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A B S T R A C T

Fusion proteins have the potential to become the new norm for targeted therapeutic treatments. Highly specific 
payload delivery can be achieved by combining custom targeting moieties, such as VHH domains, with active 
parts of proteins that have a particular activity not naturally targeted to the intended cells. Conversely, novel 
drug products may make use of the highly specific targeting properties of naturally occurring proteins and 
combine them with custom payloads. When designing such a product, there is rarely a known structure for the 
final construct which makes it difficult to assess molecular behaviour that may ultimately impact therapeutic 
outcome. Considering the time and cost of expressing a construct, optimising the purification procedure, 
obtaining sufficient quantities for biophysical characterisation, and performing structural studies in vitro, there is 
an enormous benefit to conduct in silico studies ahead of wet lab work.

By following a repeatable, streamlined, and fast workflow of molecular dynamics assessment, it is possible to 
eliminate low-performing candidates from costly experimental work. There are, however, many aspects to 
consider when designing a novel fusion protein and it is crucial not to overlook some elements. In this work, we 
suggest a set of user-friendly, open-source methods which can be used to screen fusion protein candidates from 
the sequence alone. We used the light chain and translocation domain of botulinum toxin A (BoNT/A) fused with 
a selected VHH domain, termed here LC-HN-VHH, as a case study for a general approach to designing, modelling, 
and simulating fusion proteins. Its behaviour in silico correlated well with initial in vitro work, with SEC HPLC 
showing multiple protein states in solution and a dynamic protein shifting between these states over time without 
loss of material.

1. Introduction

Despite the many functions proteins have in the body, such as 
enzymatic catalysis, cargo transportation, and signalling (Leader et al., 
2008), their widespread use as therapeutic molecules is a relatively 
recent development in medicine. This was in part due to the emergence 
of recombinant protein expression in E. coli which eliminated the need to 
extract endogenous proteins from animal tissue. Although considerable 
progress has since been made in this field, there are only an order of 
hundreds of approved biologics in the market (Ebrahimi and Samanta, 
2023) due to the challenges of purifying and storing these proteinaceous 
molecules without denaturation, aggregation, or degradation, which is, 
in part, influenced by various environmental factors such as temperature 
(Kellerman et al., 2022), pH (Perez and Groisman, 2007; Weeks and 
Sachs, 2001), and ionic strength (Möller et al., 2012). Key developments 
that have reduced the impact of these factors include site-directed 

mutations (Fryszkowska et al., 2022), PEGylation (Harris and Chess, 
2003), and fusion to other proteins (Leader et al., 2008). The latter can, 
and has been, used to improve the half-life of a drug, such as through 
binding to human albumin (Nilsen et al., 2020; Andersen et al., 2014; 
Schelde et al., 2019), and for the creation of novel molecules with cus
tomised targeting moieties. For example, the anticancer drug, blinatu
momab, is a fusion of two antibody fragments that binds CD3 T cells and 
CD19 on cancerous B cells, bringing them in proximity such that the T 
cells can secrete enzymes leading to cancer cell death (Labrijn et al., 
2019; Einsele et al., 2020).

Some proteins have specific catalytic features that could be 
employed in cells other than their natural targets, such as the BoNT 
(Keith and John, 2010). This toxin is currently the most potent known 
(Pirazzini et al., 2017; Montal, 2010) with an estimated oral lethal dose 
of <1 μg/kg for humans (Cheng and Henderson, 2011; Arnon et al., 
2001). It targets motor-neurons and blocks neurotransmission, resulting 
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in flaccid paralysis; if left untreated, this can eventually lead to respi
ratory failure and death. This high potency and site-specificity makes it a 
desirable pharmaceutical molecule due to the low amount of material 
required for effective treatment, as well as the near absent diffusion from 
the injection location. BoNT is currently used in the treatment of con
ditions such as cervical dystonia, blepharospasm, and glabellar lines 
(Cooper, 2007; Masuyer et al., 2014; Fonfria et al., 2018; Erbguth, 
2004). The active toxin is comprised of a light chain (LC) and heavy 
chain (HC), and is structurally modular with three spatially distinct 
domains, each responsible for an event in the mechanism of action. The 
LC possesses a catalytic domain that acts as a metalloprotease when 
released into the neuron. The N-terminal half of the heavy chain (HN) 
possesses a belt structure that wraps around the LC as well as a trans
location domain (TD) that is responsible for delivering the LC from the 
endosome into the cytoplasm after a pH trigger. The C-terminal half of 
the heavy chain (HC) possesses a binding domain (BD) responsible for 
the site-specific targeting of motor neurons. By replacing the BD with a 
new targeting moiety, it is possible to redirect the catalytic activity 
elsewhere to treat various secretion-based conditions.

The LC-HN of BoNT remains stable at the endosomal pH of ~5 
(Lalaurie et al., 2022; Singh and DasGupta, 1989), making it a good 
candidate for a fusion protein scaffold likely to retain its translocation 
and catalytic properties. A new targeting domain may then be designed 
around the LC-HN so as not to affect the translocation mechanism while 
maintaining the binding sites’ availability. The goal of creating fusion 
proteins is typically to exploit and compound the function of each 
component in one molecule; however, there is no guarantee that it will 
be functionally active due to how the protein folds. Novel inter- and 
intra-molecular interactions may be added unintentionally to the 
construct; therefore, careful consideration is required for the design of 
an intended fusion protein therapeutic. Flexible linker domains are 
frequently used to allow each component to retain a degree of mobility 
to permit retention of the domain function. Indeed, multiple linkers may 
need to be tested to find an optimal design; however, this makes suc
cessful experimental structure determination more challenging.

A novel construct was designed in order to develop and assess a 
computational workflow aimed at screening fusion proteins from the 
sequence alone. This construct is a retargeted BoNT where the BD is 
replaced with a VHH domain by attaching it to the LC-HN with a flexible 
linker (LC-HN-VHH). Structural models of this construct were generated 
by protein structure prediction algorithms from the primary sequence, 
as well as with docking simulations with its intended target. Using the 
RosettaCM algorithm (Song et al., 2013) yielded ~17,000 models, of 
which four within the top ten were taken for further study. Similar work 
has previously been performed (Ahmadi Moghaddam et al., 2023) on a 
ricin-based fusion protein, with 12 constructs analysed to study different 
linkers & active sites; however this was limited to a single repeat & a 
single model per construct. Here, we have used 4 models of the same 
construct, and repeated each three times in three pH conditions for a 
total of 9 simulations per model. Other computational workflows have 
been suggested for highly specific purposes (Gonzalez et al., 2024; 
Divine et al., 2021) which cannot be applied to the general study of the 
stability of fusion-protein based drugs.

Molecular dynamic (MD) simulations for each of these models 
revealed that the starting position had a significant impact on the out
comes, with some models exploring large areas of conformational space 
while others remained extremely stable throughout. Analysis of the 
trajectories also showcased the paramount importance of a detailed 
review of the output, with a clustering analysis identifying structures 
which would hinder the desired activity of the molecule exclusively in 
certain pH conditions. The dynamic and flexible nature of the molecule 
was confirmed by experimental work with HPLC SEC data which 
showed a fluid exchange of material from one elution peak to another 
without overall loss of protein content. This study highlights the 
importance of performing extensive in silico studies when designing a 
novel fusion protein-based product as a way to narrow down strong 

constructs and identify a likely optimal formulation, ahead of expensive 
and time-consuming practical work.

2. Methods

2.1. Homology modelling & docking

The LC-HN-VHH construct sequence was used as the target in the 
RosettaCM software (Song et al., 2013), and the protein databank (PDB) 
models 3BTA & 3EAK (Lacy and Stevens, 1998; Vincke et al., 2009) were 
used as the target structures for the LC-HN and the VHH domains, 
respectively. Docking between the VHH domain and its target was 
simulated using ClusPro (Desta et al., 2020; Vajda et al., 2017; Kozakov 
et al., 2017, 2013). Finally, a model of the full molecule was built using 
RosettaCM by using the results of the docking simulations.

2.2. Molecular dynamics

MD simulations were performed using Gromacs 2019.3 (Van Der 
Spoel et al., 2005) on a high-performance computing cluster (6 nodes 
with two 20-core Intel Xeon Gold 6248 2.5 GHz, with hyperthreading; 
192 Gb of 2933 MHz DDR4 RAM; Intel OmniPath network). The simu
lated temperature was set to 340 K to accelerate the process owing to 
increased potential energy levels, and the pressure kept at 1 bar. The 
protein was set in a cubic box with periodic boundary conditions and 
with explicit solvent. pH conditions were simulated on the starting 
structures using the APBS PDB2PQR server (Dolinsky et al., 2004; Jurrus 
et al., 2018). The ionic strength of the simulations was set to 165.7 mM 
to match the experimental buffers used. Three pH conditions (pH 4, 5.5, 
and 7.2) for four starting positions (A1, A2, A3, and A4) were run in 
triplicate for 300 ns each, for a total of 36 simulations.

Root mean square deviation (RMSD) and radius of gyration (RG) data 
was collected using VMD 1.9.3 (Humphrey et al., 1996). Principal 
component analysis (PCA) and clustering data was obtained using the 
BIO3D package in R (Grant et al., 2006), using the “average” clustering 
algorithm. Root mean square fluctuation (RMSF) data was calculated 
using the Gromacs command “gmx rmsf”. Path similarity analysis was 
achieved using the mdanalysis python package (Seyler et al., 2015; 
Gowers et al., 2016).

2.3. Protein purification and HPLC SEC

His-tagged LC-HN-VHH was purified from over-expression in E. coli 
cells using nickel affinity chromatography. HPLC SEC data was obtained 
using an Agilent 1260 and an Acquity UPLC Protein BEH200 SEC, with a 
flow rate of 0.2 mL/min in a mobile phase of 50 mM sodium phosphate, 
200 mM NaCl, 200 mM L-Arginine, pH 7.0. Sample was buffer 
exchanged into either 50 mM sodium acetate for pH 4 and pH 5.5, or 
50 mM sodium phosphate for pH 7.2; all at 165.7 mM ionic strength 
controlled by NaCl. The sample was maintained at 15 ◦C in the equip
ment at a concentration of 0.5 mg/mL and 20 μL fractions were taken 
every 2 hours.

3. Results

3.1. Homology modelling and docking

With no previously determined structure for the LC-HN-VHH 
construct, the starting models for the molecular dynamic simulations 
were generated using homology modelling from the amino acid 
sequence. The AlphaFold2 algorithm (Jumper et al., 2021) generated a 
model with a misrepresentation of the BoNT belt (Fig. 1A), whereas the 
RoseTTAFold software (Baek et al., 2021) did not correctly model the 
VHH domain, predicting many loops instead of beta-sheets (Fig. 1B). The 
RosettaCM protocol (Song et al., 2013), however, was able to model 
both the VHH domain and the belt correctly with its more elaborate 
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process involving three steps: thread, hybridize, relax. For the first step, 
thread, the target residues (LC-HN and VHH, separately) are mapped to 
the template structure (PDB ID: 3BTA for the LC-HN, PDB ID: 3EAK for 
the VHH) (Lacy and Stevens, 1998; Vincke et al., 2009). For the second 
step, hybridize, 17,000 structures were generated which propose a final 
structure by combining the two distinct models (LC-HN and VHH) ob
tained from the thread step. In the final step, relax, each model was 
allowed to settle to a local potential energy minimum state. This showed 
that while the models retained the expected structural conformation of 
the two parts, the relative position of the VHH and the LC-HN varied 
greatly.

Docking simulations were performed between the VHH component of 
the models from the RosettaCM protocol and its intended target using 
the ClusPro software (Desta et al., 2020; Vajda et al., 2017; Kozakov 
et al., 2017, 2013) to identify those that were still able to bind to their 

target. ClusPro ranks the models based on the lowest free energy; and 
the highest ranked models of the VHH-target complex were then com
bined into the full molecule by applying the RosettaCM protocol once 
more, this time using the LC-HN and the bound VHH-target complex. 
RosettaCM ranks the generated models by the RMSD values of the model 
measured relative to the template structures supplied in the thread step.

3.2. MD simulations reveal dynamic behaviour

From the top ten best ranked models generated with the docking 
simulation, four were selected at random and the bound substrate 
removed before use in MD simulations (Fig. 2). The aim of these simu
lations was to investigate the behaviour of the LC-HN-VHH in solution 
prior to any binding event. The simulations were performed in triplicate 
at three different pH conditions using the APBS PDB2PQR server 

Fig. 1. A: Structure predicted by AlphaFold2. The sequence was submitted to Google Colab webserver. B: Structure predicted by RosettaFold. The sequence was 
submitted to the RosettaFold webserver. The LC and TD are coloured green, the belt region red, and the VHH blue. AlphaFold2 was able to correctly predict the VHH 
domain but not the belt conformation, whereas RosettaFold was able to predict the belt conformation but not the VHH.domain.

Fig. 2. Four starting models of LC-HN-VHH (A1 to A4) were selected from the 10 highest ranking models after docking simulations to intended target. This portrays 
the broad array of suggested placements of the VHH domain relative to rest of the protein after homology modelling & docking steps. Molecules are coloured with the 
“chainbow” format.
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(Dolinsky et al., 2004; Jurrus et al., 2018), and trajectories were ana
lysed after 300 ns at 340 K and 1 bar pressure, to provide enough time 
for the model to equilibrate (Skjærven et al., 2011). The RMSD values of 
all the frames relative to their respective starting structure were between 
0.5 – 3 nm for all models except A3, which remained between 0.25 – 
2 nm (Fig. 3A). Model A3, therefore, appeared to be the most stable, 
with fewer frames having RMSD values greater than 1 nm (~30 % of 
total frames) compared to the other models (~75 % of total frames in A1 
and A2; ~95 % of total frames in A4). These values imply a highly 
mobile structure, though they do not give insight into the nature of the 
changes to the molecule. When separating the distribution as a function 
of pH, higher RMSD values were observed with decreasing pH for all 
models except A3 (Figure S1). This indicates the construct has a pref
erence for a neutral pH environment, leading to a more stable structure 
relative to the lower pH solutions.

The RG of a protein is a measure of its compactness and can reveal 
conformational changes. The RG distribution (Fig. 3B) demonstrated a 
broad range of values explored (3.2 nm – 3.7 nm; a 15 % increase) but 
with a complete overlap of data from all models, indicating that the full 
space available to the protein has likely been explored with these sim
ulations. Intra-domain RMSD analyses showed little variation for LC-HN 
(Figure S2) and VHH (Fig. 4) domains for all four models, with values no 
greater than 0.5 and 1.2 nm, respectively, indicating high conforma
tional stability for each domain. This suggests that the larger variation of 
values seen in the full protein RMSD data is due to a displacement of the 
VHH domain relative to the LC-HN complex. All together, these results 
indicate that this construct has a highly mobile VHH domain with a broad 
range of LC-HN-VHH conformations explored from all starting positions 
except A3, which remained stable throughout. Whole protein RMSD and 
RG values, however, can sometimes represent highly different structures, 
especially when studying a large molecule (>100 kDa); therefore, it is 
not sufficient to rely on RMSD or RG analyses alone.

RMSF is a measure of the displacement of residues relative to their 
average position over the time period analysed, which gives an indica
tion of the stable regions within a molecule. The RMSF per residue for 
each of the models similarly pointed to A3 as the most stable structure, 

with the lowest RMSF for all pH environments (Figure S3). Combined 
with the RMSD analysis, this highlights the impact of the starting model 
on the outcome of the simulations. In model A3, the protein appears to 
be locked in a stable position with the lowest RMSD and RMSF values of 
all models. This would bias the interpretation of the results if this model 
alone had been taken forward for analysis. By selecting multiple models 
from the homology modelling step, model A3 was identified as an 
exception, with a narrower spread of RMSD, and lower RMSF values 
relative to the other three models.

A look at the path similarity between repeats of the same model and 
between the different models was used as a measure of the accuracy and 
repeatability of MD data (Figure S4). This revealed that the trajectories 
of the same model and pH were always the most similar to each other, 
even relative to the same model at different pHs, thus confirming the 
repeatability of the work. Furthermore, this also revealed high similarity 
between repeats for models A2 and A3, highlighting the necessity to use 
multiple models for a full assessment of a fusion protein’s behaviour. 
That is, had models A2 and A3 been the only selected models, only a 
small fraction of the available space would have been explored, leading 
to a biased assessment of the construct based on a minority of models.

3.3. PCA and clustering confirm consensus structure

Principal component analysis (PCA) is a tool which identifies the 
major axes of movement and the portions of the molecule which account 
for the majority of the variance. This is particularly useful for studying 
proteins with multiple domains because it can identify which parts of the 
protein are responsible for the full-protein RMSD values. All the data for 
each pH and model were combined into a single trajectory file, making it 
possible to compare the structures explored as a function of the starting 
model and pH. The full data set was grouped into six clusters of similar 
conformation (see elbow plot, Figure S5) using the first four principal 
components to account for ~75 % of the total variance (Figure S6). The 
average RMSD and standard deviation of each frame within a cluster to 
that cluster’s mid-point frame was low, confirming the close structural 
similarity of all frames within each cluster (Figure S7). The distribution 

Fig. 3. A: Whole protein RMSD distribution after fixing the LC-HN domains, in bins of 0.05 nm width, all pH combined, with respect to its starting position for each 
model. B: RG distribution in bins of 0.05 nm width, all pH combined. This shows the large overlap of values from all starting positions, with A3 maintaining a lower 
RMSD than other starting models.
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of the clusters as a function of the initial model (Fig. 5) suggested high 
structural mobility for A1 with six clusters explored, while A3 explored 
just two clusters. Furthermore, the dominant cluster explored by A3 
(80 % of all its frames) was very close to its starting position (Figs. 6 and 

2). Interestingly, two clusters (2 and 6) were explored in all simulations 
despite the large disparity in the initial starting position of the VHH 
domain. This suggests the existence of a consensus cluster (cluster 2; 
46 % of all frames) that the protein explores irrespective of its initial 
model, making this cluster a likely representation of the dominant 
population in solution. This further highlights the importance of using 
multiple initial models to ensure most of the conformational space 
available to the protein has been explored. As portrayed by model A3, in 
some cases the protein may adopt a stable conformation which is irrel
evant with respect to its viability as a potential new drug-product. For 
example, cluster 6 shows the active sites of the VHH domain are near the 
TD (Fig. 6) which may result in poor binding. If model A3 had been the 
only model taken forward for in silico analysis, this construct would 
likely have been rejected and a separate construct implemented with e.g. 
a new linker, or by displacing the linkage site. However, by including 
multiple other models, it was possible to identify a different conforma
tion (cluster 2), with increased availability of the binding sites, as the 
overall dominant and more likely solution-structure for this construct.

3.4. SEC detects multiple populations in solution

The LC-HN-VHH construct was expressed, purified, and analysed by 
SEC HPLC in order to validate the MD data and cluster distribution. 
Purified protein was buffer-exchanged into each of the simulated con
ditions of pH and ionic strength, and loaded into the sample chamber 
maintained at 15 ◦C to avoid aggregation and evaporation. Fractions 
were taken every two hours and loaded onto the column for 24 hours. 

Fig. 4. Intra-domain VHH RMSD distribution for each model and pH. The values never exceed 1.2 nm, confirming the structural integrity of the VHH domain during 
the simulations.

Fig. 5. Clustering of the frames, represented as a percentage of the total 
number of frames for each starting model. Reveals two clusters which exist in 
all models (2 and 6), with cluster 2 dominating the overall distribution and 
cluster 6 dominating in model A3.
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The data (Fig. 8) revealed a dominant first peak followed by a smaller 
second peak. The latter appeared to increase in intensity and elute 
earlier until the 16 h mark, before gradually returning to its starting 
state by the 24 h mark. The sum of the two peak areas did not vary much 
throughout the time course – any decrease in area to the first peak was 
matched with a corresponding increase to the second peak; and vice- 
versa. This suggests a fluid exchange of material from one peak to the 
other, which would be consistent with the protein fluctuating between 
different conformations as was observed in the cluster analysis. Distri
bution of the clusters as a function of pH (Fig. 9) showed pH 7.2 was 
noticeably dominated by cluster 2; while pH 4 and pH 5.5 possessed a 
more even proportion of clusters 1, 3 and 6. Considering the average RG 
of each cluster (Fig. 10), the average RG in pH 4 (3.45 nm) and pH 5.5 
(3.43 nm) is slightly higher than in pH 7.2 (3.42 nm), which is in good 
agreement with the increased proportion of the earlier elution peak at 
lower pH values. The presence of aggregates or fragment species has 
been ruled out as this would have led to significantly earlier, or later, 
peaks in the elution profile.

4. Conclusion

One of the first outputs of protein engineering is the generation of a 
novel polypeptide sequence that folds correctly into a protein with 
specific desirable characteristics. For our chimeric LC-HN-VHH construct, 
protein structure prediction algorithms and homology modelling 

yielded multiple potential models, each with distinct placement of the 
VHH domain relative to the rest of the construct. While it was not feasible 
to perform an in-depth study of all the models generated, this study has 
shown that it is crucial to select a number of these at random within the 
highest ranked models to maximise exploration of conformational space. 
This is to ensure that a consensus conformation has been identified as 
the most likely representation of the molecule’s true solution behaviour. 
As has been demonstrated here with model A3, some structures may be 
locked into a stable, low energy state with significantly reduced move
ment and may be a misrepresentation of the in vivo behaviour. However, 
if all models were to reach such a stable, low energy state, then it could 
be inferred that this conformation would likely be representative of the 
true structure. Following careful evaluation against the desired mecha
nism of action, that molecular sequence may then be down-prioritized 
for experimental assessment.

Utilising this assessment as the first stage in a screening funnel allows 
resource-intensive in vitro and in vivo assessment of molecule function 
and therapeutic impact to be focused on molecules with a greater chance 
of success. Furthermore, if such a position is only observed in particular 
environmental conditions, and is favourable to the activity of the pro
tein, it is important to detect this so that the conditions can be replicated 
experimentally, with a view to increase confidence in assay readouts. 
Both situations warrant an extensive study such that the full behaviour 
of the protein is observed, and positive or negative outcomes can be 
isolated to the solution conditions in which they were detected. 

Fig. 6. Cartoon representation of the cluster mid-points, showing the high mobility of the VHH domain. Cluster 6 is very close to the starting position of model A3, 
which is consistent with the lower RMSD values explored by this model and is in accordance with this cluster dominating the model’s simulations.

Fig. 7. View of the cluster mid-points with transparency setting inversely proportionally set to the percentage of total frames, with cluster 2 set to 0 (i.e., trans
parency set to 0.5 / 0 / 0.96 / 0.87 / 0.98 / 0.5, respectively for cluster 1 / 2 / 3 / 4 / 5 / 6).
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Furthermore, we have demonstrated the importance of analysing mul
tiple aspects of the MD results. RMSD or RG data alone would have 
overlooked the large array of structures hidden in similar values and 
resulted in false conclusions. However, when combined with a clustering 
analysis, we were able to resolve the large array of conformations 
available to the protein. From this, we identified a consensus cluster 
(clustering by initial model; cluster 2) while simultaneously revealing 
preferential conformations in particular pH environments (clustering by 
pH).

This study has confirmed the increasing reliability and utility of in 
silico models, by providing a detailed insight into the behaviour of our 
LC-HN-VHH construct using MD simulations and further corroboration 

with experimental work. When designing a fusion protein, there are 
many aspects to consider: choice of flexible linker, choice of targeting 
moiety, choice of payload, and impact of buffer conditions such as pH. 
The last point is particularly crucial for molecules whose mechanism of 
action will involve transition through different pH environments. All of 
these can be screened ahead of experimental work through MD simu
lations, the results of which can be used to screen out potential candi
dates and optimise the formulation of promising ones. In the case of the 
LC-HN-VHH construct, we can conclude that it would likely adopt a 
conformation with stable individual domains that are functionally 
active, and a preference for pH 7.2. Once a strong candidate has been 
identified, it can be expressed and taken for further characterisation 

Fig. 8. HPLC SEC traces of LC-HN-VHH in the same solution conditions as used for the simulated pHs and ionic strengths (top). Integration of both peaks shows an 
inverse relationship of change in peak area over time, indicating a dynamic exchange of material from one elution peak to another, with little to no material 
loss (bottom).

Fig. 9. Cluster distribution as a function of pH shows most frames in pH 7.2 are 
in cluster 2; while pH 4 and 5.5 have an almost equal proportion of frames in 
clusters 1, 2 and 6.

Fig. 10. Average cluster RG, with standard deviation, showing the disparity 
between the most extreme clusters. This may explain the observed difference in 
SEC peak distribution, with pH 7.2 strongly favouring clusters with slightly 
lower RG.
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such as analytical ultra-centrifugation to monitor its aggregation prop
erties, circular dichroism to monitor secondary structure stability, and 
small-angle X-ray scattering, or X-ray crystallography for a higher res
olution look at its three-dimensional structure. While this workflow 
gives a strong indication as to the conformational stability of the con
structs studied, it cannot predict how the protein will interact with other 
proteins. This would need to be tested experimentally on the most 
conformationally stable candidates in order to find the best overall 
construct, that being the best combination of conformational and 
colloidal stability. Thanks to the recent advancements in technologies 
for modelling proteins and generating predictions from the amino acid 
sequence, this work can be repeated with any number of fusion drug 
candidates. The nature of the computational analysis is fully transferable 
to any model, owing to the general nature of the RMSD & RG measure
ments. PCA uses spatial coordinates to detect conformational similarity 
and can therefore equally be applied to any constructs. The scripts used 
here can be repurposed with residue selections for alignments relevant 
to the work at hand. With the ever-increasing computing power avail
able, in silico analyses can give a reliable indication of how a protein 
behaves in solution, ultimately reducing the cost of future biologics by 
speeding up the design and screening process of suitable candidates.
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