, as additional
members of existing systems are discovered. This will reduce f,
and probably increase both f; and f_, .

Moreover, we should also note that, by construction, the stars in
the T21 sample have masses M < M. Samples with higher-mass
primaries tend to have even higher multiplicities than the T21 sample.
For example, in the survey by Sana (2017) essentially all of the high-
mass stars are members of higher-order systems. The systems we are
considering here are presumed to be the product of low-mass cores
of the sort that define the peak of the core mass function (CMF) and
are observed in nearby low-mass star formation regions.

We should also be mindful that the multiplicities of stellar
systems depend on their age. Reipurth & Zinnecker (1993) show
that young populations tend to have higher multiplicities than their
older counterparts. Indeed, multiplicity begins to decline even in
the protostellar phase. Chen et al. (2013) show that the average
multiplicity decreases as one progresses from Class 0, through Class
I, to Class II protostars.

St 2~ 33.3 per cent. 5)

1.2 Theoretical perspective

We shall assume that usually an observed multiple system with
a solar-mass primary has formed from a single prestellar core.
There are then two main mechanisms involved: (i) dynamical core
collapse and fragmentation and (ii) disc fragmentation. These two
mechanisms are not mutually exclusive, rather they tend to be
sequential.!

In the standard paradigm for star formation, molecular clouds
are highly turbulent, and in some regions the turbulence produces
convergent flows of sufficient strength to produce self-gravitating
sheets, filaments, and cores.

Unless it is rapidly dispersed by tidal forces or shear, a self-
gravitating core collapses. And, unless it is very spherically symmet-
ric and non-rotating, it is likely to fragment dynamically to produce
a small subcluster of stars (e.g. Cha & Whitworth 2003; Fisher 2004;
Goodwin, Whitworth & Ward-Thompson 2004a, b; Hennebelle et al.
2004; Hubber & Whitworth 2005; Stamatellos, Hubber & Whitworth
2007; Offner et al. 2010; Walch, Whitworth & Girichidis 2012;
Lomax et al. 2014; Lomax, Whitworth & Hubber 2015, 2016; Rohde
et al. 2021; Whitworth et al. 2024). This is ‘dynamical core collapse
and fragmentation’.

The resulting stars are usually attended by accretion discs, com-
prising material that has too much specific angular momentum to
fall directly on to the central star. If such an accretion disc becomes
sufficiently massive, extended, and cold, it fragments to produce a

'We note that in the higher-mass cores that form more massive stars a third
mechanism needs to be considered. These higher-mass cores are often fed by
filamentary accretion streams that are sufficiently massive to form multiple
systems by filament fragmentation. These multiples systems then fall into the
monolithic cluster that is forming in the central hub, where they interact with
other stars and systems. This is not the scenario we are considering here.
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secondary star or stars, in orbit around the primary (e.g. Adams,
Ruden & Shu 1989; Chapman et al. 1992; Bonnell & Bate 1994;
Turner et al. 1995; Whitworth et al. 1995; Bhattal et al. 1998;
Boffin et al. 1998; Watkins et al. 1998a, b; Stamatellos et al. 2007;
Stamatellos & Whitworth 2008; Stamatellos & Whitworth 2009a,
b; Walch et al. 2009, 2010; Kratter et al. 2010; Thies et al. 2010;
Stamatellos, Whitworth & Hubber 2011, 2012; Lomax et al. 2015;
Whitworth & Lomax 2016; Di G. Sigalotti et al. 2023). This is ‘disc
fragmentation’.

Together, these mechanisms have been shown to produce young
multiple systems of as many as seven stars (Lomax et al. 2016).

1.3 Previous related theoretical studies

McDonald & Clarke (1993) have introduced the concept of dynam-
ical biasing, which is the tendency for the more massive stars in a
small- N subcluster to form a binary, and for the less massive ones to
be ejected, thereby making the binary more tightly bound. In a second
paper, McDonald & Clarke (1995) show that, if the stars in a small-
N subcluster are attended by discs, the increased dissipation during
close encounters reduces the effectiveness of dynamical biasing —i.e.
the lower-mass stars have a better chance of ending up in a binary.
It also increases the tendency to produce higher-order multiples.
Kuruwita & Haugbglle (2023) have shown that the drag from the gas
of the natal cloud can drive the inspiral of forming stars, bringing
binaries closer together. This would harden them against dissolution
and increase the proportion of higher-order multiples.

Sterzik & Durisen (1998) have explored multiplicity in a cold,
non-rotating, spherical distribution of N = 3, 4, or 5 stars. The stars
have masses drawn from a Miller—Scalo distribution, and are evolved
for 1000 crossing times, using an N-body code. At the end, the
multiplicities are

S:B: T =47 :47:6, for N = 3;
S:B:T:Q =63:29:6:1, for N=4; (6)
S:B:T:Q"=70:19:9:1, for N=5.

Thus, increasing N increases the percentage of singles and reduces
the percentage of binaries.

Holman et al. (2013) have shown using purely statistical arguments
that, if the shape of the stellar initial mass function (IMF) is inherited
from the shape of the prestellar CMF, then the observed increase in
binary frequency with primary mass (e.g. Offner et al. 2023) requires
that a prestellar core must typically spawn a subcluster of 4-5 stars.

1.4 Overview and plan

In this work, we extend the study of Sterzik & Durisen (1998) to larger
numbers of stars, and to more general initial conditions. Although
circumstellar discs and disc fragmentation are likely to be important,
particularly for forming lower mass stars and close orbits, we limit
consideration here to subclusters formed purely by dynamical core
collapse and fragmentation, and neglect discs. Consequently, our
numerical experiments start with single discless stars, and all multiple
systems are formed subsequently by energy-conserving gravitational
interactions between point masses. The role of discs will be explored
in a later paper.

In Section 2, we describe our model for a small-N subcluster, and
the procedures used to follow its evolution and to identify the result-
ing multiple systems. In Section 3, we analyse the results, and by
comparing them with observations derive the best-fitting parameters
for a subcluster. In Section 4, we summarize the main conclusions.
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In Appendix A, we derive equation (1), and in Appendix B we show
how the results can be re-scaled to represent subclusters of different
initial mass and/or linear extent. In Table 1, we list the parameters
used in this paper.

2 METHOD

2.1 Initial conditions

Five physical parameters are required to generate the initial condi-
tions for a subcluster. The first is the number of stars in the subcluster,
N. We evolve subclusters with 3 < N < 7. N can also equal 1 or 2,
but we do not need to evolve these cases because their multiplicity
statistics cannot be changed by pure internal dynamical evolution.
Larger values of N (>7) are not considered because it is prohibitive
to keep track of all the different possible outcomes; such large N are
also likely to be rare.

The remaining four physical parameters, (0, Orot, Claw, Qlseg) are
termed ‘configuration parameters’, and regulate — in a statistical
sense — the distribution of stellar masses and the initial distribution
of stars in phase space. In the remainder of this section, we define the
four configuration parameters and explain how they are implemented
in setting up the initial conditions. They are also listed in the first
section of Table 1, and they are all dimensionless.

The individual stellar masses, M, are generated from a lognormal
distribution. Specifically, M = M 10¢, where £ is a random deviate
from a Gaussian distribution with mean p, and standard deviation
oy. Here, oy is a configuration parameter, since it regulates the width
of the mass distribution, i.e. the mean ratio between the most and
least massive stars. We have explored values in the range 0.2 <
o; < 0.4, but focus here on results obtained with o, =0.3.211; is
not a configuration parameter, since the results can be re-scaled to
any median mass, as explained in Appendix B. However, for the
purpose of illustration, we set u, = —0.6, so that the median mass
iS Mipeg=0.25M_.

In the first instance, the stars are given random positions in a sphere
of radius R. Specifically, the position of a star in spherical polars is
[r.6,¢] = [£,°R, cos (2L, —1), 27 L3], where [Ly, £,, L3] are
independent random linear deviates on the interval [0, 1]. The
spherical polar coordinates are then converted to Cartesian coor-
dinates. R is not a configuration parameter, since the results can
be re-scaled to any subcluster radius, as explained in Appendix B.
However, for the purpose of illustration, we set R = 10° au. With
e = —0.6 and R = 10% au, the crossing time for the subcluster is
feross ~ 0.07 Myr N~1/2,

The last three configuration parameters regulate the kinetic energy
of the stars in the subcluster, its shape, and the spatial distribution
of the stars. o dictates the percentage of kinetic energy that is in
ordered rotation, as opposed to random isotropic velocity dispersion.
o,y dictates the rotation law: solid-body (equation 8, SOL) or
Keplerian (equation 9, KEP). a., determines whether the subcluster
is mass-segregated at the outset. The order in which these parameters
are invoked, when setting up the initial conditions, is dictated by
computational considerations.

If oy = 1, the stars are segregated by mass. In other words, the
masses and positions are matched so that, for any pair of stars with
IDsnand n',if M,, < M,/, thenr, > r,. Otherwise ase = 0 and the
masses and positions are matched randomly. Once the masses and

2Lower values of o result in too few binaries with low mass ratios, ¢. Higher
values result in an IMF that is too much broader than the CMF.
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Table 1. Parameters and symbols.

N and the configuration parameters

Number of stars in subcluster N
Standard deviation of logo(M /M) oy
Percentage of kinetic energy in ordered rotation Olrot
Rotation law: solid-body = SOL; Keplerian = KEP Oaw
Mass segregation option Aseg
Configuration, [o¢, rot, Xlaw Xseg] C

Scaling parameters
Mean of logy(m/M,) e
Radius of subcluster R

Numerical parameters
Adaptive integration time-step At

Coefficient for integration time-step y
Analysis parameters

Percentage of singles (m=1) S
Percentage of binaries (m =2) B
Percentage of triples (m =3) T
Percentage of higher-order systems (m > 4) Qt
Multiplicity of system m
Maximum multiplicity considered Mmax
Semimajor axis of orbit a
Period of orbit P
Eccentricity of orbit e
Inclination of orbit k
Time-interval for monitoring multiplicity Atyvo

Mean number of systems with multiplicity
m formed by a single subcluster with

configuration C that contains N stars Scnm
Probability that a core spawns N stars Pow
Parameter for P, (see equation 15) Ny
Parameter for P, (see equation 15) AN
Normalization coefficient for P, (see equation 16) o
Mean of N for P, (see equation 17) My
Standard deviation of N for P, (see equation 18) op
N-distribution, [N, AN ] D

Total number of systems with multiplicity m
predicted for configuration C

and N-distribution D Neon
Observed number of systems with multiplicitym On
Quality of fit to observations with
configuration C and N-distribution D ch
Percentage of stars with m > 3 o+
General variables and functions
Number of different end states
for a subcluster of N stars A,
Initial total kinetic energy of subcluster Exin
Heaviside function H
Random linear deviates on [0, 1] L1, Lo, L3
log,o(m /M) (random Gaussian deviate) l
Mass of star M
Median mass M ed
Total mass of subcluster Mot
Dummy ID of star n,n',n"
Position of star r
[r.0,¢]
[x,y,z]
Velocity of star v
Scaling parameters
Factor to scale total mass of subcluster fm
Factor to scale radius of subcluster fr
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positions are matched, the centre of the Cartesian coordinate system
is shifted to the centre of mass, and the initial self-gravitational
potential energy,

n=N—1 n'=N M, M,
Q=-G —_— 5, (@)

=1 n'=n+l |rn - rn"
is computed.

At this juncture, the stars are given random isotropic velocities,
Viso, drawn from a Maxwellian distribution with zero mean and
standard deviation ojso={[1 — oo ]2/ 6M,o}'/?, where M,y is the total
mass of the subcluster. These velocities are then shifted to the centre-
of-mass frame, and renormalized so that the total kinetic energy
invested in isotropic velocity dispersion is correct.

If oo > 0, the stars are also given ordered rotation velocities,
Vyor. If a1y = SOL the rotation is solid-body, with moment of inertia
about the z-axis, angular speed about the z-axis, and velocity given
respectively by

n=N
I, = Z {Mnléz A r,l|2},

z

n=1

o = [/ 1,]"*, ¢ if dtlaw = SOL; ®)

Vrotn = a)éz ANFy,

here, &, is the unit vector parallel to the z-axis and A denotes a vector
product. Alternatively, if o}, = KEP the rotation is Keplerian, with
gravitational potential relative to the z-axis, Kepler coefficient, and
velocity given respectively by

n=N
IZ, = E {Mnléz A rn|71},
n=1
K = [ $2/1!] 172 % ifo,, = KEP. ©)

|—3/2

vrot:nzklez/\rn € NIy,

The net velocities of the stars,

Vy = Visom t+ Vrotn» (10)

are then computed and shifted (again) to the centre-of-mass frame.
Finally, the initial total kinetic energy,

= [ M, v,
Ekmzz{%} an

n=1

is computed, and the velocities are re-scaled to ensure that the
subcluster is virialized,

v, <— v, [—Q/2Ei]"* . (12)

We invoke an initially virialized subcluster for two reasons. First,
the time-scale on which the subcluster approaches virial equilibrium
is likely to be short, compared with the time-scale on which the
multiplicity statistics stabilize. Secondly, this reduces the number of
free parameters we need to explore.

We introduce the shorthand

C= [0(3’ Qrot, Klaw, O[seg] (13)

to represent a specific set of configuration parameters. Apart from
N and C, the only other variables that distinguish one experiment
from another are the random-number seeds used to generate different
realizations of the same N and same set of configuration parameters,

C.
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2.2 Evolving subclusters

Subclusters are evolved using a fourth-order Runge—Kutta integra-
tion scheme with an adaptive time-step,

|rn_rn/| |vn_vn’|
Ar = y MIN , . (14)
|vn - vn" |an - an’l n#n'

Here, y is a user-specified parameter determining the accuracy of
the integration, a,, is the acceleration of star n, and the minimum is
over all possible pairs of stars. This formulation ensures that no two
stars change their relative position or relative velocity by more than a
fraction ~y in one time-step. The numerical experiments presented
in the sequel have been performed with y =0.1.

Each initial system is integrated for a maximum of 1000 crossing
times (~ 70 Myr N~'/2), unless all the existing systems become
unbound from one another, in which case the integration is terminated
in order to save computer time (see Section 2.4). Conservation of
linear momentum, angular momentum, and energy is monitored
throughout the evolution.

2.3 Identifying multiple systems

Atregular intervals, At,,,,,, during the cluster evolution, we identify
multiple systems using a multiplicity monitoring operation, hereafter
MMO. The MMO selects a random pair of stars in the subcluster.
If the stars in this pair [1] are mutual nearest neighbours and [2]
have negative energy in their mutual centre of mass frame, they are
identified as bound. For the purposes of the MMO, the bound pair
is then treated as a single object with the properties (mass, position,
and velocity) of its centre of mass. This object is added to the pairing
procedure, and its individual constituent stars are removed from
consideration for the purpose of this implementation of the MMO.
Conversely, if the pair do not meet both criteria [1] and [2], they
remain as individual stars, and the MMO checks a different possible
pairing. This continues recursively until the full inventory of multiple
systems in the subcluster has been determined.

For each identified bound system — including higher-order mul-
tiples — the procedure calculates the orbital parameters: semimajor
axis (a), orbital period (P), eccentricity (e), and angular momentum
vector (which gives the orbital inclination k). The MMO is im-
plemented every 33 crossing times (~ 2.3 Myr N~'/2, or ~ 1 Myr
for N =4 or5). Note that, after an MMO implementation, the
integration procedure continues to follow all stars as individuals.

2.4 Unbound stars and the stopping condition

During the evolution, a star or system may become unbound from
the rest of the subcluster. It is then no longer necessary to track its
position, and it is removed from further evolution of the subcluster
(and from subsequent MMO implementations). However, during
periods of frequent close encounters two stars that are actually bound
to one another may not meet condition [1] (i.e. may briefly not be
mutual nearest neighbours). This only occurs occasionally, and only
ever in the very early lifetime of a subcluster when the dynamics is
very chaotic. To avoid inadvertently removing bound stars or systems
from the evolution, stars and systems are only removed after the first
200 crossing times, and only if those stars or systems have remained
unbound for two consecutive MMOs.

If the MMO finds that the subcluster consists entirely of singles
and binaries that are unbound from one another, no further dynamical
change can take place and the evolution is halted.

MNRAS 535, 3700-3710 (2024)

20z Jequiaoaq 0 Uo Jesn WOMN ‘A1eiqr] a1uina Aq £56668./00.E/7/SES/I0IE/SEIUL/WO0"dNOdILBPEdE//:SA]lY WOJ) POPEOJUMOQ



3704  H. E. Ambrose and A. P. Whitworth

Table 2. The configurations evaluated, and the quality and parameters of the best fit. Column 1, configuration ID; columns 2 through 4, the amount of rotation,
the rotation law, and whether there is mass segregation; columns 5 and 6, the N-distribution parameters, (N, AN, ); columns 7 and 8, the mean and standard
deviation of the N-distribution; column 9, the quality of the best fit (small for a good fit); columns 10 through 13, the percentages of singles, S, binaries, B,
triples, T, and quadruples plus higher orders, QT; column 14, the total number of systems produced; columns 15 through 18, the multiplicity fraction (MF,
equation 23), the triple and higher-order fraction (/. , equation 5), the companion fraction (CF, equation 24), and the plurality (PL, equation 25). Row 1, the
parameter symbols; row 2, the observed statistics from the T21 sample (Tokovinin 2021); rows 3 through 5, the results from Sterzik & Durisen (1998) for
subclusters with a single N = 3, 4, and 5; rows 6 through 10, the results from this work for subclusters with a single N = 3, 4, 5, 6, and 7; row 11, the fiducial
case (no rotation, no segregation); rows 12 through 15, the solid-body rotation cases; rows 16 and 17, the Keplerian rotation cases; rows 18 through 22, the

mass-segregated cases (including the best-fitting case, SEG4).

C Qrot Qaw Oseq Ny, AN, o, Qep S B T QF Sys MF - CF PL
T21 0 - - 54 29 12 5 0.46 0.17 0.68 1.13
SD3 0 - 0 3 0 46.8 46.8 5.5 0 1878 0.53 0.06 0.59 0.82
SD4 0 - 0 4 0 62.7 20.1 6.0 1.1 2713 0.36 0.07 0.44 0.74
SD5 0 - 0 5 0 70.1 18.9 9.0 0.9 3475 0.29 0.10 0.40 0.75
N=3 0 - 0 3 0 3 0 1.71 47.3 47.3 5.45 0 1614 0.53 0.05 0.58 0.80
N=4 0 - 0 4 0 4 0 0.77 60.2 29.3 9.85 0.73 2194 0.40 0.11 0.51 0.84
N=5 0 - 0 5 0 5 0 0.65 68.1 19.8 10.5 1.61 2798 0.32 0.12 0.46 0.84
N=6 0 - 0 6 0 6 0 0.84 74.8 14.3 8.84 1.96 4377 0.25 0.11 0.38 0.76
N=17 0 - 0 7 0 7 0 1.06 78.7 11.7 7.62 2.00 5290 0.21 0.10 0.33 0.70
FID 0 - 0 4.9 1.0 4.8 0.1 0.64 67.1 21.0 10.4 1.49 16273 0.33 0.12 0.46 0.84
SOL1 0.25 SOL 0 5.0 1.0 5.0 0.0 0.57 66.2 21.7 104 1.7 17104 0.34 0.12 0.48 0.86
SOL2 0.50 SOL 0 4.3 3.3 4.4 2.1 0.41 62.6 24.3 11.1 2.0 16599 0.37 0.13 0.53 0.91
SOL3 0.75 SOL 0 4.4 3.4 4.4 2.2 0.49 63.8 23.1 11.3 1.78 16714 0.36 0.13 0.51 0.90
SOL4 0.99 SOL 0 49 1.0 4.8 0.1 1.26 70.3 23.7 5.65 038 17829 0.30 0.06 0.36 0.63
KEP1 0.50 KEP 0 4.4 3.4 4.4 2.2 0.42 63.5 23.6 10.8 2.08 16715 0.36 0.13 0.51 0.90
KEP2 0.99 KEP 0 5.0 1.0 5.0 0.0 1.22 71.2 21.8 6.57 038 17992 0.29 0.07 0.36 0.64
SEG1 0 - 1 5.0 1.0 5.0 0.0 0.63 67.1 20.6 10.8 1.53 16590 0.33 0.12 0.47 0.85
SEG2 0.50 SOL 1 53 1.6 5.2 0.5 0.43 66.1 21.0 10.6 229 16574 0.34 0.13 0.49 0.89
SEG3 0.99 SOL 1 4.6 1.1 4.6 0.2 1.38 69.5 25.9 431 033 17869 0.31 0.05 0.36 0.60
SEG4 0.50 KEP 1 5.4 4.4 4.8 2.4 0.35 63.2 24.1 10.3 241 16339 0.27 0.13 0.52 0.91
SEG5 0.99 KEP 1 4.8 1.0 4.7 0.2 1.33 69.9 25.1 4.59 041 17995 0.30 0.05 0.36 0.61

2.5 Comparison with observations

For each set of configuration parameters, C, and number of stars, N,
we evolve 1000 different realizations and compute the mean number
of systems with multiplicity m formed per realization, S..,,, . We do
this for all N in 3 <N <7, for each set of configuration parameters,
C, as listed in Table 2, and for all m in 1 <m <my =4". Because
the numbers of quintuples, sextuples, and septuples are small (both in
the numerical experiments, and in the observations), they are simply
added to the quadruples to give S, . .
To fit the observations, we assume that the probability that a core
spawns a subcluster of N stars is given by the distribution function

Py = i1y MAX ({AN; — [N - ND]Z}, o), (15)
N=7
_ _ _ 2
—/NZ;IMAX ({anz - [V =n,]°}. 0). (16)

where 7, is a normalization coefficient. Because N is not a
continuous variable, N, regulates, but is not exactly, the mean of the
N distribution; and AN, regulates, but is not exactly, the standard
deviation of the N distribution. The true mean and standard deviation
are given by

N=T7
=> {P,, N}, (17)
N=1
N=T7
ol +ui =Y {P, N} (18)
N=1
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The subscript D in equations (15) through (18) represents the
parameters of the distribution function, i.e.

D=[N,, AN, ]|, (19)

hereafter the N-distribution.

The frequency with which a subcluster having configuration
parameters C and N-distribution D spawns a multiple system of
the order of m is

N=7
Jeom = Z{PDN SCNm} : (20)
N=1
Therefore, if the observed number of systems with multiplicity m is
O,,, the predicted number is

m=4"

4+
> {o.) /> {feon} @)

m=1

m

chm = fCDm

and the quality of fit for this combination of configuration parameters,
C, and N-distribution, D, is given by

m=4 2
Z { [NCDm O ] } (22)

A lower value of Q. represents a better fit.

3 RESULTS AND DISCUSSION

Our numerical experiments suggest that most cores spawn four
or five stars. There are cores that spawn three stars, but if they
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Figure 1. Multiplicity distributions for subclusters with N =3, 4, 5, 6, and 7. For each N-value, we have evolved 1000 different realizations with the fiducial
configuration parameters (ctror = 0, atseg = 0). The dashed line represents the T21 sample. Error bars represent the 3o statistical variance.

were the norm they would produce too many binaries and too few
singles, while contributing no quadruples or higher-order systems.
Conversely, there are cores that spawn more than five stars, but if
they were the norm they would produce too many singles and too
few binaries. Although such high-N cores are essential to produce
the high-order systems, our pure N-body model does not produce
as many high-order systems as are observed; we find that increasing
N is more effective at overproducing singles than it is at producing
stable higher-order multiples. In Section 4, we suggest that forming
the observed number of high-order systems probably requires the
inclusion of additional physics such as disc drag and disc fragmenta-
tion, since this will deliver compact, tightly bound companions that
can survive all but the closest interactions with other stars.

3.1 A universal N value

It is informative to consider the possibility that all cores spawn the
same number of stars, i.e. a universal N value, although a universal
N is extremely unlikely. For these experiments, we use the fiducial
parameters, i.e. no rotation and no mass-segregation.

An initially bound subcluster with N =3 stars has A, =2
possible end states: (i) a triple system, or (ii) a binary and a single star.
Because the dissolution of a three-star subcluster into a binary and a
single is the only way for a binary or a single star to form from such
a subcluster, the percentages of single and binary systems must be
equal in this case. For the fiducial case, in which the initial subcluster
has no ordered rotation or mass segregation, ~ 90 per cent of three-
star subclusters decay into a binary and a single, giving percentages
of S:B:T:Q" = 47:47:6:0, exactly as obtained by Sterzik & Durisen
(1998).

An initially bound subcluster with N =4 stars has A, =4
possible end states: (i) a quadruple; (ii) a triple and a single star;
(iii) two separate binaries; or (iv) a binary and two single stars. For
the fiducial case, N =4 gives S:B:T:Q" = 60:29:10:7. We note that
higher-order multiples may come in different variants. For example,
there are 2 + 2’ quadruples and planetary quadruples.

Of the quadruple systems produced in the N =4 fiductial,
25(£14) percentare ‘2 + 2’ systems and the remainder are planetary.
In contrast, in the Tokovinin 2014 sample ~ 75 per cent of quadru-

ples are ‘2 42’ systems. There are two possible explanations for this
discrepancy. First, it is probably easier to detect ‘2 + 2’ quadruples
spectroscopically, in which case they are overrepresented in the
observational sample. Secondly, it may be that additional physics
that is missing from our numerical experiments — for example,
circumstellar accretion discs and disc fragmentation — increases the
percentage of ‘2 + 2’ quadruples.

The number of distinguishable end states increases monotonically
with N. Five-star subclusters have .4, = 6 possible end states, and
six-star subclusters have A = 10 possible end states. For the fidu-
cial case, N =5 gives S:B:T:Q" = 68:20:10:2, with 24(=%8) per cent
of Q7 systems composed wholly, or in part, of ‘2 + 2’ configurations;
and N =6 gives S:B:T:Q" =75:14:9:2, with 24(%6) per cent of O
systems containing ‘2 + 2’ configurations.

An initially bound subcluster with N =7 stars has A, = 14
possible end states: (i) a septuple; (ii) a sextuple and a single star,
(iii) a quintuple and a binary, (iv) a quintuple and two singles, (v) a
quadruple and a triple, (vi) a quadruple, a binary, and a single, (vii) a
quadruple and three singles, (viii) two triples and a single, (ix) a triple
and two binaries, (x) a triple, a binary, and two singles, (xi) a triple
and four singles, (xii) three binaries and a single, (xiii) two binaries
and three singles, and (xiv) a binary and five singles. Given the rapid
increase in the number of end states with increasing N (see equation
1 and Appendix A), we limit consideration to N <7. For the fiducial
case, N=7 gives S:B:T:Q" = 79:12:8:2, with 19(%5) per cent of
Q™" systems containing ‘2 + 2 configurations.

Fig. 1 displays the multiplicity distributions for the fiducial case
with different values of N. The results for N =4 most accurately
match the T21 sample, but no value reproduces exactly the observed
multiplicities. Increasing N does increase the probability of forming
higher-order multiples. Indeed, a system with multiplicity m >3 can
only form if N >m. However, this effect is small, and the main effect
of increasing N is to increase the percentage of singles at the expense
of binaries. These singles are mainly lower-mass stars that have been
ejected by the sling-shot mechanism.

For subclusters with a universal N value, the multiplicity statistics
can be changed quite significantly by introducing rotation. Fig. 2
shows the effect of different amounts of rotation for subclusters with
N =4.

MNRAS 535, 3700-3710 (2024)
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Figure 2. Multiplicity distributions for subclusters with N =4, o, = 1, and different values of aror = 0, 0.25, 0.5, 0.75, and 0.99. For each oy value, we
have evolved 1000 different realizations. Error bars represent the 3o statistical variance.

3.2 A distribution of N values

It is unlikely that every prestellar core produces the same number
of stars. Therefore, we now consider N-distributions, and identify
the combinations of configuration parameters, C, and N-distribution,
D, that best fit the observations. The N-distributions are given by
equation (15), and we test all combinations of N, = 1.0, 1.1, 1.2,
1.3,..6.8,69,7.0,and AN, =1.0,1.1,12,1.3,...6.8,6.9,7.0.

Table 2 lists all the tested configurations C; for each configuration,
the parameters of the N-distribution giving the best fit to the T21
sample; and — where they exist — the corresponding parameters from
Sterzik & Durisen (1998).

3.2.1 The notional absolute-best fit

The notional absolute-best fit is obtained with configuration C =
SEG4 (arot = 0.5, ajqw = KEP, @4, = 1) and an N-distribution
with (N, AN,)~(5.4,4.4) (corresponding to mean pu, =~ 4.8,
and standard deviation o, >~ 2.4). This delivers percentages
S:B:T:Q% = 63 :24: 10 : 2.4, with quality factor Q,,, = 0.35 and
41(+£5) per cent of Q" systems containing ‘2 + 2’ orbits.

3.2.2 How critical is the N-distribution?

Fig. 3 is a map of the quality factor, Q.,,, for configuration C =
SEG4 over the full range of N-distribution parameters, (N, AN ).
There are two regions of low Q.. ,, (i.e. good fits, represented by white
on Fig. 3). One is centred on the best fit (N, AN, )~ (5.4, 4.4) with
an extension to higher and lower values of N, and AN, . The other,
slightly less-favoured region, is centred on (N, AN,)~(5.5, 1).

Fig. 4 compares the multiplicities corresponding to the absolute-
best fit (black line) and the 50 next-best fits (i.e. SEG4 with slightly
different N-distributions; cyan shading). These fits correspond to the
whitest region on Fig. 3 (specifically, an area thatis ~1.4 per cent of
the total area of Fig. 3). They all fall within one standard deviation of
the absolute-best fit, so the parameters of the N-distribution giving
the absolute-best fit are not highly critical.

Notably, but unsurprisingly, a prestellar core producing exactly
two stars results in the worst fit, since it only produces binary systems.

MNRAS 535, 3700-3710 (2024)

The corresponding black point in Fig. 3 is only just visible next to
the abscissa.

3.2.3 Which are the critical configuration parameters?

Table 3 lists the five configurations that produce fits with, Q ., < 0.5.

Fig. 5 shows the quality factor, Q. , for the four additional
configurations and the full range of N-distribution parameters,
(Np, ANL). Panels (a) SOL2, (b) SOL3, and (c) KEP1 in Fig. 5
are very similar to one another, with a single region of high quality,
centred on (N, AN,)~(4.4,3.4). Panel (d) SEG2 is more like
SEG4 (Fig. 3), with two regions, but the preferred region is now the
lower one centred on (N, AN, )=(5.3, 1.6).

All five configurations involve rotation, four with 50 per cent of
the kinetic energy invested in rotation, and one with 75 per cent. We
conclude that having comparable amounts of energy in rotation and
in random isotropic motions is a critical requirement for producing
a good fit.

In contrast, three of the top-five configurations have solid-body
rotation, while two have Keplerian rotation. We conclude that the
details of the rotation (the rotation law) are not critical. Similarly,
three of the top-five configurations have no mass segregation, and
two of them do. Therefore, it appears that mass segregation is also
not a critical requirement for a good fit.

The mass segregation does appear to have an affect upon the
formation of ‘242’ systems. While the percentage of ‘2 + 2’s is
similar for the best-fitting cases with no segregation (ctse = 0), those
that begin with segregated masses (s = 1) have a much higher
percentage of ‘2 + 2’s (Table 3).

3.3 Metrics of overall multiplicity

Various metrics of overall multiplicity have been proposed, in
particular the multiplicity fraction (i.e. the fraction of systems that
are not single),

B+T+0+..

MF = R
S+B+T+0Q+..

(23)
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Figure 3. Map of the quality factor, Q ¢p > for the best-fitting configuration parameters (dror = 0.50, ojaw = KEP, aieg = 1) and the full range of N-distribution
parameters (1.0 < N, <7.0and 1.0 < AN, < 7.0). The map encodes logm(QcD ), with the best fit lightest and the worst fit (N, = 2 and AN, = 1) darkest.
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Figure 4. Multiplicity distributions. The blue dashed curve represents the T21 sample. The black full line represents the absolute-best-fitting combination of
configuration parameters and N-distribution parameters (i.e. SEG4, one from bottom row in Table 2). The surrounding shaded region represents fits for the same
configuration parameters and the 50 next-best-fits with different N-distribution parameters (corresponding to the lightest region in Fig. 3).

Table 3. The parameters of the five best fits, i.e. those with quality factor,
Qcp < 0.5. Reading left to right, the columns give the configuration name,
the parameters of the configuration (crot, ®law, Useg), the mean and standard
deviation of the distribution of N values (1, , 0, ), the quality factor (Q. ),
and the percentage of Q1 systems that contain ‘2 + 2’ orbits.

c Qrot Alaw Oseg Hp Op QCD 2+2
SOL2 0.50 SOL 0 4.4 2.1 0.41 25(x06)
SOL3 0.75 SOL 0 4.4 22 049 26(+06)
KEP1 0.50 KEP 0 4.4 22 042 28(+05)
SEG2 0.50 SOL 1 5.2 0.5 043 44(+07)
SEG4 0.50 KEP 1 4.8 24 035 41(£05)

the triple/higher-order fraction (i.e. the fraction of systems that are
triple or higher-order, see equation 5); the companion fraction (i.e.
the mean number of companions per primary),

B+2T +30+ ...

CF = R
S+B+T+0Q+..

(24)

and the plurality (i.e. the mean number of companions per star,
irrespective of whether it is a primary star),
2B+ 6T +120+...

T S+2B+3T 440+ ...

These metrics are given in the last four columns of Table 2. The
last one, PL, has the merit that it has a clear physical meaning and

PL

(25)
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(b) SOL3 with Q_.,, =0.49; (c) KEP1 with Q_.,, =0.42; and (d) SEG2 with Q_.,, =0.43.

reflects, more strongly than the others, the percentage of higher-order
multiples. CF and PL can both be greater than one. Indeed, for the
T21 sample, PL = 1.13.

3.4 Caveats
3.4.1 Pure N-body dynamics

The numerical experiments reported here involve pure N-body
dynamics. Consequently — modullo numerical errors — the resulting
multiplicities are determined solely by the initial conditions and
gravitational interactions between point masses. Phenomena such
as dissipation from the cloud or disc, which harden systems against
dissolution and act to increase stellar multiplicity, are not considered.
We expect the pure N-body results of this work to represent a
conservative (i.e. low) estimate of the multiplicity which can be
achieved from a subcluster of N stars.

3.4.2 Isolated subclusters

Each subcluster is evolved in isolation. The subcluster cannot capture
outside stars, nor can it be perturbed by stellar flybys. For low-N
subclusters, capture might increase the multiplicity metrics (e.g. MF,
CF, and PL), but for high-N subclusters it would probably reduce
the multiplicity metrics. Perturbations by stellar flybys would be

MNRAS 535, 3700-3710 (2024)

likely to reduce the multiplicity metrics, for example by disrupting
hierarchical triples.

3.4.3 Duration of integration

Subclusters are evolved for a maximum of 1000 crossing times. In
practice, most of the final multiple systems are established early in
the evolution, within the first 200 crossing times. For the N =7
case, whose systems take the longest to settle into their end states,
more than 80 per cent of instantiations achieve their final 1000 7 ;055
multiplicities by 200 #.,0ss, and more than 95 per cent by 600 #.;oss-

3.4.4 Limited number of stars in subcluster

We do not consider subclusters with N > 7. As we increase N,
the multiplicity distribution changes at a decreasing rate (see Fig.
1): the percentages of binaries and triples decrease slightly, the
percentage of singles increases, and the percentages of higher-
order multiples (m >4) increase imperceptibly. For example, in
the fiducial case, the multiplicity distributions for N = 6 and 7
agree within their 30 uncertainties (Fig. 1). This is true for all
configurations tested. We expect multiplicities for values of N > 7
to follow this trend, remaining very similar to the multiplicity values
for N =17.
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In addition, the complexity of possible end states increases
dramatically with N (see Appendix A), making higher-N numerical
experiments prohibitive from a book-keeping standpoint.

3.4.5 Observational statistics

The T21 observational statistics are probably influenced by selection
effects. The likelihood is that, as new and improved techniques and
strategies are developed, the multiplicities of the systems in the
T21 sample will change, and there will probably be an increase
in the proportion of higher-order systems. As the completeness of
multiplicity surveys improves, the analysis presented in this work can
easily be reapplied to updated observational statistics. However, the
inability of our pure N-body model to produce enough higher-order
systems is likely to remain a limitation.

4 CONCLUSION

We have used N-body numerical experiments to determine the
multiplicity statistics that result from small- N subclusters of stars that
interact only through their mutual gravity. These statistics have then
been compared with the T21 sample of nearby systems with solar-
mass primaries (Tokovinin 2021). The subclusters are presumed to
be the product of collapse and fragmentation in a single isolated
prestellar core.

To produce an acceptable fit to the observed statistics, prestellar
cores must — on average — spawn between 4.3 and 5.2 stars. This
seems to be a rather compelling conclusion, in the sense that first
it produces by far the best fit to the observations, and secondly a
very similar conclusion has been drawn by two other, completely
independent studies, viz. [1] Holman et al. (2013) using statistical
arguments, and [2] Lomax, Whitworth & Hubber (2015) using
smoothed particle hydrodynamic simulations. We stress that neither
[1] nor [2] involves N-body numerical experiments, and they are
therefore totally independent of the results reported here.

In the numerical experiments reported in this work, subclusters
which begin with roughly half their kinetic energy invested in rotation
produce the best fits to the T21 sample. Furthermore, there is a
broad range of set-ups that produce very similar fits, but they all
have roughly half their kinetic energy invested in rotation. These
set-ups do occasionally spawn fewer than four stars, or more than
five, but this is relatively rare. The multiplicity statistics appear to
be independent of whether the subcluster starts with a solid-body
or Keplerian rotation law, and of whether the masses are initially
segregated. The orbital statistics of the systems formed in this paper
will be presented in a companion paper.

Although the overall fits obtained here are quite good, there are
always too few systems with multiplicity m >4. We believe that this
is because our stars do not have circumstellar discs. Such discs will
make close encounters between stars dissipative, thereby increasing
the formation of tight orbits and higher-order multiples. Such discs
may also fragment to form close companions, some of which will
survive interactions with other stars in the subcluster, and again this
will promote the formation of higher-order multiples. This refinement
will be explored in a future paper.
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APPENDIX A: ENUMERATING END STATES

An initially virialized subcluster of N > 2 stars must produce at least
one bound multiple system. This component contains »n stars, where
2 <n<N, and we can assume without loss of generality that n is
the largest or equal-largest multiplicity of the end state. In the case
where this component is the only multiple, all remaining N —n stars
are single.

The remaining N —n stars may also form bound systems. These
systems may have any multiplicity n’, where 2 <n’ <n. The number
of additional component systems of multiplicity n’ for an existing
component of multiplicity » is given by the number of times n” may
be divided wholly into the number of remaining stars. So, end states
containing a component system of multiplicity » and a component
system (or systems) of multiplicity n’ are counted with the following
equation:

AN<7=ZN:{1+§:{N’;"J}. (A1)

n=2 n'=2

This equation will count all possible end states for initially virialized
subclusters with2 < N < 7.

For 7 < N < 10, it is possible to achieve end states with compo-
nent systems of multiplicity n, n’, and n”, where n” < n’,i.e. N = 8
may end in two separate triples and a binary, N = 10 may result in
a quadruple, a triple, and a binary. To count these states, we must
add an additional level of recursion. For each set of n, n’, there are
N — (n + n') remaining stars. If N — (n + n’) > 2, the stars may

form a multiple of the order of 2 < n” < n’. n” = n’ systems are
counted in the previous sum. The number of components of order n”
is then given by

ny = {7]" —nt ”')J (A2)

n//

and the full sum becomes equation (1),

N n
A, :Z{1+Z{ {NH_HJ + H(N —(n+n'+2)

"Z"l N —(n+n')
\; n” J ’
n’'=2

where H represents the Heaviside function, i.e.

H 1, if h>0; (A3)
o, if h<O.

The sum gives the multiplicity of each end component, and differen-

tiates components only on multiplicity, not on the type of system (e.g.

there is no discrimination between a quadruple which is planetary
versus one which is a 2 + 2) or on which specific stars occupy which

remnant system. Further terms may be added to count end states of
N < 10.

APPENDIX B: SCALING RELATIONS

The numerical experiments described in the paper are strictly
speaking dimensionless, and have only been scaled to M =
0.25M, (¢, =—0.6) and R = 10° au for the purpose of illustration.
To scale a given experiment to a subcluster with a different total
mass, M/ , and/or a different radius, R’, we must multiply all
stellar and system masses by f,, =M, /M.; all position vectors
and orbital axes by f, =R’/R; the time and all orbital periods by
[f3/f,,1"/%; and all velocities by [f,,/ f,]"/*. Orbital eccentricities

and inclinations are unchanged.

This paper has been typeset from a TEX/IATgX file prepared by the author.
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