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Abstract: Large angular scale surveys in the absence of atmosphere are essential for
measuring the primordial B-mode power spectrum of the Cosmic Microwave Background
(CMB). Since this proposed measurement is about three to four orders of magnitude fainter
than the temperature anisotropies of the CMB, in-flight calibration of the instruments and
active suppression of systematic effects are crucial. We investigate the effect of changing the
parameters of the scanning strategy on the in-flight calibration effectiveness, the suppression of
the systematic effects themselves, and the ability to distinguish systematic effects by null-tests.
Next-generation missions such as LiteBIRD, modulated by a Half-Wave Plate (HWP), will be
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able to observe polarisation using a single detector, eliminating the need to combine several
detectors to measure polarisation, as done in many previous experiments and hence avoiding
the consequent systematic effects. While the HWP is expected to suppress many systematic
effects, some of them will remain. We use an analytical approach to comprehensively
address the mitigation of these systematic effects and identify the characteristics of scanning
strategies that are the most effective for implementing a variety of calibration strategies in the
multi-dimensional space of common spacecraft scan parameters. We verify that LiteBIRD’s
standard configuration yields good performance on the metrics we studied. We also present
Falcons.jl, a fast spacecraft scanning simulator that we developed to investigate this
scanning parameter space.

Keywords: CMBR experiments, CMBR polarisation, gravitational waves and CMBR
polarization
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1 Introduction

The quest for the primordial B modes of the Cosmic Microwave Background (CMB) po-
larisation, which would be the smoking gun for the existence of Primordial Gravitational
Waves (PGWs), represents one of the biggest challenges of contemporary cosmology [1, 2].
Their detection will require the mapping of the largest angular scales of the CMB, favoring
the observation of the entire sky from out side Earth’s atmosphere.

The next generation of space projects, including LiteBIRD [3], are designed to accurately
measure the primordial B modes and test representative inflationary models by measuring
the tensor-to-scalar ratio r (corresponding to the amplitude of the PGW power spectrum),
with an accuracy of δr < 0.001. The experiment must be able to distinguish primordial B
modes from the E modes and temperature anisotropies, which are at least three to four
orders of magnitude larger.

With the recent advent of highly-sensitive detector arrays, including Transition Edge
Sensor (TES) bolometers that can reach the photon noise limit, the main obstacles to the
B-mode observation are related to systematic uncertainties and the removal of Galactic
foregrounds. A first important consideration in order to suppress systematic effects in
polarimetric observations is given by the careful choice of the sky scanning strategy, consisting
of the combination of the spin and precession of the spacecraft. C.G.R. Wallis et al. have
shown in ref. [4] that an optimal scanning strategy, which allows each region of the sky to be
observed such that the uniformity of the crossing angle distribution is maximised, is effective
in suppressing systematic effects. However, since the role of scanning strategies is not only to
suppress systematic effects, but also to effectively perform in-flight calibration of instruments
and null-tests to reveal unknown systematic effects, the choices for the next generation of space
missions should also carefully consider these aspects. Scanning strategies are characterised
by a multi-dimensional parameter space, consisting of ‘geometric parameters’, given by the
angles of the spacecraft’s spin and precession axes, and ‘kinetic parameters’, consisting of the
period/rate of rotations around these axes. The optimisation of such a parameter space has
been previously performed for the missions WMAP and Planck [5, 6]. In particular, the data
analysis method, and the coupling and removal of systematic effects (such as instrument drift
and 1/f noise) with scanning strategies to achieve the high-resolution temperature anisotropy
measurements targeted by these space missions were discussed in refs. [7–10]. In addition,
after the CMB polarisation was measured and the presence of B modes predicted, similar
analysis were also performed for polarisation in ref. [11].

In this paper, we revisit the optimisation of the scanning strategy parameters in a multi-
dimensional space with a fast scan simulator that we have developed, and provide clear metrics
in order to assess the suppression of systematic effects and calibration for space missions.
We also account for a continuously rotating Half-Wave Plate (HWP) that modulates the
polarisation of the incoming light. A HWP has been deployed in recent ground-based CMB
experiments, such as POLARBEAR and Simons Observatory [12–14], and is also planned
to be equipped on LiteBIRD. By modulating the polarisation with a continuously rotating
HWP, it is possible to effectively remove the 1/f noise that would otherwise degrade the
sensitivity at the large angular scales where the primordial B-mode signal becomes prominent.
In addition, the pair-differencing between two orthogonal detectors, which is often used for
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polarisation observations, is no longer necessary with a HWP. Typical systematic effects
due to pair-differencing, such as differential gain, differential pointing and differential beam
ellipticity, discussed in ref. [15], thus become irrelevant. However, when installing a HWP
on a spacecraft, it is necessary to consider other effects, such as whether the polarisation
in a region of the sky to which the telescope’s point spread function (i.e. main beam) is
pointing would be modulated while it is in transit, that is, whether the HWP rotation is
sufficiently faster than the sky scanning motion.

The paper is organised as follows: in section 2, we describe the relationship between the
HWP rotational period and its subsequent constraint on the scanning angular velocity. In
particular, we show that the lower limit on spin period depends on the requirement that the
HWP is able to achieve at least one modulation during a pointing that transits the size of the
main beam on the sky. In section 3, we introduce metrics to optimise the scanning strategy:
visibility time of planets; hit-map uniformity; and ‘cross-link factor’. The cross-link factor
measures the uniformity of the crossing angles and is characterised by an integer number
called spin.1 The cross-link factor metric for scanning strategy optimisation was proposed
in ref. [4] and it has been shown [16, 17] that some systematic effects can be fully captured
by this metric using the combination of specific spin values. In section 4, we extend the
formulation of ref. [17] to include a continuously rotating HWP and introduce a framework
for analytically assessing the coupling of systematic effects on the tensor-to-scalar ratio r
and scanning strategies. Section 4.4 presents a scan simulator, Falcons.jl that enables
fast computation of the scanning metrics and allows us to perform the optimisation of the
multi-dimensional parameter space of a scanning strategy. The results for each metric thus
obtained are then presented in section 5. In section 6, we consider the optimisation of
the geometric parameters and kinetic parameters and evaluate the quality of the proposed
parameters for the LiteBIRD scanning strategy given in ref. [3]. Section 7 compares the
scanning strategies considered in Planck and the future PICO missions [18] with the effective
scanning strategy for LiteBIRD proposed in this work. We do so, by interpreting the
capabilities of each scanning strategy in terms of null-tests and in-flight calibration, such as
beam shape reconstruction and visit/revisit time of sky pixels and planets. Finally, section 8
discusses the results obtained and presents our conclusions.

2 Scanning strategies for spacecraft as CMB polarisation probes

2.1 The parameter space of a scanning strategy

Past CMB space missions (WMAP and Planck) were conducted at the second Lagrange
point (L2) in the Sun-Earth system. These two missions scanned the entire sky by combining
the spin and precession of the spacecraft with its motion around the Sun. As sketched in
the left panel of figure 1, the angle between the direction of observation of the spacecraft
and its axis of maximal inertia — the spin axis — is called β. The rotation of the spacecraft
itself around this axis is thus called the spin. The angle between the spin axis and the vector

1In this paper we distinguish the ‘spin’ (normal font), which is the rotation around the maximum inertial
axis of a spacecraft, and ‘spin’ (italic font), which is an integer characterising the cross-link factor and
systematic effects.
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from the Sun to the spacecraft is referred to as α. While in orbit, the spacecraft witnesses a
motion of precession of its spin axis around the Sun-spacecraft axis. The periods associated
with these two rotations will hereafter be noted as Tβ and Tα, respectively.

Some of the next generation of CMB experiments are also expected to be equipped with
a continuous rotating HWP which modulates the polarised signal. Its angle around the optic
axis is denoted ϕ and its period of rotation Tϕ. Instead of the periods Tj (j ∈ {α, β, ϕ}),
one can equivalently consider the frequencies:

ωj = 2π/Tj [rad/s], (2.1)
fj = 1/Tj [Hz], (2.2)
νj = 60/Tj [rpm]. (2.3)

Depending on the context, we will switch between using Tj , ωj , fj , or νj in the remainder
of this work. The detailed definition of the spacecraft’s precession and spin motions are
described in appendix A.1. Another crucial parameter defining the scanning strategy is the
sampling rate fs, i.e., the number of data taken by the instrument per unit of time. The
angles α and β are referred to as the ‘geometric parameters’ of the scanning strategy, and the
period/angular frequency/frequency/rotation rate, i.e., Tj/ωj/fj/νj for rotation are referred
to as the ‘kinematic parameters’. The six-dimensional parameter space {α, β, Tα, Tβ, νϕ, fs}
characterises the scanning strategy of a spacecraft, and finding a reasonable compromise
for the parameter set using various criteria represents a highly complex problem. However,
combining the constraints that a scientific mission, in particular with a HWP demands, and
using simplifying considerations, allows us to reduce the effective dimension of the problem
and simplify its optimisation.

2.2 Constraints on the parameter space

2.2.1 Constraints on geometric parameters

One commonly used constraint on the geometric parameters is to impose

κ = α+ β > 90◦. (2.4)

As also noted in ref. [4], such a constraint is required in order to obtain full-sky coverage of
the scanning. Since the effective β is different from one detector to another, it is common
to choose a higher value of κ, such as κ ∼ 95◦ [4] in accordance with the specific Field of
View (FoV) of the experiment. In so doing, one also optimises the configuration to avoid
the exposure of the instruments to solar radiation. This upper bound for κ is related to
the design of the sun-shield and other mechanisms to control heat input to the payload. As
examples, both WMAP and Planck had κ = 92.5◦, although EPIC [19] was allowed to have
α = 45◦, β = 55◦, i.e., κ = 100◦ by using a relatively large sun-shield, which correspond to
the largest κ proposed for a CMB space mission. For a given experimental design, one can
thus fix the value of κ such that α and β are no longer independent.

2.2.2 Constraints on kinetic parameters

Next, we consider the periods Tj . The role of the HWP installed on the spacecraft is two-fold:
first, it modulates the polarisation with a frequency sufficiently higher than the assumed
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1/f noise knee frequency fknee of the instrument; second, it improves the uniformity of the
effective crossing angles. The first point is not discussed here because it relates to the issue
of optimising the HWP revolution frequency given a 1/f noise model.

Therefore, we assume a situation where the 1/f noise with a certain fknee can be
sufficiently suppressed by a HWP with revolution frequency fϕ, and consider the conditions
required for the spacecraft rotation periods. Without a HWP an incoherent polarimetic
receiver the polarisation modulation is solely provided by the spacecraft rotation. Such a
configuration requires a high spin rate to obtain high modulation efficiency. The specific
constraints in this case are discussed in ref. [4], but for a spacecraft with a HWP, the
spacecraft’s spin will no longer play a primary role in the modulation. On the other hand,
we need to consider whether the HWP can modulate the polarisation in the sky pixel when
the telescope’s pointing transits over a sky pixel, i.e., whether the HWP rotation is fast
enough for the sky scan motion. The maximum angular velocity at which the pointing
sweeps the sky is given by

ωmax = ωα sin κ+ ωβ sin β

= 2π
(

sin κ
Tα

+ sin β
Tβ

)
.

(2.5)

For completeness, a detailed derivation of this expression of ωmax is given in appendix A.1.1.2
As such, the time τ that the pointing spends in a region of the size of the FWHM (Full

Width at Half Maximum) of the main beam ∆θ is

τ = ∆θ
ωmax

. (2.6)

When the HWP modulates the polarisation signal, the sampling rate must be determined such
that the modulated signal can be demodulated correctly. A HWP revolving at a frequency
fϕ modulates polarisation by 4fϕ, so its Nyquist frequency is 8fϕ. Introducing the variable
Nmargin (Nmargin > 1) as the margin for sampling, the condition that the sampling rate fs
requires for demodulation is given by

fs > 8fϕNmargin. (2.7)

On the other hand, since the HWP must revolve Nmod (Nmod > 1) times while the pointing
transits the angular distance of ∆θ in order to modulate the polarisation in the sky pixel,
it is required that

NmodTϕ < τ. (2.8)

Combining eqs. (2.7) and (2.8), the following inequality must always be satisfied:

Nmod
τ

< fϕ <
fs

8Nmargin
. (2.9)

2We assume here that the directions of rotation for precession and spin are the same. We further discuss
the case where one of them is taken in the opposite direction in appendix B.3.
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Under this condition, both the proper modulation of the signal from an observed sky region
within the FWHM ∆θ and a sampling rate allowing for demodulation are satisfied. The
constraint imposed on the spacecraft here is on τ , which corresponds to making τ long enough
to satisfy eq. (2.8), i.e., this provides an upper bound on the maximum angular velocity
ωmax at which the instruments can sweep the sky.

In order to impose a constraint on the spacecraft’s kinetic parameters, i.e., Tα and Tβ,
we can rewrite eq. (2.8) as follows

Nmod
fϕ

<
∆θ

2π
(

sinκ
Tα

+ sinβ
Tβ

) . (2.10)

Solving this for Tβ yields to the lower bound

T lower
β ≡ 2πNmodTα sin β

∆θfϕTα − 2πNmod sin κ. (2.11)

In ref. [4], the value of Tβ was also constrained by the time constant of the detectors. However,
the situation is different in a scenario with a HWP modulation, as is considered here. Indeed,
the rotation frequency at which the HWP modulates the signal is set according to the time
constant of the detector in order to account for it. Therefore, the time constant becomes a
parameter that limits the HWP rotation frequency and not the scanning strategy itself.

A lower bound on Tα can also be obtained by imposing the condition Tβ < Tα in eq. (2.11),
to avoid complicating the inertial control of the spacecraft. One can thus define

T lower
α ≡ 2πNmod(sin β + sin κ)

∆θfϕ
. (2.12)

Then, the relationship between the spin period and precession period can be summarised
as follows

T lower
β < Tβ < Tα. (2.13)

For full-sky observations, there is also an upper limit on Tα, which can be obtained only
through simulations, but according to ref. [4], a precession period of more than 1 year prevents
full-sky observations.

Overall, combining the constraints on the angles and on the periods allows us to reduce
the dimensionality of the problem from 6 to 3. Indeed, one can fix κ from instrumental
considerations, and consider the constraint T lower

β < Tβ, such that the parameter space
becomes

{α, β, Tα, Tβ, νϕ, fs} → {α, κ− α, Tα, T
lower
β (α, Tα) < Tβ, νϕ(fknee), fs(νϕ)}. (2.14)

Keeping only the free parameters, the parameter space reduces to the triplet {α, Tα, T lower
β <

Tβ}, where νϕ and fs are scaled to fix a given fknee.

– 6 –
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α β Precession period Spin period HWP revolution rate Sampling rate
LFT MFT HFT

[deg] [deg] [min] [min] [rpm] [Hz]

45 50 192.348 20 46 39 61 19

Table 1. Parameters of the standard configuration for the LiteBIRD mission [3].

2.3 The case of LiteBIRD

The LiteBIRD space telescope is a JAXA L-class mission selected for launch in 2032 in Japan,
with a nominal mission duration of three years [3]. The instrument will be composed of three
telescopes: LFT (Low Frequency Telescope), MFT (Medium Frequency Telescope) and HFT
(High Frequency Telescope), observing respectively at low, medium and high electromagnetic
frequencies in the GHz range. LiteBIRD’s main scientific objective is the measurement of the
faint primordial B modes remaining from inflation, as imprinted on the CMB polarised signal
anisotropies, to test representative inflationary models by measuring r with an accuracy
of δr < 0.001. In order to achieve this, the polarisation is modulated by a continuously
rotating HWP, and a sky scanning strategy must be carefully optimised to provide full-sky
coverage with high-precision polarisation measurements. As such, LiteBIRD provides an
ideal example for the present study.

The latest instrument model of the LiteBIRD uses the values: α = 45◦, β = 50◦, such
that κ = 95◦, in agreement with our discussion in section 2.2.1. Moreover, Tα = 3.2058 hours
(= 192.348 min), Tβ = 20 min, νϕ = 46/39/61 rpm and fs = 19 Hz.3 The instruments have
FoV of 18◦ × 8◦/14◦/14◦ respectively for LFT, MFT, and HFT.4

We will refer to this setup as the standard configuration, illustrated in figure 1 (left)
and summarised in table 1. The hit-map, which counts the number of observations per
sky pixel, is simulated with the standard configuration and its time evolution is shown in
figure 2 (middle column). The figure also shows the hit-maps simulated with α = 10◦ (left
column) and α = 85◦ (right column), showing how the geometric parameters impact the scan
trajectory. In the two cases, Tα is the same as the standard configuration and Tβ is simulated
by T lower

β calculated with the respective α and Tα pairs.
The goal of the present work is to explore and rigorously justify the choice of such a

configuration with regard to in-flight calibration and suppression of systematic effects. To
consider the constraints given by eq. (2.11), we apply the HFT’s HWP revolution rate which
is the highest of the telescopes, with correspondingly the smallest FWHM (∆θ = 17.9 arcmin)
at 402 GHz. We assume these parameters for all frequency bands, and we use Nmod = 1 and
Nmargin = 2, as suggested in ref. [3]. In the LiteBIRD instrument model, as long as eq. (2.11)
is satisfied for the HWP revolution rate and FWHM pair, it is also satisfied for the LFT and
MFT cases. Calculating T lower

β from these values, we can create the space shown in figure 1
(right), where T lower

β = 16.9 min for (α, Tα) = (45◦, 192.348 min).

3The exact value is given by fs = 20 MHz/220 [3].
4The MFT and HFT values represent the radius of the FoV.
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Figure 1. (Left) The standard configuration of LiteBIRD’s scanning strategy. (Right) The lower
limit of the spin period, T lower

β , which is determined by eq. (2.11) in case of the standard configuration
when Nmod = 1. We consider an FWHM of the HFT with the highest center frequency of 402 GHz
and ∆θ = 17.9 arcmin. The black dot in this and subsequent similar figure represents the position
which has (α, Tα, Tβ) = (45◦, 192.348 min, 16.9 min). Of these, α and Tα are the values of LiteBIRD’s
standard configuration.

From the LiteBIRD instrument model and the discussion in the previous section, the
effective free parameters of the scanning strategy to optimise are then given by

{α, β, Tα, Tβ, νϕ, fs} → {α, 95◦ − α, Tα, 16.9 min < Tβ, 61 rpm, 19 Hz}. (2.15)

In the following analysis, all figures show results that are simulated considering a single
boresight detector, i.e., a single detector located at the center of the telescope’s focal plane.
We verified that performing the same study for detectors located at the edge of the FoV in
the telescopes, does not change our conclusions regarding the optimisation choice discussed
in section 6. A detailed discussion of the detectors non located at the boresight can be
found in appendix B.2.

3 Metrics for optimisation

3.1 Visibility time of planets

It is clear from the results of the Planck experiment that compact sources such as solar
planets and distant clusters of galaxies are valuable resources for in-flight beam and pointing
calibration [20, 21]. One would then expect a scanning strategy to maximise observation
time on these objects while still completing its primary science goals during the defined
mission duration. The integrated time spent by the boresight on a compact source is a
quantity that is expected to be proportional to the calibration accuracy, and we search for
the parameters which can maximise the integrated visible time during the mission duration
in the {α, Tα} space.

– 8 –
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Figure 2. Hit-map which counts the number of observations, i.e., hits in each sky pixel and its time
evolution for each geometric parameter. The middle column corresponds to the standard configuration,
and in all columns κ is fixed at 95◦ and Tα at 192.348 min. In the left/right columns, α is 10◦/85◦, and
Tβ is 21.9/3.8 min, respectively, obtained by calculating T lower

β in eq. (2.11). The top to bottom rows
show the time evolution of the hit-map from a single precession period of the standard configuration,
i.e., 192.348 min, 1 day, 1 month, 6 months, and up to 1 year. Each hit-map is simulated for a single
detector on the boresight with a sampling rate of 19 Hz and Nside = 128, i.e., the size of a sky pixel is
approximately 0.46◦.

3.2 Hit-map uniformity

Uniformity of the hit-map across the sky results in uniformity of the sensitivity across the sky.
On the other hand, significant differences in sensitivity from one region of the sky to another
would increase noise variance, which can degrade the accuracy of foreground removal.

We define the spherical coordinates Ω = (θ, φ) and use the index i to label the sky pixels
as defined within the HEALPix framework [22].5 To quantify the uniformity of the sensitivity

5https://healpix.sourceforge.io/.

– 9 –

https://healpix.sourceforge.io/


J
C
A
P
1
2
(
2
0
2
4
)
0
3
6

across the sky, we use the standard deviation of the hit-map, σhits, which is defined as

σhits =

√√√√ 1
Npix − 1

Npix−1∑
i=0

(⟨Nhits⟩ −Nhits(Ωi))2, (3.1)

where Nhits represents total number of hits/observations and ⟨· · · ⟩ denotes the entire sky
average. A small value for σhits indicates that the hit-map is uniform and we can expect
the sensitivity per sky pixel to be uniform as well. We examine the distribution of σhits
in the {α, Tα} space.

3.3 Cross-link factor

According to ref. [4], a well-designed scanning strategy that has crossing angles for a sky
pixel can suppress some systematic effects. In order to quantify the uniformity of the crossing
angles, we define the following quantity which is referred to as the ‘cross-link factor’:

∣∣∣n,mh̃(Ω)
∣∣∣2 =

∑Nhits
j cos(nψj +mϕj)

Nhits

2

+

∑Nhits
j sin(nψj +mϕj)

Nhits

2

= ⟨cos(nψj +mϕj)⟩2 + ⟨sin(nψj +mϕj)⟩2,

(3.2)

where ψ is the crossing angle, which is defined as the angle between the scan direction of
the detector and the meridian, and ϕ is the HWP angle.6 In this paper we assume that
the crossing angle and the detector polarisation angle are always parallel. The subscript j
represents the jth measurement at the sky pixel and the pair of integers (n,m) is called the
spin. A perfectly uniform distribution of the crossing leads to

∣∣∣n,mh̃(Ω)
∣∣∣2 = 0 for all pairs

(n,m). As such, the crosslink factor is a quantity to be minimised and we will generally say
that a scanning strategy has a ‘good cross-linking’ when the cross-link factor is relatively
small. It has been shown in refs. [4, 17] that a scanning strategy minimising the cross-link
factors across the sky can efficiently suppress the systematic effects.

In this paper, we include the continuous rotating HWP in eq. (3.2) and examine the
distribution of the cross-link factors per spin-(n,m) in the {α, Tα} space. As the final metric,
we consider the entire sky average of the cross-link factor, ⟨

∣∣∣n,mh̃(Ω)
∣∣∣2⟩ as suggested in ref. [4].

In order to demonstrate how the cross-link factor can contribute to the suppression of specific
systematic effects, we introduce in section 4 a formalism in which some systematic effects
are expressed in term of the cross-link factors in the spin space.

4 Formalism and method

4.1 Contribution of cross-link factor for systematic effects suppression

Following the formalism introduced in refs. [16, 17], we can express the signal detected by a
CMB experiment within a pixel of spherical coordinates Ω as a function of the orientation

6The HWP angle ϕ is defined such that the direction of increasing crossing angle ψ and rotation angle
obey either the IAU or COSMO (HEALPix) convention (https://lambda.gsfc.nasa.gov/product/about/pol_con
vention.html), allowing us to define polarisation consistently on the sphere.
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angles as

Sd(Ω, ψ, ϕ) = h(Ω, ψ, ϕ)S(Ω, ψ, ϕ), (4.1)

where S describes the signal field, which expresses the signal received by the instrument
at each visit of the sky pixel, and the real space scan field, h, describes the observation by
the detector modulated by the HWP in each sky pixel under a specific scanning strategy.
As discussed in ref. [23], h can be defined as

h(Ω, ψ, ϕ) = 4π2

Nhits(Ω)
∑
j

δ(ψ − ψj)δ(ϕ− ϕj), (4.2)

where δ is the Dirac delta function, so that the scan field h acts as a window function on the
signal fields. It is then possible to decompose the signal in a Fourier series in the discrete
spin space (ψ, ϕ) → (n,m) as

Sd(Ω, ψ, ϕ) =
∑
n,m

n,mS̃
d(Ω)einψeimϕ, (4.3)

n,mS̃
d(Ω) =

∞∑
n′=−∞

∞∑
m′=−∞

∆n,∆mh̃(Ω)n′,m′S̃(Ω), (4.4)

where we here introduce ∆n = n− n′ and ∆m = m−m′, and define the orientation function,
∆n,∆mh̃ by Fourier transform of the real space scan field as

n,mh̃(Ω) = 1
4π2

∫
dψ

∫
dϕh(Ω, ψ, ϕ)e−inψe−imϕ

= 1
Nhits

∑
j

e−i(nψj+mϕj).
(4.5)

By taking the norm of the orientation function, we obtain eq. (3.2), i.e., the cross-link
factor. The ∆n,∆mh̃ term in eq. (4.4), which corresponds to the cross-link factor, couples
the spin-(n− n′,m−m′) signal to the spin-(n,m) quantity of interest, or, in the case where
(n′,m′) = (n,m), behaves as the window function of the observation. In general, one should
consider the infinite series of spin-(n′,m′) in eq. (4.4), but it can be shown that specific values
of the pair (n,m) can be associated with specific systematic effects, such that a finite series
of spin terms can give an accurate representation of the signal under simplifying assumptions.
(See appendices A.2.2 and A.2.3 and refs. [16, 17] for details.)

In addition, since the maps of eq. (4.5) can be pre-computed for a particular scanning
strategy, we can efficiently evaluate the impact of the systematic effect associated with each
spin term by using a map-based approach without running Time Ordered Data (TOD)
simulations each time.

4.2 Map-based simulation using the spin formalism

According to ref. [17], we can assess some systematic effects without time-dependency by
map-based approach by using the spin. In the previous section, we included the HWP
revolution to the orientation function, then we can construct similar map-based approach

– 11 –
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while taking into account the HWP revolution. We define the bolometric equation which
gives us a jth TOD as following

dj = I + 1
2Pe

−i(4ϕj−2ψj) + 1
2P

∗ei(4ϕj−2ψj), (4.6)

where I represents the intensity of Stokes parameter, and P is a complex number which
is defined as P = Q + iU and its complex conjugate, P ∗ with the Stokes parameter of Q
and U . To estimate the Stokes parameters from the signal, a linear regression analysis can
be performed, which in spin space is denoted as


Î

P̂

P̂ ∗

 =


1 1

2 −2,4h̃
1
2 2,−4h̃

1
2 2,−4h̃

1
4

1
4 4,−8h̃

1
2 −2,4h̃

1
4 −4,8h̃

1
4


−1

0,0S̃
d

1
2 2,−4S̃

d

1
2 −2,4S̃

d

. (4.7)

A detailed derivation is given in appendix A.2.1. This formalism has applications beyond
the one presented in ref. [17] and can be generalised to allow for a HWP to be taken into
account. We verify explicitly in appendix A.2.5 that this new method gives results which are
consistent with TOD-based binning map-making simulations. Also, here the demodulation
is done in the vector part of the right side of eq. (4.7) as we can see in eq. (A.12) which
is describing TOD-based binning map-maker. This method is different from the method
used to obtain independent TOD of I, Q and U with the lock-in technique using HWP, and
its implementation into the map-based simulation is left for future study.7 However, the
time-independent systematic effects discussed in the next section can be accounted for by
cross-link factors, so the conclusions of this paper based on them are not dependent on the
demodulation method used in map-making.

In this formalism, if the map of n,mh̃ is computed in advance under a certain scanning
strategy, all calculations in eq. (4.7) are just quadratic operations of the maps, and this is a
faster approach than the computationally expensive TOD-based simulations. However, it
is difficult for this method to handle time-dependent systematic effects, such as 1/f noise
or scan-synchronised signals, and TOD simulations are still required in order to correctly
assess these.

4.3 Instance of systematic effects

We introduce a formalism to characterise systematic effects in spin space. This formalism can
be used to express some systematic effects without having to consider any time-dependencies.

As an instance of a systematic effect, we consider the pointing offset and the instrumental
polarisation due to the HWP, whose formalism in spin space is described in appendices A.2.2
and A.2.3. These are just a couple of examples of possible systematic effects impacting
the next generation of CMB polarimetric space missions, but they are good choices for the
purpose of demonstrating the methods and to investigate how the value of the cross-link
factor maps can be propagated to the bias on r.

7It has not yet been determined what demodulation method will be used in the case of LiteBIRD.

– 12 –



J
C
A
P
1
2
(
2
0
2
4
)
0
3
6

4.4 Scanning observation simulator: Falcons.jl

For the purpose of this study, we developed the public package Falcons.jl, allowing for fast
simulation of spacecraft observations in the Julia programming language [24].8 It computes
the spacecraft pointing and cross-link factors for a given observation time from a set of
input scanning strategy parameters.

Internally, the code uses the HEALPix framework through the Healpix.jl module [25].9
The loop computation for spacecraft pointing is thread-parallel, which is expected to be
faster on multi-core workstations and clusters. In benchmarks using a modern laptop, we
can compute the pointings of a single detector case in about 3 seconds of run-time during
a 1 year mission duration with a 1 Hz sampling rate. The benchmark was performed with
a single thread and it is expected that the computation time will scale with the number
of threads on the CPU.10

5 Results

In this section, we display the results given by each optimisation metric: visibility time of
planets; hit-map uniformity; and cross-link factor. For display purposes, we consider only
the special case Tβ = T lower

β , so that every metrics is evaluated in the {α, Tα} space, as in
figure 1 (right). It is possible to show that a different choice of the value of Tβ > T lower

β only
scales the distribution of the metrics in the {α, Tα} space, such that the different optimum
values remain unchanged. This assumption is further justified in appendix B.1.

5.1 Visibility time of planets

We consider that the boresight has observed a planet when it approaches at an angular
distance less than 0.5◦ away from it. When this condition is met, the observation is accounted
for in the visibility time. The assumptions made for the planetary motion are as follows.

• Using Astropy [26], the position of the planet at 2032-04-01T00:00:00 is taken as the
initial condition in Barycentric Dynamical Time.11

• The position of the planet is updated every second and is assumed not to move for that
second.

• Mars, Jupiter, Saturn, Uranus and Neptune are all considered as calibration sources.

Figure 3 (left) shows the distribution in {α, Tα} space of the integrated visibility time over
the 3 years of the mission duration, which considers all of the observations of the boresight for
all of the planets considered. There is no significant difference in the shape of the distribution,
including the position of the peaks, among the planets considered. The peak heights are as
follows: Mars, 0.77 hours; Jupiter, 1.00 hour; Saturn, 0.87 hours; and Neptune, 0.83 hours.
It can be seen that the value of Tα has a small impact on the integrated visibility time in

8https://github.com/yusuke-takase/Falcons.jl.
9https://github.com/ziotom78/Healpix.jl.

10A Macbook Pro 2020 (RAM-16 GB) with Apple M1 processor was used for the benchmarks.
11https://www.astropy.org/.
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Figure 3. (Left) The distribution of integrated visible time which is accumulated by considered
planets. (Right) Standard deviation of the hit-map which has Nside = 256. In the cases where α is
extremely large or small, the σhits is larger because the number of hits on the poles is higher and the
number of hits on the tropics region is lower.

the range Tα ≲ 100 hours. On the other hand, when α varies, the integrated visibility time
reaches its maximum value for α = β = 47.5◦, and the distribution presents a symmetrical
shape centered on this value. This can be explained by the difference in trajectories for each
α, shown in figure 2. This is because the two parallel lines symmetrically formed across
the equator by the shift of the tangent line of the scan due to orbital rotation overlap at
the equator when α = β = 47.5◦. On the other hand, while the planet is traversing the
inner gap, that we refer to as the ‘scan pupil’, the planet cannot be observed. The pupil can
be seen at the center of the hit-map simulated for a 1-day duration in figure 2. Therefore,
scanning strategies with a value of α significantly different from 47.5◦ are associated with
a lower integrated visibility time.

5.2 Hit-map uniformity

Figure 3 (right) shows the distribution of σhits. The results suggest that scanning strategies
with extremely large or small values for α, such as ones shown in figure 2 (left/right), can
be associated with a large value of σhits. The hit-map after 1 year of observation shows that
such scanning strategies realise many observations near the poles, while the regions around
the equator are not observed as often, leading to an increase in σhits. In addition, scanning
strategies with Tα > 100 hours allow only for a few degrees of orbital rotation during the
precession period. This prevents multiple precession cycles in the same region of the sky,
leading to the loss of azimuthal symmetry (seen in figure 2) and an increase in σhits.

It can be seen that σhits is almost invariant in the range 25◦ ≲ α ≲ 75◦ and Tα ≲ 100 hours,
with a slight increase for the special case α = β. The reason for this increase is that, in this
special case, the trajectories intersect on the equator, i.e., the scan pupil closes, such that
the poles and the equator are scanned intensively, while the number of observations in the
equatorial region is reduced, resulting in a larger variance.
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From the discussion of the previous section, we can thus note the existence of a trade-off
to be found between the minimisation of σhits and the maximisation of the visibility time
of the planet dictated by the size of the pupil.

In figure 3 (right), one can also notice the presence of outlier pixels in the Tα ≲ 10 hours
region, for which the value of σhits deviate slightly from the trend of neighboring pixels. This
effect can be explained by the existence of a resonance between the spin and the precession
periods, and will be discussed in more detail in section 6.2.

5.3 Cross-link factor

Figure 4 shows the distribution of the cross-link factors values for the most relevant values
of spin-(n,m) in the {α, Tα} space. The top two rows are spin-(n,m)|m=0 cross-link factors
with no HWP contribution and the last row contains spin-(n,m)|m=4,8 cross-link factors with
HWP contribution. We note that the obtained spin-(n, 0) cross-link factors distributions
have a very similar structure to the ones of ref. [4], with differences that can be explained by
the different choices of the parameter spaces regions that are sampled (the authors of ref. [4]
explore faster spin rates regions in order to suppress the 1/f noise using the spacecraft’s
rotation). Regarding spin-(n, 0) cross-link factors, scanning strategies with large α and small
β tend to be associated with smaller cross-link factors. This is because the ring drawn
by the spin is smaller in this region, as we can see in figure 2, making the crossing angles
more uniform per sky pixel.

The distribution of the spin-(n,m)|m=4,8 cross-link factors associated to the HWP tends
to be mostly flat across the {α, Tα} space. The reason is that, according to constraint
eq. (2.11), the HWP makes more than one revolution during the transit of the sky pixel,
and uniform crossing angles between 0 and 2π are obtained in one observation. All the
values of the spin-(n,m)|m=4,8 cross-link factors (1 ≤ n ≤ 6) can be similarly computed,
displaying an identically flat behavior in the {α, Tα} space for each spin-(n, 4)|1≤n≤6 cross-link
factors, and spin-(n, 8)|1≤n≤6 cross-link factors as displayed for the spin-(1, 4) and spin-(2, 4)
cross-link factors in figure 4.

5.4 Propagation of cross-link factor to bias

We use the map-based method using the spin formalism presented in section 4 to estimate
the measurement bias on r, i.e., ∆r induced by the pointing offset and the HWP non-ideality,
and to demonstrate how the value of the cross-link factor can be directly linked to ∆r. A
detailed description about the way we estimate ∆r is given in appendix A.2.4.

The CMB map used for the demonstration is generated by CAMB [27].12 A 6-parameter
ΛCDM model is chosen based on the best fit of the Planck 2018 results as follows: Hubble
constant, H0 = 67.32, baryon density, Ωb = 0.0494, dark matter density, Ωcdm = 0.265,
optical depth to reionisation, τ = 0.0543, scalar spectral index, ns = 0.966, and amplitude
of scalar perturbations, As = 2.10 × 10−9 [28]. The tensor-to-scalar ratio is set to r = 0,
assuming no primordial B modes.

For the pointing offset simulation, we impose the offset parameter (ρ, χ) = (1, 0) arcmin
in eq. (A.16) and use CMB only map as input. We smooth the CMB map with a symmetric

12https://camb.readthedocs.io/en/latest/.
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Figure 4. The entire sky average of cross-link factors per spin-(n,m). The top two panels represent
spin-(n, 0) cross-link factors with no HWP contribution, while the third panel represents cross-link
factors with spin-(1, 4), (2, 4) and (4, 8) from left to right and with HWP contribution. The spin-(n, 0)
cross-link factors are almost independent of Tα and are smaller for larger α. It can be seen that
the spin-(n,m)|m=4,8 cross-link factors are kept constant over a wide region by the constraints of
eq. (2.11). In addition, since the HWP rotates independently of the crossing angle, there is almost no
difference for each spin-n with finite spin-m in the cross-link factors.

Gaussian beam of FWHM = 17.9 arcmin, simulating the smallest instrumental beam of
LiteBIRD, as done in section 2.3. For the simulation of the instrumental polarisation due
to the HWP, we impose ϵ1 = 1.0 × 10−5 and ϕQI = 0 in eq. (A.25), and use the CMB solar
dipole map as input because it is one of the dominant components of temperature as is
discussed in ref. [29]. Indeed, CMB and foreground anisotropies can contribute as leakage
signals, but CMB anisotropies are sufficiently negligible compared to the dipole. In general,
the complexity of the frequency-dependent foregrounds is assessed using specific models and
addressed through masking and component separation. This discussion forms a whole topic
on itself and we will not consider it here in the optimisation of the scanning strategy. Note
that the magnitude of the systematic effect, i.e., ρ, χ and ϵ1 themselves are not treated here,
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Figure 5. (Left) The distribution of ∆r due to the pointing offset that has (ρ, χ) = (1, 0) arcmin as
an offset parameter. The input map here is only the CMB, which is smoothed by the Gaussian beam
with FWHM = 17.9 arcmin. (Right) The distribution of ∆r due to the instrumental polarisation with
the HWP. We impose ϵ1 = 1.0 × 10−5 and ϕQI = 0. The input map here is only the CMB solar dipole.

but only the relative penalty of each scanning strategy is identified. In order to deal with
the impact of these systematic effects on the scientific goals, calibration as in ref. [30] and
mitigation techniques as in ref. [29] also need to be considered. Notably, the map-based
simulations using the spin formalism shown in section 4.2 and appendix A.2 is about 104

times faster than the TOD-based simulation.
Figure 5 (left) shows the distribution of ∆r due to the pointing offset. As expected, the

distribution of ∆r has an overall flat distribution, inherited from the spin-(n, 4) cross-link
factors, indicating that the HWP effectively suppresses leakage from temperature due to the
pointing offset. This makes it clear that the full-sky average of cross-link factors considering
the HWP expressed in eq. (3.2) is an appropriate indicator to represent the penalty of the
scanning strategy for a particular systematic effect that couples with the HWP modulation.

Figure 5 (right) shows the distribution of ∆r due to the instrumental polarisation with
the HWP. The distribution has a similar structure to the spin-(2, 0) cross-link factor in
figure 4, as expected. This implies that this systematic effect is not suppressed by the
reduction of cross-link factors by the HWP rotation, meaning that only the spin-(2, 0) cross-
link factor acts as a suppression factor. The justification of the cross-link factor dependency
of the HWP non-ideality can be found in appendix A.2.3. These results indicate that the
systematic effect coupled with the spin-(n, 4) cross-link factor is suppressed independently
of the scanning strategy and that the choice of scanning strategy to reduce spin-(n, 0) is
important even with the use of HWPs.

6 Optimisation

In the previous section, we studied how the metrics of interest behave in the {α, Tα} space
and we confirmed that an increase of Tβ from T lower

β does not lead to a different optimised
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configuration in the cross-link factors (appendix B.1). We will now discuss how to optimise
these parameters in regards of the multiple metrics considered. Many metrics are found to
be depend mainly on α and independent of Tα when it is less than 100 hours. As such, we
propose to start by optimising the choice of the geometric parameters, assuming that this
choice can be made independently of the kinetic parameters. In this section, we first list the
suggested values of the effective choice of the geometric parameters for the next generation
of CMB space missions and compare them in regards to the various metrics considered.
After discussing the optimisation of geometric parameters, we fix them and discuss the
optimisation of kinematic parameters, allowing us to propose a reasonable compromise for
the scanning strategy parameters.

6.1 Optimisation of the geometric parameters

We now discuss the optimisation of the geometric parameters α and β. Note that, determining
α automatically determines β, since β is a function of α, depending on the constraints of
eq. (2.4). What we are looking for in a scanning strategy is the ability to have long visibility
time on the planets and to minimise both σhits and the cross-link factors.

In this respect, the α with the longest visibility time on the planets is given by the case
α = β = 47.5◦. As shown on figure 3 (left), the distribution is symmetrical around this
point, which we refer to as the balanced configuration, associated with 4.4 hours of integration
time for planets. However, from a hit-map uniformity point of view such a configuration
is slightly disfavored, as σhits displays an excess at this point. The standard configuration
has 3.2 hours of integration time, which means that despite losing about a factor of 0.7 of
planet integration time during the mission duration compared to the balanced configuration,
it provides a hit-map that is 1.1 times more uniform.

On the other hand, a scanning strategy with α = 50◦ can also guarantee a similar
planet integration time and σhits as the standard configuration, with smaller cross-link factor
values. We thus consider the flipped configuration, in which the values of α and β are reversed
compared to the standard configuration. Cross-link factor is smaller in the flipped configuration
than in the standard configuration due to the smaller value of β, but the difference is less
than 5%, such that the ability to suppress systematic effects is still expected to be similar.

In that context, we now seek for a reasonable compromise for the scanning strategy applied
to the specific case of LiteBIRD. To begin with, we reject the balanced configuration in order
to preserve the uniformity of the hit-map. As discussed further in section 7, the adoption of
the standard configuration results in a loss of integrated visibility time of planets compared to
the balanced configuration, but the standard configuration still has a relatively long integrated
visibility time of planets compared to past (Planck) and future (PICO) space missions.

The metrics we have examined do not show significant differences between the standard
configuration and the flipped configuration, but there are significant differences in terms
of heat input from the Sun and telescope design. Firstly, in terms of heat input, the
flipped configuration tilts the entire spacecraft 5◦ more towards the Sun than the standard
configuration, increasing the heat input by sin 50◦/ cos 45◦ = 1.08. Conversely, the solar
panels are tilted in a direction parallel to the Sun radiation, so the power generation efficiency
is reduced by 0.92 through the reciprocal of this factor.
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Even allowing for these degradations, we are forced to optimise a thermal protection
mechanism for the payload modules such as the V-grooves (figure 1) in LiteBIRD. However,
considering LiteBIRD as a model, this optimisation takes place in the form of reducing the
allowable volume of the telescopes. On the other hand, trying to keep the V-groove design of
the standard configuration would imply a shrinkage of the baffle (figure 1) in front of the
aperture of the telescopes to mitigate the effect of the Moon’s shadow. This would generate
a larger sidelobe leading to significant systematic effects, and it is clear that the 5% better
cross-link factors would not represent a significant enough benefit.

The 60◦ ≲ α ≲ 70◦ case seems attractive from the point of view of suppressing systematic
effects, since the cross-link factors and the systematic error are significantly reduced in figure 4
(spin-(n, 0) cross-link factors) and figure 5 (right). However, such a configuration would
increase the heat input even more than in the flipped configuration case, and the power
generation efficiency of the solar panels would correspondingly be greatly reduced.

In addition, a smaller β (associated with the larger α) would lead to a reduction in the
amplitude of the CMB solar dipole signal used for gain calibration, which is not favored from
both the engineering and scientific points of view. In this respect, the standard configuration
has been well studied by refs. [3, 31] to ensure that systematic effects and heat inputs
meet the scientific objectives of LiteBIRD. We therefore conclude that the combination
(α, β) = (45◦, 50◦) is an effective choice for the LiteBIRD mission.

6.2 Optimisation of the kinetic parameters

The geometric parameters adopted in the standard configuration (α, β) = (45◦, 50◦), which
determine the essential properties of the scanning strategy, are found to be favorable in terms
of scientific objectives and spacecraft design for the LiteBIRD mission. In this section, we fix
the values of α and β to these values and further optimise Tα and Tβ.

6.2.1 Global survey of the kinetic parameter space

In the simulations so far, Tβ was fixed at the value of T lower
β (α, Tα) = 16.9 min instead of

the proposed 20 min of the standard configuration. This value is the lower limit of the spin
period of the spacecraft and can also be converted into an upper limit on the spin rate, νupper

β

that allows the spacecraft to spin as fast as the constraint determined by eq. (2.10) permits.
Without the HWP, the spacecraft has to maintain a high spin rate to suppress the 1/f noise.
Since the HWP plays this role, we do not have to maintain νupper

β , and a slower spin rate is
permitted for easier attitude control. However, as the spin rate becomes slower, the number
of spins per precession becomes smaller, and the uniformity of the crossing angles becomes
worse, resulting in a larger spin-(n, 0) cross-link factor. Therefore, we examine the trade-off
between the spin rate and the cross-link factors.

Figure 6 (top panels) shows the Tα and Tβ dependence of the spin-(n, 0) cross-link factors.
Figure 6 (bottom panels) shows the spin-(2, 4) cross-link factors calculated for each of the
three different telescopes. Note that we zoom into a narrower parameter space region at
higher resolution than the upper panels where Tα ranges up to 5 hours. For LFT/MFT/HFT,
the HWP revolution rates are set to 46/39/61 rpm and Nside is set to 128/128/256 because
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Figure 6. (Top panels) The cross-link factors are shown for each spin-(n, 0) cross-link factor. (bottom
panels) The spin-(2, 4) cross-link factors are shown for each telescope: LFT (left), MFT (middle) and
HFT (right). The gray area in higher νβ region indicates where the condition νβ < νupper

β (eq. (2.11))
is violated. Some points are not associated with a value even though the condition is not violated.
This is due to the resonance between spin and precession, which will be discussed in section 6.2.2. In
practice, the scanning strategy for these points also covers most of the sky, but reflects the fact that a
few sky pixels may not be observed due to the redundant trajectories created by the synchronisation
of the spin and precession.

the narrowest FWHM of beams are 23.7/28.0/17.9 arcmin, respectively.13 Parameters other
than the spin and precession period are fixed to the values of the standard configuration. Note
that the use of the spin rate νβ (instead of Tβ), which is often used in spacecraft operations,
is given linearly on the horizontal axis of the figures.

In the top panels of figure 6, there is a tendency for spin-(n, 0) cross-link factors to become
smaller when νβ is larger in the figures.14 When Tα is longer than 2 hours, the cross-link
factors are almost constant, regardless of the value of Tα.15 For pixels with large values in
the figures, such as outliers, the map has a regular geometric pattern called a Moiré pattern,
due to resonance between spin and precession, as described in ref. [32]. Mathematically, it
is known that the Moiré pattern disappears when the ratio, Tα/Tβ becomes an irrational
number; therefore as we will discuss in the next section, a fine-tuning around the desired
Tα and Tβ is always possible.

For all spin-(n, 0) cross-link factors, slowing down νβ does not significantly increase the
cross-link factors up to 0.05 rpm, but a 5% increase is observed between 0.04 and 0.05 rpm. On
the other hand, the cross-link factor with a HWP contribution increases proportionally to νβ ,

13The size of a HEALPix pixel is
√

4π/Npix. When Nside is 128/256, the pixel size is 27.5/13.7 arcmin.
14We have verified that this tendency remains unchanged for higher spin-(n, 0) cross-link factors, e.g.,

spin-(n, 0)|n=4,5,6.
15We examined the limit of the Tα ≤ 100 hours, which keeps the metrics that we considered in a favorable

state, but the trend of cross-link factor independence on Tα does not change.
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but never monotonically, because it presents an oscillating behavior due to the synchronisation
of spin and the revolution of the HWP. The value νβ = 0.05 rpm is the first local minimum
that appears when νβ is reduced from νupper

β . Therefore, we conclude that νβ = 0.05 rpm,
i.e., Tβ = 20 min is a compromise point where the spin rate can be slowed down to favor
attitude control without dramatically degrading the ability of the scanning strategy to
suppress the systematic effects.

We now discuss the optimisation of the precession period. From the viewpoint of gain
calibration using the CMB solar dipole, the precession rate as well as the spin rate should be
faster to avoid contamination by 1/f noise. However, when νβ is 0.05 rpm, the spin-(n, 4)
cross-link factor is observed to decrease by 15% from T lower

α to Tα = 3.2 hours in every
telescope. On the other hand, the cross-link factor does not change significantly when Tα
is longer than 3.2 hours (192 minutes), and we conclude that this value is a good trade-off
between fast precession period and cross-link factors.

6.2.2 Fine-tuned study of the precession period

Now that our geometric parameters are determined, we can perform some fine tuning of the
rotation periods in order to remove the resonances. We define the ratio η, characterising
the resonance between spin and precession:

η = Tα
Tβ
. (6.1)

So far, we considered η = 192 [min]/20 [min] = 9.6, which is a rational number. The spin
thus synchronises with the precession in exactly 9.6 cycles, such that the intersections of
the trajectory do not drift and are dragged along by the revolution around the Sun. This
symmetry leads to an undesired straight line pattern on the hit-map in the azimuthal direction.

In ref. [32], the authors suggested to replace the decimal part of this ratio with the decimal
part of an irrational number. Since the actual irrational numbers have an infinite number
of decimals, they cannot be handled numerically and it is necessary to approximate them
by rational numbers with a high accuracy. It is known from the Diophantine approximation
that this can be achieved by terminating the continued-fraction expansion of the irrational
numbers in the middle.

The adoption of the golden ratio, which has the slowest convergence, was the choice
of ref. [32]. This value is unique and provides a logical choice in order to avoid resonance
between oscillations. A similar argument is discussed in ref. [33] from the perspective of
dynamical systems. However, in actual spacecraft operation, the accuracy of the rotation
control is limited and the spacecraft motion will be unavoidably subject to unpredictable
disturbances. To account for this fact, we perform a focused analysis of σhits in the range
of Tα ∈ [192, 193] min with a resolution of 0.1%. In doing so, we hope to identify stable
regions of the parameter space where the resonances can be avoided in a way that could
be robust against disturbances induced to the precession.

Figure 7 shows the results of this analysis, displaying the dependence of the normalised
σhits and spin-(n, 0) cross-link factors with respect to Tα in the domain of interest. We
identify 192.320 min ≤ Tα ≤ 192.370 min as an interval in which all the metrics are close
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Figure 7. Tα dependence of normalised σhits and spin-(n, 0) cross-link factors. The dashed black line
shows the Tα = 192.348 min that the value we adopt for the standard configuration. The peaks are
associated with values for which the spin and precession motion enter in resonance, resulting in Moiré
patterns appearing on the maps as shown in figure 8.

to minimal and do not vary significantly in a close neighborhood.16 We thus propose the
value of Tα = 192.348 min as the point with the smallest cross-link factors located in this
region. For example, at Tα = 192.08 min, when the resonance is expected to be the largest,
a Moiré pattern appears on the large angular scales in the hit-maps and cross-link factor
maps as shown in figure 8 (top panels), but tuning the value to Tα = 192.348 min (bottom
panels) makes this pattern vanish.

In the remainder of this work, we will keep the assumption of perfect stability under
rotations for the instrument. As mentioned above, such perfect stability cannot be achieved
in practice and further studies modeling the inertia of spacecraft and its possible in-flight
stabilisation are required to assess the accuracy to which Tα can be fixed in practice, but
this is a future work.

7 Implications

In this section we discuss other important items to consider when designing scanning strategies,
beyond the metrics discussed previously. First, we discuss in section 7.1 the impact of the
choice of scanning strategy on beam shape reconstruction through the concept of scanning
beam angle. In section 7.2, we then compare CMB missions with different scanning strategies
in regard to visit/revisit times of sky pixels, which are important in null-tests. Finally, we
discuss in section 7.3 the duration and frequency at which calibrations can be performed
during the mission duration by considering observations of planets.

The Planck and the planned PICO missions are considered for comparison. Figure 9
shows the time evolution of the hit-maps simulated for the scanning strategies of the two
spacecraft, detailed in table 2.

7.1 Beam reconstruction systematics

From the TOD of planet observations, it is possible to reconstruct the beam shape. This
process is therefore extremely important in order to mitigate systematic effects and the

16The same analysis can be performed considering the cross-link factors of spin-(n,m)|m=4,8, but since the
revolution rate of the HWP is relatively faster than the spacecraft’s spin and precession rate, resonances are
highly damped and much less significant for these quantities than for the spin-(n, 0) cross-link factors.
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Figure 8. (Top panels) Hit-map (left), spin-(2, 0) (middle) and spin-(2, 4) (right) cross-link factors
in Galactic coordinates for Tα = 192.08 min. (Bottom panels) Identical to the top panels with
Tα = 192.348 min used in the standard configuration. As suggested in figure 7, the resonance between
spin and precession is large for the top panels, leading to the appearance of Moiré patterns. These
patterns disappear in the bottom panels, where a fine-tuned precession period is used.

α β Tα Tβ

LiteBIRD 45◦ 50◦ 3.2058 hr 20 min

PICO 26◦ 69◦ 10 hr 1 min

Planck 7.5◦ 85◦ 6 month 1 min

Table 2. Geometric/kinetic parameters of LiteBIRD, PICO and Planck [18, 34].
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Figure 9. Time evolution of the hit-map simulated by PICO’s scanning strategy (top panels), and
Planck’s scanning strategy (bottom panels). The times used in the simulations are, from left to right,
1 hour, 1 day, 6 months and 1 year. The sampling rate is set to 19 Hz and the simulations are performed
with Nside = 128. Both scanning strategies show continuous sky mapping with overlapping rings,
with the rings described by spin shifting in slow precession, which is a significant difference from the
LiteBIRD’s standard configuration shown in figure 2.
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Figure 10. (Left) Illustration of velocity vectors during one spin cycle looking down from the spin
axis. Here xFP and yFP represent a focal plane coordinate which indicates the detector reference frame,
while v⃗prec and v⃗spin show the velocity vectors of precession and spin, respectively. The precession
motion acts to push the spin axis in the same direction (to the right in the figure) as seen from the
spin axis, and the scan velocity vector v⃗scan, a combination of v⃗prec and v⃗spin, changes the direction
across the xFP-axis. The angle ζ, referred to as the scanning beam angle, is given by the angle between
v⃗scan and the xFP-axis. (Right) Value of the total amplitude of ζ(t) during one spin cycle in the
{α, Tα} space.

choice of scanning strategy plays a key role in this regard [35]. As discussed in ref. [20],
the degeneracies between systematic effects in the direction of the scan (such as detector
time constant and pointing systematics) and the shapes of sidelobes can negatively impact
the reconstruction capabilities.

Consequently, although a degeneracy between the beam shape and the detector time
constant was observed in Planck, it is interesting to note that the accuracy of the beam
shape reconstruction with Jupiter was improved by using a ‘deep scan mode’, which slows
down the spin axis shift angle once Jupiter is in the period when it can be observed [21].
The choice of scanning strategy is helpful in this respect, as Planck devised a scanning
mode to measure the beam shape.

Figure 10 (left) shows a sketch of the velocity vectors during one spin cycle. We introduce
here the scanning beam angle ζ, which is the angle between the x-axis of the focal plane
coordinate (xFP) and the scan velocity vector v⃗scan, which can itself be expressed as the
combination of spin and precession velocity vectors, v⃗spin and v⃗prec respectively. During
the scanning, v⃗scan changes direction across the xFP-axis, such that ζ(t) oscillates as a
function of time.

Figure 10 (right), displays the total amplitude of ζ(t), defined as the range of variation
of the angle made by the direction of scanning in the detector’s frame during one spin
cycle. The greater the amplitude, the easier it becomes to solve the degeneracies between
unknown systematic effects related to the direction of v⃗scan. A greater amplitude also facilitate
beam-shape reconstruction and characterisation of the sidelobes.
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The small value of Tα for LiteBIRD is associated with an total amplitude of ζ of
approximately 5◦, which is a much larger value compared to a mission such as Planck, which
had a total amplitude of ζ of 0.5 arcsec. As such, sidelobe reconstruction must be easier
with missions like LiteBIRD due to its faster precession. Because of this much larger total
amplitude of ζ(t), the presence of unanticipated systematics — such as longer detector time
constant or transfer function effects — would be noticeable during the beam reconstruction,
leaving some flexibility in order to account for them. However, it is true that the Planck
and PICO scanning strategies, with larger Tα, have the advantage of being able to observe
compact sources more frequently over shorter periods.

7.2 Sky pixel visit/revisit times

In order to detect unknown time-dependent systematic effects, data sets are usually divided
into splits associated with different time periods, so that null-tests may be performed by
differencing these splits. The distribution of the time at which a sky pixel is observed, i.e.,
the numbers of iterations at which the pointing visited a pixel, is one indicator for considering
how effectively null-tests can be performed. For example, if the same pixel has been observed
uniformly over the entire mission duration, it is effective for detecting systematic effects that
vary over long time scales, such as gain drift. The revisit time separating the re-observation
of a sky pixel is also an important indicator and is defined as

trej = tj+1 − tj , (7.1)

where j represents the jth measurement on the sky pixel and the revisit time trej can be defined
by subtracting the jth from the (j + 1)th observation time. If the distribution composed
of trej is uniform and the number of revisit events at each time scale is abundant, a data
set can be created for any time scale required.

We focus on the following three characteristic points in the HEALPix map in ecliptic
coordinates: (θ, φ) = (0◦, 0◦), (45◦, 180◦), and (90◦, 180◦), and calculate the visit time of
these pixels. In all spacecraft cases, we used the same sampling rate as in the standard
configuration, 19 Hz, and discretise the pixels of the map with Nside = 64.

Figure 11 shows the distribution of visit times in different sky positions for each mission.
It can be seen that for pixels with (θ, φ) = (0◦, 0◦), LiteBIRD and PICO have abundant
visits throughout the year, while for Planck there is a gap in the observation period. This
is because the α of Planck’s scanning strategy describes large rings over the spin cycle due
to the large β, as we can see in figure 9, so that many visits occur to the same pixel in
the sky on short timescales, but once the ring of the scan drifts away from the region due
to orbital rotation, the next visit will not happen until about 6 months later. Also, large
gaps in visit time exist for all pixels considered, making it difficult to detect some effects,
for example, gain drifts that occur on longer timescales.

On the other hand, LiteBIRD and PICO have a larger α and shorter precession period
than Planck. This reduces the size of the ring described by the spin and allows the pointing
to visit many pixels on the sky many occasions for long periods of time due to its relatively
fast precession. A characteristic difference between the two spacecraft is the width of the
gap found in the center of the visit time distribution of equatorial pixels. This gap is created
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Figure 11. Distribution of visit times per spacecraft per sky position. From the top row, in the
order of LiteBIRD, PICO and Planck, the distributions are (θ, φ)=(0◦, 0◦), (45◦, 180◦), and (90◦, 180◦)
from left to right, i.e., at the North pole, between the North pole and the equator, and at sky pixels
located at the equator in ecliptic coordinates. The pixels are given in a discretised HEALPix map with
Nside = 64 and the sampling rate is 19 Hz for all simulations. Note that the vector from the Sun to L2
at the start of the simulation was chosen to point to (θ, φ) = (90◦, 0◦).

by the fact that the equatorial sky pixels are contained within the scan pupil mentioned
in section 5.1. Note that the size of the scan pupil is determined by 2|α − β|, so there is
an annual unobservable time determined by the scan pupil size and the orbital velocity in
regions that are |α − β| away from the equator.

Figure 12 is a histogram of the revisit time against the visit time in figure 11, showing how
many revisit events of what time scale occur over the period of visiting the three considered
pixels, with the blue and red dashed lines representing the spin period and precession period,
respectively. For the cases of LiteBIRD and PICO, the three pixels can be visited for long
periods of time and the wide distribution of revisit times has the potential to construct a rich
set of null-tests of various time scales, while for the case of Planck, short timescale revisit
event is rich, but the pointing can only visit a specific pixel for a very short period of time.
This restricts null-tests, especially those requiring long timescale data sets.

Therefore, it seems that scanning strategies such as those of LiteBIRD and PICO, which
have small scan pupils and relatively shorter precession periods (of at least Tα < 100 hours,
in agreement with our discussion in section 6) are likely to be effective for null-tests in
the time domain.

7.3 Planet visit/revisit times

The long integration time of planet observations discussed in section 5.1 is one important
aspect of in-flight calibration, but the length of time that calibration is possible during the
mission and how often calibration can be performed are also important. In this section, visit
and revisit times are simulated for target planets to clarify the relationship between the
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Figure 12. Distribution of revisit times per spacecraft per sky position. The order of the panels
corresponds to figure 11. The blue and red dashed lines indicate the spin period and precession period
of the corresponding spacecraft, respectively. The reason for the existence of revisits shorter than
the spin period is that at the outer edge of the scan pattern, the precession of the sweeping angular
velocity reaches ωmax, which results in a revisit earlier than the spin period at the outer edge.

scanning strategy and the visibility of the planet. The simulations use the same setup as
in section 5.1, except that in that section the visit time was integrated over time, whereas
here we consider the visit time distribution before integration.

Figure 13 shows a histogram of the visit time for planets for each spacecraft. Because the
planets are located near the equator of ecliptic coordinates, the shape of the distribution is
similar to the visit time distribution for the sky pixel (θ, φ) = (90◦, 180◦) in figure 11. Thus,
here too, a smaller scan pupil leads to a longer period of time during which the planet can be
observed. PICO has a larger scan pupil than LiteBIRD, so when a planet is spotted within
the scan pupil, it is likely to have an unobservable period of about 90 days. On the other
hand, with a rotation period of 1 minute and a precession period of 10 hours, a planet also
gains a period of observability every minute. In the case of Planck, this becomes extreme,
and it is possible to observe a planet many times in a very short period. However, the visit
time distribution creates large gaps, making it difficult to calibrate the gain and pointing
drift over long timescales. The integrated visibility time of planets per spacecraft is 3.1 hours
for LiteBIRD, 1.8 hours for PICO, and 1.6 hours for Planck, with LiteBIRD obtaining the
longest visibility time. This is related to the smaller scan pupil, but also to the fact that
the spin period is 20 times longer than for the other two missions, which increases the time
to transit the planet in one visit.

Figure 14 shows the distribution of revisit times for Jupiter, which is frequently used
for calibration. From this, it is expected that LiteBIRD and PICO have revisit events for
various timescales and can calibrate a rich data set for each timescale. The revisit events of
Planck occur more often on shorter timescales. Therefore, it is important to keep the scan
pupil small in order to continue observing the planet as long as possible over the mission
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Figure 13. Histogram of the number of observations of the planet over a 3-year mission duration,
showing the cases of LiteBIRD, PICO and Planck. The bin width is set to 1 day, the simulation start
time is 2032-04-01T00:00:00, the planet is counted as a hit when scanning is within 0.5◦ of the planet,
and the planet is assumed to move every second.

duration, which also leads to obtaining revisit events on various timescales. In order to obtain
a longer integrated visibility time, it is necessary to increase the spin period.

The shortest revisit event occurs at about the spin period of each spacecraft, while the
precession period limits the long-term revisit time for scanning strategies such as PICO,
where the ring trajectory described by the spin overlaps with the next spin cycle, allowing
continuous sky mapping. On the other hand, LiteBIRD does not cause overlapping of the
rings at each spin cycle, which results in many revisit times longer than the precession period.
In all cases, the longest revisit time will be about 6 months until the planet is next observed,
and the second longest revisit time will be the period of spotting it in the scan pupil.

8 Discussion and conclusion

In this study, we have explored the parameter space of the scanning strategy of a spacecraft
mission equipped with a HWP, using {α, Tα, Tβ} as free parameters. We examined the impact
of these parameters on three crucial metrics for B-mode observation: visibility time of planets;
hit-map uniformity; and cross-link factor. In particular, the map-based simulations using
the spin formalism that we introduced, helps us to understand the relationship between the
bias of tensor-to-scalar ratio r, or ∆r, and cross-link factors, which have been considered
important in order to suppress systematic effects. The coupling between scanning strategies
and systematic effects for HWP-equipped spacecraft has been non-trivial, but this method
may provide an interface to understand it.
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Figure 14. Histogram of Jupiter’s revisit times obtained from the visit time distribution in figure 13.
The blue and red dashed lines represent the spin period and precession period, respectively. In the
three spacecraft cases, the shortest revisit time is given by the spin period, and the longest revisit
time is given in about 6 months, which is the period when the planet is outside the coverage. The
second longest revisit time is given by the time between entering and exiting the scan pupil, which is
about 10 days for LiteBIRD, about 90 days for PICO, and about 6 months for Planck.

Using the scan simulator Falcons.jl developed here, we studied the distribution of each
metric in the {α, Tα, Tβ} space. As a result, we were able to justify that the configuration
used by LiteBIRD in ref. [3], namely the standard configuration, provides an effective trade-off
in term of instrumental calibration, suppression of systematic effects, and null-tests for
the mission.

From a more general perspective, maintaining the considered metrics in a favorable state
can be achieved by setting α ≃ β and Tα < 100 hours in the scanning strategy parameter
space we defined in figure 1 (right). All the metrics considered were shown to be largely
independent of Tα in the region Tα < 100 hours (see e.g., figures 3 and 4), such that the
geometric parameters play a crucial role in order to optimise the scanning strategy. In
section 6.1, we narrowed down the candidates for scanning strategies worth considering
and concluded that (α, β) = (45◦, 50◦) provides a good compromise between the considered
metrics and the requirements set by the instrumental design of the LiteBIRD mission.

All the figures presented were displayed in the {α, Tα} space, fixing Tβ = T lower
β as the

input of the scanning strategy. Such a choice was justified because the structure of the metric
distributions in the {α, Tα} scales rigidly with the value of Tβ for Tβ < 20 min, leaving the
value of the optimum unchanged. Such behavior is discussed in appendix B.1.

This rigid scaling can also been observed in figure 6, in which the dependence of the
cross-link factors values is presented in the Tβ and Tα space. We extended our discussion
in section 6.2, finding that the choice of Tβ = 20 min and Tα = 192 min provides a good
compromise in order to obtain the smallest cross-link factors. In order to derive these results,
we assumed the current rotation rate of the HWP in LiteBIRD. Generalising this study
to another experiment with a high fknee would require a faster HWP rotation in order to
obtain an efficient modulation. In such cases, the lower limit of the spin period determined
by eq. (2.11) becomes smaller and a faster spin is allowed. However, it is clear from figure 6
that there is no benefit to shortening the spin period bellow Tβ = 20 min.

Longer spin periods are preferable for spacecraft attitude control, and shorter precession
periods allow the CMB solar dipole signal used for gain calibration to be shifted to a higher
frequency, which can reduce the effects of low frequency gain fluctuations. As shown in
figure 10, a smaller precession period also leads to a wider range of scanning beam angles,
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which eliminates the degeneracy between beam shape and certain systematic effects. To
avoid the appearance of a Moiré pattern in the hit-map and the cross-link factor map due
to resonance between spin and precession (figure 8), a fine-tuning of the precession period
was considered and it was decided to adopt Tα = 192.348 min, where the resonance peak
with a large standard deviation in these maps was not found in the neighborhood around
Tα = 192.348 min (figure 7).

In addition to actively suppressing systematic effects by reducing cross-link factors, it is
also the role of scanning strategies to design abundant null-tests to inspect them if there are
effective in-flight calibration procedures and unknown systematic effects. In section 7, we
compared the sky pixel visit/revisit time and the visit/revisit time to planets — which are
important indicators for designing calibration strategies and effective null-tests — between
the scanning strategies of Planck, PICO, and LiteBIRD’s standard configuration. Among
these, LiteBIRD and PICO were found to have wide coverage per day and could continuously
visit specific sky pixels and planets for a long time. Moreover, since these missions revisit
pixels frequently and on various time intervals, it is suggested that these two spacecraft can
perform calibration and null-tests by dividing the data for specific sky pixels and planets into
data sets of various timescales. However, it is true that Planck’s scanning strategy, which
achieves deep sensitivity in a short time and observes stably with many sky pixels, is suitable
for temperature observations, although it was not designed with for polarisation observations.
Furthermore, although not mentioned in the manuscript, the spin direction of the spacecraft
and the precession direction are also parameters that can be freely determined. All the results
here presented were obtained by imposing counterclockwise spin, precession, and orbital
motion on the spacecraft. We simulated all indicators for all four combinations consisting
of clockwise or counterclockwise rotations, but no changes due to differences in rotation
direction were observed. A detailed discussion on this point can be found in appendix B.3.

Our analysis was greatly facilitated by the use of Falcons.jl, which was useful for
avoiding the need for both grid search via supercomputer and thread parallelisation for
efficient memory usage. Moreover, the relationship between scanning strategy parameter
space and LiteBIRD’s standard configuration in our devised constraints offer valuable insights
for future polarimetric space missions’ scanning strategy design. This, coupled with our scan
simulator Falcons.jl, should allow for other applications beyond the LiteBIRD mission.
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A Additional derivations

A.1 Scanning motion of spacecraft

This section aims at defining the spin and precession motions in detail. Consider an or-
thonormal coordinate frame xyz such that the spin axis of the spacecraft is along the z-axis.
β is the angle between the telescope boresight and the spin axis, such that in the xyz

frame — the coordinates of the vector indicating the boresight direction can be expressed as
n0 = (sin β, 0, cosβ). The motion of n0 around the z-axis with angular velocity ωβ is called
the ‘spin’ and can be expressed by acting on n0 with the time dependent rotation matrix Rz as

nspin(t) = Rz(ωβt)n0

=

cosωβt − sinωβt 0
sinωβt cosωβt 0

0 0 1


sin β

0
cosβ

, (A.1)

where Rj (j ∈ {x, y, z}) can be defined similarly as the rotation matrices around each
individual axis.

Now, let us account for a possible time dependence of the spin axis direction. Let z-axis
be the Sun-spacecraft axis, as sketched in figure 1 (left). In order to tilt the spin axis by an
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angle α from the previous configuration, a rotation must be induced on it around the y-axis

n′
spin(t) = Ry(α)nspin(t)

=

 cosα 0 sinα
0 1 0

− sinα 0 cosα

nspin(t), (A.2)

where n′
spin(t) represents the rotation of the telescope’s boresight around the spin axis with

an angle of β with respect to the spin axis inclined by α from the z-axis. We thus consider a
rotational motion around the z-axis with a rotation axis inclined by α from the z-axis with
an angular velocity of ωα. We refer to this rotation as ‘precession’ and express it by

n(t) = Rz(ωαt)n′
spin(t)

=

cosωαt − sinωαt 0
sinωαt cosωαt 0

0 0 1

n′
spin(t), (A.3)

where n(t) represents observation direction of the boresight after imposing spin and precession
motion with specific geometric/kinetic parameters. Finally, the total rotational motion
imposed on the spacecraft is summarised by the combined action of spin and precession
with the following matrix chain:

n(t) = Rz(ωαt)Ry(α)Rz(ωβt)n0

=

cosωαt − sinωαt 0
sinωαt cosωαt 0

0 0 1


 cosα 0 sinα

0 1 0
− sinα 0 cosα


cosωβt − sinωβt 0

sinωβt cosωβt 0
0 0 1


sin β

0
cosβ

. (A.4)

The full scanning motion is formulated by imposing such a time dependence of n(t) on an
orbital motion at the Sun-Earth L2 point.

A.1.1 Sweep angular velocity on the sky

Here we derive the maximum angular velocity at which the telescope’s boresight sweeps
the sky.17 By using eq. (A.4), we can define the angle ∆ξ from which n(t) moved between
time t and t + ∆t. It is defined as

∆ξ = |n(t+ ∆t) − n(t)|. (A.5)

The angular velocity dξ /dt which corresponds the sweep angular velocity in the sky is

dξ
dt =

∣∣∣∣dn(t)
dt

∣∣∣∣. (A.6)

|dξ /dt| is maximised when ωβt = 0 and we obtain maximum angular velocity at which
n(t) sweeps the sky, ωmax as

ωmax =
∣∣∣∣dξdt

∣∣∣∣
max

= ωα sin(α+ β) + ωβ sin β. (A.7)

17In fact, a rotation matrix related to the orbital rotation around the Sun can be considered, but it is
ignored here because its contribution to the spin and precession is small.
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Note that we assumed here that the precession and the spin motion share a common direction
of rotation. The behavior of ωmax when one of the directions of rotation is reversed, as well
as its impact on the scanning strategy optimisation, is discussed in appendix B.3.

A.2 Analytical description in spin space

A.2.1 Map-making equation

In order to derive the map-making equation, we start from the signal without systematic effects:

S(Ω, ψ, ϕ) = I(Ω) +Q(Ω) cos(4ϕ− 2ψ) + U(Ω) sin(4ϕ− 2ψ)

= I(Ω) + 1
2P (Ω)e−i(4ϕ−2ψ) + 1

2P
∗(Ω)ei(4ϕ−2ψ), (A.8)

where we introduce P = Q+ iU and its complex conjugate P ∗. Here, we define the signal
that is measured by jth observation at the sky pixel Ω as

dj =
(
1 1

2e
−i(4ϕj−2ψj) 1

2e
i(4ϕj−2ψj)

)
I

P

P ∗

+ nj

= wj · s + nj , (A.9)

where s is the Stokes vector and nj represents the noise. In order to estimate the Stokes
vector from the measured signal, we minimise:

χ2 =
∑
i,j

(di − wi · s)(N−1)ij(dj − wj · s), (A.10)

where Nij is the noise covariance matrix. After minimising χ2, we can obtain the equation
to estimate the Stokes vector as

ŝ =

∑
i,j

w†
i (N−1)ijwj

−1∑
i,j

w†
i (N−1)ijdj

 , (A.11)

where ŝ represents the estimated Stokes vector and † represents the Hermitian transpose.
Now, if we assume that the noise is white noise, i.e., it does not have a correlation

between the ith and the jth measurement. Furthermore, we define the symbol for the average
of a quantity xj as ⟨xj⟩ = 1

N

∑N
j xj , then, eq. (A.11) can be expressed as

ŝ =

∑
j

w†
jwj

−1∑
j

w†
jdj



=


1 1

2 −2,4h̃
1
2 2,−4h̃

1
2 2,−4h̃

1
4

1
4 4,−8h̃

1
2 −2,4h̃

1
4 −4,8h̃

1
4


−1

⟨dj⟩
1
2⟨djei(4ϕj−2ψj)⟩

1
2⟨dje−i(4ϕj−2ψj)⟩

. (A.12)
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This equation is equivalent to the simple binning map-making approach (e.g. ref. [36]), and
the following relation 

⟨dj⟩
1
2⟨djei(4ϕj−2ψj)⟩

1
2⟨dje−i(4ϕj−2ψj)⟩

 =


0,0S̃

d

1
2 2,−4S̃

d

1
2 −2,4S̃

d

, (A.13)

allows eq. (A.12) to be eq. (4.7). 0,0S̃
d, 2,−4S̃

d and −2,4S̃
d are obtained from eq. (4.4) and

can be expressed as a coupling of the signal field and the orientation function in spin space.

A.2.2 Systematic effect of pointing offset

We study here the impact of a pointing offset caused by a deviation of the absolute pointing of
the spacecraft from the expected direction. This can be caused by a miscalibration of the star
tracker on-board the spacecraft or a mounting mismatch between it and the telescope. For
the formulation of the pointing offset we refer to the coordinates and formalism introduced
in refs. [4, 17] for the study of differential pointing. We use a flat-sky approximation in
the small angular scale limit and span the sky with a Cartesian coordinate system. In this
coordinate frame, the x- and y-axis are chosen to be aligned with east and north, respectively.
Assuming that a first-order Taylor expansion around (x, y) is possible when the pointing
offset is small, the pointing offset field, S can be written as

S(ψ, ϕ) = [1 − (∂x∆x+ ∂y∆y)]I + 1
2 [1 − (∂x∆x+ ∂y∆y)]Pe−i(4ϕ−2ψ)

+ 1
2 [1 − (∂x∆x+ ∂y∆y)]P ∗ei(4ϕ−2ψ).

(A.14)

The perturbation term can be defined by using the magnitude of the pointing offset, ρ and
direction of the pointing offset, χ as

∂x∆x+ ∂y∆y = ∂x[ρ sin(ψ + χ)] + ∂y[ρ cos(ψ + χ)]

= ρ

2
[
ei(ψ+χ)ð + e−i(ψ+χ)ð

]
,

(A.15)

where we introduced the spin-up (-down) ladder operators, ð = ∂y − i∂x, (ð = ∂y + i∂x) as in
ref. [17]. By using these operators, we can rewrite the pointing offset field as

S(ψ, ϕ) = I − ρ

2
[
ei(ψ+χ)ð + e−i(ψ+χ)ð

]
I

+ 1
2

[
e−i(4ϕ−2ψ) − ρ

2
(
ei(−4ϕ+3ψ+χ)ð + e−i(4ϕ−ψ+χ)ð

)]
P

+ 1
2

[
ei(4ϕ−2ψ) − ρ

2
(
ei(4ϕ−ψ+χ)ð + e−i(−4ϕ+3ψ+χ)ð

)]
P ∗.

(A.16)

Performing a Fourier transform (ψ, ϕ) → (n,m), we can transfer the signal from real space
to spin space as

0,0S̃ = I, (A.17)

2,−4S̃ = −2,4S̃
∗ = P

2 , (A.18)
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1,0S̃ = −1,0S̃
∗ = −ρ

2e
iχðI, (A.19)

1,−4S̃ = −1,4S̃
∗ = −ρ

4e
−iχðP, (A.20)

3,−4S̃ = −3,4S̃
∗ = −ρ

4e
iχðP. (A.21)

The first two rows above are pure signals, with spin-(0, 0) for temperature and spin-(±2,∓4)
for polarisation P or P ∗, while the latter three rows are systematic effects. Looking at
the systematic signal in eq. (A.19), it appears that the spin-(0, 0) signal from the original
temperature field is transferred to a spin-(±1, 0) signal under the action of the spin ladder
operators. The spin ladder operators, resulting from a perturbation of the pointing offset,
expresses the gradient of the field and produces a spurious odd spin component that is not
present in the expected signal. By using eq. (4.4), we can describe the coupling between the
scanning strategy and the systematic effects, in the case of the pointing offset systematics:

0,0S̃
d(Ω) =

∞∑
n′=−∞

∞∑
m′=−∞

0−n′,0−m′ h̃(Ω)n′,m′S̃(Ω) (A.22)

= 3,−4h̃−3,4S̃ + 2,−4h̃−2,4S̃ + 1,−4h̃−1,4S̃

+ 1,0h̃−1,0S̃ + 0,0h̃0,0S̃ + −1,0h̃1,0S̃

+ −1,4h̃1,−4S̃ + −2,4h̃2,−4S̃ + −3,4h̃3,−4S̃,

2,−4S̃
d(Ω) = −2,4S̃

d∗(Ω) =
∞∑

n′=−∞

∞∑
m′=−∞

2−n′,−4−m′ h̃(Ω)n′,m′S̃(Ω) (A.23)

= 5,−8h̃−3,4S̃ + 4,−8h̃−2,4S̃ + 3,−8h̃−1,4S̃

+ 3,−4h̃−1,0S̃ + 2,−4h̃0,0S̃ + 1,−4h̃1,0S̃

+ 1,0h̃1,−4S̃ + 0,0h̃2,−4S̃ + −1,0h̃3,−4S̃.

These results can be obtained by multiplication of the orientation functions n,mh̃ and the n,mS̃

fields, making explicit how systematic effects with a particular spin-(n,m) can be suppressed
by the orientation function defined by the scanning strategy.

A.2.3 Systematic effect of HWP non-ideality

While HWPs are expected to modulate polarisation and effectively eliminate the 1/f noise,
reduce the uncertainties of polarisation observations even with a single detector and suppress
many systematic effects, there are also systematic effects produced by HWP’s imperfections
that need to be carefully considered e.g. [37–39]. In particular, non-ideality of the HWP can
create non-diagonal terms in its Mueller matrix, which can induce instrumental polarisation
that causes temperature-to-polarisation leakage.

This systematic effect is discussed in ref. [29] and it has been shown that the CMB solar
dipole and the intensity of the Galactic emission produce the main systematic effects. In
order to predict the bias on r induced by the instrumental polarisation to the measured
signal, ref. [29] introduced the Mueller matrix ∆M as the deviation from the ideal HWP
Mueller matrix considering only the instrumental polarisation at modulation frequency 4fϕ,
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taking only the elements that contribute to the temperature-to-polarisation leakage, we can
write the systematic signal ∆S as

∆S = [ϵ1 cos(4ϕ− 4ψ + ϕQI) cos 2ψ0 + ϵ2 cos(4ϕ− 4ψ + ϕUI) sin 2ψ0]I, (A.24)

where ψ0 describes the detector’s polarisation angle respect to a reference axis in the focal
plane coordinates, while ϕQI and ϕUI refer to the phase in ref. [29]. Here ϵ1 and ϵ2 are the
amplitude of the Muller matrix elements at the 4fϕ, ideally zero but in general they are
expected to have finite value due to the HWP non-ideality, which contributes to the magnitude
of leakage from temperature to polarisation. The signal is given by the combination of two
physical effects: first, for the component of the incident polarisation perpendicular to the HWP,
the difference in retardation between the two polarisation states of 180◦ produces a spurious
2ϕ-signal (i.e. 2fϕ-signal); second, the s- and p-polarisations of the incident polarisation,
which are not perpendicular to the HWP, flip every 180◦ rotation of the HWP, producing a
spurious 2ϕ-signal. The coupling of the two effects producing 2ϕ-signals will produce spurious
4ϕ-signals, then the modulated temperature signal will mimic a polarisation [40]. Since this
effect is caused by the HWP rotation, it is not suppressed by its rotation.

By assuming ϵ1 = ϵ2 and ϕQI = ϕUI + π
2 , we can simplify the systematic signal as

∆S = ϵ1
2 [ei(4ϕ−4ψ+ϕQI−2ψ0) + e−i(4ϕ−4ψ+ϕQI+2ψ0)]I. (A.25)

Now consider a coordinate system where ψ0 = 0 and perform a Fourier transform to obtain
the following equation in spin space

4,−4∆S̃ = −4,4∆S̃∗ = ϵ1
2 e

−iϕQI I. (A.26)

Combining the signals with the scanning strategy according to eq. (4.4) yields

0,0∆S̃d =
∞∑

n′=−∞

∞∑
m′=−∞

0−n′,0−m′ h̃n′,m′∆S̃

= 4,−4h̃−4,4∆S̃ + −4,4h̃4,−4∆S̃, (A.27)

2,−4∆S̃d = −2,4∆S̃d∗ =
∞∑

n′=−∞

∞∑
m′=−∞

2−n′,−4−m′ h̃n′,m′∆S̃

= 6,−8h̃−4,4∆S̃ + −2,0h̃4,−4∆S̃. (A.28)

Of these, ±4,∓4h̃ and ±6,∓8h̃ have a very small value in its real and imaginary parts due
to the HWP contribution, so the systematic signal coupled to this term is suppressed. On
the other hand, ±2,0h̃ has no HWP contribution, so the signal coupled to this term is only
suppressed by the scanning strategy, which produces non-negligible leakage from temperature.
Although it has been shown that the bias on r caused by this term can be compensated [29],
we emphasise it here as an example of the importance of the scanning strategy itself, even
in the presence of a HWP.

– 36 –



J
C
A
P
1
2
(
2
0
2
4
)
0
3
6

A.2.4 Method to estimate the bias on r

Using the formalism described in this section, we can obtain the temperature and polarisation
maps that are injected with specific systematic effects. From these maps, we can make residual
maps by subtracting the original input map from the output map with the systematic effect as

∆I = 0,0S̃
d − 0,0S̃, (A.29)

∆P = 2,−4S̃
d − 2,−4S̃, (A.30)

where ∆P can be decomposed into Stokes parameters as ∆Q = Re[∆P ] and ∆U = Im[∆P ].
If the signal fields have been already described by only systematics signal fields shown as
the case of HWP non-ideality in appendix A.2.3, we can obtain ∆I, ∆Q, and ∆U without
taking a residual as

∆I = 0,0∆S̃d, (A.31)
∆Q = Re[2,−4∆S̃d], (A.32)
∆U = Im[2,−4∆S̃d]. (A.33)

Now, we define a likelihood function, L(r) to assess the potential systematic bias on r

that we call ∆r, which is caused by the systematic effect as

logL(r) =
ℓmax∑
ℓ=ℓmin

logPℓ(r), (A.34)

where ℓmax (ℓmin) represents the maximum (minimum) multipole number of the power
spectrum [3]. In this paper, we apply ℓmax = 191 and ℓmin = 2, as was used in ref. [3],
and define Pℓ(r) as

logPℓ(r) = −fsky
2ℓ+ 1

2

[
Ĉℓ
Cℓ

+ logCℓ − 2ℓ− 1
2ℓ+ 1 log Ĉℓ

]
, (A.35)

where Ĉℓ (Cℓ) represents the measured (modeled) B-mode power spectrum [41]. For our
analysis, we apply fsky = 1, which means the full-sky coverage because we do not use a
Galactic mask in this paper. The Ĉℓ and Cℓ are defined as

Ĉℓ = Csys
ℓ + C lens

ℓ +Nℓ, (A.36)
Cℓ = rCtens

ℓ + C lens
ℓ +Nℓ, (A.37)

where Csys
ℓ is the estimated systematic effects power spectrum, which is given by the spherical

harmonic expansion of ∆Q and ∆U , C lens
ℓ is the lensing B-mode power spectrum, and Ctens

ℓ

is the tensor mode with r = 1 [3]. The quantity Nℓ is the expected noise power spectrum but
we do not consider it in this paper because we do not include noise in the simulations.

The potential systematic bias ∆r is defined by the value of r where L(r) is maximised:

dL(r)
dr

∣∣∣∣
r=∆r

= 0. (A.38)

The ∆r that is shown in section 5.4 follows this definition.
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Figure 15. (Left/Right) Systematic effect B-mode power spectrum, Csys
ℓ due to the pointing

offset/HWP non-ideality. Blue dots and orange crosses show Csys
ℓ given by the TOD- and map-based

simulation, respectively. The bottom plots with green dots show the difference of Csys
ℓ between two

methods. For simulation of pointing offset, we used CMB only as an input map, and (ρ, χ) = (1, 0)
arcmin as a systematics parameter. For simulation of HWP non-ideality, we used solar dipole only as
an input map, and (ϵ1, ϕQI) = (1.0 × 10−5, 0) as a systematics parameter.

A.2.5 Comparison with TOD simulation

We confirm in this section whether our new map-based simulation, which can account for HWP
using spin, is consistent with the general TOD-based simulation defined by eq. (A.12). The
input maps and systematics parameters used are the same as for section 5.4. We injected the
systematic effect, performed map-making, and calculated ∆Q and ∆U maps, and systematic
B-mode power spectrum, Csys

ℓ as shown in appendix A.2.4. Figure 15 (left) shows Csys
ℓ for a

pointing offset of (ρ, χ) = (1, 0) arcmin, calculated by the TOD-based method (blue dots) and
the map-based method (orange crosses). The input map is CMB only. The plot shown by the
green dots at the bottom is the difference in Csys

ℓ between two methods, and it is clear that
the two methods produce numerically equivalent results, since the order of the difference is
10−14 µK2. Figure 15 (right) shows when the HWP non-ideality is present at ϵ1 = 1.0 × 10−5

and ϕQI = 0, and it is also clear that there is no significant difference between the two methods.
The input map is solar dipole only; the jump at ℓ ≃ 200 originates from the structure on the
east-west running line that the hit-map has (as seen in middle bottom of figure 2).

This validation ensures that map-based simulations by using the spin formalism are
scientifically equivalent to TOD simulations, even when HWP is introduced.

B Supplementary results and discussions

B.1 Impact of the value of the spin period on the metrics

In this paper, we fixed Tβ = T lower
β = 16.9 min and displayed our results in the {α, Tα}

space. Tβ is, however, a free parameter in the range T lower
β < Tβ, such that the complete

parameter space is the three dimensional {α, Tα, T lower
β < Tβ} space. However, it can be

shown that the Tβ dimension implies a rescaling of the metrics of interest without changing
the values of the optimum solution.

As an illustration, let us consider the results in the {α, Tα} space through a rescaling
of T lower

β and observe the impact on the cross-link factor distribution. Figure 16 (top left)
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Figure 16. (Top left) {α, Tα, T

scaled
β } space created by multiplying T lower

β in figure 1 (right) by
a constant and scaling the entire space so that the standard configuration has Tβ = 20 min. (Top
right) spin-(2, 0) cross-link factors simulated using T scaled

β . (Bottom left/right) spin-(2, 4)/spin-(4, 8)
cross-link factors simulated using T scaled

β . The cross-link factors with non-zero spin-m has smaller
values than those calculated using T lower

β due to HWP rotation within the sky pixel; however, the
change in Tβ in all cross-link factors do not cause a change in the extreme value structure. The point
with no value in the bottom right-hand corner of the cross-link factor panel is due to a few unobserved
sky pixels caused by resonances between spin and precession, which can be eliminated by a small
change in the precession period.

shows the {α, Tα T scaled
β } space, where the point with the standard configuration, (α, Tα) =

(45◦, 192.348 min), is multiplied by a constant throughout, so that Tβ = 20 min. This is used
as input for the cross-link factor simulation.

Figure 16 (top right) shows the spin-(2, 0) cross-link factor, while bottom left/right show
the spin-(2, 4)/spin-(4, 8) cross-link factors. The spin-(2, 0) cross-link factor without the
HWP contribution are almost identical to the results calculated with T lower

β . The spin-(2, 4)
and spin-(4, 8) cross-link factor results also have a flat distribution, and again the structure
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is not much different from the results presented in section 5.3. However, it can be seen that
the cross-link factors with HWP contributions are generally scaled to smaller values. This is
because the spin is slower, allowing extra rotation of the HWP while the pointing transits
the sky pixel. Of course, this works well to suppress systematic effects. On the other hand, if
the rotation is slowed down any further, the value of the spin-(n, 0) cross-link factors starts
to degrade, as discussed in section 6.2. The results on cross-link factors obtained in this
supplement emphasise that the global structure does not change with respect to changes
in the rotation period, but the values are simply scaled.

A similar argument can be made identically for the other two metrics: hit-map uniformity
and visibility time of planets. Indeed, the quality of these two metrics is mostly driven by
geometric considerations, such as the shape of the scanning pattern on the sky, and most
importantly, the size of the scan pupil.

B.2 Metrics for detectors located away from the boresight

In this section we investigate how the metrics of detectors located away from the boresight (i.e.
center of focal plane) behave in our standard configuration. Different detectors on the focal
plane are often described as having different effective β (written as βeff) than the one of the
boresight. This can be expressed by considering the shifted effective spin axes per detector as

βeff
i = β + βi, (B.1)

where i represents detector index. Detectors that observe in a direction that is inclined by βi
from the boresight have effectively different geometric parameters, so the scan trajectory is
different from that of the boresight and, in general, the metrics also have different values.
Conversely, a detector that is not boresight but whose βeff

i is close to β has a trajectory that is
almost redundant with the boresight, so the metrics do not change much. In the MFT/HFT
field of view with 14◦ in radius, we simulated the integration time of planet visibility and
cross-link factor by a detector which has minimum/maximum βi (−14◦/14◦).

Figure 17 shows integration time of planets visibility (top left: βi = −14◦, top middle:
βi = 14◦). As in figure 3 (left), the results for the integration time of planets visibility are
independent of Tα, with a peak at α = (κ + βi)/2. From figure 17 (top left/middle), it is
clear that our standard configuration is a scanning strategy that provides relatively long
integration time of planet visibility not only at the boresight but also at the detector with
the minimum or maximum βeff

i .
Figure 17 shows spin-(2, 0) cross-link factor (top right: βi = −14◦, bottom left: βi = 14◦),

and spin-(2, 4) cross-link factor (bottom middle: βi = −14◦, bottom right: βi = 14◦). When
considering the effective β, certain detectors cannot satisfy eq. (2.4), and the area around
the pole of the ecliptic coordinates becomes unobservable, so the cross-links factor in that
region diverge. Here we show the results of calculating the full-sky average using the detector
which has βi = ±14, ignoring the pixels where the cross-link factor diverge. First, the
βi = −14◦ detector is not able to observe the full-sky because its trajectory does not go
beyond the poles of the ecliptic coordinates. Comparing the cross-link factors for a detector
which has βi = ±14◦, we can see that the distribution of spin-(2, 0) cross-link factor is
similar in structure, but the overall value is larger for βi = −14◦. This is due to the fact
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Figure 17. (Top left/Top middle) Integrated planet visibility time simulated by a detector which has
βi = −14◦/14◦. (Top right/Bottom left) spin-(2, 0) cross-link factor simulated by a detector which has
βi = −14◦/14◦. (Bottom middle/Bottom right) spin-(2, 4) cross-link factor simulated by a detector
which has βi = −14◦/14◦. Values for sky pixels with diverging cross-link factors are ignored and
averaged over the entire sky.

that the uniformity of the crossing angle for each pixel has decreased due to the narrower
area which can be accessed by the scanning. The spin-(2, 4) cross-link factor also shows a
change in structure, and the values are generally smaller for βi = −14◦. This is due to the
fact that a smaller βi slows down the scan speed defined by eq. (A.7), causing the HWP
to rotate extra within the sky pixel. It is clear that although the structure and value of
the distribution changed, the standard configuration still provides small cross-link factors
for detectors other than the boresight.

B.3 Discussion on the rotation direction of the spacecraft

Although we defined the rotation matrix in eq. (A.4) as forward rotation, i.e., counterclockwise,
there are in principle four possible combinations of spin and precession with respect to the
direction of rotation. Since these four combinations are independently positioned with respect
to the orbital direction and will have different trajectories, it is necessary to check whether
our conclusions are independent of the direction of rotation.

First, we distinguish the four combinations by the sign of the rotation matrix and define
the precession-spin coherence from the product of the signs, as shown in table 3.

When the coherence is positive, ωmax is consistent with eq. (A.7), but when it is negative,
one rotation has the effect of pulling back the other, effectively slowing down the sweep
angular velocity. To obtain it, the rotation matrix Rz in eq. (A.4) can be reversed, i.e.,
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Sign of precession + + − −

Sign of spin + − + −

Precession-spin coherence + − − +

Table 3. Convention for rotations and theirs coherence.

transposed, and rewritten as

n(t) = Rz(ωαt)Ry(α)R⊤
z (ωβt)n0, (B.2)

where ⊤ represents the transposition of the matrix. Here the sweep angular velocity is defined
as ω+

max when the coherence is positive and ω−
max when the sign is negative:

ω±
max = ωα sin(α± β) + ωβ sin β. (B.3)

This modification propagates to T lower
β and T lower

α in our constraints of eqs. (2.11) and (2.12),
and they can be written with the precession-spin coherence as

T lower,±
β = 2πNmodTα sin β

∆θfϕTα − 2πNmod sin(α± β) , (B.4)

T lower,±
α = 2πNmod(sin β + sin(α± β))

∆θfϕ
. (B.5)

If the coherence is assumed to be negative, a different T lower
β (α, Tα) space is constructed

than in figure 1 (right), as shown in figure 18 (top left), and a shorter T lower
β can be obtained

due to changing ω+
max → ω−

max. We re-examined all metrics with T lower
β defined by the

four combinations and the corresponding coherence, and the advantages of the standard
configuration were still seen in all metrics. The remaining panels of figure 18 show the
cross-link factors simulated with the configuration (prec., spin) = (+,−), which shows no
significant change from figure 4. This alienates our particular concern about the degradation
of standard configuration’s cross-link factors due to trajectory changes and the emergence
of different best solutions for the parameters.

On the other hand, the interesting thing about negative coherence combinations such as
(prec., spin) = (+,−) is that only the maximum sweep angular velocity can be slowed down
without changing the scan parameter values. For example, the standard configuration has
ω+

max = 0.26 [deg/s], while the spin direction switch (prec., spin) = (+,−) slows it down to
ω−

max = 0.23 [deg/s]. This would slightly increase the number of data samples per unit time
for the sky pixels and improve the number of rotations of the HWP per sky pixel.

Whether this subtle slowdown changes the physical results in a favorable direction will
only become clear with some kind of end-to-end simulation that includes time-correlated
noise and systematic effects that are synchronised with the HWP rotation, so we leave that
for a future study. However, we would like to emphasise that regardless of the direction
of spin and precession of the standard configuration that we have presented, it certainly
retains the capabilities required for a scanning strategy, and it contains sufficient information
for the basic design of the spacecraft.
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Figure 18. (Top left) {α, Tα, T
lower,−
β } space given by eq. (B.4). (Top right) spin-(2, 0) cross-link

factors simulated using T lower,−
β . (Bottom left/right) spin-(2, 4)/spin-(4, 8) cross-link factors simulated

using T lower,−
β . Each map is simulated using the (prec., spin) = (+,−) configuration. The change from

ω+
max → ω−

max effectively slows down the sweep speed and increases the number of HWP rotations per
visit for a sky pixel. This results in a smaller cross-link factor with a non-zero spin-m which has a
larger HWP contribution than in the case simulated with T lower,+

β shown in section 5.3.
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