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1. Introduction

Factors such as rising energy prices, legal environment 
constraints and an increasing social interest in sustainable and 
environmental aspects motivate energy-intensive industrial 
sectors to become more energy efficient and establish energy 
management systems within the manufacturing systems [1]. To
reduce overall energy consumption and respond flexibly to the 
fluctuating production of renewable energies, such systems 
must overcome various challenges at all levels of production, 
from increasing energy efficiency at the asset level to energy-
optimised production planning at the factory level [2]. Digital 
twins, which are a virtual representation of a physical system 
and reflect its state and behaviour in real-time by linking 
different data and information sources, are suitable for solving 
these challenges by monitoring, analysing, simulating, and 

predicting aspects of the corresponding manufacturing system
to drive real-world decisions [3]. Both physics-based and data-
driven modelling approaches are suitable for such an 
implementation. Thereby, hybrid digital twins are becoming 
increasingly popular. They combine both modelling techniques 
and offer greater accuracy and decision-making capabilities 
that are particularly valuable for prognosis [4]. The hybrid 
approach leverages the strengths of each modelling technique 
to gain more comprehensive insights and facilitate sustainable 
energy management in manufacturing systems, which promises 
a high potential to reduce energy costs significantly. The 
integration of such digital twin technologies into current 
manufacturing systems poses major challenges for SMEs, as 
they face high technical barriers, scalability issues and 
significant investment and operational costs. These hurdles 
underscore the urgent need to make digital twin technologies 
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accessible and viable for SMEs, considering their limited 
financial resources, expertise, and outdated systems [5].

This paper presents a concept for a lightweight digital twin 
that uses a hybrid modelling approach and can be applied at 
different manufacturing system levels, with a specific focus on 
addressing the needs and challenges of SMEs. Physics-based 
models and data-driven models are merged to overcome the 
challenges of both modelling techniques of a digital twin and 
enable more energy-efficient and flexible manufacturing. The 
paper is structured as follows: Section 2 provides a 
comprehensive overview of the technologies and discusses the 
challenges in realising a hybrid digital twin (DT) within 
manufacturing SMEs. The state of the art in modelling
techniques is summarised, taking both approaches into account. 
To achieve standardisation, the concept of asset administration 
shells is presented and adopted to use it within Microsoft
Azure. Considering the state of the art, an architecture for a 
lightweight hybrid DT, specifically tailored to the requirements 
of SMEs, focusing on energy optimisation and the integration 
of the energy factor in decision-making is proposed (Section 
3). Section 4 shows how the proposed concept can be applied 
to a real use case from the electronics industry, specifically for 
PCB manufacturing with SMT lines, highlighting its practical 
relevance for SMEs. The paper concludes with section 5, which 
gives an outlook on future research directions.

2. State of the art

2.1. Digital Twins

According to the Industrial Digital Twin Association 
(IDTA) [5], a digital twin is defined as the digital replica of an 
asset, process or system that maps its state and behaviour of the 
real world in the digital world. Key elements of a digital twin 
include its attributes that describe its characteristics, models 
that define, predict, and simulate its behaviour and services that 
enable interaction with external services [3]. The main 
objective of a digital twin within a manufacturing system is to 
eliminate data silos by combining and integrating isolated data 
sources and models in a semantically consistent way to provide 
an integrated, unified view of data and information to support 
decision-making or enable self-controlled closed loops [7]. 
Therefore, DTs are based on linking operational data 
originating from sensors or IoT devices, information data 
originating from Manufacturing Execution Systems (MES) or 
Enterprise Resource Planning (ERP) systems and digital, 
application-specific models. This enables the models used to 
process real-time data to carry out simulations considering the 
current status of the production system [8]. Within the 
manufacturing system, DT can be employed at micro and macro
levels [9]. At the factory level, for example, digital twins are 
used to monitor the physical properties and characteristics of 
the manufacturing system, including energy value stream 
relevant features [10] such as energy consumption or error 
rates. At the process level, digital twins can be used to monitor 
production processes under DIN 8580, such as cutting or 
joining, which also includes soldering. At the machine level, 
digital twins are used to monitor machine tools, components 

and measuring devices. As mentioned above, models play a 
fundamental role in the use of DTs in manufacturing systems. 
In addition to traditionally used physics-based simulation 
models, data-driven models are increasingly being used with 
current advances in Machine Learning (ML). Both types of 
models offer complementary advantages, which is why they are 
increasingly being used as hybrid models within DTs.

2.2. Hybrid-Modelling 

As already described, a distinction is mainly made between 
physical simulation models and data-driven models. Physic-
based models follow the white-box principle and describe a 
phenomenon of a real manufacturing system based on known 
prior knowledge (such as physical equations or physically 
based relations). For the simulation to represent the physical 
counterpart in the best possible way, specific information about
the real manufacturing system based on expert knowledge is 
required for the description of its physical state [9]. Therefore, 
task-specific simulations are performed with input data from 
multiple sources to account for the boundary conditions of the 
simulation and provide accurate predictions Examples of 
physics-based models within MS are finite elements method 
(FEM) [11], energy simulations [2] and value stream mapping 
(VSM) [12]. Examples include FEMs for modelling a
production process such as soldering and the optimisation of its 
manufacturing parameters as well as synchronised VSM with
the real system for discrete event simulations.

In contrast, data-driven models follow a black-box principle, 
where only the input and output of the model are viewed, 
without knowing in detail how the model obtains its results. 
They consist of computational algorithms that process large 
amounts of data and apply techniques such as data mining, 
machine learning or deep learning to extract insights from 
historical data and apply them to incoming real-time data [4]. 
Within manufacturing systems, data-driven models have a 
wider range of applications as little to no specific expertise is 
required for modelling. The aim is to gain insights from mainly 
high-frequency data, such as OT from sensors or machines, to 
enable e.g. classification of manufactured parts (process), 
predictive maintenance (machine level) or production 
scheduling based on manufacturing process (factory) 
predictions [4].

To gain a comprehensive understanding of the 
manufacturing system, multiple models and data need to work 
together. A hybrid digital twin (DT) combines information 
from isolated DT models to identify and communicate less 
optimal behaviour at an early stage. This fusion of physics-
based simulation and data-driven modelling techniques makes 
it possible to leverage the advantages of both approaches. The 
hybrid approach, following the grey box principle, integrates 
the proven expertise from physical simulations into data-driven 
models. This results in more accurate predictions and a better 
understanding of the past and future of a modelled
manufacturing system element [3][9]. A typical combination 
could be the use of a simulation model to generate training data 
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for machine learning models if not enough training 
data/parameters are available.

2.3. Standardisation based on Asset Administration Shell

As mentioned above, DTs consist of models and attributes 
that describe the characteristics of the real object in the digital 
world. In the world of Industry 4.0, each asset is assigned an 
Asset Administration Shell (AAS). The AAS consists of several 
sub-models (SM) in which all information and functions of a 
specific asset - including its characteristics, properties, status, 
parameters, measurement data and capabilities - are described 
in UML in a standardised, technology-neutral way. It enables 
the use of various communication channels and applications 
and serves as a link between I4.0 objects and the networked,
digital and distributed world [13]. It facilitates uniform access 
to information and functions to promote interoperability 
between the applications of a manufacturing company. Through 
a standardised API, data from assets with proprietary 
communication interfaces can be retrieved as an AAS. The 
physical positioning of AASs can be at different levels of the 
factory hierarchy [14]. AASs thus offer the opportunity to make 
data discoverable and identifiable, to enable access through 
standardised APIs and to form a digital basis for future 
autonomous systems. A powerful key concept of the AAS 
metamodel is that all relevant information is provided by sub-
models. The used sub-models within the metamodel of the AAS 
are each adapted to the functionality of the represented device. 
There are already various e-class standardised templates for this
[3]. The AAS approach for standardisation can also be applied 
to other technologies. For example, Mayrbäurl et al. [15] tested 
and implemented the applicability of the AAS as the basis for 
building an ontology for Smart Manufacturing in Microsoft's 
open standard for describing models of device and logical DTs, 
the Digital Twin Definition Language (DTDL).

2.4. Research Gap

In the literature, several research can be found on DT 
technologies, the different modelling approaches or the use or 
adaption of AAS. Helal et al. [16] provide a holistic overview 
of approaches for comparing available open-source and 
proprietary technologies and methods, their characteristics and 
their integration and combination possibilities. Kasilingam et 
al. [17] provide a high-level overview of hybrid modelling in 
manufacturing. The literature review focuses on the clear 
combination of physics-based and data-driven modelling in the 
manufacturing context. Karanjkar et al. [18] presented a 
discrete-event digital twin to improve the energy efficiency of 
an SMT PCB assembly line and evaluated the impact of buffer 
storage using simulations of the digital twin. Data-driven or 
hybrid approaches and other implementation levels were not 
considered.

Langlotz et al. [2] provide an assessment table to describe 
data-driven and physics-based models and their inputs, outputs 
and other requirements to support the implementation of hybrid 
models in manufacturing systems and their application for 

energy management. This table allows users to get an overview 
of the requirements for implementing a hybrid model. 
However, it should be noted that this work does not provide a 
detailed analysis of the challenges faced and standardisation 
approaches and applicability to all levels of manufacturing are 
not considered in detail. The research of Wagner et al. [4]
focuses on the development of a conceptual framework that 
guides the implementation of hybrid models in industrial 
settings where limited model input environments need to be 
dealt with. Contains the steps to be implemented but does not 
consider the combination of models of different manufacturing 
levels, system architectures, standardisation, or their use for 
more sustainable manufacturing. Jacoby et al. [3] present an 
architecture approach to realise a hybrid DT based on AAS to 
generate data for training ML models using simulation in case 
the data is not available/reliable or the models are not precise. 
The approach is evaluated on asset level considering a use case 
of the process industry. 

However, most studies focus on specific aspects without 
considering the challenges and standardization needs of SMEs.
SMEs face difficulties due to the high technical barriers, 
scalability issues, and significant costs associated with 
implementing DT technologies into their existing production 
systems [5]. 

What is lacking in the literature is a comprehensive 
exploration of the challenges and standardization approaches 
related to the integration of hybrid models across different 
manufacturing stages that are specifically tailored to the needs 
and constraints of SMEs. Considering the hurdles SMEs face 
when adopting digital twin technologies, there is an urgent need 
to develop a concept for hybrid DT models based on a 
standardized approach that removes the technical and financial 
hurdles and provides SMEs with the necessary tools to achieve 
sustainable and flexible production processes and remain 
competitive in the market.

3. Approach to lightweight hybrid modelled DT

The following section presents a concept of what the 
architecture of hybrid DTs should look like to meet the 
requirements of standardisation and enable hybrid-modelled 
applications for energy optimisation and improved flexibility
of the production system. Based on Jacoby et al. [3], the 
approach should fulfil the following requirements:

• Interoperability: requires standards for the DT metamodel.
• Interoperability/Extensibility within DT: DT must enable 

problem-specific application development and a 
combination of modelling approaches.

• Interoperability within MS: DT should enable the 
development of applications for all manufacturing levels 
(factory, process, asset).

• Extensible: DT should handle different types of modelling 
techniques (using external simulation tools

To fulfil the requirements and describe the different levels 
of the manufacturing system with its properties in the best 
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possible way, it is necessary to combine several data sources 
and models into a manufacturing ontology (e.g. according to 
ISA 95). The general architecture for the realisation is 
presented in Figure 1. The illustration shows a modified layer 
concept from RAMI 4.0 [19] for energy-efficient
manufacturing and follows the approach presented by Cavalieri 
and Salafia [20] and the AAS [6], and the ontology that is used 
by Microsoft Azure Digital Twins [15]. It highlights the several 
data streams and relationships between different components. 
From a high-level point of view, the presented general
approach can be divided into three sections – a connection 
layer, an operation layer, and an application layer.

The connection layer maps the connection of the various real 
physical devices and enables DT to access the various data 
sources. This includes the connection of sensors or machines 
through to the connection to higher-level systems such as ERP 
or MES. The operational level in the architecture of hybrid 
digital twins plays a central role in the representation of assets, 
process information and relationships in production. The 
modelling is based on the AAS approach for the standardized 
representation of assets. This enables the use of various 
standardized submodels to accurately describe the 
characteristics and functions of the assets. Information from 
various sources, including sensors and higher-level systems 
such as MES, is integrated to ensure a comprehensive digital 
representation of the assets. The individual systems are then 
assigned to the relevant process step. In summary, this layer 
enables the correlation of multiple data streams and 
standardizes the information for the development of specific 
applications. Implementing this approach via a cloud service 
such as Azure Digital Twins offers SMEs an efficient way to 
adapt and implement these AAS principles and reduces the 
hurdle to start digitization.

The created manufacturing ontology serves as a data source 
for the development of problem-specific applications such as 
visualisation and monitoring, prediction, or simulation at 
various application levels, visualised within the application 
layer. With the help of appropriate query commands, the 
required data can be retrieved from the DT and used as input 
for models or simulations. These can be executed either 
internally or in an external environment, with cloud providers 
such as Azure benefiting from a range of additional services 
that enable the creation of such applications in the same 
environment. Bidirectional data transfer allows the models 
developed within the application to be updated with DT 
changes or new simulated or predicted properties to be returned 
to the DT for use in other applications or for direct control, e.g. 
by adjusting configuration parameters. The implementation of 
energy-efficient production is achieved by combining different 
models. On the one hand, a data-driven machine learning 
model is used to predict the internal power generation of the 
photovoltaic (PV) system. On the other hand, an energy value 
stream simulation is used to predict the internal power 
consumption of production. Together with an external 
electricity price forecast, the simulated and predicted values are 
used as input for a decision-making tool, which optimizes the 
detailed planning of production based on these predictions.

Fig. 1. RAMI 4.0: Modified layer concept:for energy-efficient manufacturing 

With the help of the layer concept presented in Figure 1, 
hybrid DTs can be developed to enable energy-efficient 
manufacturing considering different production stages. The 
layer concept presented is validated and applied to a real use 
case of an SME in electronics manufacturing to improve the 
flexibility of the MS and optimise energy consumption.

4. Use-case: Energy optimisation at factory level

Given rising energy prices and the increasing social interest 
in sustainability, it makes sense to make manufacturing systems 
more flexible and to increase energy efficiency and the use of 
self-generated energy. Therefore, the presented use case aims 
to develop a hybrid DT application at the factory level to reduce 
the energy costs of a factory and increase the penetration of 
renewable energy using the explored DT approach. For this 
purpose, a real manufacturing system of an SME is considered, 
which consists of several identical SMT lines for PCB 
production and an installed PV system on the manufacturing 
side. Since the reflow oven with its various heating and cooling 
zones is the main power consumer within the manufacturing
process, only this is considered to simplify the logic.
The relevant properties for describing the characteristics of the 
SMT soldering units and the PV system are described below. 
To achieve standardisation, the layer concept presented in 
section 3 is used. The physical assets are characterised using 
models and sub-models and linked to a manufacturing 
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Fig. 2. Use-Case: Layer concept and application for energy-efficient PCB manufacturing

ontology. The implementation is done with Azure Digital 
Twins (ADT) and other Azure services that access the ADT 
service endpoint.

To describe the SMT soldering unit, the sub-models SM 
identification, MES connection, energy efficiency and 
soldering are used. As the lines are identical, these sub-models
can be reused to describe the other SMT soldering units. The 
SM identification is used to recognise and distinguish the 
individual machines and contains properties such as machine 
ID, model type and age. The SM MES Connection indicates the 
status of the machine, i.e. whether the machine is producing, 
ready for production, has a fault or is being serviced. It 
contains, for example, the properties' production status, 
operating hours, current job ID and the planned runtime of the 
job. Factors that influence the status of the machine are not 
mapped in this SM. The SM energy efficiency specifies the 
details of the energy consumption. It contains measured values 
for properties such as the electricity consumption, the 
integrated electricity consumption over time (e.g. since the start 
of the current job) and the cumulative start date. The SM 
Soldering contains a range of functions to describe, start, end,
or simulate the soldering process. This includes properties such 
as the feed rate of the conveyor belt, the planned and actual 
cycle time per panel (via timestamps), the temperature T1 -Tn

per heating or cooling zone, the start of the job, the selected 
production program or the workpiece served.

The PV system, which is modelled using SMs for 
identification, technical data, and PV generation, is also located 
within the production ontology. The SM identification contains 
the model type, an ID, and the age of the system. The SM 
technical data contains the technical system details, installed
kW peak, kW peak per module, number of modules, orientation 
& angle. The SM for PV generation specifies the details of 
energy generation, via properties such as current generation in 
kW, timestamp, and associated environmental features. The 
problem-specific application is created based on the described 
manufacturing ontology. Only the properties required for the 
model are retrieved from the ontology. To solve the described 
problem at the factory level, a hybrid approach consisting of 
physics-based simulation and data-driven prediction is 
required. The data-driven model aspires to predict the power
generation of the installed PV system. Therefore, the recorded
historical data of the power generation and the corresponding 
surrounding weather conditions is needed. Then, the trained
ML algorithm is applied to an external weather forecast for 
time-series forecasting to predict the power generation of the 
PV system (internal energy supply).

The physics-based model is used to simulate the energy 
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consumption (internal energy demand) of the manufacturing 
system. The physics-based model aims to calculate the runtime 
and the expected power consumption per order. Determining
these new parameters requires the current production plan from 
the MES, which contains the details of the orders and the 
planned resources, as well as the measured and characterising 
properties of the DT for the respective SMT soldering units as 
model input. The simulated output contains information 
regarding the energy consumption and the expected runtime 
per order, depending on the selected resource respectively SMT 
unit for manufacturing.

The task of the hybrid model is to combine the output of 
both models and enable better decision-making. The required 
input consists of the output of the two models described above, 
in this case, the prediction of the generated electricity from the 
PV system and the simulated parameters, which include the 
energy consumption and the runtime per order concerning the 
selected SMT soldering unit. As a third input, the decision 
model receives an external market forecast (external energy 
supply). The aim is to adapt the energy consumption to the 
company's power generation to minimise electricity costs and 
maximise the proportion of renewable energy used. The result 
of the model is an adjusted production schedule that 
recalculates the start time and the selected resource to 
manufacture each order.

Figure 2 shows an overview of the PCB manufacturing use 
case of an SME, including the required components, properties,
and their interaction. The status of the individual 
machines/systems is monitored via sensors and the integration 
of PLC and MES data. It is represented by high-frequency (e.g. 
time-series measurements) and low-frequency data (e.g. 
reported start and end time of an order). The data originating 
from different data sources is standardised using a predefined 
metamodel that describes the properties of the counterpart. The 
data can be used directly for monitoring or as input for the 
hybrid model to optimise the energy supply (ES). The data from 
the various data streams bundled in the manufacturing ontology 
provides general information about the current process and the 
status of the manufacturing system. The schematic data is 
stored in a database to enable data-driven decisions based on 
historical data.

The figure also shows an example of how independent 
physics-based and data-driven models can be combined into a 
hybrid application to solve complex issues such as the 
optimisation of the production schedule based on energy 
parameters. It also shows how the results of the hybrid model 
can be used to directly interact with the assets, e.g. to 
automatically adjust the next scheduled job ID and the 
corresponding production program based on the model output.

5. Conclusion and Outlook

In this paper, an innovative approach to applying digital 
twins in manufacturing systems is presented, focusing on two 
key areas. First, a standardised metamodel for data acquisition 
is being developed that reflects the entire manufacturing 
environment in a manufacturing ontology and facilitates the 
transfer of asset data structures across different parts of the 

production system by adapting AAS-based sub-models within 
a cloud service like ADT. This standardised approach 
simplifies the integration of new assets and applications at 
different manufacturing levels and increases the flexibility and 
scalability of DT. It also provides an access point for the 
development of problem-specific applications through which 
the various data streams of the production system can be 
accessed in a bundled manner.

Using cloud providers such as Microsoft Azure to 
implement the operational and application layer as a service on 
a subscription basis offers a cost-effective and scalable option 
for small and medium-sized manufacturing companies. It 
lowers the barrier to the adoption of new technologies and 
removes the need for significant upfront investment in 
technical infrastructure and expertise, enabling SMEs to 
harness the power of hybrid DTs while leaving the technical 
complexity to the service provider.

Secondly, the combination of different modelling 
technologies into a hybrid DT at factory level is proposed to 
optimize the energy efficiency of production. Based on the 
simulation of the energy value stream, prediction of PV power 
generation and prediction of the electricity market, an approach 
is proposed to make production planning more flexible and 
manufacturing more sustainable. The aim is to maximize the 
use of renewable energy and self-generated electricity and 
reduce overall energy costs. The performance of the presented 
application to improve the energy efficiency of manufacturing 
SMEs still needs to be validated during the running process 
over a longer period.

Outlooking future research, the applicability of the 
presented layer concept for different MS levels and use cases 
should be evaluated in more in-depth. Studies could focus on 
how the ontology can be used to combine multiple models 
across different manufacturing levels to account for their 
mutual influence and achieve a superior optimum. In addition, 
studies could investigate the addition of technologies such as 
battery storage to improve overall energy efficiency and 
optimize the control of the MS system. Furthermore, the 
applicability and benefits of the proposed layer concept and the 
presented energy supply application to SMEs in different 
sectors (with high or low energy-consuming processes) can be 
evaluated.
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