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ABSTRACT
This paper introduces an extended multivariate EGARCH model that overcomes the zero-return problem and allows for negative 
news and volatility spillover effects, making it an attractive tool for multivariate volatility modeling. Despite limitations, such as 
noninvertibility and unclear asymptotic properties of the QML estimator, our Monte Carlo simulations indicate that the standard 
QML estimator is consistent and asymptotically normal for larger sample sizes (i.e., T ≥ 2500). Two empirical examples demon-
strate the model's superior performance compared to multivariate GJR-GARCH and Log-GARCH models in volatility modeling. 
The first example analyzes the daily returns of three stocks from the DJ30 index, while the second example investigates volatility 
spillover effects among the bond, stock, crude oil, and gold markets. Overall, this extended multivariate EGARCH model offers 
a flexible and comprehensive framework for analyzing multivariate volatility and spillover effects in empirical finance research.
JEL Classification: C32, C58, G17

1   |   Introduction

In financial decision-making, multivariate GARCH models, 
especially the CCC or DCC-GARCH model, are indispensable 
tools for portfolio selection, risk management, and volatility 
spillover analysis. Multivariate modeling of the conditional 
variance is the first step in this type of model. However, positive 
definiteness of the conditional variance must be guaranteed al-
most surely at all points in time, which requires all coefficients 
to be positive. These conditions may be too restrictive and may 
exclude some crucial stylized facts such as negative volatility 
spillovers. Conrad and Karanasos (2010) proposed less restric-
tive nonnegativity conditions, which were further extended 
by Karanasos et al.  (Forthcoming) in the context of the MEM 
model1, allowing some elements of the GARCH coefficients to 
be negative. However, these conditions are often violated in 
practice.

If the nonnegativity conditions are violated in a multivari-
ate model estimation, several solutions are available. One is 
to ignore the positivity condition and specify an unrestricted 
model (e.g., Engle and Gallo 2006). However, this can result in 
an invalid model, leading to negative volatility forecasts (see 
Karanasos et  al. Forthcoming for details). Another solution 
is to use a multivariate exponential type of GARCH model, 
which models logarithmic transformations. Two types of 
models are available: the multivariate EGARCH model, in-
spired by Nelson (1982), and the multivariate Log-GARCH 
(LGARCH) model, inspired by Geweke  (1986) and Bauwens 
and Giot (2000).

The exponential specification does not require nonnegativity 
constraints, allowing the ARCH and GARCH own and cross co-
efficients to be negative. This enables not only negative volatility 
(conditional) spillovers but also negative shock (unconditional) 
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spillover effects, making it more flexible than the GARCH for-
mulation. While the multivariate LGARCH (or Log-MEM) 
model has been used empirically in several recent papers, such 
as Sucarrat, Grønneberg, and Escribano  (2016), Francq and 
Sucarrat  (2017), Taylor and Xu  (2017) and Xu  (2024b), the lit-
erature on multivariate EGARCH is limited. The term “multi-
variate” EGARCH found in the literature (e.g., Koutmos and 
Booth 1995; Jane and Ding 2009; Hansen and Huang 2016; Asai 
and McAleer  2022) typically refers to univariate EGARCH-X 
models, where X signifies the inclusion of additional exogenous 
variables.

To fill the gap in the literature, we propose an extended multi-
variate EGARCH model. We use the term “extended” following 
He and Teräsvirta  (2004) and Conrad and Karanasos  (2010), 
because the off-diagonal coefficients of the ARCH term and 
the GARCH term are not restricted to zero. It is also notable 
the proposed model serves as an exponential version of Conrad 
and Karanasos (2010)'s multivariate GARCH model and can be 
seen as a special case within Karanasos et al. (Forthcoming)'s 
mixture model. To estimate the model, we propose a QML es-
timation. Similar to the univariate EGARCH model, establish-
ing consistency and asymptotic normality of QML estimates 
is infeasible, due to the difficulty with the invertibility condi-
tion, which involves writing ln(ht) as a well-defined function 
of past observables (see, for example, Wintenberger 2013for the 
EGARCH(1, 1) model discussion). Instead of establishing as-
ymptotic properties, we use Monte Carlo simulations to examine 
the finite sample properties of the QML estimator. Our simu-
lation results demonstrate that the QML estimator approaches 
consistency and normality when the sample size is relatively 
large (i.e., T ≥ 2,500). However, when the sample size is small 
(i.e., T ≤ 1,000), the QML estimator can be biased and deviate 
from normality. Fortunately, GARCH models are often used in 
empirical finance, where daily data are available, and sample 
sizes are sufficiently large. For example, for daily data from 2000 
to 2021, the sample size is close to 5000, making QML estima-
tors approach consistency and normality. If estimation is not an 
issue, the multivariate EGARCH model offers distinct benefits. 
Compared to the multivariate GARCH model, it allows for nega-
tive news and volatility spillover effects. Additionally, it does not 
suffer from problems caused by zero-valued observations that 
plague the multivariate LGARCH model. Therefore, we con-
clude that the multivariate EGARCH model is a more attractive 
model for studying volatility in empirical finance.

We include two empirical examples to illustrate the multivariate 
EGARCH model. In the first example, we compare the forecast-
ing performance of the multivariate GARCH, LGARCH, and 
EGARCH models with a DCC structure for conditional correlation 
for the daily returns of three stocks from the DJ30 index. Our re-
sults show that the multivariate EGARCH model outperforms the 
GARCH and LGARCH models in forecasting volatility and cova-
riance. In the second example, we illustrate how the multivariate 
EGARCH model can be used to study volatility spillover effects. 
With bond, stock, crude oil, and gold markets, we find significant 
negative news and volatility spillover effects. We also observe more 
than 100 zero-valued observations in the return series, indicating 
that the multivariate EGARCH model is more suitable for studying 
(negative) volatility spillover effects in this case.

The remainder of the paper is organized as follows. Section  2 
introduces the multivariate EGARCH models. Section  3 dis-
cusses the QML estimation and the properties of the QML es-
timator. Section 4 presents Monte Carlo simulations. Section 5 
includes two empirical examples. Section 6 concludes the paper. 
A Supporting Information appendix provides additional theoret-
ical results.

2   |   Multivariate Exponential GARCH Model

Following He and Teräsvirta  (2004) and Nakatani and 
Teräsvirta (2009), consider the following vector stochastic process: 

where rt is a stochastic (N × 1) vector of financial returns and 
Dt = diag

(
h
1∕2

1,t
, … , h

1∕2

N ,t
 ) is a diagonal matrix of conditional 

standard deviations of �t. The sequence 
{
et
}
 with the stochastic 

vector et =
[
e1,t , … , eN ,t

]� is a sequence of independent and iden-
tically distributed variables with mean 0 and time-invariant pos-
itive definite correlation matrix P =

[
�ij
]
 with ones on the main 

diagonal. With these assumptions, 

where t is the information set up to and including time t , and 
Ht = DtPDt. Matrix Ht is the conditional covariance matrix, and 
P is the constant conditional correlation matrix of the process {
�t

}
.

This specification is independent from the specification of a 
conditional correlation matrix. It can therefore be employed for 
CCC as well as for DCC GARCH models, leading to the same es-
timators of the individual volatilities. In the empirical analysis, 
an example is provided to demonstrate the inclusion of dynamic 
conditional correlation estimation.

The extended multivariate EGARCH(p, q) model of �t takes the 
form 

where � is an (N × 1) vector and Ai, Bj and �i are (N × N) 
matrices.

If we define B(L) =
�
I −

∑q
j=1

BjL
j
�
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i=1
(AiL

i) and 
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(�iL
i), Equation (4) can also be written as 

Equations  (1),  (2), and  (4) jointly define the N-dimensional 
extended CCC-EGARCH (p, q) model. In the multivariate 
EGARCH model, ht is guaranteed to have positive elements for 
all t , without any restriction on the elements in Ai and Bj for each 
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i and j. This guarantees that, together with the positive definite-
ness of P, the conditional variance matrix Ht is positive definite 
for all t .

For comparison purpose, we also suggest the multivariate asym-
metric LGARCH(p, q) model for �t, which takes the form 

where st = 0 if rt ≤ 0.

If we define B(L) =
�
I −

∑q
j=1

BjL
j
�

 and 
A(L) =

∑p
i=1

(Ai + �ist−i)L
i, Equation (6) can also be written as 

Equations (1), (2), and (6) jointly define the N-dimensional ex-
tended CCC-LGARCH (p, q) model. It should be noted that if 
both Ai and Bj are diagonal for all i and j, the variance equation 
in (4) collapses into the N univariate EGARCH (p, q) models of 
Nelson (1982), the variance equation in (6) collapses into the N 
univariate LGARCH (p, q) models of Geweke (1986).

To simplify our discussion and because first-order models ade-
quately describe many heteroskedastic time series in most em-
pirical applications, we will focus on the case of p = q = 1 and 
a diagonal �, unless otherwise stated. The CCC-EGARCH(1, 1) 
model has N(5N + 2)∕2 parameters, with N(2N + 2) parameters 
appearing in ht and the remaining N(N − 1)∕2 in P.

The multivariate EGARCH process defined in  (4) is 
considered stationary if the modulus of the roots of 
|I − B̃1z − B̃2z

2 … B̃qzq| = 0 are all greater than one. In the case 
of the univariate EGARCH(1,1) process, the stationarity con-
dition is that the largest eigenvalue of B is smaller than unity. 
However, the invertibility condition, which is to express ln(ht) 
as a well-defined function of past observables, cannot be verified 
analytically2. The stationarity and invertibility conditions of the 
multivariate LGARCH model are well established and can be 
found in Appendix A.2 of Taylor and Xu (2017).

3   |   Quasi-Maximum Likelihood Estimation 
(QMLE)

In this section, we will derive a quasi-maximum likelihood 
(QML) estimation method for the multivariate EGARCH model.

We assume that et in Equation  (2) follows a multivariate nor-
mal distribution, et|Ft−1 ∼ N(0,P). Let �

� = [��
1
,��

2
], where 

�
�
1
= vech(P), operator vech stacks the lower triangular (with-

out diagonal) elements of a symmetric (N × N) matrix into a 
N × (N − 1)∕2 vector and �′

2
 contains the parameters in �t. The 

log-likelihood function is given by the following: 

where 

where Dt = diag
�√

h1,t ,
√
h2,t , … ,

√
hN ,t

�
.

Additionally, if the DCC specification is employed for the con-
ditional correlation, the correlation matrix P can be replaced by 
the identity matrix in this stage estimation. The log-likelihood 
function at time t  is then 

In the second stage, the dynamic correlation matrix Pt can be 
estimated using êt, where �et = �t ⊙

�h
−1∕2

t  and ĥt is the estimated 
conditional variance evaluated at �1 = �̂1, which is obtained 
from the first stage estimation.

This is a standard log-likelihood estimation approach, which can 
also be applied to multivariate GARCH and LGARCH models. 
The consistency and asymptotic normality of the QML estima-
tor �̂ for GARCH and LGARCH models are derived from a more 
general maximum likelihood theory, as found in Nakatani and 
Teräsvirta (2009) and Francq, Wintenberger, and Zakoan (2013). 
Detailed asymptotic properties are provided in the Supporting 
Information appendix of this paper.

However, the consistency and asymptotic properties of the QML 
estimator �̂ for the multivariate EGARCH model are not available 
under general conditions. A limitation in the development of as-
ymptotic properties lies in the lack of an invertibility condition, 
which would allow expressing lnht as a well-defined function of 
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TABLE 1    |    Simulation—Data-generating process.

Panel A. EGARCH model data-generating process

DGP 1 DGP 2 DGP 3

A
(
0.10 0.01

0.03 0.20

) (
0.03 0.01

0.03 0.05

) (
0.10 0.01

0.03 0.20

)

B
(

0.90 0.04

−0.02 0.90

) (
0.98 0.04

−0.02 0.95

) (
0.55 0.04

−0.20 0.60

)

Panel B. LGARCH model data-generating process

DGP 1 DGP 2 DGP 3

A
(
0.10 0.01

0.03 0.20

) (
0.03 0.01

0.03 0.05

) (
0.10 0.01

0.03 0.20

)

B
(

0.80 0.04

−0.02 0.70

) (
0.95 0.04

−0.02 0.90

) (
0.45 0.04

−0.20 0.60

)
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past observables. Wintenberger (2013) and Kyriakopoulou (2015) 
demonstrate the invertibility conditions for the univariate 
EGARCH(1,1), while Hafner and Linton (2017) and Martinet and 
McAleer (2018) present the invertibility conditions for the univar-
iate EGARCH(p, q). These conditions are complex and require 
strong assumptions, which are often nonverifiable analytically. 
Xu  (2024b), through Monte Carlo simulations, shows that the 
QML estimator of the exponential HEAVY model exhibits good 
finite sample properties when the sample size is sufficiently large. 
Given these challenges, instead of relying solely on asymptotic the-
ory, we conduct Monte Carlo simulations to investigate the finite 
sample properties of the QML estimator.

4   |   Monte Carlo Simulation

As the asymptotic properties of the QML estimator of the mul-
tivariate LGARCH model are well established (Sucarrat et  al. 
2016; Francq and Sucarrat 2017; Taylor and Xu 2017), we will 

estimate both the multivariate EGARCH and LGARCH mod-
els and compare their finite sample properties in a Monte Carlo 
simulation. We adopt the bivariate EGARCH and LGARCH 
models given by (4) and (6), respectively. We use sample sizes of 
1000, 2500, 5000, and 10,000 for each data-generating process 
(DGP), and the disturbance term is generated under a multivari-
ate Gaussian distribution. We conduct a Monte Carlo simulation 
experiment with 1000 repetitions.

The simulations are carried out for three different multivariate 
DGPs, corresponding to three levels of persistence. The inter-
cept vector � = [0.1, 0.1]′, the correlation parameter � = 0.5, and 

asymmetric parameter matrix Γ =

(
−0.02 0

0 −0.02

)
 for the 

EGARCH model and − � for the LGARCH model. The remain-
ing parameter values in the DGPs are detailed in Table 1. The 
multivariate EGARCH DGPs exhibit the following dynamic 
properties: DGP 1 has moderate volatility persistence, DGP 2 has 

TABLE 2    |    Simulation results: DGP1.

EGARCH simulation results

T = 1000 T = 2500 T = 5000 T = 10,000

True Mean Std. Mean Std. Mean Std. Mean Std.

a11 0.100 0.086 0.071 0.097 0.033 0.099 0.022 0.099 0.015

a12 0.010 0.005 0.076 0.009 0.035 0.009 0.023 0.010 0.016

a21 0.030 0.029 0.071 0.029 0.034 0.030 0.024 0.030 0.016

a22 0.200 0.183 0.071 0.195 0.034 0.199 0.023 0.200 0.017

�11 0.900 0.874 0.155 0.886 0.070 0.894 0.033 0.897 0.021

�12 0.040 0.053 0.091 0.046 0.043 0.043 0.023 0.041 0.015

�21 −0.020 −0.014 0.197 −0.023 0.076 −0.023 0.039 −0.022 0.024

�22 0.900 0.887 0.099 0.896 0.045 0.898 0.024 0.899 0.017

�1 −0.020 −0.020 0.062 −0.021 0.016 −0.020 0.010 −0.020 0.008

�2 −0.020 −0.020 0.049 −0.021 0.017 −0.021 0.012 −0.020 0.008

LGARCH simulation results

T = 1000 T = 2500 T = 5000 T = 10,000

True Mean Std. Mean Std. Mean Std. Mean Std.

a11 0.100 0.100 0.017 0.099 0.010 0.100 0.007 0.100 0.005

a12 0.010 0.009 0.014 0.010 0.009 0.009 0.006 0.010 0.004

a21 0.030 0.030 0.016 0.030 0.010 0.030 0.007 0.030 0.005

a22 0.200 0.199 0.019 0.200 0.012 0.200 0.008 0.200 0.006

�11 0.800 0.798 0.030 0.800 0.017 0.799 0.012 0.800 0.009

�12 0.040 0.043 0.023 0.041 0.015 0.041 0.010 0.040 0.007

�21 −0.020 −0.024 0.035 −0.022 0.022 −0.021 0.015 −0.021 0.010

�22 0.700 0.701 0.027 0.700 0.017 0.700 0.012 0.700 0.008

�1 0.020 0.020 0.018 0.020 0.010 0.020 0.007 0.020 0.005

�2 0.020 0.020 0.021 0.019 0.013 0.021 0.009 0.020 0.007
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very high persistence, and DGP 3 has low persistence. In DGPs 1 
and 2, one of the off-diagonal coefficients has a negative value 
(�21 = − 0.02). In DGP 3, this off-diagonal coefficient has a large 
negative value (�21 = − 0.2). For the multivariate LGARCH 
model, the parameter values in each DGP are the same as the 
corresponding EGARCH DGP, except for the diagonal elements 
in matrix B, which are selected to ensure that the persistence 
level of the LGARCH model is similar to that of the EGARCH 
model in each DGP. Notably, these parameter values satisfy the 
stationary condition and are consistent with Nakatani and 
Teräsvirta (2009)'s experiments.

After generating the return data, we estimate the model pa-
rameters using the QML method proposed in the previous sec-
tion. Tables  2–4 present the Monte Carlo simulation results. 
We observe that the QML estimates of the parameters in the 
LGARCH model are generally unbiased, even when the sample 
size is small (T = 1000). As the sample size increases, the biases 
tend to approach zero, and the standard deviation decreases. 

However, the QML estimates of the parameters in the EGARCH 
model exhibit some degree of bias when the sample size is small 
(T = 1000). In particular, the persistent parameters (�11 and �22) 
are underestimated, and the bias can be significant, as observed 
in GDP 2 and GDP 3. Additionally, the estimates of a11 and a22 
are downward biased. As the sample size increases (T ≽2500), 
most of the biases disappear. It is also worth noting that the stan-
dard deviation of the estimated EGARCH parameters is much 
larger than that of LGARCH.

We then construct histograms for two persistence parame-
ters (a11 and �11) and two volatility spillover parameters (a21 
and �21) derived from DGP 1 for various sample sizes3, as dis-
played in Figures  1–4. The p-values of the Jarque–Bera (JB) 
normality test are reported alongside each histogram. For 
smaller sample sizes (i.e., T = 1000), the LGARCH model es-
timates exhibit closer approximation to normality than their 
EGARCH counterparts. As demonstrated by the JB test, the 
estimated a11 and a21 from the LGARCH model are normally 

TABLE 3    |    Simulation results: DGP2.

EGARCH simulation results

T = 1000 T = 2500 T = 5000 T = 10,000

True Mean Std. Mean Std. Mean Std. Mean Std.

a11 0.030 0.142 0.182 0.074 0.023 0.049 0.011 0.037 0.007

a12 0.010 −0.042 0.153 −0.004 0.075 0.006 0.012 0.009 0.008

a21 0.030 0.040 0.156 0.038 0.080 0.033 0.015 0.031 0.010

a22 0.050 0.085 0.105 0.066 0.029 0.057 0.016 0.053 0.011

�11 0.980 0.883 0.315 0.962 0.110 0.975 0.033 0.979 0.009

�12 0.004 0.081 0.243 0.023 0.092 0.012 0.036 0.005 0.011

�21 −0.020 −0.033 0.211 −0.038 0.100 −0.029 0.063 −0.024 0.015

�22 0.950 0.914 0.174 0.929 0.111 0.940 0.069 0.946 0.018

�1 −0.020 0.021 0.027 0.020 0.010 0.020 0.006 0.020 0.004

�1 −0.020 0.021 0.030 0.020 0.013 0.020 0.008 0.020 0.005

LGARCH simulation results

T = 1000 T = 2500 T = 5000 T = 10,000

True Mean Std. Mean Std. Mean Std. Mean Std.

a11 0.030 0.052 0.008 0.040 0.004 0.035 0.003 0.032 0.002

a12 0.010 0.009 0.008 0.010 0.005 0.010 0.003 0.010 0.002

a21 0.030 0.031 0.010 0.029 0.005 0.030 0.004 0.030 0.003

a22 0.050 0.057 0.012 0.053 0.007 0.052 0.005 0.051 0.003

�11 0.950 0.925 0.014 0.939 0.006 0.944 0.005 0.947 0.003

�12 0.004 −0.002 0.021 0.000 0.010 0.002 0.006 0.004 0.004

�21 −0.020 −0.007 0.018 −0.014 0.010 −0.017 0.006 −0.019 0.004

�22 0.900 0.888 0.024 0.895 0.012 0.897 0.008 0.898 0.006

�1 0.020 0.020 0.006 0.020 0.003 0.020 0.002 0.020 0.001

�2 0.020 0.020 0.011 0.020 0.006 0.020 0.004 0.020 0.003
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distributed, while they are not in the case of the EGARCH 
model. As the sample size increases (T ≥ 2500), histograms 
reveal that both EGARCH and LGARCH parameter estimates 
approach normality, which is further supported by the results 
of the JB test. The sole exception is the estimated �11 from 
the EGARCH model. The histogram of �11 estimates derived 
from the EGARCH model deviates significantly from normal-
ity, particularly when the sample size is 1000; the histogram 
exhibits left-skewedness and resembles an exponential distri-
bution. In numerous instances, the estimated �11 reaches the 
upper bound (0.9999). The JB test rejects the normality of �11 
for all sample sizes.

In summary, the simulation results reveal that (1) LGARCH 
model estimates are consistent and approximate normality even 
for small samples, (2) the LGARCH model exhibits a smaller 
standard deviation than the EGARCH model, (3) EGARCH 
model estimates display bias in small samples but become 

unbiased for relatively large samples, and (4) EGARCH model 
estimates approach normality only for sample sizes of 2500 
or greater. Overall, the LGARCH model proves more tracta-
ble than the EGARCH model (as also corroborated by Francq, 
Wintenberger, and Zakoan  2013) in small samples. For suffi-
ciently large sample sizes, both LGARCH and EGARCH models' 
estimates are consistent and asymptotically normal.

We also generated disturbance terms from a multivariate t  dis-
tribution with varying degrees of freedom and conducted the 
Monte Carlo simulation again. The outcomes were generally in 
line with our previous findings, with the sole distinction being 
an increased standard deviation for all cases, as anticipated.

5   |   Empirical Analysis

In this section, we present two empirical examples.

TABLE 4    |    Simulation results: DGP3.

EGARCH simulation results

T = 1000 T = 2500 T = 5000 T = 10,000

True Mean Std. Mean Std. Mean Std. Mean Std.

a11 0.100 0.087 0.073 0.091 0.044 0.096 0.033 0.098 0.022

a12 0.010 0.014 0.079 0.012 0.042 0.010 0.030 0.010 0.020

a21 0.030 0.031 0.068 0.029 0.046 0.032 0.030 0.029 0.020

a22 0.200 0.179 0.072 0.194 0.039 0.198 0.027 0.199 0.018

�11 0.550 0.457 0.462 0.506 0.349 0.508 0.268 0.536 0.177

�12 0.040 0.046 0.220 0.044 0.112 0.047 0.079 0.039 0.050

�21 −0.200 −0.242 0.521 −0.261 0.389 −0.230 0.276 −0.217 0.158

�22 0.800 0.788 0.185 0.787 0.106 0.792 0.070 0.798 0.040

�2 −0.020 0.020 0.038 0.019 0.024 0.019 0.017 0.020 0.011

�2 −0.020 0.021 0.035 0.021 0.020 0.020 0.013 0.020 0.009

LGARCH simulation results

T = 1000 T = 2500 T = 5000 T = 10,000

True Mean Std. Mean Std. Mean Std. Mean Std.

a11 0.100 0.101 0.024 0.101 0.014 0.100 0.010 0.100 0.007

a12 0.010 0.010 0.017 0.010 0.011 0.010 0.008 0.010 0.005

a21 0.030 0.030 0.019 0.030 0.012 0.030 0.008 0.030 0.006

a22 0.200 0.200 0.019 0.200 0.012 0.200 0.008 0.200 0.006

�11 0.450 0.427 0.134 0.442 0.081 0.449 0.055 0.448 0.040

�12 0.040 0.042 0.045 0.041 0.028 0.040 0.019 0.040 0.013

�21 −0.200 −0.217 0.137 −0.203 0.081 −0.203 0.056 −0.199 0.040

�22 0.600 0.594 0.044 0.598 0.026 0.599 0.018 0.600 0.013

�1 0.020 0.021 0.029 0.020 0.017 0.020 0.012 0.020 0.008

�2 0.020 0.020 0.019 0.020 0.011 0.020 0.008 0.020 0.006
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FIGURE 1    |    The histogram of DGP1, T = 1000 This figure contains histogram plots of the estimated parameters from simulation. The first row of 
panels contain plots of estimates of �s and �s from EGARCH model simulation; the second row of panels contain plots of estimates of �s and �s from 
LGARCH model simulation. JB normality test denotes Jarque–Bera normality test.

FIGURE 2    |    The histogram of DGP1, T = 2500 This figure contains histogram plots of the estimated parameters from simulation. The first row of 
panels contain plots of estimates of �s and �s from EGARCH model simulation; the second row of panels contain plots of estimates of �s and �s from 
LGARCH model simulation. JB normality test denotes Jarque–Bera normality test.
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FIGURE 3    |    The histogram of DGP1, T = 5000 This figure contains histogram plots of the estimated parameters from simulation. The first row of 
panels contain plots of estimates of �s and �s from EGARCH model simulation; the second row of panels contain plots of estimates of �s and �s from 
LGARCH model simulation. JB normality test denotes Jarque–Bera normality test.

FIGURE 4    |    The histogram of DGP1, T = 10,000 This figure contains histogram plots of the estimated parameters from simulation. The first row 
of panels contain plots of estimates of �s and �s from EGARCH model simulation; the second row of panels contain plots of estimates of �s and �s 
from LGARCH model simulation. JB normality test denotes Jarque–Bera normality test.
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5.1   |   Example 1: Conditional Covariance Matrix 
of Returns of Three Stocks From DJ30

In our first example, we estimate a three-dimensional EGARCH 
model with a DCC for the conditional correlation. We analyze 
daily stock returns of three stocks from the DJ30 index (AXP, 
GE, IBM) within the timeframe of 02/01/2001 to 16/04/2018, 
comprising 4092 trading days. For comparison purposes, we 
also estimate four additional multivariate volatility models. 
Models 1 and 2 are extended multivariate GARCH models. We 
adopt the GJR-GARCH type for asymmetry, resulting in multi-
variate GJR-GARCH models. Model 1 is a GJR-GARCH model 
with all parameters restricted to be nonnegative, following the 
constraints imposed by Bollerslev. This model is denoted as 
GJR-GARCH1. Model 2 is a multivariate GJR-GARCH model 
with constraints imposed by Karanasos et  al.  (Forthcoming), 
allowing at most two parameters in matrix B to be negative. We 
denote this model as GJR-GARCH2. Model 3 is the multivariate 
asymmetric power GARCH (APGARCH) model, with the same 
constraints as Model 2. Model 4 is the multivariate LGARCH 
model, and Model 5 is the multivariate EGARCH model. For 

Models 4 and 5, no restrictions are imposed on the parameter 
set. After estimating the variance process for the multivariate 
GARCH models, we estimate the correlation process using the 
DCC model. Subsequently, we use these models to forecast vol-
atility, correlation, and covariance, comparing their forecasting 
performance.

In estimation, we follow Francq, Wintenberger, and 
Zakoan  (2013) and impose a lower bound (1e-5) for the rt so 
that ln(rt) can be calculated in the multivariate LGARCH 
model. The estimation results are reported in Tables 5 and  6. 
Based on the log-likelihood comparison, the EGARCH model 
exhibits the best fit with the volatility data, as it possesses 
the smallest Bayesian information criterion (BIC). From the 
LGARCH and EGARCH model estimates, we identify neg-
ative elements in matrix B, suggesting negative interactions 
between the volatilities of the three assets. The second-stage 
estimate are remarkably close between the four models. Once 
again, the EGARCH model demonstrates a superior fit to the 
correlation data compared to the other models, having the 
smallest BIC values in the dynamic conditional correlation 

TABLE 5    |    Multivariate asymmetric GARCH models estimation results.

GJR-GARCH1 GJR-GARCH2 APGARCH

A 0.003 0.008 0.010 0.005 0.000 0.036 0.008 0.000 0.034

(0.26) (1.07) (0.98) (0.89) ( .) (3.02) (1.78) ( .) (5.14)

0.000 0.050 0.036 0.000 0.046 0.040 0.000 0.137 0.024

( .) ( 1.22) (2.20) ( .) (2.20) (3.01) ( .) (12.48) (3.09)

0.000 0.000 0.049 0.003 0.000 0.079 0.028 0.000 0.075

( .) ( .) (-2.56) (0.58) ( .) (3.58) (1.06) ( .) (10.02)

B 0.921 0.000 0.000 0.865 0.146 -0.100 0.885 0.155 -0.104

(36.37) ( .) ( .) (25.12) (2.36) (2.60) (51.50) (3.86) (4.51)

0.057 0.769 0.000 0.238 0.469 0.043 0.247 0.434 0.092

(1.36) (8.16) ( .) (3.47) (4.11) (0.69) (4.85) (6.31) (1.62)

0.000 0.114 0.628 -0.103 0.216 0.718 -0.147 0.276 0.762

( .) (1.62) (4.83) (2.46) (3.15) (15.92) (4.49) (4.57) (29.49)

� 0.119 0.134 0.154 0.081 0.182 0.062 0.074 0.081 0.051

(4.23) (3.71) (2.77) (4.87) (6.75) (1.76) (12.45) (5.84) (6.20)

� 0.95 0.964 1.312

(13.34) (13.02) (17.10)

BIC 44650 44622 44570

Conditional correlation Conditional correlation Conditional correlation

�c �c �c �c �c �c

0.060 0.762 0.0553 0.7683 0.0511 0.7830

(4.18) (11.57) (4.38) (12.12) (4.28) (9.88)

BIC 32031 32006 31965

Note: Bollerslev–Wooldridge robust t -statistics in parentheses. Variables significant at the 5% confidence level formatted in bold. � denotes the power transform 
parameter in the AP-GARCH model. BIC notes the Bayesian information criterion.
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TABLE 6    |    Multivariate LGARCH and EGARCH model estimation results.

LGARCH EGARCH

A 0.028 0.011 0.046 0.096 0.048 0.089

(9.07) (3.52) (14.75) (10.88) (6.75) (8.69)

0.003 0.020 0.012 0.015 0.068 0.101

(1.09) (8.13) (4.84) (1.13) (9.70) (13.61)

0.031 0.012 0.043 0.024 0.113 0.139

(1.62) (4.17) (15.18) (1.63) (12.89) (18.01)

B 0.939 0.063 -0.133 0.984 0.035 -0.052

(89.88) (2.01) (3.88) (228.66) (8.36) (7.95)

0.021 0.959 -0.047 0.009 1.012 -0.053

(1.27) (121.31) (2.14) (1.38) (503.58) (11.06)

-0.061 0.065 0.872 0.006 0.026 0.922

(1.84) (2.12) (79.19) (0.58) (9.20) (181.99)

� 0.009 0.024 0.003 -0.089 -0.038 -0.020

(1.98) (6.53) (1.53) (8.98) (4.49) (8.69)

BIC 44724 44565

Conditional correlation Conditional correlation

�c �c �c �c

0.0511 0.783 0.0631 0.7594

(4.28) (9.87) (5.08) (12.29)

BIC 31945 31941

Note: Bollerslev–Wooldridge robust t -statistics in parentheses. Variables significant at the 5% confidence level formatted in bold. BIC notes the Bayesian information 
criterion.

TABLE 7    |    In sample forecast comparison.

Conditional covariance Conditional variance

RMSE MCS QLIK MCS RMSE MCS QLIK MCS

GRJ-GARCH1 5.196 0.048 3.392 0.000 4.805 0.025 0.380 0.002

GRJ-GARCH2 5.129 0.063 3.398 0.000 4.679 0.028 0.382 0.002

APGARCH 5.078 0.063 3.392 0.000 4.739 0.049 0.377 0.000

LGARCH 5.095 0.063 3.404 0.000 4.740 0.049 0.384 0.002

EGARCH 4.828 1.000 3.368 1.000 4.214 1.000 0.372 1.000

Note: Values of loss functions in bold identify the models in the 90% level MCS. The loss values for variance are the average of foretasted variance cross the three assess.

TABLE 8    |    Out-of-sample forecast comparison.

Conditional covariance Conditional variance

RMSE MCS QLIK MCS RMSE MCS QLIK MCS

GRJ-GARCH1 2.984 0.005 2.019 0.002 2.013 0.017 0.522 0.000

GRJ-GARCH2 2.905 0.005 2.042 0.002 1.855 0.017 0.531 0.000

APGARCH 2.435 0.450 1.878 0.906 1.542 0.061 0.474 0.106

LGARCH 2.328 1.000 1.864 1.000 1.281 1.000 0.475 0.106

EGARCH 2.513 0.446 1.878 0.906 1.493 0.061 0.475 1.000

Note: Values of loss functions in bold identify the models in the 90% level MCS. The loss values for variance are the average of foretasted variance cross the three assess.
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estimation. It is worth noting that the LGARCH and EGARCH 
models have the same number of parameters; thus, any model 
selection criterion (e.g., BIC) comparison is equivalent to the 
log-likelihood comparison.

A comprehensive comparison among nonnested models can 
be conducted by evaluating the one-step ahead in-sample and 
out-of-sample forecasting performance of the models, using 
the model confidence set (MCS) of Hansen et  al.  (2011) with 

the aim of detecting a set of models exhibiting the best fore-
casting performance. For this purpose, we adopt two statistical 
loss functions: The first loss function is the root-mean-square 
error (RMSE) based on the Frobenius norm (see Chiriac and 
Voev  2011; Golosnoy, Gribisch, and Liesenfeld  2012; Bauwens 
and Xu 2023) of the forecast error, while the second is a quasi-
likelihood (QLIK) loss function (see Noureldin et  al., 2012). 
Since conditional covariance is unobservable, our analysis re-
lies on the realized covariance matrix as a proxy. This approach 
provides a consistent ranking of volatility models in the sense of 
Patton (2011) and Laurent, Rombouts, and Violante (2013). The 
realized covariance is calculated using 5-min intraday returns, 
such that 

where rj,t is the corresponding j-th intradaily return vector at 
time j on day t , where j = 1,2, … ,m. Assuming, for instance, 
six and a half hours of trading per day and 5-min returns, 
m = 78 4. It is important to note that with the log-linear speci-
fication, one would need to account for distributional aspects 
of log volatility to produce an unbiased forecast of volatility. 
However, this should not pose a significant challenge since 
the log-linear Gaussian specification appears to work well 
with the data. To compute out-of-sample forecasts, each model 
is re-estimated every fifth observation based on rolling sample 
windows of 3000 observations, resulting in a total of 1092 out-
of-sample forecasts.

(10)RCt =

m∑

j=1

rj,t r
�
j,t .

TABLE 9    |    Data descriptive statistics.

Bond Stock Crude oil Gold

Min −2.87 −12.77 −44.16 −10.16

Max 4.05 10.96 21.51 6.87

Mean 0.72 1.99 2.09 3.18

Std 0.46 1.22 2.28 1.06

Skewness −0.07 −0.4 −1.2 −0.4

Kurtosis 6.12 14.57 33.93 9.11

LB2(15) 1132 6998 835.9 837.7

No. zero 261 204 171 293

Note: This table provides descriptive statistics for the four assets. Std denotes 
standard deviations. LB2(15) denotes the Ljung–Box test statistic based on 15 
lags for the squared returns. The 95% critical value associated with the LB test 
statistic equals 25.00. No. zero denotes the number of zero observations in the 
sample. Total observation in the sample is 5689.

FIGURE 5    |    Daily return series of the four assets.
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The loss values and MCS test results are reported in Tables  7 
and  8. For the in-sample forecasting of conditional covariance, 
only the EGARCH model is included in the MCS. The LGARCH 
and APGARCH models rank second, while GJR-GARCH2 per-
forms better than GJR-GARCH1. Similar results are observed 
when forecasting conditional variance. The in-sample forecast 
comparisons indicate that the EGARCH model outperforms the 
other models, a finding consistent with the in-sample likelihood 
statistics.

For out-of-sample forecasting of conditional covariance, the 
EGARCH, LGARCH, and APGARCH models are included in 
the MCS when using the RMSE or QLIK loss functions. The two 
GJR-GARCH models are not included in the MCS. Similar re-
sults are observed when forecasting conditional variance. The 
out-of-sample forecast comparisons indicate that the EGARCH 
model still performs best, but LGARCH and APGARCH per-
form equally well.

In summary, the forecasting comparison reveals that the expo-
nential specification of multivariate volatility models performs 
better than the linear specification when forecasting conditional 
variance and conditional covariance. The multivariate EGARCH 
model, proposed in this study, is among the best-performing 
models for both in-sample and out-of-sample forecasting.

5.2   |   Example 2: Volatility Spillover Effects 
Between Stock, Bond, Crude Oil, and Gold Market

In this empirical analysis, we apply a CCC-EGARCH model to 
study the volatility spillover effects among four financial mar-
kets: Bond, Stock, Crude Oil, and Gold. These markets/assets 
form a straightforward portfolio for risk hedging. Considering 
that negative volatility spillover might be present in both ARCH 
and GARCH terms (Baur and Lucey 2010; Arouri, Lahiani, and 
Nguyen 2011), we use a multivariate EGARCH model to account 
for potential negative news and volatility spillover effects. The 
multivariate LGARCH model is not employed due to the pres-
ence of numerous zero return observations in the sample (see 
Table 9).

The data, priced in USD, are obtained from DataStream. We use 
the S&P 500 composite index to represent the US stock market 
and the US 10-year Treasury bond yield for bonds. Crude oil 
and gold prices correspond to the spot prices of Brent Crude Oil 
and the London bullion market, respectively. The sample period 
ranges from January 3, 2001 to October 20, 2021, comprising 
5689 trading days.

Table  9 reports the statistics of the four return series, while 
Figure 5 displays their time series plots. Bonds exhibit the low-
est average return at 0.72%, while Gold presents the highest at 
3.18%. Crude oil demonstrates the most substantial negative 
and positive returns (−44.16% during the Covid-19 crisis) and 
greater volatility compared to the other markets. The skewness 
and kurtosis statistics reveal that all return series are negatively 
skewed and highly leptokurtic. The Ljung–Box (LB) statistics 
for squared return series up to 15 lags indicate significant serial 
autocorrelations. There are 261, 204, 171, and 293 zero return 
series observations in the sample for bond, stock, crude oil, and 

gold markets, respectively, suggesting that the LGARCH model 
is not suitable for studying volatility spillover effects.

The estimation results, reported in Table  10, show several in-
dividually significant effects, including the link from Bond to 
Stock markets and vice versa. Bidirectional spillovers appear in 
both ARCH and GARCH terms. We also detect some negative 
and significant effects. For instance, the Bond market has a neg-
ative and significant (a12 = − 0.027) news spillover effect on the 
Stock market. The Gold market exerts a negative and significant 
(�34 = − 0.007) volatility spillover effect on the Crude Oil mar-
ket, while the Crude Oil market has a negative and significant 
(�43 = − 0.011) volatility spillover effect on the Gold market. 
Additionally, Bond and Gold display significant news spillover 
effects on all three markets. The negative spillovers from bonds 
and gold to other markets align with the stabilizing role of bonds 
and gold in financial markets. For example, increased volatility 
in bonds could potentially be associated with reduced volatility 
in the stock market. This aligns with the safe-haven feature of 
bonds (Bredin, Conlon, and Potí 2015). Investors seeking safety 
in bonds may interpret stock market crashes as buying signals in 
the bond market. Asymmetric effects are observed in the Stock, 
Crude Oil, and Gold markets but not in the Bond market. The 

TABLE 10    |    Multivariate EGARCH estimates.

Bond Stock Crude Oil Gold

A 0.056 0.029 −0.008 0.022

(5.71) (3.56) (0.94) (2.71)

−0.027 0.134 0.018 0.036

(2.09) (10.48) (1.18) (2.79)

0.035 −0.001 0.105 0.023

(3.52) (0.13) (10.32) (2.32)

0.037 −0.001 0.019 0.098

(3.69) (0.10) (1.68) (10.37)

B 0.987 0.005 −0.001 0.000

(279.37) (2.13) (0.27) (0.18)

0.043 0.948 0.004 −0.004

(3.74) (144.79) (0.75) (0.63)

−0.004 0.010 0.986 −0.007

(0.77) (2.85) (373.78) (2.35)

−0.006 0.011 −0.011 0.988

(1.25) (3.16) (4.10) (337.84)

Γ 0.008 −0.173 −0.047 0.019

(1.86) (15.71) (8.18) (3.80)

Eigen(B) 0.9427 0.9781 0.992 0.9958

LB2(15) 29.21 16.85 15.59 43.04

Note: Robust standard t -statistics reported in bracket. Parameters significance 
at the 5% level is indicated by boldcase. Eigen(B) denotes the eigenvalue values 
of B matrix. LB2(15) denotes the Ljung–Box test statistic based on 15 lags for the 
squared standardized returns.The 95% critical value associated with the LB(15) 
test statistic equals 25.00.
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last row reports the largest eigenvalues of the companion matrix 
(B), equal to 0.9958, suggesting that the estimated models are 
stationary.

A total of seven estimated elements in matrices A and B are 
negative, and three of these are significant. This finding implies 
that employing a multivariate GARCH model with nonnegativ-
ity constraints may lead to the omission of crucial information 
related to negative spillover effects. The multivariate LGARCH 
model requires positivity for all observations, which is not ful-
filled in this example. Consequently, the multivariate EGARCH 
model emerges as a superior alternative, as it accommodates both 
negative spillover effects and the occurrence of zero returns.

6   |   Conclusion

In conclusion, this paper presents an extended multivariate 
EGARCH model, which offers considerable advantages in em-
pirical finance research. This model accommodates negative 
news and volatility spillover effects while handling zero-valued 
observations, giving it a clear edge over multivariate GARCH 
and Log-GARCH models. Despite the model's promising fea-
tures, one must acknowledge its limitations, particularly re-
garding the asymptotic properties of the QML estimator and the 
model's invertibility. Our Monte Carlo simulations reveal that 
the standard quasi-maximum likelihood estimator performs 
well when sample sizes are large (i.e., T ≥ 2500). However, it can 
exhibit significant bias in smaller samples (i.e. ,T ≤ 1000).

Our empirical examples showcase the multivariate EGARCH 
model's potential in practical applications, highlighting its supe-
rior performance compared to other models. Nevertheless, further 
research is necessary to address its limitations in small-sample 
contexts. One potential avenue for future work involves developing 
a mixture GARCH model that combines LGARCH and GARCH 
specifications, utilizing GARCH when zero observations are pres-
ent and LGARCH in other cases. This mixture model is still a work 
in progress (Karanasos, Xu, and Yfanti 2024). It is also notable that 
the multivariate GARCH, EGARCH, and LGARCH models would 
be special cases of this mixture model.

Overall, the extended multivariate EGARCH model presented 
in this paper contributes to the empirical finance literature by 
providing a more comprehensive and flexible framework for an-
alysing multivariate volatility and spillover effects.
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Endnotes
1MEM denotes Multiplicative Error Model, which was originally pro-

posed by Engle and Gallo  (2006) and extended to the multivariate 

MEM by Cipollini et al. (2013) and multivariate Log-MEM by Taylor 
and Xu (2017).

2See Wintenberger (2013) and Martinet and McAleer (2018) for further 
discussion in the univariate context.

3Histograms of parameters from other DGPs, which are similar in na-
ture, can be provided upon request.

4We use the same data as Bauwens and Xu (2023) and the data descrip-
tion can be found in Appendix 1 of Bauwens and Xu (2023).
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