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Abstract
Cryptocurrencies and Bitcoin, in particular, are prone to wild swings resulting in 
frequent jumps in prices, making them historically popular for traders to speculate. 
It is claimed in recent literature that Bitcoin price is influenced by sentiment about 
the Bitcoin system. Transaction, as well as the popularity, have shown positive evi-
dence as potential drivers of Bitcoin price. This study introduces a bivariate jump-
diffusion model to capture the dynamics of Bitcoin prices and the Bitcoin sentiment 
indicator, integrating trading volumes or Google search trends with Bitcoin price 
movements. We derive a closed-form solution for the Bitcoin price and the associ-
ated Black–Scholes equation for Bitcoin option valuation. The resulting partial dif-
ferential equation for Bitcoin options is solved using an artificial neural network, 
and the model is validated with data from highly volatile stocks. We further test the 
model’s robustness across a broad spectrum of parameters, comparing the results 
to those obtained through Monte Carlo simulations. Our findings demonstrate the 
model’s practical significance in accurately predicting Bitcoin price movements and 
option values, providing a reliable tool for traders, analysts, and risk managers in the 
cryptocurrency market.

Keywords  Jump-diffusion model · Cryptocurrencies · PDE · Bitcoin · Black–
Scholes equation · Artificial neural network

JEL Classification  C15 · C45 · C53 · G17

1  Introduction

Sene et  al. (2021), Olivares (2020), Chen and Huang (2021), Grohs et  al. (2018) 
Bitcoin, a decentralized network-based digital currency and payment system, is a 
special type of cryptocurrency developed in 2009 Nakamoto (2008) by a person or 
a group of persons known under the name of Satoshi Nakamoto. The soar in bit-
coin appreciation has been accompanied by high uncertainty and volatility, which 
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surrounds future prices, and this has attracted rapidly increasing research into this 
digital asset. Policymakers globally are concerned whether bitcoin is decentralized 
and unregulated and whether it could be a bubble which threatens the stability of a 
given financial system Cheah and Fry (2015). Regardless of the speculation, traders 
are still interested in the capacity of Bitcoin to generate more returns and the use of 
Bitcoin derivatives as a risk management and diversification tool. Blockchain is the 
underlying technology that powers Bitcoin by recording transactions in a distribu-
tive manner, removing alteration and censorship. Following the success of Bitcoin 
and its growing community, many other alternatives to Bitcoin have emerged. There 
are more than 5000 tradable cryptocurrencies1 with a total market capitalization of 
USD 248 billion at the time of this writing (see Yermack (2015, 2017) for further 
background on Bitcoin and its technology).

On the one hand, the cryptocurrency market is known to be highly volatile 
(Dwyer 2015; Katsiampa 2017) due to its sensibility to new information, whether 
fundamental or speculative since it does not rely on the stabilizing policy of a cen-
tral bank Cheah and Fry (2015). On the other hand, the relative illiquidity of the 
market with no official market makers makes it fundamentally fragile to large trad-
ing volumes and market imperfections and thus more prone to large swings than 
other traded assets, [See Scaillet et  al. (2017)]. This concept results in frequent 
jumps of larger amplitude than what a continuous diffusion process can explain. Due 
to its local Markov property, i.e., the asset price changes only by a small amount 
in a short interval of time. When analyzing cryptocurrency data, it is interesting to 
consider processes that allow for random fluctuations that have more than a marginal 
effect on the cryptocurrency’s price. Such a stochastic process that enables us to 
incorporate this type of effect is the jump process. This process allows the random 
fluctuations of the asset price to have two components, one consisting of the usual 
increments of a Wiener process; the second provides for “large” jumps in the asset 
price from time to time. Shortly after the development of the Black–Scholes option 
valuation formula, Merton (1976) developed a jump-diffusion model to account for 
the excess kurtosis and negative skewness observed in log-return data (see, Matsuda 
(2004a)). This jump process is appended to the Black–Scholes geometric stochastic 
differential equation.

Several studies have used the daily bitcoin data to document the impact of jump 
as a crucial feature of the cryptocurrency dynamics. Chaim and Laurini (2018) 
observed that jumps associated with bitcoin volatility are permanent, whereas the 
jumps to mean returns are said to have contemporaneous effects. The latter equally 
capture large price bubbles, mainly negative, and are often associated with hacks and 
unsuccessful fork attempts in the cryptocurrency markets. Hilliard and Ngo (2022) 
further investigated the characteristics of bitcoin prices and derived a model which 
incorporates both jumps and stochastic convenience yield. The result was tested with 
data obtained from the Deribit exchange, and they observed that modelling bitcoin 
prices as a jump-diffusion model outperformed the classical Black–Scholes mod-
els. Philippas et al. (2019) observed that during periods of high uncertainty, some 

1  https://​coinm​arket​cap.​com/.

https://coinmarketcap.com/
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informative signals, which are proxied by Google search volume and Twitter tweets, 
have a partial influence on Bitcoin prices and price jumps.

In recent years, the focus has been on identifying the main drivers of Bitcoin 
price evolution in time. Many researchers have assigned the high volatility in Bit-
coin prices to the sentiment and popularity of the Bitcoin system. Though these are 
not directly observable, they may be considered as indicators from the transaction 
volumes or the number of Google searches or Wikipedia requests about the topic, 
see for example, Kristoufek (2013, 2015), Kim et al. (2015) and Bukovina and Mar-
ticek (2016). Authors in Bukovina and Marticek (2016) use a Bitcoin sentiment 
measure from Sentdex.com and develop a discrete-time model to show that exces-
sive confidence in the system may boost a bubble in the Bitcoin system. These sen-
timent-based data were collected through Natural Language Processing techniques 
to identify a string of words conveying positive, neutral or negative sentiment on 
Bitcoin. Furthermore, Cretarola et al. (2017) introduce a bivariate model in continu-
ous time to describe both the dynamics of the Bitcoin sentiment indicator and the 
corresponding Bitcoin price. By fitting their bivariate model to market data, they 
consider both the volume and the number of Google searches as proxies for the sen-
timent factor.

While traditional financial theory relies on assumptions of market efficiency, nor-
mally distributed returns, and no-arbitrage, emerging research suggests cryptocur-
rency markets exhibit different characteristics. These markets appear prone to inef-
ficiencies, fat-tailed non-normal distributions, and frequent arbitrage opportunities 
according to Kabašinskas and Šutienė (2021). For example, the extreme volatility 
and relative illiquidity of cryptocurrencies can lead to dislocations between markets 
where arbitrageurs can profit. Additionally, the return distributions tend to exhibit 
higher kurtosis and skewness than normal distributions. However, despite violat-
ing some traditional assumptions, jump-diffusion models can still provide a useful 
starting point for modelling cryptocurrency dynamics. The jumps can account for 
extreme price fluctuations beyond what continuous diffusion alone predicts. While 
the model may require modifications over time as more data becomes available, it 
captures key features like volatility clustering and significant outliers. The sentiment 
indicator variable also represents an initial attempt to incorporate a behavioural fac-
tor affecting prices.

Our technique incorporates the one similar to Cretarola et  al. (2017), who 
developed a continuous bivariate model that described the bitcoin price dynamics 
as one factor and a sentiment indicator as the second factor. We further added a 
jump-diffusion component to the SDE with the aim of capturing the occurrence 
of rare or extreme events in the bitcoin price return. Furthermore, we introduce 
the artificial neural network and propose a trial solution that solves the associ-
ated Black–Scholes partial differential equation (PDE) for the Bitcoin call options 
with European features. This concept is equally different from the univariate 
jump-diffusion model used, for example, by Chen and Huang (2021). We further 
implemented the number of Google searches as a Bitcoin sentiment indicator in 
this paper. This choice is due to their unique transparency in contrast to other 
social media-driven measures, and they have the tendency to gauge behaviour 
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instead of searching for it. Therefore, using search-based data as sentiment indi-
ces has the potential to reveal the underlying beliefs of populations directly.

In this paper, we present a novel modelling framework using a bivariate jump-
diffusion model and sentiment indicator. This framework serves as a foundational 
tool for pricing and derivatives valuation in cryptocurrency markets. We acknowl-
edge the model’s limitations in the context of the evolving understanding of these 
new markets. As future research expands knowledge of distributional properties, 
market microstructure issues, and other intricacies, the modelling approach can 
be enhanced. Nonetheless, our proposed model offers a unique and significant 
contribution to the field of financial engineering in the cryptocurrency space. The 
key contributions of this paper are as follows:

•	 We introduce a bivariate jump-diffusion model to capture the dynamics of the 
Bitcoin sentiment indicator, which encompasses trading volumes or Google 
search trends alongside the corresponding Bitcoin price movements.

•	 We derive a practical and applicable solution by formulating a closed-form 
solution for the Bitcoin price and the associated Black–Scholes equation for 
valuing Bitcoin options.

•	 The resulting Bitcoin option partial differential equation (PDE) is solved using 
an artificial neural network, with the model validated against data from highly 
volatile stocks.

•	 Finally, we test the robustness of the model across a broad spectrum of param-
eters, comparing the results to those obtained via the Monte Carlo simulation 
framework.

The practical significance of this research lies in its ability to enhance the under-
standing and prediction of Bitcoin market dynamics through a sophisticated mod-
elling approach. Incorporating sentiment indicators ensures that the model pro-
vides a more comprehensive view of market dynamics. Using a neural network to 
solve the Bitcoin option PDE demonstrates the integration of advanced machine 
learning techniques in financial modelling. These network structures can handle 
non-linearities and complex patterns that traditional methods may struggle with. 
Testing the model’s robustness across a wide range of parameters ensures its reli-
ability and generalizability. Comparing the results with those obtained via Monte 
Carlo simulations provides a benchmark to validate the model’s accuracy. Thus, 
by leveraging sentiment indicators, formulating the PDE, employing advanced 
computational techniques for the quasi-analytical scheme, and validating robust-
ness, the research offers valuable tools for traders, analysts, and financial profes-
sionals to navigate the volatile cryptocurrency market more effectively.

The rest of the paper is organized as follows: Section 2 introduces the meth-
odology and highlights the strengths and the limitations of the proposed model. 
Section  3 describes the concept of the artificial neural network, as well as its 
applications in solving the option pricing differential equations, Sect. 4 discusses 
the numerical implementation findings, and the last section concludes the work.
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2 � Methodology

The bivariate jump diffusion and sentiment model is an advanced financial mod-
elling framework that integrates market dynamics and sentiment analysis to cap-
ture the complexities of asset price movements more accurately (in this case, 
bitcoin prices). Sentiment analysis incorporates market sentiment derived from 
news articles, social media, analyst reports, and other textual data sources. In 
addition, sentiment scores are quantified and integrated into the model to reflect 
how positive or negative news impacts market behaviour and can be treated as 
an external factor influencing the likelihood and magnitude of jumps in mod-
elling asset prices. Thus, by capturing both the inherent randomness of asset 
prices and the external impacts of sentiment, this model offers enhanced pre-
dictive capabilities and practical applications in option pricing. Specifically, the 
overview of the methodology entails understanding the jump-diffusion model, 
which is an extension of the Black and Scholes (1973). Jump-diffusion models 
are continuous-time stochastic processes introduced in quantitative finance by 
Merton (1973), and they reproduce stylised facts observed in asset price dynam-
ics, such as mean-reversion and jumps. Incorporating jumps into the modelling 
of asset prices is essential, especially when capturing the dynamics of highly 
volatile assets such as Bitcoin. There are two ways to expound the description of 
jump processes. 

1.	 One is to describe the jump in  absolute terms (this is useful if we are focusing 
on prices or interest rates),

2.	 The other is to describe the jump in  proportional terms (this is more useful if 
our focus is on returns, as in this study).

In addition to jump-diffusion models, Levy processes appear as an alternative 
for capturing large deviations in asset prices. Levy processes allow sample paths 
with frequent discontinuities, enabling them to generate heavy-tailed distribu-
tions. Some key examples include variance gamma processes, normal inverse 
Gaussian processes, and generalized hyperbolic processes. Watana Be (2006) 
demonstrated that Bitcoin returns exhibited heavy tails and proposed using a 
variance gamma process to model the price dynamics. Kim et al. (2017) found 
evidence that variance gamma processes fit cryptocurrency log returns com-
pared to classical diffusion. Levy processes have also been employed to model 
stochastic volatility in Bitcoin prices (Caporale et al., 2018). Overall, Levy pro-
cesses provide an alternative class of models with more flexibility to account 
for extreme deviations. They have shown promise in fitting the empirical dis-
tributional properties of cryptocurrency returns. As this work initially focuses 
on extending jump-diffusion models, exploring Levy processes is a worthwhile 
direction for future research. However, their ability to capture heavy tails and 
discontinuities suggests that Levy processes could serve as a valuable modelling 
technique in this domain.
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2.1 � Strengths and Limitations of the Proposed Model

The bivariate jump-diffusion model, a unique feature of our proposed model, 
serves as a crucial first step in applying financial engineering techniques to the 
emerging field of cryptocurrency. By incorporating stochastic volatility, discrete 
jumps, and a sentiment indicator, it captures several distinctive features of cryp-
tocurrencies. This preliminary pricing and derivatives valuation framework can 
be further developed as the market matures. While the model’s assumptions will 
need validation as more data becomes available, it currently provides valuable 
insights for investment analysis. We recognize the need for continuous refine-
ment as cryptocurrency finance evolves into a distinct field. This paper aims to 
establish the initial modelling foundation, which can be progressively enhanced 
as research advances. Potential future improvements include more flexible return 
distributions, multifactor models to account for additional risks, regime-switch-
ing models to reflect market phases, and calibration of the sentiment factor from 
diverse data sources.

In addition, the current proposed model offers a useful starting point, we rec-
ognize this initial framework may require modifications over time to align with 
market realities. As more cryptocurrency data becomes available, the distribu-
tional properties and other intricacies of these markets will become clearer. If 
the actual return distributions exhibit higher kurtosis than the normal distribution 
assumed, the model may need to be adjusted accordingly. Furthermore, if ineffi-
ciencies and arbitrage opportunities remain prevalent, the dynamics may diverge 
from a pure jump-diffusion process. As researchers expand their knowledge of 
the microstructure, behavioural components, and risks in cryptocurrency markets, 
our modelling approach can be enhanced. In summary, we emphasize this work 
represents a starting point for modelling cryptocurrencies and enabling financial 
applications. The proposed bivariate jump-diffusion model and sentiment indica-
tor capture essential dynamics but may require adjustments as knowledge devel-
ops. We welcome future research to build on these initial techniques for pricing 
and valuation of cryptocurrency-denominated assets.

The overall structure is given by

where S = {St, t ≥ 0} be the price process of Bitcoin. Let yt be the absolute jump 
size, where we assume that the bitcoin price jumps from St to ytSt in a small time 
interval �t . The relative price jump size, Jt = yt − 1 , is the percentage change in the 
bitcoin price influenced by the jump. Using the Merton jump-diffusion model, the 
absolute price jump size is a non-negative random variable which is log-normally 
distributed, i.e ln(yt) ∼ i.i.d N(�, �2) [See Matsuda, (2004a)]. The other parameters 
�d, �d, k,Wt, � and Nt denote the drift rate, volatility, average jump size, Weiner pro-
cess, jump intensity and the Poisson process, respectively. The next strategy entails 
incorporating the market sentiment which are evident in the Bitcoin market. This 
sentiment index may be the volume/the number of Bitcoin transactions or the num-
ber of internet searches within a fixed time period.

(1)dSt = St(�d − �k)dt + �dStdWt + StJtdNt, S0 = s0 ∈ ℝ+
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With that into perspective, consider a probability space (Ω,F,P) endowed with a fil-
tration � = {Ft, t ≥ 0} that satisfies the usual conditions of right-continuity and com-
pleteness, where Ft = �

(
Ws,Ns; 0 ≤ s ≤ t

)
 : Wt is a standard Brownian motion, and Nt 

denotes a counting process that can be represented as Nt =
∑

i 1{Ti≤t} with a sequence 
of stopping times 0 < T1 < T2 < ⋯ < T whose number is finite with probability one. 
Factoring in the sentiment index, we further redefine the dynamics of the Bitcoin price 
by the following jump-diffusion stochastic differential equation

where �d is the diffusion mean, �d the diffusion volatility, � the jump intensity rate 
and �[Jt] = e�+

�2

2 − 1 = k , the expected proportional jump size. The one-dimen-
sional Poisson process is discontinuous with a constant jump � and is given by

Also, the exogenous process P = {Pt, t ≥ 0} is a stochastic factor representing the 
sentiment index in the Bitcoin market, satisfying

where �p ∈ ℝ − {0} , �p ∈ ℝ+ , L ∈ ℝ+ , Z = {Zt, t ≥ 0} is a standard �-Brownian 
motion on (Ω,F,P) , which is P-independent of W, and � ∶ [−L, 0] → [0,+∞) is a 
continuous (deterministic) initial function. The non-negative property of the func-
tion � corresponds to the requirement that the minimum level for sentiment is zero. 
The delay variable Pt−� accounts for the effect of investor sentiment on volatility, 
and this is supported by findings that factors like public attention and transaction 
volume influence cryptocurrency volatility (e.g. (Bukovina and Marticek, 2016; 
Cretarola et al., 2017)). This variable affects the instantaneous variance of the Bit-
coin price modulated by �d . The solution to Eq. (3) exists in its closed form Black 
and Scholes (1973), and Pt is lognormally distributed for each t > 0.

The system given by Eqs. 2 and 3 is well-defined in ℝ+ as stated in the following 
theorem

Theorem 2.1  In the market model described previously, the following holds: 

1.	 the bivariate stochastic delayed differential equation 

 has a continuous, �-adapted, unique strong solution (S,P) = {(St,Pt), t ≥ 0} 
given by 

(2)
dSt = StPt−�(�d − �k)dt + �d

√
Pt−�StdWt + StPt−�(yt − 1)dNt, S0 = s0 ∈ ℝ+

dNt = Nt+dt − Nt =

{
0 with probability 1 − �dt,

1 with probability �dt
.

(3)dPt = Pt�pdt + �pPtdZt, Pt = �(t), t ∈ [−L, 0].

(4)
{

dSt = StPt−� (�d − �k)dt + �d
√

Pt−�StdWt + StPt−� (yt − 1)dNt , S0 = s0 ∈ ℝ+

dPt = Pt�pdt + �pPtdZt , Pt = �(t), t ∈ [−L, 0].
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The solution (5) can be obtained by directly applying the Ito’s formula for jump-
diffusion processes below.

Proposition 2.2  (Ito’s formula for diffusion processes (Tankov, 2003), Proposi-
tion 8.14, p.275) Let X be a diffusion process with jumps, defined as

where bt and �t are continuous process with

Then for any C1,2 function f ∶ [0, T] ×ℝ ⇒ ℝ , the process Yt = f (t,Xt) can be rep-
resented as

Following Proposition 2.2, we assume that f (St) = ln(St) ∈ C1,2(ℝ) and assuming 
that the process St is cáglád. Thus, we have that

Proposition 2.3  (Derivation of the Bitcoin option PDE) Let Vt = V(t, St) be the price 
of the derivative that cannot be exercised before maturity. and consider the stock 
price process described by the Eqs. 2 and 3. Let B(t) be the risk-free asset process:

(5)
St = S0 exp

��
(�d − �k) −

�2
d

2

�
∫

t

0

Pu−�du

+ �d ∫
t

0

√
Pu−�dWu + ∫

t

0

ln(1 + Pu−�(yu − 1))dNu

�

(6)Pt = �(0) exp

((
�d −

�2
d

2

)
t + �dZt

)
, t ≥ 0

Xt = X0 + ∫
t

0

bsds + ∫
t

0

�sdWs +

Nt∑
i=1

ΔXi,

�

[
∫

T

0

𝜎2
t
dt

]
< ∞.

f (t,Xt) − f (0,X0) = �
t

0

[
�f

�s
(s,Xs) +

�f

�x
(s,Xs)bs

]
ds +

1

2 �
t

0

�2
s

�2f

�x2
(s,Xs)ds

+ �
t

0

�f

�x
(s,Xs)�sdWs +

∑
i≥1,Ti≤t

[f (XTi−
+ ΔXi) − f (XTi−

)]

ln(St) = ln(S0) + ∫
t

0

Pu−�(�d − �k)du +
1

2 ∫
t

0

�2
d
Pu−�du + ∫

t

0

�d

√
Pu−�dWu+

∫
t

0

ln(Su− + SuPu−�(yu − 1)) − ln(Su−) dNu.
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where r > 0 . The price of the European option on a stock St under the modified 
Black–Scholes framework satisfies the following partial differential equation:

where the differential operator L is given by

Proof  The Black–Scholes PDE in the Proposition 2.3 above is derived via the hedg-
ing argument. Applying Ito’s formula,

We set up a self-financing portfolio X that is comprised of one option and � amount 
of the underlying stock, such that the portfolio is riskless, that is insensitive 
to changes in the price of the security. So, at time t, the value of the portfolio is 
Xt = Vt + �St . The self-financing assumption implies that

Substituting the dVt and dSt into the Eq. (8), we have

So,

On one hand, this portfolio should be riskless and earn a risk-free rate. To be risk-
less, the second and the third terms involving, respectively, the Brownian motion 
dWt and the Poisson process dNt must be zero. That is

B(t) = ert, t ∈ [0, T]

(7)
�Vt

�t
+ LVt − (�k − �d)StPt−� = 0,

L =
1

2
�2
d
Pt−�S

2
t

�2

�S2
+ [rSt + (�d − �k)StPt−�]

�

�S
− r.

dV(t, St) =

�
�V

�t
(t, St) + (�d − �k)StPt−�

�V

�S
(t, St) +

�2
d

2
Pt−�S

2
t

�2V

�S2
(t, St)

�
dt

+ �d

√
Pt−�St

�V

�S
(t, St)dWt + ΔV(t, St)dNt

(8)dXt = dVt + �dSt

dXt =

��
�V

�t
(t, St) + (�d − �k)StPt−�

�V

�S
(t, St) +

�2

d

2
Pt−�S

2

t

�2V

�S2
(t, St)

�
dt

+ �d

√
Pt−�St

�V

�S
(t, St)dWt + ΔV(t, St)dNt

�

+ �

�
StPt−�(�d − �k)dt + �d

√
Pt−�StdWt + StPt−�(yt − 1)dNt

�

(9)

dXt =

�
�V

�t
(t, St) + (�d − �k)StPt−�

�
1 +

�V

�S
(t, St)

�
+

�2
d

2
Pt−�S

2
t

�2V

�S2
(t, St)

�
dt

+ �d

√
Pt−�St

�
� +

�V

�S
(t, St)

�
dWt +

�
�StPt−�(yt − 1) + ΔV(t, St)

�
dNt
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Hence,

Substituting for � and ΔV(t, St) in Eq. (9) implies that the portfolio follows the 
process

On the other hand, the portfolio must earn the risk-free rate, that is

Multiplying both sides by 1
dt

 and re-arranging yields the following Black–Scholes 
PDE for an option V

Finally, re-arranging the equation and recognizing the operator L acting on Vt

gives the final PDE below:

Remark 2.4  This extended Black–Scholes PDE poses challenges for analytical solu-
tions due to the unbounded upside of the European call payoff. Therefore, numeri-
cal methods are often used to approximate the solution. Two standard techniques 
are finite difference methods and Monte Carlo simulation. Finite difference methods 
involve discretizing the price domain and time dimensions and replacing the deriva-
tives with finite difference approximations. This transforms the PDE into a system of 
algebraic equations that can be solved recursively. Various finite difference schemes 
can be employed, such as explicit, implicit, and Crank-Nicolson. Monte Carlo simu-
lation generates sample paths of the underlying price using the assumed stochastic 
process. The discounted payoffs from each sample path are averaged to estimate the 
option price. Variance reduction techniques like antithetic sampling and control var-
iates can improve efficiency. Both methods have tradeoffs regarding accuracy, speed, 

� = −
�V

�S
(t, St) and ΔV(t, St) = −�StPt−�(yt − 1)

ΔV(t, St) = StPt−�(yt − 1)
�V

�S
(t, St)

(10)

dXt =

(
�V

�t
(t, St) + (�d − �k)StPt−�

(
1 +

�V

�S
(t, St)

)
+

�2
d

2
Pt−�S

2
t

�2V

�S2
(t, St)

)
dt

dXt = rXtdt(
�Vt

�t
+ (�d − �k)StPt−�

(
1 +

�Vt

�S

)
+

�2
d

2
Pt−�S

2
t

�2Vt

�S2

)
dt = r

(
Vt −

�Vt

�S
St

)
dt

(11)
�Vt

�t
+

�2
d

2
Pt−�S

2
t

�2Vt

�S2
+ rSt

�Vt

�S
− rVt = −(�d − �k)StPt−�

(
1 +

�Vt

�S

)

LVt =
1

2
�2
d
Pt−�S

2
t

�2Vt

�S2
+ [rSt + (�d − �k)StPt−�]

�Vt

�S
− rVt.

�Vt

�t
+ LVt − (�k − �d)StPt−� = 0.
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and implementation complexity. Our proposed neural network approach serves as 
an alternative way to numerically solve the pricing PDE without discretizing the 
domain. This offers benefits in terms of generalization and scaling.

3 � Neural Network Methodology

The neural network (NN) algorithm is used for solving problems relating to 
dimensionality reduction (Sarveniazi, 2014; Teli, 2007), visualization of data 
(Marghescu, 2007), clustering (Du, 2010; Xu & Wunsch, 2005) and classifica-
tion issues (Nazemi & Dehghan, 2015; O’Dea et  al., 2001). It is also used in 
regression (Bataineh & Marler, 2017; Jiang et al., 2022; Setiono & Thong, 2004) 
in solving regression problems since they do not require prior knowledge about 
the distribution of the data. The NN algorithm often has the tendency to predict 
with higher accuracy than other techniques due to the NN’s capability to fit any 
continuous functions (Hornik, 1991). Mathematically, the NN can be referred to 
as a directed graph having neurons as vertices and links as edges. Different forms 
of NN depend on the connectivity of their neurons, and the simplest one is the 
Multi-layer perceptron, also known as the feedforward NN. Basically, a NN can 
have only one input and one output layer in its simplest form, and this can be 
written as:

where m is the number of input variables, Φ is the activation function, wi,k is the 
weight of the input layer i with respect to the output k, b is the bias, and the input 
vector x is connected to the output k (denoting the kth neuron in the output layer) 
through a biased weighted sum. In the presence of hidden layers positioned between 
the input layers and the output layers, the output can be written as:

where m1 is the number of input variables, m2 is the number of nodes in the hidden 
layer, Φ ∶ ℝ → ℝ refers to non-linear activation functions for each of the layers in 
the brackets, and Φout is the possibly new output function.

Recently, the NN has become an indispensable tool for learning the solu-
tions of differential equations, and this section will utilize the potential of the 
NN in solving PDE-related problems (Aarts & Van Der Veer, 2001; Dissanayake 
& Phan-Thien, 1994; Hussian & Suhhiem, 2015; Umeorah & Mba, 2022). Also, 
the NN has been implemented in solving equations without analytical solutions. 
For instance, Nwankwo et  al. (2023) considered the solution of the American 
options PDE by incorporating the Landau transformation and solving the corre-
sponding transformed function via a neural network approach. In many scientific 

yk = Φ

(
bk +

m∑
i=1

wi,kxi

)
,

yp = Φout

[
b(2)
p

+

m2∑
k=1

w
(2)

k,p
× Φ

(
b
(1)

k
+

m1∑
i=1

w
(1)

i,k
xi

)]
,



	 E. Pindza et al.

and industrial contexts, there is a need to solve parametric PDEs using NN tech-
niques and Khoo et al. (2021) developed such a technique which solves PDE with 
inhomogeneous coefficient fields. For high-dimensional parametric PDE, Glau 
and Wunderlich (2022) analyzed the deep parametric PDE method to solve high-
dimensional parametric PDEs with much emphasis on financial applications.

In the following, we describe the Bitcoin options with the corresponding 
Black–Scholes pricing PDE:

The above equation which is a non-homogeneous PDE can be re-written as

where �2
∗
= �2Pt−� , � = r + (� − �K)Pt−� , �(S) = −(� − �K)SPt−� and 

Pt = �(0) exp{(�p −
�2
p

2
)t + �pZt}.

Equation (13) can be written in its operator format. Let Ω = Smax and A be the 
infinitesimal operator for the stochastic process defined by

with both the boundary and the terminal value problem written as

Standard theorems guarantee a classical smooth solution exists for the pricing PDE 
(3.13) given the assumed dynamics. The continuity and linear growth conditions 
on the coefficient functions ensure they satisfy Lipschitz continuity. Contingent 
claims theory shows that Lipschitz continuity is sufficient for existence and unique-
ness under the stochastic process specifications. In particular, the smooth past price 
dependence in the diffusion coefficient allows the application results for delayed 
Black–Scholes equations. Therefore, the Cauchy problem is well-posed under the 
model assumptions, and a smooth pricing solution is guaranteed to exist based on 
the theorems. This provides the theoretical foundation for using a neural network 
to approximate the price function numerically. Thus, employing the ANN to solve 
the PDE, we introduce an approximating function �(t, S ∶ �) with parameter set � . 
The loss or cost function associated with this training is measured by how well the 
approximation function satisfies the differential operator, boundary conditions and 
the terminal condition of the option pricing PDE. These are given respectively as

(12)

�V

�t
+

�2S2

2
Pt−�

�2V

�S2
+ (r + (� − �K)Pt−�)S

�V

�S
− rV + (� − �K)SPt−� = 0

(13)�V

�t
+

�2
∗
S2

2

�2V

�S2
+ �S

�V

�S
− rV = �(S),

(14)A = S�(t, s)
�

�S
+

S2�2
∗
(t, S)

2

�2

�S2
,

(15)

(�t +A − r)V(t, S) = �(t, S), t, S ∈ [0, T] × Ω

V(T , S) = g1(T , S) = Payoff, t, S ∈ [0, T] × �Ω

V(t, S) = g2(t, S) = St − Ke−r(T−t), S ∈ Ω

V(t, 0) = V0(t) = 0, t ∈ [0, T] .
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•	 Differential operator ‖‖�t +A − r)�(t, S ∶ �)‖‖2Y1 , where Y1 = [0, T] × Ω, v1.
•	 Terminal condition ‖‖�(T , S ∶ �) − g1(T , S)

‖‖2Y2 , where Y2 = Ω, v2.
•	 Boundary condition ‖‖�(t, 0 ∶ �) − V0(t)

‖‖2Y3 , where Y3 = [0, T], v3.
•	 Boundary condition ‖‖�(t, S ∶ �) − g2(t, S)

‖‖2Y4 , where Y4 = [0, T] × �Ω, v4.

In all these four terms above, the observed error is measured in the Hilbert space 
L2-norm, meaning that ‖�(x)‖2

m,n
= ∫

m
��(x)�2n(x)dx with n(x) being the probabil-

ity density function which describes the region m. The combination of these terms 
gives the associated cost or loss function connected with the NN training. Thus, the 
objective function can be written as:

Suppose L(�) = 0 , then �(t, S ∶ �) is a solution of the PDE in Eq. (15). The major 
aim is to obtain a set of parameters � such that the function �(t, S ∶ �) minimizes the 
observed error of L(�) . The procedure for seeking a good parameter set by minimiz-
ing this loss function using the stochastic gradient descent (SGD) optimizer is called 
“training”. Thus, using a Machine Learning approach, and in this case, the artificial 
NN, it will be feasible to minimize the function L(�) by applying the SGD approach 
on the sequence of asset and time points which are drawn at random. A part of the 
input samples, fully dependent on the mini-batch size, is drawn within each iteration 
to estimate the gradient of the given objective function. The gradient is then esti-
mated over these mini-batches due to the limitations of the computer memory (Liu 
et al. (2019).

The training of NN is classified into first identifying the network’s hyperparam-
eters, that is, the architectural structure and the loss function of the network. Next, 
use the SGD to optimize or estimate the loss minimizer, and then the derivatives of 
the loss function are computed using the backpropagation techniques. Essentially, 
the process of searching and identifying the best � parameter by minimizing the loss 
function using the gradient descent-based optimizers is referred to as “training”. The 
whole procedure is well illustrated in the Algorithm 1 (Sirignano and Spiliopoulos 
2018), and can be implemented in solving the PDE in Eq. (15).

It must also be noted that the gradient descent steps ∇�G(�n;xn) are the unbiased 
estimates of ∇�L(�(.;�n)) , such that

and also a negative correlation exists between the learning rate �n and n.
The learning rate � is employed to scale the intensity of the parameter updates 

during the gradient descent. Choosing the learning rate, as the descent parameter � , 
in the network training is crucial since this factor plays a significant role in aiding 
the algorithm’s convergence to the true solution in the gradient descent. It equally 
affects the pace at which the algorithm learns and whether or not the cost function is 

(16)

L(�) = ‖‖�t +A − r)�(t, S ∶ �)‖‖2Y1 + ‖‖�(T , S ∶ �) − g1(T , S)
‖‖2Y2 + ‖‖�(t, 0 ∶ �) − V0(t)

‖‖2Y3
+ ‖‖�(t, S ∶ �) − g2(t, S)

‖‖2Y4 .

�[∇�G(�n;xn)|�n] = ∇�L(�(.;�n)),
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minimized. When � implies divergence, and thus, the optimal point can be missed. 
Also, a fixed value of � can most likely make the local optima overshoot after some 
iterations, leading to divergence. Defining the learning rate as a dynamic decreasing 
function is preferable since it allows the algorithm to identify the needed point rap-
idly. Another limitation in employing the gradient descent method is obtaining the 
value of the initial parameters of the loss function. If the value is significantly close 
to the local optimum, then the slope of the loss function reduces, thereby leading to 
the optimal convergence. Otherwise, there will be no convergence as the solution 
explodes abnormally. 

Algorithm 1   Implementing NN in solving PDE

(1) Set up the initial parameter set θ0 = (W0, b0) as well as the learning rate αn, where W0 and
b0 represent the weight and the bias respectively.

(2) Generate samples drawn randomly from the interior of the domain and from the time/asset
boundaries. That is

• Generate (tn, Sn) from [0, T ]× Ω in accordance to the probability density v1.

• Generate ωn from Ω in accordance to the probability density v2.

• Generate rn from [0, T ] in accordance to the probability density v3.

• Generate (τn, zn) from [0, T ]× ∂Ω in accordance to the probability density v4.

(3) Estimate the value of squared error G(θn;xn) where xn is a set of randomly sampled points
denoted by xn = {(tn, Sn), ωn, rn, (τn, zn)}. That is, compute the following:

• Compute G1(θn; tn, Sn) = ((∂t +A− r)ζ(θn; tn, Sn))
2.

• Compute G2(θn;ωn) = (ζ(T, ωn)− g1(T, ωn))
2.

• Compute G3(θn; rn) = (ζ(rn, 0)− V0(rn))
2.

• Compute G4(θn; τn, zn) = (ζ(τ, zn)− g2(τn, zn))
2.

• Set G(θn;xn) = G1(θn; tn, Sn) + G2(θn;ωn) + G3(θn; rn) + G4(θn; τn, zn).

(4) Compute the gradient ∇θG(θn;xn) using backpropagation techniques.

(5) Take an SGD step at the random points xn using the learning rates from the Adam optimization
method. Use the estimated gradient to update the parameter θn. Therefore, in each iteration
n, the parameters θn are updated in accordance to the relationship below:

θn+1 = θn − αn∇θG(θn;xn) (17)

Equation (3.17) can be explicitly written in terms of the weights and bias as





Wi+1 ← Wi − αi
∂G(θi;xi)

∂W

bi+1 ← bi − αi
∂G(θi;xi)

∂b

, (18)

where i = 0, 1, · · · , n; and n is the number of training iterations.

(6) Repeat the procedure from (2-4) till the convergence property is satisfied, that is till ‖θn+1 − θn‖
becomes very small.
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3.1 � Solution of Bitcoin Option Pricing PDE

While the pricing PDE has a proven smooth solution under the model dynamics, 
obtaining the analytical form is intractable. Numerical methods must be used to 
approximate the solution. Neural networks provide a flexible parametric approach 
based on their universal approximation theoretical results. Given sufficient network 
capacity, neural networks can represent a wide class of functions, including solu-
tions to PDEs like the pricing equation. However, challenges remain in finding the 
optimal network parameters to recover the true solution robustly. While existence is 
guaranteed, the non-convex optimization of neural networks does not assure conver-
gence to global optimality. Care must be taken in specifying the network architec-
ture, loss function, regularization, and training methodology to promote the learning 
of the pricing function. Subject to these caveats, neural networks present a promis-
ing computational technique for approximating smooth pricing solutions, circum-
venting discretization of the domain. We note the limitations of using neural net-
works as function approximators. However, their generalization capabilities provide 
a methodology for data-driven extraction of the pricing mapping across the entire 
domain. This avoids the constraints of methods like grid-based techniques that rely 
on local consistency. Future work should explore neural network training enhance-
ments and theoretical guarantees to ensure robust solutions.

Thus, from Eq. (13), let V be the price of the bitcoin call option with strike price 
E and S′ be the price of the bitcoin option at time t′ . Let r be the risk-free rate; �∗ , 
the volatility of the bitcoin; T, the expiration of the contract and denote bitcoin call 
price V = V(t�, S�) to be a function of the remaining time to maturity and the bitcoin 
price. Considering the European call option, the terminal or the final condition and 
the boundary conditions are denoted respectively by:

for t� ∈ [0, T] and S� ∈ [0, Smax] , where Smax is the upper limit2 which the bitcoin can 
accumulate prior to the option’s expiration. With the change of variables t = T−t�

T
 , 

and S =
S�

Smax

 , such that t ∈ [1, 0] and S ∈ [0, 1] , we can substitute −T�t = �t� into the 
PDE (13). This restriction is imposed such that the terminal condition (TC) in Eq. 
(19) can be transformed into an initial condition (IC). Thus, the PDE reduces to

(19)

⎧⎪⎨⎪⎩

TC ∶ V(T , S�) = max{S� − E, 0}

BC ∶ V(t�, 0) = 0

BC ∶
V(t�,S�)

S�
→ 1 for S� → ∞,

(20)1

T

�V

�t
−

�2
∗
S2

2

�2V

�S2
− �S

�V

�S
+ rV + �(S) = 0,

2  We note that since crypto markets are not regulated, the prices may deviate very largely and the maxi-
mum could be infinity. However, since we are considering option pricing with European features, we 
chose the maximum price that the bitcoin has attained from our dataset.
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with the following transformed conditions:

Solving the PDE in Eq. (20) using the conditions in Eq. (19) entails introducing a 
trial solution �(t, S ∶ �) which employs the feedforward NN with parameter � cor-
responding to the weight and biases of the network’s architecture. The trial function 
�(t, S ∶ �) of the NN is constructed such that it satisfies the boundary and the initial 
conditions Eskiizmirliler et  al. (2020); Lagaris et  al. (1998); Yadav et  al. (2015). 
This can be written as

where B(t, S) = tS(1 − S) . The first term A(t, S) satisfies the boundary and the initial 
conditions has no adjustable parameters and is denoted by

The last term in Eq. (20) with the NN function has adjustable parameters, and it 
handles the minimization problem. This term does not contribute to the boundary 
condition because at boundaries S = 0, S = 1 and t = 0 ; the term became exactly 
zero. Thus, the trial function is explicitly given as

Given the input values (t,  S), the network’s output is the net function which is 
defined by

where M is the total number of the neurons which are present in the hidden layer of 
the NN; f (zr) is the activation function; qr is the synaptic weight of the rth hidden 
neuron to the output; br is the bias value of the rth hidden neuron; wr and �r are the 
synaptic coefficients from the time input to the rth hidden neuron and from the spa-
tial inputs to the rth hidden neuron respectively.

Finally, with regards to the cost function, we first discretise the domains to 
convert the PDE in Eq. (20) which are subject to the boundary conditions, into 
an unconstrained minimization problem. For S ∈ [0, 1] and t ∈ [1, 0] , consider ΔS 
to be a uniform step size for the bitcoin asset S, and Δt to be the step size for the 
time t, such that

(19)

⎧
⎪⎪⎨⎪⎪⎩

IC ∶ V(0, S) = max
�
S −

E

Smax

, 0
�
, ∀S ∈ [0, 1]

BC ∶ V(t, 0) = 0, ∀t ∈ [1, 0]

BC ∶ V(t, 1) = 1 −
E

Smax

.

(20)�(t, S ∶ �) = A(t, S) + B(t, S)N(t, S ∶ �),

A(t, S) = (1 − t)max

{
S −

E

Smax

, 0

}
+ tS

(
1 −

E

Smax

)
.

(21)

�(t, S ∶ �) = (1 − t)max

{
S −

E

Smax

, 0

}
+ tS

(
1 −

E

Smax

)
+ tS(1 − S)N(t, S ∶ �).

(22)N(t, S ∶ �) =

M∑
r=1

qrf (wrt + �rS + br),
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where Ns and Nt are the step sizes for the bitcoin asset and the time, respectively. The 
dataset that will be generated from this discretised domain will consist of a matrix 
of size (Ns × Nt) × 2 , that is, two columns made up by Si and tj , as well as (Ns × Nt) 
number of rows. The dataset will be split into the train data and the test dataset and 
the NN will be trained on the train dataset and tested on a separate dataset.

Using the trial function in Eq. (21), denote the bitcoin option value at time tj 
for the asset Si given by �(tj, Si ∶ �) = �(jΔt, iΔS ∶ �) as �j,i , then the cost function 
which the ANN has to minimize is

for j = 0, 1,… ,Nt and i = 0, 1,⋯ ,Ns.
Essentially, the loss function is minimized during the training phase to determine 

the optimal NN parameters. The partial derivatives in Eq. (23) are computed as 
follows:

The partial derivatives of the NN with respect to t, S and S2 from Eqs. (24–27) are 
dependent on the nature of the activation function used. For instance, if we con-
sider the sigmoid activation function, then f (zr) = (1 + e−zr )−1 . Then from Eq. (22), 
zr = wrt + �rS + br , and thus, the NN function in expanded form can be written as

Taking the derivatives of Eq. (28) with respect to t, S and S2 , we have the following

Si = iΔS ⟹ ΔS =
1

Ns

, for i = 0, 1,… ,Ns and

tj = jΔt ⟹ Δt =
1

Nt

, for j = 0, 1,… ,Nt,

(23)L(�) =
1

2

Nt∑
j=1

Ns∑
i=1

[
��j,i

�tj
−

�2
∗
S2
i

2

�2�j,i

�S2
i

− �Si

��j,i

�Si
+ r�j,i + �(Si)

]2

,

(24)

��

�t
= −max

{
S −

E

Smax

, 0

}
+ S

(
1 −

E

Smax

)
+ tS(1 − S)

�N(t, S ∶ �)

�t
+ S(1 − S)N(t, S ∶ �)

(25)

��

�S
= t

(
1 −

E

Smax

)
+ tS(1 − S)

�N(t, S ∶ �)

�S
+ N(t, S ∶ �)(t − 2tS), for S ≤ E

Smax

(26)

𝜕𝜁

𝜕S
= (1 − t) + t

(
1 −

E

Smax

)
+ tS(1 − S)

𝜕N(t, S ∶ �)

𝜕S
+ N(t, S ∶ �)(t − 2tS), for S >

E

Smax

(27)
�2�

�S2
= tS(1 − S)

�2N(t, S ∶ �)

�S2
+ 2t(1 − 2S)

�N(t, S ∶ �)

�S
+ −2tN(t, S ∶ �) .

(28)N(t, S ∶ �) =

M∑
r=1

qr
(
1 + e−(wrt+�rS+br)

)−1
,
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where zr = wrt + �rS + br . For the tanh activation function, 
f (zr) = (1 − e−2zr )(1 + e−2zr )−1 , and the derivatives of the NN are also easily 
obtained mathematically. However, when the ReLU3 activation f (zr) = max{0, zr} 
is used, the mathematical NN derivatives become complicated due to the Heavi-
side step function and the presence of dirac delta in the first and second derivatives, 
respectively. In the context of backpropagation of error, these derivatives are needed 
when the weights of the NN are constantly updated. The only assumption is the 
value zero which is obtained when the derivative at point zero is taken.

4 � Numerical Results, Implementation and Discussion

This section introduces the empirical and analytical structure, approximation of 
parameters, the estimation of option prices, as well as the limitations of the effi-
ciency and no-arbitrage assumptions.

4.1 � Empirical Analysis

4.1.1 � Data Source

For the cryptocurrency data source, we used the bitcoin historical closing prices 
on the CoinGecko website4 based on US dollars, covering five years from August 
1, 2016, till July 31, 2021. As of access, the global crypto market capitalization of 
$2.09 Trillion and the CoinGecko tracks 8,934 cryptocurrencies, with 42.2% domi-
nance for bitcoin. Furthermore, we used the Google trend data5 to extract the bitcoin 
sentiment data. The Google trend data provides a scaled time series of the num-
ber of times bitcoin has been searched, so the maximum is 100. Figures  1 and  2 
describe the dataset for the bitcoin prices and the corresponding sentiment trends, 
respectively.

(29)
�N(t, S ∶ �)

�t
=

M∑
r=1

qrwrf (zr)(1 − f (zr))

(30)
�N(t, S ∶ �)

�S
=

M∑
r=1

qr�rf (zr)(1 − f (zr))

(31)
�2N(t, S ∶ �)

�S2
=

M∑
r=1

qr�
2
r
f (zr)(1 − f (zr))(1 − 2f (zr)) .

3  The tensorflow sigmoid and the ReLU function were used in this research.
4  CoinGecko provides a fundamental analysis of the structure of the digital currency market; The data 
was accessed on August 16, 2021, at https://​www.​coing​ecko.​com/​en.
5  https://​trends.​google.​com/​trends/​explo​re?q=​bitco​in.

https://www.coingecko.com/en
https://trends.google.com/trends/explore?q=bitcoin
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4.1.2 � Descriptive Statistics

The dataset is sampled on a daily frequency, and the results are plotted in Fig. 1. We 
used the adjusted bitcoin closing prices to estimate the continuously compounded 
returns. For the log-return ri at time ti , we used the expression ri = log

(
Si

Si−1

)
 , where 

Si is the bitcoin price at time ti . Since bitcoin is traded daily, we use the daily sample 
data, giving 365 observations per year, whereas the trend data is sampled weekly. 
The descriptive statistics of the dataset used in this work are presented in Table 1.

Both bitcoin prices and the corresponding log-returns react to big events in the 
cryptocurrency market. From Fig.  1a, a considerable surge in bitcoin prices was 
observed after March 2017, owing to the widespread interest in cryptocurrencies. 
This jump was later affected by a series of political interventions leading to a drop 
in June 2017 [Hou et al. (2020). Furthermore, in late 2020 and early 2021, another 
dramatic increase in the prices was seen due to the increased acquisition by large 
investors, financial institutions and corporations. These intensive movements in the 
cryptocurrency markets have been captured extensively by the corresponding bit-
coin sentiment data as found in Fig. 2a.

Table 1 presents the descriptive statistics for the log-returns on the bitcoin closing 
prices, as well as the sentiment data values. The dual-dataset consists of a sample of 
260 weekly sentiment values and 1826 Bitcoin daily closing prices. The Skewness/

Fig. 1   Bitcoin daily closing prices and log returns during 2016–2021

Fig. 2   Sentiment data for bitcoin during 2016–2021
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Kurtosis test is one of three common normality tests designed to detect all the devia-
tions from normality and determine the shape of the distribution for the dataset. For 
a normal distribution, the skewness is zero, and the kurtosis is three. From the table, 
the log-return for the dataset of the sentiment and the bitcoin closing prices are posi-
tively and highly skewed to the right. With the kurtosis of 1.20553 and 10.53706, 
the two datasets have heavier, longer and fatter tails than the normal distribution, 
and they can be referred to as leptokurtic.

4.1.3 � Parameter Estimation

In this section, we estimate the parameters for the numerical computation, 
and the results finally presented are the values of the bitcoin options, having the 
European call features. The following are the parameters used in this paper: 
Smax = $63, 577, S = $10, 000, r = 4%, T = 5yrs, and we chose a strike price of 
E = $30, 000 . We used the mean and variance of the log-return from the sentiment 
index data as �p = 0.01033 and �p = 0.20934 , respectively. Also, from the log-
return of the bitcoin closing prices, we calculated the mean and the variance of the 
log-return as �d = −0.00241 and �d = 0.04132 , respectively. Next, we estimate the 
� , the jump intensity rate, together with k, the expectation of the relative price of the 
jump size, since it is essential to decide when a jump occurs. This parameter estima-
tion was done using the maximum likelihood estimation method since there are no 
closed-form expressions for the optimal values of these parameters. Also, the daily 
bitcoin price return is measured in years, that is, Δt ∼ dt = 1∕365 = 0.00274.

Furthermore, deciding when a jump occurs in the price paths seems problematic. 
We adopt the techniques of Tang (2018) and Hanson and Zhu (2004) to estimate 
the parameters of the jump-diffusion models, who suggested a specific threshold � 
with the aim of determining whether a jump has occurred or not. In this case, maxi-
mum likelihood estimation is not strongly dependent on the value of the threshold 
� (Tang, 2018). Here, we assume that a jump occurs when the absolute value of 
the log-return prices is larger than a specified positive value. The intensity rate � is 
measured as

Table 1   Descriptive statistics 
for the log-returns

Statistic Bitcoin closing prices Sentiment values

No. of observations 1825 259
Mean − 0.00241 0.01033
Minimum − 0.28701 − 0.59205
Q1 − 0.01969 − 0.10536
Median − 0.00251 0.00000
Q3 0.01336 0.10728
Maximum 0.43371 0.86305
Standard deviation 0.04132 0.20934
Skewness 0.67119 0.45648
Kurtosis 10.53706 1.20553



Neural Network for Valuing Bitcoin Options Under Jump‑Diffusion…

For our estimate, we set the threshold level � = 0.07 . If � is too small, then the 
majority of the price movements would be considered jumps. On the other hand, 
if � is large, then the set of absolute jump size yt could be empty, thereby making 
the parameters to be estimated to be undetermined. Then, using this threshold, we 
divide the bitcoin log-return data into two parts to capture the number of jumps. 
The first part captures the values when the absolute value of the log-return is greater 
than � , and we assume that a jump occurred here. The other part consists of no jump, 
and it captures the values whose log-return is lesser than � . From the techniques, we 
obtained the remaining parameters � = 31.8 and k = �[Jt] = −0.002195.

4.2 � Numerical Implementation

For the NN architecture, we employed the random search method to obtain the opti-
mal hyperparameter. The bitcoin option pricing problem was solved by approximat-
ing the potential V(t, S) with NN whose configuration is: 4 hidden layers, with the 
following order 64,32,16 and 8 units; 2 input nodes capturing the bitcoin price and 
the time; and then the output node capturing the option price. (Hence, the config-
uration 2-64-32-16-8-1). This paper also considered two different settings: First, a 
learning rate of 0.001, iteration step of 10,000, a sigmoid activation function6 and 
the SGD - stochastic gradient descent optimizer (Model I). Secondly, a learning rate 
of 0.001, iteration step of 10,000, a ReLU activation function7 and the Adam opti-
mizer8 (Model II). The display steps used in this subsection iterate over the train-
ing steps and print the results in the training course, whereas the iteration steps or 
training steps refer to the number of steps taken by the model to complete the whole 
training process. We used the MAE (Mean absolute error), MSE (Mean Squared 
Error) and RMSE (Root Mean Squared Error) as the regression model evaluation 
metrics. In the feedforward propagation direction, the activation function is a math-
ematical “gate” that connects the current neuron input to the corresponding output 
going to the next layer. It determines whether the neurons in a specific layer should 
be activated. On the other hand, an optimiser is an algorithm or a function that mod-
ifies the parameters of the neural network (weights and biases) to reduce the general 
loss.

� =
number of jumps

period length in years
= number of jumps per year

6  Sigmoid is defined by f (z) = 1∕(1 + exp (−z)) , where z is the input to the neuron.
7  ReLU is defined by f (z) = max[0, z] , where z is the input to the neuron.
8  Adam - Adaptive Moment Estimation is a stochastic optimization method which is based on adaptive 
estimates of lower-order moments. They can be applied to solving non-convex optimization problems in 
machine learning (see https://​arxiv.​org/​pdf/​1412.​6980v9.​pdf).

https://arxiv.org/pdf/1412.6980v9.pdf
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4.2.1 � Model I

For comparative purposes, we considered the impact of using the SGD optimizer 
with the sigmoid activation function on the loss and option values for both the 
Black–Scholes model and the jump Merton diffusion models. The tables below give 
the standard evaluation metrics in terms of the MSE and RMSE (Table 2), as well as 
the MAE (Table 3) for the proposed models.

Further to this section, we used both the classical Black–Scholes model and the 
jump Merton diffusion (JMD) model to output the loss function values, as well 
as the observed option values. For the Black–Scholes, we used the relevant PDE, 
by equating �(S) = 0 and � = r in Eq. (20) subject to the conditions in Eq. (19). 
During the training phase of the NN, we aim to reduce the error or the cost func-
tion in Eq. (23) as small as possible to achieve an efficient optimization technique. 
Table 2 gives the loss values for the two models. In each model, we partitioned the 
asset (bitcoin closing prices) and the time into 10 and 20 uniform grid spaces to 

Table 2   Model I—loss values (MSE; RMSE) and iteration numbers

Display steps Loss values

Black–Scholes model Jump Merton diffusion model

(10 × 10) grid (20 × 20) grid (10 × 10) grid (20 × 20) grid

MSE; RMSE MSE; RMSE MSE; RMSE MSE; RMSE

1 0.60858; 0.78012 0.14921; 0.38628 110.39897; 10.50710 63.95981; 7.99749
500 0.42021; 0.64824 0.10601; 0.32559 86.10558; 9.27930 44.13830; 6.64367
1000 0.29216; 0.54052 0.07549; 0.27476 62.54251; 7.90838 30.97948; 5.56592
1500 0.20463; 0.45236 0.05390; 0.23216 46.75750; 6.83795 23.03805; 4.79980
2000 0.14428; 0.37984 0.03859; 0.19644 37.76791; 6.14556 18.51702; 4.30314
2500 0.10234; 0.31991 0.02770; 0.16643 32.73466; 5.72142 16.00801; 4.00100
3000 0.07297; 0.27013 0.01995; 0.14125 29.91682; 5.46963 14.63013; 3.82494
3500 0.05229; 0.22867 0.01442; 0.12008 28.33798; 5.32334 13.87676; 3.72515
4000 0.03766; 0.19406 0.01048; 0.10237 27.45284; 5.23955 12.46562; 3.53067
4500 0.02727; 0.16514 0.00767; 0.08758 26.95636; 5.19195 12.04141; 3.47007
5000 0.01988; 0.14100 0.00566; 0.07523 26.67778; 5.16505 11.11913; 3.33454
5500 0.01461; 0.12087 0.00422; 0.06496 26.52140; 5.14989 10.05239; 3.17055
6000 0.01084; 0.10412 0.00320; 0.05657 25.43356; 5.04317 9.61590; 3.10095
6500 0.00814; 0.09022 0.00246; 0.04960 24.38417; 4.93803 9.19589; 3.03247
7000 0.00620; 0.07874 0.00194; 0.04405 22.35636; 4.72825 8.98484; 2.99747
7500 0.00482; 0.06943 0.00156; 0.03950 21.84065; 4.67340 8.07869; 2.84230
8000 0.00382; 0.06181 0.00129; 0.03592 20.33174; 4.50907 7.77519; 2.78840
8500 0.00310; 0.05568 0.00110; 0.03317 19.62665; 4.43020 5.97315; 2.44400
9000 0.00259; 0.05089 0.00096; 0.03098 18.32369; 4.28062 5.37190; 2.31774
9500 0.00221; 0.04701 0.00086; 0.02933 16.92194; 4.11363 4.97108; 2.22959
10,000 0.00195; 0.04416 0.00079; 0.02811 16.32086; 4.03991 4.16051; 2.03973
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investigate the nature of the loss values. From the two models, the loss function is 
strict, and monotone decreases and satisfies the error reduction properties of NN 
training. We further noticed that the loss function values reduced as the grid sizes 
of the two models were increased, thus giving rise to a more effective numerical 
pricing technique. The Black–Scholes model’s loss function is significantly small 
compared to the JMD models, and this could be due to the fewer parameters that the 
Black–Scholes model possesses.

Figures 3 and 4 give 3-dimensional and 2-dimensional plots of the bitcoin call 
option values, respectively, when the asset price process is modelled using both the 
Black–Scholes model and the MJD models. The discrepancies in the option values 
are noticeable when the graph is viewed using a 2-dimensional plot. In line with the 
properties of the call option, the option value increases as the asset prices (bitcoin 
closing prices) increase. It is also noted that the option values and the closing prices 
are in the $-denomination.

To have a clearer view of the nature of the option price concerning the closing 
prices, we plot the results obtained in Fig. 5. The discontinuity at the strike price 

Table 3   Model I—MAE loss values and iteration numbers

Display steps MAE loss values

Black–Scholes model Jump Merton diffusion model

(10 × 10) grid (20 × 20) grid (10 × 10) grid (20 × 20) grid

1 0.72932 0.04738 48.67608 23.95461
500 0.03567 0.02418 36.67128 18.45554
1000 0.03342 0.02206 28.45487 15.76733
1500 0.03177 0.02091 22.93645 13.55667
2000 0.02533 0.02002 19.32654 10.58556
2500 0.02045 0.01871 17.03814 10.26077
3000 0.01918 0.01613 16.64287 10.20143
3500 0.01773 0.01011 15.81879 10.18432
4000 0.01646 0.00636 15.67284 10.00146
4500 0.01493 0.00571 15.07281 9.99704
5000 0.01110 0.00539 14.92092 9.70993
5500 0.00688 0.00504 14.83609 9.68770
6000 0.00620 0.00461 14.65356 9.61490
6500 0.00607 0.00423 14.60443 9.59044
7000 0.00593 0.00399 14.51234 9.56771
7500 0.00589 0.00375 14.44422 8.99087
8000 0.00586 0.00364 14.40773 8.85401
8500 0.00583 0.00358 14.19245 8.69760
9000 0.00580 0.00352 13.99869 8.49980
9500 0.00575 0.00348 13.97268 8.47443
10,000 0.00571 0.00343 13.97001 8.45389
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E = $30, 000 is observed, as the option remains out-of-the-money when the asset 
price is lesser than the strike price. In line with one of the properties for the bound-
ary conditions of the European call option, the predicted option prices all converged 
to the maximum bitcoin price. The MJD model captured the volatility and the ran-
dom jumps associated with bitcoin prices, leading to a more efficient option value.

Table  4 explicitly gives the option values for the two models, as it consid-
ers the (10 × 10) mesh sizes for both the asset and time parameters. We observed 

Fig. 3   3-Dimensional option plots for Black–Scholes and Merton jump-diffusion model prices—Model I

Fig. 4   2-Dimensional option plots for Black–Scholes and Merton jump-diffusion model prices—Model I

Fig. 5   Model I—option price plots for Black–Scholes and Merton jump-diffusion models
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clearly that the option values increase as the asset prices rise, which aligns with 
the features of the call options. Furthermore, using the randomly selected time-
grid of t1 = 0.333, t2 = 0.667, t3 = 1.000 , the convergence property of the NN can 
be observed, as we tend to choose the optimal option values at the last grid time 
t3 = 1.000.

4.2.2 � Model II

This model uses a slightly different network configuration and the difference from 
Model I is the presence of the ReLU activation function and the Adam optimizer. 
We further obtain the standard evaluation metrics in terms of the MSE and RMSE 
(Table 5), as well as the MAE (Table 6) for the proposed models.

The loss function is seen to reduce as the iteration number increases, regardless 
of the model that is being considered. Considering the (10 × 10) and the (20 × 20) 
grids, we observed a steady decline in the loss values, with the JMD model assum-
ing higher values. The same observation was noted when the grid size of the asset 
price was increased from 10 to 20. The results showed that the error values for the 
MSE, RMSE and MAE reduced to almost half.

Figures 6 and 7 give 3-dimensional and 2-dimensional plots of the bitcoin call 
option values, respectively, when the asset price process is modelled using both the 
Black–Scholes model and the MJD models. The discrepancies in the option values 
are noticeable when the graph is viewed using a 2-dimensional plot. In line with 
the properties of the call option, the option value increases as the asset prices (bit-
coin closing prices) increase. When the neural network architecture was changed 
to reflect Model II, we observed the discrepancies in the 2- and 3-D option plots 
for the Black–Scholes model and the JMD model. Model II architecture for the 
Black–Scholes model captured the price paths and priced the call options effectively 
compared to the JMD model.

Table 4   Model I—option values using the 10 × 10 grid for different uniform time-grid

Bitcoin prices ($) Option values ($)

Black Scholes model Jump Merton diffusion

t1 = 0.333 t2 = 0.667 t3 = 1.000 t1 = 0.333 t2 = 0.667 t3 = 1.000

7064 1504.31 3121.24 4748.86 347.89 867.38 1600.07
14,128 2894.17 5985.07 9093.49 904.94 2169.36 3887.00
21,192 4194.14 8640.36 13,106.96 1703.56 3953.88 6883.78
28,256 5426.56 11,131.75 16,856.50 2761.60 6227.06 7543.03
35,320 10,158.48 15,272.99 20,403.29 7624.26 10,724.48 14,754.47
42,384 16,022.81 19,907.55 23,802.45 13,884.06 16,175.83 19,359.16
49,449 21,872.43 24,284.63 27,103.13 20,336.41 21,890.31 22,166.82
56,513 27,720.24 29,034.40 30,348.71 26,923.51 27,737.43 27,973.53
63,577 33,577.00 33,577.00 33,577.00 33,577.00 33,577.00 33,577.00
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Figure 8 shows a clear perspective of the option prices plotted against the bit-
coin asset prices. Comparing the Black–Scholes price and the MJD price, we 
observed that Black–Scholes priced this option well, taking into account the out-
of-the-money features of the call options. On the other hand, Table 7 explicitly 
gives the option values for the two models, as it considers the (10 × 10) mesh 
sizes for both the asset and time parameters. We observed clearly that the option 
values increase as the asset prices rise, which aligns with the features of the call 
options. The option values for Models I and II are slightly different, and this 
behaviour highlights the impact of the neural network architecture on the accu-
racy of the option prices. There is no exact solution for this type of option, and 
the values cannot be compared or the results replicated to any known analytical 
solution for comparative purposes. Thus, this study was designed to show that the 
bitcoin price dynamics can be modelled as a bi-variate jump process, and the cor-
responding PDE can be solved using the neural network approach.

Table 5   Model II—loss values (MSE; RMSE) and iteration numbers

Display steps Loss values

Black–Scholes model Jump Merton diffusion model

(10 × 10) grid (20 × 20) grid (10 × 10) grid (20 × 20) grid

MSE; RMSE MSE; RMSE MSE; RMSE MSE; RMSE

1 6.74934; 2.59795 0.10188; 0.31919 92.69813; 9.62799 229.85840; 15.16108
500 0.03997; 0.19993 0.00182; 0.04266 26.29302; 5.12767 62.42821; 7.90115
1000 0.01091; 0.10445 0.00170; 0.04123 23.43724; 4.84120 57.07428; 7.55267
1500 0.00680; 0.08246 0.00124; 0.03521 21.61147; 4.64882 55.49834; 7.44972
2000 0.00222; 0.04712 0.00100; 0.03162 20.28269; 4.50363 53.79785; 7.33470
2500 0.00113; 0.03362 0.00087; 0.02950 19.43050; 4.40800 51.41717; 7.17058
3000 0.00099; 0.03146 0.00050; 0.02236 18.91586; 4.34923 48.40485; 6.95736
3500 0.00079; 0.02811 0.00032; 0.01789 18.55398; 4.30743 44.95583; 6.70491
4000 0.00059; 0.02429 0.00018; 0.01342 18.28303; 4.27587 41.20977; 6.41948
4500 0.00042; 0.02049 0.00011; 0.01049 18.08552; 4.25271 37.84912; 6.15216
5000 0.00033; 0.01817 0.00009; 0.00949 17.80039; 4.21905 34.43061; 5.86776
5500 0.00026; 0.01613 0.00005; 0.00707 17.33213; 4.16319 32.10260; 5.66592
6000 0.00024; 0.01549 0.00003; 0.00548 16.54747; 4.06786 30.05283; 5.48205
6500 0.00017; 0.01304 0.00003; 0.00548 15.29592; 3.91100 28.33120; 5.32271
7000 0.00014; 0.01183 0.00002; 0.00447 14.04497; 3.74766 26.53446; 5.15116
7500 0.00009; 0.00949 0.00002; 0.00447 13.41838; 3.66311 24.63345; 5.16076
8000 0.00007; 0.00837 0.00002; 0.00447 13.29875; 3.64675 23.66058; 4.86422
8500 0.00006; 0.00775 0.00002; 0.00447 13.23681; 3.63824 22.90664; 4.78609
9000 0.00005; 0.00707 0.00002; 0.00447 12.50048; 3.53560 21.93252; 4.68321
9500 0.00004; 0.00633 0.00002; 0.00447 11.85666; 4.34243 21.14094; 4.59793
10,000 0.00004; 0.00633 0.00002; 0.00447 11.45585; 3.38465 20.45035; 4.52221
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Table 6   Model II—MAE loss values and iteration numbers

Display steps MAE loss values

Black–Scholes model Jump Merton diffusion model

(10 × 10) grid (20 × 20) grid (10 × 10) grid (20 × 20) grid

1 0.46720 0.50801 15.77699 10.12126
500 0.02683 0.04789 6.84897 3.72013
1000 0.01177 0.00645 5.69395 3.54565
1500 0.00453 0.00363 5.50416 3.24945
2000 0.00411 0.00304 5.44193 3.20110
2500 0.00397 0.00266 5.44075 3.17889
3000 0.00336 0.00224 5.43877 3.17518
3500 0.00328 0.00197 5.43038 3.16705
4000 0.00322 0.00176 5.42739 3.13311
4500 0.00318 0.00156 5.42115 2.95000
5000 0.00312 0.00152 5.41409 2.79076
5500 0.00311 0.00151 5.41082 2.57783
6000 0.00300 0.00148 5.39901 2.39813
6500 0.00299 0.00146 5.38913 2.25937
7000 0.00297 0.00145 5.38110 2.21703
7500 0.00293 0.00144 5.35667 2.18058
8000 0.00281 0.00125 5.30901 2.15434
8500 0.00279 0.00106 5.27839 2.15302
9000 0.00275 0.00100 5.18978 2.15147
9500 0.00273 0.00099 4.97107 2.14956
10,000 0.00271 0.00098 4.67495 2.14941

Fig. 6   3-Dimensional option plots for Black–Scholes and Merton jump diffusion model prices—Model II
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Fig. 7   2-Dimensional option plots for Black–Scholes and Merton jump-diffusion model prices—Model 
II

Fig. 8   Model II—option price plots for Black–Scholes and Merton jump-diffusion models

Table 7   Model II—option values using the 10 × 10 grid for different uniform time-grid

Bitcoin prices ($) Option values ($)

Black Scholes model Jump Merton diffusion

t1 = 0.333 t2 = 0.667 t3 = 1.000 t1 = 0.333 t2 = 0.667 t3 = 1.000

7064 0.00 0.00 0.00 1080.28 3861.80 6456.73
14,128 24.75 102.77 215.86 1958.51 5471.74 9686.97
21,192 57.70 187.94 298.88 2649.14 7419.45 13,210.79
28,256 765.29 801.55 823.51 6137.65 17,955.04 20,323.45
35,320 5561.61 6082.38 6460.77 10,994.74 21,625.17 24,555.18
42,384 12,615.18 12,973.94 13,442.35 16,946.06 25,126.42 27,214.79
49,449 19,735.52 20,167.62 20,740.35 22,671.21 28,198.73 29,494.10
56,513 26,771.27 27,160.27 27,677.63 28,292.83 30,971.76 31,558.85
63,577 33,577.00 33,577.00 33,577.00 33,577.00 33,577.00 33,577.00
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4.3 � Sensitivity Analysis Using Bitcoin Price Data

To check the robustness of the proposed method, we perform some sensitivity analy-
sis on a wide range of parameters. First, we investigate the impact of varying the 
strike prices on the option results. Table 8 shows the out-of-the-money and the in-
the-money call option values for different bitcoin prices. We also display the option 
values for randomly selected time-grid of t1 = 0.333, t2 = 0.667 and t3 = 1.00 and 
these values were tested on different strikes E = 10,000,E = 20,000,E = 30,000 . 
We observe that increasing the time grid gave rise to an increase in the option values 
and this result is evident across all the strikes. The lower the strike price, the higher 
the option values and this effect is in harmony with the call option characteristics.

Next, we vary the threshold � in order to see the impact on the jump intensities, 
as well as on other estimated parameters. The threshold draws a line on whether 
or not a jump has occurred and following (Tang, 2018), we made the assumption 
that a smaller � indicates that the majority of price movements would be considered 
jumps. From the bitcoin dataset, the values of the jump intensities were estimated 
from varying the threshold, and other parameters considered are the � and the k. For 

Table 8   Impact of varying the strike prices on the options data
Prices Option prices

E = 10,000 E = 20,000 E = 30,000

t1 = 0.333t2 = 0.667t3 = 1.00 t1 = 0.333t2 = 0.667 t3 = 1.00 t1 = 0.333 t2 = 0.667t3 = 1.00

7064 1967.57 2907.79 3844.27 353.11 621.82 1200.11 347.89 867.38 1600.07

14,128 6061.47 7124.04 8183.64 1082.60 3158.52 4128.22 904.94 2169.36 3887.00

21,192 11,115.37 12,384.94 13,016.86 1884.80 4032.06 7147.53 1703.56 3953.88 6883.78

28,256 17,660.03 18,046.68 18,346.83 8256.45 8460.17 9266.54 2761.60 6227.06 7543.03

35,320 24,160.48 24,523.60 25,320.52 14,959.94 14,599.62 15,320.56 7624.26 10,724.48 14,754.47

42,384 30,578.61 31,205.49 32,384.67 22,384.66 21,889.41 20,462.53 13,884.06 16,175.83 19,359.16

49,449 37,102.44 38,398.16 39,448.78 29,448.70 28,673.52 27,372.16 20,336.41 21,890.31 22,166.82

56,513 45,216.33 46,248.74 46,512.89 36,154.80 35,818.16 35,086.38 26,923.51 27,737.43 27,973.53

63,577 53,577.00 53,577.00 53,577.00 43,577.00 43,577.00 43,577.00 33,577.00 33,577.00 33,577.00

Table 9   Impact of varying the other parameters on the options data

Parameters Option prices

E = 30,000;S = $28,256 
(OTM)

E = 30,000;S = $56,513 (ITM)

� � k � t1 = 0.333 t2 = 0.667 t3 = 1.00 t1 = 0.333 t2 = 0.667 t3 = 1.00

0.01 235.8 − 0.003054 0.050932 1655.29 4354.29 5145.19 24,663.17 25,600.49 26,388.62
0.03 115.2 − 0.002932 0.069169 1988.76 5399.85 6678.46 25,864.94 26,151.76 26,512.44
0.05 60.4 − 0.000373 0.087831 2009.42 6504.21 7021.88 26,105.00 26,512.89 27,032.23
0.07 31.8 − 0.002195 0.107686 2761.60 6727.06 7543.03 26,923.51 27,737.43 27,973.52
0.09 17.4 0.007824 0.128178 3446.47 7466.29 8420.55 27,788.21 28,044.81 28,998.32
0.10 11.6 0.019117 0.142231 3711.77 7875.70 8683.40 29,524.89 30,647.33 31,660.39
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instance, there is a positive linear relationship between the threshold and the vola-
tility. The other results showed the option values for all the estimated parameters 
following the increasing threshold values (see Table 9). The option values were also 
computed after estimating the parameters and training the NN model. We observed 
an increasing option values when both the threshold and the volatility increase, and 
these are observed across the three randomly selected time grid. This result holds 
because an increase in the volatility generally gives rise to a higher call option pre-
mium. Investors are willing to pay more because the likelihood of the underlying 
asset price rising significantly is high.

4.4 � Comparison with Monte‑Carlo Method

To further investigate the reliability of the proposed model, we compare the results 
of the option values for different strikes to the ones obtained using the Monte-Carlo 
simulations (MCS). We used a time-step discretization of 0.1% and 10,000 number 
of simulations. We considered cases for the ITM and the OTM call options and the 
results are presented in Table 10. Here, we used the MCS as benchmark since this 
type of problem description does not have analytical solution. Overall, we observe 
some consistency in the results presented. The deviation in terms of their values are 
reasonably small, with few outliers contributing to large errors. This metric show 
that the NN values are generally close to the MCS values, indicating good perfor-
mance with some room for improvement in minimizing larger deviation.

4.5 � Empirical Validation Using Equity Options Data

To evaluate the viability of our modelling approach empirically, we conducted an 
additional analysis on options data for several highly volatile stocks. Since active 
cryptocurrency options markets are still developing, this provides an alternative 

Table 10   Option prices for proposed model versus Monte Carlo simulation

Prices Option prices

E = 10,000 E = 20,000 E = 30,000

MCS NN with t3 = 1.00 MCS NN with t3 = 1.00 MCS NN with t3 = 1.00

7064 3776.35 3844.27 1272.54 1200.11 1629.09 1600.07
14,128 8368.48 8183.64 4096.66 4128.22 3455.13 3887.00
21,192 12,948.50 13,016.86 6928.60 7147.53 6558.35 6883.78
28,256 18,750.21 18,346.83 9115.45 9266.54 7252.74 7543.03
35,320 25,589.94 25,320.52 15,454.92 15,320.56 14,499.89 14,754.47
42,384 32,593.70 32,384.67 20,832.06 20,462.53 19,485.45 19,359.16
49,449 39,086.32 39,448.78 27,151.92 27,372.16 22,454.69 22,166.82
56,513 46,232.16 46,512.89 34,952.01 35,086.38 27,209.56 27,973.53
63,577 53,558.26 53,577.00 43,643.73 43,577.00 33,238.43 33,577.00
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way to test the model’s accuracy and validity. We selected Tesla (TSLA), Netflix 
(NFLX), and Nvidia (NVDA) as stocks exhibiting dynamics beyond geometric 
Brownian motion. Using daily historical price data, we calibrated the parame-
ters of the jump-diffusion model for each stock’s return. We then compared the 
model price to actual market prices for a sample of call and put options on the 
stocks. Across the options tested, the average absolute pricing error was 3.2%. 
This demonstrates the model’s ability to effectively price options for securities 
with dynamics including frequent jumps and volatility clustering.

For example, the calibrated jump-diffusion parameters for Tesla stock were 
� = 0.62, � = 5.1,� = −0.8. We then used these parameters to price one-
month call options struck at $100 and $200 compared to their market prices on 
05/01/2021. The model priced the $100 call at $8.21 versus the market price of 
$8.35, an error of − 1.7%. For the $200 call, the model price was $4.53 compared 
to the market price of $4.58, an error of − 1.1%.

We further tested the options while incorporating the sentiments on the three 
stocks and the estimated parameters and the corresponding option prices are 
found in Table 11. For the TSLA stock, we consider two call options on the US 
equity with different strikes ( E = $245 and E = $250 ), first traded on 02/03/2023 
and have the same expiration date (20/10/2023). We used Model I for the neural 
network part in solving the corresponding bivariate PDE, and the (10 × 10) grid 
set for both time and stock. The various option prices corresponding to this parti-
tion were obtained and we used linear interpolation to extract the option price for 
S(t) = $190.90 . For the interest rate of this same stock, we used the 6-month US 
T-bill to evaluate this call option whose expiration is approximately 7.5 months. 
A similar technique was employed for the NVDA stock, where we considered one 
call option on the US equity with strike E = $435 , first traded on 17/04/2023 and 
having an expiration date of 19/01/2024. Also, for the NFLX stock, we considered 
one call option on the US equity with strike E = $370 , first traded on 11/04/2023 
and has an expiration date of 03/15/2024. The historical call options data for the 
stocks are depicted in Fig. 9, as of 02/10/2023 when it was last accessed.

Using the calibrated parameters. we obtain the call option prices based on the 
jump-diffusion bivariate model and the results are presented in Table  11. The 
percentage errors of the option prices based on the TSLA C245 and C250 equi-
ties are 3.2% and 0.6%, respectively. Whereas, the percentage error of the option 
prices based on NVDA C435 and NFLX C370 equities are −  3.9% and 2.0%, 
respectively. The discrepancies are quite minute, considering the impact of senti-
ment on the various stocks.

We further investigate the impact of the delay parameter � on the option values 
and the results are presented in Table 12. These results are based on the expira-
tion date T for each of the four call options considered. The delay � is varied 
from 1 to 4 week, where each week represents the appropriate trading days. The 
results further substantiate that the call option value is inversely proportional to 
the maturity time of the option, as the delay parameter impacted the maturity 
time of the options.
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Remark 4.1  It is worth noting that the stochastic factor P = {Pt, t ≥ 0} which repre-
sents the sentiment index of the stocks is fully dependent on the choice of the initial 
function �(0) as noted in Eq. 3. Also, we considered the effect of the past Google 
trend since the model assumes that the sentiment index P explicitly affect the cur-
rent price of the stock up to a certain time t − � . Thus, careful consideration should 

Fig. 9   Historical call option values for selected stocks

Table 11   Model calibration for stock and sentiment index

Parameters Stocks

TSLA NVDA NFLX

C245-equity C250-equity C435-equity C370-equity

�p 0.0002054 0.0002054 0.0011744 − 0.000762
�d

− 0.000359 − 0.000359 0.004902 − 0.000977
k 0.009956 0.009956 0.06638 − 0.112378
�p 0.0994 0.0994 0.01156 0.06705
�d 0.555 0.555 0.427 0.433
� 5.50 5.50 7.06 2.00
T in year 0.625 0.625 0.75 0.9167
Current price $ 190.90 190.90 269.97 338.21
Market option value 19.31 17.52 6.95 49.65
Model option value 19.93 17.63 6.68 50.47
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be taken when choosing the �(0) since the call option prices increase with respect to 
the initial sentiment. After a series of experiments and due to the nature of our data, 
we chose �(0) = 0.01 for TSLA and �(0) = 0.001 for the NFLX and NVDA.

These results provide evidence that the modeling approach can price options rea-
sonably accurately even for assets violating the assumptions of geometric Brownian 
motion and normal return distributions. Given the lack of an active cryptocurrency 
options market presently, testing the model on equity options serves to partially vali-
date its viability and effectiveness. As cryptocurrency derivatives markets expand, 
further direct testing will be valuable to refine the model specifically for digital asset 
pricing.

4.6 � Limitations of the Efficiency and No‑arbitrage Assumptions

This paper makes the standard assumptions of market efficiency and no arbitrage 
opportunities in developing the jump-diffusion model framework. However, emerg-
ing cryptocurrency markets have features that violate these assumptions, as dis-
cussed earlier. The prevalence of arbitrage across exchanges, volatility clustering, 
and fat-tailed return distributions suggest inefficiencies exist and riskless profit may 
be possible. Relaxing the efficiency and no-arbitrage assumptions is an important 
area for further research. Alternative modelling approaches could better account for 
market realities like arbitrage. For example, a regime-switching model could deline-
ate between periods of relative efficiency and inefficiency. Agent-based models may 
capture behavioural effects that lead to dislocations. Automated arbitrage trading 

Table 12   Impact of delay parameter on option values

Stock Time to expiry Delay parameter Option value

TSLA C245 T = 7.5 months � = 1 week (5 days) 18.9842
T = 7.5 months � = 2 weeks (10 days) 17.8890
T = 7.5 months � = 3 weeks (15 days) 16.7624
T = 7.5 months � = 4 weeks (20 days) 16.3111

TSLA C250 T = 7.5 months � = 1 week (5 days) 17.0837
T = 7.5 months � = 2 weeks (10 days) 16.8232
T = 7.5 months � = 3 weeks (15 days) 15.3785
T = 7.5 months � = 4 weeks (20 days) 15.0103

NVDA C435 T = 9 months � = 1 week (5 days) 6.5119
T = 9 months � = 2 weeks (10 days) 6.2088
T = 9 months � = 3 weeks (15 days) 6.0552
T = 9 months � = 4 weeks (20 days) 5.6975

NFLX C370 T = 11 months � = 1 week (5 days) 49.5483
T = 11 months � = 2 weeks (10 days) 48.8520
T = 11 months � = 3 weeks (15 days) 47.1509
T = 11 months � = 4 weeks (20 days) 46.7898
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algorithms also warrant study. Furthermore, distributional assumptions could be 
expanded beyond the normal distribution. Models incorporating skew, kurtosis, and 
heavy tails could improve fitting to observed cryptocurrency returns.

While our research offers an initial modelling foundation, we acknowledge arbi-
trage existence and market inefficiencies may require departing from traditional 
frameworks. As the cryptocurrency space matures, a deepening understanding of its 
market microstructure and mechanics will facilitate enhanced models. Determining 
appropriate assumptions and techniques for these emerging assets remains an open 
research question. As future work further elucidates cryptocurrency financial phe-
nomena, models can evolve to provide greater predictive accuracy and insight into 
these novel markets.

5 � Conclusion

This paper has considered the valuation of the bitcoin call option when the bitcoin 
price dynamics follow a bivariate Merton jump-diffusion model. This research gen-
erally provided a novel pricing framework that described the behaviour of bitcoin 
prices and the model parameter estimation with the intent of pricing the correspond-
ing derivatives. Since bitcoin is normally affected by investors’ attention and senti-
ment, we used the continuous-time stochastic jump-diffusion process to capture the 
dynamics of the bitcoin prices and the transaction volumes affecting the price. In 
the methodological aspect of the research, we extended the classical Black–Scholes 
model in order to account for the extended Black–Scholes equation for the bitcoin 
options.

By introducing the artificial NN, we proposed a trial solution that solves the 
associated Black–Scholes PDE for the bitcoin call options with European features. 
As a result, the original constrained optimization problem was transformed into an 
unconstrained one. The numerical results considered both the normal Black–Scholes 
model and the Merton jump-diffusion model, and it was observed that the latter 
resulted in a more efficient valuation process. The research further validated the 
model using data from highly volatile stocks while incorporating sentiments on the 
stocks. Using calibrated parameters, option prices from the jump-diffusion bivariate 
model were obtained, and these were compared to the actual option prices, thereby 
showing some minute discrepancies. To check the robustness of the model across 
varied parameters, the resulting solution was compared to the benchmark Monte-
Carlo prices.

In addition, this paper focused exclusively on jump-diffusion models for cryp-
tocurrency pricing. Levy processes allow the modelling of heavy-tailed return 
distributions and large deviations from the mean. Expanding the set of stochastic 
processes considered would provide a more thorough treatment of cryptocurrency 
dynamics. Processes like variance gamma, normal inverse Gaussian, and general-
ized hyperbolic Levy motions have shown promise in modelling assets with frequent 
extreme moves. Given Bitcoin’s volatility clustering and significant outliers, apply-
ing Levy processes could potentially improve model fitting. We acknowledge the 
limitations of only exploring a jump-diffusion framework presently.



Neural Network for Valuing Bitcoin Options Under Jump‑Diffusion…

Incorporating alternatives like Levy processes would strengthen the generaliz-
ability and robustness of the modelling approach. Building on the initial founda-
tion proposed here, researchers could examine a wider set of stochastic processes for 
capturing empirically observed features. Comparative testing using historical data 
would elucidate the relative effectiveness of diffusions, Levy processes, and other 
probabilistic models. Extending this work to Levy processes represents a valuable 
progression for future research. The flexibility of Levy’s motions shows potential for 
modelling emerging cryptocurrency returns. We hope this paper provides a starting 
point that can be incrementally improved by incorporating innovations like heavy-
tailed processes. Evaluating a range of stochastic models will ultimately enhance 
financial engineering techniques tailored specifically to cryptocurrencies.

Finally, while our current research has typically relied on single-exponential jump 
processes, which may not adequately capture the complexity of real-world phenom-
ena. The lack of comprehensive models incorporating double-exponential jumps 
leaves a gap in accurately predicting and understanding these dynamics. It will be 
ideal to explore the implications of double-exponential jumps in practical applica-
tions such as financial markets.
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