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Abstract: Despite the increasing sophistication of autonomous vehicles (AVs) and promises of
increased safety, accidents will occur. These will corrode public trust and negatively impact user
acceptance, adoption and continued use. It is imperative to explore methods that can potentially
reduce this impact. The aim of the current paper is to investigate the efficacy of informational
assistants (IAs) varying by anthropomorphism (humanoid robot vs. no robot) and dialogue style
(conversational vs. informational) on trust in and blame on a highly autonomous vehicle in the event
of an accident. The accident scenario involved a pedestrian violating the Highway Code by stepping
out in front of a parked bus and the AV not being able to stop in time during an overtake manoeuvre.
The humanoid (Nao) robot IA did not improve trust (across three measures) or reduce blame on
the AV in Experiment 1, although communicated intentions and actions were perceived by some as
being assertive and risky. Reducing assertiveness in Experiment 2 resulted in higher trust (on one
measure) in the robot condition, especially with the conversational dialogue style. However, there
were again no effects on blame. In Experiment 3, participants had multiple experiences of the AV
negotiating parked buses without negative outcomes. Trust significantly increased across each event,
although it plummeted following the accident with no differences due to anthropomorphism or
dialogue style. The perceived capabilities of the AV and IA before the critical accident event may
have had a counterintuitive effect. Overall, evidence was found for a few benefits and many pitfalls
of anthropomorphising an AV with a humanoid robot IA in the event of an accident situation.

Keywords: autonomous vehicle; informational assistant; robot; dialogue style; anthropomorphism;
trust; blame; accident outcome

1. Introduction

Highly autonomous vehicles (AVs) could offer major benefits to road safety, including
significant reductions in injuries and fatalities. There were an estimated 1.19 million driving-
related fatalities in 2021 [1], falling only by 5% since 2010 compared to the 50% reduction
target set for the Decade of Action for Road Safety (2011–2020). In the US alone, there
were 38,824 lives lost in road traffic crashes during 2020, reflecting an increase of 6.8%
compared to 2019 [2], and in the UK, there were 1645 fatalities (29,643 including those
seriously injured) during 2023 [3]. Human drivers-as well as pedestrians and other road
users are often cited as key causes in as high as 90% of cases [4]. While some technological
advances to road vehicles seem to be having a positive effect, marked benefits are not yet
being realised.
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Unlike human drivers, highly autonomous vehicles that can drive themselves most
(SAE, Level 4 [5]) or all (SAE, Level 5 [5]) of the time will be able to constantly monitor
the environment through multiple sensors, know the exact location, speed and accelera-
tive velocity of other vehicles (e.g., through direct vehicle-to-vehicle/V2V or vehicle to
infrastructure/V2I communication) and adjust their driving dynamics through advanced
data-driven, reinforced learning (RL) control systems [6,7], always obey the rules of the
road, and not suffer from lapses of judgement, effects of fatigue, and so on. Those in the
‘driving seat’ will essentially become passengers and may no longer be expected to pay full
attention to the vehicle operations, the road ahead or around them, and should be able to
perform other non-driving related tasks (NDRTs). These capabilities and benefits of highly
autonomous vehicles are positive and should seem very appealing to potential users. Yet,
some might be potential barriers to adoption and continued use.

The likely benefits of highly autonomous vehicles will only be realised if they are
trusted (with links to safety and reliability, among other factors), accepted by users and then
adopted at scale [8]. Based on National Safety Council [9] guidance and recommendations
by the USDOT [10], it estimated that AVs could result in reductions to crash and injury
rates caused by human drivers by up to 50% following 10% market penetration and, up
to 90% following 90% penetration. They also predicted that accidents typically caused by
pedestrians and cyclists would be halved. Ref. [11] revisited 453 non-AV crashes using the
Baidu Apollo AV counterfactual simulation and determined that 60.91% could have been
avoided and some injuries mitigated in the remaining 233 scenarios. While these findings
indicate potential significant increases in road safety, they suggest that accidents will not
be eliminated.

Despite promising findings (see also [12]), ref. [11] noted at least seven scenarios
where an AV would have likely not been able to avoid a crash, including when an agent
suddenly emerges from a blind spot. They stressed that under such circumstances, ‘even
if the perception system [of the AV] detects the object [e.g.,] vehicle in time, there is no
sufficient time and space for AVs to develop an informed driving decision’ (p. 10). Drivers
and other road users, including pedestrians, are also prone to errors of judgement that
even sophisticated, highly autonomous vehicle systems will not always be able to detect
and/or avoid. Ultimately, accidents involving highly autonomous vehicles–including those
that are beyond the capabilities of the technology to predict and react to in time will still
occur, albeit to a much lesser extent than vehicles with no or lower levels of autonomy.
These are likely to continue to negatively impact trust, potential adoption and perhaps
even continued usage following adoption. Therefore, it is crucial to investigate the efficacy
of methods that might alleviate reductions in trust following an accident involving a highly
autonomous vehicle.

Many potential AV users have concerns about the technology. These are negatively
impacting attitudes, trust and intentions to adopt and use them. Relinquishing driving
control is a key issue, particularly amongst females, although prior knowledge of the
technology is a predictor of willingness to use an AV [13]. Worries about handing over
driving control are perhaps understandable given that despite the increasing sophistication
of AV technology, mass market penetration has not yet occurred, with most people not
having experienced a journey in one. Media coverage alone of as few as one or two incidents
involving an AV can erode trust in this potentially revolutionary technology [14–17]. For
example, sentiment analysis of over 1.7 million tweets 15 days before and after two fatal
crashes involving AVs revealed a 32 per cent point increase in negative comments [18].
However, ref. [18] suggested that opportunities to interact with the technology and for
the technology to interact with users will help to increase positivity, even under such
negative circumstances. Ref. [19] noted that confidence in AVs will develop through a
better understanding of the expectations of the systems, which will, in turn, impact trust
and public intention to accept and potentially adopt them. Ref. [20] also found that system
transparency, technical competence and situation management all affect trust in an AV.
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Maybe then, keeping users ‘in the loop’ about AV intentions and actions at least some of
the time needs to be seriously considered.

Situation awareness [21,22]–including the perception and understanding of what
the AV is doing (actions) and planning on doing (intentions)–will likely be significantly
impoverished in vehicles with higher levels of automation, especially Levels 4 and 5.
This could–on occasion–result in unintended consequences. For example, adaptive cruise
control (ACC) systems, which will be an integral component of Level 4 and 5 autonomous
vehicles, have become increasingly sophisticated with intelligent control systems that
ensure safety and comfort, such as fussy control [23,24] which can imitate the behaviours
of skilled human drivers. Should we as users be made aware of these systems’ actions and
intentions, as well as the underlying reasoning when taking a journey in an AV, or else,
as [25] suggested–we will have to beware of the unexpected with potential consequences
to trust. Lowered levels of SA might be desirable for users of highly autonomous vehicles
when agents (e.g., the AV, other vehicles, pedestrians) are performing optimally and safely,
but could have counterintuitive effects when one or more agents are not: for example, in a
situation that culminates in an accident. Even with significant advances in AV technological
capabilities, there are factors beyond control that could lead to an accident or other negative
experiences. For example, cyber security has become a major concern for connected and
autonomous vehicles. The latest developments in the field of data-driven, model-free
control, such as H-infinity control for ACC [26,27], show great promise and resilience in
the handling of uncertainties and external disturbances, such as in the event of a cyber-
attack. However, a cyber incident, even when successfully prevented from causing tangible
damage, will damage trust and have consequences for other factors, such as attribution
of blame, especially when the nature of the incident or the actions of the system are not
sufficiently communicated to the users [28,29].

When an accident that is not directly attributable to the AV itself occurs, a level of
blame will be assigned to it, and trust will be diminished [17,30], affecting the potential
acceptance, adoption and continued usage of the technology. Such ironies of automation
are not new: they were predicted more than 40 years ago [31], with the effects extended
by others [32] and recently some AV sceptics [33]. Trust is a key enabler to the adoption
and continued usage of many technologies, which have been stressed within Human
Factors and related fields for decades, and often in response to advances in automation [34],
including AVs [35]. Minor errors involving AVs may not erode trust significantly compared
to the same errors caused by human drivers–such as taking a long to park or to drive when
a traffic light turns from red to green [36], though this may not hold when an AV is involved
in a situation with more major consequences, such as a collision. Loss of trust could lead
to the disuse of Avs, which could have a major impact on the future of this potentially
transformative approach to road transport. It is, therefore, important to understand how
trust is affected after an accident involving a highly automated vehicle, as well as how
blame might be apportioned. With a strong prediction that the effects on both will be
negative, it is also important to explore the efficacy of interventions that might limit the
loss of trust and reduce blame on the technology in the event of such accident situations.

Some research has already shown that different patterns of trust and blame exist
between humans and AI agents. Ref. [30] demonstrated that AVs and human drivers are
blamed differently for the same incident. In five out of six cases (e.g., involving pedestrians
or animals stepping onto the road), AVs were blamed to a greater extent than human
drivers. In one scenario, this effect reversed: where the AV or human-driven vehicle was
overtaking a stopped bus, and a pedestrian stepped out from in front of it, violating the
UK Highway Code. In this case, the human driver was blamed more than the AV. It was
postulated that the ‘bus’ scenario differed from the others in that it had stronger potential
causal cues that an accident could happen (e.g., the parked bus obstructed the view of the
pavement, it had stopped at a bus stop such that passengers may have been disembarking)
and therefore human intuition about the scenario and possible risks (despite the Highway
Code rules) would have potentially resulted in a non-overtake decision. The other five
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scenarios involved immediate actions by a third party (e.g., a person suddenly stepping
out into the road of a falling tree) and required immediate reactions by the AV. Despite the
AV not being able to safely stop in time to avoid the incidents, the time to react should
be a strength of this technology over a human driver. Further investigations into causal
cues confirmed this is a contributing factor to the difference in assignment of blame and
trust [17].

Refs. [17,30] concluded that the differences in trust and blame are, in part, caused by
the expectation of the actions and capabilities of AV technology compared to a human
driver. One way to further explore this is by providing users with information about
the AVs’ intentions and actions during a journey. Such information could reinforce to
participants that the AV (i) did not directly cause the eventual accident and (ii) that it
could not have responded in time to avoid the outcome. Our focus within the current
paper is on accident scenarios involving an AV and its effects on trust and blame–taking
a similar experimental approach [17,30]. One overarching question following [30] is on
what happens to user trust in and blame on AVs in the event of an accident that is not
directly caused by the vehicle and is extended by exploring the effects of having received
information on the Avs’ actions and intentions during the journey, prior to the critical
accident outcome. Within the current paper, it is examined whether and to what extent
voice-based informational assistants (IAs) designed to keep users informed about the
actions and intentions of the AV during journeys can help to limit the degradation of trust
in and blame on an AV in the event of an accident. The findings will have important
implications for the design and regulation of autonomous vehicles with regards to the
ways of improving transparency and interpretability of complex control systems (such
as H-infinity control), both with their intentions and actions, to increase the resilience of
trust in negative situations. Two types of AV IA are compared though manipulations of
anthropomorphism and embodiment: physical embodiment with a humanoid robot and
non-physical embodiment with a voice-only system. Also manipulated is the nature of
the information (actions and intentions) communicated via each type of AV IA using a
personable first-person conversational dialogue style compared to a more informational
third-person style.

Some researchers have explored ways to increase passenger trust (as well as factors
such as SA) during journeys in AVs. Thus, we look to such key studies to build predictions
here. For example, augmented reality allows passengers to visualise internal information
processed by an AV (including dynamic and static scenario factors, such as other vehicles,
pedestrians and road signs) and has been found to improve trust, SA and user experience.
These positive effects were captured during animation-based simulated settings, but only
SA improved when using video footage [37], perhaps because the animations were more
engaging. Also, such approaches rely on attracting and capturing visual attention as well
as understanding the augmented feedback provided. Other approaches include the use
of verbal communication and manipulation of styles and feedback/explanations [38] and
are perhaps more desirable for some, given that highly autonomous vehicles should allow
users opportunities to not have to visually engage with the AV technology or driving
environment. Ref. [39], in a simulation study, manipulated three verbal explanation types
(none, simple, attributional) and perceived risk. They found that at low levels of perceived
risk, attributional explanations led to the highest trust ratings and no explanation for the
lowest effects. This effect was, however, reversed in the highest perceived risk condition
where, as well as experiencing adverse weather and high driving speeds, pedestrians
occasionally ran into the road. Explanation did not help under such high-risk AV driving
conditions. With such mixed findings, other methods also need to be examined.

Anthropomorphism using robot agents has been shown to increase trust, including
within the context of AVs. Ref. [40] demonstrated that anthropomorphising an AV IA (or
AVIA) can increase perceptions of competence. Participants experienced a simulation of a
Level 5 AV under three informational assistant conditions: voice-only agent, conversational
voice-only agent, and conversational with robot embodiment. The latter condition involved
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a Nao humanoid robot used commonly in human-robot interaction and especially in
social robotics studies [41]. Ref. [40] defined conversational style as involving phrases
that replicate more natural interaction than an informative style (i.e., the voice-only agent
condition). For example, in the informative style condition, participants heard ‘tunnel
ahead’, whereas in the conversational style condition, participants heard ‘we are entering
a tunnel’. After eight events, the conversational robotic agent was rated significantly
more competent than the other two conditions. It was also rated significantly higher in
terms of warmth (an attitude towards the robot). However, these findings were observed in
situations with no negative outcomes, where the AV and other road agents were performing
optimally. Thus, they cannot be generalised to situations involving unexpected and/or
unavoidable incidents resulting in an accident.

Ref. [42] designed and conducted a similar experiment. The voice, generated by
Amazon Polly, was considered to be female and from the USA. Participants were shown
a series of nine events within each condition. The presence of the Nao robot significantly
increased the perception of competence (another attitude towards the robot). The conversa-
tional dialogue style was considered less annoying than informational and resulted in a
lowered self-reported workload. A further study by [43] involved the same 2 × 2 design
(conversation style: informative vs. conversational; embodiment: NAO robot vs. no robot)
within the context of a Level 3 partially autonomous AV. There were four take-over requests
(where the participant would be expected to drive the vehicle) and four events where the
automation was able to handle all driving aspects. The authors reported a significant effect
of embodiment with the robot trusted more.

While the findings from the [40,42,43] studies are promising in terms of robot IAs
within AVs to support, e.g., perceptions of competence and warmth, all involved the
AV successfully performing manoeuvres. However, they did not examine the efficacy of
different types of IA or dialogue styles (e.g., conversational, informative) in situations
where the AV was involved in an incident or accident. The results were also mixed. For
example, in some cases, dialogue style was found to be the most important factor, and in
other cases, it was embodiment. Also, potential interaction effects were not considered and
perhaps not possible due to elements of the experimental designs.

Context is also important to the way anthropomorphism affects trust. Ref. [44] found
that robots can have a detrimental effect on perceptions of reliability and attention in an
industrial environment. The authors suggested that this was in part based on the context,
e.g., an industrial robot involved in a collaborative task rather than a social robot. Also,
while perceived trust in the robot did not appear to interact with anthropomorphism, trust
towards the robot did interact with the level of anthropomorphism. In the case of a more
anthropomorphic robot, participants took longer in hand-over events. As with industrial
contexts, AVs are safety-critical systems that, like non-autonomous vehicles, can cause harm
or even fatalities in the event of an accident. Therefore, it is crucial to better understand
the potential role that a robot (and other types of) IA(s) might play within AVs, as well as
boundary conditions associated with any potential benefits or downsides. This is especially
important given that robot IAs might be perceived as having capabilities beyond that of
providing a narrative on AV intentions and actions, such as being able to intervene in the
event of an unfolding accident situation [17,30].

Current Experiments

Three experiments were designed to investigate the effects of speech-based AV IAs on
trust and blame in a highly autonomous vehicle following an accident that occurs at the end
of a scenario. Similar to research by [40,42,43], the presence of an embodied robot agent (vs.
a speech-only system) and dialogue style as a means to vary levels of anthropomorphism
were examined. Agent embodiment was manipulated through physical presence with a
humanoid robot compared to non-physical presence without a humanoid robot. To expand
further upon previous research, a third no dialogue (control) condition was included to
allow comparisons to baseline. The accident scenario chosen was one in which the AV could
not have detected or stopped in time to prevent a pedestrian from walking into the road to
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the front of a parked bus (violating the Highway Code) while the AV was committed to an
overtake manoeuvre (as in [30]). This is not an uncommon accident scenario. For example,
ref. [45] revisited data on the contribution of vehicle manoeuvres to road accidents in the
UK from [46] and determined that 20,310 of 340,728 accidents (almost 7%) occurred during
an overtaking situation and was the fourth most likely cause of twelve. As in, e.g., [42,43],
dialogue style has three levels: conversational, informational, and no-speech (control). In
Experiment 1, the AVs actions and intentions communicated by the IAs are assertive, but
more cautious in Experiment 2. Within Experiment 3, participants experienced instances
of AV overtaking and not overtaking buses with no negative outcomes before the critical
accident event.

Hypotheses

Previous research has established that anthropomorphism through robot presence
and manipulations of dialogue style can increase perceptions of competence and trust in
AVs [36–38], and thus, the following predictions are made:

Trust
HTrust-1–Agent: Anthropomorphising an AV through embodiment with a humanoid
robot IA will result in higher trust following an accident than in conditions with a speech-
only system.
HTrust-2–Dialogue Style: An AV with an IA communicating intentions and actions using
first-person conversational style will be trusted more than when using informational third-
person dialogue, and both conditions will result in higher trust than no-speech (control)
conditions.
HTrust-3–Agent*Dialogue Style interaction: Trust will be higher in the robot-embodied
conversational condition than in the no-robot conversational condition. The difference will
be reduced with informational speech. There will be no difference between agents within
the no-speech dialogue style conditions, and overall, trust will be lowest in these conditions.

Blame

Based on blame being closely related to trust, the following hypotheses are made:

HBlame-1–Agent: As in HTrust-1, though with blame lower in the robot agent conditions.
HBlame-2–Dialogue Style: As in HTrust-2, blame is lowest in the conversational dialogue
style conditions and highest in the no-speech conditions.
HBlame-3–Agent*Dialogue Style interaction: As in HTrust-3, though with blame lower
rather than higher in the robot agent embodied conditions, markedly so between the
conversational dialogue style conditions and also between the informational dialogue style
conditions with the highest blame in the no-speech conditions that will not differ between
agent types.

2. Experiment 1
2.1. Experiment 1 Materials and Methods
2.1.1. Participants

A G*Power [47] calculation was conducted. With a power of 0.95 and medium effect
size predictions (f = 0.25), a minimum of 251 participants were required. Participants
were recruited via the online data collection platform Prolific and randomly assigned to
one of six conditions until each was filled. They were renumerated £3.75 for taking part.
Three hundred and forty-two participants were recruited, and after withdrawals, sound
test failures and failing both attention checks (see Materials), there were 296 valid datasets.
Ages ranged from 18–73 years (M = 40.33, SD = 13.72). One hundred and fifty-seven
were female, one hundred and thirty-five male, three other, and one preferred not to say.
Participants spoke English as a first language or were highly proficient as a second language.
Participants reported having normal/normal corrected vision and hearing.

Out of the 296 participants, two-hundred and thirty-two held a full driving license,
thirty-three had a provisional license, six did not have a license but had had one previously,
five were in the process of applying for a provisional license, 18 did not have a license
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and were not in the process of getting one, and two preferred not to say. Of the 232 full
driving license holders, the mean number of years qualified was 21.22 (SD = 13.71), ranging
from 1- to 55- years. Qualified drivers reported on average 6986.17 miles driven per year
before the COVID-19 pandemic (SD = 5659.73, Max = 40,000, Min = 0) with mileage within
12 months of taking part averaging 3840.26 miles (SD = 3407.77, Max = 25,000, Min = 0).

2.1.2. Design and Materials

A 2 (Agent embodiment: physical presence with a humanoid robot, non-physical
presence without a humanoid robot) × 3 (Dialogue Style: no speech, informational speech,
conversational speech) between participants design was employed. Conversational speech
was used in two of the conditions (one with the robot agent), and informational speech
was used in another two conditions (one with the robot agent). There were two no-speech
conditions: one with an agent and one without (control). The two chosen IA designs were
selected based on previous research by [40,42,43] and to represent different ends of the
anthropomorphic spectrum: with high anthropomorphism in the physical presence of a
humanoid robot (see below) condition and low anthropomorphism in the non-physical
presence/no humanoid robot/speech-only condition.

The driving scenario was generated using the Simulation Software Generated Anima-
tion (SSGA) method [17,30]. The SSGA was created using cutting-edge driving simulation
software SCANeR Studio (2021.2) and within a bespoke driving simulator designed, devel-
oped, and built by AV Simulation (Figure 1).
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Figure 1. Screenshot of one of the videos created using the SSGA method for Experiment 1. In this–a
physical embodiment agent condition-the Nao robot was always positioned to the bottom left of the
video image. The view of the robot is from the right-hand seat perspective, with the robot positioned
on the dashboard on the passenger side. Within this example (a speech condition), the robot turns to
face the passenger as it speaks and turns back and faces the road ahead at all other times.

The SSGA used within all conditions was identical apart from the manipulations of
agent embodiment and dialogue style. The SSGA depicted a ~1-min 40-s scenario with
a view from where the driving seat would be in a left-side car, looking ahead. The AV is
driving along a single carriage road with a low-moderate level of traffic moving in the
opposite direction in the other lane. The journey starts in the countryside before entering
an urban town setting with buildings, other structures and pedestrians walking along
pavements. Early in the scenario (after ~10 s), the AV approaches a moving bus and drives
behind it at the speed limit (30 mph/48.28-kph) and at a safe distance for 1 min 14 s before
the bus indicator lights are switched on and the bus gradually comes to a stop at a clearly
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marked and identifiable bus stop. The AV slows down in response and stops at a safe
distance behind the bus. After 5-s, the overtake attempt cautiously starts when there is
clearly no traffic in the opposite lane or pedestrians visibly on pavements on either side of
the road. As the AV is fully committed to the overtake action (side-by-side with the bus),
the critical event occurs: a pedestrian suddenly walks out in front of the bus, performing
an unsafe action that violates the UK Highway Code. This is only visible when the AV is
already parallel to the front of the bus. The AV cannot stop in time. The video stops on a
freeze frame before the accident, and the text appears to inform the participant that the AV
could not stop in time: it hit the pedestrian, who sustained minor injuries.

Videos of the NAO robot were recorded using an HD video camera and edited and
overlayed onto the SSGA footage using iMovie software (9.0.1). The NAO was programmed
using Choregraphe (2.5.5). In the physical embodiment agent conditions, the NAO was
full-screen at the beginning of the SSGA (during the introduction) and then appeared in
a smaller box in the bottom left corner of the screen for the remainder of the scenario
(Figure 1). When delivering dialogue, the NAO’s head would turn to face the participant,
accompanied by servo movement audio–to enhance the sense of robot presence in the AV.

In all dialogue conditions, the IA (with the same voice used across all conditions)
introduces itself (before the main video starts) as an Autonomous Vehicle Informational
Assistant (‘AVIA’). In the physical embodiment agent conditions, an NAO v6 (Softbank
Robotics) is first shown standing and moving its limbs using an animated dialogue style for
the introduction. Note that the introduction is the same in the non-physical embodiment
agent conditions with dialogue, albeit with speech only. In the physical embodiment agent
conditions, and after the introduction, the robot appears to be on the vehicle dashboard on
the left-hand side, facing the windscreen and road ahead. The introductory speech in the
non-physical embodiment agent conditions is the same as in physical embodiment agent
conditions. The following caption was presented before each scenario started, including
within the non-speech conditions: “you are about to be shown a driving scenario already
in progress”.

The dialogue conditions (see Table 1) involved regular (every 10–20 s) updates about
the AV actions (e.g., ‘driving along a country lane’) and intentions (e.g., ‘[I am] looking for
opportunities to overtake’). The dialogue conditions mainly differed by use of language to
suggest that the agent was conversing with the participant (passenger) in the first-person.
Language such as ‘we are’, ‘I am’, ‘me’ was used in the conversational speech conditions
versus e.g., ‘the vehicle is’ and ‘this vehicle is’ in the informational speech conditions.
Google Text-to-Speech (gtts) was employed to create the voice so that it did not sound
‘robot-like’ (the default Nao voice), given that 50% of the conditions did not involve a
robot agent.

The dependent variables were measured immediately after the SSGA had ended and
involved Visual Analogue Scales (VAS) ranging from 0–100. There were three trust measures:

Single Question: Similar to [17], this question was adapted to our specific scenario:
“Based on the video footage you just watched, how much would you trust the autonomous
system that controls the vehicle you were a passenger in to operate safely on the road in
the future?”

Trust in Automated Systems Survey (TiAS): The scale was initially called the Checklist
for Trust Between People and Automation [48] and then the System Trust Scale [49]. It
has recently been referred to as the Trust in Automated Systems Survey [50]. It is not to
be confused with the Trust in Automation (TiA) scale developed by [51], which measures
general trust in automation. TiAS was used by [43], and thus, we chose to use it within the
current experiments. The TiAS is composed of 12 questions referring to trust in automation
in general. The first five questions are framed such that higher scores represent distrust,
and the remaining seven are framed with higher scores representing positive trust. TiAS
response scales were changed from Likert style to Visual Analogue Scales (VAS). While
Likert-format and VAS are similar in terms of the capability of producing valid results
and are often highly correlated with each other, VAS is regarded by some as superior in
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terms of, e.g., test-retest reliability (reproducibility), can produce data with less variance
(e.g., through minimising anchor polarisation and/or over-reliance), and allow for a fuller
range of response options, e.g., [52–57].

Table 1. Informational and Conversational dialogue scripts within Experiment 1. Note. the final
‘warning’ speech was the same across all conditions, given that the AV could not stop in time to avoid
the collision.

Time Informational Dialogue Conversational Dialogue

−0:05–0:00

This is an Autonomous Vehicle
Informational Assistant, or AVIA for
short. You are about to be shown a
driving scenario already in progress.

I am an Autonomous Vehicle
Information Assistant, but you can call
me AVIA for short. You are about to be
shown a driving scenario already in
progress.

0:12
Vehicle is driving behind a bus on a
country lane, looking for opportunities
to overtake.

We are driving behind a bus on a
country lane, I am looking for
opportunities to overtake.

0:25
The traffic conditions are preventing
vehicle finding an appropriate
overtaking window.

The traffic conditions are preventing
me from finding an appropriate
overtaking window.

0:36 The high traffic density is still
preventing vehicle from overtaking.

The high traffic density is still
preventing me from overtaking.

0:54 Vehicle is still being prevented from
overtaking.

I am still being prevented from
overtaking.

1:14 The bus is stopping, providing this
vehicle an opportunity to overtake.

The bus is stopping, providing me an
opportunity to overtake.

1:25 Warning! Warning!

Situational Trust Scale for Automated Driving (STS-AD [58]): This was used as a multi-
item scale with the questions mapping onto a general measure of trust in automated driving.
It is composed of six questions relating to trust in the situation. Questions 2, 4 and 5 are
presented in a manner that means reverse scoring is needed, as the higher the rating, the
lower the trust (i.e., the right anchor represents complete distrust). As with TiAS, responses
were recorded using VAS scales.

In addition, to measure (1) propensity to trust and use AV technology and then
(2) consider possible changes as a result of taking part in the experiment, participants’
attitudes towards autonomous vehicles were measured on VAS scales both at the beginning
of the experiment before they were exposed to the SSGA (i.e., pre-trial measures) and at the
end of the experiment (i.e., post-trial measures). Two questions were asked pre- and post-:
one concerning trust in AV technology in general (“Imagine that fully autonomous vehicles
will be deployed on a large scale on UK roads within the next 12-months. Please rate how much you
trust autonomous vehicle technology” 0 = Do not trust at all; 100 = Completely trust”); and
the other concerning the likelihood of using an AV (“Imagine that fully autonomous vehicles
will be deployed on a large scale on UK roads within the next 12-months. Please rate how likely you
would be to use an autonomous vehicle.” 0 = Extremely unlikely; 100 = Extremely likely”).

Participants were asked questions about blame on the AV and the pedestrian, the two
main agents involved in the critical incident at the end of the scenario, as in [17]. Blame
ratings were recorded using VAS scales, with higher scores (maximum 100) representing
higher judgements of blame. Taking blame on the AV as an example, the question asked
was: based on the footage you just watched, to what extent do you think the autonomous system that
controls the vehicle you were a passenger in should be blamed for the incident that just took place?
The anchor to the left of the VAS was ‘not at all’ and that on the right was ‘completely’.

Given that the experiment was conducted online, an online sound test (based on [59,60])
was developed using iMovie software to ensure that participants could adequately hear the
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speech during the dialogue conditions. Participants were required to listen to five audio
clips, each of which contained five words from the phonetic alphabet, and they had to
select the quietest word, noting that one was recorded at 50% of the original volume.

2.1.3. Procedure

Participants signed up via Prolific to take part in an experiment on ‘road transport’.
They were not informed about other elements of the experiment until reading the in-
structions and when they were debriefed. When ready to start, participants initiated the
Qualtrics survey by clicking on a link embedded in the invitation sent to them via Prolific.
They were required to read an online information sheet with details on the experiment
aims (with no reference to the collision critical incident component), requirements for
them (including to remain focused and free from distractions during the entirety of the
experiment), data anonymisation and storage, their rights (e.g., to withdraw from taking
part, and so on), as well as to ensure that they were wearing headphones or using device
(PC or laptop only) speakers set at a comfortably audible level. It was indicated that any
elements shown within the vehicle were part of the AV.

An online consent form had to be electronically signed to proceed. Participants
were asked to provide a Prolific ID to be used if they wished to have data withdrawn
within 10-working days. They were given instructions on how to complete the sound tests–
including setting the device volume to a comfortable level. They had to correctly identify
the quietest word per clip and needed to pass at least three of the five tests to proceed to the
main part of the experiment. Participants then completed optional demographic questions
on age and gender and driving-related questions, including license status, frequency, and
miles driven per year. Their pre-trial general attitudes towards autonomous vehicles were
then measured via the trust and intention to use questions specified above.

The main experimental phase involved watching one version of the SSGA according
to the conditions assigned. Participants were instructed to pay full attention and to try and
eliminate all possible background distractions. Immediately after the SSGA had ended,
participants were presented with questions on trust and blame. The single questions
on trust and questions on blame were presented first, followed by the TiAS and STS-
AD (counterbalanced). Following this, two attention and understanding check questions
relating to what happened during the overtake and critical events were included. Then,
participants’ post-trial general attitudes towards AVs (trust, intention to use) were measured
using the exact same questions as during the pre-trial phase. This was followed by an
opportunity to add free text comments. Participants were provided with a debrief form
that included information on the main aims of the experiment.

2.2. Experiment 1 Results

Data were analysed using SPSS. Unless otherwise stated, between-participant analysis
of variance (ANOVA) was used, and post-hoc analysis was performed using Bonferroni
with adjustment for multiple comparisons.

Trust

Single Measure: Trust ratings were generally low across all conditions, with only one
surpassing 30/100 (physical embodiment + conversational speech), see Figure 2. There
was a significant main effect of dialogue style, F(2,290) = 3.37, p = 0.036, f = 0.15, with trust
higher in the informational than no dialogue conditions (though marginally non-significant:
p = 0.052). There was a non-significant main effect of agent embodiment F(1,290) = 0.54,
p = 0.46, and a non-significant interaction, F(2,290) = 2.18, p = 0.12.

TiAS: Answers to questions 1–5 were reverse-coded prior to all item scores being
averaged. TIAS item reliability was very high (α = 0.91). Compared to the single-item trust
question, average TiAS scores are higher (Figure 3). However, there were non-significant
main effects of agent embodiment, F(1,290) = 0.96, p = 0.33, dialogue style, F(2,290) = 1.74,
p = 0.18, and a non-significant interaction, F(2,290) = 1.81, p = 0.17.
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STS-AD: Answers to questions 2, 4 and 5 were reverse-coded prior to all item scores
being averaged (Figure 3). Item reliability was high (α = 0.89). There were non-significant
main effects of agent embodiment, F(1,290) = 0.38, p = 0.54, or dialogue style, F(2,290) = 1.70,
p = 0.19, and there was a non-significant interaction, F(2,290) = 0.38, p = 0.69.

Blame

On the AV: Average blame ratings ranged between ~50% and almost 70%, see Figure 4.
There was a significant main effect of dialogue style, F(2,290) = 5.91, p = 0.003, f = 0.20,
with blame lower in the informational condition than the no dialogue condition (p = 0.002).
There was a non-significant main effect of agent embodiment, F(1,290) = 0.11, p = 0.74, and
a non-significant interaction, F(2,290) = 1.09, p = 0.34.
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On the Pedestrian: Average ratings were slightly lower than those on the AV, ranging
from just below ~50% to just above 60% (Figure 4). There was no significant main effect of
agent embodiment, F(1,290) = 0.09, p = 0.77, or dialogue style, F(2,290) = 2.43, p = 0.09, and
a non-significant interaction, F(2,290) = 1.43, p = 0.24.

Attitudes Towards AVs Pre- and Post- Scenarios

Participants’ ratings on the two questions regarding their general attitudes towards
autonomous vehicles at both temporal points (pre-trial and post-trial) were analysed using
a 2 (Stage: pre-trial, post-trial) × 2 (Agent embodiment: physical presence with a humanoid
robot, non-physical presence without a humanoid robot) × 3 (Dialogue Style: no speech, in-
formational speech, conversational speech) mixed ANOVA, which revealed a main effect of
Stage on trust in autonomous vehicles in general, F(1,262) = 60.54, p < 0.001, f = 0.48. Over-
all, after watching the SSGA, participants’ trust in AVs decreased (M = 28.85, SD = 26.10)
compared to before taking part in the main experimental phase (M = 37.43, SD = 25.88). This
was expected since the SSGA featured an accident scenario. No significant main effects of
Agent or Dialogue Style were found, F(1,262) = 0.42, p = 0.52, and F(1,262) = 0.30, p = 0.742,
respectively, and there were no significant interactions (ps > 0.05). Ratings on the likelihood
of using an AV in the future displayed a similar pattern. There was a significant main effect
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of Stage, F(1,262) = 89.50, p < 0.001, f = 0.59. That is, after watching the SSGA, participants
likelihood of using an AV decreased (M = 25.91, SD = 26.82) compared to before (M = 37.22,
SD = 30.50). All other main effects and interactions were non-significant (ps > 0.05).

2.3. Experiment 1 Discussion

Overall, most findings were non-significant. For trust, only one significant main effect
of dialogue style was found. This was with the single-item measure and was not fully
supportive of our prediction (HTrust-2): trust was higher only in the informational speech
than in the no-speech condition, with no difference between conversational speech and any
other condition. There were no significant findings to indicate that a physical embodiment
as operationalised with a humanoid robot informational assistant is trusted more than
an agent with no physical embodiment. If anything, the pattern of means (noting no
significant interactions) across trust measures indicated an increase from no dialogue to
informational to conversational in the non-physical embodiment conditions only, with
no such patterns in the physical embodiment conditions. For blame, there was also only
one significant main effect again of dialogue style and on the AV, with lower blame in the
informational than conversational and no dialogue conditions. The HBlame-2 hypothesis
is not supported. Additionally, participants’ general trust in and intention to use AVs
significantly decreased after having experienced the scenario, expectedly given that the
outcome involved a negative effect. However, the agent and dialogue style had no effect.

Taken together, the trust and blame findings from Experiment 1 could indicate that
our manipulation of agent embodiment and anthropomorphism using a physical robot
did not result in the intended effects. In addition, an informational dialogue style seems
to–for some measures at least–lead to higher trust and lower blame in the AV than in
conversational speech. These findings appear to stand in contrast to previous research
where robot presence (a manipulation of agent embodiment and anthropomorphism) has
been shown to increase trust in an AV, especially with conversational dialogue style [42,43].
However, to our knowledge, no studies to date have examined trust and blame following
an accident scenario. Thus, it could be the case that the potentially promising findings from
studies such as those by [40,42,43] are restricted to situations where an AV and other road
users and agents perform optimally without incident or accident.

However, it is important to check whether other aspects of the materials might have
had an impact on findings and, consequently, conclusions that can be drawn. We examined
qualitative open-text comments left by participants at the end of the experiment. A theme
that emerged amongst some participants in the informational and conversational conditions
is that they felt that the system was constantly trying to find an opportunity to overtake the
bus before it pulled into the bus stop. For example, one participant stated that:

P36. ‘The bit that concerned me was why the system was constantly trying to find an
overtaking opportunity, even when the bus went into a 30 zone and obviously slowed
down to the lower speed limit.’

The agent (robot or no robot) was regularly communicating an intention to try and
overtake the bus (when safe to do so), and this could have been perceived as risky even
prior to the critical event (e.g., [informational] vehicle is driving behind a bus on a country
lane, looking for opportunities to overtake; [conversational] we are driving behind a bus on a
country lane, I am looking for opportunities to overtake). This may have impacted trust and
blame ratings after the accident scenario (see also [30]) and was quite different to the speech
materials used in past studies [40,42,43]. Numerous other studies have shown that a higher
perception of risk in a robot can negatively impact trust [61,62], use [63], and satisfaction
and intention to reengage [64]. This is also the case in the event of robots being perceived
to perform poorly [65].

Experiment 2 was designed to determine whether perceived riskiness was having a
confounding effect in Experiment 1. The IA agents (physically embodied with a humanoid
robot, non-physically embodied–no robot) used in Experiment 2 communicated actions
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and intentions as in Experiment 1, but not an intent to overtake the moving bus until the
end of the scenario, before the critical event.

3. Experiment 2

Within Experiment 1, there were indications of increased trust and reduced blame in
the informational dialogue conditions, and there were no significant effects of physical
embodiment using an embodied humanoid robot IA. These findings did not support the
predictions. To determine whether perceived riskiness of the AV based on actions and
intentions communicated via the IAs (i.e., looking for opportunities to overtake) was
masking effects, the main objective of Experiment 2 was to use more cautious dialogue
during the scenario and before the critical event. Also included was a question on the
perceived riskiness of the AV. All Experiment 1 hypotheses are held for Experiment 2. In
addition, it is predicted that there will be no differences in perceived risk across the different
dialogue conditions irrespective of agent type but that the AV will be perceived to be riskier
in the non-dialogue conditions, especially in the physical embodiment agent condition with
higher anthropomorphism though the use of a humanoid robot informational assistant.

3.1. Experiment 2 Materials and Methods
3.1.1. Participants

Two-hundred and twenty-three participants signed up to take part. After withdrawals,
participants failing the sound test, and those failing both attention checks, there were
199 valid datasets. Ages ranged from 18–80 years (M = 42.05, SD = 13.39). Ninety-one were
female, and 108 were male. Of the 199 participants, one hundred and sixty-one held a full
driving licence, nineteen a provisional licence, one held a license in the past, two were
in the process of obtaining a provisional licence, fifteen did not have a license and were
not in the process of getting one, and one preferred not to say. Of the 161 full driv-
ing license holders, the mean number of years was 21.45 (SD = 13.15), ranging from
1- to 59- years. Qualified drivers reported driving on average 7478.88 miles per year
(SD = 8208.12, Max = 60,000, Min = 0) before the COVID-19 pandemic and 4191.91 miles
per year (SD = 6335.59, Max = 60,000, Min = 0) within the 12-months prior to taking part.

3.1.2. Design, Materials and Procedure

The design was the same as in Experiment 1. The main change was to the dialogue.
For example, “I am looking for opportunities to overtake” (Experiment 1) was changed in
Experiment 2 to “I am not looking for opportunities to overtake” (i.e., less risky). Addition-
ally, a single measure of perceived risk was added using a VAS. This question was included
after all others on trust and blame. Everything else was the same as in Experiment 1,
including the IA announcing the intention to overtake the bus prior to the critical event.

3.2. Experiment 2 Results

Trust

Single Measure: As in Experiment 1, mean trust ratings were low, ranging from ~10–~30/100
(Figure 5). Unlike Experiment 1, there appears to be an increase in trust from the no
dialogue to informational to conversational conditions in the physical embodiment condi-
tions, with the opposite pattern across the non-physical embodiment conditions (Figure 5).
There was a significant main effect of physical embodiment, F(1,193) = 4.98, p = 0.027,
f = 0.16, with higher trust in the robot agent conditions. Dialogue style was not significant,
F(2,193) = 0.10, p = 0.90. There was a marginally non-significant interaction, F(2,193) = 3.01,
p = 0.052, f = 0.18. Post-hoc analyses revealed significantly higher trust in the robot agent
conversational dialogue condition than in the non-robot agent conversational condition
(MD = 17.64, p = 0.002). There were no other significant post-hoc differences.

TiAS: As in Experiment 1, means were higher than the single trust measure, with
the highest rating in the physical embodiment conversational condition and lowest in
the non-physical embodiment conversational condition (Figure 6). Reliability between
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items was very high (α = 0.90). There was a non-significant main effect of agent embodiment,
F(1,193) = 2.12, p = 0.15, and dialogue style, F(2,193) = 0.40, p = 0.67, and a non-significant
interaction, F(2,193) = 2.17, p = 0.12. (Despite the non-significant interaction and for exploratory
purposes only, there was a significant post-hoc difference identified between conversational
conditions with higher trust in the robot than non-robot agent conditions, p = 0.015.)
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STS-AD (Figure 6): Reliability between items was high (α = 0.86). There was a non-
significant main effect of robot presence, F(1,193) = 0.11, p = 0.74, and dialogue style,
F(2,193) = 0.76, p = 0.47, and a non-significant interaction, F(2,193) = 0.62, p = 0.54.

Blame

On the AV: Mean ratings were largely above 60/100 and almost as high as 80/100 in
the robot agent no dialogue condition (Figure 7). The was a non-significant main effect of
physical embodiment, F(1,193) = 0.02, p = 0.88, and dialogue style, F(2,193) = 1.95, p = 0.16.
There was, however, a significant interaction, F(2,193) = 3.78, p = 0.025, f = 0.20. Post-hoc
analyses revealed that with a humanoid robot agent, blame on the AV was higher in no
dialogue condition than in the other two speech conditions (ps < 0.05). Also, blame was
higher in the physical embodiment with no dialogue condition than in the non-physical
embodiment with no dialogue condition (p = 0.037).
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On the Pedestrian (Figure 7): There were non-significant main effects of agent embod-
iment, F(1,193) = 0.16, p = 0.69, and dialogue style, F(2,193) = 1.10, p = 0.34, as well as a
non-significant interaction, F(2,193) = 1.87, p = 0.16.

Perceived Risk: Mean risk ratings were largely <40/100 and lowest in the robot agent
conversational dialogue style condition (Figure 8). There was a significant main effect of
agent embodiment, F(1,193) = 4.87, p = 0.028, f = 0.16, with lower risk in the physical em-
bodiment than in non-physical embodiment agent conditions. There was a non-significant
main effect of dialogue style, F(2,193) = 0.19, p = 0.83, and non-significant interaction,
F(2,193) = 0.22, p = 0.80.

Attitudes Towards AVs Pre- and Post- Scenarios

The results were largely similar to that of Experiment 1. There was a main effect
of Stage on trust in AVs in general, F(1,193) = 44.54, p < 0.001, f = 0.48. Overall, after
watching the SSGA, participants’ trust in AVs decreased (M = 28.10, SD = 25.94) compared
to before (M = 36.87, SD = 26.33). However, as in Experiment 1, no significant main effects
of Agent or Dialogue Style were found, F(1,193) = 0.01, p = 0.95, and F(1,193) = 0.14, p = 0.87,
respectively, or significant interactions (ps > 0.05). Ratings on the likelihood of using AVs
in the future displayed a similar pattern. Only the main effect of Stage was significant,
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F(1,193) = 69.04, p < 0.001, f = 0.60. That is, after watching the SSGA, participants likelihood
of using AVs decreased (M = 26.03, SD = 27.83) compared to before (M = 36.57, SD = 31.34).
All other main effects and interactions were non-significant (ps > 0.05).
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3.3. Experiment 2 Discussion

The findings from Experiment 2 are, overall, more supportive of the predictions
compared to Experiment 1. HTrust-1 was supported in the case of the single measure of
trust: the AV was trusted more in conditions with a physically embodied robot agent. While
the interaction with dialogue style was marginally non-significant (p = 0.052), trust was
significantly higher in the physically embodied robot agent conversational style condition
than in the same dialogue style non-physically embodied condition, partly supporting
HTrust-3. This conclusion must be treated with some caution as there were no such effects
based on TiAS and STS-AD ratings despite a similar pattern of mean differences.

There was also support for HBlame-3, with a significant interaction between agent
embodiment and dialogue style, with higher blame attributed to the AV in the robot agent’s
no dialogue condition than both robot agents’ dialogue conditions. In addition, blame was
higher in the former condition than in the comparable non-physically embodied condition.
Intuitively, this makes sense: having higher anthropomorphism in the form of a humanoid
robot IA in an AV that is not providing any information could be interpreted as something
like a technological failure and perhaps then, to some degree, could be perceived as being
linked to the accident outcome. If a robot IA is to be used within an AV, it likely needs to be
communicating with the passenger(s). Otherwise, during an accident situation, it could be
perceived to be part of the cause.

A risk measure was also included, largely because of our rationale within Experiment 2
to only include dialogue relating to cautious intentions during the scenario and before
the critical event. In general, and as predicted, it was found that the AV was perceived
as less risky in physical agent embodiment conditions. However, there was no effect of
dialogue style on risk and no interaction. While this risk measure was not included in
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Experiment 1, the finding from Experiment 2 provides an indication that risk perception
after an accident is lower with a humanoid robot IA than without one. Additionally, as in
experiment 1, participants’ general trust in and intention to use AVs significantly decreased
after having experienced the scenario, most likely because the outcome again entailed a
collision. As in experiment 1, agent and dialogue style had no effect on post-experiment
trust in or intention to use AVs.

There are possible reasons–even with the cautionary dialogue style adopted before
the critical event–why some of our hypotheses are still not fully supported. Participants
only experienced the AV attempting an overtake manoeuvre that ended with an accident
outcome. It is likely that most participants will not have experienced (even virtually) a
journey in an AV and will not have had an opportunity to develop trust in such technology.
Indeed, in related previous studies [40,42,43], journeys/scenarios were considerably longer
than in our experiments, and this may have afforded participants an opportunity to develop
higher levels of trust in the AV. It is important to determine whether having an opportunity
to experience an AV performing manoeuvres successfully not only increases trust prior to
the accident event but also whether such an increase is higher in a physically embodied
robot agent condition (as in [40,42,43]). Moreover, to investigate whether such predicted
increases in trust have an impact on trust and blame following the accident event, and
if–and as predicted in Experiments 1 and 2–trust is higher and blame lower in the physically
embodied robot agent conditions, markedly so with a conversational dialogue style.

4. Experiment 3
4.1. Experiment 3 Introduction

A limitation of the scenarios used in Experiments 1 and 2 is that participants will have
had limited experience of AV driving safely and no experience of negotiating overtake
attempts without a negative outcome. This may well have negatively impacted trust
and blame (measured only after the accident) despite some significant findings within
Experiment 2 that fit the hypotheses. In addition, it is not always the case that it is safe to
overtake a parked bus: there will be instances where the traffic (e.g., density) and other
factors/conditions (e.g., pedestrians) mean that it is too risky and potentially dangerous
with the judgement for now made by human drivers rather than autonomous systems.
Therefore, within Experiment 3, the scenario and paradigm were further developed to
include the AV performing two successful overtake attempts (with no oncoming traffic or
pedestrians in sight) and two instances where it does not commit to an overtake manoeuvre
(due to oncoming traffic and pedestrians in sight). The former will likely be perceived as
riskier despite no negative outcomes. Within Experiment 3, and after each of these events,
trust and risk are measured, allowing comparisons prior to the critical accident event and
then following that event (as in Experiments 1 and 2).

In addition to our original hypotheses, it is predicted that trust ratings will increase
from one event to the other prior to the critical accident event. It is also predicted that this
increase will be more marked in the physical embodiment robot IA condition (e.g., [42,43]).
Finally, we included questions on attitudes towards the IAs using the Robotic Social At-
tributes Scale (RoSAS) [66] to determine if the high embodiment robot conditions are
preferred compared to the low embodiment non-robot conditions as would be predicted, es-
pecially in terms of competence (as was found by [43]). Noting that warmth and discomfort
are other attitudes measured using the RoSAS.

4.2. Experiment 3 Materials and Methods
4.2.1. Participants

Participants

The recruitment method was the same as in Experiments 1 and 2. One hundred and
ninety-six participants were recruited. After withdrawals, participants failing the sound
test, and those failing both attention checks, there were 192 valid datasets. Ages ranged from
18–80 years (M = 41.52 SD = 12.48). One hundred and ten were female, eight-one male, and
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one did not provide gender information. One hundred and forty-eight held a full driving
licence, twenty-three a provisional licence, three held a license in the past, three were in the
process of applying for a provisional licence, and fifteen did not have a license and were
not in the process of getting one. Of the full driving license holders, the mean number of
years was 19.61 years (SD = 13.56, ranging from 1–61 years). Qualified drivers reported
driving on average 6587.49.19 miles per year (SD = 6343.44 Max = 50,000, Min = 0) before
the COVID-19 pandemic and 4678.24 miles (SD = 5618.47 Max = 40,000, Min = 0) within the
12-months prior to taking part.

4.2.2. Design, Materials and Procedure

Design, Materials and Procedure

As in Experiments 1 and 2, the scenario begins with the AV approaching a moving bus
and driving behind it at the speed limit and at a safe distance. After 1 min and 14 s, the bus
comes to a stop at a bus stop. Event 1 involves the AV determining that conditions are safe
(according to the UK Highway Code) to commit to overtaking the bus: there is a broken
white line separating the two lanes, no evidence of oncoming traffic in the opposite lane,
and no pedestrian(s) attempting to cross the road. AVIA communicates (in all but the no
dialogue control conditions) that conditions are safe to overtake, and the manoeuvre takes
place successfully, with the AV continuing on its journey afterwards. Soon after overtaking
the bus, another bus comes into view, and the AV drives behind it at the speed limit and at
a safe distance. Event 2 involves the second bus stopping at a bus stop. The AV detects
oncoming traffic in the opposite lane and determines that the conditions are too unsafe to
attempt to overtake (according to the UK Highway Code). The AV IAs communicate (in
all but the no dialogue control conditions) that conditions mean it is not safe to overtake,
and an overtake manoeuvre does not occur. Instead, the AV waits for the bus to pull off
and drives behind it at the speed limit and at a safe distance before it stops at another bus
stop. At this point, Event 3 is triggered and is the same as Event 1. Following Event 3, the
AV drives behind another bus at the speed limit and at a safe distance before it stops at a
bus stop, initiating Event 4, which is the same as Event 2. Event 5 is like events 1 and 3 and
mimics the critical event in Experiments 1 and 2. As the AV is committed to the overtaking
manoeuvre, a pedestrian steps out in front of the bus, violating the UK Highway Code. The
AV is unable to stop in time. Text appears to inform participants that the SDC could not stop
in time and hit the pedestrian, who sustained minor injuries (as in Experiments 1 and 2).
The full series of events 1–5 are depicted in Figure 9.
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Following each of events 1–4, participants first rated trust using the TiAS. They then
answered questions on the competence of IA using competence questions from the RoSAS
(reliable, competent, knowledgeable, interactive, responsive, capable), followed by the
question on the perceived riskiness of the AV. Then, an attention check multiple choice ques-
tion was asked about the key actions taken by the AV after the bus had stopped. Following
critical Event 5, questions were asked in the following order: TiAS (for consistency with
events 1–4), single-item trust, blame on the AV and pedestrian, RoSAS (all three dimensions
and questions: competence-reliable, competent, knowledgeable, interactive, responsive,
capable; warmth-organic, sociable, emotional, compassionate, happy, feeling; and discomfort:
awkward, scary, strange, awful, dangerous, aggressive), STS-AD, and finally perceived
riskiness. A further attention check question was asked, followed by free text comments.

Finally, participants’ attitudes (trust in and intention to use) towards AVs were mea-
sured twice in the same fashion as in experiments 1 and 2–i.e., before the experimental
scenario started and at the end of the experiment before the free text comments option.

4.3. Experiment 3 Results

Trust

TiAS (Figure 10): Initially, trust across all five events is considered. Trust in the AV
increased from Event 1, to 2, to 3, to 4 with a sharp decrease after Event 5, within the
robot agent and non-robot agent conditions, although with higher means following events
2–5 in the non-robot agent conditions (Figure 10). TiAS item reliability was very high
(α = 0.90–0.93). A 3-way ANOVA (robot presence × dialogue style × event) revealed a
significant main effect of the event, F(4,744) = 202.18, p < 0.001, f = 1.04, with trust increasing
from event 1 to 2, event 2 to 3, event 3 to 4 (all ps ≤ 0.001) and decreasing from event 4 to 5
(p < 0.001). There were significant two-way interactions between agent embodiment and
event, F(4,744) = 3.01, p = 0.018, f = 0.13, and dialogue style and event: F(8,744) = 2.69,
p = 0.006, f = 0.17. There was also a significant three-way interaction between agent
embodiment, dialogue style and event, F(8,744) = 2.92, p = 0.003, f = 0.18. Across events 1–4,
there was a significantly greater increase in trust between events 2 (no overtake attempt)
and 3 (second successful overtake attempt) in the robot agent conditions compared to the
no-robot agent conditions (ps < 0.05), although no other differences were significant. After
Event 5, trust fell significantly greater in the robot agent conversational style condition than
in the speech-only (non-robot) conversational style condition (MD = 13.06, p = 0.01).

Focussing on Event 5 only (as in Experiments 1 and 2), a two-way ANOVA revealed
non-significant main effects of agent embodiment, F(1,186) = 3.30, p = 0.07, dialogue style,
F(2,186) = 0.30 p = 0.74, and a non-significant interaction, F(2,186) = 2.41, p = 0.09.

Single Measure (Figure 11): No significant main effects were found for agent embod-
iment, F(1,186) = 3.13, p = 0.08 or dialogue style, F(2,186) = 0.13, p = 0.88. There was a
non-significant interaction, F(2,186) = 0.66, p = 0.52.

STS-AD (Figure 11): Item reliability was high (α = 0.85). No significant main effects
were found for agent embodiment, F(1,185) = 0.32, p = 0.57, or dialogue style, F(2,185) = 1.01,
p = 0.37, and there was a non-significant interaction, F(2,185) = 0.59, p = 0.55.

Blame (Measured after Event 5)

On the AV (Figure 12): There were non-significant main effects of agent embodiment:
F(1,185) = 1.85, p = 0.18, or dialogue style: F(2,185) = 0.63, p = 0.54, and a non-significant
interaction, F(2,185) = 0.40, p = 0.67.

On the pedestrian (Figure 12): There were non-significant main effects of agent em-
bodiment: F(1,185) = 0.003, p = 0.96, and dialogue style: F(2,185) = 0.45, p = 0.64, and a
non-significant interaction, F(2,185) = 0.24, p = 0.78.
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Social Attribution Measured using the RoSAS

Competence (Measured after all events, Figure 13): A three-way ANOVA revealed a
significant main effect of the event, F(4,740) = 212.72, p < 0.001, f = 1.07 and a significant
three-way interaction, F(8,740) = 2.47, p = 0.012, f = 0.16. Perceived competence significantly
increased between events 1 and 2 (p = 0.004) and 3 and 4 (p < 0.001) but not 2 and 3 (p = 0.99).
By Event 4, and with conversational dialogue, the robot agent condition was perceived
as more competent than the speech-only condition, but this difference is non-significant
(MD = 5.24), p = 0.38. Trust plummets after Event 5, but the direction of the difference at
Event 4 is reversed: the non-robot agent condition is rated as more competent (MD = 6.64),
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but the difference is non-significant (p = 0.27). In the informational dialogue condition, both
agent conditions have similar competence ratings after event 4. However, after Event 5,
the non-robot agent speech-only condition is perceived as more competent than the robot
agent condition (MD = 11.16), but the difference is marginally non-significant (p = 0.056).
In the no dialogue condition, while competence ratings fall between events 4 and 5, there
are no differences between agents.
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Warmth (Measured after Event 5, Figure 14): Reliability between items was high (α = 0.83).
There was a main effect of dialogue style, F(2,185) = 4.68, p = 0.010, f = 0.23, with higher
warmth in the conversational than no dialogue condition (MD = 6.74), p = 0.009. There was
a non-significant main effect of robot agent embodiment, F(1,185) = 0.13, p = 0.72, and a
non-significant interaction, F(2,185) = 0.001, p = 0.99.
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conditions after Event 5. Error bars are ±SE.

Discomfort (Measured after Event 5, Figure 14): Reliability between items was high
(α = 0.83). There was a non-significant main effect of agent embodiment, F(1,185) = 0.27,
p = 0.60, and dialogue style, F(2,185) = 0.81, p = 0.45, and a non-significant interaction:
F(2,185) = 0.93, p = 0.40.

Perceived Risk (Measured after all events): Mean risk ratings were very low (mostly
less than 20/100) after events 1 to 4 in both the robot agent and non-robot agent con-
ditions, although they increased after Event 5, surpassing 60/100 in some conditions
(Figure 15). There was a significant main effect of the event, F(4,740) = 271.70, p < 0.001,
f = 1.21, with significantly lower risk ratings after events 2 and 4 than 1 (ps < 0.01), and
4 than 3 (p < 0.001). There was a significant and marked increase in risk ratings between
events 4 and 5 (MD = 45.86, p < 0.001). No other significant main effects were found (all
Fs < 1), and none of the interactions were significant (Fs < 1).

Attitudes Towards AVs Pre- Event 1 and Post- Event 5

Consistent with experiments 1 and 2, there was a significant main effect of Stage on
trust in AVS in general, F(1,184) = 16.14, p < 0.001, f = 0.30. Overall, after experiencing
the extended SSGA with five events (including the collision after event five), trust in AVs
decreased (M = 26.58, SD = 25.49) compared to before (M = 32.84, SD = 27.20). Note
that the effect size was smaller in the current experiment, possibly due to the modified
scenario featuring a series of successful manoeuvres before the collision event. As in
experiments 1 and 2, there were non-significant main effects of agent and dialogue style,
F(1,184) = 2.04, p = 0.16, and F(1,184) = 0.50, p = 0.61, respectively, and no significant
interactions. The results were similar for the intention to use an AV. Only the main effect of
Stage was significant, F(1,184) = 45.12, p < 0.001, f = 0.50; decreasing at the end (M = 21.71,
SD = 25.38) compared to before (M = 32.58, SD = 30.82). All other main effects and
interactions were non-significant (ps > 0.05).
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4.4. Experiment 3 Discussion

There were four main aims of Experiment 3. First, to give participants experience of the
AV negotiating overtake attempts (by determining when conditions were safe or not) and
thereafter examining effects on trust and some other measures prior to the critical (accident
event). Second, to explore whether any increase in trust during these first four events
(two overtakes, two non-overtakes) was higher in the robot agent embodiment condition
(particularly with conversational dialogue style) than in the non-robot agent embodiment
event, similar to [40,42,43]. The third aim was to examine whether these potential effects
extended to trust and blame ratings after the fifth critical accident event with more robust
and consistent findings than in Experiment 2. Finally, we included a measure of social
attribution (RoSAS) to measure attitudes towards the IA agents that varied by embodiment
(physical humanoid robot versus voice-only system).

TIAS ratings revealed consistent increases in trust across the first four events, which
then plummeted after the critical Event 5. An interaction provided some evidence for the
prediction linked to the second aim, in that trust (measured via the TAIS) was higher within
the robot agent than non-robot agent between some (but not all) events (events 2 and 3).
Examining post-event 5 TIAS ratings separately as well as STS-AD ratings, there were no
differences between conditions or interaction, as was the case in Experiments 1 and 2. This
was also the case for the single-item trust question, despite Experiment 2 findings that the
robot agent was trusted more than the voice-only agent. Thus, our modified paradigm
developed to increase trust in the AV through experience was successful (similar to [42,43])
and, to some extent, more so in the robot agent condition. However, it did not result in
higher trust in the robot agent condition (when coupled with or without conversational
dialogue) after an accident outcome.

Interestingly, blame ratings on the AV were quite high (in all but one condition >60/100),
but blame on the pedestrian ratings were also higher than 50/100. In neither case did
ratings significantly differ due to agent embodiment nor dialogue style. As with trust, it
seems that blame assignments using our developed paradigm were not affected by the
presence of a robot over a voice-only agent or by dialogue style. We also considered social
attribution and, in particular, attitudes toward the IA across three dimensions using the
RoSAS: competence (after all events), warmth (after Event 5) and discomfort (after Event 5).
While perceived competence in an IA significantly increased between events 1 and 2 and 3
and 4, there were no statistical differences between agent type or effects of dialogue style.
After Event 5, there was only a significant main effect for warmth towards the IA between
the conversational and no dialogue conditions with no effects of agent type on this RoSAS
dimension or for discomfort.

Finally, and as in experiments 1 and 2, participants general trust in and intention
to use AVs significantly decreased after having experienced the entire scenario (after
the five events vs. before part/event 1); again, most likely because the outcome of
Event 5 entailed a collision. However, the effect size was smaller than in previous ex-
periments giving an indication that the reductions observed were not as pronounced as
in experiments 1 and 2, where participants did not have experience of the AV negotiating
manoeuvres without any negative outcome, at least until the final critical event. As in ex-
periment 1, agent and dialogue style had no effect on post-experiment trust in or intention
to use AVs.

Taken together, the findings of Experiment 3 indicate that while providing participants
with experience of a highly autonomous vehicle successfully negotiating overtake opportu-
nities prior to an accident can increase trust and to some degree more so for a humanoid
robot IA than a speech-only system, there are no other notable effects of either agent em-
bodiment or dialogue style after an accident event. Perhaps, as in Experiment 1, the AV
was perceived as being too assertive, although this time due to multiple overtake attempts,
with the final attempt ending with an accident. A free text quote from two participants fits
with this possibility:
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P20. ‘[It] Seems to me that the risk the AV failed on was one that it should have been
more aware of. Its priority in the journey was overtaking, which in a high street with
many pedestrians and oncoming vehicles was maybe too aggressive?’

P32. ‘Seems to me that the risk the AV failed on was one that it should have been more
aware of. Its priority in the journey was overtaking, which in a high street with many
pedestrians and oncoming vehicles was maybe too aggressive?’

However, these were the views of only a small number of participants who perceived
the AV to be performing in a risky manner, yet perceived riskiness of the AV decreased
in general across the first four events and, as expected, markedly increased after the final
critical event. It could then be that expectations on the safety performance of the AV were
heightened due to the positive ‘incident free’ first four events and then damaged by the
critical accident event at the end of the scenario. Another participant noted

P63. ‘The last scenario was the one that most worries me. For instance, if I am behind a
school bus that pulls in before overtaking, I factor in that children may run in front of the
bus and I adjust my actions accordingly. How do you programme human type intuition
into an AV?’

Participants may have felt that the chances of an accident occurring were increasing,
given that the AV seemed too intent on trying to overtake parked buses. Thus, we have
demonstrated under other conditions (i.e., with experience of the AV successfully negotiat-
ing overtake attempts) where the use of a robot IA and a more personable dialogue style
does not have an impact on trust or blame and where attitudes towards a humanoid robot
IA are the same as a speech-only system. Perhaps then, the benefits of a robot IA and, e.g., a
conversational dialogue style are restricted to situations where a highly autonomous vehicle
performs without experiencing an accident such that findings like those from [40,42] are
representative of when AVs and other road users are performing optimally. Such situations
are not guaranteed, and thus, our novel evidence points towards robot IAs not necessarily
representing an intervention that can help minimise loss of trust and blame in an AV in
the event of an accident not directly caused by the AV but instead due to another agent
violating the Highway Code with the AV not being able to intervene in time. Clearly, then,
further research is needed to evaluate whether humanoid robot IAs constitute a practicable
and generally positive solution, as has been suggested by others.

5. General Discussion

The efficacy of AVIAs varying by embodiment (humanoid robot, speech only, noth-
ing/control) and dialogue style (conversational, informational, no speech/control) on
participant ratings of trust in and blame on a highly autonomous vehicle following an
accident were investigated. The accident occurred when the AV was overtaking a parked
bus after deeming it safe to do so based on traffic conditions and Highway Code rules.
When committed to the overtaking manoeuvre, a pedestrian violated the Highway Code
by walking in front of the bus and then onto the road without there being time for the AV to
stop and avoid a collision. Such a scenario is entirely feasible [9] when highly autonomous
vehicles are deployed and programmed to make decisions such as overtaking parked
vehicles to, e.g., support efficient traffic flow and, more generally, when other road users
violate the Highway Code.

In Experiment 1, the AVIA communicated intentions to try and overtake the bus while
in motion and even before it had come to a halt at a bus stop. In Experiment 2, the AV
was not looking for opportunities to overtake the bus until it came to a halt at a bus stop,
and the AVIA dialogue reflected this throughout the journey. In Experiment 3, the AV
negotiated a parked bus scenario four times (overtaking twice–deemed safe to do so; did
not overtaking twice–deemed unsafe to do so) before the fifth critical overtake attempt that
culminated in the same accident outcome as in Experiments 1 and 2. Participants also rated
the perceived riskiness of the AV in Experiments 2 and 3, as well as attitudes towards the
IAs in Experiment 3.
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Based on findings from previous research [40,42,43], it was predicted that trust in the
AV would be higher or lower with an anthropomorphic embodied humanoid robot IA than
a speech-only system, markedly so with a conversational compared to an informational
dialogue style. A key and novel factor within the current experiments was the critical
incident accident outcome. These predictions were not supported in Experiment 1 across
three measures of trust (single item, TIAS, and STS-AD) with only one main effect of
dialogue style (higher trust in the informational dialogue style condition than no-speech
condition for the single-item measure only). Free text comments from some participants
indicated a perception that the IA at times communicated intentions (to find opportunities
to overtake the bus when it was in motion) that were assertive or even aggressive, and this
may have impacted predicted findings. However, no measure of perceived riskiness was
included. In Experiment 2, the dialogue was adapted such that there were no communicated
intentions to overtake the bus until it had stopped. It was found that perceived risk was
lower in the physical agent embodiment conditions. Furthermore, and as predicted, the
physical agent embodiment conditions resulted in higher trust than in the non-physically
embodied speech-only condition (HTrust-1), and there was a marginally non-significant
interaction indicating the highest trust in the conversation speech robot present condition
compared to the conversational speech-only condition (HTrust-3). However, this was
only the case for the single trust item with no such effects with TIAS or the STS-AD. An
interaction was also found for blame: it was higher on the AV in the robot agent no dialogue
condition than both robot agent dialogue conditions and higher than in the no-robot agent
conditions. This interaction was not supportive of HBlame-3 and instead revealed that a
‘silent’ robot IA within an AV, results in higher blame in the event of an accident–a situation
that could occur if, e.g., the IA malfunctions or is switched off.

Despite some findings in Experiment 2 fitting with the predictions, many did not.
This could have been because participants had limited opportunity to experience the AV
performing without an incident and given that all measures were taken after the acci-
dent had occurred. Indeed, as highlighted above, measures within previous studies were
taken across scenarios without an accident outcome [40,42,43]. Thus, in Experiment 3, the
paradigm was further developed such that participants experienced the AV driving behind
multiple moving buses and negotiated four overtake attempts (including two fully commit-
ted to and without incident) before the fifth and critical accident event. As predicted, trust
ratings (measured via TIAS questions) in the AV consistently and significantly increased
across events before plummeting after the critical event, and there was an interaction with
higher trust in the robot IA between some (albeit not all) of the earlier non-critical outcome
events. However, contrary to predictions, there were no differences in trust ratings on any
measure after the critical accident outcome Event 5. Furthermore, blame on the AV ratings
was quite high, and again, there were no differences due to embodiment or dialogue style.
Even in terms of social attribution measured using RoSAS, there were some promising
findings prior to the critical accident event (i.e., significant increases in the perception of IA
competence) but not between the robot and non-robot IA agents and with no differences
due to IA embodiment or dialogue style after the critical event.

This is further confirmation–together with the findings from Experiment 1 and some
from Experiment 2–that anthropomorphising a highly autonomous vehicle with an em-
bodied humanoid robot IA does not consistently lead to higher trust in the AV than in
conditions a non-embodied speech-only IA following a critical event, even when the
accident outcome was ultimately caused by the actions of the other agent (in this case a
pedestrian violating the Highway Code). Furthermore, dialogue style does not seem to have
any consistent effect either. These findings stand in contrast to previous studies [40,42,43],
and thus, we must warn of the many potential pitfalls of assuming that robot agent IAs will
be universally beneficial to user trust in AV technology. They may, in fact, damage trust,
in some circumstances at least. As suggested by [30], making autonomous systems more
human-like may have a counterintuitive effect of increasing user expectations–with higher
resultant performance expectancies. Even though the IAs manipulated and tested within



Multimodal Technol. Interact. 2024, 8, 110 29 of 35

the current experiments were not in any way linked to the vehicle controls (much like a
satellite navigation system in most vehicles at least), participants may have expected an
intervention to avoid the accident outcome, especially given the IAs awareness of actions
and intentions during the journeys, communicated in real-time. For example, some par-
ticipants mentioned being disconcerted about the robot turning to look at them to speak,
despite our clear framing of the system in the car as only being an IA. One participant in
Experiment 3 noted:

P88. ‘I found it a bit disconcerting when the AV took its eyes off the road, even though I
know logically its ‘eyes’ aren’t actually doing the seeing/sensing.’

Such performance expectations might have been further exacerbated in Experiment 3,
given multiple experiences of ‘the system’ performing ‘optimally’ before the final critical
collision outcome. Overall, what we have demonstrated provides further evidence of the
AV Capability Hypothesis put forward by [30]. Linked to this is the general perception that
AVs should perform the task of driving more optimally than humans (e.g., [67,68]). Linked
to this are the findings regarding trust in and intention to use AV technology at the end of
each experiment compared to the beginning and before having experienced the scenarios
and negative events. While trust in and intention to use AV technology ratings were low
before experiencing the scenarios, they reduced significantly after, most likely due to the
final critical (collision) event in each case. Participants may have very high expectations of
AVs and would not expect one to be involved in a collision even when the events leading
up to it involve a pedestrian breaking the Highway Code/Rules of the Road and the AV
not being able to stop in time. In fact, participants may have believed that the AV should
have been able to avoid the collision, perhaps by stopping in time or taking another course
of action–e.g., swerving and/or even mounting the kerb. This is an area that requires
much future research attention–i.e., discretionary actions that could and perhaps should be
performed by AVs to try and avoid accidents and how potential users perceive and judge
these in terms of trust and possible blame if the discretionary/emergency action in itself
results in a negative outcome (e.g., injuring the user of the AV or another road user(s) that
AV may not have been able to detect when performing the action).

Limitations and Future Directions

Our experiments are not without limitations. There are further considerations that
need to be addressed before we can, with a higher degree of confidence, recommend that
embodying and humanising AVIAs will not be universally beneficial, including in the
event of AV incidents and accidents. First, the experiments employed the SSGA method
successfully used in past studies [17,30], with videos created within a driving simulator–
including the IAs (robot and speech only)–and played to participants via experiments
deployed online. Some previous research has provided evidence that video displays of a
robot (telepresence) are not as effective as physical presence [69,70]. Future research should
consider manipulations of agent embodiment and dialogue style under in-person testing
conditions—i.e., with the IAs physically present, unlike the online experiments employed
within the current experiments and related studies [40,42,43]. Second, only one type of
humanoid robot was employed: a Nao with human-like features, and because it was used
in similar previous studies [40,42,43]. However, people will often make judgements about
a robot based on its appearance [71]. The Nao robot can be considered as having a childlike
appearance, and the appearance of arms and legs may have caused participants to assume
that it had more control [72] as related to the expectations and capabilities points discussed
earlier. Additionally, the positioning and actions of the embodied IA need to be further
considered. Within the current experiments, the Nao robot was positioned as if it was on
the vehicle dashboard, facing forward most of the time and turning towards the participant
when delivering dialogue, based on research such as that by [73]. In this case, however,
the robot was acting as a driving assistant, and a person still had control of the car. It
may be less appropriate when a user is not in control of the car. It would be valuable to
test whether effects differ if the robot IA is positioned such that it is never viewing the
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road to reinforce its agency as an assistant and perhaps create a less ambiguous situation
where it could be perceived as having at least some control over the functions of the AV.
Alternatively, and to also address the potential issue of an IA robot having arms and legs,
a multi-directional gaze-driving agent system such as NAMIDA might be beneficial [74].
However, such a device could further exacerbate user perception that the IA is in some way
‘all seeing, all knowing’ and should thus be able to intervene or trigger a system that can
intervene in the event of a potential incident involving an AV. The use of weak robots (also
known as human-dependent social robots) could also be considered [75]. The design of
such devices moves away from the idea that the robot can perform many things and instead
capitalises on the idea that its inabilities will encourage more human interaction and fewer
expectations. A weak robot IA may also be considered more similar to a voice-only IA but
could have higher physical embodiment.

There were also other aspects of an IA that could be manipulated that may affect
trust and blame in the event of an AV being involved in an incident and/or accident.
Ref. [76] categorise design variables of in-vehicle agents into four design spaces as part
of a systematic literature review: Agent characteristics (variables such as agent type and
appearance); Information presence (what type of information and how transparent it
is); Verbal characteristics (characteristics of speech (e.g., male, female, genderless), style
of speech); and Non-verbal characteristics (agent attitude, body gestures, expressions
and customisation features such as matched personality). Another limitation to consider
relates to cultural similarities and differences. The current experiments involved UK
participants only. Previous studies have established differences in acceptance of Avs
across cultures [77] and moral reasoning relating to AVs [78]. It is entirely plausible that
trust and blame attribution towards AVs will differ when AVs are involved in incidents
and/or accidents and that IAs and perceptions of them will also vary across countries and
cultures–potentially impacting trust and blame.

Our measures of trust, blame and attitudes towards the IA also need to be considered.
We employed three different measures of trust: a single measure based on and successfully
used by [17,30], TiAS [42]; further developed and successfully used by [43] and STS-
AD [58]–specifically developed and validated for autonomous driving research on trust).
Within the field of human-robot interaction, it is often the case that two types of trust
are important: performance and relational [79,80]. Performance trust relates to how well
someone believes an agent can achieve the goals assigned to it. Relational trust refers to
trust on a social level, in particular, a person’s behaviour in relation to the agent. The
TiAS and single measure items were aimed more at relational trust, and the STS-AD was
used to measure performance and trust in the specific situation. As we did not manipulate
the actual performance of the AV, the only effects on performance trust are likely to be
residual secondary effects from a more positive perception of the competence of the AV.
This can perhaps explain why no effects were found with the STS-AD. Second, our inclusion
of a single blame question (focused on the AV and the pedestrian) is not unusual. For
example, ref. [81] adopted a similar approach, albeit with more agents to which blame
could be assigned (e.g., vehicle, pedestrian, manufacturer, Government). However, they
also included an open-ended question probing motivation for participant blame ratings
as well as to check for random responses. Such an approach could be considered in
future research involving AV IAs. Third, we adopted the RoSAS [66] to measure attitudes
towards a humanoid robot IA as well as a non-robot speech-only IA. Other researchers
have adopted other methods to assess attitudes toward vehicle assistants, including the
Kano questionnaire with dimensions on, e.g., product features (e.g., ‘how would you
feel if the automotive assistant could alert you to potential hazards?’) and satisfaction
improvement [82], although the RoSAS seemed to be the most appropriate within the
current experiments with some promising findings in terms of competence although very
low ratings for warmth and dis(comfort).

The IAs employed within the experiments used speech as the main form of communi-
cation, given that passengers within highly autonomous vehicles may not be expected to be
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visually engaged with them or, indeed fully with the driving conditions unfolding before
them. However, visual information regarding manoeuvres, e.g., could also be provided
as an additional source of informational assistance. IAs could relay information about the
driving environment from real-time video footage to the user, which could enhance their
situation awareness regarding elements of the journey, such as when manoeuvres that have
higher levels of risk are being considered and executed. To achieve this, there is a require-
ment for real-time perception of streaming videos to react to manoeuvres made by an SDC.
Video Object Detection (VOD) methods, which focus on detecting and tracking objects in
video frames, have traditionally been used. An autopilot perception task called streaming
perception has also been proposed by [83], which, unlike traditional VOD methods, allows
for real-time perception. However, existing methods are still limited when it comes to
managing complicated changes in motion, and subsequently, newer methodologies such as
LongShortNet [84] and the DAMO-StreamNet framework [85], which offers a solution for
real-time perception in autonomous driving have been proposed (see also [86]) and could
be coupled with speech-based features of AV IA systems.

Finally, it is acknowledged that while well-powered, the current experiments involved
UK participants only. Emerging research on public perceptions of AV safety [87], trust [88]
and acceptance [89] has revealed differences in these measures across countries that can
be attributed to factors such as cultural differences. Additionally, the appetite for AV
technology in terms of acceptance will be higher in some countries, see [90] than in others,
and this could be based on, e.g., how developed the traffic systems are as well as population
factors such as age and when it expected or indeed enforced that citizens above a certain
age will not be able to drive manual vehicles.

6. Conclusions

Caution should be exercised when attempting to anthropomorphise IAs within high
AVs. Our findings reveal that an IA that was too persistent in its assertions (and being
perceived as assertive) could further endanger trust following an accident involving an
AV that was the fault of another agent. Ensuring that neither the IA nor the AV itself
causes increased perceptions of risk must, therefore, be a consideration with some evidence
of higher trust in a humanoid robot IA, markedly so when communicating using a first-
person conversational rather than informational style. While providing opportunities for
participants to learn to trust the AV via experience, its negotiating overtake attempts with
an IA communicating intentions and actions was shown to increase trust; the type of IA
(humanoid robot or speech-only system) did not seem to matter. However, providing such
an experiential learning opportunity phase may have increased the perceived capabilities
of the IA and the AV such that following an accident event; there were no differences in
trust or blame due to IA embodiment or dialogue style. Future directions include testing
the efficacy of our manipulations via in-person testing, considering robot agent type and
other features such as placement and attributes (e.g., gender), and possibly considering
other measures of trust and blame.
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