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A B S T R A C T

Human-robot collaboration (HRC) has emerged as a pivotal paradigm in manufacturing, integrating the strengths
of both human and robot capabilities. Neglecting human physical fatigue may adversely affect worker health
and, in extreme cases, may lead to musculoskeletal disorders. However, human fatigue has rarely been
considered for decision-making in HRC manufacturing systems. Integrating adaptive decision-making to optimise
human fatigue in HRC manufacturing systems is crucial. Nonetheless, real-time perception and estimation of
human fatigue and decision-making informed by human fatigue face considerable challenges. To address these
challenges, this paper introduces a human digital twin method, a bidirectional communication system for
physical fatigue assessment and reduction in human-robot collaborative assembly tasks. The methodology en-
compasses an IK-BiLSTM-AM-based surrogate model, which consists of inverse kinematics analysis (IK), bidi-
rectional long short-term memory (BiLSTM), and attention mechanism (AM), for real-time muscle force
estimation integrated with a muscle force-fatigue model for muscle fatigue assessment. An And-Or graph and
optimisation model-based HRC task planner is also developed to alleviate physical fatigue via task allocation.
The efficacy of this approach has been validated through proof-of-concept assembly experiments involving
multiple subjects. The results show that the IK-BiLSTM-AMmodel achieves a minimum of 8 % greater accuracy in
muscle force estimation than the baseline methods. The 12-subject assessment results indicate that the task
planner effectively reduces the physical fatigue of workers while performing collaborative assembly tasks.

1. Introduction

Human-Robot Collaboration (HRC) has emerged as a vital
manufacturing paradigm that integrates the versatility of human
workers with the strength and consistency offered by robots (Wang
et al., 2020). This paradigm provides a cooperative environment where
diverse agents collaboratively execute manufacturing tasks within a
shared workspace. On the other hand, research on digital twins, espe-
cially human digital twins (Peruzzini et al., 2023), has accelerated the
development of the HRC by creating virtual counterparts of physical
models in recent years. Numerous research efforts have been channel-
ling digital twin technologies toward creating ergonomic HRC
manufacturing environments (Bilberg and Malik, 2019).

In assembly tasks, manual labour inevitably leads to worker fatigue.
In severe cases, human fatigue can lead to musculoskeletal disorders,
detrimentally impacting the well-being of individuals. However, incor-
porating the factors of human fatigue into HRC assembly lines presents

several challenges. One primary challenge is the absence of a real-time
muscle-specific approach for assessing human physical fatigue levels.
This is essential for mitigating the negative impact caused by human
fatigue (Wang et al., 2022). For instance, subjective assessment meth-
odologies, such as the Borg RPE scale (Williams, 2017), may result in
imprecise evaluations and potentially disrupt standard workflows. Er-
gonomic approaches, such as Rapid Upper Limb Assessment
(McAtamney and Corlett, 2004), struggle to accurately reflect individual
differences in human physical fatigue. In addition, musculoskeletal
model-based methods, such as human activity simulation based on
OpenSim (Dembia et al., 2020), present a promising approach for
muscle fatigue assessment. However, this method has a high computa-
tional burden and thus does not meet the needs of real-time muscle fa-
tigue assessment.

On the other hand, fatigue-aware decision-making for physical fa-
tigue reduction in HRC is limited in the literature. Some studies have
focused on developing HRC scheduling algorithms to optimise worker
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fatigue in manufacturing (Yao et al., 2023; Zhang et al., 2022). How-
ever, the validation of these methods has been limited to simulation
levels, lacking support from practical application results. Furthermore,
other studies have focused on role allocation (Merlo et al., 2023; Messeri
et al., 2022) and co-manipulation (Peternel, Fang, et al., 2018) during
the HRC process aimed at alleviating human fatigue. However, their
research focused only on single movement and did not address fatigue
optimisation throughout the entire assembly process, failing to meet the
complexity and uncertainty requirements inherent in product assembly
tasks.

The above analysis reveals a critical gap: the absence of a real-time
tool for assessing worker fatigue and a task planning method in HRC
for human fatigue alleviation. To address the aforementioned research
gaps, this paper proposes a novel human digital twin-based method for
real-time muscle-level physical fatigue assessment and fatigue reduction
among manual workers in HRC assemblies. A surrogate model, namely,
IK-BiLSTM-AM, is introduced to estimate the muscle force caused by
human movements. This model is integrated with a muscle force-fatigue
model to enable analysis of muscle fatigue. Furthermore, an And-Or
graph and single-objective optimisation model-based HRC task
planner are presented, aimed at reducing physical fatigue through dy-
namic task allocation. The human digital twin receives movement data
from the human operator for fatigue estimation and returns allocation
plans to alleviate worker fatigue, forming a bidirectional closed-loop
communication system. The effectiveness and accuracy of this
approach were rigorously validated in a proof-of-concept assembly
experiment, with a particular focus on the surrogate model’s accuracy
and the task planner’s efficiency in alleviating physical fatigue.

The contributions of this paper are summarised as follows:

(1) A surrogate model, named IK-BiLSTM-AM, is proposed for real-
timemuscle force estimation for humanmovements in HRC tasks.

(2) A novel human digital twin-based method is proposed for real-
time human physical fatigue assessment in HRC assembly tasks.

(3) A fatigue-aware task planner is introduced based on an And-Or
graph and optimisation model, which is utilised to distribute
tasks between humans and robots to minimise human physical
fatigue in HRC.

(4) A real-world HRC assembly experiment involving multiple sub-
jects is designed to validate the efficacy of the proposed surrogate
model and the task planner.

2. Literature review

2.1. Human physical fatigue assessment methods

Manual workers who engage in tasks with high physical demands,
especially those in assembly line work, face a high risk of developing
musculoskeletal disorders (Onaji et al., 2022). This heightened risk is
caused by prolonged and repetitive tasks, particularly those involving
repetitive hand or arm movements. Implementing effective fatigue
management strategies in the workplace is a practical approach to
mitigate these risks. Various techniques have been suggested for
measuring physical fatigue, encompassing both subjective self-reports
and objective measurements. However, these existing methods fall
short of providing continuous, automatic, and precise assessments of
physical fatigue.

Subjective fatigue assessment methods rely on workers self-reporting
their physical fatigue levels based on personal perceptions during work.
Notable examples include the Borg RPE scale and the Borg CR10 scale
(Williams, 2017). However, these subjective methods present certain
limitations: (1) the accuracy of the assessment results can be question-
able, and (2) conducting these assessments may disrupt regular work
activities.

On the other hand, there are three main categories of objective
methods for assessing fatigue: physiological indicators, ergonomic

methods, and biomechanical methods. Given that human physical ac-
tivity is fundamentally a physiological process, fatigue can be evaluated
through physiological signals, such as heart rate (Argyle et al., 2021)
and surface electromyography (Wang et al., 2021). Nevertheless, both
methodologies are influenced by individual physiological and
biochemical factors, as well as external environmental factors.

Ergonomic approaches can evaluate worker fatigue to facilitate
comfortable engagement in repetitive motions while minimising injury
risks. Notable examples of such methods include the Rapid Upper Limb
Assessment and Rapid Entire Body Assessment (McAtamney and Corlett,
2004). However, a primary shortcoming of ergonomic methods lies in
their limited accuracy in assessing human body fatigue. These ap-
proaches often overlook differences in human anthropometry, which
can significantly influence the precision of the assessment results.
Additionally, they tend to rely on simplified representations of human
anatomy for fatigue evaluation, potentially failing to accurately reflect
the variability inherent in human behaviours (Plus, 2018). As a result,
assessments derived from different ergonomic methods may yield
inconsistent results.

Musculoskeletal models represent digital twins of the human body,
comprising computational representations of bodily structures and
functions (van der Have et al., 2023). They are increasingly used for
assessing biomechanical fatigue by simulating the dynamics of bones,
joints, and muscles during physical activities. These simulators, such as
OpenSim (Dembia et al., 2020), offer valuable insights into the physical
strains that contribute to the development of physical fatigue. However,
the complexity inherent in musculoskeletal models requires multiple
data sources, such as human body movement and contact forces. This
requirement can lead to extensive preparation times, even for experts in
the field. Furthermore, the computational demands for analysing
musculoskeletal models are significant (Aftabi et al., 2021), posing a
challenge for their real-time application in various scenarios, including
HRC. Therefore, reducing the complexities associated with these models
and enhancing their practical utility are critical objectives, and they
form the core focus of this study.

2.2. Fatigue mitigation aimed at HRC task planning

In the realm of HRC in manufacturing, recent years have witnessed a
growing body of research on the application of physical fatigue
perception. Notably, many studies have focused on the development of
scheduling algorithms designed to optimise worker fatigue in HRC. To
address the adverse effects of fatigue on worker efficiency, Kai et al.
introduced a discrete bees algorithm for sequencing planning aimed at
minimising the time required for disassembly tasks (Li et al., 2019).
Ming et al. incorporated rest periods into job cycles to facilitate recovery
from accumulated fatigue. Subsequently, they introduced a chemical
reaction optimisation approach for task scheduling, aiming to balance
cycle time with human fatigue management (Zhang et al., 2022). Given
the significant demand for cognitive abilities in HRC tasks, Yao et al.
developed an approach that merges a multimodal-based mental fatigue
perception model with a task reallocation framework. This integration
allows for dynamic adjustments to the work plan in response to the
varying mental states of the worker (Yao et al., 2023). Despite these
advancements, most of these methodologies have undergone validation
at the simulation level, with a notable deficit in evidence from real-
world applications.

Additionally, some studies have focused on role allocation and co-
manipulation during the HRC process. Elena et al. proposed a risk in-
dicator for tasks based on historical actions and the current physical
configuration of the body. This indicator can personalise the identifi-
cation of high-risk tasks for subjects, thereby preventing their allocation
to human operators (Merlo et al., 2023). Luka et al. developed a method
for detecting muscle group fatigue based on musculoskeletal models.
This approach facilitates rapid robot responses in co-manipulation tasks,
directing force distribution to muscle groups of the worker that are less
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fatigued (Peternel, Fang, et al., 2018). Driven by 3D vision-driven
musculoskeletal models, Costanza et al. (Messeri et al., 2022) intro-
duced a task allocation strategy intended to mitigate human fatigue. The
aforementioned methods predominantly rely on camera-based vision
techniques. In complex manufacturing environments, such as work-
shops, vision-based methods are susceptible to occlusion and can suffer
from issues related to accuracy. In addition, these works focused only on
the aspect of movements and lacked effective integration into actual
assembly processes, thereby failing to address the complexities and
uncertainties of assembly operations.

To overcome the identified limitations, this study presents a meth-
odology with inertial measurement unit (IMU) data as input, which has
high accuracy. We utilise an And-Or graph to depict the process of as-
sembly tasks, decomposing hierarchically the complex process into task
units. By integrating these components, our research introduces an
innovative dynamic role allocation strategy specifically designed to
reduce physical fatigue in assembly tasks.

3. Methodology

This research presents a novel method for reducing human physical
fatigue, leveraging a continuous, real-time physical fatigue assessment
approach and fatigue-aware task planner for assembly tasks. The pro-
posed workflow is depicted in Fig. 1. Communication between the
human operator and the digital twin model is bidirectional. The motion
data of the human operator is collected using IMUs for IK-BiLSTM-AM
training and human muscle fatigue assessment. In return, the empir-
ical fatigue data assessed by the surrogate model informs the task
planner, optimising the task plan that guides the agents for the assembly
task. The functionality of the human digital twin is built upon a four-step
process. The initial step involves establishing a personalised digital twin
human model by scaling the universal musculoskeletal model, informed
by movement data obtained from IMUs. Subsequently, our proposed IK-

BiLSTM-AM network for biomechanical analysis, enabled by a deep
neural network, is employed to estimate human muscle forces with IMU
data as input. Following this, the paper introduces a dynamic task
planner that integrates an And-Or graph with an optimisation model,
generating optimised task allocation solutions in real-time. The final
section demonstrates the practical application of this method, featuring
a graphical user interface (GUI) tailored for the task planner in HRC
assembly tasks.

3.1. Musculoskeletal digital twin modelling

The computational musculoskeletal simulation provides an effective
digital twin solution for evaluating muscle contributions to human
motions. A musculoskeletal model, specifically the bimanual upper arm
model (McFarland et al., 2019) was proposed to understand the move-
ments of the human upper limbs. This model allows for the simulation of
bones, joints, and muscles involved in human motions, incorporating
inputs of human motion data and external forces. The kinematic foun-
dation of the model encompasses several key components: the gleno-
humeral joint, elbow, forearm, wrist, thumb, and index finger. Overall,
the model has a total of 28 degrees of freedom and is designed sym-
metrically. Based on the bimanual upper arm model, a musculoskeletal
digital twin method for human fatigue alleviation is proposed in this
work. Fig. 2 depicts the flowchart of the proposed digital twin frame-
work, which consists of three phases: preparation phase, training phase
and execution phase.

During the preparation phase, the bimanual upper arm model is
scaled to align with the manually measured dimensions of the human
operator’s body segments, generating a personalised model. The scaling
is to ensure analysis accuracy and individual relevance. The musculo-
skeletal digital twin model is driven by precise human movement data.
To accurately record upper limb movements, we use the Xsens Awinda
IMUs due to their high accuracy, achieving 1 degree root mean square

Fig. 1. The workflow of the proposed human digital twin model for reducing human physical fatigue. Step 1: scale the universal upper limb model based on the
anthropometric information to obtain a personalised model (Section 3.1). Step 2: an IK-BiLSTM-AM model is proposed for the muscle forces estimation (Section 3.2).
Step 3: An And-Or graph-based optimiser is introduced to generate the HRC assembly allocation plan (Section 3.4). Step 4: A task planner GUI is built for visual
interaction in HRC application (Section 4).
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(RMS) errors in static conditions and 1.5 degrees in dynamic conditions
(Myn et al., 2015). Research (Schepers et al., 2018) shows that RMS
differences for the dominant joint angles using the Xsens system are less
than 5 degrees, which are considered acceptable in most clinical appli-
cations (Di Raimondo et al., 2022). In our study, nine IMUs are strate-
gically attached to specific body parts of each participant: the chest,
scapula, upper arm, forearm, and hand, as shown in Fig. 3. Each IMU
aligns with a corresponding body segment to ensure tracking and
measurement of movements.

Since existing methods fail to meet the requirements for real-time
applications, we have developed a surrogate model, IK-BiLSTM-AM,
for muscle force estimation in HRC, as detailed in Section 3.2. Conse-
quently, the training phase outlined in the flowchart involves training
the proposed network using a dataset collected from biomechanical
simulation, the OpenSim, which uses real human movement data
collected in this work. The execution phase demonstrates how the
trained IK-BiLSTM-AM network is employed for muscle force prediction,
the force-fatigue model is utilised for muscle fatigue estimation
(described in Section 3.3), and the task planner is applied for assembly
task planning (outlined in Section 3.4). The software and the hardware
used in this study are shown in Table 1.

3.2. Muscle force estimation

While biomechanical analysis is effective in estimating human
muscle forces, its computational complexity leads to long processing
times to obtain an optimal estimation of muscle forces. To address this
challenge, adopting advanced deep learning techniques is a viable
alternative to traditional biomechanical computations. Gaussian Process
Regression can be used for muscle force estimation. However, it is
limited when dealing with the non-linear and non-stationary nature of
muscle force estimation (Rogers et al., 2020). Long short-term memory
(LSTM) networks are widely deployed for processing sequential histor-
ical data; however, such networks are generally less efficient at
capturing future contextual information (Van Houdt et al., 2020). This
limitation hinders their ability to extract specific features within the
movement data in this work. Moreover, the intricate interrelations and
varying significance of motion data features pose additional challenges
for LSTMs, affecting the precision of muscle force predictions.

To surmount these obstacles, this paper proposes a novel network
structure named IK-BiLSTM-AM, which integrates IK analysis, BiLSTM,
and an AM. The architecture of this network is depicted in Fig. 4. In this
framework, IK is employed to transform sensor signals into joint rotation
and translation data of the human body. The transformation allows the
BiLSTM to better capture and understand the contextual information in
human motion data, extracting relevant movement features. Concur-
rently, the AM assesses the importance of these features and focuses on
the most relevant feature within the sequence data, thereby refining the
correlation between movement data and muscle forces. The IK-BiLSTM-
AM structure combines the interpretability of IK with the sequential
learning capabilities of BiLSTM and the selective focus of the attention
mechanism to enhance the accuracy and efficiency of muscle force
estimation in real-time applications.

3.2.1. Inverse kinematics
The varying positions and angles of IMUs worn by participants each

time have a significant impact on the surrogate model in analysing
human movement and even on assessing muscle fatigue. We refer to this
impact as wearable errors. To mitigate wearable errors, an IK method,

Fig. 2. The flowchart of the proposed digital twin method for muscle fatigue alleviation.

Fig. 3. The upper limb musculoskeletal model and a participant are equipped
with Xsens IMU sensors for demonstration.

Table 1
The software and hardware used in the human digital twin model.

Hardware Software

Xsens IMU sensors
Kuka iiwa LBR robot
Robotiq 3-Finger Robot
Gripper

Xsens MT manager (Human movement data
collection)
OpenSim (IK-BiLSTM-AM training data
preparation)
Pytorch (IK-BiLSTM-AM modelling)
Robot Operating System (Robot control)
Gurobi (Task planner optimiser)
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referred to as the IK strategy, is employed in the surrogate approach.
This strategy optimally aligns the musculoskeletal model with the actual
human posture. This is achieved by applying an inverse kinematic
technique that minimises the sum of weighted squared errors in orien-
tations. This method ensures a precise and accurate representation of
human movements, which is essential for the effective implementation
of the musculoskeletal model.

min
∑

i∈IMUs

ωiθ2i (1)

where ωi denotes the weight assigned to each IMU orientation and θi is
the angular component of the orientation error between the measured
orientation of a body segment by the IMU sensor and the actual orien-
tation of that segment.

3.2.2. BiLSTM with attention mechanisms
SO is a prevalent technique in biomechanical and human motion

analysis for estimating individual muscle forces. Muscle force or acti-
vation at each specific moment is calculated based on the observed
human motion. This is achieved by solving motion equations for known
movements and minimising the total muscle activation. The founda-
tional equations for this process are as follows:

min
∑n

m=1
(am)p (2)

s.t.
∑n

m=1

(
amF0m

)
rm,j = τj (3)

τi(q, q̇, q̈)+ τe = τ (4)

where n represents the total number of muscles involved; am defines the
activation level of muscle m at a specific time step; and F0m is the
maximum isometric force of that muscle. Additionally, rm,j refers to the
moment arm of the mth muscle relative to the jth joint axis; τj is the
generalised force on the jth joint axis; τi(q, q̇, q̈) represents the joint
torque generated by the joint angles, joint velocities, and joint acceler-
ations; and τe denotes the external torque resulting from external loads.
We assume that external loads are limited to the forces caused by
holding objects. The external force is determined using techniques from
our previous research (You et al., 2022), assessing whether the user is
holding an object. If the distance between the hand and the object is less
than 2 cm, the object is considered to be held, and a corresponding force
is then applied to the hand.

SO, despite being effective, demands significant computational re-
sources, making it unsuitable for real-time applications. To address this
limitation, this paper introduces a surrogate model. This model is
designed to approximate the function of the SO, achieving near real-time
processing capabilities. This approach enables more efficient computa-
tion without compromising the accuracy of human motion analysis.

In this study, we utilise an IK-BiLSTM-AM network to model the
correlation between human motion data and muscle force. The BiLSTM
network, a variant of recurrent neural networks, is specifically designed
to capture bidirectional long-term dependencies in time series data.
Accurate estimation of muscle forces often necessitates an understand-
ing of both past and future motion data.

The BiLSTM architecture processes the input sequence in both for-
ward and backwards directions, thereby enhancing the network’s un-
derstanding of the temporal context. This bidirectional processing can
lead to more accurate predictions of muscle forces. Additionally, the
relationship between motion data and muscle forces often extends over
multiple time steps. This characteristic of BiLSTM potentially improves
the muscle force estimation performance, making it a suitable choice for
this application. BiLSTM comprises forward and backwards LSTM
layers, each featuring a forget gate ft, an input gate it , and an output gate
ot .
⎧
⎨

⎩

ft = σ
(
wfxt + Ufht− 1 + bf

)

it = σ(wixt + Uiht− 1 + bi)
ot = σ(woxt + Uoht− 1 + bo)

(5)

where ht− 1 represents the information obtained from the previous
timestep in the time series, xt is the input at the current time, the pa-
rameters w,U and b are the learnable weights and biases within the
network, respectively, and the symbol σ denotes the activation function
used in the network. Following this, the output of the LSTM cell is
formulated as follows:
{
ct = ft ⊗ ct− 1 ⊕ it ⊗ (tanh(wcxt + Ucht− 1 + bc) )

ht = ot ⊗ tahn(ct)
(6)

where ct denotes the output of the LSTM cell output state, and ht denotes
the cell output.

The forward layer of a BiLSTM layer is denoted as ht
→
=

[
ht− n
̅̅→

, ⋯,

ht− 1
̅̅→]

, using the forward output layer sequence from time t − n to t − 1.

Accordingly, the backward layer of a BiLSTM is denoted as ht
←
=

[
ht− 1
←̅̅

,⋯, ht− n
←̅̅ ]

, using the backward output layer sequence from time

t − 1 to t − n. The final output of BiLSTM is denoted as:

ht = ht
→
⊕ ht
←

(7)

where ht is the concatenated vector that combines the outputs from both
the forward and backward layers of BiLSTM. This vector serves as a
representation of the hidden elements encompassing human motion
information.

The attention mechanism in this framework evaluates the signifi-

Fig. 4. The structure of the proposed IK-BiLSTM-AM method. Initially, human
motion data is processed through the IK layer, where it is transformed into the
joint rotation and translation data of the human body, aligned with anthropo-
metric measurements and muscle force data. Following this, the data features
are extracted using the BiLSTM layer. An attention layer is then applied to
evaluate the significance of these features. Finally, the muscle force output is
generated through a dense layer.
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cance of features generated by the BiLSTM. This process enables the
network to prioritise key movement features over less critical features.
The additive attention mechanism is adapted in this work. Firstly, a fully
connected layer is used for score computation:

et = wTtanh(Wxt + b) (8)

where W and b represent the weights and biases of the attention
mechanism; xt represents the input at time step t; tanh is an activation
function that introduces non-linearity, wT is a weight vector that
transforms the output of the activation into a scalar score et. Then a
SoftMax normalisation is employed:

αt =
exp(et)

∑T
j=1exp

(
ej
) (9)

where terms αt denote the importance assigned to each feature; The
SoftMax function converts the scores et into a probability distribution
over all time steps, ensuring that the scores sum to 1.

o =
∑T

t=1
αtxt (10)

where o is a weighted sum of the input features xt, where each feature is
weighted by its attention score αt.

The output generated by the AM layer is then input into a fully
connected (FC) layer. This FC layer transforms the output from the AM
into a suitable format for prediction. In our case, the FC layer processes
the output from the AM layer and converts it into the final output size,
corresponding to the number of muscles being analysed.

3.3. Human movement force-fatigue model

In this section, our focus is on exploring methods to estimate muscle
fatigue based on specific historical muscle forces. We utilise a force-
fatigue model grounded in first-order kinetics, which can be described
by a first-order differential equation (Peternel, Tsagarakis, et al., 2018).
This model comprises two aspects: first, an increase in fatigue level
occurs when muscle force exceeds a certain threshold, with the rate of
increase being directly proportional to the muscle force; second, a
decrease in the fatigue index is observed when muscle force falls below
this threshold, reflecting the process of physical recovery. The mathe-
matical formulation of this model is presented as follows:

dvm(t)
dt

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1 − vm(t) )
fm(t)
cm

if fm(t) ≥ fth

− vm(t)
R
cm

if fm(t) < fth
(11)

where vm(t) denotes the fatigue level of human muscle m, with a value
ranging from 0 to 1; the term fm(t) represents the instantaneous force
exerted by humanmusclem; the recovery coefficient, denoted as R, is set
at a value of 0.5, indicating the rate of recovery from fatigue; the
threshold of muscular force about muscle m is represented by fth; and cm
denotes the capability coefficient for muscle m, reflecting the muscle’s
resistance to fatigue, which varies across different parts of the human
body. The value of Cm is formulate as:

Cm = −
Gref • Tend

log(1 − 0.993)
(12)

where Gref represents the reference force, and T denotes the endurance
time. The values of Cref are chosen to correspond to 20 % and 50 %
muscle activation.

Research by (Frey Law and Avin, 2010) highlighted that endurance
time is specific to each joint and present a power model that charac-
terises the relationship between endurance time and muscle force across
different joints. This approach is employed to solve the function in Eq.

(12) to determine the value of Cm. The formulation of this model is as
follows:

T = b0Gb1 (13)

where b0 and b1 are the parameters of the power model, which are
determined based on specific body part.

3.4. HRC assembly task planner

In this section, we introduce a dynamic task planner designed to
alleviate worker fatigue in manufacturing assembly activities through
HRC. Based on the estimated physical fatigue of the workers’ muscles,
the planner is able to allocate tasks to different agents to mitigate the
fatigue of workers. To simplify our experiment, we assume that there is
only one robot and one worker in the experimental scenario. With
simple parameter adjustments, our planner can be applied to multiagent
task planning.

Our task planner incorporates an And-Or graph to represent the
process of product assembly tasks, addressing the inherent challenges of
complexity and uncertainty in the assembly process. Additionally, a
dynamic task allocation model tailored for effective task planning is
constructed. The And-Or graph can decompose complex assembly tasks
into task units, commonly used for representing assembly tasks. Typi-
cally, an And-Or graph includes root nodes, nodes, or leaf nodes. The
root node is used for representing an assembly task. An And node, which
is denoted by “ →”, signifies that subtasks of the node must be executed
in sequence. An Or node denoted by “||” indicates that the subtasks can
be executed in parallel, and the leaf nodes represent executable task
units. An example of an And-Or graph representing desktop PC assembly
progression is shown in Fig. 5. In the And-Or graph, based on its logic
relationships, dependencies exist among task units. If task a is dependent
on task b, a cannot occur in the absence of the occurrence of task b
(Cheng et al., 2021). This dependency relationship imposes constraints
on the progression and planning space of the task. Based on the And-Or
graph, we define executable tasks as follows, which constitute the
planning horizon in the task allocation model.

Executable tasks: a collection of task units that have no dependent
tasks that have not yet been executed.

The task planner dynamically plans the assembly tasks based on the
estimated human muscle fatigue state. Initially, the planner identifies a
set of executable tasks based on the And-Or graph model and passes
them to the optimiser. Once an executable task is input, the optimiser
optimises it based on the capabilities of humans and robots Ch,Cr and
the current accumulated fatigue level of the human Facc, resulting in
actions for both humans and robots ah,ar. The capability Ch,Cr refer to
the types of actions they can perform. These actions are executed
accordingly. After ah, ar is completed, the And-Or graph model and the
optimiser will iteratively plan tasks until the assembly task is fully
completed.

The optimiser is the core of the planner. With the input of executable
tasks, the optimiser can allocate tasks that would be the most fatiguing
to the workers to the robot and assign tasks that are less tiring to the
workers. At the muscle level, the optimiser allocates tasks that require
less use of fatigued muscles to the user, based on the worker’s specific
muscle fatigue. The optimisation problem is formulated as follows:

min
x, y

α1
(
Fmax2 − Fmax1

)
+ α2

(
Fmean2 − Fmean1

)
(14)

s.t.
∑

j∈T
xj+ yj = 1 (15)

∑

j∈T− Ch
xj = 0 (16)

∑

j∈T− Cr
yj = 0 (17)
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∑

j∈T
Mj,:xj +Facc ≤ F2 (18)

∑

j∈T
Mj,:yj+ Facc ≥ F1 (19)

The goal of the objective, which is denoted as Eq. (14), is to allocate
tasks that would be most fatiguing for human workers to the robot while
assigning the least tiring task to the workers. The predicted fatigue value
after the worker completes the most fatiguing task is denoted as F1, and
the predicted fatigue value after completing the least fatiguing task is
denoted as F2. The objective function is twofold. The first part focuses on
the difference in maximum muscle fatigue levels between fatigue value
Fmax2 and Fmax1 . The second part addresses the difference in mean muscle
fatigue levels Fmean2 and Fmean1 . α1,α2 are weight indices. The decision
variables x, y are binary for the task allocation to the human and robot. T
denotes the current executable actions. T − Ch denotes the actions that
humans cannot perform; T − Cr denotes actions that robots cannot
perform.Mj,: is the empirical fatigue in specific humanmuscles for task j.
Equation (15) ensures that tasks are allocated either to a human or a
robot. Equations (16) and (17) ensure that the tasks assigned to humans
and robots are within their capabilities. Equations (18) and (19) define
predicted muscle fatigue values for human F1 and F2.

4. Experiment

This section presents the experimental setup, evaluation criteria, and
results used to validate the proposed method. The proposed method is
evaluated with two experiments in a proof-of-concept task; (i) the ac-
curacy of the presented method in estimating muscle forces of human
activities is validated in experiment 1; and (ii) the effectiveness of
physical fatigue mitigation of the HRC assembly task planner is vali-
dated with multisubject experiment 2. In both experiments, each subject
is asked to complete a desktop personal computer (PC) assembly task,

which contains a desktop PC case, motherboard, CPU, GPU, cooler,
memory card, hard disk, power supply and cover. The experimental
setup is shown in Fig. 6 (top left). To emulate the physical demands
faced by factory workers, our study used customised weights in desktop
PC components ranging from 0.03 to 3 kg, with an average of 1.3 kg. The
assembly requirements are presented in Fig. 5. The motion of the sub-
jects in the experiments was measured with IMU sensors (Xsens system).
This experiment has been reviewed and approved by the School of En-
gineering Research Ethics Committee (reference: 2023-PGR-YY-R1).

In experiment 1, we collected real human motion data for training
the IK-BiLSTM-AM network model. The accuracy of the proposed model
was rigorously evaluated through comparisons with a range of con-
ventional and state-of-the-art methods within this domain. In experi-
ment 2, we validated the effectiveness of the assembly task planner in
reducing participant fatigue and established a control group for
comparative assessment through participation in repetitive desktop PC
assembly tasks.

4.1. Experiment 1: The accuracy of the surrogate model

4.1.1. Experimental setup
The aim of experiment 1 is to validate the effectiveness of the pro-

posed surrogate model in replacing the SO method for the estimation of
muscle force in HRC assembly. For the training of the surrogate model
dedicated to muscle force estimation, a dataset encompassing human
movement sensor data and muscle force data was compiled. This dataset
was derived from a series of assembly actions performed by workers.

We initially recruited ten volunteers (5 males and 5 females, right-
handed) who performed the desktop PC assembly tasks. To obtain
human gestures, each volunteer wore a set of IMU sensors with an
updating frequency of 40 Hz. Each volunteer is required to assemble the
desktop PC three times, each consisting of 8 assembly actions, yielding a

Fig. 5. The upper graph represents an And-Or graph model for a desktop PC assembly task. There are And nodes and Or nodes, which are written as “→” and “||”. The
bottom graph shows an example of an executable task. The grey shading represents tasks that have been completed, the blue shading represents tasks that are
ongoing, and the green shading represents tasks that are executable in the planning horizon of the planner. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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dataset consisting of 240 operation actions. The layout of the assembly
workspace is shown in Fig. 6. The assembly workspace encompasses
both a parts zone and an operation zone. Following the assembly re-
quirements depicted in Fig. 5, they initially pick up the parts from the
parts zone, return to the operation zone, and precisely place the parts in
their corresponding positions. This process is repeated until the entire
assembly operation is completed.

To derive muscle force data from a worker’s assembly actions, the
collected data were input into OpenSim 4.4, which is used for simulation
computations. Within this framework, estimated muscle forces can be
obtained through an SO approach. Additionally, the dataset was
randomly divided, with 80 % allocated for training and 20 % for vali-
dation, ensuring a comprehensive analysis and assessment of the
model’s performance.

4.1.2. Evaluation criteria and baseline
To evaluate the effectiveness of the proposed model, established

evaluation metrics, including the root mean square error (RMSE), are
utilised to quantify its performance. The RMSE is particularly useful for
assessing the accuracy of predictions and is mathematically defined as:

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
T
∑T̃

t̃=1

(yt̃ − ŷt̃)
2

√
√
√
√ (20)

where yt̃ represents the ground truth and ŷt̃ denotes the corresponding
predicted value at time t.

In our research, we carefully selected representative algorithms from
the field to serve as benchmark methods for comparative analysis with
our proposed model, thereby validating its effectiveness. Based on pre-
vious studies (Burton et al., 2021; Sharifi Renani et al., 2021) demon-
strating the success of deep neural networks (DNNs), long short-term
memory (LSTM), and BiLSTM in predicting muscle force in biome-
chanical analysis, these methods were chosen for comparison. Addi-
tionally, the attention-convolution BiLSTM (AC-BiLSTM) (Liu and Guo,
2019) and transformer (Han et al., 2021) methods, which are known for
their proficiency in handling sequential data tasks such as text classifi-
cation, are also included as suitable comparators. To ensure a balanced
comparison, we incorporated methods that are integrated with the IK

strategy, identified by an “IK” prefix (e.g., IK-DNN). Our method without
the IK strategy, which is named BiLSTM-AM, is also included. In total,
there are 12 methods.

For the data preprocessing phase in the training of all methods, the
StandardScaler technique from the sklearn library was utilised for
standardisation. During the training phase, each method underwent
1,000 epochs to ensure thorough learning. All computational tasks were
performed on an NVIDIA GeForce RTX 3060 GPU to leverage its robust
processing capabilities.

4.1.3. Experimental results of the surrogate model
Table 2 presents a comparative analysis of the estimated muscle

force between the proposed methods and the baseline methods. This
comparison is detailed in terms of both overall performance and
representative muscle performance. The effectiveness of these methods
is assessed based on classification accuracy, with the highest-performing
results highlighted in boldface. In total, 12 methods are listed in Table 2,
with our proposed method distinctly emphasised in bold. Since all par-
ticipants were right-handed, the representative muscles listed in the
table were on the right side of the body.

The IK-BiLSTM-AM model, which integrates the IK strategy, dem-
onstrates superior predictive performance in overall muscle force pre-
diction, achieving an accuracy that is at least 8 % greater than that of
other models. It particularly excels in evaluating representative muscles,
outperforming most benchmark models. This superior performance in-
dicates the model’s ability to capture bidirectional temporal dynamics
within input action sequences, thereby enhancing muscle force predic-
tion accuracy. The model achieves an overall performance of 1.131 N,
suggesting that while there is a slight reduction in accuracy compared to
a purely SO approach, it remains acceptably accurate. Additionally, the
IK-BiLSTM-AMmodel requires only approximately 0.048 s to process 1 s
(40 frames) of data; in contrast, the SO method takes approximately
43.18 s. This indicates that the proposed surrogate model successfully
meets the dual demands of accuracy and real-time assessment of muscle
forces in the context of HRC. Notably, all methods utilising the IK
strategy exhibit enhanced estimation performance over their non-IK
counterparts. This outcome underscores the effectiveness of the IK
strategy of our method in mitigating wearable errors.

Fig. 6. The top left graph shows the parts of the computer PC to be assembled, and the top right graph and bottom graph show the layout of the computer PC to
be assembled.
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4.2. Experiment 2: The effectiveness of the task planner

The objective of Experiment 2 is to validate the effectiveness of the
proposed planner in reducing human physical fatigue in a real human-
robot collaborative assembly scenario.

4.2.1. Experiment setup
For this experiment, we recruited 12 participants (6 males and 6

females, all right-handed), different from those in Experiment 1, to
participate in a desktop PC assembly task. The layout of the assembly
operation is illustrated in Fig. 6. Unlike the solo assembly layout in
Experiment 1, the human-robot collaborative operation zone included a
collaborative robot, a screen, and a keyboard. During the experiment,
the planner was utilised to allocate tasks to different agents. Tasks
assigned to the robot were executed by a Kuka iiwa robot arm, while
tasks assigned to human participants were prompted on the screen.
Participants completed actions as indicated by the prompts. Participants
reported the completion of tasks by pressing keys on a keyboard. The
assembly requirements were identical to those of Experiment 1. We
advocate for flexible HRC, where humans are not strictly obliged to
follow the planner’s suggested actions. However, to validate our pro-
posed method, we assumed that participants adhered to the actions
prompted by the planner.

A control group was established for the experiment. The planner in
the control group employed a random strategy, with all other settings
being identical to those in the experimental group. The strategy in the
experimental group was the optimisation strategy. In the random
strategy, the planner randomly assigns executable tasks to either
humans or the robot based on assembly task progression and user
capabilities.

Each participant engaged in both the experimental and control group
settings, with a half-hour sitting rest interval between each session. In
both the experimental and control groups, every subject was required to
assemble eight desktop PCs. After each desktop PC is assembled, it is
disassembled by another human user, restoring it to its initial setup to
simulate an assembly line process. The order in which participants un-
dertook the experiments was randomly determined. Participants were
blinded to the type of experiment they were participating in.

After completing both the experimental and control groups, each
participant was required to complete a questionnaire to evaluate the
subjective fatigue of the participants, which will be used in the

comparison analysis with the fatigue data from the human digital twin
model to validate the effectiveness of physical fatigue mitigation of the
HRC assembly task planner. The questions in the questionnaire are listed
in Table 3.

In this experiment, the task planner parameters were established as
follows: α1 = 0.5 and α2 = 0.5. T − Ch is ∅. T − Cr has a CPU, a moth-
erboard, and a cover. The optimisation model driving the task planner
utilised the Gurobi solver for solution determination. Optimal solutions
were displayed to the users via the task planner’s GUI as a form of task
guidance. The GUI layout is illustrated in Fig. 7. The left side pane of the
GUI presents a task tree to display the status of the assembly tasks, while
the right side provides prompts for agents based on the task status. The
experimental process and the corresponding digital twin model are
shown in Fig. 8.

4.2.2. Results and discussion
Initially, the results of the modified Borg scale questionnaire were

subjected to a Wilcoxon signed-rank test, yielding a p-value of 0.0049,
which is less than 0.05. This outcome indicates a significant difference in
perceived exertion between the optimisation and random strategies in
the desktop PC assembly experiment.

We discussed the experimental results by comparing the results from
the questionnaire and results from the digital twin model to assess the
effectiveness of the proposed method in fatigue evaluation and mitiga-
tion within assembly tasks. According to the fatigue assessment model
presented in this paper, the maximum (mean 0.38) and average (mean
0.10) muscle fatigue levels at the muscle layer for 12 participants under
the optimisation strategy in the desktop PC assembly were significantly
lower than those under the random strategy (maximum mean of 0.89,
average mean of 0.22), as shown in Fig. 9 (top left). In line with question
1 of the Modified Borg Scale, the box plot in Fig. 9 (top middle) indicates
that participants generally perceived lower exertion (mean 2.2) with the
optimisation strategy than with the random strategy (mean 4.4).
Furthermore, responses to question 2, covering both the instances of
non-fatigue subjects (optimisation strategy: 6, random strategy: 1) and
the rounds at which fatigue was first felt (optimisation strategy, mean:
6.3; random strategy, mean: 4.5), suggest that the optimisation strategy
is effective in mitigating fatigue under equivalent tasks. The results are
shown in Fig. 9 (top right). The results from both questionnaires are
consistent with the findings of the proposed fatigue model in terms of
fatigue reduction. These findings validate the application potential of

Table 2
RMSE evaluation results for the proposed method and baselines on overall and representative muscles.

Methods Overall Deltoid Anterior Biceps short Triceps medial Pectoralis major

DNN 1.376 1.711 3.010 0.333 1.474
IK-DNN 1.368 1.499 3.164 0.301 1.364
LSTM 1.557 1.940 3.678 0.285 1.168
IK-LSTM 1.340 1.533 3.326 0.272 1.282
BiLSTM 1.398 1.594 3.075 0.237 0.981
IK-BiLSTM 1.232 1.590 3.161 0.232 1.072
AC-BiLSTM 1.547 1.644 3.217 0.235 1.165
IK-AC-BiLSTM 1.428 1.203 2.749 0.222 1.388
Transformer 1.924 1.709 3.934 0.288 1.412
IK-Transformer 1.872 1.820 3.633 0.291 1.384
BiLSTM-AM 1.212 1.909 2.704 0.220 1.071
IK-BiLSTM-AM 1.131 1.282 2.651 0.205 0.915

Table 3
The questions in the questionnaire for subjective fatigue evaluation.

No. Details

Question 1 Question 1 in the questionnaire is the Modified Borg Scale (Wilson and Jones, 1989), with a score ranging from 0 to 10, to assess the physical exertion required to
complete the tasks. To evaluate whether there was a significant difference between the experimental and control groups, aWilcoxon signed-rank test was conducted, and
the significance level was α = 0.05.

Question 2 During the experiment, which area did you feel fatigued? Please mark on the attached human body diagram. (Image not included)
Question 3 After approximately how many rounds did you begin to feel fatigued? Possible responses range from 1 to 8, or ‘not fatigued.’
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the proposed fatigue assessment model in evaluating fatigue and
confirm the effectiveness of the proposed task planner in reducing
fatigue.

Regarding specific muscle groups, our fatigue model calculated the
average muscle fatigue levels across all participants and identified the
five most fatigued muscles as follows: Biceps Long, Deltoid Anterior,
Deltoid Middle, Triceps Lateral, and Triceps Medial. For more details,
please refer to Fig. 9 (bottom left). Additionally, through question 3, we
compiled data from 24 questionnaires, resulting in 36 fatigued results,
and created a pie chart depicted in Fig. 9 (bottom right). The most
frequently reported fatigued areas were the upper arm (33.3 %) and the
shoulder (16.7 %). The Biceps Long, Triceps Lateral, and Triceps Medial
are part of the upper arm, and the Deltoid Anterior and Deltoid Middle
are part of the shoulder. The comparison between the two sets of results
demonstrated a congruence between the fatigue areas reported subjec-
tively by participants and those identified through the fatigue model
calculations. This correlation further validates the effectiveness of the
proposed method in accurately determining fatigue in specific muscle
groups.

The experimental results demonstrate the efficacy of the proposed
method in estimating and optimising fatigue in assembly tasks, both
overall and in specific areas. The authors believe that this method will
show even more significant results in fatigue optimisation over longer
durations in assembly experiments.

5. Conclusion

Physical fatigue in humans has a profound impact on HRC in
manufacturing, influencing worker well-being. To address this concern,
this paper presents a musculoskeletal model-based human digital twin
for muscle force estimation, followed by the integration of a force-
fatigue model to assess muscle-level physical fatigue in HRC assembly
tasks. Subsequently, a fatigue-aware task planner is proposed for phys-
ical fatigue reduction. In the task planner, an And-Or graph is utilised to
model the assembly tasks, and a corresponding optimisation model is
developed to allocate tasks among multiple agents. The efficiency of the
surrogate approach has been validated in a proof-of-concept assembly
experiment, indicating that it is at least 8 % more accurate than
benchmark methods. The role of the task planner in alleviating worker
fatigue has been validated through the participation of multiple subjects
in the assembly experiment. These outcomes underscore the potential of
the proposed approach for applications in HRC assembly.

As an exploratory study, the task planner proposed in this paper
focuses solely on mitigating human fatigue. While this approach ad-
dresses the fatigue alleviation problem, it may not fully meet the com-
plex requirements of real-world HRC tasks. To address this limitation,
future work will involve developing a multi-objective task planner. This
planner will incorporate factors such as fatigue, time efficiency, and
safety into collaborative tasks. Additionally, the optimisation model

Fig. 7. The GUI of the task planner in the desktop assembly task. The left side is a task tree. On the right side is a prompt for the user, which contains the username
and part to be assembled. The cycle round indicates how many rounds of tasks have been conducted. The start button is used to start a task. The reset tree button is
used to reset a new task.

Fig. 8. The process of human-robot collaborative assembly of the desktop PC and its corresponding digital twin human model is depicted from left to right as follows:
a human picks up parts in the parts area, transports parts to the assembly area, assembles the parts, and waits for the robot to assemble parts.
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should be refined to support a multi-objective framework, integrating
these various factors into the objective function.

The force-fatigue model used in this study is a general model with
parameters derived from empirical data based on different body parts.
While this general model has effectively mitigated human fatigue, future
work should focus on developing worker-specific models. A promising
approach is to fine-tune the model parameters using reinforcement
learning, thereby creating personalized force-fatigue models tailored to
individual workers.

Furthermore, the current study’s validation is based on a proof-of-
concept experiment conducted in a controlled laboratory environment.
To advance the application of this research, validation in a more com-
plex, factory-like environment is necessary. To solve this limitation,
future work should also focus on testing the extended task planner on
more complex tasks to evaluate the scalability of the proposed approach
for real industrial applications.
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