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eLife Assessment
The authors proposed an important novel deep-learning framework to estimate posterior distribu-
tions of tissue microstructure parameters. The method shows superior performance to conventional 
Bayesian approaches and there is convincing evidence for generalizing the method to use data from 
different protocol acquisitions and work with models of varying complexity.

Abstract This work proposes µGUIDE: a general Bayesian framework to estimate posterior distri-
butions of tissue microstructure parameters from any given biophysical model or signal representa-
tion, with exemplar demonstration in diffusion-weighted magnetic resonance imaging. Harnessing 
a new deep learning architecture for automatic signal feature selection combined with simulation-
based inference and efficient sampling of the posterior distributions, µGUIDE bypasses the high 
computational and time cost of conventional Bayesian approaches and does not rely on acquisition 
constraints to define model-specific summary statistics. The obtained posterior distributions allow to 
highlight degeneracies present in the model definition and quantify the uncertainty and ambiguity 
of the estimated parameters.

Introduction
Diffusion-weighted magnetic resonance imaging (dMRI) is a promising technique for characterizing 
brain microstructure in vivo using a paradigm called microstructure imaging (Novikov et al., 2019; 
Alexander et al., 2019; Jelescu et al., 2020). Traditionally, microstructure imaging quantifies histo-
logically meaningful features of brain microstructure by fitting a forward (biophysical) model voxel-
wise to the set of signals obtained from images acquired with different sensitivities, yielding model 
parameter maps (Alexander et al., 2019).

Most commonly used techniques rely on a non-linear curve fitting of the signal and return the 
optimal solution, that is the best parameters guess of the fitting procedure. However, this may hide 
model degeneracy, that is all the other possible estimates that could explain the observed signal 
equally well (Jelescu et al., 2016). Another crucial consideration in model fitting is accounting for 
the uncertainty in parameter estimates. This uncertainty serves various purposes, including assessing 
result confidence (Jones, 2003), quantifying noise effects (Behrens et al., 2003), or assisting in exper-
imental design (Alexander, 2008).

Instead of attempting to remove the degeneracies, which has been the focus of a large number of 
studies (Palombo et al., 2023; de Almeida Martins et al., 2021; Slator et al., 2021; Jelescu et al., 
2022; Warner et al., 2023; Uhl et al., 2024; Mougel et al., 2024; Olesen et al., 2022; Palombo 
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et al., 2020; Howard et al., 2022; Jones et al., 2018; Vincent et al., 2020; Henriques et al., 2021; 
Afzali et al., 2021; Lampinen et al., 2023; Zhang et al., 2012; Guerreri et al., 2023; Gyori et al., 
2022; Novikov et al., 2018), we propose to highlight them and present all the possible parameter 
values that could explain an observed signal, providing users with more information to make more 
confident and explainable use of the inference results.

Posterior distributions are powerful tools to characterize all the possible parameter estimations 
that could explain an observed measurement, their uncertainty, and existing model degeneracy (Box 
and Tiao, 2011). Bayesian inference allows for the estimation of these posterior distributions, tradi-
tionally approximating them using numerical methods, such as Markov-Chain-Monte-Carlo (MCMC) 
(Metropolis et al., 1953). In quantitative MRI, these methods have been used for example to estimate 
brain connectivity (Behrens et  al., 2003), optimize imaging protocols (Alexander, 2008), or infer 
crossing fibres by combining multiple spatial resolutions (Sotiropoulos et al., 2013). However, these 
classical Bayesian inference methods are computationally expensive and time consuming. They also 
often require adjustments and tuning specific to each biophysical model (Harms and Roebroeck, 
2018).

Harnessing a new deep learning architecture for automatic signal feature selection and efficient 
sampling of the posterior distributions using Simulation-Based Inference (SBI) (Cranmer et  al., 
2020; Lueckmann et al., 2017; Papamakarios et al., 2019), here we propose µGUIDE: a general 
Bayesian framework to estimate posterior distributions of tissue microstructure parameters from 
any given biophysical model/signal representation. µGUIDE extends and generalizes previous work 
(Jallais et al., 2022) to any forward model and without acquisition constraints, providing fast estima-
tions of posterior distributions voxel-wise. We demonstrate µGUIDE using numerical simulations on 
three biophysical models of increasing complexity and degeneracy and compare the obtained esti-
mates with existing methods, including the classical MCMC approach. We then apply the proposed 
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Figure 1. µGUIDE framework. µGUIDE takes as input an observed data vector and relies on the definition of a biophysical or computational model 
(Ascoli et al., 2007; Callaghan et al., 2020; Jelescu et al., 2020). It outputs a posterior distribution of the model parameters. Based on a Simulation-
Based Inference (SBI) framework, it combines a Multi-Layer Perceptron (MLP) with three layers and a Neural Posterior Estimator (NPE). The MLP learns 
a low-dimensional representation of ‍x‍, based on a small number of features (‍Nf ‍), that can be either defined a priori or determined empirically during 
training. The MLP is trained simultaneously with the NPE, leading to the extraction of the optimal features that minimize the bias and uncertainty of 

‍p(θ|x)‍.
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framework to dMRI data acquired from healthy human volunteers and participants with epilepsy. 
µGUIDE framework is agnostic to the origin of the data and the details of the forward model, so we 
envision its usage and utility to perform Bayesian inference of model parameters also using data from 
other MRI modalities (e.g. relaxation MRI) and beyond.

Results
Framework overview
The full architecture of the proposed Bayesian framework, dubbed µGUIDE, is presented in Figure 1. 
µGUIDE allows to efficiently estimate full posterior distributions of tissue parameters. It is comprised 
of two modules that are optimized together to minimize the Kullback–Leibler divergence between the 
true posterior distribution and the estimated one for every parameters of a given forward model. The 
‘Neural Posterior Estimator’ (NPE) module (Papamakarios et al., 2017) uses normalizing flows (Papa-
makarios et al., 2021) to approximate the posterior distribution, while the ‘Multi-Layer Perceptron’ 
(MLP) module is used to reduce the data dimensionality and ensure fast and robust convergence of 
the NPE module.

The full posterior distribution contains a lot of useful information. To summarize and easily visu-
alize this information, we propose three measures that quantify the best estimates and the associ-
ated confidence levels, and a way to highlight degeneracy. The three measures are the Maximum A 
Posteriori (MAP), which corresponds to the most likely parameter estimate; an uncertainty measure, 
which quantifies the dispersion of the 50% most probable samples using the interquartile range, rela-
tive to the prior range; and an ambiguity measure, which measures the Full Width at Half Maximum 
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Figure 2. µGUIDE summarizes information contained in the estimated posterior distributions. (A) Examples of degenerate and non-degenerate 
posterior distributions. Two Gaussian distributions are fitted to the obtained posterior distribution, where the means and standard deviations are 
represented by the vertical lines and shaded areas. A voxel is considered as degenerate if the derivative of the fitted Gaussian distributions changes 
signs more than once (i.e. multiple local maxima), and if the two Gaussian distributions are not overlapping (the distance between the two Gaussian 
means is inferior to the sum of their standard deviations). (B) Presentation of the measures introduced to quantify a posterior distribution on exemplar 
non-degenerate posterior distributions. Maximum A Posteriori (MAP) is the most likely parameter estimate (dashed vertical lines). Uncertainty measures 
the dispersion of the 50% most probable samples using the interquartile range, with respect to the prior range. Ambiguity measures the Full Width at 
Half Maximum (FWHM), in percentage with respect to the prior range.
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(FWHM), in percentage with respect to the prior range. Figure 2 presents those measures on exem-
plar posterior distributions. We show exemplar applications of µGUIDE to three biophysical models 
of increasing complexity and degeneracy from the dMRI literature: Ball&Stick (Behrens et al., 2003) 
(Model 1); Standard Model (SM) (Novikov et al., 2019) (Model 2); and extended-SANDI (Palombo 
et al., 2020) (Model 3).

Evaluation of µGUIDE on simulations
Comparison with MCMC
We performed a comparison between the posterior distributions obtained using µGUIDE and MCMC, 
a classical Bayesian method. Figure 3A shows posterior distributions on three exemplar simulations 
with ‍SNR = 50‍ using the Model 2 (SM), obtained with 15,000 samples. Sharper and less biased poste-
rior estimations are obtained using µGUIDE. Figure 3B presents histograms for each model parameter 
of the bias between the ground truth value used to simulate a signal, and the MAP of the posterior 
distributions obtained with either µGUIDE or MCMC, on 200 simulations. Results indicate that the bias 
is similar or smaller using µGUIDE. Overall, µGUIDE posterior distributions are more accurate than the 
ones obtained with MCMC.

B)
µGUIDE
MCMC

||

µGUIDE
MCMC

||A)

Figure 3. Comparison between µGUIDE and Markov-Chain-Monte-Carlo (MCMC). (A) Posterior distributions obtained using either µGUIDE or MCMC 
on three exemplar simulations with Model 2 (SM − ‍SNR = 50‍). Names of the model parameters are indicated in the titles of the panels. (B) Bias 
between the ground truth values used for simulating the diffusion signals, and the Maximum A Posteriori extracted from the posterior distributions 
using either µGUIDE or MCMC. Sharper and less biased posterior distributions are obtained using µGUIDE.

https://doi.org/10.7554/eLife.101069
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Moreover, it took on average 29.3 s to obtain the posterior distribution using MCMC on a GPU 
(NVIDIA GeForce GT 710) for one voxel, while it only took 0.02 s for µGUIDE. µGUIDE is about 1500 
times faster than MCMC, which makes it more suitable for applying it on large datasets.

The importance of feature selection
Figure 4 shows the MAP extracted from the posterior distributions versus the ground truth param-
eters used to generate the diffusion signal with µGUIDE and manually defined summary statistics 
for the three models. Less biased MAPs with lower ambiguities and uncertainties are obtained with 
µGUIDE, indicating that the MLP allows for the extraction of additional information not contained 
in the summary statistics, helping to solve the inverse problem with higher accuracy and precision. 
µGUIDE generalizes the method developed in Jallais et al., 2022 to make it applicable to any forward 
model and any acquisition protocol, while making the estimates more precise and accurate thanks to 
the automatic feature extraction.

µGUIDE highlights degeneracies
Figure  5 presents the posterior distributions of microstructure parameters for the three models 
obtained with µGUIDE on exemplar noise-free simulations. Blue curves correspond to non-degenerate 
posterior distributions, while the red ones present at least one degeneracy for one of the parameters. 
As the complexity of the model increases, degeneracy in the model definitions appear. This figure 
showcases µGUIDE ability to highlight degeneracy in the model parameter estimation.

Tables 1 and 2 present the number of degenerate cases for each parameter in the three models, 
on 10,000 simulations. Table 1 considers noise-free simulations and the training and estimations were 
performed on CPU. Table 2 reports results on noisy simulations (Rician noise with ‍SNR = 50‍), with 
training and testing performed on a GPU (NVIDIA GeForce RTX 4090). The time needed for the infer-
ence and to estimate the posterior distributions on 10,000 simulations, define if they are degenerate 
or not, and extract the MAP, uncertainty, and ambiguity are also reported. The more complex the 
model, the more degeneracies.
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Figure 4. Fitting accuracy comparison between µGUIDE’s Multi-Layer Perceptron (MLP)-extracted features and manually defined summary statistics. 
Maximum A Posterioris (MAPs) extracted from the posterior distributions versus ground truth parameters used for generating the signal for the three 
models. Orange points correspond to the MAPs obtained using MLP-extracted features (µGUIDE) and the blue ones to the MAPs with the manually 
defined summary statistics. Only the non-degenerate posterior distributions were kept. The summary statistics used in those three models are the 
direction-averaged signal for the Ball&Stick model, the LEMONADE system of equations (Novikov et al., 2018) for the Standard Model (SM), and 
the summary statistics defined in Jallais et al., 2022 for the extended-SANDI model. Results are shown on 100 exemplar noise-free simulations with 
random parameter combinations. The optimal features extracted by the MLP allow to reduce the bias and variance of the obtained microstructure 
posterior distributions.

https://doi.org/10.7554/eLife.101069
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Application of µGUIDE to real data
After demonstrating that the proposed framework provides good estimates in the controlled case of 
simulations, we applied µGUIDE to both a healthy volunteer and a participant with epilepsy. The esti-
mation of the posterior distributions is done independently for each voxel. To easily assess the values 
and the quality of the fitting, we are plotting the MAP, ambiguity, and uncertainty maps, but the full 
posterior distributions are stored and available for all the voxels. Voxels presenting a degeneracy are 
highlighted with a red dot.

Healthy volunteer
We applied µGUIDE to a healthy volunteer, using the Ball&Stick, SM, and extended-SANDI models. 
Figure 6 presents the parametric maps of an exemplar set of model parameters for each model, 
alongside their degeneracy, uncertainty, and ambiguity. The Ball&Stick model presents no degen-
eracy, the SM presents some degeneracy, mostly in voxels with high likelihood of partial voluming with 
cerebrospinal fluid and at the white matter–grey matter boundaries. The extended-SANDI model is 
the model showing the highest number of degenerate cases, mostly localized within the white matter 
areas characterized by complex microstructure, for example crossing fibres. This result is expected, as 
the complexity of the models increases, leading to more combinations of tissue parameters that can 
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Figure 5. Exemplar posterior distributions of the microstructure parameters for the Ball&Stick, Standard Model (SM), and extended-SANDI 
models, obtained using µGUIDE on exemplar noise-free simulations. As the complexity of the model increases, degeneracies appear (red posterior 
distributions). µGUIDE allows to highlight those degeneracies present in the model definition.

Table 1. Number of degenerate cases per parameter on 10,000 noise-free simulations.
Training and estimations of the posterior distributions were performed on CPU. Time for training each model and time for estimating 
posterior distributions of 10,000 noise-free simulations, define if they are degenerate or not, and extract the Maximum A Posteriori 
(MAP), uncertainty, and ambiguity are also reported.

Model (SNR = ∞) Training time (CPU)
Fitting time (on 10,000 
simulations)

Number of degeneracies (on 10,000 simulations)

‍fn‍ ‍Dn‍ ‍D
∥
e‍ ‍ODI ‍ ‍D⊥

e ‍ ‍fs‍ ‍fe‍ ‍Cs‍

Model 1: Ball&Stick 11 min 96 s 0 0 0 - - - - -

Model 2: Standard Model 2h02 135 s 4 34 23 3 8 - - -

Model 3: extended-SANDI model 2h02 1412 s 205 4 260 57 - 1395 2571 1011

https://doi.org/10.7554/eLife.101069
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explain an observed signal. Measures of ambiguity and uncertainty allow to quantify the confidence in 
the estimates and help interpreting the results.

Participant with epilepsy
Figure 7 demonstrates µGUIDE application to a participant with epilepsy, using the SM. Noteworthy, 
the axonal signal fraction estimates within the epileptic lesion show low uncertainty and ambiguity 
measures hence high confidence, while orientation dispersion index estimates show high uncertainty 
and ambiguity suggesting low confidence, cautioning the interpretation.

Discussion
Applicability of µGUIDE to multiple models
The µGUIDE framework offers the advantage of being easily applicable to various biophysical models 
and representations, thanks to its data-driven approach for data reduction. The need to manually 
define specific summary statistics that capture the relevant information for microstructure estimation 
from the multi-shell diffusion signal is removed. This also eliminates the acquisition constraints that 
were previously imposed by the summary statistics definition (Jallais et al., 2022). The extracted 
features contain additional information compared to the summary statistics (see Appendix 1), 
resulting in a notable reduction in bias (on average 5.2-fold lower), uncertainty (on average 2.6-fold 
lower), and ambiguity (on average 2.7-fold lower) in the estimated posterior distributions. Conse-
quently, µGUIDE improves parameters estimation over current state-of-the-art methods (e.g. Jallais 
et  al., 2022), showing for example reduced bias (on average 5.2-fold lower) and dispersion (on 
average 6.4-fold lower) on the MAP estimates for each of the three example models investigated 
(see Figure 4).

In this study, we presented applications of µGUIDE to brain microstructure estimation using three 
well-established biophysical models, with increased complexity: the Ball&Stick model, the SM, and 
an extended-SANDI model. However, our approach is not limited to brain tissue nor to diffusion-
weighted MRI and can be extended to different organs by employing their respective acquisition 
encoding and forward models, such as NEXI for exchange estimates (Jallais et al., 2024), mcDESPOT 
for myelin water fraction mapping using quantitative MRI relaxation (Deoni et al., 2008), VERDICT 
in prostate imaging (Panagiotaki et al., 2014), or even adapted to different imaging modalities (e.g. 
electroencephalography and magnetoencephalography), where there is a way to link (via modelling or 
simulation) the observed signal to a set of parameters of interest. This versatility underscores the broad 
applicability of our proposed approach across various biological systems and imaging techniques.

It is important to note that µGUIDE is still a model-dependent method, meaning that the training 
process is based on the specific model being used. Additionally, the number of features extracted by 
the MLP needs to be predetermined. One way to determine the number of features is by matching it 
with the number of parameters being estimated. Alternatively, a dimensionality-reduction study using 
techniques like t-distributed stochastic neighbour embedding (der Maaten and Hinton, 2008) can be 
conducted to determine the optimal number of features.

Table 2. Number of degenerate cases per parameter on 10,000 noisy simulations (Rician noise with SNR = 50).
Training and estimations of the posterior distributions were performed using a GPU. Time for training each model and time for 
estimating posterior distributions of 10,000 noisy simulations, define if they are degenerate or not, and extract the Maximum A 
Posteriori (MAP), uncertainty, and ambiguity are also reported.

Model (SNR = 50) Training time (CPU)
Fitting time (on 10,000 
simulations)

Number of degeneracies (on 10,000 simulations)

‍fn‍ ‍Dn‍ ‍D
∥
e‍ ‍ODI ‍ ‍D⊥

e ‍ ‍fs‍ ‍fe‍ ‍Cs‍

Model 1: Ball&Stick 26 min 79 s 0 0 0 - - - - -

Model 2: Standard Model 42 min 82 s 75 71 117 109 29 - - -

Model 3: Extended-SANDI model 50 min 238 s 47 24 784 6 - 828 1047 56

https://doi.org/10.7554/eLife.101069
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Figure 6. Parametric maps of the Ball&Stick (top), SM (middle) and extended-SANDI model (bottom), obtained 
using µGUIDE. Maximum A Posteriori (MAP), uncertainty and ambiguity measure maps are reported, overlayed 
with voxels considered degenerate (red dots).  
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µGUIDE: an efficient framework for Bayesian inference
One notable advantage of µGUIDE is its amortized nature. With this approach, the training process is 
performed only once, and thereafter, the posterior estimations can be independently obtained for all 
voxels. This amortization enables efficient estimations of the posterior distributions. µGUIDE outper-
forms in terms of speed conventional Bayesian inference methods such as MCMC, showing a ∼1500-
fold acceleration. The time savings achieved with µGUIDE make it a highly efficient and practical tool 
for estimating posterior distributions in a timely manner.

This unlocks the possibility to process with Bayesian inference very large datasets in manageable 
time (e.g. approximately 6 months to process 10 k dMRI datasets) and to include Bayesian inference 
in iterative processes that require the repeated computation of the posterior distributions (e.g. dMRI 
acquisition optimization [Alexander, 2008]).

In the dMRI community, the use of SBI methods to characterize full posterior distributions as well as 
quantify the uncertainty in parameter estimations was first introduced in Jallais et al., 2022 for a grey 
matter model. An application to crossing fibres has recently been proposed by Karimi et al., 2024. 
Those approaches use different density estimators. This work and Jallais et al., 2022 rely on Masked 
Autoregressive Flows (MAFs [Papamakarios et al., 2017]), while the work by Karimi et al., 2024 is 
based on Mixture Density Networks (MDNs [Bishop, 1994]). MAFs have been found to show superior 
performance compared to MDNs (Gonçalves et al., 2020; Patron et al., 2022).

µGUIDE quantifies confidence to guide interpretation
Quantifying confidence in an estimate is of crucial importance. As demonstrated by our pathological 
example, changes in the tissue microstructure parameters can help clinicians decide which parameters 
are the most reliable and better interpret microstructure changes within diseased tissue. On large 
population studies, the quantified uncertainty can be taken into account when performing group 
statistics and to detect outliers.

Multiple approaches have been used to try and quantify this uncertainty. Gradient descent often 
provides a measure of confidence for each parameter estimate. Alternative approaches use the shape 
of the fitted tensor itself as a measure of uncertainty for the fibre direction (Koch et al., 2002; Parker 
and Alexander, 2003). Other methods also rely on bootstrapping techniques to estimate uncer-
tainty. Repetition bootstrapping for example depends on repeated measurements of signal for each 
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Figure 7. Parametric maps of a participant with epilepsy obtained using µGUIDE with the Standard Model (SM), superimposed with the grey matter 
(black) and white matter (white) lesions segmentation.  Mean values of the Maximum A Posterior (MAP), uncertainty, and ambiguity measures are 
reported in the two regions of interest. Lower MAP values are obtained in the lesions for the axonal signal fraction and the orientation dispersion index 
compared to healthy tissue. Higher uncertainty and ambiguity ODI values are reported, suggesting less stable estimations. 

https://doi.org/10.7554/eLife.101069


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Jallais and Palombo. eLife 2024;13:RP101069. DOI: https://doi.org/10.7554/eLife.101069 � 10 of 28

gradient direction, but imply a long acquisition time and cost, and are prone to motion artifacts 
(Lazar and Alexander, 2005; Jones, 2003). In contrast, residual bootstrapping methods resample 
the residuals of a regression model. Yet, this approach is heavily dependent on the model and can 
lead to overfitting (Whitcher et al., 2008; Chung et al., 2006). In general, resampling methods can 
be problematic for sparse samples, as the bootstrapped samples tend to underestimate the true 
randomness of the distribution (Kauermann et al., 2009). We propose to quantify the confidence by 
estimating full posterior distributions, which also has the benefit of highlighting degeneracy. Model-
fitting methods with different initializations, as done in for example Jelescu et al., 2016, also allow 
to highlight degeneracies. However, they only provide a partial description of the solution landscape, 
which can be interpreted as a partial posterior distribution. In contrast, Bayesian methods estimate 
the full posterior distributions, offering a more accurate and precise characterization of degeneracies 
and uncertainties. Hence, in this work we decided to use MCMC, a traditional Bayesian method, as 
benchmark.

Variance observed in the posterior distributions can be attributed to several factors. The presence 
of noise in the signal contributes to irreducible variance, decreasing the confidence in the estimates 
as the noise level increases (see Appendix 2). Another source of variance can arise from the choice of 
acquisition parameters. Different acquisitions may provide varying levels of confidence in the param-
eter estimates. Under-sampled acquisitions or inadequate b-shells may fail to capture essential infor-
mation about a tissue microstructure, such as soma or neurite radii, resulting in inaccurate estimates.

µGUIDE can guide users in determining whether an acquisition is suitable for estimating param-
eters of a given model and vice versa, the variance and bias of the posterior distributions estimated 
with µGUIDE can be used to guide the optimization of the data acquisition to maximize accuracy and 
precision of the model parameters estimates.

The presence of degeneracy in the solution of the inverse problem is influenced by the complexity 
of the model being used and the lack of sufficient information in the data. In recent years, researchers 
have introduced increasingly sophisticated models to better represent the brain tissue, such as SANDI 
(Palombo et al., 2020), NEXI (Jelescu et al., 2022), and eSANDIX (Olesen et al., 2022), that take 
into account an increasing number of tissue features. By applying µGUIDE, it becomes possible to 
gain insights into the degree of degeneracy within a model and to assess the balance between model 
realism and the ability to accurately invert the problem. We have recently provided an example of such 
application for NEXI and SANDIX (Jallais et al., 2024).

Summary
We propose a general Bayesian framework, dubbed µGUIDE, to efficiently estimate posterior distri-
butions of tissue microstructure parameters. For any given acquisition and signal model/representa-
tion, µGUIDE improves parameters estimation and computational time over existing state-of-the-art 
methods. It allows to highlight degeneracy, and quantify confidence in the estimates, guiding results 
interpretation towards more confident and explainable diagnosis using modern deep learning. 
µGUIDE is not inherently limited to dMRI and microstructure imaging. We envision its usage and utility 
to perform efficient Bayesian inference also using data from any modality where there is a way to link 
(via modelling or simulation) the observed measurements to a set of parameters of interest.

Methods
Solving the inverse problem using Bayesian inference
The inference problem
We make the hypothesis that an observed dMRI signal ‍x0‍ can be explained (and generated) using a 
handful of relevant tissue microstructure parameters ‍θ0‍, following the definition of a forward model:

	﻿‍ x0 = M(θ0)‍�

The objective is, given this observation ‍x0‍, to estimate the parameters ‍θ0‍ that generated it.
Forward models are designed to mimic at best a given biophysical phenomenon, for some given 

time and scale (Alexander, 2009; Yablonskiy and Sukstanskii, 2010; Jelescu and Budde, 2017; 
Novikov et al., 2019; Alexander et al., 2019; Jelescu et al., 2020). As a consequence, forward 
models are injection functions (every biologically plausible ‍θi‍ generates exactly one signal ‍xi‍), but do 

https://doi.org/10.7554/eLife.101069


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Jallais and Palombo. eLife 2024;13:RP101069. DOI: https://doi.org/10.7554/eLife.101069 � 11 of 28

not always happen to be bijections, meaning that multiple ‍θi‍ can generate the same signal ‍xi‍. It can 
be impossible, based on biological considerations, to infer which solution ‍θi‍ best reflects the probed 
structure. We refer to these models as ‘degenerate models’.

Point estimates algorithms, such as minimum least square or maximum likelihood estimation algo-
rithms, allow to estimate one set of microstructure parameters that could explain an observed signal. 
In the case of degenerate models, the solution space can be multi-modal and those algorithms will 
hide possible solutions. When considering real-life acquisitions, that is noisy and/or under-sampled 
acquisitions, one also needs to consider the bias introduced with respect to the forward model, and 
the resulting variance in the estimates (Jones, 2003; Behrens et al., 2003).

We propose a new framework that allows for the estimation of full posterior distributions ‍p(θ|x0)‍, 
that is all the probable parameters that could represent the underlying tissue, along with an uncer-
tainty measure and the interdependency of parameters. These posteriors can help interpreting the 
obtained results and make more informed decisions.

The Bayesian formalism
The posterior distribution can be defined using Bayes’ theorem as follows:

	﻿‍
p(θ|x0) = p(x0|θ) p(θ)

p(x0)
,
‍�

(1)

where ‍p(x0|θ)‍ is the likelihood of the observed data point, ‍p(θ)‍ is the prior distribution defining our 
initial knowledge of the parameter values, and ‍p(x0)‍ is a normalizing constant, commonly referred to 
as the evidence of the data.

The evidence term is usually very hard to estimate, as it corresponds to all the possible realizations 
of ‍x0‍, that is ‍p(x0) =

´
all x0

p(x0|θ) p(θ) dx0‍. For simplification, methods usually estimate an unnormal-
ized probability density function, that is

	﻿‍ p(θ|x0) ∝ p(x0|θ)p(θ) .‍� (2)

To approximate these posterior distributions, traditional methods rely on the estimation 
of the likelihood ‍p(x0|θ)‍ of the observed data point ‍x0‍ via an analytic expression. This likelihood 
function corresponds to an integral over all possible trajectories through the latent space, that is 

‍p(x0|θ) =
´

p(x0, z|θ)dz‍, where ‍p(x0, z|θ)‍ is the joint probability density of observed data ‍x0‍ and latent 
variables ‍z‍. For forward models with large latent spaces, computing this integral explicitly becomes 
impractical. The likelihood function is then intractable, rendering these methods unusable (Cranmer 
et al., 2020). Models that do not admit a tractable likelihood are called implicit models (Diggle and 
Gratton, 1984).

To circumvent this issue, some techniques have been proposed to sample numerically from the 
likelihood function, such as MCMC (Metropolis et al., 1953). Another set of approaches proposes 
to train a conditional density estimator to learn a surrogate of the likelihood distribution (Papama-
karios et al., 2019; Lueckmann et al., 2019), the likelihood ratio (Cranmer et al., 2016; Gutmann 
et  al., 2018), or the posterior distribution (Papamakarios and Murray, 2016; Lueckmann et  al., 
2017; Papamakarios et al., 2019), allowing to greatly reduce computation times. These methods are 
dubbed likelihood-free inference or SBI methods (Cranmer et al., 2020; Tejero-Cantero et al., 2020). 
In particular, there has been a growing interest towards deep generative modelling approaches in the 
machine learning community (Lueckmann et al., 2021). They rely on specially tailored neural network 
architectures to approximate probability density functions from a set of examples. Normalizing flows 
(Papamakarios et al., 2021) are a particular class of such neural networks that have demonstrated 
promising results for SBI in different research fields (Gonçalves et al., 2020; Greenberg et al., 2019).

While this work focuses on the estimate of the posterior distribution using a conditional density 
estimator, we show a comparison with MCMC, which are commonly used methods in the community. 
We will therefore introduce this method in the following paragraph.

Estimating the likelihood function
Well-established approaches for estimating the likelihood function are MCMC methods. These 
methods rely on a noise model to define the likelihood distribution, such as the Rician (Panagiotaki 
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et al., 2012) or Offset Gaussian models (Alexander, 2009). In this work, we will be using the Micro-
structure Diffusion Toolbox to perform the MCMC computations (Harms and Roebroeck, 2018), 
which relies on the Offset Gaussian model. The log-likelihood function is then the following:

	﻿‍
log

(
p(x|θ)

)
= −

m∑
i=1

(
xi −

√
M(θ)2

i + σ2
)2

2σ2 − m · log(σ
√

2π) ,
‍�

(3)

where ‍M(θ)‍ is the signal obtained using the biophysical model, ‍M(θ)i‍ is the ith measurement of the 
signal, ‍σ‍ is the standard deviation of the Gaussian distributed noise, estimated from the reconstructed 
magnitude images (Dietrich et al., 2007), and ‍m‍ is the number of observations in the dataset.

MCMC methods allow to obtain posterior distributions using Bayes’ formula (Equation 2) with the 
previously defined likelihood function (Equation 3) and some prior distributions, which are usually 
uniform distributions defined on biologically plausible ranges. They generate a multi-dimensional 
chain of samples which is guaranteed to converge towards a stationary distribution, which approxi-
mates the posterior distribution (Metropolis et al., 1953).

The need to compute the signal following the forward model at each iteration makes these sampling 
methods computationally expensive and time consuming. In addition, they require some adjustments 
specific to each model, such as the choice of burn-in length, thinning, and the number of samples 
to store. Harms and Roebroeck, 2018 recommend to use the Adaptive Metropolis-Within-Gibbs 
(AMWG) algorithm for sampling dMRI models, initialized with a maximum likelihood estimator (MLE) 
obtained from non-linear optimization, with 100–200 samples for burn-in and no thinning. Authors 
notably investigated the use of starting from the MLE and thinning. They concluded that starting from 
the MLE allows to start in the stationary distribution of the Markov Chain, and has the advantage of 
removing salt- and pepper-like noise from the resulting mean and standard deviation maps. Their 
findings also indicate that thinning is unnecessary and inefficient, and they recommend using more 
samples instead. The recommended number of samples is model dependent. Authors recommenda-
tions can be found in their paper.

Bypassing the likelihood function
An alternative method was proposed to overcome the challenges associated with approximating the 
likelihood function and the limitations of MCMC sampling algorithms. This approach involves directly 
approximating the posterior distribution by using a conditional density estimator, that is a family of 
conditional probability density function approximators denoted as ‍qϕ(θ|x)‍. These approximators are 
parameterized by ‍ϕ‍ and accept both the parameters ‍θ‍ and the observation ‍x‍ as input arguments. 
Our posterior approximation is then obtained by minimizing its average Kullback–Leibler divergence 
with respect to the conditional density estimator for different choices of ‍x‍, as per Papamakarios and 
Murray, 2016:

	﻿‍
min.
ϕ

L(ϕ) with L(ϕ) = Ex∼p(x)
[
DKL(p(θ|x) |qϕ(θ|x))

]
,
‍� (4)

which can be rewritten as

	﻿‍

L(ϕ) =
ˆ

DKL(p(θ|x)∥qϕ(θ|x))p(x)dx ,

= −
¨

log
(
qϕ(θ|x)

)
p(θ|x)p(x)dθdx + C ,

= −
¨

log
(
qϕ(θ|x)

)
p(x, θ)dθdx + C ,

= −E(x,θ)∼p(x,θ)
[
log

(
qϕ(θ|x)

)]
+ C , ‍�

(5)

where ‍C‍ is a constant that does not depend on ‍ϕ‍. Note that in practice we consider a ‍N ‍-sample 
Monte-Carlo approximation of the loss function:

	﻿‍
L(ϕ) ≈ LN(ϕ) = − 1

N

N∑
i=1

log
(

qϕ(θi|xi)
)

,
‍�

(6)

https://doi.org/10.7554/eLife.101069


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Jallais and Palombo. eLife 2024;13:RP101069. DOI: https://doi.org/10.7554/eLife.101069 � 13 of 28

where the ‍N ‍ data points ‍(θi, xi)‍ are sampled from the joint distribution with ‍θi ∼ p(θ)‍ and ‍xi ∼ p(x|θi)‍. 
We can then use stochastic gradient descent to obtain a set of parameters ‍ϕ‍ which minimizes ‍LN ‍.

If the class of conditional density estimators is sufficiently expressive, it can be demonstrated that 
the minimizer of Equation (6) converges to ‍p(θ|y)‍ when ‍N → ∞‍ (Greenberg et al., 2019). It is worth 
noting that the parametrization ‍ϕ‍, obtained at the end of the optimization procedure, serves as an 
amortized posterior for various choices of ‍x‍. Hence, for a particular observation ‍x0‍, we can simply use 

‍qϕ(θ|x0)‍ as an approximation of ‍p(θ|x0)‍.

µGUIDE framework
The full architecture of the proposed Bayesian framework, dubbed µGUIDE, is presented in Figure 1. 
The analysis codes underpinning the results presented here can be found on Github: https://github.​
com/mjallais/uGUIDE (copy archived at Jallais, 2024) (both CPU and GPU are supported).

µGUIDE is comprised of two modules that are optimized together to minimize the Kullback–Leibler 
divergence between the true posterior distribution and the estimated one for every parameters of 
a given forward model. The NPE module uses normalizing flows to approximate the posterior distri-
bution, while the MLP module is used to reduce the data dimensionality and ensure fast and robust 
convergence of the NPE module. The following sections provide more details about our implemen-
tation of each module.

Neural Posterior Estimator
In this study, the Sequential Neural Posterior Estimation (SNPE-C) algorithm (Papamakarios and 
Murray, 2016; Greenberg et al., 2019) with a single round is employed to train a neural network that 
directly approximates the posterior distribution. Thus, sampling from the posterior can be done by 
sampling from the trained neural network. Neural density estimators have the advantage of providing 
exact density evaluations, in contrast to Variational Autoencoders (VAEs [Kingma and Welling, 2019]) 
or generative adversarial networks (GANs [Goodfellow et  al., 2014]), which are better suited for 
generating synthetic data.

The conditional probability density function approximators used in this project belong to a class of 
neural networks called normalizing flows (Papamakarios et al., 2021). These flows are invertible func-
tions capable of transforming vectors generated from a simple base distribution (e.g. the standard 
multivariate Gaussian distribution) into an approximation of the true posterior distribution. An autore-
gressive architecture for normalizing flows is employed, implemented via the MAF (Papamakarios 
et al., 2017), which is constructed by stacking five Masked Autoencoder for Distribution Estimation 
(MADE) models (Germain et al., 2015). An explanation of how MAF and MADE work is provided in 
Appendix 3.

To test that the predicted posteriors for a given model are not incorrect we use posterior predictive 
checks (PPCs), which is described in more details in Appendix 4.

Handling the large dimensionality of the data with MLP
As the dimensionality of the input data ‍x‍ grows, the complexity of the corresponding inverse problem 
also increases. Accurately characterizing the posterior distributions or estimating the tissue micro-
structure parameters becomes more challenging. As a consequence, it is often necessary to rely on 
a set of low-dimensional features (or summary statistics) instead of the raw data for the inference 
task process (Blum et al., 2013; Fearnhead and Prangle, 2012; Papamakarios et al., 2019). These 
summary statistics are features that capture the essential information within the raw data, allowing to 
reduce the size of the input vector. Learning a set of sufficient statistics before estimating the posterior 
distribution makes the inference easier and offers many benefits (see e.g. the Rao–Blackwell theorem).

A follow-up challenge lies in the choice of suitable summary statistics. For well-understood prob-
lems and data, it is possible to manually design these features using deterministic functions that 
condense the information contained in the raw signal into a set of handful summary statistics. Previous 
works, such as Novikov et al., 2018 and Jallais et al., 2022, have proposed specific summary statis-
tics for two different biophysical models. However, defining these summary statistics is difficult and 
often requires prior knowledge of the problem at hand. In the context of dMRI, they also rely on 
acquisition constraints and are model specific.

https://doi.org/10.7554/eLife.101069
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In this work, the proposed framework aims to be applicable to any forward model and be as general 
as possible. We therefore propose to learn the summary statistics from the high-dimensional input 
signals ‍x‍ using a neural network. This neural network is referred to as an embedding neural network. 
The observed signals are fed into the embedding neural network, whose outputs are then passed to 
the neural density estimator. The parameters of the embedding network are learned together with 
the parameters of the neural density estimator, leading to the extraction of optimal features that 
minimize the uncertainty of ‍p(θ|x)‍. Here, we propose to use an MLP with three layers as a summary 
statistics extractor. The number of features ‍Nf ‍ extracted by the MLP can be either defined a priori or 
determined empirically during training.

Training µGUIDE
To train µGUIDE we need couples of input vectors ‍x‍ and corresponding ground truth values for the 
model parameters that we want to estimate, ‍θ‍. The input ‍x‍ can be real or simulated data (e.g. dMRI 
signals); or a mixture of these two. We train µGUIDE by stochastically minimizing the loss function 
defined in Equation (6) using the Adam optimizer (Kingma and Ba, 2015) with a learning rate of 10−3 
and a minibatch size of 128. We use 1 million simulations for each model, 5% of which are randomly 
selected to be used as a validation set. Training is stopped when the validation loss does not decrease 
for 30 consecutive epochs.

Quantifying the confidence in the estimates
The full posterior distribution contains a lot of useful information about a given model parameter best 
estimates, uncertainty, ambiguity, and degeneracy. To summarize and easily visualize this information, 
we propose three measures that quantify the best estimates and the associated confidence levels, and 
a way to highlight degeneracy.

We start by checking whether a posterior distribution is degenerate, that is if the distribution 
presents multiple distinct parameter solutions, appearing as multiple local maxima (Figure 2). To that 
aim, we fit two Gaussian distributions to the obtained posterior distributions. A voxel is considered 
as degenerate if the derivative of the fitted Gaussian distributions changes signs more than once 
(i.e. multiple local maxima), and if the two Gaussian distributions are not overlapping (the distance 
between the two Gaussian means is inferior to the sum of their standard deviations).

For non-degenerate posterior distributions, we extract three quantities:

1.	 The MAP, which corresponds to the most likely parameter estimate.
2.	 An uncertainty measure, which quantifies the dispersion of the 50% most probable samples 

using the interquartile range, relative to the prior range.
3.	 An ambiguity measure, which measures the FWHM, in percentage with respect to the prior 

range.

Figure 2 presents those measures on exemplar posterior distributions.

Application of µGUIDE to biophysical modelling of dMRI data
We show exemplar applications of µGUIDE to three biophysical models of increasing complexity and 
degeneracy from the dMRI literature. For each model, we compare the fitting quality of the posterior 
distributions obtained using the MLP and manually defined summary statistics.

Biophysical models of dMRI signal
Model 1: Ball&Stick (Behrens et al., 2003)
This is a two-compartment model (intra- and extra-neurite space) where the dMRI signal from the 
brain tissue is modelled as a weighted sum, with weight ‍fin‍, of signals from water diffusing inside the 
neurites, approximated as sticks (i.e. cylinders of zero radius) with diffusivity ‍Din‍, and water diffusing 
within the extra-neurite space, approximated as Gaussian diffusion in an isotropic medium with diffu-
sivity ‍De‍. The direction of the stick is randomly sampled on a sphere. This model has the main advan-
tage of being non-degenerate. We define the summary statistics as the direction-averaged signal (six 
b-shells, see section dMRI data acquisition and processing).

https://doi.org/10.7554/eLife.101069
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Model 2: SM (Novikov et al., 2019)
Expanding on Model 1, this model represents the dMRI signal from the brain tissue as a weighted 
sum of the signal from water diffusing within the neurite space, approximated as sticks with symmetric 
orientation dispersion following a Watson distribution and water diffusing within the extra-neurite 
space, modelled as anisotropic Gaussian diffusion. The microstructure parameters of this two-
compartment model are the neurite signal fraction ‍f ‍, the intra-neurite diffusivity ‍Da‍, the orientation 
dispersion index ‍ODI ‍, and the parallel and perpendicular diffusivities within the extra-neurite space 

‍D
∥
e‍ and ‍D⊥

e ‍. We use the LEMONADE (Novikov et al., 2018) system of equations, which is based on a 
cumulant decomposition of the signal, to define six summary statistics.

Model 3: extended-SANDI (Palombo et al., 2020)
This is a three-compartment model (intra-neurite, intra-soma, and extra-cellular space) where the 
dMRI signal from the brain tissue is modelled as a weighted sum of the signal from water diffusing 
within the neurite space, approximated as sticks with symmetric orientation dispersion following a 
Watson distribution; water diffusing within cell bodies (namely soma), modelled as restricted diffusion 
in spheres; and water diffusing within the extra-cellular space, modelled as isotropic Gaussian diffu-
sion. The parameters of interest are the neurite signal fraction ‍fn‍, the intra-neurite diffusivity ‍Dn‍, the 
orientation dispersion index ‍ODI ‍, the extra-cellular signal fraction ‍fe‍ and isotropic diffusivity ‍De‍, the 
soma signal fraction ‍fs‍, and a proxy of soma radius and diffusivity ‍Cs‍, defined as (Jallais et al., 2022):

	﻿‍
Cs = 2

Dsδ2

∞∑
m=1

α−4
m

α2
mrs2 − 2

·

(
2δ − 2 + e−α2

mDs(∆−δ) − e−α2
mDsδ − e−α2

mDs∆ + e−α2
mDs(∆+δ)

α2
mDs

)
,
‍�

with ‍rs‍ and ‍Ds‍ the soma radius and diffusivity, respectively, and ‍αm‍ the mth root of 
‍
(αrs)−1J 3

2
(αrs) = J 5

2
(αrs)‍, 

with ‍Jn(x)‍ the Bessel functions of the first kind. We use the six summary statistics defined in Jallais 
et al., 2022, which are based on a high and low b-value signal expansion. Signal fractions follow the 
rule ‍fn + fs + fe = 1‍, leading to six parameters to estimate for this model.

Prior distributions ‍p(θ)‍ are defined as uniform distributions over biophysically plausible ranges. 
Signal fractions are defined within the interval ‍[0, 1]‍, diffusivities between 0.1 and 3 µm2/ms, ODI 
between 0.03 and 0.95, and ‍Cs‍ between 0.15 and 1105 µm2 (which correspond to ‍rs ∈ [1; 15]‍ µm and 
fixed ‍Ds = 3‍ µm2/ms).

The SM imposes the constraint ‍D⊥
e < D∥

e‍. To generate samples uniformly distributed on the space 
defined by this condition, we are using two random variables ‍u0‍ and ‍u1‍, both sampled uniformly 

between 0 and 1, and then relate them to ‍D
∥
e‍ and ‍D⊥

e ‍ using the following equations:

	﻿‍




D∥
e =

√
(3.0 − 0.1)2 · u0 + 0.1

D⊥
e = (D∥

e − 0.1) · u1 + 0.1 ‍�
(7)

The extended-SANDI model requires for the signal fractions to sum to 1, that is ‍fn + fs + fe = 1‍. 
To uniformly cover the simplex ‍fn + fs + fe = 1‍, we define two new parameters ‍k1‍ and ‍k2‍, uniformly 
sampled between 0 and 1, and use the following equations to get the corresponding signal fractions:

	﻿‍




fn = k2
√

k1

fs = (1 − k2)
√

k1

fe = 1 −
√

k1 ‍�

(8)

To ensure comparability of results, we extract the same number of features ‍Nf ‍ using the MLP as 
the number of summary statistics for each model. We therefore use ‍Nf = 6‍ for the Ball&Stick, the SM, 
and the extended-SANDI models. Although the number of features predicted by the MLP is fixed to 

‍Nf = 6‍ for the three models, the characteristics of these six features can be very different, depending 
on the chosen forward model and the available data (see Appendix 1). Training the MLP together with 
the NPE module allows to maximize inference performance in terms of accuracy and precision.

https://doi.org/10.7554/eLife.101069
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Validation in numerical simulations
We start by validating the proposed method using PPCs and simulated signals from Model 2 (see 
more details in Appendix 4). Since PPC alone does not guarantee the correctness of the estimated 
posteriors, we further validated the obtained posterior distributions comparing them with the AMWG 
MCMC (Roberts and Rosenthal, 2009). We generated simulations following the same acquisition 
protocol as the real data (see section dMRI data acquisition and processing), added Gaussian noise to 
the real and imaginary parts of the simulated signal with a signal-to-noise ratio (SNR) of 50, and then 
used the magnitude of this noisy complex signal for our experiments. We then estimated the posterior 
distributions using both µGUIDE and the MCMC method implemented in the MDT toolbox (Harms 
and Roebroeck, 2018). We initialized the sampling using an MLE. We sampled 15,200 samples from 
the distribution, the first 200 ones being used as burn-in, and no thinning. Similarly, we sampled 
15,000 samples from the estimated posterior distributions using µGUIDE.

Then, we show that µGUIDE can be applicable to any model. We use Models 1 and 3 as exam-
ples of simpler (and non-degenerate) and more complex (and degenerate) models than Model 2, 
respectively.

We compared the proposed framework to a state-of-the-art method for posterior estimation 
(Jallais et al., 2022). This method relies on manually defined summary statistics, while µGUIDE auto-
matically extracts some features using an embedded neural network. µGUIDE was trained directly on 
noisy simulations. The manually defined summary statistics were extracted from these simulated noisy 
signals and then used as training dataset for an MAF, similar to Jallais et al., 2022.

Finally, we used µGUIDE to highlight degeneracy in all the models. While the complexity of the 
models increases, more degeneracy can be found. The degeneracy is inherent to the model defini-
tion, and is not induced by the noise. µGUIDE allows to highlight those degeneracies and quantify the 
confidence in the obtained estimates.

The training was performed on ‍N = 106‍ numerical simulations for each model, computed using 
the MISST package (Ianuş et al., 2017) and random combinations of the model parameters, each 
uniformly sampled from the previously defined ranges, with the addition of Rician distributed noise 
with SNR equivalent to the experimental data, that is 50.

dMRI data acquisition and processing
We applied µGUIDE to dMRI data collected from two participants: a healthy volunteer from the 
WAND dataset (McNabb et al., 2024) and an age-matched participant with epilepsy, acquired with 
the same protocol used for the MICRA dataset (Koller et al., 2021). The MRI data from the healthy 
volunteer used in this work are part of a previously published dataset, publicly available at https://doi.​
gin.g-node.org/10.12751/g-node.5mv3bf/. We do not have the authorization to share the epileptic 
patient data. Data were acquired on a Connectome 3T scanner using a single-shot spin-echo, echo-
planar imaging sequence with b-values = [200, 500, 1200, 2400, 4000, 6000] s mm−2, [20, 20, 30, 61, 
61, 61] uniformly distributed directions, respectively, and 13 non-diffusion-weighted images at 2 mm 
isotropic resolution. TR was set to 3000 ms, TE to 59 ms, and the diffusion gradient duration and 
separation to 7 ms and 24 ms, respectively. Short diffusion times and TE were achieved thanks to 
the Connectom gradients, allowing to enhance the SNR and sensitivity to small water displacements 
(Jones et al., 2018; Setsompop et al., 2013). We considered the noise as Rician with an SNR of 50 
for both subjects.

Data were preprocessed using a combination of in-house pipelines and tools from the FSL 
(Andersson et al., 2003; Andersson and Sotiropoulos, 2016; Smith, 2002; Smith et al., 2004) and 
MRTrix3 (Tournier et al., 2019) software packages. The preprocessing steps included brain extraction 
(Smith, 2002), denoising (Cordero-Grande et al., 2019; Veraart et al., 2016), drift correction (Vos 
et al., 2017; Sairanen et al., 2018), susceptibility-induced distortions (Andersson et al., 2003; Smith 
et al., 2004), motion and eddy current correction (Andersson and Sotiropoulos, 2016), correction 
for gradient non-linearity distortions (Glasser et al., 2013), and Gibbs ringing artefacts correction 
(Kellner et al., 2016).

dMRI data analysis
Diffusion signals were first normalized by the mean non-diffusion-weighted signals acquired for each 
voxel. Each voxel was then estimated in parallel using the µGUIDE framework. For each observed 
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signal ‍xv‍ (i.e. for each voxel), we drew 50,000 samples via rejection sampling from ‍qϕ(θi|xv)‍ for each 
model parameter ‍θi‍, allowing to retrieve the full posterior distributions. If a posterior distribution was 
not deemed degenerate, the MAP, uncertainty, and ambiguity measures were extracted from the 
posterior distributions.

The manually defined summary statistics of the SM are defined using a cumulant expansion, which 
is only valid for small b-values. We therefore only used the ‍b ≤ 2500‍ s mm−2 data for this model. In 
order to obtain comparable results, we restricted the application of µGUIDE to this range of b-values 
as well. An extra b-shell (b-value = 5000 s mm−2; 61 directions) was interpolated using mapl (Fick 
et al., 2016) for the extended-SANDI model when using the method developed by Jallais et al., 2022 
based on summary statistics.

The training of µGUIDE was performed as described in section Validation in numerical simulations 
and an example of training dataset and input signal vector is provided in Figure 8.

All the computations were performed both on CPU and GPU (NVIDIA GeForce RTX 4090).
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Figure 8. Example training set and input signals for µGUIDE. (A) Examples of input synthetic data vectors and corresponding ground truth model 
parameters used in the training set of Model 1 (Ball&Stick). (B) Example of input measured signals from a voxel in a healthy participant, used for 
inference.
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G-Node, 10.12751/g-
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Appendix 1
Correlation analysis between features extracted by µGUIDE and 
manually defined summary statistics
Appendix 1—figure 1 correlation presents the correlation matrices obtained from the correlation 
between the MLP-extracted features from µGUIDE and the manually defined summary statistics 
defined in section Application of µGUIDE to biophysical modelling of dMRI data, considering 
noisy simulations (SNR = 50). For each model, at least one feature extracted by µGUIDE is not or 
weakly correlated with the summary statistics. Additional information, not contained in the summary 
statistics, is extracted by the MLP from the input signal, leading to reduced bias, uncertainty and 
ambiguity in the parameter estimates (see Figure 4).
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Appendix 1—figure 1. Correlation matrices between features extracted by the Multi-Layer Perceptron (MLP) in 
µGUIDE and manually defined summary features for the three models.
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Appendix 2
Impact of noise on the posterior distributions
Noise in the signal impacts the fitting quality of a biophysical model. Appendix 2—figure 1A shows 
example posterior distributions for one combination of Model 2 parameters, with varying noise 
levels (no noise, ‍SNR = 50‍, and ‍SNR = 25‍). Appendix  2—figure 1B presents uncertainties values 
obtained on 1000 simulations with varying SNRs. We observe that, as the SNR reduces (i.e. as the 
noise increases), uncertainty increases. Noise in the signal contributes to irreducible variance. The 
confidence in the estimates therefore reduces as the noise level increases.

||A)

B) ||

% % % % %

Appendix 2—figure 1. SNR uncertainty comparison between signals with different noise levels: no noise, 
‍SNR = 50‍, and ‍SNR = 25‍ using Model 2. (A) Posterior distributions obtained on one example parameter 
combination (vertical black dashed line) with the three noise levels. (B) Histogram of the uncertainty obtained for 
1000 signals with different noise levels (in %). Similar ground truths are used for each noise level.
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Appendix 3
Masked Autoregressive Flows
The conditional probability density function approximators used in this project belong to a class of 
neural networks called normalizing flows (NFs [Papamakarios et al., 2021]). NFs provide a general 
way of transforming complex probability distributions over continuous random variables into simple 
base distributions ‍p(z)‍ (such as normal distributions) through a chain of invertible and differentiable 
transformations ‍fϕ‍. By applying the change of variable formula, the target distribution ‍qϕ(θ|x)‍ can 
be written as:

	﻿‍ qϕ(θ | x) = p
(
fϕ(θ; x)

) ��det Jfϕ (θ; x)
�� ,‍� (9)

where ‍z = fϕ(θ; x)‍ is invertible and differentiable (i.e. a diffeomorphism), and ‍Jfϕ (θ; x)‍ is the Jacobian 
of ‍fϕ(θ; x)‍. The forward direction allows for density evaluation, that is learning the mapping between 
the target and the base distributions, that is learning the parameters ‍ϕ‍. The inverse direction allows 
to estimate a density estimator ‍qϕ(θ | x0)‍ by sampling points ‍z‍ from the base distribution and 
applying the inverse transform ‍f

−1
ϕ (z; x0)‍. A main requirement is that the flow needs to be expressive 

enough to approximate any arbitrarily highly complex distribution. An interesting property of 
diffeomorphisms is that they are closed under composition, which means that a composition of 
K diffeomorphisms ‍f = f1 ◦ f2 ◦ · · · ◦ fK ‍ is also a diffeomorphism, and the Jacobian determinant is 
the product of the determinant of each component. Combining multiple transformations allows to 
increase the expressivity of the general flow. We obtain:

	﻿‍

qϕ(θ | x) = p
(
fϕ(θ; x)

)
log

���det
∏K

k=1 Jfk
(
θi; xi

)���
= p

(
fϕ(θ; x)

)∑K
k=1 log

��det Jfk
(
θi; xi

)��
‍�

(10)

Flows need to be flexible and expressive enough to model any desired distribution but also need 
to be computationally efficient, that is, computing the associated Jacobian determinants need to be 
tractable and efficient. Among a number of proposed architectures such as mixture density networks 
(Bishop, 1994) or neural spline flows (Durkan et al., 2019), we focused on MAFs (Papamakarios 
et al., 2017), which has shown state-of-the-art performance as well as the ability to estimate multi-
modal posterior distributions (Gonçalves et al., 2020; Papamakarios et al., 2021; Patron et al., 
2022).

Autoregressive flows are universal approximators and have the form ‍z
′
i = τ (zi; hi)‍ where ‍hi = ci(z<i)‍ 

(Papamakarios et  al., 2021). ‍τ ‍ is termed the transformer and is a stritly monotonic function 
parametrized by ‍hi‍, and ‍ci‍ the ith conditioner. Each ‍hi‍ and therefore each ‍z

′
i‍ can be computed 

independently in parallel, helping to keep a low computation time. The conditioner constraints each 
output to depend only on variables with dimension indices less than ‍i‍, which makes the Jacobian of 
the flow lower diagonal. Its determinant can then be obtained easily as the product of its diagonal 
elements. To efficiently implement the conditioner, this method relies on the MADE (Germain 
et  al., 2015) architecture. To create a neural network that obey the autoregressive structure of 
the conditioner, a fully connected feedforward neural network is multiplied to binary masks, which 
removes some connections by assigning them a weigh of 0. The binary masks can easily be obtained 
by following a few simple steps (see Appendix 3—figure 1 for an illustration):

1.	 Label the input and output nodes between 1 and ‍D‍, ‍D‍ being the dimension of the input vector 
‍z‍.

2.	 Randomly assign each hidden unit a number between 1 and ‍D − 1‍, which indicates the number 
of inputs it will be connected to.

3.	 For each hidden layer, connect the hidden units to units with inferior or equal labels.
4.	 Connect output units to units with strictly inferior labels.

For µGUIDE’s implementation, we use a combination of five MADEs. As a result, the MAF architecture 
only needs a single forward pass through the flow and, combined with the low-cost computation of 
the determinant, allows for fast training and evaluation of the posterior distributions.

https://doi.org/10.7554/eLife.101069
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Appendix 3—figure 1. Schematic of Masked Autoencoder for Distribution Estimation (MADE) autoregressive 
network construction.

https://doi.org/10.7554/eLife.101069


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Jallais and Palombo. eLife 2024;13:RP101069. DOI: https://doi.org/10.7554/eLife.101069 � 28 of 28

Appendix 4
Posterior predictive checks
PPCs are a common safety check to verify inference is not wrong. The idea is to compare input 
signals with generated signals from samples drawn from the posterior distributions. If the inference 
is correct, the generated signals should look similar to the input signal.We performed the following 
steps:

•	 Sample ‍θi‍‍θi‍ from the prior distribution: ‍θi ∼ p(θ)‍
•	 Generate the corresponding signals using the forward model: ‍xi = M(θi)‍
•	 Perform the inference and estimate the posterior distributions ‍p(θi|xi)‍
•	 Sample ‍NPP‍ samples ‍θi,s‍ from ‍p(θi|xi)‍
•	 Reconstruct the signals from the sampled ‍θi,s‍ using the forward model: ‍xi,s = M(θi,s)‍
•	 Compare the obtained ‍xi,s‍ with ‍xi‍.

Appendix 4—figure 1 presents results on Model 2 (SM), on both noise-free and noisy signals (Rician 
noise with SNR =50) for ‍N = 10‍ random combinations of model parameters, and ‍NPP = 100‍. As dMRI 
data have a high dimensionality, we report the direction-average signal. Plain lines show the signals 
‍xi‍, and the shaded areas correspond to the area in which the corresponding ‍xi,s‍ fall. ‍xi‍ lie within the 
support of ‍xi,s‍, indicating the inference is not wrong. Note that the support of ‍xi,s‍ is bigger for noisy 
simulations, reflecting the wider posterior distributions obtained from the inference.
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Appendix 4—figure 1. Posterior predictive checks. Comparison between signals ‍xi‍ generated using random 
parameter combinations and their reconstructions using samples from ‍p(θi|xi)‍.
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