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Abstract: Intrusion detection systems (IDSs) are crucial for identifying cyberattacks on in-vehicle
networks. To enhance IDS robustness and preserve user data privacy, researchers are increasingly
adopting federated learning (FL). However, traditional FL-based IDSs depend on a single central
aggregator, creating performance bottlenecks and introducing a single point of failure, thereby
compromising robustness and scalability. To address these limitations, this paper proposes a Hi-
erarchical Federated Learning (H-FL) framework to deploy and evaluate the performance of the
IDS. The H-FL framework incorporates multiple edge aggregators alongside the central aggregator,
mitigating single-point failure risks, improving scalability, and efficiently distributing computational
load. We evaluate the proposed IDS using the H-FL framework on two car hacking datasets under
realistic non-independent and identically distributed (non-IID) data scenarios. Experimental results
demonstrate that deploying the IDS within an H-FL framework can enhance the F1-score by up to
10.63%, addressing the limitations of edge-FL in dataset diversity and attack coverage. Notably, H-FL
improved the F1-score in 16 out of 24 evaluated scenarios. By enabling the IDS to learn from diverse
data, driving conditions, and evolving threats, this approach substantially strengthens cybersecurity
in modern vehicular systems.

Keywords: CAN bus; cyberattack; IDS; federated learning; in-vehicle network

1. Introduction

The number of connected and autonomous vehicles (CAVs) is experiencing rapid
growth globally. This surge in reliance on electronics and software within modern au-
tomotive systems introduces cybersecurity risks that were not previously considered in
their design and engineering [1]. A recent report estimates that the global market for
connected vehicles will grow to approximately USD 244 billion by 2030 [2]. The controller
area network (CAN) bus has emerged the primary protocol for in-vehicle communication
because of its simplicity and efficiency. However, it lacks essential security features such
as authentication and encryption [3], making it vulnerable to cyberattacks that can have
severe consequences, including loss of life [4,5]. Intrusion detection systems (IDSs) are an
effective method for detecting these threats within in-vehicle networks. Despite significant
advancements in machine learning and deep learning for IDSs, challenges related to data
privacy and communication efficiency remain. Federated learning (FL) offers a promising
solution by enabling local model training while preserving the privacy of raw data [6]. FL
addresses key limitations of centralized IDS approaches and is particularly well suited for
in-vehicle networks for several compelling reasons:

• Privacy Preservation:Regulations such as the general data protection regulation
(GDPR), California consumer privacy act (CCPA), personal information protection
and electronic documents act (PIPEDA), and Brazilian general data protection law
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(LGPD) safeguard sensitive data from unauthorized movement. FL enhances privacy
by transmitting only learned parameters to the cloud server instead of raw data,
thereby improving data protection [7].

• Reduced latency: By processing data locally and only sending model updates, FL
reduces latency compared to traditional centralized approaches that require sending
raw data to a central server [7].

• Compliance with guidelines: According to the 2020 guidelines of the International
Telecommunication Union, an in-vehicle IDS must have the ability to regularly update
its set of rules [8]. FL facilitates these updates by allowing continuous learning and
model refinement.

• Adaptability to new attacks: FL enhances IDS adaptability to new, unseen attacks
by updating local models with those trained on newly identified threats. These
continuous updates ensure effective responses to evolving threats.

• Diverse driving scenarios: FL facilitates the training of a universal model that encom-
passes various driving scenarios, vehicle states, and driving behaviors.

Numerous studies have developed FL-based IDSs for in-vehicle networks [9–14].
However, they all utilize the standard FL architecture. To the best of our knowledge, this is
the first study to introduce the H-FL framework for an in-vehicle IDS and to deploy and
evaluate IDS performance within this architecture. The aim of this paper is to introduce
and deploy our proposed IDS in [15] in the H-FL environment, evaluating its performance.
The main contributions are summarized as follows:

• Deployment and evaluation of our proposed multistage IDS in an H-FL environment.
• Distribution of data across clients with three levels of non-IID data distributions,

making the scenario more realistic.
• Performance evaluation of the IDS in the H-FL environment for both seen and unseen

attack detection.
• Assessing IDS performance under different levels of non-IID data distribution.

The remainder of this paper is organized as follows. Section 2 provides context and
background on FL, followed by a discussion of related work. Section 3 describes our
overall methodology, followed by experimental results and evaluation in Section 4. Finally,
Section 5 concludes the paper.

2. Background and Related Work

This section begins by providing background information on cloud-based FL and HFL,
followed by a review of related works on in-vehicle IDSs deployed using an FL approach.
It then examines non-IID data distributions, how these works allocated data across clients,
and the limitations of existing studies.

2.1. Cloud-Based FL and Hierarchical FL

The standard cloud-based FL architecture comprises a cloud server and numerous
clients, as shown in Figure 1. Clients (vehicles) download a global model from the cloud
server, undergo multiple rounds of local training, and then send the model weights back to
the server for aggregation. The iteration continues until the model achieves the desired
level of accuracy. In cloud-based FL, the number of participating clients can reach into
the millions [16], which can cause communication with the cloud server to become slow
and unpredictable due to factors like network congestion, ultimately leading to ineffi-
ciencies in the training process [16,17]. In contrast, H-FL architecture consists of a cloud
server, multiple edge servers, and numerous clients. In H-FL, clients update their local
parameters and send them to the nearest edge server for edge aggregations, following
a similar approach as in cloud-based FL. The difference is that after several rounds of
edge aggregations, multiple edge servers send their parameters to a cloud server for cloud
aggregation. This design allows more clients to participate in the framework. Moreover,
H-FL significantly reduces the costly communication with the cloud by leveraging efficient
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client–edge interactions, leading to considerable decreases in both runtime and the number
of necessary local iterations [18].

Figure 1. Cloud-based FL and H-FL.

2.2. Federated Learning-Based Intrusion Detection Systems

Driss et al. [9] introduced an FL-based framework to identify attacks in vehicular sensor
networks. Given the resource constraints of smart sensing devices in vehicular networks,
the authors emphasized the significance of adopting lightweight security approaches.
To address this issue, they utilized a set of Gated Recurrent Units with an ensemble method
based on Random Forest to aggregate the global machine learning models. They distributed
the dataset equally among clients.

Shibly et al. [10] presented an FL-based IDS for enhancing security in autonomous
systems. The authors personalized the model for each client participating in the FL process.
The study integrates both supervised and unsupervised FL-based IDS to analyze patterns
in CAN buses. Moreover, to create a more generalized model, local clients have the option
to refine the global model using their local data and deploy it during inference.

Yu et al. [11] introduced an FL-based IDS based on Long Short-Term Memory (LSTM)
for in-vehicle networks. They utilized the periodicity of CAN communications to predict
the arbitration IDs of new messages. The 11-bit arbitration ID is transformed into vec-
tors using one-hot encoding, and these vectors are utilized by the LSTM to predict the
subsequent arbitration ID. Data are evenly distributed among clients, with each client
holding 1000 instances for training and 200 instances for testing. A comparison between
the FL-based and a centralized IDS revealed a 0.071 accuracy loss for the FL-based IDS.
However, the authors suggested that this loss could be mitigated through a cumulative
error scheme.

Zhang et al. [12] developed an anomaly detection system utilizing a graph neural
network, capable of detecting CAN bus intrusions within a minimal 3-millisecond time-
frame. They constructed a two-stage classifier cascade consisting of a classifier designed for
anomaly detection in one class, and another classifier for categorizing attacks into multiple
classes. To address novel anomalies from unseen classes, an openmax layer is integrated
into the multi-class classifier.

Yang et al. [13] introduced an IDS for in-vehicle networks utilizing federated deep
learning. The proposed approach leverages the periodicity of network messages, employs
the ConvLSTM model, and trains the model through federated deep learning. To simulate a
non-IID environment, clients were assigned varying data samples (ranging from 50 to 3500),
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although specific details regarding data distribution among clients and the distribution of
samples across all classes were not provided.

Taslimasa et al. [14] proposed ImageFed, a practical IDS designed to preserve privacy,
which utilizes federated Convolutional Neural Networks. To simulate a non-IID setting,
data were distributed to vehicles using a Dirichlet (µ) distribution, with (µ) values varying
from 0.1 to 0.7. To assess ImageFed’s resilience, they examined two potential scenarios
leading to performance decline in FL: non-IID clients and limited availability of training
data. Table 1 summarizes previous works and highlights our contribution. In cases where
the aggregation function is not explicitly indicated, as in [9,10], we assume that FedAvg is
the method employed.

Although previous works have deployed their in-vehicle IDSs in an FL environment,
they exhibit some limitations. Firstly, all the proposed FL-based in-vehicle IDSs in the litera-
ture utilized a standard cloud-based FL architecture to deploy and evaluate their proposed
IDSs, relying solely on one central aggregator. However, this standard FL architecture
can limit the IDS’s adaptability and effectiveness in detecting diverse, evolving threats.
Additionally, it leads to network congestion and communication delays due to the time
required to share the model between the central aggregator and a large number of vehicles,
potentially millions [16]. Furthermore, relying on one aggregator poses a risk as a single
point of failure [19], compromising the IDS’s robustness and scalability. To address these
issues, we propose an H-FL framework that incorporates multiple edge aggregators in
addition to the central aggregator. This approach enables the IDS to learn from a broader
range of driving scenarios and evolving threats while distributing the computational load
and reducing latency. This approach aims to overcome the limitations of relying solely on a
central aggregator [19].

2.3. Non-Independent and Identically Distributed Data Distributions

Non-IID data occur when the training data on each client in FL vary significantly,
resulting in differing data distributions among clients [17]. In real-world applications, such
data are typically non-IID because of variations in user behavior, preferences, and envi-
ronments. Managing non-IID data is a major challenge in FL [20]. However, previous
works [9–12] did not account for non-IID data and instead employed divisions where
clients received either an equal number of samples or samples from all classes (i.e., types
of attacks). This approach contradicts the nature of FL scenarios characterized by non-IID
data distributions [7] and assumes an unrealistic data distribution [21]. Non-IID data
distributions are only considered in [13,14]. In [13], nine candidate clients are assumed,
each possessing varying numbers of data samples (50, 100, 150, 1000, 1500, 2000, 2500, 3000,
3500), but the data distribution among clients and the distribution of samples across all
classes are not clarified. In [14], to achieve a non-IID setting, data are allocated to vehicles
using a Dirichlet (µ) distribution, with the (µ) parameter adjusted from 0.1 to 0.7.

However, the majority of studies [9–11] did not consider the data heterogeneity (non-
IID data) in CAN bus data when they distributed the data across clients, thus rendering their
findings unrealistic [21]. This consideration is essential for two reasons: first, in real-world
deployments, vehicles will not have uniform distributions of both attack and normal data;
second, testing with varying non-IID levels enables a more comprehensive evaluation of
IDS performance and robustness across diverse data distributions. To address these issues,
we have adopted H-FL with a realistic non-IID data distribution. H-FL incorporates a
central aggregator with multiple edge aggregators instead of having one central aggregator.
Furthermore, both experimental results and theoretical analysis have shown that H-FL
architecture leads to faster convergence and lower training time and energy consumption
of the end devices compared with the conventional FL-based framework [18]. To the best of
our knowledge, no prior work has deployed and evaluated the performance of an in-vehicle
IDS in an H-FL environment to detect known and unknown attacks.
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Table 1. FL-based IDSs for in-vehicle networks.

Ref. Fed. Learning U Attacks Non-IID Aggregation
Function Dataset FL Implementation

[14] Standard x ✓ FedAvg car-hacking [22] PyTorch

[11] Standard x x FedAvg HCRL CAN Intrusion Detection [23] N/A

[10] Standard x x FedAvg car-hacking [22],
NAIST CAN attack dataset [24] Keras, TensorFlow

[12] Standard ✓ — FedAvg, FedProx READ [25] N/A

[9] Standard x x FedAvg Car Hacking: Attack & Defense
Challenge 2020 [26] Keras, TensorFlow

[13] Standard x ✓ FedAvg HCRL CAN Intrusion Detection [23] N/A

Our work Hierarchical ✓ ✓ FedAvg car-hacking [22] Flower

U Attacks: Unknown Attacks.

3. Materials and Methods

In this section, we outline the methodologies used in our experiments, including the
experimental setup, the proposed H-FL architecture, dataset description, in-vehicle IDS,
data partitioning across multiple FL clients, data preprocessing, model initialization and
pre-training, local training, aggregation, and evaluation methods.

3.1. Experimental Setup

The implementation was conducted in Visual Studio Code. The experimental setup
used a 64-bit Windows 11 Pro for Workstations operating system with an AMD Ryzen
Threadripper PRO 5995WX processor, featuring 64 cores at 2701 MHz, 128 logical pro-
cessors, and 128 GB of RAM. The construction, training, and evaluation of the deep
learning model were conducted with Flower framework [27], TensorFlow (version 2.13.1),
and Python (version 3.8.10). Flower is an open-source FL framework to build AI appli-
cations capable of training on data distributed across numerous devices. We selected
Flower for its ability to seamlessly transition from conventional to federated machine
learning frameworks, its compatibility with popular platforms such as TensorFlow and
PyTorch, its support for diverse privacy requirements, and its flexibility in facilitating the
implementation of novel approaches with minimal engineering effort [28].

3.2. Hierarchical Federated Learning Architecture

The H-FL architecture consists of a main cloud server, several edge servers (aggrega-
tors), and numerous clients (vehicles), as depicted in Figure 2. The cloud server is connected
to the edge servers, each of which interacts with vehicles in different geographical locations.
In this paper, we utilize one main server, two edges, and five clients per edge. The H-FL
process begins with the cloud server sending the initial model to the edge servers. Each
edge server then selects a subset of clients for training using a suitable selection approach.
The selected clients receive the initial model and perform edge aggregations over several
rounds to generate an edge model. Once the edge servers complete their aggregations, they
send their aggregated models’ parameters to the cloud server. The cloud server aggregates
these edge models to produce a global model, which is then sent back to the edge servers
for further aggregation. A detailed description of the H-FL process is provided in Table 2.
To handle the variability in CAN bus data across different vehicle makes and models, edge
servers select clients based on similarities in their CAN bus data, such as make or model,
within specific geographical areas. This approach ensures that the global model is trained
on relevant and similar data, thereby improving accuracy.

The main server, located at 127.0.0.1:8088, initiates the process by distributing the
pre-trained model to its connected clients (edges). Subsequently, each edge, serving as a
server at addresses 127.0.0.1:8080 and 127.0.0.1:8081, respectively, relays the pre-trained
model to its connected clients (vehicles). Each edge server then starts the standard FL
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process with the clients (vehicles) in its area, resulting in an edge model. These edge
servers, now operating as clients, send their models back to the main server. The main
server aggregates the received edge models into a global model, which it then redistributes
to the edges. Finally, the edges, again functioning as servers, transmit the new global model
to their clients (vehicles) to restart the FL cycle. Figure 3 illustrates this H-FL setup as
implemented in Flower.

Figure 2. Architecture of the proposed H-FL method.

Table 2. Detailed description of the H-FL approach.

H-FL Process

Begin
Step 1 The central server S initializes a global model GM
Step 2 S sends the GM to each local aggregator LAgg
Step 3 Each LAgg selects a subset of vehicles Vn
Step 4 LAgg sends the GM to the selected Vn
Step 5 Each Vn trains the GM on local Data for K rounds
Step 6 Each Vn computes and sends the learned parameters to the

corresponding LAgg
Step 7 Each LAgg aggregates the received local model parameters from Vn

to obtain the edge aggregation model
Step 8 All LAgg send the aggregated model parameters to S

to build a new updated GM
Step 9 The S aggregate edge aggregation model and build a new GM
Step 10 Repeat steps 2–9 until achieving the desired performance

End
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Figure 3. H-FL environment in Flower.

3.3. Dataset Description

To evaluate the performance of our IDS within the federated framework, we employed
a benchmark car hacking dataset published by Song et al. [29]. We selected this dataset
due to its widespread use in automotive security research and its status as the most
frequently cited resource in the literature of the field [30]. The dataset contains normal
data and four types of attacks: Denial of Service (DoS), frame fuzzification, engine RPM
spoofing, and drive gear spoofing. It includes four files, one for each attack (DoS, frame
fuzzification, gear spoofing, and RPM spoofing), with each file including normal as well
as attack instances. Table 3 shows the number of instances for each type of attack as well
as for normal data. For every CAN message, the dataset provides valuable information,
including timestamp, CAN ID, DLC, data field, and flag. The timestamp records the exact
time the message was captured since the system startup, while the CAN ID determines
message priority, with lower values being prioritized. Additionally, the DLC defines the
length of the data field, which can reach a maximum of 8 bytes. The flag indicates whether
the message is normal or an attack. Table 4 provides an overview of the dataset’s features,
along with their descriptions and data types. To ensure the generalizability of our proposed
H-FL architecture across diverse scenarios and to avoid reliance on a single dataset, we
validated it using another benchmark dataset in automotive security research, the car
hacking: attack & defense challenge 2020 dataset [26], which comprises normal traffic and
three types of attacks: DoS, frame fuzzification, and spoofing [26].

Table 3. Dataset overview.

Attack Type Attack Instances Normal Instances

DoS 587,521 3,078,250
Frame Fuzzification 491,847 3,347,013

Gear 597,252 3,845,890
RPM 654,897 3,966,805
Total 2,331,517 14,237,958
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Table 4. Data features, descriptions, and types.

Feature Describtion Type

Timestamp Time float

CAN ID CAN message identifier hexadecimal

DLC
The length of the data field, measured
in bytes integer

Data Payload (64-bit) hexadecimal

Flag
T or R,
T: Attack, R: Normal string

3.4. In-Vehicle Intrusion Detection System

In this paper, we evaluate the performance of our proposed IDS as detailed in [15].
The proposed IDS consists of a multistage approach, where the first stage is responsible
for detecting and classifying known attacks using an Artificial Neural Network (ANN),
while the second stage acts as an anomaly detector to identify novel, unknown attacks
using a Long Short-Term Memory (LSTM) autoencoder. The first stage of our proposed
in-vehicle IDS classifies traffic data as either normal traffic or any known attack class that
the ANN model has been trained on. Any data classified as normal by the first model will
be re-examined by the second model (LSTM autoencoder) to detect unseen attacks that
bypassed the initial model, providing an additional layer of protection. The first stage is a
signature-based multiclassifier model, while the second stage is an unsupervised anomaly
detection model. Figure 4 shows the workflow of proposed multistage IDS. The proposed
IDS achieves an F1-score of 0.95 and a 99.99% detection rate for previously unseen attacks,
all within a compact model size of 2.98 MB, making it highly suitable for deployment in
real-world applications. This efficient model size fits well within the memory constraints of
vehicle-level systems, which typically have over 1 GB of available RAM [31]. More details
about the proposed IDS can be found in [15].

Figure 4. Workflow of the proposed multistage in-vehicle IDS.
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3.5. Data Preprocessing and Partitioning

To replicate a real-world scenario where data are independently generated for each
client, each FL client performs individual and independent data preprocessing before
engaging in local model training, as depicted in Figure 5. However, certain preprocess-
ing steps, such as removing missing data and label encoding, should occur before data
partitioning. This approach ensures that each client receives a consistent and complete
dataset, fostering a standardized training environment and maintaining uniform label
representation throughout the FL process. Therefore, we divide the data preprocessing
into two phases: initial data preprocessing and on-device data preprocessing. Initial data
preprocessing occurs before data partitioning, while on-device preprocessing is performed
on the device. This section will elaborate on each step: initial data preprocessing, data
partitioning, and on-device data preprocessing.

Figure 5. Data partitioning.

3.5.1. Initial Data Preprocessing

In the initial phase of data preprocessing, for each data file, we convert ‘T’ to the
corresponding attack type, such as ‘DoS’, and ‘R’ to ‘Normal’ in the ‘Flag’ column. Then,
we shift the ‘Flag’ field to the last column and fill non-available data bytes with (NaN)
values. We combine the four data files into one. Given the extensive data points we have,
we remove any row with these missing values (NAN) in the Data fields. Lastly, we use a
label encoder to convert categorical values into numerical representations. This ensures
consistent encoding across all clients, facilitating model training and aggregation.

3.5.2. Data Partitioning

After the initial data preprocessing step, we perform data partitioning to simulate
the FL environment. In the context of CAN bus data, the data are horizontally structured,
where the training data from participating clients shares a common feature space but
exhibits distinct sample spaces. As illustrated in Figure 6, for instance, client 1 and client 2
contain dissimilar data while sharing the same set of features.
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Figure 6. Horizontal CAN bus data.

To simulate a non-IID setting, we assign data to clients using Dirichlet (Dir(µ)) distri-
bution according to [20], where every client is assigned a share of the samples for each label.
Dirichlet distribution is commonly used as a prior distribution in Bayesian statistics [32]
and is an appropriate choice to simulate real-world data distribution [20]. An advantage
of this approach is that we can flexibly change the imbalance level by varying the con-
centration parameter (µ). The parameter (µ) in (Dir(µ)) regulates the degree of non-IID
property among clients, where lower (µ) values signify a higher level of non-IID. We adjust
(µ) to simulate diverse data distributions among clients, ranging from 0.1 (indicating the
highest non-IID) to 0.7 (indicating the lowest non-IID). Figure 7 shows the data partition
on car hacking dataset with different (µ) values. The number displayed in each rectangle
represents the quantity of data samples of a class (DoS (0), frame fuzzification (1), drive gear
spoofing (2), normal (3), and engine RPM spoofing (4)) for each client. However, we exclude
(µ) = 0.1 due to its highly imbalanced data distribution, as shown in Figure 7a, where
some clients lack normal data (3) for training, making it unrealistic. Data are distributed
among two edges, each with five clients, for a total of ten clients. We chose ten clients,
a common practice in the literature [12,33–35], to manage the increased computational
demands associated with additional clients.

(a) (µ) = 0.1 (b) (µ) = 0.3

(c) (µ) = 0.5 (d) (µ) = 0.7

Figure 7. Dataset distribution based on Dirichlet(µ) distribution.
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3.5.3. On-Device Data Preprocessing

For on-device data preprocessing, unwanted columns (Timestamp, DLC) are removed.
Additionally, we convert the CAN ID and Data values from hexadecimal to decimal values
per the machine learning requirement, and a normalization process is applied.

3.6. Model Initialization and Pre-Training

The model is initialized on the server side, followed by distributing a copy to each par-
ticipating client. In this paper, we use a pre-trained model, as Chen et al. [36] demonstrates
that pre-training models on a central server before distribution to edge devices enhance task
accuracy, especially with non-IID client data. Additionally, many advantages arise from
pre-training a model on a centralized dataset for FL. Firstly, it enhances generalization by
enabling the model to capture general features and patterns, ensuring better adaptability to
the diverse data distributions across devices. Furthermore, initializing a pre-trained model
on a powerful centralized server can significantly reduce the time required to fine-tune the
model for specific devices [37]. To pre-train the models, we extract a small data sample rep-
resenting each class, amounting to 0.8% (less than 1%) of the entire original dataset, for use
in pre-training. The remaining data are then partitioned across clients. Our approach builds
on the methodology outlined in [31], employing K-Means clustering to capture underlying
patterns and the Synthetic Minority Over-sampling Technique (SMOTE) to address class
imbalance. The sampling process starts by grouping the data into clusters using K-Means.
To ensure a representative subset, we apply a group-based sampling strategy, selecting 0.8%
of data points from each cluster. This approach retains diversity in the sampled dataset
while significantly reducing its size. The selected samples are subsequently excluded from
the full dataset before partitioning the data among clients. As the sampled data often
display label imbalance, SMOTE is applied to effectively balance the classes.

3.7. Local Training

On the vehicle side, we include all clients in the training and evaluation process to
ensure consistency in the results. Clients receive the pre-trained model from the corre-
sponding edge and train it on their private data locally for one epoch and fifty rounds.
After each round, each client sends its local weight updates to the corresponding edge
for aggregation.

3.8. Aggregation

In H-FL, there are two stages of aggregation: edge aggregation and server aggregation.
Edge aggregation combines the models from the clients, while server aggregation merges
the results from edge aggregation to produce a global model. An aggregation strategy
refers to the process of combining local models from clients into a centralized global model.
In this paper, we use for both edge server aggregation, the standard aggregation strategy,
and federated averaging (FedAvg) [17] according to the following equation:

wg
t+1 ←

K

∑
k=1

nk
n

wk
t+1 (1)

Accordingly, the edge server calculates the weighted average of local wt+1
k based on

the number of samples each local vehicle used in one round (nk) over the total training
samples (n). Similarly, the cloud server calculates the weighted average of the total training
samples (n) under each edge server.

3.9. Evaluation

In FL, there are two ways to evaluate the model: on the server side or the client side.
In this paper, we chose to employ client-side evaluation over server-side evaluation because
it enables us to assess models across a larger set of data, often leading to more realistic
evaluation outcomes [38].
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4. Results and Evaluations
4.1. Evaluation Metrics

For a robust assessment of model performance, it is important to choose metrics that
align with the dataset type and class distribution. In the context of imbalanced intrusion
datasets, relying solely on accuracy is considered unreliable [39]. Hence, we opted for the
evaluation metrics of F1-score, precision, and recall for our model. Furthermore, given the
unequal distribution of the data based on the label, we use the weighted average to consider
the size of each class. This is an important consideration, as it ensures that the distribution
of instances in each class is taken into account [40]. Additionally, the training time for each
model, network load, and memory requirements for each client are also evaluated.

4.2. Performance Results and Analysis

We evaluate the performance of the proposed IDS within an H-FL architecture using
two datasets, each with three non-IIDlevels, resulting in a total of 24 scenarios: 12 for
dataset 1 and 12 for dataset 2. Figure 8 shows the average F1-score performance of the
ANN model and the proposed cascaded IDS across different non-IID levels in the car
hacking dataset [29]. As depicted in Figure 8a, the ANN classifier’s performance improved
at all non-IID levels except when (µ = 0.5), where it slightly decreased after applying the
H-FL model. In contrast, the F1-score for the cascaded multistage IDS increased across all
non-IID levels, as shown in Figure 8b. Notably, the H-FL improved the F1-score in 10 out
of 12 scenarios in the car hacking dataset.

(a) ANN model (b) Proposed multistage-IDS
Figure 8. Average F1-score results non-IID levels across communication rounds for car hacking
dataset [29].

This indicates that deploying the model in an H-FL architecture significantly enhanced
performance, enabling it to more effectively identify both known and unknown attacks by
not only learning from participating clients’ data but also from a broader range of client
data and evolving threats. The reasoning behind this is that an edge-FL approach, when
applied to a limited number of vehicles with specific data and attack scenarios, confines
the learning process to the vehicles participating within that particular edge-FL network.
This restriction can limit the model’s ability to generalize to diverse attack patterns not
represented in the local FL process. In contrast, H-FL aggregates models from multiple edge
servers across different areas into a central server, then redistributes the global model back
to the edges and ultimately to all participating vehicles. This process enables vehicles to
leverage insights from a broader range of data and attack scenarios across various regions,
enhancing the IDS’s adaptability to new and varied threats, and ultimately increasing
robustness and accuracy in attack detection across the network.

Figure 8b also reveals a notable difference between Edge 1 and Edge 2, primarily due
to the high imbalance in data distribution when (µ = 0.3), compared to (µ = 0.5) and
(µ = 0.7). Across all non-IID distributions, the H-FL approach consistently outperforms the
edge-FL approach, with percentage increases ranging from 0.57% to 10.63%, highlighting a
significant performance improvement with the H-FL method. The increase may vary based
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on the clients selected under each edge and non-IID level, as demonstrated by the Edge 2
results in Figure 8b. These results underscore the critical impact of the participating clients’
data on performance. Detailed F1-score performance is available in Figures 9 and 10, which
further illustrate the F1-score performance of the ANN model and the proposed cascaded
IDS across various non-IID levels. Table 5 shows the average recall and precision of our IDS
in an H-FL environment. The results indicate an increase in both recall and precision after
deploying the H-FL model at nearly all non-IID levels. The best results are obtained when
the data are distributed across clients with a low level of imbalance, such as at (µ = 0.7).
Figure 11 demonstrates the distributed loss across communication rounds. Results show
that the model has different convergence speeds across non-IID levels.

Table 5. Average recall and precision of the proposed IDS model.

Non-IID
Edge 1 FL Edge 1 H-FL Edge 2 FL Edge 2 H-FL

Recall Precision Recall Precision Recall Precision Recall Precision

0.3 94.93 96.76 98.39 99.89 81.29 84.61 86.48 94.71
0.5 92.59 95.27 93.91 94.21 92.92 93.11 95.40 94.16
0.7 95.28 98.63 95.75 99.53 96.27 97.09 98.14 99.86

We also evaluated the performance of the proposed IDS using another dataset, the car
hacking: attack & defense challenge 2020 dataset. Figure 12 shows that 50% of the scenarios
demonstrated improvement, while the remaining 50% showed a decline. This is likely due
to imbalanced data distributions between labels and data heterogeneity. Overall, H-FL
improved the F1-score in 16 out of 24 evaluated scenarios across both datasets.

(a) (µ) = 0.3 (b) (µ) = 0.5 (c) (µ) = 0.7

Figure 9. F1-score of ANN model for different non-IID levels across communication rounds.

(a) (µ) = 0.3 (b) (µ) = 0.5 (c) (µ) = 0.7

Figure 10. F1-score of our proposed multistage-IDS for different non-IID levels across communica-
tion rounds.
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(a) (µ) = 0.3 (b) (µ) = 0.5 (c) (µ) = 0.7

Figure 11. Distributed loss across communication rounds.

(a) ANN model (b) Proposed multistage-IDS
Figure 12. Average F1-score results non-IID levels across communication rounds for car hacking:
Attack & Defense Challenge 2020 dataset [26].

Table 6 shows the average training time in seconds (S) for both the ANN and LSTM
models, as well as the total training time for one round. The results indicate that training
time depends on the number of training data, with Client 6 having the highest training
time of 75.35 s due to its large training dataset, and the inverse being true for clients with
smaller datasets.

Table 6. Average training time per client for one round.

Clients Number of
Training Data

Average ANN
Training Time (S)

Average LSTM
Training Time (S)

Total Training
Time (S)

Client 0 75,341 1.45 4.49 5.94
Client 1 956,504 14.47 56.02 70.49
Client 2 140,115 2.53 10.61 13.14
Client 3 440,494 7.25 27.03 34.28
Client 4 410,876 6.88 27.09 33.97
Client 5 140,044 2.58 0.41 2.99
Client 6 1,118,686 16.71 58.64 75.35
Client 7 405,376 6.34 17.77 24.11
Client 8 131,100 2.39 7.55 9.94
Client 9 162,991 2.93 2.28 5.21

We also measured the network load by calculating the size of weights transferred
between the server and edges, as well as between vehicles and edges. The weights size is
0.966 MB. As shown in Table 7, the network load for a single client in one round is twice the
weights size, as each client sends its weights to the edge and receives the newly aggregated
weights. In H-FL, the network load slightly increases because the main server sends the
global model weights to the edges and receives the weights from each edge for aggregation.
Although H-FL introduces an additional layer of communication between the server and
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edges, which is absent in standard FL, it reduces bottlenecks by distributing clients across
edges, effectively dividing the network load and improving efficiency.

Table 7. Network load across different architectures.

Architecture Edges Clients Rounds Model Weights
(MB)

Edge-FL/FL 1 1 1 1.932
H-FL 1 1 1 3.86

Edge-FL /FL 1 5 50 483.45
Edge- H-FL 1 5 50 968.8

FL 1 10 50 966.9
H-FL 2 10 50 970.76

One of the main challenges in implementing FL is the memory consumption of learn-
ing models trained locally on individual vehicles. High-end automobiles, such as those
produced by Tesla, utilize advanced deep learning algorithms for tasks like object detection
and various driver assistance features. To handle the substantial computational demands of
data from cameras and sensors, these vehicles are equipped with dedicated GPUs. For ex-
ample, Tesla’s latest Model S and Model X are powered by AMD RDNA 2 GPUs, which
provide 16–32 GB of memory for processing tasks [41]. Given that our IDS also relies on
GPUs, we evaluate a vehicle’s memory requirements by analyzing both the size of the
learning models and the memory needed to process the dataset. The total model size is
2.98 MB. To optimize memory usage during training, we process the data in batches of
256 rather than loading the entire dataset at once. This approach significantly reduces the
memory required for training data from 104.25 MB (for the full dataset) to just 0.02 MB
per batch. Consequently, the model requires approximately 1 GB of memory for operation,
which is well within the capabilities of current vehicle-level machines.

5. Conclusions and Future Works

The aim of this paper was to deploy and evaluate our proposed in-vehicle IDS [15]
within the H-FL framework to address the limitations of the standard FL approach. We
evaluated the performance of the IDS using two datasets with three non-IID levels to simu-
late real-world scenarios and assess the impact of different data distributions. Experimental
results indicate that the H-FL framework, in most scenarios, improves F1-score results by
up to 10.63% for both known and unknown attacks across diverse non-IID conditions, out-
performing edge-FL, which is constrained by smaller, vehicle-specific datasets. However,
in certain scenarios, the results showed a decline after applying H-FL, potentially due to
the heterogeneity of data among the clients. Overall, H-FL improved the F1-score in 16
out of 24 evaluated scenarios in two datasets. This raises an important research question
for future studies: How can we cluster vehicles to ensure the effectiveness of the H-FL
framework? By applying clustering methods, vehicles could be grouped based on factors
such as proximity, connectivity, or data similarity, which could improve overall training
performance across all clients [42]. One limitation of this work is the use of a fixed number
of clients for all experiments, whereas in real-world scenarios, the number of clients can
vary significantly. Future work should include a more flexible evaluation framework that
tests variations in client numbers to enhance the reliability and scalability of the proposed
H-FL architecture.
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