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The fixed-point iteration method is widely used in electromagnetic field analysis involving hysteresis property due to its strong ro-
bustness, but it has the problem of low computational efficiency. In this paper, a modified fixed-point iteration algorithm is proposed 
where the convergence factor is adaptively adjusted for different time steps according to the variation of residuals, instead of being 
globally static in traditional ways. Numerical analysis for a C-shaped iron core characterized by inverse vector Preisach model is per-
formed using the traditional method and the proposed method respectively. The efficiency, stability and applicability of both methods 
are assessed in which the proposed approach shows superior performance.  

Index Terms—Fixed-point iteration, nonlinear hysteresis, Preisach model, finite element analysis (FEA). 
 

I. INTRODUCTION 

istory-dependent hysteresis nonlinearity is an intrinsic 
magnetic property of magnetic materials, which is closely 

related to some important magnetic parameters such as 
remanence and coercivity. In electromagnetic field analysis, 
accounting for hysteresis property is essential to enhance the 
accuracy of predicting magnetic flux and core loss [1-2]. 

However, when dealing with multi-valued hysteresis problem, 
the existence of local extrema in the solution space can cause 
instability in calculating the Jacobian matrix when the Newton-
Raphson iteration method is employed, leading to divergence [3]. 
In such cases, the fixed-point iteration method is commonly 
utilized due to its robustness [4]. The nonlinear magnetic field 
problem with fixed-point iteration is then formulated as: 

FP( ) ( )H B B M B                             (1) 

where H(B) represents the hysteretic nonlinear relationship 
between magnetic field intensity H and magnetic flux density B. 
M(B) is a magnetization-like residual term. vFP is the so called 
fixed-point coefficient.  

The classical fixed-point iteration method can always ensure 
convergence when the vFP is set as half the reluctivity of the 
vacuum for the entire ferromagnetic region and all time steps. 
This approach, known as global method, nevertheless exhibits 
poor convergence rate, particularly at low inductions. To address 
this issue, Dlala and Arkkio introduced local fixed-point 
iteration method (LFPM), where the vFP for each finite element 
is updated once at each time step and then held constant during 
the following iterations [5-6]. For 2D models, the vFP at the 
current time step k is usually computed from the converged 
results of last time step as follows: 
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where vxx and vyy are the differential reluctivity determined by 
material models and the converged solution provided by the 
previous time step. C is convergence factor whose value must be 
greater than 1. This approach has shown dramatic improvement 
in reducing iteration number and improving the convergence 
rate. However, convergence is no longer guaranteed if C is not 
appropriately chosen. 

Several variants of the local fixed-point method have been 
proposed to enhance its stability. For instance, Mathekga 
introduced a smoothing strategy for the local fixed-point 
coefficient to effectively mitigate numerical instability arising 
from perturbations like "peaks" or "troughs" in differential 
reluctance calculation [7]. A diagonal tensor-form local fixed-
point coefficient is proposed by Li to better  accommodate to the 
anisotropic materials models [8]. In addition, Zhou suggested an 
adaptive strategy alternating between two correction strategies 
based on B or H to accelerate the convergence of global method 
[9]. Other researchers proposed hybrid methods combining the 
fixed-point method and Newton-Raphson method to address 
hysteresis problems. These approaches leverages the strengths 
of both methods through modifying the formula of constitutive 
law, combining their solution correction method or alternating 
them in different convergence stages [10-12]. Hybrid algorithms 
share the superiority of strong adaptability, while their 
convergence rate proves to be a compromise. 

The work presented in this paper concerns the application of 
fixed-point iteration method in time-stepping finite element 
analysis involving hysteresis nonlinearity. The constant 
convergence factor C in LFPM is adaptively adjusted according 
to the residual variations during iterations. Thus vFP for each time 
step is more accurately estimated since it is no longer 
excessively amplified by globally chosen C according to (2). 
Based on this acceleration algorithm and an in-house developed 
finite element package, the numerical analysis for a C-shaped 
iron core is carried out where the iron core material is 
characterized by inverse vector Preisach model. The results 
show that the proposed method can effectively improve 
computational efficiency and stability. 

H



II.  MODIFIED FIXED-POINT ITERATION ALGORITHM  

Current studies indicate that the key of local fixed-point 
method is the choice of C (i.e., vFP). Employing a large C can 
enhance convergence for all time steps at the cost of increasing 
iteration number and computation time. Conversely, a small 
coefficient may cause difficulty in the convergence of certain 
time steps, especially at around the magnetization reversal points. 
For now, the value of C is usually determined by trial and error 
method based on empirical judgment. 

To address this issue, the authors propose an adaptive 
algorithm for the LFPM by dynamically adjusting C and vFP in 
response to convergence difficulties encountered during specific 
time steps. The formula is expressed as: 
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Fig. 1  Procedure of electromagnetic FEA using the modified fixed-point 
iteration algorithm. 

In the proposed method, a small coefficient Cinit (2 in this pa-
per) is employed in the initial iterations of each time step so as 
to achieve fastest convergence. If the solution is not converged 
after several iterations and the cumulative count of residual fail-
ure reaches the preset updating threshold (Nthr), then it can be 
inferred that the current fixed-point coefficient is insufficient for 
the convergence of this time step. In such case, C is increased 
accordingly and this time step is resolved until convergence is 
achieved. With the adaptive refinement of C, the need for search 
optimal convergence factor as in traditional LFPM is eliminated, 
thus the flexibility and applicability of this method is improved. 
The computational procedure of the proposed algorithm is de-
picted in Fig. 1. Note that n represents iteration number while k 
represents time step number. The residual failure is indicated by 
res_fail and its cumulative count is recorded by KC. 

III. VALIDATION 

The performance of the proposed algorithm is evaluated by 
simulating a C-shaped iron core model, based on an in-house 
electromagnetic analysis package developed by the authors’ 
team. A mesh of the problem is shown in Fig. 2 (a). The 
magnetic properties of the iron core is characterized by inverse 
vector Preisach model. The relative permeability for coil and air 
region is set to 1. The corresponding mesh and material data are 
listed in Table I. 

The analysis is performed using the magnetic vector potential 
formulation. The coil region is fed by sinusoidal current source. 
As a boundary condition, zero vector potential is applied to the 
top, left and right boundaries. Simulation is run with 125 time 
steps for 1.25 electrical period and a cap of 500 iterations for 
each step is preset. Both traditional LFPM with different 
convergence factors and proposed algorithm with different 
updating thresholds are implemented and examined. 

TABLE I 
MAIN PARAMETERS OF THE IRON CORE MODEL 

Material Elements number Material model 

Iron core 490 inverse vector Preisach 

Coil 96 μr=1 

Air 417 μr=1 

Fig. 2 (b) shows the distribution of B in the core region at time 
step k = 60. It can be seen that magnetic flux is concentrated at 
the inner corner, and runs through core limbs mainly along the 
y-axis direction with a relatively uniform amplitude. Fig. 3 
depicts the hysteresis loops and magnetic flux density at point P 
in the y-axis direction at two different excitation levels 
respectively. As illustrated in the figure, the magnetization starts 
from the demagnetization state and the hysteresis phenomena is 
well characterized by the inverse vector Preisach model. The B 
waveform remains sinusoidal at low induction (0.65T) and 
shows distortion at high magnetic flux density level (1.40T) due 
to nonlinearity as the material gradually approaching saturation. 
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Fig. 2  The analyzed FEM model. (a) Mesh of the C-shaped iron core model (b) 
flux density vector plot at time step 60 

  

Fig. 3 Numerical solution at point P (a) Hysteresis loops in the y direction (b) B 
component along y axis 

Fig. 4 (a) shows the number of iterations of all time steps by 
the LFPM with different convergence factor values and the 
proposed algorithm (with Nthr = 5, abbreviated as Adapt C) under 
low induction. It can be seen that for the LFPM, when C takes a 
value of 2 or 5, the number of iterations of some time steps reach 
the preset maximum which implies non-convergence, especially 
for those instants around the reversals of magnetization history 
such as k = 25 and 75. When C takes 10, the convergence of all 
time steps is guaranteed, but the iterations numbers required for 
most time steps are significantly increased. The above analysis 
reveals the contradiction between convergence and 
computational costs of traditional LFPM since the adoption of 
constant C fails to accommodate every time step optimally while 
considering global stability. 

In contrast, the proposed algorithm can guarantee the 
convergence for all time steps while maintaining as few 
iterations as possible. This is due to the fact that when 
convergence difficulty is detected in some time steps, the 
convergence factor and the fixed-point coefficient is 
automatically adjusted, and this time step is resolved. Through 

this method, the number of iterations and computational time is 
significantly reduced. Fig. 4 (b) illustrates the fixed-point 
coefficients at point P calculated by the two methods, and the 
notable difference near the magnetization reversals indicates the 
effectiveness of the modified method. 

Similarly, Fig. 4 (c-d) shows the number of iterations of all 
time steps and the calculated vFP respectively at point P by the 
LFPM with different convergence factor values and the 
proposed algorithm (with Nthr = 5) under high induction. It can 
be seen that the typical convergence behavior is similar to that 
of low induction. In general, the proposed method can 
effectively reduce the number of iterations at both high and low 
magnetic flux densities. 

 

 (a) Number of iteration at 0.65T  

 
(b) vFP of point P at 0.65T 

 
(c) Number of iteration at 1.40T 
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(d) vFP of point P at 1.40T 

Fig. 4  Comparison of convergence behavior of two methods.  
 

Table II shows the non-convergent time steps and total 
computational time using the proposed method compared with 
those using the LFPM under different excitation levels. It can be 
seen that the improper value of C is closely related to the 
convergence failure behaviors, consequently deteriorating the 
computational efficiency. When C is set to 2, the numbers of 
non-converged time step at 0.65T, 1.4T and 1.7T reach 11, 10  
and 6 respectively. The number of iterations of these time steps 
reaches the preset 500 times, far exceeding the numbers of other 
normal converged time steps (with iteration numbers less than 
100), and therefore the total computational time is increased. 
Similar results are observed when C takes 5. When C is 10, 
global convergence is reached with relatively small calculation 
effort. For the proposed method, possible non-convergence in 
LFPM is eliminated for all time steps and different induction 
levels regardless of the value of Nthr, and the overall 
computational time is significantly reduced compared with the 
LFPM. In other words, the proposed method circumvents the 
extra parameter optimization process required by the traditional 
method, thus reducing the complexity of application and 
enhancing the suitability of this method. 

TABLE II 
COMPARISON OF THE CONVERGENCE BEHAVIOR 

 

IV.  CONCLUSIONS 

This paper proposes a modified fixed-point iteration 
algorithm for FEA with hysteretic media featured by adaptively 
correcting the convergence factor for different time steps 
according to the residual variations. The performance of this 

algorithm is evaluated by a numerical example of a C-shaped 
iron core model. It is shown that the algorithm can effectively 
reduce the number of iterations required near reversals in the 
magnetization history, and thus improve computational 
efficiency. Moreover, the empirically determined C in 
traditional methods is instead directly controlled by the residual 
evolution, thereby the adaptability and applicability are 
enhanced simultaneously. 
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LFPM 

C=2 11 1742.2 10 1522.0 6 1132.1 

C=5 6 1520.8 6 1259.2 3 852.3 

C=10 0 1421.5 0 1253.3 0 728.5 
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Nthr=5 0 437.9 0 427.9 0 388.6 

Nthr=10 0 790.4 0 737.1 0 417.5 


