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A B S T R A C T 

We explore the relative percentages of binary systems and higher-order multiples that are formed by pure stellar dynamics, 
within a small subcluster of N stars. The subcluster is intended to represent the fragmentation products of a single isolated core, 
after most of the residual gas of the natal core has dispersed. Initially, the stars have random positions, and masses drawn from 

a lognormal distribution. For low-mass cores spawning multiple systems with Sun-like primaries, the best fit to the observed 

percentages of singles, binaries, triples, and higher-order systems is obtained if a typical core spawns on average between N = 

4.3 and 5.2 stars, specifically a distribution of N with mean μ
N 

∼ 4 . 8 and standard deviation σ
N 

∼ 2 . 4. This fit is obtained 

when ∼ 50 per cent of the subcluster’s internal kinetic energy is invested in ordered rotation and ∼ 50 per cent in isotropic 
Maxwellian velocities. There is little dependence on other factors, for example mass segregation or the rotation law. While 
such high values of N are at variance with the lower values often quoted (i.e. N = 1 or 2), very similar values ( N = 4 . 3 ± 0 . 4 

and N = 4 . 5 ± 1 . 9) hav e been deriv ed previously by completely independent routes, and seem inescapable when the observ ed 

distribution of multiplicities is taken into account. 

Key words: celestial mechanics – binaries: close – stars: formation – stars: kinematics and dynamics. 
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 I N T RO D U C T I O N  

ost field stars more massive than the Sun are not single (Whit-
orth & Lomax 2015 ; Offner et al. 2023 ). They exist in multiple

ystems, i.e. gravitationally bound groups in which the individual
tars are on more-or-less constant and stable orbits about one another.
he most common multiple systems are binaries: two stars orbiting

heir mutual centre of mass on elliptical orbits. Ho we ver, there is an
ncreasing recognition that there are also many higher-order multiple
ystems in the field (and even more in regions of recent star formation;
hen et al. 2013 ). Stable, long-lived triple systems comprise two stars

n a relatively close binary system with a third star on a significantly
ider orbit about the binary. Quadruple systems come in two variants:

2 + 2’ quadruples comprise two relatively close binary systems on
 wide orbit about one another; and ‘planetary’ quadruples comprise
 triple system (as define abo v e) with a fourth star on an even wider
rbit about the triple. The highest-order multiples known are septu-
les. An example of a septuple is 65 UMa (11551 + 4629), in which
 central binary is orbited not only by three companions on planetary
rbits, but a distant binary pair as well (see Tokovinin 2021 ). 
A young subcluster comprising N stars may evolve into A 

N 

ossible end states, where A 

N 
increases rapidly with N . For N ≤ 10: 

 

N 
= 

N ∑ 

n = 2 

{ 

1 + 

n ∑ 

n ′ = 2 

{ ⌊
N −n 

n ′ 

⌋
+ H ( N − ( n + n ′ + 2)) 

×
n ′ −1 ∑ 

n ′′ = 2 

⌊
N − ( n + n ′ ) 

n ′′ 

⌋} } 

. (1) 
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ere, � � is the floor operator, and H is the Heaviside function. Thus,
 subcluster with N = 7 members can evolve into A 7 = 14 different
nd states, as enumerated in Section 3.1 . A deri v ation and explanation
f equation ( 1 ) is given in Appendix A . 

.1 Obser v ational perspecti v e 

ecent advances in observational technology and capability have lead
o the disco v ery of additional members in known star systems, and
hereby greatly increased the inventory of higher-order multiples in
he solar neighbourhood. When Duquennoy & Mayor ( 1991 ) studied
he multiplicity of solar-type stars in a 22-pc sample, they found
hat only 5 per cent hosted triple or higher-order systems. For a 25-
c sample, Raghavan et al. ( 2010 ) found this percentage to be 13
er cent, and it increased to 17 per cent when Tokovinin ( 2021 ) and
irsch et al. ( 2021 ) studied the sample in 2021. 
The Tokovinin ( 2021 ) statistics for nearby systems with solar-type

rimaries, in the field (hereafter the T21 sample), are 

 : B : T : Q 

+ = 54 : 29 : 12 : 5 . (2) 

ere, S is the percentage of single stars, B the percentage of binaries,
 the percentage of triples, and Q 

+ the percentage of quadruples plus
igher-order systems (i.e. quintuples, sextuples, and septuples). 
Thus, in this sample, the fraction of stars that are single is 

 S = 

S 

S + 2 B + 3 T + 4 Q 

+ 

� 32 . 1 per cent ; (3) 

he fraction of stars that is in binaries is 

 B = 

2 B 

S + 2 B + 3 T + 4 Q 

+ 

� 34 . 6 per cent ; (4) 
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nd the fraction that is in triples or higher-order systems is 

 

T + = 

3 T + 4 Q 

+ 

S + 2 B + 3 T + 4 Q 

+ 

� 33 . 3 per cent . (5) 

These percentages should be qualified with two caveats. First, we 
ave assumed that all the systems contributing to Q 

+ are quadruples. 
f account were taken of the systems that are quintuples, sextuples, 
nd septuples, f 

T + would increase slightly, at the expense of f S 
nd f B . Secondly, although these percentages are uncertain, due to 
election effects and observational bias, the expectation must be that 
n the future they will shift towards higher orders, as additional 
embers of existing systems are disco v ered. This will reduce f S ,

nd probably increase both f B and f 
T + . 

Moreo v er, we should also note that, by construction, the stars in
he T21 sample have masses M � M � . Samples with higher-mass
rimaries tend to have even higher multiplicities than the T21 sample. 
 or e xample, in the surv e y by Sana ( 2017 ) essentially all of the high-
ass stars are members of higher-order systems. The systems we are 

onsidering here are presumed to be the product of low-mass cores 
f the sort that define the peak of the core mass function (CMF) and
re observed in nearby low-mass star formation regions. 

We should also be mindful that the multiplicities of stellar 
ystems depend on their age. Reipurth & Zinnecker ( 1993 ) show
hat young populations tend to have higher multiplicities than their 
lder counterparts. Indeed, multiplicity begins to decline even in 
he protostellar phase. Chen et al. ( 2013 ) show that the average

ultiplicity decreases as one progresses from Class 0, through Class 
, to Class II protostars. 

.2 Theoretical perspecti v e 

e shall assume that usually an observed multiple system with 
 solar-mass primary has formed from a single prestellar core. 
here are then two main mechanisms involved: (i) dynamical core 
ollapse and fragmentation and (ii) disc fragmentation. These two 
echanisms are not mutually e xclusiv e, rather the y tend to be

equential. 1 

In the standard paradigm for star formation, molecular clouds 
re highly turbulent, and in some regions the turbulence produces 
onvergent flows of sufficient strength to produce self-gravitating 
heets, filaments, and cores. 

Unless it is rapidly dispersed by tidal forces or shear, a self-
ravitating core collapses. And, unless it is very spherically symmet- 
ic and non-rotating, it is likely to fragment dynamically to produce 
 small subcluster of stars (e.g. Cha & Whitworth 2003 ; Fisher 2004 ;
oodwin, Whitworth & Ward-Thompson 2004a , b ; Hennebelle et al. 
004 ; Hubber & Whitworth 2005 ; Stamatellos, Hubber & Whitworth 
007 ; Offner et al. 2010 ; Walch, Whitworth & Girichidis 2012 ;
omax et al. 2014 ; Lomax, Whitworth & Hubber 2015 , 2016 ; Rohde
t al. 2021 ; Whitworth et al. 2024 ). This is ‘dynamical core collapse
nd fragmentation’. 

The resulting stars are usually attended by accretion discs, com- 
rising material that has too much specific angular momentum to 
all directly on to the central star. If such an accretion disc becomes
uf ficiently massi v e, e xtended, and cold, it fragments to produce a
 We note that in the higher-mass cores that form more massive stars a third 
echanism needs to be considered. These higher-mass cores are often fed by 
lamentary accretion streams that are suf ficiently massi ve to form multiple 
ystems by filament fragmentation. These multiples systems then fall into the 
onolithic cluster that is forming in the central hub, where they interact with 

ther stars and systems. This is not the scenario we are considering here. 

i  

i
 

t  

i  

c
f  
econdary star or stars, in orbit around the primary (e.g. Adams,
uden & Shu 1989 ; Chapman et al. 1992 ; Bonnell & Bate 1994 ;
urner et al. 1995 ; Whitworth et al. 1995 ; Bhattal et al. 1998 ;
offin et al. 1998 ; Watkins et al. 1998a , b ; Stamatellos et al. 2007 ;
tamatellos & Whitworth 2008 ; Stamatellos & Whitworth 2009a , 
 ; Walch et al. 2009 , 2010 ; Kratter et al. 2010 ; Thies et al. 2010 ;
tamatellos, Whitworth & Hubber 2011 , 2012 ; Lomax et al. 2015 ;
hitworth & Lomax 2016 ; Di G. Sigalotti et al. 2023 ). This is ‘disc

ragmentation’. 
Together, these mechanisms have been shown to produce young 
ultiple systems of as many as seven stars (Lomax et al. 2016 ). 

.3 Pr evious r elated theor etical studies 

cDonald & Clarke ( 1993 ) have introduced the concept of dynam-
cal biasing, which is the tendency for the more massive stars in a
mall- N subcluster to form a binary, and for the less massive ones to
e ejected, thereby making the binary more tightly bound. In a second
aper, McDonald & Clarke ( 1995 ) show that, if the stars in a small-
 subcluster are attended by discs, the increased dissipation during 

lose encounters reduces the ef fecti veness of dynamical biasing – i.e.
he lower-mass stars have a better chance of ending up in a binary.
t also increases the tendency to produce higher-order multiples. 
uruwita & Haugbølle ( 2023 ) have shown that the drag from the gas
f the natal cloud can drive the inspiral of forming stars, bringing
inaries closer together. This would harden them against dissolution 
nd increase the proportion of higher-order multiples. 

Sterzik & Durisen ( 1998 ) hav e e xplored multiplicity in a cold,
on-rotating, spherical distribution of N = 3, 4, or 5 stars. The stars
ave masses drawn from a Miller–Scalo distribution, and are evolved 
or 1000 crossing times, using an N -body code. At the end, the
ultiplicities are 

S : B : T = 47 : 47 : 6 , for N = 3; 

S : B : T : Q = 63 : 29 : 6 : 1 , for N = 4; 

S : B : T : Q 

+ = 70 : 19 : 9 : 1 , for N = 5 . 

(6) 

hus, increasing N increases the percentage of singles and reduces 
he percentage of binaries. 

Holman et al. ( 2013 ) have shown using purely statistical arguments
hat, if the shape of the stellar initial mass function (IMF) is inherited
rom the shape of the prestellar CMF, then the observed increase in
inary frequency with primary mass (e.g. Offner et al. 2023 ) requires
hat a prestellar core must typically spawn a subcluster of 4–5 stars. 

.4 Ov er view and plan 

n this work, we extend the study of Sterzik & Durisen ( 1998 ) to larger
umbers of stars, and to more general initial conditions. Although 
ircumstellar discs and disc fragmentation are likely to be important, 
articularly for forming lower mass stars and close orbits, we limit
onsideration here to subclusters formed purely by dynamical core 
ollapse and fragmentation, and neglect discs. Consequently, our 
umerical experiments start with single discless stars, and all multiple
ystems are formed subsequently by energy-conserving gravitational 
nteractions between point masses. The role of discs will be explored
n a later paper. 

In Section 2 , we describe our model for a small- N subcluster, and
he procedures used to follow its evolution and to identify the result-
ng multiple systems. In Section 3 , we analyse the results, and by
omparing them with observations derive the best-fitting parameters 
or a subcluster. In Section 4 , we summarize the main conclusions.
MNRAS 535, 3700–3710 (2024) 



3702 H. E. Ambrose and A. P. Whitworth 

M

I  

h  

i  

u

2

2

F  

t  

N  

b  

s  

L  

t  

a
 

t  

s  

o  

f  

i  

s
 

d  

f  

σ  

o  

l
σ  

n  

a  

p  

i
 

o  

[  

i  

s  

d  

b  

H  

μ  

t

 

o  

o  

o  

α  

K  

i  

a  

c
 

m  

I  

m  

2

v

Table 1. Parameters and symbols. 

N and the configuration parameters 
Number of stars in subcluster N 

Standard deviation of log 10 ( M/ M � ) σ� 

Percentage of kinetic energy in ordered rotation αrot 

Rotation law: solid-body = SOL; Keplerian = KEP αlaw 

Mass se gre gation option αseg 

Configuration, [ σ� , αrot , αlaw , αseg ] C 

Scaling parameters 
Mean of log 10 ( m/ M � ) μ� 

Radius of subcluster R 

Numerical parameters 
Adaptiv e inte gration time-step 	t 

Coefficient for integration time-step γ

Analysis parameters 
Percentage of singles ( m = 1) S 
Percentage of binaries ( m = 2) B 

Percentage of triples ( m = 3) T 

Percentage of higher-order systems ( m ≥4) Q 

+ 
Multiplicity of system m 

Maximum multiplicity considered m max 

Semimajor axis of orbit a 

Period of orbit P 

Eccentricity of orbit e 

Inclination of orbit ˆ k 
Time-interval for monitoring multiplicity 	t MMO 

Mean number of systems with multiplicity 
m formed by a single subcluster with 

configuration C that contains N stars S CNm 

Probability that a core spawns N stars P DN 

Parameter for P DN 
(see equation 15 ) N D 

Parameter for P DN 
(see equation 15 ) 	N D 

Normalization coefficient for P DN 
(see equation 16 ) ηD 

Mean of N for P DN 
(see equation 17 ) μD 

Standard deviation of N for P DN 
(see equation 18 ) σD 

N -distribution, [ N D 

, 	N D 

] D 

Total number of systems with multiplicity m 

predicted for configuration C 
and N -distribution D N CD m 

Observed number of systems with multiplicitym O m 

Quality of fit to observations with 
configuration C and N -distribution D Q CD 

Percentage of stars with m ≥ 3 f 
T + 

General variables and functions 
Number of different end states 

for a subcluster of N stars A 

N 

Initial total kinetic energy of subcluster E kin 

Heaviside function H 

Random linear deviates on [0, 1] L 1 , L 2 , L 3 

log 10 ( m/ M � ) (random Gaussian deviate) � 

Mass of star M 

Median mass M med 

Total mass of subcluster M tot 

Dummy ID of star n, n ′ , n ′′ 
Position of star r 

[ r, θ, φ] 
[ x , y , z] 

Velocity of star v 

Scaling parameters 
Factor to scale total mass of subcluster f M 
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n Appendix A , we derive equation ( 1 ), and in Appendix B we show
ow the results can be re-scaled to represent subclusters of different
nitial mass and/or linear extent. In Table 1 , we list the parameters
sed in this paper. 

 M E T H O D  

.1 Initial conditions 

ive physical parameters are required to generate the initial condi-
ions for a subcluster. The first is the number of stars in the subcluster,
. We evolve subclusters with 3 ≤ N ≤ 7. N can also equal 1 or 2,

ut we do not need to evolve these cases because their multiplicity
tatistics cannot be changed by pure internal dynamical evolution.
arger values of N ( >7) are not considered because it is prohibitive

o keep track of all the different possible outcomes; such large N are
lso likely to be rare. 

The remaining four physical parameters, ( σ� , αrot , αlaw , αseg ) are
ermed ‘configuration parameters’, and regulate – in a statistical
ense – the distribution of stellar masses and the initial distribution
f stars in phase space. In the remainder of this section, we define the
our configuration parameters and explain how they are implemented
n setting up the initial conditions. They are also listed in the first
ection of Table 1 , and they are all dimensionless. 

The individual stellar masses, M , are generated from a lognormal
istribution. Specifically, M = M � 10 � , where � is a random deviate
rom a Gaussian distribution with mean μ� and standard deviation
� . Here, σ� is a configuration parameter, since it regulates the width
f the mass distribution, i.e. the mean ratio between the most and
east massive stars. We have explored values in the range 0 . 2 ≤
� ≤ 0 . 4, but focus here on results obtained with σ� =0 . 3. 2 μ� is
ot a configuration parameter, since the results can be re-scaled to
ny median mass, as explained in Appendix B . Ho we ver, for the
urpose of illustration, we set μ� = −0 . 6, so that the median mass
s M med =0 . 25 M � . 

In the first instance, the stars are given random positions in a sphere
f radius R. Specifically, the position of a star in spherical polars is
 r, θ, φ] = [ L 

1 / 3 
1 R, cos −1 (2 L 2 −1) , 2 πL 3 ], where [ L 1 , L 2 , L 3 ] are

ndependent random linear deviates on the interval [0, 1]. The
pherical polar coordinates are then converted to Cartesian coor-
inates. R is not a configuration parameter, since the results can
e re-scaled to any subcluster radius, as explained in Appendix B .
o we ver, for the purpose of illustration, we set R = 10 3 au . With
� = −0 . 6 and R = 10 3 au , the crossing time for the subcluster is

 cross ∼ 0 . 07 Myr N 

−1 / 2 . 
The last three configuration parameters regulate the kinetic energy

f the stars in the subcluster, its shape, and the spatial distribution
f the stars. αrot dictates the percentage of kinetic energy that is in
rdered rotation, as opposed to random isotropic velocity dispersion.
law dictates the rotation law: solid-body (equation 8 , SOL) or
eplerian (equation 9 , KEP). αseg determines whether the subcluster

s mass-se gre gated at the outset. The order in which these parameters
re invoked, when setting up the initial conditions, is dictated by
omputational considerations. 

If αseg = 1, the stars are se gre gated by mass. In other words, the
asses and positions are matched so that, for any pair of stars with

Ds n and n ′ , if M n < M n ′ , then r n > r n ′ . Otherwise αseg = 0 and the
asses and positions are matched randomly. Once the masses and
NRAS 535, 3700–3710 (2024) 

 Lo wer v alues of σ� result in too fe w binaries with lo w mass ratios, q. Higher 
alues result in an IMF that is too much broader than the CMF. 

Factor to scale radius of subcluster f R 
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ositions are matched, the centre of the Cartesian coordinate system 

s shifted to the centre of mass, and the initial self-gravitational 
otential energy, 

= − G 

n = N−1 ∑ 

n = 1 

n ′ = N ∑ 

n ′ = n + 1 

{
M n M n ′ 

| r n − r n ′ | 
}

, (7) 

s computed. 
At this juncture, the stars are given random isotropic velocities, 

 iso , drawn from a Maxwellian distribution with zero mean and 
tandard deviation σiso ={ [1 −αrot ] �/ 6 M tot } 1 / 2 , where M tot is the total
ass of the subcluster. These velocities are then shifted to the centre-

f-mass frame, and renormalized so that the total kinetic energy 
nvested in isotropic velocity dispersion is correct. 

If αrot > 0, the stars are also given ordered rotation velocities, 
 rot . If αlaw = SOL the rotation is solid-body, with moment of inertia 
bout the z-axis, angular speed about the z-axis, and velocity given 
espectively by 

I z = 

n = N ∑ 

n = 1 
{ M n | ̂ e z ∧ r n | 2 } , 

ω = [ αrot �/I z ] 1 / 2 , 

v rot: n = ω ̂

 e z ∧ r n , 

⎫ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎭ 

if αlaw = SOL ; (8) 

ere, ̂  e z is the unit vector parallel to the z-axis and ∧ denotes a vector
roduct. Alternatively, if αlaw = KEP the rotation is Keplerian, with 
ravitational potential relative to the z-axis, Kepler coefficient, and 
 elocity giv en respectiv ely by 

I ′ z = 

n = N ∑ 

n = 1 
{ M n | ̂ e z ∧ r n | −1 } , 

κ = 

[
αrot �/I ′ z 

]1 / 2 
, 

v rot: n = κ| ̂ e z ∧ r n | −3 / 2 ˆ e z ∧ r n , 

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎭ 

if αlaw = KEP . (9) 

he net velocities of the stars, 

 n = v iso: n + v rot: n , (10) 

re then computed and shifted (again) to the centre-of-mass frame. 
Finally, the initial total kinetic energy, 

 kin = 

n = N ∑ 

n = 1 

{
M n | v n | 2 

2 

}
(11) 

s computed, and the velocities are re-scaled to ensure that the 
ubcluster is virialized, 

 n ← − v n [ − �/ 2 E kin ] 
1 / 2 . (12) 

e invoke an initially virialized subcluster for two reasons. First, 
he time-scale on which the subcluster approaches virial equilibrium 

s likely to be short, compared with the time-scale on which the
ultiplicity statistics stabilize. Secondly, this reduces the number of 

ree parameters we need to explore. 
We introduce the shorthand 

 ≡ [ σ� , αrot , αlaw , αseg ] (13) 

o represent a specific set of configuration parameters. Apart from 

 and C, the only other variables that distinguish one experiment 
rom another are the random-number seeds used to generate different 
ealizations of the same N and same set of configuration parameters, 
. 
.2 Evolving subclusters 

ubclusters are evolved using a fourth-order Runge–Kutta integra- 
ion scheme with an adaptive time-step, 

t = γ MIN 

{ | r n − r n ′ | 
| v n − v n ′ | , 

| v n − v n ′ | 
| a n − a n ′ | 

}
n = n ′ 

. (14) 

ere, γ is a user-specified parameter determining the accuracy of 
he integration, a n is the acceleration of star n , and the minimum is
 v er all possible pairs of stars. This formulation ensures that no two
tars change their relative position or relative velocity by more than a
raction ∼γ in one time-step. The numerical experiments presented 
n the sequel have been performed with γ =0 . 1. 

Each initial system is integrated for a maximum of 1000 crossing
imes ( ∼ 70 Myr N 

−1 / 2 ), unless all the existing systems become
nbound from one another, in which case the integration is terminated 
n order to save computer time (see Section 2.4 ). Conservation of
inear momentum, angular momentum, and energy is monitored 
hroughout the evolution. 

.3 Identifying multiple systems 

t regular intervals, 	t MMO , during the cluster evolution, we identify
ultiple systems using a multiplicity monitoring operation, hereafter 
MO. The MMO selects a random pair of stars in the subcluster.

f the stars in this pair [1] are mutual nearest neighbours and [2]
av e ne gativ e energy in their mutual centre of mass frame, they are
dentified as bound. For the purposes of the MMO, the bound pair
s then treated as a single object with the properties (mass, position,
nd velocity) of its centre of mass. This object is added to the pairing
rocedure, and its individual constituent stars are remo v ed from
onsideration for the purpose of this implementation of the MMO. 
onversely, if the pair do not meet both criteria [1] and [2], they

emain as individual stars, and the MMO checks a different possible
airing. This continues recursively until the full inventory of multiple 
ystems in the subcluster has been determined. 

For each identified bound system – including higher-order mul- 
iples – the procedure calculates the orbital parameters: semimajor 
xis ( a), orbital period ( P ), eccentricity ( e), and angular momentum
 ector (which giv es the orbital inclination ˆ k ). The MMO is im-
lemented every 33 crossing times ( ∼ 2 . 3 Myr N 

−1 / 2 , or ∼ 1 Myr
or N = 4 or 5). Note that, after an MMO implementation, the
ntegration procedure continues to follow all stars as individuals. 

.4 Unbound stars and the stopping condition 

uring the evolution, a star or system may become unbound from
he rest of the subcluster. It is then no longer necessary to track its
osition, and it is remo v ed from further evolution of the subcluster
and from subsequent MMO implementations). Ho we ver, during 
eriods of frequent close encounters two stars that are actually bound
o one another may not meet condition [1] (i.e. may briefly not be
utual nearest neighbours). This only occurs occasionally, and only 

ver in the very early lifetime of a subcluster when the dynamics is
ery chaotic. To a v oid inadv ertently remo ving bound stars or systems
rom the evolution, stars and systems are only remo v ed after the first
00 crossing times, and only if those stars or systems have remained
nbound for two consecutive MMOs. 
If the MMO finds that the subcluster consists entirely of singles

nd binaries that are unbound from one another, no further dynamical
hange can take place and the evolution is halted. 
MNRAS 535, 3700–3710 (2024) 
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Table 2. The configurations e v aluated, and the quality and parameters of the best fit. Column 1, configuration ID; columns 2 through 4, the amount of rotation, 
the rotation law, and whether there is mass se gre gation; columns 5 and 6, the N -distribution parameters, ( N D 

, 	N D 

); columns 7 and 8, the mean and standard 
deviation of the N -distribution; column 9, the quality of the best fit (small for a good fit); columns 10 through 13, the percentages of singles, S, binaries, B, 
triples, T, and quadruples plus higher orders, Q 

+ ; column 14, the total number of systems produced; columns 15 through 18, the multiplicity fraction (MF, 
equation 23 ), the triple and higher-order fraction ( f 

T + , equation 5 ), the companion fraction (CF, equation 24 ), and the plurality (PL, equation 25 ). Row 1, the 
parameter symbols; row 2, the observed statistics from the T21 sample (Tokovinin 2021 ); rows 3 through 5, the results from Sterzik & Durisen ( 1998 ) for 
subclusters with a single N = 3, 4, and 5; rows 6 through 10, the results from this work for subclusters with a single N = 3, 4, 5, 6, and 7; row 11, the fiducial 
case (no rotation, no se gre gation); rows 12 through 15, the solid-body rotation cases; rows 16 and 17, the Keplerian rotation cases; rows 18 through 22, the 
mass-se gre gated cases (including the best-fitting case, SEG4). 

C αrot αlaw αseg N D 

	N D 

μ
D 

σ
D 

Q CD 

S B T Q 

+ Sys MF f 
T + CF PL 

T21 0 – – 54 29 12 5 0.46 0.17 0.68 1.13 

SD3 0 – 0 3 0 46.8 46.8 5.5 0 1878 0.53 0.06 0.59 0.82 
SD4 0 – 0 4 0 62.7 29.1 6.0 1.1 2713 0.36 0.07 0.44 0.74 
SD5 0 – 0 5 0 70.1 18.9 9.0 0.9 3475 0.29 0.10 0.40 0.75 

N = 3 0 – 0 3 0 3 0 1.71 47.3 47.3 5.45 0 1614 0.53 0.05 0.58 0.80 
N = 4 0 – 0 4 0 4 0 0.77 60.2 29.3 9.85 0.73 2194 0.40 0.11 0.51 0.84 
N = 5 0 – 0 5 0 5 0 0.65 68.1 19.8 10.5 1.61 2798 0.32 0.12 0.46 0.84 
N = 6 0 – 0 6 0 6 0 0.84 74.8 14.3 8.84 1.96 4377 0.25 0.11 0.38 0.76 
N = 7 0 – 0 7 0 7 0 1.06 78.7 11.7 7.62 2.00 5290 0.21 0.10 0.33 0.70 

FID 0 – 0 4.9 1.0 4.8 0.1 0.64 67.1 21.0 10.4 1.49 16 273 0.33 0.12 0.46 0.84 

SOL1 0.25 SOL 0 5.0 1.0 5.0 0.0 0.57 66.2 21.7 10.4 1.7 17 104 0.34 0.12 0.48 0.86 
SOL2 0.50 SOL 0 4.3 3.3 4.4 2.1 0.41 62.6 24.3 11.1 2.0 16 599 0.37 0.13 0.53 0.91 
SOL3 0.75 SOL 0 4.4 3.4 4.4 2.2 0.49 63.8 23.1 11.3 1.78 16 714 0.36 0.13 0.51 0.90 
SOL4 0.99 SOL 0 4.9 1.0 4.8 0.1 1.26 70.3 23.7 5.65 0.38 17 829 0.30 0.06 0.36 0.63 

KEP1 0.50 KEP 0 4.4 3.4 4.4 2.2 0.42 63.5 23.6 10.8 2.08 16 715 0.36 0.13 0.51 0.90 
KEP2 0.99 KEP 0 5.0 1.0 5.0 0.0 1.22 71.2 21.8 6.57 0.38 17 992 0.29 0.07 0.36 0.64 

SEG1 0 – 1 5.0 1.0 5.0 0.0 0.63 67.1 20.6 10.8 1.53 16 590 0.33 0.12 0.47 0.85 
SEG2 0.50 SOL 1 5.3 1.6 5.2 0.5 0.43 66.1 21.0 10.6 2.29 16 574 0.34 0.13 0.49 0.89 
SEG3 0.99 SOL 1 4.6 1.1 4.6 0.2 1.38 69.5 25.9 4.31 0.33 17 869 0.31 0.05 0.36 0.60 
SEG4 0.50 KEP 1 5.4 4.4 4.8 2.4 0.35 63.2 24.1 10.3 2.41 16 339 0.27 0.13 0.52 0.91 
SEG5 0.99 KEP 1 4.8 1.0 4.7 0.2 1.33 69.9 25.1 4.59 0.41 17 995 0.30 0.05 0.36 0.61 
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.5 Comparison with obser v ations 

or each set of configuration parameters, C, and number of stars, N ,
e evolve 1000 different realizations and compute the mean number
f systems with multiplicity m formed per realization, S CNm 

. We do
his for all N in 3 ≤N ≤7, for each set of configuration parameters,
, as listed in Table 2 , and for all m in 1 ≤m ≤m max = 4 + . Because

he numbers of quintuples, sextuples, and septuples are small (both in
he numerical experiments, and in the observations), they are simply
dded to the quadruples to give S CN4 + . 

To fit the observations, we assume that the probability that a core
pawns a subcluster of N stars is given by the distribution function 

 DN 
= ηD 

MAX 

({ 

	N 

2 
D 

− [
N − N D 

]2 
} 

, 0 
)

, (15) 

D 

= 

/ 

N= 7 ∑ 

N= 1 

MAX 

({ 

	N 

2 
D 

− [
N − N D 

]2 
} 

, 0 
)

, (16) 

here ηD 

is a normalization coefficient. Because N is not a
ontinuous variable, N D 

regulates, but is not exactly, the mean of the
 distrib ution; and 	N D 

regulates, b ut is not exactly, the standard
eviation of the N distribution. The true mean and standard deviation
re given by 

D 

= 

N= 7 ∑ 

N= 1 

{
P DN 

N 

}
, (17) 

2 
D 

+ μ2 
D 

= 

N= 7 ∑ 

N= 1 

{
P DN 

N 

2 
}

. (18) 
NRAS 535, 3700–3710 (2024) 
he subscript D in equations ( 15 ) through ( 18 ) represents the
arameters of the distribution function, i.e. 

 ≡ [
N D 

, 	N D 

]
, (19) 

ereafter the N -distribution. 
The frequency with which a subcluster having configuration

arameters C and N -distribution D spawns a multiple system of
he order of m is 

 CD m 
= 

N= 7 ∑ 

N= 1 

{
P DN 

S CNm 

}
. (20) 

herefore, if the observed number of systems with multiplicity m is
 

m 
, the predicted number is 

 CD m 
= f CD m 

m = 4 + ∑ 

m = 1 

{
O 

m 

} / 

m = 4 + ∑ 

m = 1 

{
f CD m 

}
, (21) 

nd the quality of fit for this combination of configuration parameters,
, and N -distribution, D, is given by 

 CD 

= 

m = 4 + ∑ 

m = 1 

{ 

[ N CD m 
− O 

m 
] 2 

O 

2 
m 

} 

. (22) 

 lower value of Q CD 

represents a better fit. 

 RESULTS  A N D  DI SCUSSI ON  

ur numerical experiments suggest that most cores spawn four
r five stars. There are cores that spawn three stars, but if they
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Figure 1. Multiplicity distributions for subclusters with N =3, 4, 5, 6, and 7. For each N -value, we have evolved 1000 different realizations with the fiducial 
configuration parameters ( αrot = 0, αseg = 0). The dashed line represents the T21 sample. Error bars represent the 3 σ statistical variance. 
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ere the norm they would produce too many binaries and too few
ingles, while contributing no quadruples or higher-order systems. 
onversely, there are cores that spawn more than five stars, but if

hey were the norm they would produce too many singles and too
ew binaries. Although such high- N cores are essential to produce 
he high-order systems, our pure N -body model does not produce 
s many high-order systems as are observed; we find that increasing 
 is more ef fecti ve at overproducing singles than it is at producing

table higher-order multiples. In Section 4 , we suggest that forming 
he observed number of high-order systems probably requires the 
nclusion of additional physics such as disc drag and disc fragmenta- 
ion, since this will deliver compact, tightly bound companions that 
an survive all but the closest interactions with other stars. 

.1 A uni v ersal N v alue 

t is informative to consider the possibility that all cores spawn the
ame number of stars, i.e. a uni versal N v alue, although a universal
 is extremely unlikely. For these experiments, we use the fiducial 
arameters, i.e. no rotation and no mass-se gre gation. 
An initially bound subcluster with N =3 stars has A 3 = 2 

ossible end states: (i) a triple system, or (ii) a binary and a single star.
ecause the dissolution of a three-star subcluster into a binary and a

ingle is the only way for a binary or a single star to form from such
 subcluster, the percentages of single and binary systems must be 
qual in this case. For the fiducial case, in which the initial subcluster
as no ordered rotation or mass se gre gation, ∼ 90 per cent of three-
tar subclusters decay into a binary and a single, giving percentages 
f S:B:T:Q 

+ = 47:47:6:0, exactly as obtained by Sterzik & Durisen 
 1998 ). 

An initially bound subcluster with N =4 stars has A 4 = 4 
ossible end states: (i) a quadruple; (ii) a triple and a single star;
iii) two separate binaries; or (iv) a binary and two single stars. For
he fiducial case, N =4 gives S : B : T : Q 

+ = 60:29:10:7. We note that
igher-order multiples may come in dif ferent v ariants. F or e xample,
here are ‘2 + 2’ quadruples and planetary quadruples. 

Of the quadruple systems produced in the N =4 fiductial, 
5( ±14) per cent are ‘2 + 2’ systems and the remainder are planetary.
n contrast, in the Tokovinin 2014 sample ∼ 75 per cent of quadru- 
les are ‘2 + 2’ systems. There are two possible explanations for this
iscrepancy. First, it is probably easier to detect ‘2 + 2’ quadruples
pectroscopically, in which case they are overrepresented in the 
bservational sample. Secondly, it may be that additional physics 
hat is missing from our numerical experiments – for example, 
ircumstellar accretion discs and disc fragmentation – increases the 
ercentage of ‘2 + 2’ quadruples. 
The number of distinguishable end states increases monotonically 

ith N. Five-star subclusters have A 5 = 6 possible end states, and
ix-star subclusters have A 6 = 10 possible end states. For the fidu-
ial case, N =5 gives S : B : T : Q 

+ = 68:20:10:2, with 24( ±8) per cent
f Q 

+ systems composed wholly, or in part, of ‘2 + 2’ configurations;
nd N =6 gives S : B : T : Q 

+ = 75:14:9:2, with 24( ±6) per cent of Q 

+ 

ystems containing ‘2 + 2’ configurations. 
An initially bound subcluster with N =7 stars has A 7 = 14 

ossible end states: (i) a septuple; (ii) a sextuple and a single star,
iii) a quintuple and a binary, (iv) a quintuple and two singles, (v) a
uadruple and a triple, (vi) a quadruple, a binary, and a single, (vii) a
uadruple and three singles, (viii) two triples and a single, (ix) a triple
nd two binaries, (x) a triple, a binary, and two singles, (xi) a triple
nd four singles, (xii) three binaries and a single, (xiii) two binaries
nd three singles, and (xiv) a binary and five singles. Given the rapid
ncrease in the number of end states with increasing N (see equation
 and Appendix A ), we limit consideration to N ≤7 . For the fiducial
ase, N =7 gives S : B : T : Q 

+ = 79:12:8:2, with 19( ±5) per cent of
 

+ systems containing ‘2 + 2’ configurations. 
Fig. 1 displays the multiplicity distributions for the fiducial case 

ith dif ferent v alues of N. The results for N =4 most accurately
atch the T21 sample, but no value reproduces exactly the observed
ultiplicities. Increasing N does increase the probability of forming 

igher-order multiples. Indeed, a system with multiplicity m ≥3 can 
nly form if N ≥m . Ho we ver, this ef fect is small, and the main effect
f increasing N is to increase the percentage of singles at the expense
f binaries. These singles are mainly lower-mass stars that have been
jected by the sling-shot mechanism. 

For subclusters with a universal N value, the multiplicity statistics 
an be changed quite significantly by introducing rotation. Fig. 2 
hows the effect of different amounts of rotation for subclusters with
MNRAS 535, 3700–3710 (2024) 
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Figure 2. Multiplicity distributions for subclusters with N =4, αseg = 1, and different values of αrot = 0, 0.25, 0.5, 0.75, and 0.99. For each αrot value, we 
ha ve ev olved 1000 different realizations. Error bars represent the 3 σ statistical variance. 
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.2 A distribution of N values 

t is unlikely that every prestellar core produces the same number
f stars. Therefore, we now consider N -distributions, and identify
he combinations of configuration parameters, C, and N -distribution,

, that best fit the observations. The N -distributions are given by
quation ( 15 ), and we test all combinations of N D 

= 1.0, 1.1, 1.2,
.3, ... 6.8, 6.9, 7.0, and 	N D 

= 1.0, 1.1, 1.2, 1.3, ... 6.8, 6.9, 7.0. 
Table 2 lists all the tested configurations C; for each configuration,

he parameters of the N -distribution giving the best fit to the T21
ample; and – where the y e xist – the corresponding parameters from
terzik & Durisen ( 1998 ). 

.2.1 The notional absolute-best fit 

he notional absolute-best fit is obtained with configuration C =
EG4 ( αrot = 0 . 5, αlaw = KEP , αseg = 1) and an N -distribution
ith ( N D 

, 	N D 

) � (5 . 4 , 4 . 4) (corresponding to mean μD 

� 4 . 8,
nd standard deviation σD 

� 2 . 4). This delivers percentages
 : B : T : Q 

+ = 63 : 24 : 10 : 2 . 4, with quality factor Q CD 

= 0 . 35 and
1( ±5) per cent of Q 

+ systems containing ‘2 + 2’ orbits. 

.2.2 How critical is the N -distribution? 

ig. 3 is a map of the quality factor, Q CD 

, for configuration C =
EG4 o v er the full range of N -distribution parameters, ( N D 

, 	N D 

).
here are two regions of low Q CD 

(i.e. good fits, represented by white
n Fig. 3 ). One is centred on the best fit ( N D 

, 	N D 

) � (5 . 4 , 4 . 4) with
n extension to higher and lower values of N D 

and 	N D 

. The other,
lightly less-fa v oured region, is centred on ( N D 

, 	N D 

) � (5 . 5 , 1). 
Fig. 4 compares the multiplicities corresponding to the absolute-

est fit (black line) and the 50 next-best fits (i.e. SEG4 with slightly
ifferent N -distributions; cyan shading). These fits correspond to the
hitest region on Fig. 3 (specifically, an area that is ∼1 . 4 per cent of

he total area of Fig. 3 ). They all fall within one standard deviation of
he absolute-best fit, so the parameters of the N -distribution giving
he absolute-best fit are not highly critical. 

Notably , but unsurprisingly , a prestellar core producing exactly
wo stars results in the worst fit, since it only produces binary systems.
NRAS 535, 3700–3710 (2024) 
he corresponding black point in Fig. 3 is only just visible next to
he abscissa. 

.2.3 Which are the critical configuration parameters? 

able 3 lists the five configurations that produce fits with, Q CD 

< 0 . 5.
Fig. 5 shows the quality factor, Q CD 

, for the four additional
onfigurations and the full range of N -distribution parameters,
 N D 

, 	N D 

). Panels (a) SOL2, (b) SOL3, and (c) KEP1 in Fig. 5
re very similar to one another, with a single region of high quality,
entred on ( N D 

, 	N D 

) � (4 . 4 , 3 . 4). Panel (d) SEG2 is more like
EG4 (Fig. 3 ), with two regions, but the preferred region is now the

ower one centred on ( N D 

, 	N D 

) = (5 . 3 , 1 . 6). 
All five configurations involve rotation, four with 50 per cent of

he kinetic energy invested in rotation, and one with 75 per cent. We
onclude that having comparable amounts of energy in rotation and
n random isotropic motions is a critical requirement for producing
 good fit. 

In contrast, three of the top-five configurations have solid-body
otation, while two have Keplerian rotation. We conclude that the
etails of the rotation (the rotation law) are not critical. Similarly,
hree of the top-five configurations have no mass se gre gation, and
wo of them do. Therefore, it appears that mass se gre gation is also
ot a critical requirement for a good fit. 
The mass se gre gation does appear to have an affect upon the

ormation of ‘2 + 2’ systems. While the percentage of ‘2 + 2’s is
imilar for the best-fitting cases with no se gre gation ( αseg = 0), those
hat begin with segregated masses ( αseg = 1) have a much higher
ercentage of ‘2 + 2’s (Table 3 ). 

.3 Metrics of o v erall multiplicity 

arious metrics of o v erall multiplicity have been proposed, in
articular the multiplicity fraction (i.e. the fraction of systems that
re not single), 

F = 

B + T + Q + ... 

S + B + T + Q + ... 
; (23) 



The formation of multiples in small- N subclusters 3707 

Figure 3. Map of the quality factor, Q CD 

, for the best-fitting configuration parameters ( αrot = 0 . 50, αlaw = KEP, αseg = 1) and the full range of N -distribution 
parameters (1 . 0 ≤ N D 

≤ 7 . 0 and 1 . 0 ≤ 	N D 

≤ 7 . 0). The map encodes log 
10 

( Q CD 

), with the best fit lightest and the worst fit ( N D 

= 2 and 	N D 

= 1) darkest. 

Figure 4. Multiplicity distributions. The blue dashed curve represents the T21 sample. The black full line represents the absolute-best-fitting combination of 
configuration parameters and N -distribution parameters (i.e. SEG4, one from bottom row in Table 2 ). The surrounding shaded region represents fits for the same 
configuration parameters and the 50 next-best-fits with different N -distribution parameters (corresponding to the lightest region in Fig. 3 ). 

Table 3. The parameters of the five best fits, i.e. those with quality factor, 
Q CD 

< 0 . 5. Reading left to right, the columns give the configuration name, 
the parameters of the configuration ( αrot , αlaw , αseg ), the mean and standard 
deviation of the distribution of N values ( μD 

, σD 

), the quality factor ( Q CD 

), 
and the percentage of Q 

+ systems that contain ‘2 + 2’ orbits. 

C αrot αlaw αseg μD 

σD 

Q CD 

‘2 + 2’ 

SOL2 0.50 SOL 0 4.4 2.1 0.41 25( ±06) 
SOL3 0.75 SOL 0 4.4 2.2 0.49 26( ±06) 
KEP1 0.50 KEP 0 4.4 2.2 0.42 28( ±05) 
SEG2 0.50 SOL 1 5.2 0.5 0.43 44( ±07) 
SEG4 0.50 KEP 1 4.8 2.4 0.35 41( ±05) 
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he triple/higher-order fraction (i.e. the fraction of systems that are 
riple or higher-order, see equation 5 ); the companion fraction (i.e.
he mean number of companions per primary), 

F = 

B + 2 T + 3 Q + ... 

S + B + T + Q + ... 
; (24) 

nd the plurality (i.e. the mean number of companions per star,
rrespective of whether it is a primary star), 

L = 

2 B + 6 T + 12 Q + ... 

S + 2 B + 3 T + 4 Q + ... 
. (25) 

hese metrics are given in the last four columns of Table 2 . The
ast one, PL, has the merit that it has a clear physical meaning and
MNRAS 535, 3700–3710 (2024) 
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Figure 5. As Fig. 3 , but for the configuration parameters giving the second through fifth best fits (i.e. the other fits with Q CD 

<0 . 50): (a) SOL2 with Q CD 

=0 . 41; 
(b) SOL3 with Q CD 

=0 . 49; (c) KEP1 with Q CD 

=0 . 42; and (d) SEG2 with Q CD 

=0 . 43. 
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eflects, more strongly than the others, the percentage of higher-order
ultiples. CF and PL can both be greater than one. Indeed, for the
21 sample, PL = 1 . 13. 

.4 Caveats 

.4.1 Pure N -body dynamics 

he numerical experiments reported here involve pure N -body
ynamics. Consequently – modullo numerical errors – the resulting
ultiplicities are determined solely by the initial conditions and

ravitational interactions between point masses. Phenomena such
s dissipation from the cloud or disc, which harden systems against
issolution and act to increase stellar multiplicity, are not considered.
e expect the pure N -body results of this work to represent a

onserv ati ve (i.e. lo w) estimate of the multiplicity which can be
chieved from a subcluster of N stars. 

.4.2 Isolated subclusters 

ach subcluster is evolved in isolation. The subcluster cannot capture
utside stars, nor can it be perturbed by stellar flybys. For low- N 

ubclusters, capture might increase the multiplicity metrics (e.g. MF,
F, and PL), but for high- N subclusters it would probably reduce

he multiplicity metrics. Perturbations by stellar flybys would be
NRAS 535, 3700–3710 (2024) 
ikely to reduce the multiplicity metrics, for example by disrupting
ierarchical triples. 

.4.3 Duration of integration 

ubclusters are evolved for a maximum of 1000 crossing times. In
ractice, most of the final multiple systems are established early in
he evolution, within the first 200 crossing times. For the N = 7
ase, whose systems take the longest to settle into their end states,
ore than 80 per cent of instantiations achieve their final 1000 t cross 

ultiplicities by 200 t cross , and more than 95 per cent by 600 t cross . 

.4.4 Limited number of stars in subcluster 

e do not consider subclusters with N > 7. As we increase N ,
he multiplicity distribution changes at a decreasing rate (see Fig.
 ): the percentages of binaries and triples decrease slightly, the
ercentage of singles increases, and the percentages of higher-
rder multiples ( m ≥4) increase imperceptibly. For example, in
he fiducial case, the multiplicity distributions for N = 6 and 7
gree within their 3 σ uncertainties (Fig. 1 ). This is true for all
onfigurations tested. We expect multiplicities for values of N > 7
o follow this trend, remaining very similar to the multiplicity values
or N = 7. 
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In addition, the complexity of possible end states increases 
ramatically with N (see Appendix A ), making higher- N numerical 
 xperiments prohibitiv e from a book-keeping standpoint. 

.4.5 Observational statistics 

he T21 observational statistics are probably influenced by selection 
ffects. The likelihood is that, as new and impro v ed techniques and
trategies are developed, the multiplicities of the systems in the 
21 sample will change, and there will probably be an increase 

n the proportion of higher-order systems. As the completeness of 
ultiplicity surv e ys impro v es, the analysis presented in this work can

asily be reapplied to updated observational statistics. However, the 
nability of our pure N -body model to produce enough higher-order 
ystems is likely to remain a limitation. 

 C O N C L U S I O N  

e have used N -body numerical experiments to determine the 
ultiplicity statistics that result from small- N subclusters of stars that

nteract only through their mutual gravity. These statistics have then 
een compared with the T21 sample of nearby systems with solar-
ass primaries (Tokovinin 2021 ). The subclusters are presumed to 

e the product of collapse and fragmentation in a single isolated 
restellar core. 
To produce an acceptable fit to the observed statistics, prestellar 

ores must – on average – spawn between 4.3 and 5.2 stars. This
eems to be a rather compelling conclusion, in the sense that first
t produces by far the best fit to the observations, and secondly a
ery similar conclusion has been drawn by two other, completely 
ndependent studies, viz . [1] Holman et al. ( 2013 ) using statistical
rguments, and [2] Lomax, Whitworth & Hubber ( 2015 ) using
moothed particle hydrodynamic simulations. We stress that neither 
1] nor [2] involves N -body numerical e xperiments, and the y are
herefore totally independent of the results reported here. 

In the numerical experiments reported in this work, subclusters 
hich begin with roughly half their kinetic energy invested in rotation 
roduce the best fits to the T21 sample. Furthermore, there is a
road range of set-ups that produce very similar fits, but they all
ave roughly half their kinetic energy invested in rotation. These 
et-ups do occasionally spawn fewer than four stars, or more than 
ve, but this is relatively rare. The multiplicity statistics appear to 
e independent of whether the subcluster starts with a solid-body 
r Keplerian rotation law, and of whether the masses are initially 
e gre gated. The orbital statistics of the systems formed in this paper
ill be presented in a companion paper. 
Although the o v erall fits obtained here are quite good, there are

l w ays too few systems with multiplicity m ≥4. We believe that this
s because our stars do not have circumstellar discs. Such discs will
ake close encounters between stars dissipative, thereby increasing 

he formation of tight orbits and higher-order multiples. Such discs 
ay also fragment to form close companions, some of which will 

urvive interactions with other stars in the subcluster, and again this
ill promote the formation of higher-order multiples. This refinement 
ill be explored in a future paper. 
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PPENDIX  A :  ENUMERATING  E N D  STATES  

n initially virialized subcluster of N ≥ 2 stars must produce at least
ne bound multiple system. This component contains n stars, where
 < n ≤N , and we can assume without loss of generality that n is
he largest or equal-largest multiplicity of the end state. In the case
here this component is the only multiple, all remaining N −n stars

re single. 
The remaining N −n stars may also form bound systems. These

ystems may have any multiplicity n ′ , where 2 < n ′ ≤n . The number
f additional component systems of multiplicity n ′ for an existing
omponent of multiplicity n is given by the number of times n ′ may
e divided wholly into the number of remaining stars. So, end states
ontaining a component system of multiplicity n and a component
ystem (or systems) of multiplicity n ′ are counted with the following
quation: 

 

N≤7 = 

N ∑ 

n = 2 

{ 

1 + 

n ∑ 

n ′ = 2 

⌊
N − n 

n ′ 

⌋} 

. (A1) 

his equation will count all possible end states for initially virialized
ubclusters with 2 < N ≤ 7. 

For 7 < N ≤ 10, it is possible to achieve end states with compo-
ent systems of multiplicity n, n ′ , and n ′′ , where n ′′ < n ′ , i.e. N = 8
ay end in two separate triples and a binary, N = 10 may result in
 quadruple, a triple, and a binary. To count these states, we must
dd an additional level of recursion. For each set of n, n ′ , there are
 − ( n + n ′ ) remaining stars. If N − ( n + n ′ ) > 2, the stars may
NRAS 535, 3700–3710 (2024) 

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an 
( https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reus
orm a multiple of the order of 2 ≤ n ′′ < n ′ . n ′′ = n ′ systems are
ounted in the previous sum. The number of components of order n ′′ 

s then given by 

 n ′′ = 

⌊
N − ( n + n ′ ) 

n ′′ 

⌋
(A2) 

nd the full sum becomes equation ( 1 ), 

 

N 
= 

N ∑ 

n = 2 

{ 

1 + 

n ∑ 

n ′ = 2 

{ ⌊
N − n 

n ′ 

⌋
+ H ( N − ( n + n ′ + 2)) 

×
n ′ −1 ∑ 

n ′′ = 2 

⌊
N − ( n + n ′ ) 

n ′′ 

⌋} } 

. 

where H represents the Heaviside function, i.e. 

 ( h ) = 

{ 

1 , if h ≥ 0 ; 

0 , if h < 0 . 
(A3) 

he sum gives the multiplicity of each end component, and differen-
iates components only on multiplicity, not on the type of system (e.g.
here is no discrimination between a quadruple which is planetary
ersus one which is a 2 + 2) or on which specific stars occupy which
emnant system. Further terms may be added to count end states of
 ≤ 10. 

PPENDI X  B:  SCALI NG  R E L AT I O N S  

he numerical experiments described in the paper are strictly
peaking dimensionless, and have only been scaled to M med =
 . 25 M � ( μ

� 
=−0 . 6) and R = 10 3 au for the purpose of illustration.

o scale a given experiment to a subcluster with a different total
ass, M 

′ 
tot 

, and/or a different radius, R 

′ , we must multiply all
tellar and system masses by f 

M 
=M 

′ 
tot 

/M TOT ; all position vectors
nd orbital axes by f 

R 
=R 

′ /R; the time and all orbital periods by
 f 3 

R 
/f 

M 
] 1 / 2 ; and all velocities by [ f 

M 
/f 

R 
] 1 / 2 . Orbital eccentricities

nd inclinations are unchanged. 
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