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Syndrome-informed phenotyping identifies
a polygenic background for achondroplasia-
like facial variation in the general population

Michiel Vanneste 1,15, Hanne Hoskens2,3,4,15, Seppe Goovaerts 1,5,
Harold Matthews1,5, Jay Devine5,6, Jose D. Aponte2,3,4, Joanne Cole7,
Mark Shriver8, Mary L. Marazita 9,10, Seth M. Weinberg 9,10, Susan Walsh11,
Stephen Richmond 12, Ophir D. Klein 13, Richard A. Spritz14, Hilde Peeters1 ,
Benedikt Hallgrímsson 2,3,4 & Peter Claes 1,5,6

Human craniofacial shape is highly variable yet highly heritablewith numerous
genetic variants interacting through multiple layers of development. Here, we
hypothesize that Mendelian phenotypes represent the extremes of a pheno-
typic spectrum and, using achondroplasia as an example, we introduce a
syndrome-informed phenotyping approach to identify genomic loci asso-
ciated with achondroplasia-like facial variation in the general population. We
compare three-dimensional facial scans from 43 individuals with achon-
droplasia and 8246 controls to calculate achondroplasia-like facial scores.
Multivariate GWAS of the control scores reveals a polygenic basis for facial
variation along an achondroplasia-specific shape axis, identifying genes pri-
marily involved in skeletal development. Jointly modeling these genes in two
independent control samples, both human and mouse, shows craniofacial
effects approximating the characteristic achondroplasia phenotype. These
findings suggest that both complex andMendelian genetic variation act on the
same developmentally determined axes of facial variation, providing insights
into the genetic intersection of complex traits and Mendelian disorders.

Genetic variation, in conjunction with environmental factors, influ-
ences developmental processes that drive phenotypic variation1,2. Rare
major-effect variants and common variants have been identified
through largely separate studies of monogenic and complex

phenotypes, respectively3. However, recent advances have led to a far
deeper understanding of the relationship between typical and syn-
dromic development. One key conceptual hypothesis is that both
typical and syndromic phenotypic variation occur predominantly
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along developmentally constrained directions of phenotypic change,
or ‘axes of variation’. Both common and rare variants can act upon
these axes, causing syndromic phenotypic variation to occur along the
extremes of axes of typical phenotypic variation. For example, variants
in the LRP5 gene are associated withmonogenic forms of sclerosteosis
and osteoporosis, aswell as typical variation in bonemineral density in
humans4. Inmice,mutations that perturb cartilage development result
in extreme craniofacial phenotypes along an axis of shape variation
related to chondrocranial growth5–7. Findings consistent with this
hypothesis3,8–12 highlight the potential importance of an integrated
approach that incorporates both complex and Mendelian traits into
the study of phenotypic variation.

The human facial shape shows great potential for such an inte-
grated approach. Facial shape is an assemblage of highly variable,
developmentally complex phenotypes that are largely genetically
determined, involving both common and rare variants with a range of
effect sizes13. Previous work suggests that rare polygenic facial traits
and typical facial variation are genetically related and might share
developmental axes, but it is unknown whether this is true for mono-
genic phenotypes as well14. Recent advances in three-dimensional (3D)
image processing technology and genome-wide association studies
(GWAS) have enabled the identification of hundreds of genetic loci
associated with facial variation in the general population, yet collec-
tively these only account for about 10% of facial phenotypic variance13.
In addition, many rare large-effect variants have been discovered
through the study of Mendelian disorders with craniofacial
dysmorphism15. A well-known example is the recurrent pathogenic
gain-of-function variant G380R in FGFR3 that causes achondroplasia
(ACH), the most common form of skeletal dysplasia16. FGFR3 is a reg-
ulator of bone growth that is expressed in chondrocytes and mature
osteoblasts, and increased FGFR3 signaling suppresses the prolifera-
tion and maturation of growth plate chondrocytes. This, in turn,
impairs endochondral bone growth, resulting in rhizomelic limb
shortening and short stature in ACH17,18. In the skull, premature fusion
of skull base synchondroses leads to a shortened basicranium and a
recognizable pattern of frontal bossing and midface hypoplasia in
affected individuals19. The FGFR3 locus exhibits allelic heterogeneity,
with some allelic disorders producing skeletal and/or facial features
similar to those of ACH20,21. Genotype-phenotype correlations have
been established for FGFR3, but these cannot explain themodest range
of variability that exists within the characteristic ACH phenotype as
nearly all ACH patients share the same pathogenic G380R FGFR3
variant16,22. This suggests the presence of additional background
genetic determinants that influence the severity of the ACH

phenotype23. The factors underlying this variable phenotypic expres-
sivity remain largely unknown.

If both typical and syndromic phenotypic effects converge on
developmentally constrained axes, and phenotypic variation occurs
principally along those axes, we would expect that facial variation
along a syndromic phenotypic axis would also be present to some
degree in the general population. In this work, we tested this hypoth-
esis by projecting the ACH facial phenotype onto an unselected con-
trol population tomodel ACH-derived facial variation as a quantitative
trait, rather than a binary categorical (or monogenic) trait. Genetically
mapping these traits in the control population revealed strong
enrichment for genes involved in developmental processes that are
key in the pathophysiology of ACH. Elements of the ACH phenotype
could also be replicated in silico in two independent control samples,
relying solely on the uncovered polygenic background.We discuss the
implications of our findings to the broader field of Mendelian and
complex trait genetics.

Results
ACH phenotype can be constructed from axes of typical facial
variation
3D facial photographswere available from43 individualswith ACHand
8246 unselected controls, all with European ancestry (Fig. 1a). We
obtained homologous facial configurations by non-rigidlymapping an
atlas (composed of 7160 points) to each individual image24. Controls
were Procrustes aligned to a common coordinate system, and princi-
pal component analysis (PCA)was applied to capture themajor axes of
typical facial variation. Projecting individuals with ACH into the same
coordinate space accurately described syndromic facial shape varia-
tion, with a 0.49mm average error between the original ACH shapes
and corresponding projections (Supplementary Fig. 1a). Regions of
higher reconstruction error coincided with the clinically most distinct
regions (e.g., nasion and forehead). As a comparison, the average PCA
reconstruction error of the controls was 0.35mm (Supplementary
Fig. 1b). While ACH syndromic samples could be coded well as linear
combinations of these axes (principal components) of typical varia-
tion, they showed greater variation overall and were generally found
towards the tail-end of the distribution (Supplementary Fig. 2).

Definition of ACH-informed phenotype as a quantitative trait
We compared 3D facial images of the ACH samples to the unselected
controls (Fig. 1b) at multiple scales, starting from a global description
of facial shape andgradually focusing onmore local segments of shape
variation (Supplementary Fig. 3a) determined by hierarchical spectral
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Fig. 1 | Sample characteristics of the achondroplasia (ACH) and control dataset. a Age and sex distribution, (b) Average facial shapes. Source data are provided as a
Source Data file.
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clustering25. By regressing facial shape onto syndrome status (ACH or
control), we found that facial shapewas significantly different between
ACH and control samples in 41 out of the 63 facial segments (adjusted
p <0.05) (Supplementary Fig. 3b). For each of these significant seg-
ments, we established anACH trait axis as the vector spanning theACH
and control shape means. These axes describe the facial shape effects
associated with ACH (“ACH-derived facial trait”), such as frontal bos-
sing and midfacial hypoplasia. Moving along the axes is equivalent to
changing phenotypic severity (Fig. 2a).

We quantified the extent to which the ACH-derived traits or shape
effects exist in the control population by measuring facial similarity of
the unselected controls to theACH trait axes using the cosine distance,
hereafter referred to as “syndrome-informed phenotyping” (Fig. 2a).
This approach generated univariate scores, with controls that display
ACH-like facial features having a low score (values close to 0), while
individuals with an inverse phenotype (e.g., protrusion of themidface)
have higher scores (values close to 2) (Fig. 2b). The control sample
showed great variation in the ACH trait scores, yet a clear overlap was
observed with the ACH cohort scored along the same axes (Supple-
mentary Fig. 4). Furthermore, the ACH trait scores explained 2.6% of
full facial shape variation in the control population, which is sub-
stantial, considering that sex and age explained 11.3% and 4.9% of
variance in the same cohort, respectively.

Multivariate GWAS reveals polygenic background of ACH-
derived facial traits
We next sought to identify SNPs associated with facial variation in the
general population along the ACH trait axes. We combined the trait
scores for all 41 significant facial segments into amatrix for the US and
UK subsamples separately and performed a multivariate GWAS meta-
analysis using canonical correlation analysis. Both the US and UK
subsamples were independently used as discovery and replication
cohorts before being stringently meta-analyzed, meaning a built-in
replication was present. In total, we identified 1780 SNPs that reached
genome-wide significance (p < 5e− 8). Significant SNPs were merged
into 19 genomic loci that reached genome- and study-wide sig-
nificance, revealing a polygenic basis for facial variation along a char-
acteristic shape axis derived from ACH, a monogenic disorder (Fig. 2c
and Supplementary Data 1). The 19 lead SNPs combined explained
1.20% and 1.19% of the multivariate ACH-like phenotype and 0.8% and
1.1% of total facial shape variation in the US and UK subsamples,
respectively. While some lead SNPs correlated most with ACH-derived
shape changes of the full face, others showed more localized effects,
affecting only a specific aspect of the ACH facial phenotype (Supple-
mentary Fig. 5).

We replicated these findings in several ways. First, 11/19 loci
reached genome-wide significance in both arms of the meta-design
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Fig. 2 | Achondroplasia-informedphenotyping. aAchondroplasia (ACH) trait axis
spanning the ACH and control mean shapes. Morphs on the left and right sides of
the axis represent the extremes of the phenotypic spectrum. Controls (ID1-3) can be
scored along the axis by measuring the angle between their individual vectors and
the ACH trait vector. The facial variation of the three control individuals is visua-
lized as a heatmap. Red areas on the facial shape correspond to a local outward
deviation from the control mean shape, blue indicates inward deviation.
bDistribution of the facial trait scores for the full face (segment 1) for both the ACH

(in green) and control (in beige) datasets. Values smaller than 1 indicatemore ACH-
like; values greater than 1 indicate less ACH-like. The mean facial shape of the 5
lowest and highest-scoring individuals is shown for both ACH and control samples.
c Manhattan plot of genome-wide associations. For each SNP, the lowest p-value
(Canonical correlation analysis, right-tailed chi-square) across all 41 significant
facial segments is plotted. The full horizontal line represents the genome-wide
significance threshold (p = 5e-8). Candidate genes are annotated to each genome-
wide significant locus (n = 19). Source data are provided as a Source Data file.
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independently, using the US subsample as the discovery cohort and
the UK subsample as replication and vice versa. Second, we projected
the ACH phenotype in an independent control cohort of Tanzanian
ancestry (n = 2595) and found significant replications for 6/19 loci,
despite the lower power and different LD structure of this cohort.
Lastly, all the significantly associated loci have candidate genes in the
immediate vicinity with well-established roles in craniofacial develop-
ment and/or have previously been identified in GWAS of facial shape
variation. Detailed results of the different replication strategies are
provided in Supplementary Data 1. No significant associations were
found for SNPs near FGFR3; neither did we find significant enrichment
for associations with genes that interact with FGFR3 directly (p = 0.48)
(Supplementary Data 2). However, STRING analysis of the GWAS-
associated candidate genes showed plausible interactions with the
FGFR3 network at higher levels (Supplementary Fig. 6).

Genetic loci associated with ACH-derived facial variation are
enriched for processes related to skeletal development
Gene-set enrichment analysis26 of the 19 associated loci showed sig-
nificant enrichment for biological processes related to cartilage
growth and development, and skeletal development overall (Supple-
mentary Data 3). To evaluate targeted enrichment of certain biological
processes, we compared our findings to those of a GWAS of typical
facial variation performed in the same unselected control group by
White et al. 27. While the typical facial variation GWAS showed enrich-
ment for a broad spectrum of processes related to embryonic devel-
opment, the current ACH-informed GWAS was enriched for a specific
subset of these biological processes, with all but two terms (30/32,
94%) also significantly enriched in the previous study27. There was a
significantly higher enrichment for skeletal system developmental
processes compared to the previous uninformed facial shapeGWASby
White et al. 27 (Fig. 3a), with consistently higher enrichments for pro-
cesses related to cartilage development such as chondrocyte differ-
entiation and development, chondrocyte hypertrophy, and cartilage
condensation in the ACH-informed GWAS (Supplementary Data 3).
Interestingly, these same biological processes are at the core of ACH
pathophysiology28. For other branches of system development (e.g.,

nervous system development, circulatory system development), we
observed no significant difference between the ACH-informed and
uninformed facial shape GWAS27 (Fig. 3a). Similarly, the ACH-informed
GWAS genes were specifically enriched for skeletal developmental
genes when compared against all genes previously identified through
GWAS of facial shape (Fig. 3b), as well as against known craniofacial
genes implicated in Mendelian syndromes13 (Supplementary Fig. 7a, b
and Supplementary Data 4). A similar targeted enrichment was not
observed in comparison to a negative control GWAS of inflammatory
bowel disease29 (Supplementary Fig. 7c).

Genetic loci associated with ACH-derived facial traits are not
enriched for layer-specificmurine growth plate gene expression
Following the observed enrichment for cartilage-related processes, we
further tested whether the ACH-informed GWAS genes were pre-
ferentially expressed in certain epiphyseal layers or at specific chon-
drocyte maturation stages. We analyzed public gene expression data
frommurine growth plates and chondrocytes but foundno correlation
between MAGMA gene-level p-values and gene expression specificity
per epiphyseal layer or chondrocyte maturation stage. Differential
expression analysis showed no significant associations between gene-
level p-values and changes in gene expression between the early and
late chondrocyte maturation stages.

ACH-derived facial trait shows significant genetic correlations
with other ACH-linked traits
We calculated the Spearman genetic correlation30 between the ACH-
derived facial trait and five ACH-associated traits, including body
height, infant head circumference, obstructive sleep apnea, lung
volume, and sitting height ratio (Supplementary Data 5). Although
these five traits are all associated with the pathogenic G380R FGFR3
variant in individualswith ACH, it is unknown if they also correlatewith
ACH-like facial features in the general population.We found significant
genetic correlations (FDR-corrected p <0.05) between the ACH-
derived facial trait and body height, obstructive sleep apnea, and sit-
ting height ratio (Table 1), likely pointing to the same skeletal system
pathways that showed enrichment in the previous analysis. In
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individuals with ACH, reduced endochondral bone growth causes
disproportionate short stature with increased sitting height ratio, and
can also lead to narrowing of the upper airway, which in turn may
increase the risk for obstructive sleep apnea31,32. The ACH-derived
facial trait also showed a stronger genetic correlation with sitting
height ratio than with height, while uninformed facial shape by White
et al. 27 showed no differential correlation with these two traits. In line
with the current findings, previous research revealed that genetic loci
associated with sitting height ratio show an increased specificity for
biological processes related to bone and cartilage, compared to
height-associated loci33. We observed no significant genetic correla-
tions between ACH-derived facial variation, inflammatory bowel
disease29, and hormone-sensitive cancer34, both serving as negative
control disorders without known associations to ACH.

ACH-like phenotype can be obtained in the absence of FGFR3
mutations
We extended the single SNP analysis to a multivariate genotype-
phenotype (MGP) approach that maps the coordinated effects of
marker variation of the GWAS-associated genes onto craniofacial
shape7,35. In a sample of 1154 Diversity Outbred (DO) mice, the primary
MGP-associated effect axis resembled an ACH-like phenotype, char-
acterized by a shortened and rounder skull, even when Fgfr3 marker
variation was not included in themodel (Fig. 4a, b). Applying the same
method to an independent sample of 6772 human cranial vault
shapes36, the primary MGP-associated effect axis revealed a more
globular appearance of the cranial vault combined with a relative
increase in biparietal diameter (Fig. 4c, d). Similar features are also
observed in individuals with ACH, where the narrowing of the skull
base can lead to a more rounded calvarium (upper part of the neuro-
cranium). A significant increase in biparietal diameter, but not antero-
posterior diameter, of the skull has also been described in individuals
with ACH37.

Discussion
Unraveling the complex relationship between genomic and pheno-
typic variation is a central problem in biology. In this work, we intro-
duce a syndrome-informed phenotyping method to study the
connections between the biology of phenotypic variation in the gen-
eral population and syndromic variation observed in Mendelian dis-
ease, using facial variation in ACH as a case example. Facial features in
ACHmake up a distinct and recognizable phenotype22, represented by
the significant facial shape differences between ACH individuals and
controls for most parts of the face. In line with existing literature, we
found that these differences largely result from changes in phenotypic

extremeness9,38. ACH individuals could be well positioned along the
extremes of the axes of typical facial variation, while some shape
deviations remained in those regions of the face that constitute the
characteristic ACH facial gestalt. Quantification of ACH-derived facial
features in unselected controls showed that individuals vary along the
ACH-derived shape axis and that ACH-like facial shape variation is
clearly present in a subset of these control individuals. Though the
ACH-derived phenotype axis is derived from a monogenic condition,
GWAS of facial shape in an unselected control population revealed a
polygenic background for the ACH-derived phenotype scores in this
control population. Furthermore, ACH-like craniofacial variation could
also be reproduced in two independent datasets of DO mice and
control humancranial vaults relying solely on the uncoveredpolygenic
background.

Finding a polygenic ACH-like signal in the outcross DO model is
significant for several reasons. The DO is a heterogeneous stock of
laboratory mice bred through repeated outcrossing of eight inbred
founder strains to maximize genetic diversity39,40. As a randommosaic
of haplotypes of these founders, each animal is genetically and phe-
notypically unique, closely resembling the variation found in human
and other natural populations. Moreover, thanks to outcrossing over
27 + generations, recombination frequency is higher in the DO,
allowing for genetic mapping of smaller regions and thus higher-
resolution studies of complex traits, like craniofacial shape41. While
mouse models are regularly used to validate complex disease GWAS
loci using single or multiple gene knockout designs42, the MGP map-
ping in DO mice we performed here offers a different perspective by
replicating a complex phenotype using a highly polygenic signal.

Weobservedno significant genetic associationswith ACH-derived
facial shape in the vicinity of the FGFR3 locus. Similarly, previousGWAS
of human facial shape have not found significant associations near
FGFR313. While the lack of associations between common variants near
FGFR3 and ACH-derived variation does not rule out their contribution,
it is also not unexpected given the clinical knowledge on genotype-
phenotype correlations for FGFR3. Rare variants with large effects in
FGFR3 do not always affect facial features, such as in hypochon-
droplasia, where the mutation causes short stature but no facial
dysmorphism20. In addition, common variants in FGFR3 have been
associatedwith idiopathic short stature21. This suggests thatwhile both
facial shape and height share a marked sensitivity to disturbances by
specific large-effect variants in FGFR3, facial shape is not generally
regulated by FGFR3, unlike height. These observations might indicate
that facial and skeletal development have different tissue- and/or
timepoint-specific sensitivities to disturbances by FGFR3, warranting
further research.

Table 1 | Genetic correlation

GCACH CIACH PACH GCFACE CIFACE PFACE

Achondroplasia- associated traits

Body height 0.13 0.073–0.18 1.2E–06* 0.23 0.17–0.27 1.6E–21*

Infant head circumference 0.047 0.003–0.096 0.029 0.059 0.0061–0.11 0.01

Lung volume 0.055 0.003–0.11 0.027 0.069 0.017–0.12 0.004*

Obstructive sleep apnea 0.061 0.010-0.11 0.007* 0.085 0.033–0.14 5.9E–04*

Sitting height ratio 0.20 0.14–0.25 4.3E–13* 0.24 0.20–0.29 9.1E–27*

Negative control traits

Hormone-sensitive cancer 0.06 0–0.086 0.064 0.0030 0–0.053 0.45

Inflammatory bowel disease 0.013 0–0.059 0.30 0.007 0–0.057 0.39

Genetic correlation between the ACH-informed GWAS, five ACH-associated traits (body height, infant head circumference, lung volume, obstructive sleep apnea, sitting height ratio), and two
negative control traits (hormone-sensitive cancer, cigarettes per day measurement). For each trait, this table contains the Spearman genetic correlation with the ACH-informed GWAS (GCACH), the
corresponding 95% confidence interval (CIACH), and the p-value (PACH). We also report the Spearman genetic correlation of these traits with the uninformed facial shape GWAS by White et al. 27.
(GCFACE), the corresponding 95% confidence interval (CIFACE) and p-value (PFACE). P-values that are statistically significant after Bonferroni correction are indicated by asterisks (*). Additional
information on the selected traits is provided in Supplementary Data 5.
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All genes that were identified through the current GWAS had
previously been linked to facial variation in the general population13,
indicating that the ACH-informed phenotype is determined by genes
that play a role in facial morphology more broadly. Interestingly, the
polygenic background was specifically enriched for biological pro-
cesses that are disturbed in ACH, such as chondrocyte hypertrophy
and differentiation28, and genetic correlations were found between
ACH-derived facial variation in controls and ACH-linked features.
Strikingly, the genetic correlation with sitting height ratio, a trait
enriched for chondrocyte developmental processes, was as high in the
currentGWAS as in a previousGWASon typical facial variationwith ten
timesmore loci and thusmuch higher power27,33,43. These results are in
linewithpreviousfindings that the effects ofmajormutations often co-
align with the directions of effect linked to broader developmental
processes that are affected by those mutations7.

The convergence of genetic effects onto shared axes of shape
variation stems from thehighly integratednature of thehuman face6,44.
While myriad genes can influence facial morphology, the potential
directions (axes) in which facial shape can vary are constrained by the
developmental processes on which they act6, as is illustrated by the
genetic overlap between different polygenic facial phenotypes14. Here,
we tested the phenotypic and genetic overlap between typical facial
variation and a Mendelian facial phenotype. Our findings indicate that
both typical human facial variation and facial variation associated with
rare Mendelian syndromes occur along the same developmental axes.

These developmental axes appear to be determined by a background
of common polygenic variation. Rare Mendelian genetic variants with
major effects appear to move individuals further toward the extreme
end of these axes. The polygenic variation that underlies these devel-
opmental axes thus likely contributes to the range of variation seen in
the corresponding Mendelian syndromes. Indeed, this may partially
explain the occurrence of subclinical phenotypes in conditions such as
orofacial clefts45, as well as a tendency for unaffected relatives of
probands with craniofacial syndromes to sometimes themselves be
misclassified as syndromic by an automated syndrome classification
tool based on 3D facial imaging46. It is feasible that some disease-
associated genetic variants perturb developmental processes that are
not relevant to typical facial variation. In these instances, we would
expect the direction of disease-associated facial shape variation to
deviate significantly from typical facial variation, and we would not
expect a polygenic basis for that direction of variation in the general
population.

The finding that typical and syndromic facial variation are related
through shared developmental axes also has implications for the
mechanisms of variable expressivity and penetrance. This phenom-
enon likely occurs because developmental processes drive directions
of variation on which multiple genomic and environmental influences
may converge. For ACH, this would mean that the FGFR3 gain-of-
function mutation produces a large-scale effect on an axis of variation
that exists in the general population and is driven by variation in
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Fig. 4 | Multivariate genotype-phenotype mapping of mouse and human
craniofacial shape. Genetic marker loadings for the multivariate genotype-
phenotype mapping (MGP) of the GWAS candidate genes onto (a) mouse cranio-
facial shape and (c) human cranial vault shape. In (a), the relative contributions of
thedifferent founder genotypesof theDiversityOutbredmiceare shown. In (c), the
loadings per principal component are indicated.Genes are ordered by their relative

contribution to the associated shape effects shown in (b) and (d), respectively. The
top row shows the mean craniofacial shape colored according to the difference
between the upper and lower extremes of theMGP shape axis. Red areas indicate a
local inward deviation, and blue indicates an outward deviation. The middle row
shows the upper extreme of the MGP shape axis. The bottom row shows the lower
extreme of the same shape axis. Source data are provided as a Source Data file.
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growth at the cranial synchondroses and cartilaginous growth centers
in early craniofacial development. Mutations that alter chondrocyte
proliferation or maturation in mice show directions of effect that
broadly resemble ACH, including doming of the neurocranium,
decreased cranial base flexion, and reduction in midfacial
prognathism5,47. If individuals with ACH vary along this same multi-
variate axis of facial shape, modulation of the degree of cartilage
proliferation could explain variation in phenotypic severity for ACH.
Conversely, when individuals with ACH vary in directions orthogonal
to this axis, however, this would point towards other developmental
drivers of variation6.

The value of integrating common andMendelian disease genetics
was recently demonstrated by Blair et al. 9, who mapped hetero-
geneous symptom data to latent quantitative traits for various Men-
delian diseases.Genomic association testing of the newlyderived traits
revealed common variants predictive of disease outcome; however,
the inference of latent traits required phenotypes available at the
biobank scale, limiting the applicability of that approach. The
syndrome-informed framework we present here similarly uses quan-
titative trait scores for a Mendelian phenotype to reveal common
variants associated with the Mendelian phenotype. Our method is
applicable to many other phenotypes and, importantly, to relatively
small sample sizes, which remains a major challenge in studies of rare
diseases. Here, we studied ACH (n = 43) as proof of principle, but the
syndrome-informed framework can also be generalized to other
genetic disorders. For example, genomic analysis of Pierre Robin
Sequence-derived phenotypic scores identified genetic variants near
the SOX9 locus, which is commonly linked to the disorder, among
other genetic loci that are thought to conjointly modulate the facial
phenotype48. In addition, applying our approach to genetic conditions
with a poorly understood pathophysiology could highlight develop-
mental and biological pathways of importance. Similarly, by defining a
shape axis based on a group of individuals with similar phenotypic
features but unknown diagnoses, our approach could provide insight
into the shared genetic etiology and impaired pathways in these indi-
viduals. These shape axes can be based on a multidimensional linear
space as we did here, but deep learning frameworks of syndromic
facial shape could also be used to extract phenotypes of interest49–51.
Lastly, of particular importance, the polygenic background identified
using a syndrome-informed approach may highlight interesting tar-
gets to identify putative modifiers of phenotypic expression in
monogenic disorders23.

In conclusion, genetically mapping ACH-derived phenotypic
effects in the general population highlighted a polygenic basis for a
shape axis determined by a monogenic disorder. Jointly modeling
these candidate genes, in turn, revealed that ACH-like phenotypes can
be generated without FGFR3. These findings have important implica-
tions for unraveling the relationship between discrete and continuous
variation and for understanding the role of causative genes in Men-
delian disorders. If causative genes act on already existing axes of
variation determined by developmental processes, then they are cau-
ses in only a limited sense in the background developmental context.
Disease-associated variants may be more productively seen as
belonging to a larger set of potential perturbations capable of shifting
phenotypes along developmentally determined directions of varia-
tion. This framework also promotes understanding of variable
expressivity and penetrance in genetic disease, which is of great value
to aid diagnosis and improve patient outcomes.

Methods
Ethics statement
This studywas approved by the ethical review board of KU Leuven and
University Hospital Leuven (S60568, Leuven, Belgium), and the Uni-
versity of Calgary (REB14-0340, Calgary, Canada). Local institutional
approval was granted for access to the FaceBase Repository (S60658,

Leuven, Belgium). The previously collected data on humans were
obtained under the appropriate local ethical approvals, and all parti-
cipants gave written informed consent prior to participation. Ethical
approval for the ALSPAC study was obtained from the ALSPAC Ethics
and Law Committee and the Local Research Ethics Committees. The
work on mouse craniofacial shape was performed according to pro-
tocols approved and reviewed by animal care committees at the Uni-
versity of Calgary (AC13-0268) and theUniversity of Alberta (AUP1149).

Sample composition
We obtained 3D facial photos, demographic data (age, sex, self-
reported ethnicity), and clinical and/or molecular testing results of 70
individuals with achondroplasia from the online FaceBase repository
(FB00000861 [https://doi.org/10.25550/TJ0])52. From this group we
excluded individuals of self-reported non-European descent (n = 21)
and those with incomplete or missing metadata (n = 6) to retain a
curated sample of 43 individuals. Figure 1a illustrates the dataset
broken down by age and self-reported sex.

The unselected control sample consisted of previously collected
3D facial images, demographics (age, self-reported sex, genomic
ancestry), and imputed genotype data of 8246 unrelated individuals of
European descent originating from the United States (US) and the
United Kingdom (UK)19. The US dataset (n = 4680) included samples
from the 3D Facial Norms cohort53,54 and studies at the Pennsylvania
StateUniversity and IndianaUniversity-PurdueUniversity Indianapolis.
Detailed sample characteristics and recruitment details are provided
by White et al. 27. The UK sample (n = 3566) consisted of participants
from the Avon Longitudinal Study of Parents and Children (ALSPAC), a
UK-basedbirth cohort study55,56. A total of 14,541 pregnantwomenwith
an expected delivery date between 1 April 1991 and 31 December 1992,
were initially recruited. Extensive information and biological samples
have been collected from these mothers and their offspring at various
time points, of which details can be found on the study website
through a fully searchable data dictionary (http://www.bris.ac.uk/
alspac/researchers/data-access/data-dictionary/). For both US and UK
samples, European participants were identified by projecting them
into a principal component space constructed using the 1000G Phase
3 dataset, as described in detail by White et al. 27. Participants with
missing covariate information (e.g., age, sex) orwith insufficient image
quality were excluded. Figure 1a illustrates the age and sex distribution
of the final dataset.

The replication cohort (n = 2595) consisted of 3D facial images,
demographics (age, sex, height, weight, ancestry) and imputed geno-
type data from unselected Tanzanian individuals. Detailed sample
characteristics and recruitment details are provided by Cole et al. 57,58.

Genotyping and imputation
Genotyping and imputation of the European control sample were
performed as described previously27. In brief, genotypes of the three
different US subsamples, separately, were phased using SHAPEIT2
(v2.r900)59 and imputed to the 1000 Genomes Phase 3 reference
panel60 using the Positional Burrows-Wheeler Transform pipeline
(v3.1)61 of the Sanger Imputation Server (v0.0.6)62. SNP-level (INFO
score < 0.8) and genotype per participant-level (genotype probability
< 0.9) filters were used to omit poorly imputed variants. Finally, a
single US cohortwasobtained bymerging the subsamples andfiltering
the SNPs based on missingness across individuals (–geno 0.5), minor
allele frequency (–maf 0.01), and Hardy-Weinberg equilibrium (p < 1e-
6), resulting in 7,417,619 SNPs for analysis.

For the UK dataset, imputed genotypes were obtained directly
from the ALSPAC database. SHAPEIT246 was used for pre-phasing of
haplotypes, and imputation against the 1000 Genomes Phase 1 refer-
ence panel (Version 3)63 was performed using IMPUTE264. After post-
imputation quality control, the UK dataset contained 8,629,873 SNPs
for analysis. Because restrictions are in place against merging the
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ALSPAC genotypes with any other genotypes, these were held sepa-
rately during the analysis.

In total, 7,417,619 SNPs were overlapping between US and UK
datasets, which were used in subsequent genetic association analyses.
SNPs on the X chromosome were coded 0/2 for hemizygous males, to
match with the 0/1/2 coding for females.

Facial phenotyping and segmentation
3D facial images were acquired using three digital stereo-
photogrammetry systems (3dMDface, Vectra H1, Creaform Gemini)
and one laser scanning system (KonicaMinolta VI-900).We non-rigidly
registered an average facial atlas to each 3D image using the Mesh-
Monk toolbox (v.0.0.6)24 to obtain a standard facial representation
defined by 7160 homologous quasi-landmarks. Due to the bilaterally
paired construction of the quasi-landmarks constituting the atlas,
registered images were symmetrized by averaging the original con-
figuration and its bilaterally reflected copy following Procrustes
superimposition. Images were visually inspected and excluded if the
registration process had failed.

All symmetrized quasi-landmark configurations of the combined
US and UK control sample were aligned by generalized Procrustes
analysis (GPA) and adjusted for self-reported sex, age, and age-squared
in a partial least-squares regression (PLSR, function plsregress in
MATLAB 2017b and 2023b). To retain the original shape information as
closely as possible, we performed all analyses on Procrustes coordi-
nates without any projection into the tangent space. We opted for
PLSR because it does not assume the absence of collinearity and it is
broadly applicable to diverse cases, however, multiple linear regres-
sion could also be used here. Next, the facial shapewas divided into 63
predefined global-to-local segments obtained by hierarchical spectral
clustering of the unselected controls, as described elsewhere25, pro-
viding facial segments at five hierarchical levels of scale. In each seg-
ment separately, symmetrized and covariate-adjusted shapes were
aligned again using GPA to focus on local shape variation and avoid
statistical biases associated with global alignments, as regions with
more quasi-landmarks can dominate the superimposition relative to
those with less (e.g., cheeks vs. nose). Dimensionality was reduced by
principal component analysis (PCA) and the optimal number of prin-
cipal components (PC) to retain was determined by parallel analysis.
This yielded PCs that were highly correlated to the ACH trait axis,
yet also devoid of random noise (Supplementary Methods, Supple-
mentary Note 1 and Supplementary Figs. 8–10). We normalized the
projections on each PC to have unit variance by dividing each pro-
jection by the standard deviation of all projections. In this variance
standardization step, all PCs (i.e., axes of variation) are allowed to
contribute equally, irrespective of the amount of variance that is car-
ried by each PC. Angles measured in this normalized space closely
align with perceived facial similarity65 (Supplementary Figs. 11, 12).

Next, the ACH sample was aligned onto the mean control shape
using Procrustes superimposition, and shapes were corrected for the
same sex and age covariates using the regression coefficients from the
PLSR model of the control sample. We then applied the same facial
segmentation to the ACH sample and participants were projected into
each segment-specific principal component space, again normalizing
by dividing eachprojection by the standard deviation of all projections
from the control sample.

To evaluate the extent to which syndromic facial variation was
preserved by projecting ACH samples into a PC space obtained from
unselected controls, we quantified the reconstruction error. An indi-
vidual’s PC coefficients were transformed back to the original land-
mark space by multiplying them with the eigenvectors and adding
centroid size. Subsequently, the reconstruction errorwas quantified as
the root mean square error across all 7160 quasi-landmarks between
theoriginal image and its corresponding reconstruction.We report the
mean reconstruction error (in mm) across the full sample.

Achondroplasia-informed phenotyping
For each of the 63 facial segments separately, an ACH-derived facial
trait was defined as follows. First, in the variation standardized space,
we established anACH facial trait as the shape axis passing through the
averages of the ACH and control samples.We then obtained univariate
trait scores for each control individual by computing the cosine dis-
tance between their individual vector (going from the average of the
control sample to their individual PC projections) and the ACH trait
vector (going from the average of the control sample to the ACH
average)66,67. Cosine distance is equal to 1minus the cosine of the angle
between these two shape vectors, with scores close to 0 describing an
ACH-like phenotype, while scores close to 2 indicate an inverse phe-
notype. The scores were computed in a leave-one-out scheme such
that each individual was excluded from learning the trait vectors on
which they were scored. To evaluate the proportion of facial shape
variation in the control population described by the ACH axis, we
regressed global facial shape onto the univariate trait scores obtained
for segment 1 (full face) using PLSR and reported R-squared as the
percentage of phenotypic variation explained.

We additionally tested whether ACH facial shapes differed sig-
nificantly fromamatched control sample of equal size (Supplementary
Data 6). In a random order, we matched each ACH sample to a control
sample of the same sex that was closest in age. The selected control
was then omitted from the pool of potential matches. We co-aligned
the covariate-adjusted and symmetrized quasi-landmarks of both
groups using GPA and regressed facial shape onto group membership
using PLSR. For each segment separately, a p-value was generated by a
permutation test on R-squared with 10,000 permutations. We deter-
mined the effective number of independent tests based on the
eigenvalues of the correlation matrix of the univariate traits
per segment and adjusted p-values accordingly (Sidak correction)68

and significant differences (adjusted p <0.05) were observed in 41 out
of 63 facial segments. To calculate phenotypic extremeness, we pro-
jected all individual facial shapes into the control PC space, calculated
the Mahalanobis distances to the control mean, and computed p-
values associated with these distances using the chi-squared cumula-
tive distribution function. Supplementary Data 7 enumerates every
individual’s distance and upper tail probability, which is the likelihood
that their Mahalanobis distance is larger or more extreme than what
would be expected by chance. To ensureour shape effects were robust
to differences in sample size and composition, we completed a series
of morphometric simulations. The distances between the ACH and
controlmeanshapes are stablewith varying sample sizes, and there is a
high correlationbetween an individual’s trait scores, irrespective of the
size of the control or ACH sample used to calculate the trait scores.
Detailed methods and results are provided in the Supplementary
Information file (Supplementary Methods, Supplementary Note 1 and
Supplementary Figs. 13, 14).

Genome-wide association study
For both US and UK datasets separately, we combined the ACH-
derived trait scores across the 41 significant segments into a single
phenotype matrix ([n x m] with nUS = 4680 controls, nUK = 3566 con-
trols, and m = 41 facial segments). This phenotype matrix was tested
for genome-wide SNP associations in a multivariate association fra-
mework using canonical correlation analysis (CCA) following White
et al. 27. However, instead of performing a separate GWAS per facial
segment, scores generated across multiple segments were now com-
bined into a single multivariate GWAS. The GWAS was conducted fol-
lowing a two-stage design with built-in replication, with both US and
UK cohorts alternating as the discovery and replication sets. First, we
applied CCA in the discovery sample to obtain association p-values as
well as the shape axis maximally correlated with each SNP. Next, the
replication samplewasprojectedonto this axis. Because themaximally
correlated shape axes depend on the dataset, this enforced a strict
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consistency of the phenotype and, thus more stringent meta-analysis.
The resulting univariate trait scores were subsequently tested for
genetic associations in a linear regressionmodel. Finally, discovery and
replication p-values were aggregated in a meta-analysis using Stouf-
fer’smethod69. Per SNP, the GWASdesign generated twometa-analysis
p-values, metaUS, and metaUK, reflecting the sample that served as the
discovery set. Because CCA does not accommodate adjustments for
covariates, we corrected the dependent (facial shape) and indepen-
dent variables (genotypes) for height, weight, facial size, four genomic
ancestry axes, and a camera system using PLSR prior to GWAS.

The lowest meta-analysis p-value per SNP was selected and com-
pared against the genome-wide Bonferroni threshold (p < 5e-8). To
address the increased multiple testing burden, we empirically esti-
mated the null distribution of the minimal meta-analysis p-value on
10,000 genotype permutations of 500 randomly selected SNPs. This
allowed us to estimate the number of effective independent tests per
SNP as 1.713 (SD =0.080), obtained by dividing 0.05 by the fifth per-
centile of the empirical null distribution70 and averaging the estimate
across the 500 SNPs. The study-wide significance threshold was sub-
sequently estimated as p < 2.92e-8 (p < 5e-8 / 1.713). We observed 1780
SNPs at the level of genome-wide significance, which were clumped
into 19 independent loci as follows. Starting from the lead SNP (lowest
p-value), SNPswithin 10 kb orwithin 1Mbbut in linkage disequilibrium
(r 2 >0.01) were clumped into the same locus represented by the lead
SNP. Next, considering the lead SNPs only, signals within 10Mb and
r2 > 0.01 were merged. Third, any locus with a singleton lead SNP was
removed. For each of the lead SNPs, the nearest gene was assigned as
the candidate gene.

In the multivariate GWAS setup, CCA extracts the linear combi-
nationof the ACH trait scores for the 41 significant facial segments that
maximally correlatewith the SNPbeing tested. From theCCA loadings,
we examined which of the facial segments contributed most to the
observed GWAS signals to delineate the associated shape effects.

Replication
In addition to the built-in replication, we further validated the identi-
fied GWAS loci in two ways. First, we assessed whether these loci had
previously been associated with craniofacial shape more broadly,
regardless of the specific phenotype. We used LDlink71 to determine
the LD between our 19 lead SNPs and SNPs previously associated with
craniofacial variation13. SNPs were retained if r 2 > 0.1 (Supplementary
Data 1). We also report studies that identified SNPs in a ± 250 kb win-
dow surrounding the 19 lead SNPs, but for which LD was below the set
threshold. This approach provides an overview of existing evidence of
broader craniofacial association for the identified loci.

In a second approach, we performed a strict replication of the
identified loci in an independent cohort of Tanzanian ancestry
(n = 2595); this time focusing on the same craniofacial phenotype.
Similar to the phenotyping pipeline of the European controls, we
symmetrized and corrected the images from the Tanzanian dataset for
sex, age2, height, weight, centroid size, genomic ancestry (#5), and
closed eyes58 using PLSR. We applied the predefined facial segmenta-
tion from the European cohort to these images and performed PCA
followed by parallel analyses to build a shape space per facial segment.
We subtracted the Europeanmeanshape from theACH individuals and
then added the Tanzanian mean to each image. For each facial seg-
ment, ACH individuals were projected into the respective PCA space,
and the mean ACH shape was computed. Using a leave-one-out
approach, all Tanzanian individuals were then projected onto the ACH
phenotype axis, i.e., the axis connecting themeanTanzanian andmean
ACH shapes, to generate univariate trait scores per segment. We
combined the scores for all significant segments (n = 41) into a phe-
notype matrix and performed a multivariate GWAS using CCA as
described above. For eachof the 19 leadSNPs, a replication p-valuewas
calculated as follows. Per locus, we identified all SNPs in LD (r2 >0.1)

with orwithin a 50kbwindowof thediscovery lead SNP (or proxy SNPs
defined by LDproxy71 if the lead SNPwas not directly genotyped).Next,
we estimated an LD matrix for the identified SNPs in the Tanzanian
cohort to determine the number of independent SNPs tested, and we
adjusted the replication p-values using the Sidak correction. The
minimum adjusted p-value per locus was considered the locus p-value,
which was then adjusted to a 5% false discovery rate (FDR) using the
Benjamini-Hochberg procedure72 (Supplementary Data 1).

Protein network analysis
We searched the STRING database73 for known interactions with
FGFR3. We focused on high-confidence interactions (confidence score
0.7) derived from curated databases or experimentally determined
(Supplementary Data 2). SNP p-value data were aggregated to gene-
association scores (gene-level p-values), and we evaluated enrichment
for associationswith the FGFR3networkusingMAGMA (v.1.08)74. Next,
we performed protein-protein interaction analysis of the GWAS can-
didate genes and evaluated potential associations, direct or indirect,
with the FGFR3 network using default settings (confidence score 0.4,
including all interaction sources).

Gene set enrichment analysis
We used GREAT (v.4.0.4)26 to associate the 19 genetic loci to Gene
Ontology (GO) annotations and calculated the enrichment of biologi-
cal processes for these annotations. To assess targeted enrichment of
processes specific to our ACH-informed phenotyping approach, we
compared gene set enrichment of all biological processes that reached
significance (FDR-adjusted p <0.05) in the hypergeometric test to a
recent GWAS of typical facial variation in the current European control
sample byWhite et al. 27. In addition, we repeated GO term enrichment
against three background sets of craniofacial-associated genes as
summarized by Naqvi et al. 13. The first set consisted of all genes
identified in 25 previously published GWAS of facial shape, the second
set contained genes with known roles in Mendelian craniofacial dis-
orders and/or orofacial clefting, and the third set is a combination of
both GWAS and disease-associated genes. As a negative control, we
repeated the analysis with results froma recent GWAS of inflammatory
bowel disease as foreground set29.

A database of genes and annotated ontology terms was down-
loaded from the StringDB website (https://stringdb-static.org/
download/protein.enrichment.terms.v11.5.txt.gz). For each term, τ, a
hypergeometric p-value was calculated as

Xminðn,Kτ Þ

i = kτ

Kτ

i

� �
N � Kτ

n� i

� �

N

n

� �

with N the total number of genes in the background set, n the total
number of genes in the foreground set, K the number of genes with
annotation τ in the background set, and k the number of genes with
annotation τ in the foreground set. Alpha levels were adjusted to a 5%
false discovery rate (FDR) using the Benjamini-Hochberg procedure72

with Li and Ji’s adaptation75, whereMeff was estimated from the binary
gene-term matrix.

Gene expression in chondrocytes
We computed gene-level p-values (gene-association scores) based on
theACH-informedGWAS summary statisticsusingMAGMA74, aswell as
from published GWAS summary statistics of typical facial shape in the
same unselected control population27, height76, and inflammatory
bowel disease29.

We downloaded published microarray data from murine growth
plate dissections from the GEO data repository77 (GSE87605
[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE87605]).
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Probe identifiers were mapped to mouse genes using the Mouse
Genome Informatics database78. Mouse gene names were subse-
quentlymapped to their human homologs using the Ensembl BioMaRt
tool79. We calculated gene expression specificity scores per epiphyseal
layer by dividing the expression of each gene per layer by the total
expression of that gene. We calculated gene expression Z-scores per
chondrocyte maturation stage by averaging gene expression across
the four available samples for day 3 of embryonic development (early
maturation stage) and day 10 of embryonic development (late
maturation stage). Finally, we evaluated the Pearson correlation
between gene-level p-values, specificity scores for expression per
epiphyseal layer, and Z-scores per chondrocyte maturation stage.

From the GEO data repository77, we downloaded murine chon-
drocyte RNAseq data (GSE225796 [https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE225796]) and used the DESeq function (DESeq2
package) in R (v.4.2.0) to perform differential gene expression analy-
sis. DESeq2 transforms read counts based on size factors and disper-
sion,fits a negative binomial generalized linearmodel (GLM),performs
a Wald significance test, and assesses differentially expressed genes
based on a false discovery rate cutoff of 0.05 using the Benjamini-
Hochberg procedure.

Genetic correlation
To assess the extent to which genome-wide profiles of association
were shared with known ACH-related traits, we computed the Spear-
man correlation between two vectors of linkage disequilibrium (LD)-
block stratified association p-values. This approach provides a multi-
variate, robust alternative to LD score regression (LDSC)80,81 for com-
puting genetic correlations and is applicable to unsigned summary
statistics yielded by CCA30. We collected publicly available genome-
wide summary statistics for five traits with knownassociationswith the
achondroplasia phenotype (body height76, head circumference82, lung
volume83, obstructive sleep apnea syndrome84 and sitting height
ratio85) and for two putative unrelated traits (hormone-sensitive
cancer34 and inflammatory bowel disease29) to serve as negative con-
trols. Details on the selected traits and links to relevant publications
are summarized in Supplementary Data 5. LD scores were readily
obtained from the 1000 Genomes European data46, and SNPs were
filtered to HapMap3 SNPs, excluding SNPs in the Major Histocompat-
ibility Complex region86. For each LD block, we computed the mean
SNP -log10(p-value) and computed a rank-based Spearman correlation
using the average association value for that LDblock.We estimated the
standard error of the Spearman correlation using a bootstrapping
approach with 100 resampling cycles.

Multivariate genotype-phenotype mapping
We applied the GWAS candidate genes to the recent multivariate
genotype-phenotype (MGP) model in Diversity Outbred (DO) mice7 in
R (version 4.2.0). DO mice were generated by breeding eight founder
inbred strains, to better mimic genetic diversity in humans39,40. Com-
position (n = 1154 samples), genotyping (n = 123,309 markers), and
landmarking (n = 54 3D landmarks) of the DO sample are described in
detail byAponte et al. 7. In a regularizedpartial least squaresmodel, the
MGP method identifies axes of shape variation that maximally covary
with genetic marker variation for the selected gene set. The regular-
ization parameter was determined at 0.06 based on 10-fold cross-
validation. For each of the genes, the MGPmodel outputs their overall
contribution, or marker loadings, to the estimated shape axes. The
principal axis of shape covariation is visualized directly onto the
mouse craniofacial shape as a heatmap, representing the displacement
along the surface normals with reference to the mean DO shape.

For 6772 multi-ancestry participants of the Adolescent Brain
Cognitive Development (ABCD) study87, the outer head surface was
extracted frommagnetic resonance images as described by Goovaerts
et al. 36. The MeshMonk toolbox24 was used to perform rigid and

subsequently nonrigid surface registration using a full-head template
comprising 28,218 quasi landmarks. From this, we cropped out the
area covering the cranial vault (n = 11,410 quasi landmarks), encom-
passing the supraorbital ridge, and extending toward the occipital
bone. Shapes were then adjusted for age, sex, weight, height, cranial
size, scanner site, and the first 10 genomic PCs using PLSR after GPA
alignment. Following PCA and parallel analysis, 65 orthogonal axes of
cranial vault shape variation were retained and normalized to unit
variance. Using CCA, we optimized the linear combinations of ACH
lead SNPs and vault shape PCs to extract a maximally correlated latent
phenotype. For SNPs not found in the ABCD sample, we searched for
proxy SNPs within the 1000 Genomes Phase 3 European sample and
selected the SNP in the strongest LD with the original SNP and with at
least r2 >0.9. The latent phenotypic traits were visualized directly onto
the head surface as a heatmap, representing the displacement along
the surface normals with reference to the mean head surface.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Phenotype, genotype, and demographic data of the Achondroplasia
cohort were collected previously and were obtained from the online
FaceBase repository (FB00000861 [https://doi.org/10.25550/TJ0]).
Access to these data requires proper institutional ethics approval and
approval from the FaceBase data access committee. The UK control
sample (n = 3566) consisted of participants from the Avon Long-
itudinal Study of Parents and Children (ALSPAC). The ALSPAC data
were collected previously and will be made available to bona fide
researchers on application to the ALSPAC Executive Committee
(http://www.bris.ac.uk/alspac/researchers/data-access). The US con-
trol dataset (n = 4680) was collected previously and included samples
from the 3D Facial Norms cohort and studies at the Pennsylvania State
University and Indiana University-Purdue University Indianapolis. All
the genotypic markers for the 3D Facial Norms dataset are available
through the Database of Genotypes and Phenotypes (dbGaP)
controlled-access repository (phs000949.v1.p1 [https://www.ncbi.
nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000949.v1.
p1]). The 3D facial surface models are available through the FaceBase
Consortium (FB00000491.01 [https://doi.org/10.25550/VWP]). The
participants making up the PSU and IUPUI datasets were previously
collected without broad data-sharing consent. Given the highly iden-
tifiable nature of both facial and genomic information and unresolved
issues regarding risk to participants, we opted for amore conservative
approach to participant recruitment. Broad data sharing of the raw
data from these collections would thus be a legal and ethical violation
of the informed consent obtained from theparticipants, and therefore,
thesedata are not publicly accessible. This restriction is not becauseof
any personal or commercial interests. Additional details can be
requested from M.D.S. and S.W. for the PSU and IUPUI datasets,
respectively. Phenotype data for the Tanzanian sample were collected
previously. These data are accessible through the online FaceBase
repository (FB00000667.01 [https://doi.org/10.25550/TX4]). Access
to these data requires proper institutional ethics approval and
approval from the FaceBase data access committee. Genotype data for
the Tanzania sample were deposited in dbGAP (phs000622.v1.p1
[https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_
id=phs000622.v1.p1]). All the data and detailed information for the
ABCD Study, including MRI scans, genetic markers, and covariates,
were collected previously and are available under restricted access
through the ABCD data repository (https://nda.nih.gov/abcd/) upon
completion of the relevant data use agreements. The ABCD data
repository grows and changes over time. The ABCD data used in this
report came from data release 3.0 (https://doi.org/10.15154/1519007
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and https://doi.org/10.15154/1528459) and is described on https://nda.
nih.gov/study.html?id=1926. Publicly available data used were the
1000G Phase 3 data (https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
release/20130502/), the list of HapMap3 SNPs excluding the MHC
region (http://ldsc.broadinstitute.org/static/media/w_hm3.noMHC.
snplist.zip), GWAS summary statistics from various sources (GWAS
catalog accession numbers GCST90007256 (Normal facial variation
GWAS), GCST004132 (Inflammatory bowel disease GWAS),
GCST90102436 (Hormone-sensitive cancer GWAS), GCST90016668
(Lung volume GWAS) and GCST000817 (Body height GWAS); https://
egg-consortium.org/Head-circumference-2022.html (Infant head cir-
cumference GWAS), https://www.finngen.fi/en/access_results
(Obstructive sleep apnea GWAS)), hierarchical spectral facial cluster-
ing (https://doi.org/10.6084/m9.figshare.7649024), a database of
genes and annotated ontology terms from the StringDB website
(https://stringdb-static.org/download/protein.enrichment.terms.v11.5.
txt.gz), murine chondrocyte RNAseq data from the GEO data reposi-
tory (GSE225796 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE225796]), microarray data from murine growth plate dissec-
tions from the GEO data repository (GSE87605), the multivariate
genotype-phenotypemodel in Diversity Outbredmice (https://github.
com/j0vid/MGP_shiny and https://doi.org/10.25550/1-731C). Summary
data from the GWAS on the sitting height ratio is available fromDr Joel
Hirschhorn (Joel.Hirschhorn@childrens.harvard.edu). The GWAS
summary statistics generated in this study have been deposited on the
GWAS Catalog under accession codes GCST90454200 (US database)
and GCST90454201 (UK database). The post-GWAS analysis data and
phenotyping robustness data generated in this study are provided in
the Supplementary Data files and the Source Data file. Source data are
provided in this paper.
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