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Abstract
Machining quality prediction based on cutting big data is the core focus of current developments in intelligent
manufacturing. Presently, predictions of machining quality primarily rely on process and signal analyses.
Process-based predictions are generally constrained to the development of rudimentary regression models.
Signal-based predictions often require large amounts of data, multiple processing steps (such as noise reduction,
principal component analysis, modulation, etc.), and have low prediction efficiency. In addition, the accuracy of the
model depends on tedious manual parameter tuning. This paper proposes a convolutional neural network quality
intelligent prediction model based on automatic feature extraction and adaptive data fusion (CNN-AFEADF). Firstly,
by processing signals from multiple directions, time-frequency domain images with rich features can be obtained,
which significantly benefit neural network learning. Secondly, the corresponding images in three directions are fused
into one image by setting different fusion weight parameters. The optimal fusion weight parameters and window
length are determined by the Particle Swarm Optimization algorithm (PSO). This data fusion method reduces
training time by 16.74 times. Finally, the proposed method is verified by various experiments. This method can
automatically identify sensitive data features through neural network fitting experiments and optimization, thereby
eliminating the need for expert experience in determining the significance of data features. Based on this approach,
the model achieves an average relative error of 2.95%, reducing the prediction error compared to traditional models.
Furthermore, this method enhances the intelligent machining level.

Keywords: Surface roughness prediction, Short-time Fourier transform, Feature extraction, Data fusion,
Convolutional neural network

1 Introduction
The manufacturing industry is demanding increasingly
higher processing quality standards [1]. Traditional quality
control methods, which primarily rely on experience and
post-processing inspections, are insufficient for providing
early warnings of quality issues. With the rapid develop-
ment of intelligent manufacturing technology [2], the ad-
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vent of big data has provided new ideas and methods for
processing quality prediction [3]. Through the analysis and
mining of massive data [4], real-time monitoring and qual-
ity prediction of the processing process can be achieved
[5, 6]. This advancement enhances the automation [7] and
intelligence [8] of the production process, improves prod-
uct quality [9], and reduces production costs [10].

Surface roughness is a critical quality attribute of ma-
chine tool products [11]. Surface roughness prediction can
be categorized into regression prediction [12, 13] and neu-
ral network prediction [14]. Conventional regression mod-
els have limited capability to process high-dimensional
big data, and the typically small data volumes make them
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highly sensitive to noise during the manufacturing pro-
cess. Neural networks have demonstrated significant ad-
vantages in handling nonlinear relationships and large-
scale complex data [15, 16]. It can extract features and pat-
terns in data analysis and is widely used to predict un-
known data [17].

Studies [18–20] indicate that feature extraction and data
fusion [21] of original data significantly affect the intel-
ligence, train time, and prediction error of data-driven
predictions. Regarding feature extraction, Wu et al. [22]
performed feature extraction on data using autoencoders.
Zeng et al. [23] applied convolution and pooling tech-
niques to extract features from multi-source signals. Wang
et al. [24] utilized convolutional neural networks and PCA
feature recognition to extract features from multi-source
signals. The aforementioned research methods employ au-
toencoders, convolution operations, and pooling opera-
tions in neural networks to extract features from large vol-
umes of original data. These approaches, however, signif-
icantly increase the training time of the neural network
model. Additionally, these feature extraction methods rely
on human expertise and judgment, impeding the real-
ization of rapid automatic feature extraction. Regarding
data fusion, He et al. [25] selected sensitive features as
input based on feature extraction from multi-sensor sig-
nals. Huang et al. [26] designed a feature matrix data fu-
sion as the input of the neural network. Zhang et al. [27]
performed feature extraction on multi-sensor signals by
designing sliding windows. However, the aforementioned
method does not account for the impact of different fea-
ture data on variations in neural network training and fit-
ting. The fusion method essentially extracts features from
the data and uses the entire dataset as feature input. Al-
though this approach can improve prediction accuracy
[28, 29], it also increases the model’s training time. Existing
data fusion methods fail to achieve the dual objectives of
reducing data volume and enhancing data quality simul-
taneously. In addressing the aforementioned challenges,
Maintaining a low prediction error while automatically ex-
tracting rich features and reducing data volume presents
significant research value.

This paper uses five-axis milling of thin-walled parts as
an example to study the aforementioned challenges. A fea-
ture extraction layer based on the time-frequency anal-
ysis method is established, employing the STFT for au-
tomatic feature extraction from signals collected in mul-
tiple directions. The time-frequency domain processing
method converts the original signal into a time-frequency
image, with the STFT window length parameter deter-
mined by Particle Swarm Optimization (PSO) [30]. Time-
frequency domain images encapsulate rich feature and tex-
ture information, empowering convolutional neural net-
works (CNN) to comprehensively learn from the data. This
method circumvents the necessity for collecting large vol-
umes and various types of data, eliminates the need for

signal denoising, and simplifies the feature extraction pro-
cess. For the data fusion layer, the image data in three di-
rections are weighted and fused by setting different fusion
weights, which are also determined through PSO. This fu-
sion method reduces the data volume while retaining time-
frequency domain features from multiple directions.

2 Predictive model framework and parameter
optimization method

Vibration is the key influencing factor on surface rough-
ness during machine tool processing [28]. During the pro-
cessing of thin-walled aviation blades by a five-axis CNC
milling machine, vibration signals are collected by vibra-
tion sensors. The steps of CNN-AFEADF, including vibra-
tion signal feature extraction, data fusion, and parameter
optimization, are shown in Fig. 1.

2.1 Overall framework of the model
The intelligent prediction method of surface roughness is
composed of Input layer, Feature Extraction layer, Data
Fusion layer, Convolution layer, Pooling layer, Fully Con-
nected layer, and Output layer.

Input layer: the input layer receives the collected time-
domain signals, which are then forwarded to the Feature
Extraction Layer.

Feature Extraction layer: the signal generated by the
five-axis milling of thin-walled aircraft blades is the un-
steady. Hilbert-Huang Transform (HHT), Wavelet Trans-
form (WT), and STFT are the methods used to process the
unsteady signal to get the feature map. In Sect. 4.2 of this
paper, a comparative analysis of the time-frequency image
data sets obtained by the three methods will be conducted.
The following is a brief introduction to the theory of the
three methods.

HHT comprises Empirical Mode Decomposition (EMD)
and Hilbert Transform (HT). Ultimately, all the acquired
IMF (Intrinsic Mode Function) components undergo HT.
The formula is given by Eq. (1).

H[hi(t)] =
1
π

∫ +∞

–∞
hi(τ )

t – τ
dτ . (1)

WT uses wavelet functions to decompose signals, which
have localized characteristics. The mathematical repre-
sentation of WT is given by Eq. (2).

CWT(a, b) =
1√
a

∫ ∞

–∞
x(t)ϕ∗

(
t – b

a

)
dt. (2)

STFT is a Fourier transform with a fixed window length.
The process of STFT is to multiply the signal by an analysis
window function h(t) before the Fourier transform. The
mathematical representation of STFT is given by Eq. (3).

STFT(t, f ) =
∫ +∞

–∞
x(τ )h(τ – t)e–j2π f τ dτ . (3)
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Figure 1 Modeling and experimental process

Figure 2 Image fusion process

Data Fusion layer: the fusion layer serves to decrease the
data dimensionality and enhance the feature richness of
individual image data. Firstly, the time-frequency images
in the three directions of X, Y, and Z are obtained in the
feature layer, and the corresponding time-frequency im-
ages in the three directions are fused. Then, the fused im-
age is processed by the Lanczos interpolation algorithm in
order to reduce the image size. To set the initial weight,
such as Eq. (4), the sum of the three weights a, b, and c is
equal to 1 to ensure that the pixel value of the weighted
pixel matrix does not exceed 255. The fusion process is
shown in Fig. 2, and the weight parameters are optimized
through the PSO. The fusion layer employs RGB images as
input, offering richer feature information than traditional

grayscale pixel matrices[29]. The STFT converts vibration
signals into RGB time-frequency domain images, which
simultaneously capture time, frequency, and intensity in-
formation. This multi-dimensional data is essential for ac-
curately predicting surface roughness, as roughness is di-
rectly correlated with vibration. Consequently, RGB time-
frequency domain images provide a more comprehensive
reflection of these characteristics.

{
IF = aX + bY + cZ,
a + b + c = 1. (4)

Convolution layer: convolutional layers are used to ex-
tract information from the input image. The size of the im-
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age is assumed to be W ×H , and the size of the convolution
kernel is assumed to be F × F , stride = S, and Padding = P.
The size of the output matrix after passing through the
convolution layer is shown in Eq. (5) and Eq. (6).

convWoutput =
convWinput – F + 2P

S
+ 1, (5)

convHoutput =
convHinput – F + 2P

S
+ 1. (6)

In the process of forward propagation, the convolutional
layer performs a convolution operation between the fea-
ture filter and the input local region, followed by an acti-
vation function. The output of the convolutional layer can
be regarded as the feature map obtained by extracting fea-
tures from the feature matrix. The forward propagation
process of the convolution layer is shown as Eq. (7), and the
backpropagation equation is shown as Eq. (8). The specific
details of the equation can be found in the literature[31].

Xl
j = f (

∑
i∈Mj

(Xl–1
j × Kl

ij) + bl
j), (7)

∂L
∂Kl

ij
=

∑
u,v

((δl
j )u,v(Pl–1

j )u,v),
∂L
∂β l

j
=

∑
u,v

(δl
j )u,v. (8)

Pooling layer: after the convolution calculation, the di-
mensionality of the parameters in the pooling layer re-
mains high. The function of the pooling layer is to reduce
the dimensionality of the features obtained by the convo-
lution layer. The pooling layer is calculated by sliding a
matrix window of n × n size. Through the pooling oper-
ation, image features that are not affected by position are
selected, the feature dimension is reduced, the amount of
calculation is reduced and the receptive field of subsequent
features is increased. The forward propagation calculation
of the pooling layer is as shown in Eq. (9), and the back-
propagation calculation of the pooling layer is as shown in
Eq. (10).

Xl
j = f (β l

j • down(Xl–1
j ) + bl

j), (9)

∂L
∂β l

j
=

∑
u,v

(δl
j down(Xl–1

j ))u,v,
∂L
∂β l

j
=

∑
u,v

(δl
j )u,v. (10)

Fully connected layer: the fully connected layer con-
verts the feature matrix of the pooling layer into a one-
dimensional feature vector. High-level features extracted
from convolutional and pooling layers are integrated and
mapped. The neurons in the fully connected layer are con-
nected to the neurons in the previous layer, and the out-
put calculation process is as Eq. (11). The parameters of
the fully connected layer are also updated through the
backpropagation algorithm, and the calculation process is
shown in Eq. (12). To reduce the problem of over-fitting

and improve the generalization ability of the model, reg-
ularization (Dropout) is introduced in the fully connected
layer.

Xl = σ (W lXl–1 + bl), (11)

∂L
∂W l

j
= δl

j (X
l–1)T,

∂L
∂bl = δl. (12)

Output layer: the function of the output layer is to con-
vert the feature mapping learned by the network into spe-
cific numerical output. The goal of the regression predic-
tion task is to predict continuous numerical values.

2.2 Model parameter optimization
In the field of mechanical intelligence diagnosis and pre-
diction, many methods use the sigmoid function as the
activation function of CNN. However, the sigmoid func-
tion has the defects of gradient disappearance and slow
convergence in the training process. The direct linear unit
(ReLU) function can effectively overcome these shortcom-
ings. Therefore, the ReLU function is used as an activation
function for the convolutional layer, the pooled layer, and
the fully connected layer.

Intelligent prediction models need to adjust model pa-
rameters during the training process so that model train-
ing can converge faster and more effectively to obtain the
optimal solution. The Adam [32] optimizer combines the
idea of the momentum method of Gradient Descent and
the idea of the adaptive learning rate of RMSprop.

However, the Adam optimizer can only optimize the
internal parameters of the intelligent prediction model.
The external parameters that are set cannot be optimized.
Therefore, the PSO algorithm is proposed as an external
parameter optimization method for intelligent prediction
models. The Adam optimizer is combined with the PSO al-
gorithm to form internal and external optimization of the
model.

PSO [30] is a swarm-based optimization algorithm in-
spired by nature. PSO initializes a group of particles with
random positions and velocities that fall within the search
space. During the iteration, each particle updates its veloc-
ity and position according to the following Eqs. (13) and
(14):

vi = ωvi + c1r1(pi – xi) + c2r2(gi – xi), (13)

xi = xi + vi. (14)

The number of particles is set to 20, the dimension is
set to 4, and the number of iterations is set to 500. A “4”-
dimensional array of random initial positions is created,
which represents three weight values and window length
values respectively. The weight elements in the initial po-
sition are uniformly distributed random numbers between
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Figure 3 CNN-AFEADF model

the intervals [0, 1). The window length value parameter is
also defined.

2.3 Model configuration
The input data for the input layer comprises the col-

lected time-domain signal. The original time domain sig-
nal is sent to the feature layer through the input layer. In
the feature extraction layer, a non-stationary signal pro-
cessing method is used to extract the time domain signal
into a time-frequency feature image. After completing the
feature extraction, all the obtained images in the X, Y, and
Z directions are sent to the fusion layer, and the Xi, Yi, Zi
images are fused correspondingly. The input image size is
the original image size of 540 × 570 × 3.

After completing the image fusion, the Lanczos inter-
polation algorithm is used in the fusion layer. The image
is resized to 227 × 227 × 3. This operation can further

reduce the computational complexity of the convolution
neural network and reduce the model fitting time. After
completing feature extraction and data fusion, four convo-
lutional layers and four pooling layers are alternately con-
nected. The convolution kernel and pooling kernel sizes
are set to 3 × 3 and 2 × 2 respectively, and the stride is
set to 1. The fully connected layer has 500 neurons and
Dropout is set to 0.3. The network framework details and
parameter settings are shown in Fig. 3.

3 Experimental configuration
Blades are used as milling workpieces, and the blade mate-
rial is aluminum alloy. The blank size is 40 × 15 × 90 mm3.
When finishing, choose a half-price 1 mm TiSiN-coated
ball cutter, and the finishing depth of the cut is 0.2 mm.
As shown in Fig. 4, the vibration sensor is installed on
the workbench of the five-axis milling machine. Vibration
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Figure 4 Experimental process and vibration singal collection

Figure 5 (a) Contrast results. (b) The result of entropy

sensors convert vibration signals from acceleration signals
into electrical signals. The vibration signal is amplified 10
times by the amplifier. Then the capture card is connected
and the sampling frequency is set to 5 kHz. The sampled
data is transferred to the computer host. The blade ma-
chining process and tool path are shown in Fig. 4(c). The
blade is segmented into 48 regions from top to bottom. In
each region, three roughness measurements are taken, and
the average value is considered as the roughness for that re-
gion. The roughness measurement procedure is depicted
in Fig. 4(d).

4 Results and discussion
4.1 Feature extraction and data fusion
Various methods are employed to process non-stationary
signals, including HHT, WT, and STFT. Each of these
methods can generate time-frequency images. The image
is processed through the Gabor filter. The contrast and en-
tropy of the image are analyzed. The results are shown in
Fig. 5. Contrast describes the degree of difference between
different areas in an image. High contrast values represent
significant differences in different areas of the image. In the
field of target detection, higher contrast is often required.
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Figure 6 HHT time-frequency image

Figure 7 WT principle diagram

In image regression prediction, higher contrast appears as
feature clutter. In contrast, lower contrast has stable char-
acteristics. Entropy represents the amount of information
in an image. The higher the entropy, the richer the texture
information of the image. For the three types of images, it is
necessary to obtain images with low contrast and high en-
tropy. That is, images with regular features and rich feature
information are selected as data sets. As shown in Fig. 5 (a),
STFT exhibits superior contrast compared to both the WT
and HHT.

As shown in Fig. 5(b), the entropy values of the R chan-
nel and B channel of the STFT are markedly higher than
those of the WT and HHT. The value of HHT R channel
entropy is 6.8, and the value of G channel entropy is 6.61.
The value of WT R channel entropy is 6.87, and the value
of G channel entropy is 6.6. The values of the R channel
and G channel are almost equal. The value of the B chan-
nel entropy of the WTis 6.97. The value of HHT B channel
entropy is 5.31. The B-channel entropy value of the WT is
larger than the HHT. Therefore, the WTis better than the
HHT. Based on comprehensive contrast analysis, the char-
acteristic image obtained through the STFT proves to be
the most optimal among the three methods.

The HHT is to perform EMD on the original signal and
then perform HT to obtain the frequency domain diagram.
The EMD process entails identifying the upper and lower
envelopes of the signal and subsequently calculating their

mean. These envelopes are determined by the local max-
ima and minima of the signal. Consequently, to achieve
a coherent frequency domain representation, there are
stringent requirements for the regularity and noise-free
characteristics of the original signal throughout the pro-
cessing. However, the processing process is affected by
the machine tool status, processing environment, etc., and
combined with image change analysis, the image obtained
by the HHT changes irregularly, as shown in Fig. 6.

WT processing of time domain signal is shown in Fig. 7.
The WT is capable of generating time-frequency images,
which exhibit relatively regular changes overall, as shown
in Fig. 8. This transform decomposes the signal using
wavelet functions, resulting in a continuously varying win-
dow length that imparts localized characteristics, as shown
in Fig. 9. However, the presence of excessive detail in the
overall image can hinder the model’s learning process de-
scribed in this paper.

The STFT is a Fourier transform with a fixed window
length, as shown in Fig. 10. As the roughness increases, the
high-frequency features of the image increase and change
regularly, as shown in Fig. 11. At the same time, the fre-
quency features are continuous, and there is no continuous
frequency change in the HHT and the WT. Images with
the same set of surface roughness have stable features, as
shown in Fig. 12.
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Figure 8 WT images with different surface roughness

Figure 9 WT image with the same surface roughness

Figure 10 STFT principle diagram

To analyze the advantages and disadvantages of differ-
ent time-frequency domain feature extraction methods,
the training set is utilized as the model test input. The pre-
diction curve is shown in Fig. 13. As shown in Figs. 11(a),
(c), and (e), the predicted values of the model trained with
the STFT dataset are closer to the true values. The predic-
tion stability of the data set obtained by the STFT is better

than that of the data set obtained by the HHT and the data
set obtained by the WT. Additionally, the lowest accuracy
in the three directions using HHT is 74%, for WT it is 75%,
and for STFT it is 89%. Therefore, the model trained with
the STFT dataset consistently demonstrates higher accu-
racy. Based on the above analysis, the time-frequency do-
main signal processing method can achieve automatic fea-
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Figure 11 STFT images with different surface roughness

Figure 12 STFT image with the same surface roughness

ture extraction while maintaining lower prediction error.
At the same time, among the three methods, automatic
feature extraction through the STFT has the best stability
of prediction accuracy.

As shown in Fig. 14, the vibration signal is processed by
STFT to obtain image data in three directions. The im-
age features in the three directions (X, Y, and Z) are dis-
tinct. To reduce the convergence time of the model, images
in three directions are fused. The fusion of images in the
X, Y, and Z directions not only reduces the data volume
but also integrates time-frequency image features from all
three directions into a single image. 1080 540 × 570 × 3
image data were obtained in each direction. Taking all data
in three directions as input is traditional data fusion, such
as Fig. 14. This paper fuses time-frequency images of size
540 × 570 × 3 in three directions into one image of size
540 × 570 × 3. At the same time, the fused image data
size 540 × 570 × 3 is changed to 227 × 227 × 3 through
the Lanczos interpolation algorithm. The training and fit-
ting time for data of different sizes is shown in Fig. 15. The
training time of 1420 × 570 × 3 is 12,018 s (Due to the lim-
itations of computing server computing power and storage
space, the 1620 × 570 × 3 training fitting time cannot be

obtained), and the training time of 227 × 227 × 3 is 718 s.
The training time of the model is effectively shortened by
the data fusion operation.

Additionally, to investigate the impact of the Lanczos in-
terpolation algorithm on prediction accuracy, this study
employs the algorithm to process four datasets of vary-
ing resolutions: 400 × 400, 350 × 350, 300 × 300, and
250 × 250. The prediction errors across these datasets
consistently approximate 2.5%, as shown in Fig. 16. The
results indicate that the Lanczos interpolation algorithm
does not significantly influence the prediction error. Fur-
thermore, in an effort to optimize computational efficiency
and accelerate the model’s training and fitting processes,
an input size of 227 × 227—commonly utilized in image
processing—is selected.

4.2 Determination of fusion weight parameters and
window length parameters

In Sect. 4.3, the fusion operation is performed on the image
data. However, the fusion weight and window length pa-
rameters are a randomly defined set. As shown in Fig. 17,
the value of the window length affects the frequency com-
ponent of the image. Different frequency components
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Figure 13 Prediction results. (a) The HHT prediction results. (b) HHT prediction accuracy. (c) The WT prediction results. (d) The WT prediction
accuracy result. (e) The HHT prediction accuracy results. (f ) The HHT prediction accuracy result

prove that the texture and detail characteristics of the pic-
ture are different.

To analyze whether different weight combinations have
an impact on model training, an orthogonal experiment
of L33 was established. The experimental design is shown
in Table 1. Three factors are the ratio of three weight

values (Due to the constraint that the sum of the three
weight values must equal 1, it is not feasible to directly
generate an orthogonal test table by assigning weight val-
ues. Therefore, an orthogonal test is designed by setting
the weight ratios instead.). The CNN-AFEADF converges
when Epoch = 7-10. The average loss of Epoch = 7-10 is
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Figure 14 Traditional fusion

Figure 15 Training time

taken. In order to avoid accidental results in the experi-
ment, each set of parameters is trained five times. The av-
erage of five times was taken as the Loss value of the or-
thogonal experiment. Based on the range analysis, it can be
concluded that B has the greatest influencing factor, while
A has the smallest influencing factor. According to range
analysis, the three fusion weight parameters have different
effects on the CNN-AFEADF. Among the data analyzed,
the Y-direction data has the greatest impact on the model
training fit, while the X-direction data has the least impact
on the model fit.

In response to the above analysis, this paper introduces
the PSO for optimization. The commonly used values for
the STFT window length are 128, 256, and 512. The cur-
rent window length values are set to the following seven
groups according to the interval of 64, as shown in Table 2.

Figure 16 Comparison of accuracy under different input sizes

To mitigate the impact of small variations in model fit-
ting training results, 140 sets of weight values are randomly
generated through the computer code, and the 140 sets
of weight values are randomly assigned to 7 sets of win-
dow lengths. Then assign different weight values and win-
dow length values to the model for training. The epoch is
set to 10, and the mean square error MSE is used as the
prediction evaluation index of model training. The model
completely converges when Epoch = 7 and the fitting is
completely stable. The training results of the combination
of different weights and window lengths are shown in the
blue bar chart in Fig. 18.

MSE =
1
N

n∑
i=1

(ŷi – yi)
2. (15)
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Figure 17 Image frequency feature map. (a) Red channel of 128. (b) Green channel of 128. (c) Blue channel of 128. (d) Red channel of 512. (e) Green
channel of 512. (f ) Blue channel of 512

Table 1 Orthogonal experiment

Experiment number A B C Loss

1 4 4 2 1435.2915
2 4 6 4 1420.4937
3 4 8 6 1503.7995
4 6 4 4 1418.0161
5 6 6 6 1536.0786
6 6 8 2 1654.8592
7 8 4 6 1388.3474
8 8 6 4 1542.8412
9 8 8 2 1736.5331
Range analysis 102.712331 217.84558 148.44429

Table 2 Different window length values

Window length value

128 194 256 320 384 448 512

Put all the data into the PSO for optimization. The op-
timized weights and STFT window lengths are shown in
Table 3. The PSO iterative optimization process is shown
in Fig. 19. The particles are constantly searching for the
global optimum. Since their initial positions are close to

the global optimum, the final results after completing the
iterations remain near the initial positions. Optimization
results are shown in Table 4, and average Loss after train-
ing of this set of parameters is 1195. The comparison be-
fore and after optimization is shown in Fig. 18 and Table 3.
In Fig. 18, the optimized green histogram is lower than
the blue histogram, and the yellow histogram represents
the average value. In Table 3, the maximum optimization
(MaxOpt), minimum optimization (MinOpt), and average
optimization (AvgOpt) optimization rates are listed. The
parameters are determined by PSO, which can improve the
optimization effect by at least 8.95%. The training results
are shown in Fig. 20.

4.3 Model predictions and comparisons
To verify the performance of the surface roughness pre-
diction method proposed in this paper, two groups of ex-
periments under different working conditions were set up
for verification. The machining parameters for the two sets
of working conditions are shown in Table 5. Owing to the
variations in machining parameters, the surface roughness
measured by the roughness measuring instrument also dif-
fers. The trend in roughness variation is shown in Fig. 21.
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Figure 18 Optimized result. (a) The window length is 128 training groups. (b) The window length is 192 training groups. (c) The window length is
256 training groups. (d) The window length is 320 training groups. (e) The window length is 384 training groups. (f ) The window length is 448
training groups. (g) The window length is 512 training groups
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Table 3 Optimization Result

X Y Z Windows Loss after optimization

0.453 0.153 0.394 155 1195

Figure 19 PSO iteration

Table 4 Optimization effect

Category 128 192 256 320 384 448 512

Avg Loss 1556 1523 1554 1538 1574 1648 1565
MinOpt 8.95% 13.52% 9.51% 11.50% 13.08% 10.60% 9.03%
MaxOpt 67.95% 71.67% 104.08% 87.87% 77.48% 103.99% 103.06%
AvgOpt 30.23% 27.42% 30.06% 28.74% 31.71% 37.89% 30.95%

Each group verified the experimental data of the test set
of 48 groups, each group took 5 images, a total of 240 im-
ages. The model prediction error is measured as a percent-
age of the average relative prediction error. The first group
of prediction results is shown in Fig. 21(a), with an aver-
age relative prediction error of 2.74%. The second group
of prediction results is shown in Fig. 21(b), with an aver-
age relative prediction error of 3.15%. The average relative
error between the two groups is 2.95%.

P̄acc(%) = 1 –
1
n

n∑
i=1

∣∣∣∣Raexp
i – Rai

pre

Raexp
i

∣∣∣∣ × 100%. (16)

In addition, SVM, Artificial Neural Networks (ANN),
and General Regression Neural Network (GRNN) were
used for training prediction. And the SVM kernel function
(KernelFunction) was set to linear kernel, the GRNN was
configured with 10 hidden neurons, and the ANN featured
two hidden layers, each containing 10 neurons. The kur-

Figure 20 Optimized training results

tosis value of the vibration signal corresponding to each
surface roughness is calculated. The kurtosis value is in-
put into SVM, ANN, and GRNN training as features, as
shown in Fig. 22, CNN-AFEADF has a significantly better
prediction error than SVM, ANN, and GRNN.
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Table 5 Processing parameters

Category Speed Feed Depth of cut (finishing)

Condition 1 15,000 r/min 1500 mm/min 0.2 mm
Condition 2 16,000 r/min 1700 mm/min 0.2 mm

Figure 21 CNN-AFEADF test sets results

5 Conclusion
In this paper, a feature extraction layer based on STFT
and a Data Fusion layer are established. The weight pa-
rameters and STFT window length parameters are deter-
mined by the PSO. The input layer, feature extraction layer,
fusion layer, convolution layer, pooling layer, fully con-
nected layer, output layer, and parameter optimization are
integrated. This surface roughness intelligent prediction
method can realize automatic extraction of data features
and adaptive Data Fusion. Parameters are automatically
optimized based on the effect of data training. Compared

Figure 22 Prediction comparison of different model

to traditional prediction methods, the model proposed in
this paper maintains a lower prediction error. The main
findings of this study are:

(1) Recognizing that convolutional neural networks ne-
cessitate a substantial number of features to effectively
characterize processing quality and thereby minimize pre-
diction errors, this paper proposes a time-frequency do-
main processing method for signal feature extraction. The
obtained image possesses rich time-frequency domain fea-
tures. Analysis indicates that the feature variations derived
from the STFT are more stable and regular. Additionally,
the time-frequency domain signal processing method fa-
cilitates automatic feature extraction while maintaining
a low prediction error. Compared to traditional model
data preprocessing, STFT extraction of time-frequency
images eliminates the need for preprocessing steps such
as signal noise reduction and principal component anal-
ysis. This approach integrates traditional neural network
models with signal processing, enhancing the efficiency
of modeling and application in processing quality assess-
ment.

(2) This paper reduces the data volume through data fu-
sion, effectively shortening model fitting time by a factor of
16.74. This improvement enhances model prediction effi-
ciency and underscores the significance of data fusion pro-
cessing. Range analysis reveals that the influence weight
of the dataset under varying parameter fusions exhibits
different sensitivities to neural network training. Conse-
quently, the fusion layer weight parameters and STFT win-
dow length parameters are optimized using PSO. This ap-
proach effectively reduces the loss value of model training,
with the average loss decreasing by approximately 30%.
Thus, adaptive data fusion is achieved.

(3) Two test sets with different working conditions were
evaluated, yielding prediction errors of 2.74% and 3.15%.
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Compared with traditional models, including the SVM
(10.52%), GRNN (5.96%), and ANN (6.19%), the proposed
model demonstrates a lower prediction error compared to
traditional neural network fitting models. This model has
demonstrated the ability to maintain low prediction error
under the feature extraction and data fusion methods pre-
sented in this paper. A modeling scheme is provided for
online real-time evaluation of machining quality.
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