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Summary  

Domestication has underpinned the development of human civilization. A growing 

human population and increasingly complex societies have created intensification pressures 

upon the livestock industry. Favouring of highly productive breeds at the expense of the loss 

of locally adapted rarer breeds will have implications for future food security due to the loss 

of genomic resources. With the recent availability of accessible genomic resources for 

domestic water buffalo (Bubalus bubalis), this thesis seeks to contribute towards quantifying 

their genetic variation and adaptive potential. In Chapter Two, ancestry of two UK populations 

was tracked to Italian origins and was shown to have retained the majority of genetic diversity 

since importation. Such levels of genetic diversity provide the opportunity for effective 

selection programmes focused on production-based QTLs. Chapter Three analysed and 

compared novel data from an Indian murrah buffalo population to wider global populations 

to detect selective sweeps indicative of recent selection. Loci under selection in non-Indian 

murrah were associated with genes linked to draught and meat traits instead of the typical 

focus on milk. SNP array data is incredibly useful for genomic selection; however, inherent 

ascertainment bias creates challenges for evolutionary studies. Chapter Four attempted to 

understand the bias in the AxiomTM Buffalo Genotyping Array when analysing river and 

swamp buffaloes. Results showed that patterns of variation were inconsistent between river 

and swamp species, and between array and sequencing data. Shared polymorphic markers in 

the array are likely ancestral SNPs and targets of balancing selection, thus distorting 

evolutionary inferences between the two species. Chapter Five modelled the evolutionary 

history of domestic buffaloes revealing further support for a Pleistocene divergence of river 

and swamp species. Dispersal of river buffalo from India is likely linked to maritime trade early 

in the Common Era. Furthermore, artificial selection appears to be a driving force for regions 

of divergence between river and swamp buffalo.  
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Chapter One 

General Introduction 

 

1.1. Domestication 

The transition from Late Pleistocene into the Holocene is underpinned by changes in 

the Earth’s climatic conditions. The Pleistocene is characterized by a series of major glaciation 

events with the Last Glacial Maximum occurring approximately 21,000 years before present 

(YBP) (Clark and Mix, 2002; Clark et al., 2009; Shakun and Carlson, 2010; Hughes, Gibbard and 

Ehlers, 2013). Minor cooling events culminating in the end of the Younger Dryas marked the 

onset of the Holocene 11,700 YBP (Cheng et al., 2020; Shakun and Carlson, 2010). An 

environmental shift to a warmer, more stable climate alongside a period of megafaunal 

extinctions facilitated a change in human (Homo sapiens) behaviour from nomadic hunter-

gatherers to agrarian societies (Diamond, 2002). Reductions in food availability caused a 

subsequent broadening of diets to include more plants and small game (Diamond, 2002). 

Eventually, the use of gathered plants and control of animals outside of natural habitats 

generated agricultural systems in what is now known as domestication (Diamond, 2002). 

Evidence suggests early farming was incredibly difficult as humans displayed poor health. 

However, the ability to generate a sustainable source of food gave great competitive 

advantages to these populations as a whole to grow and expand (Diamond, 2002). As a result, 

88% of humans alive today speak a language that can be traced back to the earliest centres 

of domestication in Eurasia (Diamond, 2002). Domestication can therefore be considered as 

the most important technological advancement in human evolution, and a prerequisite for 

the development of civilization and innovative societies found today.  

The first known example of domestication of an animal is the dog (Canis familiaris). 

Domestication from a now-extinct lineages of grey wolves (Canis lupus) likely occurred in the 

Near or Far East (Vilà et al., 1997; Savolainen et al., 2002; vonHoldt et al., 2010; Ding et al., 

2012; Freedman et al., 2014; Frantz et al., 2016; Bergström et al., 2020). The interspecies 

relationship between humans and prehistoric dogs may date back to ca. 31,000 YBP, with full 
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domestication occurring by 14,000 YBP (Germonpré et al., 2009; Udell, Dorey and Wynne, 

2010; Galibert et al., 2011). Dog domestication is unique as dogs are the only large carnivore 

to have been domesticated (Frantz et al., 2016). It has been hypothesised that dogs were 

domesticated via a commensal pathway, in which prehistoric dogs were sensitive to human 

sociability, before becoming conditioned (Udell, Dorey and Wynne, 2010; Vigne, 2011; Larson 

and Fuller, 2014). Subsequent major animal domestication events followed a more human 

centric approach, with wild individuals being caught, tamed, and then bred for the benefit of 

human societies.  

Sixteen species of large mammals (>40 kg) have been domesticated, the majority of 

which are Bovidae and constrained to a few biogeographic areas (Figure 1.1) (Larson and 

Fuller, 2014). Major centres of domestication include the Fertile Crescent (taurine cattle, 

sheep, goats, pigs), Indus Valley (indicine cattle, river buffalo), Mainland Southeast Asia 

(swamp buffalo, gayal, pigs, yak), and Andes (alpaca, llama) with sporadic additional 

domestications elsewhere (Bactrian camel, horse, reindeer, at northernly latitudes; 

dromedary camel at Arabian Peninsula). Successful domestication of animals is rare. Diamond 

(2002) sets out six barriers to domestication with these being; i) inaccessible diet, ii) slow 

growth rate and long birth spacing, iii) high aggression, iv) reluctance to breed in captivity, v) 

lack of follow-the-leader dominance, and vi) likely to panic in enclosures or when faced with 

predators. In practice, humans were able to domesticate large herbivorous bovids due to the 

wide availability of grass as feed, and the ability to maintain herds within defined areas of 

land.  

The domestication of dogs proved that that other species could be controlled by 

humans, however this case likely did not define an outcome of domestication (Diamond, 

2002). Instead, later domestication of herbivorous mammals may have been a strategic 

response to overhunting, a common theme in the extinction of megafauna of the Late 

Pleistocene (Larson and Fuller, 2014; Bergman et al., 2023). Archaeological studies have 

revealed that overhunting was prevalent prior to domestication, and that humans began 

altering hunting strategies of wild sheep, goats, pigs, and cows (Zeder, 2012; Marom and Bar-

Oz, 2013). By 10,000 YBP, humans were preferentially killing young males of a variety of 

species and allowing females to survive, probably to produce more offspring (Zeder, 2012; 
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Marom and Bar-Oz, 2013). Early domestication events of large mammals likely orientated 

around maintaining a sustainable source of food (Larson and Fuller, 2014). 

 

Figure 1.1: Domestication centres of large (>40kg) mammalian livestock species. 16 species of 

large mammals (excluding dogs) have been domesticated with the majority being bovids from 

Eurasia. 

1.2. Livestock Production Systems 

Development of agriculture has progressed to support an expanding human 

population that now numbers eight billion. Livestock contribute 40% of the global value of 

agricultural output, directly providing 15% of energy needs and 25% protein to people (FAO, 

2009). The popularity of livestock products is rapidly increasing. Since the 1960s milk 

consumption per capita has doubled, meat consumption tripled, and egg consumption 

increased by a factor of five (FAO, 2009). Post 1980s, these increases have rapidly outmatched 

that of other major food commodity groups (e.g., cereals) (FAO, 2009). Economic growth and 

the development of countries (e.g., China, Brazil) appears to be the driving force behind the 

expansion of livestock industries (Steinfeld, Wassenaar and Jutzi, 2006; FAO, 2009; Godde et 

al., 2018). As a result, humans have bred livestock in huge numbers. For example (as of 2021), 

the number of chickens exceeds 25 billion, meanwhile cattle, sheep, goat, and pigs exceed 1 

billion individuals each (FAOSTAT). These population sizes translate into 62% of mammalian 



Chapter One    
General Introduction   

4 
 

biomass on Earth being accounted for by livestock, while 71% of biomass of avian species is 

poultry (Bar-On, Phillips and Milo, 2018). To accommodate such scales of production, humans 

have radically altered the Earth’s biosphere for agricultural and urban development. 

Several production systems have been developed based upon agro-ecological 

opportunities that vary in intensity of output. Grazing systems occupy the largest land cover, 

estimated up to 26% of ice-free surface and occupying 33 million square kilometres (Asner et 

al., 2004; FAO, 2009). Farms within grazing systems are differentiated between intensive and 

extensive systems. Extensive farms are typically characterized by grazing ruminants on 

communal or open-access areas and frequently occur among marginal lands and sparsely 

populated areas that are unsuitable for reliable crop production (Sere & Steinfeld, 1996; 

Gandini and Villa, 2003; FAO, 2009; Kleppel and Frank, 2022). Livestock are an incredibly 

important source of food security in these areas to meet energy needs of people (Herrero et 

al., 2013). In contrast, intensive grazing systems operate nearby areas of increased human 

densities typically in temperate zones where high-quality grassland and fodder production 

can support a larger number of animals (Sere & Steinfeld 1996). Extensive and intensive 

farming systems are dependent upon the surrounding environment and therefore livestock 

that persist in these regions are typically intrinsically adapted to the conditions they persist 

in (Mirkena et al., 2010; Marshall, 2014; Biscarini et al., 2015). As a result, livestock adapted 

to these local environments have small ranges and often have strong cultural and societal 

links to the communities where they occur (Gandini and Villa, 2003; Biscarini et al., 2015). 

Livestock within these systems show high environmental resilience and provide a sustainable 

source of food.  

Greater productivity of livestock rearing can be achieved with an increased input from 

humans. Mixed farming systems link livestock rearing and cropping activities, being defined 

as “those where more than 10% of dry matter fed to animals comes from crop by-product or 

stubble or where more than 10% of total value of production comes from non-livestock 

farming activities” (FAO, 2009; Sere & Steinfeld 1996). Mixed farming systems can broadly be 

categorized into two forms and biogeographic areas. Rainfed systems, those in which more 

than 90% of non-livestock farm production comes from rainfed land use, are mostly 

distributed across temperate regions (Sere & Steinfeld 1996; Steinfeld, Wassenaar and Jutzi, 

2006; FAO, 2009). Meanwhile, irrigation systems, defined as more than 10% of the value of 



Chapter One    
General Introduction   

5 
 

non-livestock farm production, are commonly found in the East and South Asia surrounding 

areas of high population density (Sere & Steinfeld 1996; Steinfeld, Wassenaar and Jutzi, 2006; 

FAO, 2009). These farming systems contribute the bulk of animal products to humans, shifting 

focus towards increased productivity (Steinfeld, Wassenaar and Jutzi, 2006; Herrero et al., 

2013). Extending this theme further, agricultural industries are now capable of regulating all 

farming conditions. Industrialized systems are typically dedicated to a single species and used 

to supply large dense urban centres (Sere & Steinfeld 1996; FAO, 2009). A rapid increase in 

poultry and pork production occurred alongside development of industrialized systems as 

these monogastric animals have the highest growth rates and lowest costs per unit of output 

(Steinfeld, Wassenaar and Jutzi, 2006; FAO, 2009). Despite occupying small amounts of land, 

meeting the feed requirements of industrialised systems means that approximately 33% of 

global agricultural cropland is used to produce animal feed (Steinfeld, Wassenaar and Jutzi, 

2006; FAO, 2009). Intensive breeding of livestock means that environmental adaptations 

become less relevant according to resource allocation theory (Beilharz, Luxford and 

Wilkinson, 1993; Mignon-Grasteau et al., 2005; Mirkena et al., 2010). The result is that 

industrialized livestock are highly productive and therefore valuable across an urban 

landscape. 

1.3. Threats to Food Security 

The development and expansion of agricultural industries to support the demanding 

human population growth has profoundly altered the biosphere. Despite agricultural land 

cover not increasing since 1991, development of the livestock industry has continued growing 

through intensification (O’Mara, 2012). The consequences of current food production effects 

an array of vital ecosystem processes. The agricultural industry is the largest contributor to 

biodiversity loss through habitat destruction, intensification, and release of pollutants leading 

to downstream effects such as disruption of nutrient cycling (Dudley and Alexander, 2017; 

Tully and Ryals, 2017). Therefore, without proper management, nutrient rich soils are quickly 

depleted from grazing of livestock and extraction of crops, reducing future produce yields 

(Tully and Ryals, 2017). Farms overcome nutrient deficiency with the application of fertilizers. 

However, excess macronutrients (e.g., phosphorus) typically leech into waterways leading to 

detrimental effects such as eutrophication (Dudley and Alexander, 2017; Tully and Ryals, 

2017). Intensification of farming provides the ideal conditions for the spread of diseases. The 
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dependence upon antibiotic use in the livestock sector is a leading cause of antibiotic-

resistant pathogens that has major consequences for food production, public health, and 

wide ecological impact (Woolhouse et al., 2015; Koch, Hungate and Price, 2017). Among the 

most prominent causes of concern for people and livestock is climate change (Baumgard et 

al., 2012). The vast numbers of livestock provide a significant contributor to global 

greenhouse gases (GHGs), accounting for 14.5% of global emissions of carbon dioxide (Gerber 

et al., 2013). Potent GHGs such as methane (CH4) and nitrous oxide (NO2) are also emitted 

with CH4 emissions nearing double that of CO2 within livestock supply chains (Gerber et al., 

2013; Cheng, McCarl and Fei, 2022). The result of being such a contributor produces a 

feedback loop that will become increasingly negative for the health and productivity of 

livestock. 

Maintaining livestock productivity for future generations will require flexibility against 

increasing climatic instability. The most prominent effect of climate change is the increasing 

average global temperatures and increased frequency of extreme heat. Exposure to higher 

temperatures pushes livestock out of their thermal comfort zone for longer and more often, 

increasing the risk of temperature-related illness and death. To compensate for this increased 

stress, extra energy of the individual is required to maintain thermoregulation resulting in 

declines in productivity (Cheng, McCarl and Fei, 2022). The economic consequences and 

threat to food security from heat stress are huge. In the U.S alone, the livestock industry was 

estimated to have lost between $1.7 - $2.4 billion in 2003 (St-Pierre, Cobanov and Schnitkey, 

2003). Since 2003, average global temperatures have continued to increase (IPCC, 2021). Heat 

stress increases metabolic load on the individual enhancing reactive oxidative substance 

production and thus generating oxidative stress that is damaging to cells (Belhadj Slimen et 

al., 2016). The energy expended (e.g., increased sweating and respiration rate) controlling 

these stresses means that other biological processes suffer as a result. Under heat stress, feed 

intake has been observed to decrease in all livestock species further reducing energy 

availability for production (Kadzere et al., 2002; Collier, Renquist and Xiao, 2017; Cheng, 

McCarl and Fei, 2022). Decline in feed intake can explain approximately 35% of decrease in 

milk production in dairy cows, with additional decreases in quality by reduced milk protein 

and fat content (Kadzere et al., 2002; Collier, Renquist and Xiao, 2017; Cheng, McCarl and Fei, 

2022). Comparatively, meat producing livestock fail to grow to their expected weights as body 
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size, carcass weight, and fat thickness are all reduced (Gonzalez-Rivas et al., 2020; Cheng, 

McCarl and Fei, 2022). Furthermore, reproductive capabilities are reduced, and immune 

systems fail with the implication that maintaining a healthy stock becomes more difficult 

(Kadzere et al., 2002; Bagath et al., 2019; Chauhan et al., 2021). Certain breeds are adapted 

to higher temperatures, and farmers can utilize these alternative breeds for mitigating heat 

stress, however their production yields are often lower (Rojas-Downing et al., 2017). 

Therefore, finding the key genetic components associated with resistance to heat stress and 

productivity could prove key. 

In tandem with increased temperature, many countries are seeing a decrease in water 

availability. Agriculture is the single largest global water user, accounting for 69% of fresh 

water withdrawals (Thornton, 2010; Cheng, McCarl and Fei, 2022). As temperatures increase, 

greater water consumption will be required for livestock (Thornton, 2010). Due to the uneven 

distribution of freshwater sources, increased competition and unsustainable use will be 

prevalent across water stressed regions (Thornton, 2010; Leng and Hall, 2021). Further strains 

on freshwater resources will be observed via other means. As sea levels rise, an influx of 

saltwater will occur into coastal freshwater sources, while inadequate waste disposal from 

urbans areas contaminate waterways (Rojas-Downing et al., 2017). For example, the 

accumulation of heavy metals in water bodies presents a major source of concern for general 

health. Heavy metals can have severe detrimental effects on individuals, impairing many 

biological processes, and causing serious developmental and health problems (Gupta et al., 

2001; Vardhan, Kumar and Panda, 2019). Combined with other stresses from increased 

temperature and water issues, vulnerable individuals present opportunities for pathogenic 

organisms. Changing environmental conditions, highly connected human societies, 

intensification, and growing human-wildlife contact all facilitate easy transfer of pathogenic 

organisms (Tomley and Shirley, 2009; Gummow, 2010). Livestock are now encountering new 

pathogens that they are not resilient against (Thornton, 2010; Rojas-Downing et al., 2017). 

For example, African swine fever outbreaks have devastated global wild and domestic pig 

populations since spreading worldwide (Sánchez-Cordón et al., 2018; Luskin et al., 2021; You 

et al., 2021). In livestock that are resistant to pathogens, constant exposure still has negative 

consequences for production. For example, in a study on Australian livestock, ticks are 

responsible for an 18% decrease in body weight (White et al., 2003). 
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The popularity of livestock depends on their accessibility and profitability. Livestock 

breeds typically fall into one of three categories (local, regional, or international) defined by 

the range that they occupy (FAO, 2015). Local breeds occur in only one country and are 

typically historic breeds that have adapted to their surrounding environment over time and 

are used by local rural communities. These livestock breeds are often a very important source 

of nutrition, labour, and income that can be maintained over many generations (Herrero et 

al., 2013; Mapiye et al., 2020). Regional transboundary breeds can be found in many countries 

within the same continental region. These breeds have likely become the most productive 

and popular local breed becoming traded across larger regions. International transboundary 

breeds are found globally, and these breeds have been commercially developed to produce 

great yields. For mammalian livestock species, 4,127 local breeds comprise 83.3% of total 

breeds (FAO, 2015). Regional and international transboundary breeds make up small 

proportions each at 8.7% and 8.0%, respectively (FAO, 2015).  

Across most livestock, most local breeds are found across Europe, Caucasus, and Asia, 

spanning biogeographic strongholds for domestication (FAO, 2015). In livestock, genetic 

diversity increases i) closer to the domestication origin of a species, and ii) in those breeds 

not under intense artificial selection (Bruford, Bradley and Luikart, 2003). Most of the genetic 

diversity is held across local breeds as each breed has evolved unique adaptations to their 

environments. To maintain genetic diversity for future adaptability, we need to understand 

the distribution of variation across livestock and how traits are defined by underlying genetic 

interactions. However, 16% of mammalian livestock breeds are classified as at risk of 

extinction with a further 35% of unknown status (FAO, 2015). 11% of livestock breeds are 

already extinct (FAO, 2015). Breeds at risk of extinction are spread across both local and 

transboundary categories, although transboundary breeds are being conserved at a greater 

rate than local breeds. From 1999 to 2006, 31% of transboundary breeds at risk were 

reclassified to not at risk, while only 7.4% of local breeds were reclassified (FAO, 2015). The 

loss of such breeds may have major consequences on future livestock adaptability, and 

therefore security of food production. 
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1.4. Genetic Technologies for Livestock 

The idea of applied selective breeding is considered to have begun with Sir Robert 

Bakewell (1725 – 1795) in 18th century England with the development of livestock for 

increased carcass traits. Changes across farming were taking place as the conversion of arable 

to grassland and the greater emergence of enclosed fields were becoming more prominent 

across the country (Wykes, 2004). The greater ability to manage livestock meant farmers 

could experiment with improving livestock more easily. Bakewell used ‘in-and-in’ breeding 

(inbreeding) to maintain desired traits within his stock and is attributed as the founder of the 

Dishley Leicester sheep, Dishley Longhorn, and Black Cart horse (Wykes, 2004). Bakewell’s 

original breeds have since died out, though lineages persist within English Leicester, English 

Longhorn, and Shire breeds respectively. Although selection as a process is a relatively recent 

concept, artificial selection has been occurring throughout domestication. Humans have 

linked reproductive fitness of livestock to desirable traits, whether that be environmental 

adaptation or productive output, resulting in phenotypic divergence of livestock from their 

wild ancestors (Proudfoot et al., 2020). Now in the modern day, humans are continually 

understanding the complex relationship between genetic variation and phenotypic output 

behind artificial selection (Meuwissen, Hayes and Goddard, 2013; Proudfoot et al., 2020; 

Saravanan et al., 2020). 

Molecular data in livestock has been present since the early 1990s allowing scientists 

to characterize genetic diversity, map evolutionary history, and manage future development 

(FAO, 2023). In 1993, the FAO established a global program for characterization of farm 

animal genetic resources (FanGR), raising awareness and providing recommendations for the 

molecular monitoring of FAnGR diversity (FAO, 2023). Initial studies relied upon 

mitochondrial and microsatellite markers (Bruford and Wayne, 1993; Bruford, Bradley and 

Luikart, 2003). Due to its haploid nature and absence of recombination, mitochondrial DNA is 

an ideal marker to easily track phylogeny and, in doing so, has revealed extensive knowledge 

surrounding the evolutionary history and domestication of livestock (Bruford, Bradley and 

Luikart, 2003; Hanotte and Jianlin, 2005). Its shortfalls of being a maternally inherited single 

locus means that mitochondrial DNA is a poor predictor of overall genomic diversity (Bruford, 

Bradley and Luikart, 2003). The use of microsatellite markers counterbalanced this, allowing 

quantification of genetic variation across livestock, the capability of discriminating between 
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all levels of genetic units (e.g., population, breed, species), and detection of evolutionary 

processes (e.g., bottlenecks, admixture) that impacts variation (Bruford, Bradley and Luikart, 

2003; Hanotte and Jianlin, 2005). Molecular data in livestock transformed our understanding 

away from thinking of breeds as static homogenous units, instead towards domestication as 

being a continually shifting and dynamic process. 

Molecular tools have been extensively developed in the past 15 years. The emergence 

of next generation sequencing (NGS) technology has revolutionized the genomics industry, 

allowing the production of accessible large-scale extensive datasets and complete sequencing 

of entire genomes. NGS has also provided access to more molecular markers in the form of, 

for example, single nucleotide polymorphisms (SNPs), structural variations, copy number 

variation (CNVs), and epigenetic factors among others (FAO, 2023). The increasing use of such 

genetic technology has also been matched with developments in increased computing power, 

processing software, and statistical analysis. The application of these technological 

developments means that considerable increases in livestock productivity has been realized, 

as precision breeding methods such as genomic selection programmes can increase 

productivity beyond that attained from conventional breeding techniques. For example, since 

the 1960s, average milk yields in Holstein cattle have more than doubled from 5,000 kg to 

more than 11,000 kg per 305 days of lactation. More than 50% of these gains are attributed 

solely to genetic improvement, and genomic selection typically enables a further 1-3% annual 

gain (Thornton, 2010; Georges, Charlier and Hayes, 2019; Brito et al., 2021) 

SNP genotyping has become the primary method of quantifying genetic diversity and 

studying selection in livestock. SNPs have several advantages over microsatellite markers 

including; i) greater abundance across the genome, providing greater genomic resolution, ii) 

evolutionarily stable generation to generation (i.e., change less frequently than 

microsatellites), iii) simpler nomenclature and greater suitability for high throughput 

automated analysis and data interpretation, iv) found in coding regions of genes, and v) can 

be more easily linked to QTLs and traits of interest for generation of highly accurate and 

targeted genomic selection programmes (Vignal et al., 2002; Fernández et al., 2013; Cortes, 

Cañon and Gama, 2022; Saravanan et al., 2022; FAO 2023). Although the cost of whole 

genome sequencing (WGS) is dramatically decreasing, it is still expensive to carry out large 

scale studies. In order to commercialize genomic selection, genotyping microarrays have been 
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used as the vector of choice for SNP analysis. SNP arrays are produced by fixing a subset of 

probes relating to highly polymorphic SNPs from a population to a platform. These arrays 

allow livestock breeders to avoid the expense of WGS whilst capturing a high resolution of 

the genome for a large number of individuals (Fan et al., 2010; Gurgul et al., 2014). The highly 

polymorphic state of SNPs chosen allows differentiation between individuals, and these 

differences can be attributed to variation in production outputs and phenotypic changes (Fan 

et al., 2010; Gurgul et al., 2014). Therefore, SNP arrays are an important method in guiding 

breeding management plans and development of livestock, as well as finding target genes for 

future livestock function.  

Although the choice of SNPs is incredibly useful for livestock management, arrays 

result in ascertainment bias and do not represent the natural levels of genetic variation 

(Albrechtsen, Nielsen and Nielsen, 2010; Lachance and Tishkoff, 2013; McTavish and Hillis, 

2015; Quinto-Cortés et al., 2018). Selection of SNPs for microarrays is often based upon a 

small number of sequenced DNA samples. In the livestock sector, SNP selection for 

microarrays is usually restricted to a small number of breeds of interest. The deliberate 

selection of highly polymorphic SNPs known from characterization of only a few breeds means 

that these markers likely represent ancestral variation maintained since before breed 

divergence. Furthermore, genotyping of only previously known polymorphic sites means that 

no additional genetic variation can be discovered (and hence genotyped) across the species 

(Nielsen, 2004; Albrechtsen, Nielsen and Nielsen, 2010; Lachance and Tishkoff, 2013; Geibel 

et al., 2021). Ascertainment bias within arrays lead to distortions in allele frequencies, and 

overinflation of statistics compared to methods based on sequencing data, and 

underrepresentation of genetic variation in populations not captured in SNP discovery for 

array production (Albrechtsen, Nielsen and Nielsen, 2010; Lachance and Tishkoff, 2013; 

Malomane et al., 2018; Benjelloun et al., 2019; Geibel et al., 2021). Therefore, when 

conducting evolutionary studies, ascertainment bias needs to be accounted for.  

1.5. Application of Genomic Data in Livestock 

Assessment of genetic variation is essential for livestock management. Understanding 

genetic variation allows humans to mitigate harmful genetic effects such as inbreeding or 

genetic erosion whilst maintaining genetically resilient and adaptable livestock (Bruford et al., 
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2015; Leroy et al., 2018; FAO, 2023). Estimates of genetic variation across individuals and 

populations are typically calculated using statistics such as observed heterozygosity (Ho) 

displaying actual distributions of measured genotypes, expected heterozygosity (He) that is 

calculated on allele frequencies, and nucleotide diversity (π) that assesses the number of 

differences across sequences (FAO, 2023). Maintaining a high genetic diversity typically 

provides a species with the necessary genetic flexibility for adapting to different external 

pressures, with livestock being no exception (Notter, 1999; Barker, 2001; Ollivier and Foulley, 

2009; Kristensen et al., 2015). Species with low genetic variation are often vulnerable to 

extinction. Due to intensive artificial selection, many livestock breeds feature reduced genetic 

variation (Leroy et al., 2018; FAO, 2019; Gicquel et al., 2020). This will eventually lead to high 

levels of inbreeding which can be monitored by the inbreeding coefficient (f). Estimates can 

be calculated SNP by SNP, comparing the proportion of observed homozygous SNPs to 

expected, such as F implemented in PLINK (Li and Horitz, 1953; Chang et al., 2015; Dadousis 

et al., 2022). In livestock, inbreeding is now preferentially monitored by runs of homozygosity 

(via inbreeding coefficient for ROHs, FROH) that calculates the length of stretches of the 

genome with an absence of genetic variation (Curik, Ferenčaković and Sölkner, 2014; Peripolli 

et al., 2017; Ceballos et al., 2018; Meyermans et al., 2020). Increased inbreeding increases 

the chance that recessive alleles become phenotypically active through homozygous 

genotypes, which in turn may result in harmful physical effects. Detrimental inbreeding 

among purebred livestock is often realised economically through reduced yields and 

reproductive issues (Leroy, 2014; Doekes, Bijma and Windig, 2021). Recovering from 

inbreeding depression is easily achieved through the introduction of new genetic variation. 

Further statistical analysis can be carried out to understand how genetic variation 

compares, and how gene flow operates between populations. The outputs of genetic 

differentiation analysis give great insight into how best to manage interactions between 

breeds and populations. Several methods are often used to delineate individuals into 

genetically defined groups. Among the most used are FST, principal component analysis (PCA) 

and multidimensional scaling (MDS). FST evaluates the differences in allelic frequencies at 

each locus and can be summarized across all markers. PCA and MDS methods meanwhile 

allow for the condensing of large multi-locus genetic data into the generation of a few 

meaningful synthetic variables, termed components (FAO, 2023). These components will 
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capture variation between individuals. The level of genetic similarity between individuals is 

shown via the size of distance between points with admixture shown through intermediate 

individuals between ancestral populations. Model-based clustering algorithms (e.g., 

ADMIXTURE) that test the number of appropriate genetic clusters are also available to deduce 

ancestry, admixture, and relatedness between populations (Alexander, Novembre and Lange, 

2009; FAO, 2023).  

Although the methods above allow inferences to be made about species’ history via 

patterns and abundance of genetic variation, they don’t provide capacity for testing complex 

evolutionary processes. Incorporating genetic processes such as drift, mutation rate, and 

recombination facilitates modelling changes in genetic variation over time. For mitochondrial 

DNA and microsatellite markers, the use of tests such as Tajima’s D, or Bottleneck and MSVar 

aid in identifying historic demographic trends such as population expansions and bottlenecks 

(Tajima, 1989; Beaumont, 1999; Piry, Luikart and Cornuet, 1999). Following the production of 

dense genomic SNP datasets, the popularity in using linkage disequilibrium (LD) has increased 

due to its sensitivity towards genetic processes (e.g., genetic drift, selection) (Slatkin, 2008; 

Qanbari, 2020). LD is typically higher between nearby loci, as the likelihood of recombination 

increases with physical distance along the chromosome. In evaluating the rate of decline in 

LD between loci at varying distances apart and encompassing recombination rate, Ne can be 

tracked backwards through time and reveal demographic trends and changes in genetic 

diversity (Corbin et al., 2012). Among livestock SNP genotyping arrays, reconstruction of 

recent demographic history is frequently accomplished using Ne calculations such as that 

found in Sved (1971). 

Exploring more ancient trends in Ne has been accomplished with WGS and the 

generation of pairwise sequential Markovian coalescence (PSMC) (Li and Durbin, 2011). With 

this, demographic trends have been generated for a variety of species through the Upper 

Pleistocene, revealing contraction and expansion events in populations often in accordance 

with glaciation periods (Frantz et al., 2013; Qiu et al., 2015; Gautier et al., 2016; 

Weldenegodguad et al., 2019; Luo et al., 2020; Upadhyay et al., 2021; Robin et al., 2022). 

With increased computational power, additional genome sequences could be included 

leading to the creation of MSMC (Schiffels and Durbin, 2014). Other methods to model 

complex demography included using the allele frequency spectrum (AFS). Here, tree models 
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could be defined with fluctuating population sizes, divergence times, and gene flow and the 

tree most likely to match the real data was calculated with a likelihood approach (Excoffier et 

al., 2013). Likelihood approaches are computationally difficult as the defined model becomes 

increasingly more complex (Marjoram and Tavaré, 2006; Csilléry et al., 2010). Approximate 

Bayesian Computation (ABC) offers a flexible alternative. This method works under the 

assumption that the patterns of genetic variation for the sampled data are reflective of that 

of the real populations. Defined models are generated depicting historic events using 

coalescent simulations, providing a neutral model for comparison (Beaumont, 2010; Csilléry 

et al., 2010). For example, in livestock, divergence times between domestic and wild species 

may represent time of domestication, and gene flow into domestic species may represent 

wild introgression. Millions of simulations are generated with each simulation, sampling 

different parameter values for population sizes, divergence times etc, and subsequent 

outputs are then statistically summarized. A rejection algorithm is then applied to obtain the 

most closely matched simulations (based on distances) to the observed data, and using this 

sample of simulations, generate posterior distributions for each parameter showing the most 

likely true values (Beaumont, 2010; Csilléry et al., 2010). A high number of different tree 

models can be generated and compared using Bayesian statistics to identify the most 

appropriate model (Beaumont, 2010). 

Studying demography typically uses neutrally evolving loci so that genetic data fits the 

assumptions of evolutionary theories. However, the patterns of genetic variation found 

across populations is not solely due to background processes of neutral evolution. 

Populations are continually interacting with changing conditions, be that of changing 

environments or interaction with new biota, or even alterations in behaviour within species. 

All these place selective pressures upon populations to adapt. Individuals with greater fitness 

are more likely to successfully reproduce, contributing to future gene pools. Genetic variation 

across the genome will fluctuate depending on favourable alleles at any given time. The result 

of selective pressure on a genome can be identified by the distinct footprints they leave, 

which are termed selection signatures. Understanding these signatures and the subsequent 

genes that are under selection is important for characterizing livestock and conserving 

important economic traits.  
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Positive, purifying, and balancing selection are three types of selection (Figure 1.2). All 

three alter allelic frequencies across the genome resulting in phenotypic variation. Under 

positive selection, the advantageous allele increases in frequency (Gouveia et al., 2014; 

Qanbari and Simianer, 2014; Saravanan et al., 2020). The rate of which this occurs determines 

the extent that neutral variants physically linked to the advantageous allele also increase in 

frequency (Gouveia et al., 2014; Qanbari and Simianer, 2014; Saravanan et al., 2020). The 

additional selection of linked variants either side of the advantageous allele is called genetic 

hitchhiking (Gouveia et al., 2014; Qanbari and Simianer, 2014; Saravanan et al., 2020). These 

stretches of DNA under positive selection can be detected, as they present longer regions of 

increased LD (Gouveia et al., 2014; Qanbari and Simianer, 2014; Saravanan et al., 2020). The 

prevalence of the advantageous allele in the population can provide us with information 

surrounding the strength of the selection pressure. This is considered under what is known as 

a selective sweep. Rapid selection of an allele resulting in near fixation within a population is 

considered a hard selective sweep, identifiable by fixated hitchhiking regions (Gouveia et al., 

2014; Qanbari and Simianer, 2014; Saravanan et al., 2020). Softer sweeps that occur over a 

longer period allow for greater variation in neutral flanking regions (Gouveia et al., 2014; 

Qanbari and Simianer, 2014; Saravanan et al., 2020). Purifying selection operates upon 

disadvantageous alleles whereby these alleles are selected against whilst generally not 

affecting the surrounding genetic variation (Gouveia et al., 2014; Saravanan et al., 2020). The 

third main form of selection, balancing selection, maintains multiple alleles in a locus and 

keeps high genetic diversity (Gouveia et al., 2014; Saravanan et al., 2020). 
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Figure 1.2: Figure displaying how different types of selection alter allele frequencies in a 

population. Red loci are alleles under selection while grey loci are not under selection. Positive 

selection causes an advantageous allele to increase in frequency. The rate at which this 

happens dictates whether a hard sweep (top) or soft sweep (2nd from top) has occurred. 

Positive selection will also cause nearby linked loci to increase in frequency leaving an 

extended region appearing under selection. Hard sweeps push allele frequencies towards 

fixation across a population whereas soft sweeps leave greater variation at the loci. Purifying 

selection (2nd from bottom) selects against a disadvantageous allele leaving surrounding 

variation. Balancing selection (bottom) maintains multiple alleles under selection and keeps 

genetic diversity high. 

Selective breeding in livestock typically results in the increased frequency of breeding 

favourable individuals due to a beneficial trait. Therefore, artificial selection commonly 

operates under positive selection (Saravanan et al., 2020). Negative and balancing selection 

also operate within artificial selection to a lesser extent. Due to the nature of positive 

selection, the haplotypes maintained in the genome can be easily detected within and 

between populations. Detection of positive selection for these two comparisons works on the 

basis of detecting haplotypes of increased frequency and LD from areas of normal genetic 

variation (Qanbari and Simianer, 2014; Saravanan et al., 2020). Within- or intra-population 

statistics do this across areas within a genome, whereas between- or inter-population 



Chapter One    
General Introduction   

17 
 

statistics detect this between the same area of different genomes. Several statistics are 

available to detect positive selection within populations. Site frequency spectrum (SFS) 

statistics such as Tajima’s D and Fay and Wu’s H-statistic can differentiate between areas of 

genome with an increased number of high and low frequency variants generated by positive 

selection, compared to areas of medium frequency variants (Qanbari and Simianer, 2014; 

Saravanan et al., 2020). Methods such as the extended haplotype homozygosity (EHH) and 

the integrated haplotype score (iHS) use linkage disequilibrium to find areas of high linkage 

(Sabeti et al., 2002; Voight et al., 2006). Runs of homozygosity can offer a method of detecting 

positive selection as these locate long homozygous tracts of depressed genetic variation 

within the genome that are maintained by selection (Qanbari and Simianer, 2014; Saravanan 

et al., 2020). Without selection, these tracts would be disrupted by gene flow, mutation, and 

recombination. Methods have been developed to identify differences between populations. 

FST is based on single site differences in allelic frequency and can detect older and fine scale 

selection meanwhile cross population (XP-EHH) uses linkage disequilibrium again to detect 

long haplotypes (Sabeti et al., 2007; Qanbari and Simianer, 2014; Saravanan et al., 2020). The 

benefits of using inter-population statistics are that no prior history surrounding the 

population is required, such as determining the ancestral alleles (e.g., required for iHS) which 

can be difficult to identify without ancestral populations. 

Soft selective sweeps are more difficult to differentiate from background genetic 

variation. Selection pressures for softer sweeps typically occur over a longer period of time 

and in response to a variable with a large variation over a spatial area (Saravanan et al., 2020). 

Therefore, methods have been developed to identify regions under selection in comparison 

with metadata. In livestock, populations adapt to either environmental conditions or pressure 

from farmers developing production traits. Isolated populations naturally diverge via 

mechanisms such as genetic drift. Selection enacting differently on each population can 

further diverge populations. Methods such as PCAdapt can be used to detect loci that greatly 

contribute to major axis of variation and therefore, are likely to represent loci under selection 

(Luu, Bazin and Blum, 2017). However, such analysis does not include any further information 

as to why these are under selection. Methods detecting selection in relation to environmental 

variables include R-Samβada (Duruz et al., 2019). With these, loci that enable individuals to 

be more greatly adapted to different climatic variables can be identified. For example, genes 
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relating to wax secretion in Moroccan sheep and heat stress in Lidia cattle were found 

associated with changes in precipitation and temperature respectively (Duruz et al., 2019). 

Finding loci relating to production traits is important for maintaining development of livestock 

for greater yields and efficiency. Though, determining precise genetic functions underpinning 

complex biological processes is incredibly difficult due pleiotropic effects, and that 

phenotypes are often determined by numerous loci (Boyle, Li and Pritchard, 2017; Sella and 

Barton, 2019; Barton, 2022). As such, genes under selection may not make immediate sense 

in relation to livestock functions. Genome wide association studies are frequently conducted 

in livestock allowing alleles to be identified that account for greater effects in a desired trait 

(Sharma et al., 2015; Saravanan, Panigrahi, et al., 2022).  

1.6. Domestic Water Buffalo 

Asian water buffaloes (Genus Bubalus) evolved across Eurasia since divergence from 

their African counterparts, Syncerus, approximately 5 – 8.5 million years ago (Tanaka et al., 

1996; MacEachern, McEwan and Goddard, 2009a; Bibi, 2013). Today, four species of extant 

wild buffaloes (all endangered) are present comprising of the wild Asian water buffalo (B. 

arnee) in Northern India, Tamaraw (B. mindorensis) on the Philippines, and two species of 

Anoa (Mountain: B. quarlesi & Lowland: B. depressicornis) on the Indonesian island of 

Sulawesi. Two additional domestic species of buffalo (B. bubalis) can be found, both of which 

were independently domesticated from the wild Asian water buffalo. The riverine form (B. 

bubalis bubalis) was domesticated in the Indus valley, Northwestern India, approximately 

6,000 years ago, while the swamp form (Bubalus bubalis carabanensis) was domesticated 

4,000 years ago in Northern Thailand (Kumar et al., 2007; Wang et al., 2017). The two 

domestic forms can be phenotypically (e.g., size, coat colour markings) and genetically 

separated. The most prominent difference between river and swamp buffaloes is that the two 

species feature different chromosomal numbers (riverine 2n = 24; swamp 2n = 23), with 

swamp buffalo displaying a fusion event between chromosomes 2 and 3 in river buffalo 

(Ulbrich & Fischer 1967; Fischer & Ulbrich 1968; Iannuzzi 1998). Despite chromosomal 

differences, river and swamp buffalo are fully capable of interbreeding to produce fertile 

offspring (Colli, Milanesi, Vajana, et al., 2018; Zhang, Colli and Barker, 2020). Less than 5,000 

wild Asian water buffaloes remain, 90% of which reside along wetlands habitats in Northern 

India (Kaul et al., 2019). Remnant populations may exist in Thailand, Cambodia, and Myanmar, 
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however the progenitor populations to the swamp buffalo may now be extinct (Kaul et al., 

2019). 

Domestic buffaloes number 200 million globally (FAO STAT). The distribution of 

worldwide buffalo populations can be found in Figure 1.3. River buffaloes account for three 

quarters of total buffalo population, with 110 million buffaloes found in India alone. The river 

buffalo was domesticated primarily for dairy production as a vital source of nutrition and 

energy for families (Colli, Milanesi, Vajana, et al., 2018; Zhang, Colli and Barker, 2020). The 

historic range of the river buffalo stretches west across the Middle East and coastal 

Mediterranean Europe reaching Italy and Romania, and with populations occurring around 

wetlands areas (Colli, Milanesi, Vajana, et al., 2018; Zhang, Colli and Barker, 2020; 

Wordsworth et al., 2021). River buffaloes have been further transported over the course of 

the 20th century, spreading further into Europe, and exported to South America and Southeast 

Asia (Colli, Milanesi, Vajana, et al., 2018; Zhang, Colli and Barker, 2020). Few sporadic 

populations are established in Africa. Swamp buffalo make up a smaller proportion as these 

were primarily domesticated for draught (Zhang, Colli and Barker, 2020). Their domestication 

appears to occur in tandem with the spread of rice cultivation across Southeast Asia 

(Setyaningsih et al., 2019; Sun, Wang, et al., 2020). The bulk of swamp buffalo population 

resides in China with their distribution spreading down through continental and islandic 

Southeast Asia.  

Despite the relatively small population size compared to cattle (1.5bn), domestic 

buffaloes are an incredibly important livestock species for people across Southern Asia 

(Mishra et al., 2015). Buffaloes are renowned for their environmental hardiness. Being native 

to the tropics, they are inherently adapted to the local conditions through a combination of 

physiological and behavioural traits. Most importantly, domestic buffaloes are productive 

under high temperatures and humidities (Marai and Haeeb, 2010; Yáñez et al., 2020). Buffalo 

skin is covered with a thick epidermis with high concentrations of melanin (Marai and Haeeb, 

2010). This combination captures UV rays to prevent penetration and damage to lower tissues 

(Marai and Haeeb, 2010). However, their black coloration and poor sweating capabilities 

make them vulnerable to heat stress from excessive exposure to sunlight (Marai and Haeeb, 

2010). Buffaloes are adapted to mitigating heat stress by bathing in freshwater as a sebum 
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excretion provides a protective layer against water and chemical absorption (Marai and 

Haeeb, 2010). This explains their historical distributions surrounding wetlands areas.  

 

Figure 1.3: Global distribution of domestic water buffaloes. Blue shading indicates the 

absolute number of domestic water buffalo found in each country. Lighter blue indicates a 

fewer number of buffaloes with darker blue indicating a greater number of buffaloes. Number 

of buffaloes in the key is given in log10 scale. Grey countries indicate countries with zero 

domestic water buffaloes or no data present.  

Tropical environments host a great diversity of pathogenic organisms that buffaloes 

are frequently exposed to via freshwater sources and rural environments. The ability to resist 

pathogens is a major asset for buffaloes that are frequently observed to be less vulnerable to 

disease than cattle (Cockrill, 1981; Villanueva et al., 2018; Bertoni et al., 2020; Kamaruddin et 

al., 2021). This is particularly noticeable for mastitis as river buffalo appear to have a lower 

predisposition to infection due to longer, thicker teats with a narrower canal and tighter 

sphincter than dairy cows (Bertoni et al., 2020). Consequently, this makes milk ejection more 

difficult (Bertoni et al., 2020). Wallowing behaviour may also be an important defensive 

mechanism against ectoparasites by disrupting their life cycles (Bertoni et al., 2020). 

Livestock, including buffaloes, are common among marginal lands where reliable crop growth 

is not possible. Here, buffaloes excel in extracting nutrients from unproductive environments 
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due to differences in digestive system morphology and microbial composition in comparison 

to cattle (Bertoni et al., 2020). 

The traits outlined above make swamp buffalo a resilient species for draught, while 

river buffalo maintain milk production as environmental quality decline. Therefore, buffaloes 

are important assets for rural families across Southern Asia. Focusing on the river buffalo, this 

domestic species provides a source of high energy milk for nutrition, an economic asset down 

generations, and a buffer to times of crises (Nanda and Nakao, 2003; Hegde, 2019). Buffalo 

milk is rich in fat and protein with greater mineral and vitamin concentrations than cattle milk 

(Guo and Hendricks, 2010). Therefore, buffalo milk is energy dense which is ideal for these 

rural communities (Guo and Hendricks, 2010). Families use this milk for sustenance, however 

in times of plentiful supply, buffalo milk provides an additional source of income (Nanda and 

Nakao, 2003). Livestock are an important source of wealth, particularly for rural communities, 

as they are an asset that can be maintained down generations (Nanda and Nakao, 2003). In 

times of crises (e.g., droughts) buffaloes can be sold and traded in order to obtain more food 

for families (Clingingsmith and Williamson, 2008; Venot, Reddy and Umapathy, 2010). This 

has led to buffaloes being called a ‘living bank’ and the highly productive murrah and nili-ravi 

breeds have earned the name of ‘black gold’ (Bilal, Suleman and Kakar, 2006; Hegde, 2019; 

Kumar et al., 2023). 

Domestic buffaloes are traditionally farmed by small holding landowners. Buffaloes 

are largely farmed in extensive or semi-extensive systems as farmers allow them to freely 

graze upon common land or within crop rotations (Chantalakhana & Skunmun, 1999; Kumar 

and Singh, 2010; Bertoni et al., 2020). As a result, buffaloes have not been subject to intense 

management and have few defined breeds in comparison to more abundant livestock species 

(e.g. cows). In India, home to the river buffalo, there are 13 native breeds, yet most of the 

buffalo population has been subject to admixture as 43% are classed non-type, with a further 

39% classed as graded (crossbreed) (DHAD 2013). Swamp buffalo rarely feature defined 

breeds, falling under a ubiquitous term of carabao. Instead, swamp buffaloes are frequently 

classed by location (e.g., Chinese provinces). In theory, the lack of intense management 

should provide buffaloes with high levels of genetic variation with scope to improve 

productivity through genomic selection.  
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Intensification of buffalo farming has yet to occur as few modern large-scale farms 

exist with more than 300 individuals. This is likely due to the establishment of more popular 

and productive livestock species prior to the arrival of river buffaloes. In India and Pakistan, 

river buffaloes display their capabilities as livestock. River buffaloes contribute 57% and 68% 

respectively of the milk produced despite only composing of 36% and 50% of the bovine 

populations (Murtaza, Pandya and Khan, 2017; FAOSTAT). However, with average milk yields 

of 1,000 – 2,500 kg milk per 305-day lactation period, river buffaloes fall short of the 

productivity of commercial Western taurine cattle breeds (>5,000kg) (van Arendonk and 

Liinamo, 2003; Oltenacu and Broom, 2010; Borghese, 2013a). Despite this, river buffaloes 

have recently been incorporated into modern farming systems. This is often under the 

assumption that the greater protein, fat, and mineral content of buffalo milk gives a higher 

quality product than cattle. For example, Italy farms highly productive Mediterranean 

buffaloes as high-quality mozzarella can be produced from their milk (Zicarelli, 2004; 

Borghese, 2013). River buffalo numbers are increasing due to their importance to India and 

Pakistan and additional uptake in other countries(Zhang, Colli and Barker, 2020). In contrast, 

swamp buffalo are in decline as their draught use is replaced by mechanization (Zhang, Colli 

and Barker, 2020). Outside of draught, swamp buffalo are not highly valued as livestock as 

their smaller carcasses produce less meat, and their low milk yield (600kg) is not competitive 

(Borghese, 2011; Borghese and Moioli, 2016). Therefore, farming enterprises focused on 

swamp buffalo are rare. However, across China and Philippines, swamp buffalo are being 

repurposed into meat and milk producers via assistance through crossbreeding with river 

buffaloes (Zhang, Colli and Barker, 2020).  

Without demand on a commercial scale, research into domestic water buffaloes and 

the generation of resources has lagged compared to high-profile livestock. In the field of 

genetics, studies began evaluating the phylogenetic relationships between domestic 

buffaloes, and various wild species in the late 1990s through mitochondrial haplotypes and 

restriction fragment length polymorphisms (Barker et al., 1996; Tanaka et al., 1996). Through 

the 2000s, genetic research began quantifying the levels of diversity across buffaloes using 

microsatellite markers and expanded exploration of their domestication origins with 

mitochondrial DNA (Kierstein et al., 2004; Lei et al., 2007; Kumar et al., 2007; Kumar et al., 
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2007; Zhang et al., 2007). However, studies had not found their way into guiding future 

management and development of buffaloes as livestock.  

Around 2010, the NGS revolution came into effect and the generation of genomic 

resources became accessible. For livestock, the production of SNP genotyping microarrays 

underpinned the development of genomic selection programs. For cattle, the Illumina 

BovineSNP50 BeadChip featured approximately 54,000 SNPs and genotyped 24 individuals at 

any one time (Matukumalli et al., 2009). Sheep and pigs both had arrays in 2009, while a goat 

array was developed in 2014 (Kijas et al., 2009; Ramos et al., 2009; Tosser-Klopp et al., 2014). 

High density SNP arrays are now available with the Illumina BovineHD Genotyping BeadChip 

delivering more than 777,000 SNPs, though human genotyping arrays now exceed 4 million 

SNPs (Verlouw et al., 2021). Alongside this development, increasing WGS of livestock is 

continuously being undertaken revealing a wealth of information for genomic research.  

For buffaloes, the introduction of genomic resources began with the formation of a 

completed draft genome in 2017, before a high quality genome was developed a year later 

(J. L. Williams et al., 2017; Low et al., 2019). The first commercial genotyping array for 

buffaloes became available in 2017 featuring approximately 90,000 SNP markers (Iamartino 

et al., 2017). The production of this array enabled the formation of the first genomic selection 

programs led mostly by Italian and Brazilian farms (de Camargo et al., 2015; Iamartino et al., 

2017; J. J. Liu et al., 2018; Cesarani et al., 2021; Lázaro et al., 2021). Since then, 

characterization of genomic resources across domestic buffaloes has begun to take place, 

exploring levels of genetic diversity worldwide, their evolutionary history, and gene under 

selection or those that are commercially relevant (Wang et al., 2017; Colli, Milanesi, Vajana, 

et al., 2018; Mokhber et al., 2018, 2019; Fallahi et al., 2020; Luo et al., 2020; Sun, Huang, et 

al., 2020; Sun, Shen, et al., 2020; Macciotta et al., 2021). The caveat though is that genomic 

studies were biased towards the more commercially relevant river buffaloes, though recent 

generation of a swamp specific reference genome and WGS has given genomic accessibility 

to swamp buffalo (Iamartino et al., 2017; Colli, Milanesi, Vajana, et al., 2018; Luo et al., 2020).  

The incorporation of genomic research into buffalo farming will aid in fulfilling their 

potential as livestock. Physiological studies are developing greater milk production (Catillo et 

al., 2002; Salari, Altomonte and Martini, 2013; Valsalan et al., 2014; Costa et al., 2021; Eldawy 

et al., 2021), meat production (Ekiz et al., 2018; Guerrero Legarreta et al., 2020), feed 



Chapter One    
General Introduction   

24 
 

efficiency (Subhashchandra bose et al., 2014; Negesse, Datt and Kundu, 2016; Sharma et al., 

2018), reproductive success (Barile, 2005; Baruselli et al., 2023; Nava-Trujillo et al., no date), 

disease resilience (Locatelli et al., 2013; Kaur et al., 2016; Catozzi et al., 2017), and heat stress 

(Petrocchi Jasinski et al., 2023) among others. Genomic studies in buffaloes will unearth the 

gene-phenotype interactions behind these observations. 

As climate change enacts its effects, average global temperatures will increase, 

freshwater sources fluctuate, greater exposure to pathogenic organisms, and the reliable 

growth of crops become unfeasible due to extremes in weather. These effects will threaten 

livestock productivity meaning that livestock will either need to adapt, or farmers import new 

breeds and species that already feature useful adaptations. Additionally, with a growing 

human population and increasing demand for livestock derived products, farms will need to 

become more efficient to increase output. Water buffalo may offer a timely contribution to 

future food security. Their environmental resilience is a great asset in the face of climatic 

instability with heat tolerance, disease resistance, and nutrient conversion adaptations, 

particularly in those areas where crop growth declines. Farmers in the Philippines are already 

switching from crops to buffaloes due to extreme weather making crop farming unviable 

(Escarcha et al., 2020). Any uptake in buffalo farming may require some adaptations or 

breeding to increase production. Fortunately, buffaloes are unlikely to have undergone any 

intensive selection and likely harbour high levels of genetic diversity. Initial evidence suggests 

that there has been continual uptake in genetic variation in river buffaloes since 

domestication through genetic exchange with wild buffaloes (Nagarajan, Nimisha and Kumar, 

2015). An abundance of diversity provides an ideal foundation to generate selection programs 

and target breeding towards more productive buffaloes to make commercial farming of 

buffaloes more competitive with already established species. Additional traits such as lower 

methane emissions from buffaloes compared to cattle may contribute to minimizing GHG 

contributions (Mendoza et al., 2020). Recent generation of genomic resources for domestic 

buffaloes means that the potential of buffaloes can now begin to be fully realized. 

1.7. Thesis Aims 

This thesis contributes to the growing body of genomic research surrounding domestic 

water buffaloes. The aims surround two general themes. Firstly, the demography of various 
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domestic water buffalo populations is reconstructed to understand the processes that shaped 

current patterns of genetic variation. The second objective is to assess the adaptive potential 

of buffaloes. This involves identifying genes relevant for buffalo adaptation and may be useful 

for targets of selection for future buffalo function. These aims were both completed using a 

commercially available AxiomTM Buffalo Genotyping Array. This array is currently the most 

accessible means to large scale population genomic data for buffaloes and is relevant to 

developing new breeding management plans utilizing genomic selection. The output of this 

thesis provides characterization of genetic resources for an understudied livestock species 

that is crucial for people across Southern Asia.  

1.7.1. Demographic Processes 

Quantifying genetic diversity within a unit and understanding variation across a spatial 

structure is imperative to forming management plans for conservation and breed 

development. Intricate genetic, environmental, and biological processes have shaped current 

genetic variation, and for livestock, this is further complicated by artificial processes under 

human control. Elucidating patterns of divergence and gene flow within a livestock species 

aid in understanding how patterns of genetic variation were developed. Chapters Two and 

Three identify the pattern of genetic variation across two commercially relevant breeds, the 

murrah and Mediterranean riverine buffaloes, due to their great milk yields (Borghese, 2005; 

Borghese, Chiariotta & Barile, 2022). Here, differences in genetic variation are evaluated in 

the context of recent formation of new populations. Chapter Two quantifies the levels of 

genetic diversity of Mediterranean buffalo retained by two farms in United Kingdom since 

importation from continental Europe, whilst Chapter Three identifies this over global 

populations of murrah buffalo. This will give indications into the levels of overall genetic 

diversity retained and as such, give insights into their genetic health and potential 

adaptability. Population structure analysis is then completed to determine the extent of 

genetic differentiation across Mediterranean (Chapter Two) and murrah (Chapter Three) 

populations before calculation of Ne is used to reconstruct recent trends in diversity through 

time. In Chapter Two, we know that UK farmers typically import buffaloes from two sources, 

Romania and Italy. Therefore, we further explore their recent history through identity by 

state, and ancestry modelling for each farm, determining genetic proportions descended 
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from each reference population. This work will help guide future management plans of 

buffaloes in guiding where to import new individuals from. 

Chapters Four and Five expand analyses across a global dataset of domestic buffaloes 

comprising both riverine and swamp species. SNP genotyping arrays suffer from two sources 

of ascertainment bias; i) selected SNPs are typically highly polymorphic in order to 

differentiate between closely related individuals of the same population, thus distorting allele 

frequency spectrums that do not represent normal standing genetic variation, and ii) sub-

populations not included in SNP selection will be underrepresented in genetic diversities as 

specific polymorphic SNPs to those populations are not included. In the buffalo genotyping 

array used here, this ascertainment bias is exacerbated as swamp buffalo were not included 

in SNP selection, which up until genetic evidence, was unclear whether river and swamp 

buffalo were of the same species or not. Chapter Four therefore investigates how to handle 

ascertainment bias, and more specifically, whether differences in genetic variation between 

river and swamp buffaloes can be overcome using linkage disequilibrium pruning. Using the 

outcome of Chapter Four, deeper evolutionary relationships between river populations and 

swamp buffalo are explored using Approximate Bayesian Computation (ABC). Divergence 

times, gene flow, and Ne backwards through time are calculated using ABC modelling to 

decipher the extent of differentiation between riverine and swamp buffaloes. Additionally, 

times of migrations out of India were tested for riverine buffaloes that established core 

historical populations in the Middle East and Europe. 

1.7.2. Selection Signatures 

Genomic selection is integral to maximizing productivity in livestock and conserving 

important regions of the genome. The majority of selection studies in livestock identify 

candidate genes for production traits, however with rapidly changing climatic conditions, 

finding alleles linked to local adaptivity of environments is vital for ensuring livestock 

populations remain phenotypically plastic, healthy, and productive. In Chapter Two, regions 

under positive selection are identified using runs of homozygosity (ROHs) in each UK 

population. Genes found within these regions were identified for gene function, protein 

interactions, prevalence within biological processes, and known quantitative trait loci (QTL) 

associated. This gives indication into whether UK buffalo are genetically responding to 
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modern farming systems. Adaptation to the UK was further assessed by identifying any genes 

under positive selection in both populations using XP-EHH. To assist with identifying 

hitchhiking regions, average LD was calculated across the genome for each UK population, 

giving additional insights into potential genomic selection efficiency. Furthermore, LD 

distributions were compared between UK populations to determine whether future potential 

selection mechanisms were easily transferrable between populations. The same was done for 

murrah populations in Chapter Three however, results were further filtered. The goal of this 

chapter was to find evidence of rapid recent selection and adaptation to new environments. 

Therefore, regions under selection were only studied if they were unique to specific murrah 

populations (established <100 years). Long haplotypic methods such as ROHs and XP-EHH 

were used to identify hard selective sweeps, meanwhile softer selective sweeps were 

identified using methods such as PCAdapt and R-Samβada, linking selection to population 

structure and environmental adaptation, respectively. This work will add new information 

into genomic adaptability of buffaloes which would back up physiological studies. Finally, as 

part of Chapter Five, regions of divergence or balancing selection were identified that may 

provide functional reasons as to how domestic buffaloes historically diverged to become 

different species yet are fully capable of interbreeding.  
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Chapter Two 

Demography & Selection in UK Water Buffalo 

 

2.1. Abstract 

A few thousand Mediterranean water buffalo occupy a small sector of the livestock 

industry within the United Kingdom (UK). Despite living in the UK for around 60 years, public 

awareness about the species remains low. It is imperative to support small industries and 

conserve genetic diversity across livestock, aiding in breed improvement whilst preserving 

their genetic health and adaptive potential. This study uncovers the UK buffaloes’ genetic 

diversity, their European ancestry, and any genes under selection. Water buffalo were 

sampled across two farms in the UK (RV_UK1 and RV_UK2) and genotyped using the AxiomTM 

90K Buffalo SNP Genotyping Array, generating 63,603 high-quality SNP markers after quality 

control. High levels of genetic diversity were found in both UK populations with no significant 

decline of genetic diversity in UK buffaloes since importation. In accordance, there was no 

inbreeding in the UK populations and their divergence from Europe was low to moderate. 

Population structure was driven by Eastern (e.g., Romania) or Western (e.g., Italy) European 

origins with UK buffaloes found closely associated to Italy. Discrepancies in ancestry between 

the two UK populations appears due to genetic drift in RV_UK2. Runs of homozygosity (ROHs) 

under selection in each population suggests alternative management of populations, likely 

reflecting different intensities of each farm. Quantitative trait loci (QTLs) revealed an excess 

of production traits in RV_UK1 in line with an expanding modern farm needing to generate 

high yielding buffalo. Meanwhile RV_UK2 feature an excess of milk associated QTLs under 

selection which would be the classical expectation of dairy buffaloes. Selective sweeps 

present in both UK populations found several genes related to immunity, milk production, 

and thermoregulation which may indicate important regions to increasing production in 

buffaloes or adaptation from exposure to a new environment and pathogenic community. 
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2.2. Introduction 

Domestic water buffalo are famed for their nutrient rich milk. However, they are a 

little-known domestic species across the United Kingdom (UK). This is down to their local 

rarity as the population size of water buffaloes in the UK is dwarfed by traditional British 

livestock. Since 2013, the water buffalo population in Great Britain has declined 21.5% from 

around 4,000 individuals to 3,000 (Figure 2.1). In comparison, there were 9.6 million cattle 

recorded in 2022 (Department for Environment Food & Rural Affairs, 2022). Despite a decline 

in the population size, a handful of ambitious British farmers aim to establish an economically 

viable buffalo farming industry amongst the UK livestock landscape. To achieve this, water 

buffaloes will be pushed towards modern large-scale farming (greater than 300 individuals) 

to increase productivity, a farming intensity that is uncommon across global traditional 

buffalo farming.  

 

Figure 2.1: Water buffalo population size in Great Britain from 2013 – 2022 for males (blue) 

and females (red). Data provided by the British Cattle Movement Service and are correct as 

of 02/05/2023. Data does not include Northern Ireland. 

The Mediterranean water buffalo is the sole buffalo breed currently found in the UK. 

This breed falls under the river buffalo (Bubalus bubalis bubalis) species domesticated from 

the wild Asian water buffalo (Bubalus arnee) in India (Satish Kumar et al., 2007; Colli, Milanesi, 

Vajana, et al., 2018). Mediterranean buffalo were historically found in the Campania region 
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of Italy and Romanian areas surrounding the Danube River and Carpathian Mountains. River 

buffalo from India likely reached the ancient Mesopotamia region across present day Middle 

East around the 5th Century by way of settlement of the Indian Al-Zutt community 

(Wordsworth et al., 2021). Migration through Saracen trading routes from the 7th Century 

likely facilitated establishment of buffalo populations in Italy and Romania to become the 

Mediterranean breed known today (Colli, Milanesi, Vajana, et al., 2018; Wordsworth et al., 

2021). It does not appear that Mediterranean buffalo have undergone any historical 

admixture, however there are reports that some crusaders returned to Europe with buffaloes 

in the 12th and 13th centuries (Colli, Milanesi, Vajana, et al., 2018). Expansion and trade of 

water buffaloes from their European origins into modern farming across Europe and UK has 

mostly occurred since the second half of the 20th Century, albeit slowly and in low numbers. 

With more than 400,000 buffalo, Italy features by far the strongest European industry as no 

other country in Europe harbours more than 15,000 individuals (Minervino et al., 2020; 

Cesarani et al., 2021). 

Mediterranean buffaloes are among the most productive diary buffalo breeds 

alongside the murrah and nili-ravi of India and Pakistan, respectively. These breeds produce, 

on average, more than 2,000kg of milk per 270 days of lactation with many elite individuals 

producing over 5,000kg (Borghese, 2005). Most buffalo outside of intensively managed herds 

produce less than 2,000kg of milk per 270 days of lactation (Borghese, 2005). Buffalo milk is 

valued for the higher concentration of solids than cattle milk, particularly the great fat and 

protein content (Guo and Hendricks, 2010). This results in buffalo milk being a source of high 

energy content understating why river buffalo are popular and vital among the rural 

communities in India and Pakistan (Guo and Hendricks, 2010). In Europe, these qualities 

provide ideal coagulation properties for the production of high end luxury mozzarella cheese 

(Costa et al., 2020). To a lesser extent, European buffaloes are used as a source of meat. 

Buffalo meat can provide greater health benefits than cattle owing to lower fat content, 

cholesterol, myristic and palmitic acids whilst retaining similar protein levels (Guerrero 

Legarreta et al., 2020; Di Stasio and Brugiapaglia, 2021).  

The nutrient content of buffalo milk alone has not been enough for Mediterranean 

buffaloes to become a widespread domestic species in Europe. Mediterranean buffalo persist 

as the only breed in Europe (Bulgarian murrah being a crossbreed between Mediterranean 
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and imported murrah) and likely haven’t undergone the intense selection that other livestock 

species have (e.g., cattle and pigs). Mitochondrial analysis of river buffaloes shows a large 

variation in haplotypes and lack of bottleneck (Satish Kumar et al., 2007; Nagarajan, Nimisha 

and Kumar, 2015). Comparatively, taurine cattle have resided in Europe since shortly after 

their domestication 10,000 years ago, and as such have become integrated into society across 

Europe diversifying into more than 400 breeds (Beja-Pereira et al., 2006; Pitt, Sevane, et al., 

2019). The result of this is that cattle can be successfully farmed across all environments in 

Europe and commercial breeds have undergone intense selection to maximise yields 

(Consortium, 2006; Soini et al., 2012). The Holstein Friesian cattle is widely regarded as the 

most productive cattle breed. The milk producing capacity of Holstein cattle vastly exceeds 

that of Mediterranean buffalo at an average 10,000kg of milk per 305 days of lactation, 

enabling an economically cheaper production of milk (Hansen, 1999; Breider, 2019; 

Piwczyński, Brzozowski and Sitkowska, 2020; Radwan, El Qaliouby and Elfadl, 2020). At these 

quantities of produce, it is of no surprise that Holstein cattle are globally farmed at an 

industrial scale.  

From a meat perspective, buffalo meat has struggled to become popular as poor 

sensory characteristics make for unpleasant experience. Traditionally, buffalo meat was 

harvested when culling old buffaloes which generates low quality meat that is already tougher 

and darker than cattle meat due to its healthier properties cattle (Guerrero Legarreta et al., 

2020; Di Stasio and Brugiapaglia, 2021). The use of optimized diets and low slaughter age can 

generate meat more comparable to cattle, however lower growth rates and dressing 

percentages makes an economically viable buffalo meat production difficult to maintain 

(Guerrero Legarreta et al., 2020; Di Stasio and Brugiapaglia, 2021). 

The strength of the buffalo industry in Italy is therefore somewhat of an outlier in the 

farming landscape of Mediterranean buffalo. The productivity of Italian buffaloes is not 

maintained elsewhere as, for example, Mediterranean buffalo in Eastern Europe often 

produce approximately 1,500kg or less milk (Coroian et al., 2011; Matiuti et al., 2020; Popa et 

al., no date). Italy’s success in buffalo farming has been generated through multiple reasons 

including investment, organised breeding systems, availability of appropriate pastures, 

surplus of milk quotas, and value of product, and is now being further improved through 

genomic selection (Borghese, 2005). Italian buffalo milk is valued for its use in producing high 
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quality Mozzarella di Bufala Campana cheese, which has been recognised under the Protected 

Designation of Origin (PDO) certification (Costa et al., 2020; Cesarani et al., 2021). This 

investment into quality buffalo milk in Italy means the milk is two to three times more 

expensive than many other buffalo farming countries (Pisanu et al., 2019). Therefore, to 

establish a thriving buffalo industry in the United Kingdom, British farmers will need to 

replicate the success of Italian buffalo industry, producing a highly productive herd stock and 

generate a valued product.  

This chapter comprises of a genetic analysis of Mediterranean water buffaloes 

sampled from two farms in the United Kingdom using the AxiomTM 90K Buffalo SNP 

Genotyping Array (Iamartino et al., 2017). The study here aims to genetically characterise and 

evaluate the current status of British buffaloes. To do so, the sampled farms were compared 

to a range of European populations, including countries of historical origin in Europe 

(represented by Italy and Romania), from two previous buffalo studies (Colli, Milanesi, Vajana, 

et al., 2018; Noce et al., 2021). The specific goals of this chapter are outlined as follows. 

The first goal is to determine whether British buffaloes have lost any genetic diversity 

since importation to the UK. Small populations are particularly vulnerable to loss of genetic 

variation with following effects typically associated with reduced fitness and increased in 

health issues (Lande, 1988; Pekkala et al., 2012, 2014). The contraction of a large population 

under decline, or in the example of British buffaloes, migration of a new sub-population can 

increase the chances of deleterious alleles becoming dominant (Kyriazis, Wayne and 

Lohmueller, 2021). Within a large population, these alleles are often hidden in heterozygous 

states at low frequencies with individuals showing no health risks (Pekkala et al., 2014; 

Kyriazis, Wayne and Lohmueller, 2021). In small populations, rare deleterious alleles may 

persist at greater frequency and individuals carrying these alleles are more likely to 

reproduce. Shifts in allele frequencies that enable this phenomenon fall under the term of 

genetic drift which can be exacerbated through genetic bottlenecks (Lande, 1988; Broquet et 

al., 2010; Angst et al., 2022). Small populations such as the establishment of British buffaloes 

may be vulnerable to a genetic bottleneck or detrimental drift if they failed to capture enough 

diversity from the original host population. Therefore, this study firstly aims to quantify the 

amount of genetic diversity present within British buffaloes and the extent of genetic 
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differentiation from continental origin populations. The outcome of this allows inference into 

the genetic health and potential adaptability of British buffaloes. 

Secondly, the ancestral origins of British buffaloes were determined. This goal seeks 

to map out their recent history uncovering any shifts in historical population sizes and any 

admixture from differing populations of Mediterranean buffalo. Analysing trends in effective 

population sizes back through time contributes to understanding if any major events have 

impacted a species current genetic variation (Lande, 1988; Wang, 2005; Hare et al., 2011). 

This knowledge provides important contributions to thorough management plans for future 

development of breeds (Lande, 1988; Wang, 2005; Hare et al., 2011). Farmers are likely to 

import new individuals from continental Europe to restock, expand, or develop their herds. 

Importation without genetic knowledge has the potential to incorporate damaging admixture 

into the population that can lead to genetic erosion (Rege and Gibson, 2003; Leroy et al., 

2018).  

British buffaloes are potentially composed of a mixture of Italian and Romanian 

buffaloes. Although buffaloes from these countries are defined under the Mediterranean 

breed, populations within these countries have possibly been separated for much of their 

time in Europe and thus experienced different recent evolutionary histories. Italian 

Mediterranean buffaloes have undergone large scale development to increase productivity 

to become among the best buffalo milk producers, whilst Romanian buffalo may exhibit 

environmental adaptations to the cold climate of the Carpathian Mountain range (Borghese, 

2013b; Yáñez et al., 2020; Cesarani et al., 2021). UK farmers initially imported cheap buffaloes 

from Eastern Europe to set up farms before importing from Italy to increase productivity 

(Borghese, 2013b). Substantial admixture between buffaloes of these two countries may lead 

to intermediate phenotypes that are neither as productive as Italian buffalo, or climate 

resilient like Romanian buffalo (Martínez et al., 2012; Leroy et al., 2018). This admixture is 

therefore harmful to successful development of farms and genetic analysis can identify any 

areas of genetic erosion that should be mitigated. 

Finally, the third goal is to identify any regions across the genome under selection in 

each UK population that may be of importance for livestock function and preservation. 

Selection may be subjected upon British buffaloes in relation to a new environmental or a 

developmental pressure by humans. Identification of selection here is achieved through 
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analyses of long continuous homozygous genomic segments called runs of homozygosity 

(ROHs) and signatures of recent selective sweeps via cross population extended haplotype 

homozygosity (XP-EHH). Directional selection over time such as artificial selection leads to the 

preference of a limited number of superior individuals for breeding (Peripolli et al., 2017). The 

continual use of these individuals leads to the inheritance of large identity-by-descent regions 

and a reduction in the diversity of haplotypes surrounding the target locus (Peripolli et al., 

2017). When ROHs are present at the same location across many individuals within a 

population, this suggests that the locus harbours important genes (Pemberton et al., 2012). 

Therefore, significant genes found within ROHs were identified in British buffaloes and 

functional analysis conducted. ROH analysis targets longer tracts of the genome. Shorter 

targets of selection were identified via signatures of recent positive selection using an 

extended haplotype method. Strong positive selection on a locus can cause a sudden shift in 

frequency of the preferred allele towards fixation (Qanbari and Simianer, 2014; Saravanan et 

al., 2020). The speed at which this happens causes flanking DNA to also be selected for, 

leaving a highly linked detectable segment (Qanbari and Simianer, 2014; Saravanan et al., 

2020). This form of signature infers recent selection as variation in the flanking DNA that is 

not under selection will be generated via recombination over time (Qanbari and Simianer, 

2014; Saravanan et al., 2020). Therefore, detection of positive selection here is used to infer 

recent adaptation of buffaloes to the UK. 

2.3. Materials and Methods 

2.3.1. Sample Collection & Data Generation 

Water buffalo were sampled at two farms from the UK. A total of 69 water buffalo 

were sampled using nasal swabs in compliance with home office laws. Farm 1 (RV_UK1 

hereafter) had 41 water buffalo sampled while 28 were sampled from farm 2 (RV_UK2 

hereafter). The nasal swabs were transferred to Neogene UK for sample preparation and 

genotyping using the AxiomTM Buffalo Genotyping Array featuring approximately 90,000 SNP 

markers (Iamartino et al., 2017).  

The raw genotyped data was analysed in AxiomTM Analysis Suite Software v4.03. 68 

out of the 69 buffalo samples passed quality control measures for calling genotypes. 75,679 
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SNP genotypes were successfully called using quality control thresholds outlined in Table S2.1, 

and exported in the PLINK v1.9 PED/MAP format (Chang et al., 2015). The dataset underwent 

further quality control in PLINK v1.9, tailoring the dataset to the requirements of each 

analytical test. SNPs were aligned to the water buffalo reference genome UOA_WB_1 

(RefSeq: GCF_003121395.1) with non-autosomal SNPs and those with no known 

chromosomal locations being removed. SNPs and individuals with a call rate greater than 0.95 

were retained, with additional removal of founders, giving an initial PLINK v1.9 QC dataset of 

63,603 SNPs across 65 individuals. This dataset was used for runs of homozygosity analysis 

(Section 2.3.5) as these tests are less sensitive than association-based tests (e.g. genome-wide 

associations) to sporadic incorrect genotypes that are cautiously removed through applying a 

minor allele frequency (MAF) filter (Meyermans et al., 2020). A MAF filter of 0.01 was then 

applied producing a dataset of 60,990 SNPs. This dataset was used for linkage disequilibrium 

(Section 2.3.3) and identity-by-descent (Section 2.3.4) analysis of UK water buffalo.  

Publicly available datasets containing European water buffalo populations were taken 

from two published papers for comparison against UK buffaloes (Colli, Milanesi, Vajana, et al., 

2018; Noce et al., 2021). These populations cover several European countries featuring 

multiple Mediterranean water buffalo populations and one Bulgarian murrah (Table 2.1). 

Populations from Colli et al., (2018) and Noce et al., (2021) underwent the same quality 

control process in PLINK v1.9 producing 46,888 and 61,766 SNPs respectively. Noce et al., 

(2021) was merged with the UK buffalo dataset first, retaining 53,274 SNPs present in both 

datasets. Due to losing increasingly more SNPs as more datasets were combined, this dataset 

was used for detecting signatures of positive selection (Section 2.3.4) before being merged 

with Colli et al., (2018). 40,695 SNPs were shared across all three datasets. This shared dataset 

was used for calculating genetic diversities, population structure, and gene flow (Section 

2.3.2). Linkage disequilibrium pruning was conducted to generate independent markers to 

avoid overestimation of statistical values through multicollinearity effects via highly 

correlated SNPs (Malomane et al., 2018). The first SNP of every linked pair of markers was 

removed using a sliding window approach of 50 SNPs, step size of 10 SNPs and an R2 threshold 

of 0.1. This gave a dataset comprising of 7,222 SNPs for demographic analysis across European 

buffaloes. To ensure robust results, the dataset was randomly split in two with the second 

dataset used to results obtained in the first dataset. 
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Table 2.1: European water buffalo populations used and display of locations of each 

population, breed, sample sizes, and referenced studies. 

Population ID Country Region Breed Sample 
Size 

Reference 

RV_UK1 UK Somerset Mediterranean 38  
RV_UK2 UK Somerset  27  
      
RV_ITA Italy  Mediterranean 15 (Colli, Milanesi, 

Vajana, et al., 
2018) 

RV_ROM_CL Romania   13  
      
RV_BUL_VAR Bulgaria Varna Bulgarian Murrah 58 (Noce et al., 2021) 

RV_GER_BOR Germany Born Mediterranean 28  
RV_GER_JUT  Jüterbog  27  
RV_GER_STA  Stadland  26  
RV_GER_WIE  Wiesenburg  28  
RV_HUN_CSA Hungary Csákvar  17  
RV_HUN_FOL  Földes  19  
RV_HUN_TIZ  Tiszataj  19  
RV_ROM_MER Romania Mera  16  
RV_ROM_SEC  Sercaia  47  

 

2.3.2. Genetic Diversities & Population Structure 

Genetic diversity was summarised using inbreeding coefficient (F), observed (HO), and 

expected (HE) heterozygosity for each population in PLINK v1.9. Summaries (e.g., mean) and 

analysis of genetic diversities was completed in R v4.0.0 (R Core Team, 2018) using custom R 

scripts. A Welch’s t-test was used to test for significant differences between HO and HE within 

each population because of non-normal data identified using the Shapiro-Wilk test. A Kruskal-

Wallis was used to test for significant differences in HO between all populations.  

Population structure across European buffaloes was assessed using several methods. 

Pairwise population FST values were calculated across the dataset using Arlequin v3.5.2.2 

(Excoffier and Lischer, 2010), with a neighbour-net network created in SplitsTree v4.14.4 

(Huson and Bryant, 2006). Major divisions between individuals were assessed via a 

multidimensional scaling (MDS) analysis via PLINK using raw Hamming’s distance to reduce 

the dataset to 20 dimensions. Genetic clustering of individuals was done using ADMIXTURE 

v1.3.0 testing for the ideal number of unique ancestral genetic clusters (K) across the dataset 

(Alexander, Novembre and Lange, 2009). Values of K from 1 to 20 were tested with five 
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repeats for each value of K. The preferred value of K was identified as the value with the 

lowest estimated cross-validation output. An AMOVA was used to further understand the 

distribution of variation observed across individuals or populations within the dataset via 

Arlequin. Treemix was used to detect the presence of gene flow between populations by 

incrementally adding migrations between populations (Pickrell and Pritchard, 2012). Like 

ADMIXTURE, this tests between a defined number of migrations (K) however, the ideal value 

of K was selected when variation explained across the dataset exceeded 99.8% in accordance 

with (Pickrell and Pritchard, 2012). Values of K were tested from 1 to 20. 

2.3.3. Linkage Disequilibrium & Persistence of Phase 

Linkage disequilibrium in the form of Pearson’s r and r2 was calculated between all 

pairwise SNPs separated no more than 10Mbp from each other in each UK population. This 

allowed calculation of the average linkage disequilibrium across the genome for identifying 

candidates of selection and visualising the recent demographic history of UK water buffalo. 

All linkage disequilibrium analyses post-PLINK were completed in R with custom scripts. 

Average genome linkage was calculated by grouping SNP pairs according to distance apart 

into 50kbp bins up to 1Mbp and taking the mean r2 of each bin. This was then visualised in 

the form of a decay curve showing mean and variance of linkage as the mean distance 

between SNPs increased. The consistency of linkage disequilibrium in each UK population was 

compared using persistence of phase. Phase refers to the assignment of alleles to maternal 

and paternal chromosomes, while persistence of phase evaluates the order of alleles between 

populations using linkage disequilibrium. Closely related populations will likely have higher 

persistence of phase making transferability of genomic predictions between these 

populations easier (de Roos et al., 2008; Wang et al., 2013). Therefore, to calculate 

persistence of phase, Pearson’s correlation was calculated on r values between SNPs (in 

PLINK) between both UK populations using custom R scripts. SNPs were grouped into 50kbp 

bins, and the mean and variance plotted. 

2.3.4. Ancestry 

Recent history of UK water buffalo was extracted with the following methods: i) 

Identity-by-descent (IBD) evaluating the relationships between all UK individuals, ii) r2 linkage 
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values were used to calculate effective population size (Ne) of UK populations over recent 

history, and iii) the proportion of the genome relating to European ancestral populations was 

computed for both UK populations. 

IBD between all UK individuals was calculated in PLINK and summarised in R using 

custom scripts. Welch’s t-tests (due to non-normal data) were used to determine if there was 

a statistical difference in IBD between UK populations, as well as testing IBD between vs 

within populations. A network of IBD relationships between individuals greater than 10% was 

produced using network R package (Butts, 2008). 

Population trends over time were estimated using Ne following Mokhber et al., (2019). 

This was calculated using Sved (1971) Ne equation (1) implemented through custom R scripts 

that evaluates the average r2 linkage values and distance, c, between SNPs in Morgans. 

Genetic distance was converted to physical distance assuming 1cM ~ 1Mb. 

𝑁𝑒 = (
1

4𝑐
) (

1

𝑟2
− 1) 

            (1) 

A sample size correction was applied to r2 using equation (2) below where n represents 

the number of haplotypes in the sample, and r2 must be greater than 0, and less than 1. 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑟2 =
𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝑟2 −

1
𝑛

1 −
1
𝑛

 

            (2) 

Lastly, generation (t) corresponding to distance (c) between SNPs was calculated using 

equation (3). 

𝑡 =
1

2𝑐
 

            (3) 

Water buffaloes from Italy and Romania have been imported to the UK. Local Ancestry 

in adMixed Populations (LAMP) was used to determine the proportions of the UK populations 

genomes deriving from the two ancestral origins, represented by RV_ITA (Italy), and 

RV_ROM_CL (Romania) (Baran et al., 2012). Since ancestral populations were available, the 
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LAMP-ANC algorithm was employed. As UK water buffalo were imported later in the second 

half of the 20th century, the time since admixture was set to 8 generations, where 1 

generation = 6 years (Mintoo et al., 2019). Admixture proportions required were estimated 

by running ADMIXTURE for each UK population with RV_ITA and RV_ROM_CL when K = 2. 

2.3.5. Runs of Homozygosity  

Runs of Homozygosity (ROH) were identified in each UK population in PLINK under 

consideration of Meyermans et al (2020). Parameters used to identify ROHs are as follows: 

minimum SNP density of 80kbp, maximum gap between SNPs being 1000kbp, maximum of 

one heterozygous SNP, maximum of one missing SNP, and a ROH window threshold (defined 

as hit rate of a SNP in all scanning windows) of 0.05. The minimum number of SNPs per ROH 

(L) in each population was calculated using equation (4) below, where α represents the 

percentage of false positive ROH (0.05 here), ns represents the number of SNPs, ni the number 

of individuals within the population, and het equals the mean average heterozygosity across 

all SNPs (Lencz et al., 2007; Purfield et al., 2012). 

𝐿 =
𝑙𝑜𝑔𝑒 (

𝛼
𝑛𝑠𝑛𝑖

)

𝑙𝑜𝑔𝑒(1 − ℎ𝑒𝑡)
 

            (4) 

The minimum number of SNPs per ROH for each UK population resulted in 38 for 

RV_UK1, and 36 for RV_UK2. ROH PLINK outputs were analysed using detectRUNs package in 

R (Biscarini et al, 2019). Detected ROHs in each UK population were summarised using length, 

total number, ROH inbreeding coefficient (FROH, equation 5), number of ROH per class.  

𝐹𝑅𝑂𝐻 =
∑𝑅𝑂𝐻 𝐿𝑒𝑛𝑔𝑡ℎ

𝐺𝑒𝑛𝑜𝑚𝑒 𝐿𝑒𝑛𝑔𝑡ℎ
 

            (5) 

As ROHs can be large and contain many genes, identifying the exact genes under 

selection is difficult. Therefore, a series of functional analyses were conducted to infer 

biological relevance. The top 0.01 SNPs occurring within ROHs across each UK population 

were retained as candidates of selection. Genes found close to these significant SNPs 

underwent the following analyses. i) Gene ontology using GOrilla (Eden et al., 2009) was used 

to identify any enriched biological pathways. ii) Protein interactions between genes were 
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quantified using STRING (available at string-db.org) to detect genes that had numerous and 

strong interactions with other genes within ROHs. Lastly, quantitative trait loci (QTLs) that 

overlapped significant SNPs were identified. QTLs have not yet been extensively identified for 

water buffalo so instead, cattle QTLs that have been mapped to the water buffalo genome 

were used (Nascimento et al., 2021). These QTLs were identified from Bos taurus UMD3.1.1 

reference genome (RefSeq: GCF_000003055.6). A Fisher’s exact test was used to test for 

significant over- and underrepresentation of each QTL class overlapping ROHs. The test 

evaluated the relationship between QTLs in ROHs and total number of QTLs. 

2.3.6. Signatures of Selection 

Cross-population extended haplotype homozygosity (XP-EHH) implemented in selscan 

(Szpiech and Hernandez, 2014) was used to identify recent positive selective sweeps that have 

occurred in UK buffaloes. XP-EHH is a bidirectional test that compares the strength of 

selection between two populations. RV_GER_STA was chosen as the reference population 

here due to its similarity to UK buffaloes (see Section 2.4.2). RV_UK1, RV_UK2, and 

RV_GER_STA were all phased in Beagle v3.3 (Browning and Browning, 2007). Each of the two 

UK populations were then tested against RV_GER_STA using XP-EHH under default settings in 

selscan. The results of XP-EHH were then standardized across the genome according to allele 

frequency bins using the norm package in selscan. In R, SNPs were ranked in descending order 

according to the selection score and a p-value generated. This p-value was then converted 

into negative log10 values, and a Manhattan plot was generated showing the strength of 

positive selection across each UK population. The top 0.01 SNPs with the greatest negative 

log10 values in each test were chosen as candidates for selection for each UK buffalo 

population. To reduce the risk of false positives, only selection signatures that occur in both 

UK populations were retained and inferred as adaptations to the UK. Genes linked to SNPs 

were reviewed to infer adaptations and livestock function. 
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2.4. Results 

2.4.1. Genetic Diversities  

Observed heterozygosity across European river buffalo populations ranged between 

0.368 (RV_HUN_TIZ) and 0.442 (RV_ROM_CL) with a mean of 0.398 (±0.019), as seen in Table 

2.2. All populations featured a higher HO than HE (ranging from 0.339 – 0.409; mean = 0.379 

±0.019), though no significant differences were found. The greater HO values were reflected 

in the inbreeding coefficient, F, which was negative across all populations (-0.168 – -0.013), 

thus indicating an absence of inbreeding. As expected, both UK populations were among the 

lowest HO with 0.392 (±0.157) and 0.385 (±0.174) for RV_UK1 and RV_UK2, respectively. Both 

HO (χ2 = 488.08, df = 13, p < 0.0001) and HE (χ2 = 799.74, df = 13, p < 0.0001) significantly 

differed across populations. 

Table 2.2: Genetic diversities across European water buffalo populations. HO = Observed 

Heterozygosity, HE = Expected Heterozygosity, F = Inbreeding Coefficient.  

Population HO (±SD) HE (±SD) F (±SD) 

RV_UK1 0.392 ± 0.157 0.387 ± 0.140 -0.013 ± 0.049 
RV_UK2 0.385 ± 0.174 0.371 ± 0.149 -0.038 ± 0.086 
RV_ITA 0.389 ± 0.182 0.378 ± 0.144 -0.028 ± 0.056 
RV_ROM_CL 0.442 ± 0.214 0.383 ± 0.145 -0.168 ± 0.184 
RV_BUL_VAR 0.420 ± 0.135 0.409 ± 0.117 -0.026 ± 0.046 
RV_GER_BOR 0.404 ± 0.162 0.398 ± 0.136 -0.016 ± 0.058 
RV_GER_JUT 0.400 ± 0.184 0.358 ± 0.148 -0.120 ± 0.099 
RV_GER_STA 0.392 ± 0.167 0.387 ± 0.140 -0.015 ± 0.082 
RV_GER_WIE 0.416 ± 0.172 0.394 ± 0.140 -0.058 ± 0.054 
RV_HUN_CSA 0.373 ± 0.186 0.364 ± 0.155 -0.027 ± 0.073 
RV_HUN_FOL 0.390 ± 0.191 0.361 ± 0.156 -0.081 ± 0.063 
RV_HUN_TIZ 0.368 ± 0.191 0.339 ± 0.166 -0.087 ± 0.078 
RV_ROM_MER 0.402 ± 0.172 0.395 ± 0.135 -0.017 ± 0.080 
RV_ROM_SEC 0.396 ± 0.166 0.377 ± 0.144 -0.051 ± 0.046 

 

2.4.2. Population Structure & Gene Flow 

Relationships between populations was observed using a variety of methods. First, 

pairwise FST was calculated between each population. The mean FST across all pairwise 

combinations was 0.087 (±0.035) and ranged between 0.008 (RV_HUN_CSA – RV_HUN_FOL) 

to 0.180 (RV_HUN_TIZ –RV_GER_JUT). The neighbour-net network summarising FST results 
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can be seen in Figure 2.2. The network shows a clear East-West trend with Hungary and 

Romanian populations featuring on an opposing end to the Western Italian population. Both 

UK populations are placed closed to the Italian population, with RV_UK1 (FST = 0.009) sitting 

more tightly than RV_UK2 (FST = 0.061) to RV_ITA. 

 

Figure 2.2: FST network showing relationships between European buffalo population. Network 

produced using neighbour-net method in SplitsTree4. 

Following on from this, major variation across the dataset was extracted and lineated 

using an MDS. The first three components are plotted in Figure 2.3. Component 1 captured 

19.9% of variation across the dataset and featured an East-West trend like FST results. 

Components 2 (14.1%) and 3 (10.3%) separated the Eastern populations in Bulgaria, Hungary, 

and Romania. Again, like the FST results, RV_UK1 is almost indistinguishable to RV_ITA, with 

RV_UK2 sitting nearby. Full breakdown of eigenvalues by each component can be found in 

Table S2.2. 

Attempts to define genetic clusters were done using ADMIXTURE (Figure 2.4). At K = 

2, an East-West split is also observed with both UK populations associated with RV_ITA. At 

K=3, the Hungarian populations split from Eastern populations. Both UK populations remain 

clustered with RV_ITA until K = 6 where RV_UK2 splits to form its own unique cluster. Cross-
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validation revealed that the most efficient and preferred model was K = 20 whereby a lot of 

intra-population variation is observed (e.g., RV_BUL_VAR, RV_ROM_SEC). At K = 20, RV_UK2 

still presents a unique genetic cluster while RV_UK1 remains clustered with RV_ITA. AMOVA 

results confirm that a large amount of variation is present within individuals as 93.57% of 

variation is observed at this level (Table S2.3). 
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Figure 2.3: Multidimensional scaling plot showing genetic structure across European buffalo 

populations for axis 1-3. Component 1 captured 19.9% of total variation and separates 

populations by an East—West split. Component 2 (14.1%) and component 3 (10.3%) 

separates Eastern European populations. FID = Family ID (i.e. population). 
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Figure 2.4: Admixture plots showing European water buffalo population structure across 

different values of K (2, 3, 6, and 20, respectively). K = 2 shows the East-West European split 

between populations, K = 3 shows splitting of Hungarian populations from Eastern cluster. At 

K = 6, RV_UK2 splits from Italian cluster, remaining unique in the most appropriate model of 

K = 20 whereas RV_UK1 remains clustered with Italy throughout. 



Chapter Two 
Demography and Selection in UK Water Buffalo  

46 
 

Finally, the presence of migrations between populations was tested by adding nine 

migration vectors to the tree involving animal movement between the majority of the 

European populations. 99.8% of the variation across the dataset could be explained (Figure 

2.5). UK populations had connections with Romanian and German populations. 

 

Figure 2.5: Treemix model explaining 99.8% of variation captured across the dataset after the 

addition of migration edges. Nine migrations were found to be the most appropriate model 

involving almost all European populations. 

2.4.3. Linkage Disequilibrium & Persistence of Phase 

Linkage disequilibrium across the genome was summarised for both UK populations 

and a decay curve plotted from up to 1Mb away from a SNP can be seen in Figure 2.6. Both 

UK populations begin with approximately an R2 value of 0.37 for markers separated by 50kb. 

The LD in both populations then declines with RV_UK1 declining at faster rate with lower R2 

values at all points after 50kb indicating that RV_UK1 has a greater level of genetic diversity 

than RV_UK2. Average R2 values appeared to asymptote at 0.079 and 0.119 for SNPs 

separated by 1Mb for RV_UK1 and RV_UK2 respectively.  
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Figure 2.6: Linkage disequilibrium decay curve for UK populations. Both populations show 

similar levels of average linkage away from a SNP with RV_UK1 showing less linkage at greater 

distances than RV_UK2. FID = Family ID (i.e. population). 

Since the average linkage in both UK populations is similar, persistence of phase was 

used to determine if the pattern of linkage disequilibrium was consistent across both 

populations (Figure 2.7). High values of R2 at all distances would indicate that two populations 

are near identical and therefore future genomic selection programmes would be highly 

transferrable between populations, while lower values imply genetic separation of 

populations due to different demographic histories. Persistence of phase r2 begins at 0.482 at 

50kb away from a SNP and finishes at 0.145 at 1Mb. These values are in line with results from 

comparisons of different buffalo breeds (Deng et al., 2019; Mokhber et al., 2019). Therefore, 

RV_UK1 and RV_UK2 are kept as separate populations for future analysis here. 
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Figure 2.7: Persistence of phase between UK buffalo populations. UK populations do not show 

high persistence of phase levels and instead the extent of differences of linkage patterns 

across the genome are similar to that of between Iranian buffalo breeds. 

2.4.4. Ancestry 

The differences observed so far between RV_UK1 and RV_UK2 suggest that both 

populations have not had identical recent histories. Therefore, genetic ancestry was assessed 

using several methods. Mean proportional IBD was calculated for all pairs of UK buffaloes. 

IBD was significantly higher (W = 101743, p < 0.001) in RV_UK2 (mean = 0.103 ±0.124) than 

RV_UK1 (mean = 0.035 ±0.058). In addition to this, IBD was significantly greater (W = 299902, 

p < 0.001) within farms than between farms. These results are reflected in the network 

showing IBD > 0.1 between individuals produced in Figure 2.8. Each population mostly 

separates from one another, and the relationships between individuals in RV_UK2 are 

typically greater than between individuals in RV_UK1. 
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Figure 2.8: IBD network showing relationships (IBD > 10%) between UK buffalo individuals. 

IBD is significantly greater in RV_UK2 than RV_UK1 and most individuals show relationships 

within their respective farm. Points with no line attached feature an IBD < 0.1 to all other 

individuals and appear unrelated. FID = Family ID (i.e. population). 

Ne (Figure 2.9) follows the trend of differing recent histories between UK populations 

as from generation 5 to 250, RV_UK1 features a greater Ne at all time points. RV_UK1 starts 

at an Ne of 215 compared to an Ne of 55 for RV_UK2. After 250 generations ago, both UK 

populations share similar Ne, probably as they converge into the same ancestral population. 

RV_UK2 features an often seen ever-decreasing slope up until the present day whereas 

RV_UK1’s curve plateaus between generations 18 and 100, suggesting some influx of new 

genetic diversity present in its history. 

LAMP-ANC was used to determine the ancestral origins across each UK populations 

genome. Each UK population was compared to RV_ITA and RV_ROM_CL, representing the 

initial founding populations of European buffaloes in the East and West. Results of ancestry 

across each chromosome for each UK population can be found in Figure 2.10. RV_UK1 

displayed 80.5% RV_ITA ancestry, and 19.5% RV_ROM_CL, whereas RV_UK2 showed an 

ancestry of 93.0% RV_ITA, and 7.0% RV_ROM_CL. Despite the differences in ancestry 

proportions, regions of RV_ROM_CL in RV_UK2 occur in the same places as in RV_UK1 

suggesting some form of shared historic ancestry. Interestingly, the ancestry here contrast 

with prior results that suggest RV_UK1 is more closely related to RV_ITA than RV_UK2. 
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Therefore, due to the greater levels of IBD seen in RV_UK2, it is speculated that the greater 

RV_ITA ancestry in RV_UK2 is due to genetic drift and not true ancestry.  

 

Figure 2.9: Ne trend of UK populations over recent history. Ne was calculated using Sved 

(1971) equation as used in Mokhber et al., (2019). FID = Family ID (i.e. population). 

To back up this claim of genetic drift on RV_UK2, 1,000 bootstrap replicates of FST 

(compared to RV_ITA and RV_ROM_CL) and average FROH metrics were conducted (Figures 

S2.4 – S2.6). RV_UK2 FST (mean = 0.050; 0.040 – 0.062 95% CI) compared to RV_ITA was 

greater than RV_UK1 vs RV_ITA (mean = 0.024; 0.021 – 0.029 95% CI) with no overlap of 

distributions. Meanwhile there is large overlap in FST distribution for RV_UK1 (mean = 0.070; 

0.062 – 0.077 95% CI) and RV_UK2 (mean = 0.067; 0.059 – 0.077 95% CI) vs RV_ROM_CL. 

Replicates of FROH reveal that RV_UK2 FROH (mean = 0.159 ± 0.018) is significantly higher (W = 

209330, p < 0.001) than RV_UK1 (mean = 0.142 ± 0.010). Therefore, due to i) greater IBD in 

RV_UK2, ii) smaller Ne in RV_UK2, iii) greater FROH, and iv) greater FST vs RV_ITA, it appears the 

difference in ancestry results in the UK populations is potentially due to genetic drift in 

RV_UK2. 
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Figure 2.10: Karyotype plots showing ancestral proportions calculated in LAMP-ANC across 

chromosomes for RV_UK1 (left) and RV_UK2 (right). Dark blue areas indicate Romanian 

ancestry while light blue indicates Italian ancestry. Grey patches indicate chromosomal 

regions with missing data, i.e., no SNP markers present. 

2.4.5. Runs of Homozygosity 

Numerous ROHs were found across the genomes of both UK populations (Table 2.3). 

RV_UK2 featured a non-significantly higher (W = 506, p = 0.796) FROH with a mean of 0.159 (± 

0.070) compared to 0.142 (± 0.041) for RV_UK1. FROH was significantly correlated to 

inbreeding (F) coefficient (Section 2.4.1) for both RV_UK1 (r2 = 0.900, t39, 37 = 12.548, p < 0.001) 

and RV_UK2 (r2 = 0.981, t27,25 = 24.984, p < 0.001), showing that both statistics reflected one 

another despite differing values and SNP subsets. The average length of ROHs were also non-

significantly higher in RV_UK2 at 3.58Mbp (± 5.15) compared to RV_UK1 average of 2.77Mbp 

(± 3.13). RV_UK1 typically featured more shorter runs while RV_UK2 had an increased number 

of long ROHs. Though a chi-squared test across average number of ROHs per class between 

UK populations showed no significant over- or underrepresentation (χ2 = 3.432, df = 4, p = 

0.488). Comparing the sum of ROHs versus the total number of ROHs per individual, it is seen 

that both UK populations lean towards a smaller effective population size and show a 

presence of consanguineous mating (Figure S2.7). 
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Table 2.3: ROH metrics across both UK populations.  

POPULATION FROH ROH 

MEAN 

LENGTH 

AVERAGE NUMBER OF ROHS PER CLASS (MB) PER INDIVIDUAL  

   1-2 2-4 4-8 8-16 >16 
RV_UK1 0.142  

(± 0.041) 
2.77  
(± 

3.13) 

62.0  
(± 11.3)  

50.3  
(± 9.6) 

11.0  
(± 4.4) 

2.7  
(± 2.7) 

1.1  
(± 1.9) 

RV_UK2 0.159  
(± 0.070) 

3.58  
(± 

5.15) 

53.1  
(± 9.0) 

37.0  
(± 10.3) 

12.1  
(± 6.4) 

4.3  
(± 4.6) 

3.7  
(± 3.6) 

 

The persistence of reoccurring ROHs across a population indicates consistent regions 

under selection that are eliminating genetic diversity. The top 0.01 SNPs occurring in ROHs 

across each UK population were identified as outliers and therefore potential candidates of 

selection (Figure 2.11). The thresholds (proportion of individuals with ROH in a population) 

for each population were 43.6% and 51.9% for RV_UK1 and RV_UK2 respectively. 101 genes 

associated with outlier SNPs were identified in RV_UK1 across 17 regions, whilst 128 genes 

across 15 regions were found in RV_UK2. Full list of genes inferred as candidates of selection 

can be found in Table S2.8.  

Gene ontology revealed several enriched biological processes in each UK population 

(Table S2.9). Three enriched biological pathways were found in RV_UK1 which were 

GO:2000564 Regulation of CD8-positive alpha-beta T-cell proliferation, GO:0046328 

Regulation of JNK cascade, and GO:0015824 Proline transport. Meanwhile, RV_UK2 gave 15 

enriched pathways surrounding metabolic activity (GO:0005986, GO:0006543, GO:0005985, 

GO:0009312, GO:0006537, GO:0046351, GO:0042132, GO:0004359), muscular (GO:0016459, 

GO:0003774, GO:0030898), and signalling activity (GO:0007259, GO:0097696, GO:0014037).  

Highly connected genes were identified using STRING to reveal the interactions 

between gene proteins in each UK population. 54 (53.5%) genes interacted with at least one 

other gene found in outlier ROHs (between 1-8 interactions) in RV_UK1. Among these, a 

highly connected cluster on chromosome 6 is observed that largely surrounds immune 

responses and reproductive function. AP4B1 (Adaptor Related Protein Complex 4 Subunit 

Beta 1; BBU6: 29,303,283 – 29,313,751) encodes a subunit that contributes to targeting 

proteins from the trans-Golgi network to the endosomal-lysosomal system (Ebrahimi-Fakhari 
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et al., 2018); PHTF1 (Putative Homeodomain Transcription Factor 1; BBU6: 29,448,577 – 

29,530,219) is highly expressed in the testis and operates in the cis-Golgi network and 

endoplasmic reticulum membrane (Oyhenart et al., 2003); RSBN1 (Round Spermatid Basic 

Protein 1; BBU6: 29,403,113 – 29,446,217) is a testis-specific histone demethylase that 

modulates chromosome architecture (Y. Wang et al., 2021); MAGI3 (Membrane Associated 

Guanylate Kinase, WW and PDZ Domain Containing 3; BBU6: 29,525,900 – 29,788,113) 

protein acts as a scaffolding protein at cell-cell junctions (Kotelevets and Chastre, 2021); 

OLFML3 (Olfactomedin Like 3; BBU6: 41,072,042 – 41,293,983) encodes an extracellular 

matrix glycoprotein facilitating protein-protein interactions, cell adhesions, and intercellular 

interactions (Tomarev and Nakaya, 2009). BCL2L15 (BCL2 Like 15; BBU6: 29,5321,726 – 

29,328,426) meanwhile participates in regulating cell death by controlling mitochondrial 

outer membrane permeabilization (Than et al., 2019; Miyai, Hendawy and Sato, 2021). SYT6 

(Synaptotagmin 6; BBU6: 29,054,894 – 29,121,528) acts in synapse regulating neuronal 

transmission (De León et al., 2021). 

93 (72.7%) genes had at least one interaction (between 1-8 interactions) in RV_UK2. 

Of the most connected genes, three small clusters of genes were found. The first of the three 

clusters included genes of varying associations. FBXW4 (F-Box and WD Repeat Domain 

Containing 4; BBU23: 22,171,598 – 22,254,838) induces protein degradation and is involved 

in normal limb development (Q. Han et al., 2020); POLL (DNA Polymerase Lambda; BBU23: 

22,140,608 – 22,149,066) functions in base excision repair and non-homologous end-joining 

and is involved in DNA damage tolerance (Garcia-Diaz et al., 2005; Nemec et al., 2016); DPCD 

(Deleted in Primary Ciliary Dyskinesia Homolog; BBU23: 22,149,003 – 22,171,083) is involved 

in the generation and maintenance of ciliated cells (Lee, 2013); OGA (O-GlcNAcase; BBU23: 

22,330,809 – 22,359,629) modifies cytoplasmic and nuclear proteins associated with 

homeostasis (Zhang et al., 2014); BTRC (Beta-Transducin Repeat Containing E3 Ubiquitin 

Protein Ligase; BBU23: 21,946,315 – 22,120,070) is an F-box protein involved in the Wnt/Beta-

Catenin signalling pathway that is relevant to reproductive pathways (Marete et al., 2018). 
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Figure 2.11: Manhattan plots showing the proportion that a SNP is found in a ROH for each 

UK buffalo population. 0.01 thresholds were 43.6% for RV_UK1 and 51.9% for RV_UK2. 101 

genes associated with significant SNPs were identified in RV_UK1 across 17 regions, whilst 

128 genes across 15 regions were found in RV_UK2. 

Second cluster included ERBB3 (Erb-B2 Receptor Tyrosine Kinase 3; BBU4: 62,971,471 

– 62,992,692) is an essential regulator of cell growth (Nguyen et al., 2018). Also in this cluster 

is multiple STAT (Signal Transducer and Activator of Transcription) genes that are a family of 

transcription activators that are all involved in immune responses through the Jak-STAT 

pathway (Villarino, Kanno and O’Shea, 2017). STAT genes found in RV_UK2 ROHs are STAT1 

(BBU2: 132,434,013 – 132,474,613), STAT2 (BBU4: 63,197,550 – 63,212,979), STAT4 (BBU2: 

132,486,904 – 132,623,372), STAT6 (BBU4: 63,946,070 – 63,960,143).  

The remaining cluster is linked to the second cluster via PA2G4 (Proliferation-

Associated 2G4; BBU4: 62,993,661 – 63,001,142). This gene encodes an RNA-binding protein 

that is involved in growth regulation and has been shown to interact with ERBB3 (Stevenson 

et al., 2020); SUOX (Sulfite Oxidase; BBU4: 62,889,065 – 62,893,453) protein is localised to 

the intermembrane space of mitochondria and catalyzes the oxidation of sulfite to sulfate (Du 

et al., 2021); MARS1 (Methionyl-tRNA Synthetase 1; BBU4: 64,301,863 – 64,329,569) encodes 
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a component of multi-tRNA synthetase complex that catalyses the ligation of methionine to 

tRNA molecules (Syed et al., 2023), RPS26 (Ribosomal Protein S26; BBU4: 62,925,726 – 

62,928,063) is a ribosomal protein component with roles in ribosome assembly and protein 

translation (Chen et al., 2021); and two unknown genes of XP_006054002.1, and 

XP_006069518.1.  

Numerous cattle QTLs overlapped with the candidate regions identified here. 249 

QTLs were identified across RV_UK1 while 414 were identified in RV_UK2. The distribution of 

QTL classes across significant ROHs for each population can be found in (Figures S2.10 & 

S2.11). Fisher’s exact test was used to determine over-, and underrepresentation of QTLs 

found in each population (Table 2.4). Four of the six QTL classes were found to be significantly 

over- or underrepresented in RV_UK1. Milk and reproduction traits were underrepresented 

with odds ratios (OR) of 0.538 and 0.522 respectively, while exterior (OR = 1.875) and 

production (OR = 2.265) traits were overrepresented. In RV_UK2, milk (OR = 1.231) traits were 

overrepresented while production (OR = 0.513) QTLs were underrepresented. 

Table 2.4: Fisher’s Exact test results of QTL classes found in ROHs across UK populations. 

Significant results, after Bonferroni’s correction (p < 0.083) are in bold. QTLs were obtained 

from Bos taurus UMD3.1.1 reference genome (RefSeq: GCF_000003055.6) that have been 

mapped to water buffalo reference genome UOA_WB_1 (RefSeq: GCF_003121395.1) by 

Nascimento et al (2021). Definitions and traits for each QTL class can be found at Cattle QTL 

Database (animalgenome.org). 

QTL Class Population Total Number 
of QTLs 

QTLs in 
ROHs 

Odds Ratio P-Value 

Exterior RV_UK1 5329 49 1.875 0.000 
 RV_UK2  51 1.071 0.644 
Health RV_UK1 1509 12 1.495 0.207 
 RV_UK2  10 0.727 0.404 
Meat & Carcass RV_UK1 1376 9 1.216 0.572 
 RV_UK2  16 1.305 0.307 
Milk RV_UK1 20830 77 0.538 0.000 
 RV_UK2  209 1.231 0.037 
Production RV_UK1 6796 70 2.265 0.000 
 RV_UK2  34 0.513 0.000 
Reproduction RV_UK1 10097 32 0.522 0.000 
 RV_UK2  94 1.043 0.721 
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2.4.6. Signatures of Positive Selection 

Recent adaptation to the UK by buffaloes was inferred through the detection of 

positive selection. Each UK population was compared to the closely related RV_GER_STA 

population and significant regions under positive selection in both UK populations was 

considered as potential adaptations to UK. Six significant regions under positive selection 

were present in both UK populations amounting to 24 genes (Table 2.5). 43 significant regions 

comprising of 213 genes were found for RV_UK1 in total while 47 regions with 255 genes were 

found in RV_UK2 (Table S2.12).  

Multiple genes were found on the region under selection on BBU1 (187578102 – 

187861398). Of these, two genes (SLC37A1 and PDE9A) have been associated with milk traits 

(Yang et al., 2015; Raven et al., 2016; Sanchez et al., 2021). SLC37A1 (Solute Carrier Family 37 

Member 1) is a glucose-6-phosphate antiporter while PDE9A (Phosphodiesterase 9A) 

hydrolyses the secondary messenger cGMP (Kotera et al., 2010; Pan et al., 2011). The 

remaining genes appear to be associated with cellular processes and stress response. WDR4 

forms a complex with METTL1 to exert its effects on a variety of cellular processes (Ruiz-

Arroyo et al., 2023). NDUFV3 encodes an accessory subunit of the mitochondrial respiratory 

chain NADH dehydrogenase (Complex 1) which is involved in ATP production (Guerrero-

Castillo et al., 2017). PKNOX1 (PBX/Knotted 1 Homeobox 1) is a transcription activator and is 

a regulator of oxidative phosphorylation components (Kanzleiter et al., 2014). CBS 

(Cystathionine Beta-Synthase) is active in production of taurine which has cellular roles of 

electrolyte balance, immune response, and antioxidant function (Zhou et al., 2017; Darang et 

al., 2022). U2AF1 (U2 Small Nuclear RNA Auxiliary Factor 1) is involved in mediation of RNA 

splicing (Dutta et al., 2021). CRYAA (Crystallin Alpha A) is a members of heat shock protein 

(HSP20) family and is a major structural protein in eye lenses (Chang et al., 2022). 

TUT7 (Terminal Uridylyl Transferase 7) and GAS1 (Growth Arrest Specific 1) were 

found under selection on BBU3 (142275429 – 142532051). TUT7 which is expressed in 

macrophages impacts innate immune responses and shows antiviral functions (Kozlowski et 

al., 2017). GAS1 is involved in growth suppression by blocking entry of the cell cycle into S 

phase (Martinelli and Fan, 2007). CYLC2 (Cylicin 2), TRABD2B (TraB Domain Containing 2B), 

and CSNK1G3 (Casein Kinase 1 Gamma 3) were under selection on BBU3, BBU6, and BBU9 
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respectively. CYLC2 is specifically expressed in testis and is part of the cytoskeletal calyx of 

mammalian sperm heads (Hou et al., 2019). TRABD2B enables Wnt-protein binding activity 

and metalloendopeptidase activity and therefore is involved in various regulatory pathways 

(Grainger and Willert, 2018). CSNK1G3 phosphorylates and conducts post translational 

modifications of caseins in cattle (Buitenhuis et al., 2016).  

Table 2.5: Regions of genome under selection in both UK populations when compared to 

RV_GER_STA, and associated genes. Start and end positions relate to positions on each 

chromosome where SNPs within (identified using XP-EHH) are under positive selection. Genes 

listed are those that are found within or overlapping the start and end positions. SNPs were 

mapped to water buffalo reference genome UOA_WB_1 (RefSeq: GCF_003121395.1). 

Chromosome 
(BBU) 

Chromosome 
Start Position 

Chromosome 
End Position 

Genes 

1 187578102 187861398 SLC37A1, PDE9A, WDR4, NDUFV3, 
PKNOX1, CBS, U2AF1, CRYAA 

3 142275429 142532051 TUT7, GAS1 
 154753980 155514138 CYLC2 

6 97852006 - TRABD2B 
9 81392762 81472090 CSNK1G3 

11 90784888 90819545 CLIP, PDCD7, UBAP1L, KBTBD13, 
RASL12, SLC51B, MTFMT, SPG21, 
ANKDD1A, PTGER2, TXNDC16 

 

BBU11 (90784888 – 90819545) provided a region under selection featuring multiple 

genes akin to BBU1. Genes found in this region were often associated with immunity, 

inflammation among other body functions. CLIP (Cartilage Intermediate Layer Protein) is an 

abundant protein in cartilage and is a mediator of extracellular matrix remodelling (van 

Nieuwenhoven et al., 2017). PDCD7 (Programmed Cell Death 7) promotes apoptosis when 

overexpressed (Ghafouri-Fard et al., 2022). UBAP1L (Ubiquitin Associated Protein 1 Like) 

enables ubiquitin binding activity and mutations are linked to neurodegeneration mediated 

by apoptosis (Lin et al., 2019). KBTBD13 (Kelch Repeat and BTB Domain Containing 13) has 

cytoskeletal regulation with implications in skeletal muscle morphology and cardiomyopathy 

(Gao et al., 2020; de Winter et al., no date). RASL12 (RAS Like Family 12) is a cytoplasmic 

GTPase recruited to microtubules with varying cellular effects (Dhanaraman et al., 2020). 

SLC51B (Solute Carrier Family 51 Subunit Beta) is essential for intestinal bile acid absorption 

and dietary lipid absorption (Ballatori et al., 2013). MTFMT (Mitochondrial Methionyl-tRNA 
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Formyltransferase) formylates methionyl-tRNA in for mitochondrial protein synthesis (La 

Piana et al., 2017). SPG21 (SPG21 Abhydrolase Domain Containing Maspardin) is involved in 

repression of T cell activation (Zeitlmann et al., 2001). ANKDD1A (Ankyrin Repeat and Death 

Domain Containing 1A) plays a role in tumour suppressor in glioblastoma multiforme and is 

tightly associated with T cells (Zhao et al., 2021). PTGER2 (Prostaglandin E Receptor 2) is 

expressed in the endometrium and is involved in tissue repair (Gao et al., 2017). TXNDC16 

(Thioredoxin Domain Containing 16) is an endoplasmic reticulum luminal glycoprotein (Harz 

et al., 2014). 

2.5. Discussion 

The access of genomic data is greatly assisting the development of all major livestock 

species through targeted artificial selection (Rothschild and Plastow, 2014; Georges, Charlier 

and Hayes, 2019). Husbandry programmes are able to precisely target genomic regions 

around desired traits while monitoring the genetic health of populations (Hayes et al., 2009; 

Jonas and Koning, 2015). Many commercial livestock breeds have already undergone rapid 

genomic improvement in pursuit of greater livestock yields and as a result, they have lost 

much of their genetic diversity (Meuwissen, 2009; Eusebi, Martinez and Cortes, 2020). 

However, those breeds and species that have yet to be subjected to intense selection may 

have wealth of valuable genetic diversity (Olschewsky and Hinrichs, 2021). Correct utilisation 

of this genetic diversity is key for retaining the adaptive potential of livestock whilst improving 

productivity and resilience (Meuwissen, 2009; Boettcher et al., 2015; Eusebi, Martinez and 

Cortes, 2020). The study here evaluates the current standing genetic variation in UK water 

buffaloes to aid initiation of incorporating genetic data into buffalo development. 

2.5.1. Genetic Diversity, Population Structure & Gene Flow 

Water buffaloes occur in low numbers in the UK compared to other livestock species 

that may be problematic if their genetic effective population size also reflects this. Small 

populations are susceptible to genetic bottlenecks, genetic drift and inbreeding depression 

leading to an increased chance of fixation of harmful deleterious alleles (Kyriazis, Wayne and 

Lohmueller, 2021). Positively, there was a high level of HO at 0.392 and 0.385 in RV_UK1 and 

RV_UK2 respectively. Both UK farms largely reflected their continental counterparts in their 

level of genetic diversity with only a marginal decline in HO. HO was greater than HE and as a 
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result there was no evidence to suggest any presence of inbreeding among the farms. Due to 

their lack of inbreeding and a greater observed heterozygosity than expected, this suggests 

an isolate breaking effect caused by recent influx of new genetic diversity, likely through the 

importation of buffaloes from different sub-populations (Wahlund, 1928; Šnjegota et al., 

2021; Kanaka et al., 2023). 

The extent of allelic differentiation between UK and European buffaloes was examined 

through a series of population-based test. Despite the high and similar levels of genetic 

diversity across buffaloes, there was a moderate amount of differentiation across the dataset. 

FST results gave a mean difference of 0.087 (Range of 0.008 to 0.180). This level of FST is within 

the range of breed differences in other European livestock species which range between 

0.026 – 0.068 in Spanish cattle (Cañas-Álvarez et al., 2015), 0.014 – 0.168 in Northern 

European cattle (Schmidtmann et al., 2021), 0.013 – 0.164 in Italian goats (Nicoloso et al., 

2015), 0.020 – 0.201 in Welsh sheep (Beynon et al., 2015), and 0.085 – 0.161 and 0.088 – 

0.202 in European pigs (Munoz et al., 2019; Bovo et al., 2020). Therefore, it is likely that 

buffalo populations across Europe have been separated for some time and divergence 

between these sub-populations is possibly at or nearing breed level. An East-West structuring 

is observed within European water buffaloes with Hungarian and Italian populations taking 

up polar ends. The remaining populations take up positions between these. Noce et al., (2021) 

notes that the Hungarian populations present a uniquely genetic group that may have had 

less contact with outside populations. Therefore, isolation of these populations may have 

allowed greater genetic drift leading to an increased FST. Nevertheless, the result of the 

network appears to show a gradient of genetic difference across Europe.  

The split in buffalo populations in Europe likely represents their origins. Water 

buffaloes reached Europe via Saracen trade routes 7th – 9th centuries established between 

the Middle East and Europe (Wordsworth et al., 2021). Due to water buffaloes’ adaptations 

to wetlands such as wallowing and surviving of low-quality vegetation, wetland areas in Italy 

and Romania facilitated buffalo rearing in Europe in areas where cattle could not persist (De 

la Cruz-Cruz et al., 2014; Yáñez et al., 2020; Wordsworth et al., 2021). River buffaloes have 

not been used for long distance trade like cattle or horses and as such, Eastern and Western 

buffaloes probably did not share much historical interaction after their separation. Both UK 

water buffalo populations sit tightly to the Italian population with low FST scores (0.009 & 
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0.061) showing that both populations descend from Italian stocks. This result was similarly 

shown in the MDS analysis as Eastern and Western populations were separated with German 

populations falling between. Again, UK buffaloes sit tightly with Italian individuals, although 

in both FST and MDS, RV_UK2 shows greater deviance. 

Following on from this, clustering of genetically similar populations and the presence 

of gene flow was tested for. Admixture clustering analysis again displayed the East-West split 

at K = 2. RV_UK1 remains clustered with RV_ITA throughout the analysis while unexpectedly 

RV_UK2 separates to form its own cluster that is retained to the final model (K = 20). The final 

admixture model featured the identification of clusters within populations and an abundance 

of variation across the dataset. AMOVA results show that this is due to the overwhelming 

majority of variation being present within individuals which is expected due to the use of 

commonly polymorphic SNPs in arrays skewing the allele frequency distribution towards 

variants with average higher minimum allele frequencies (Lachance and Tishkoff, 2013; 

Malomane et al., 2018; Quinto-Cortés et al., 2018).  

The abundance of variation across individuals can also be explained by migration 

between populations preventing a clear distinguished structuring. An unrooted tree for 

Treemix was used here as it is known that all European buffalo originally descend from India, 

therefore no outgroup is needed (Colli, Milanesi, Vajana, et al., 2018). Whilst the unrooted 

tree doesn’t determine evolutionary order of populations, it does still reveal information 

surrounding the relationships between the populations. Treemix results showed numerous 

migration connections (K = 9) between populations with the majority involving populations 

featuring excess observed heterozygosity. UK populations again sit close to Italy in the 

topology of the outputted tree. Migration edges between UK and European populations occur 

with German and Romanian populations fitting with prior importation of Romanian buffalo 

(Borghese, 2013b). This abundance of variation across European buffaloes and numerous 

migrations could potentially be explained by the lack of a breed system in European buffaloes. 

Other European domestic species feature a large number of breeds with little crossbreeding 

enabling the retention of unique characteristics (Community Based Management of Animal 

Genetic Resources, 2001). Meanwhile, Mediterranean water buffaloes are largely the only 

breed available in Europe, except for the Bulgarian murrah which is a crossbreed between 
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Mediterranean and murrah breeds. Therefore, farmers may obtain new individuals from 

various populations as phenotypically, buffaloes across Europe appear largely the same. 

2.5.2. Linkage Disequilibrium & Ancestry 

The patterns of non-random association between alleles at different loci across the 

genome can be used to deduce the evolutionary history of populations via linkage 

disequilibrium (Slatkin, 2008). Both UK populations showed similar levels of linkage with 

RV_UK1 descending to a slightly lower level at 1Mb than RV_UK2 indicating a marginally 

greater amount of genetic diversity in line with heterozygosity results. Average linkage in UK 

buffaloes was similar to other buffalo populations, again indicating that there has been no 

dramatic change in genetic diversity (Deng et al., 2019; Mokhber et al., 2019). Despite the 

similarity in linkage decay between both populations, persistence of phase indicated 

substantial differences in the linkage pattern across the genome of both populations. Results 

showed a similar level of difference as comparisons between Iranian breeds indicating that 

genomic selection schemes upon one UK farm may not transferrable to others (Mokhber et 

al., 2019). Starting at r2 < 0.5 at 50kbp between UK buffalo (within breed) is lower than 

between breed estimates for other livestock species. For example, correlations of r (at 50kbp) 

between Holstein-Friesian, Jersey, and Angus cattle has been found r2 > 0.6 (de Roos et al., 

2008), r2 > 0.8 between Hereford and Bradford cattle (Biegelmeyer et al., 2016), r2 > 0.6 

between Spanish breeds (Cañas-Álvarez et al., 2016), r2 > 0.7 between Yorkshire, Landrace, 

and Duroc pig breeds (Grossi et al., 2017), and r2 > 0.5 between Sunite, German mutton 

merino, and dorper sheep (Zhao et al., 2014). 

The recent Ne in UK buffaloes was estimated from their linkage disequilibrium. Ne 

between UK buffaloes diverge from 250 generations ago to present, suggesting shared 

ancestry before this point. Reproductive age remains highly variable in buffaloes due to issues 

such as delayed maturity, therefore the majority of calving occurs around 5/6 years (Ingawale 

& Dhoble 2004; Ibrahim 2012; Borghese, Chiariotti and Barile, 2022). Using a generation time 

of six years, this suggests a divergence starting ~1,250 years ago (~750 CE) (Mintoo et al., 

2019). This falls in line with expansion of buffalo across Middle East and Europe via the 

Saracens (Wordsworth et al., 2021). From 250 generations ago to the present, RV_UK2 

presents a continually diminishing trend suggesting isolation of the population which over 
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time will lead to greater vulnerability of genetic drift and inbreeding depression (Pekkala et 

al., 2012; Angst et al., 2022). At the most recent estimate of three generations ago, RV_UK2 

has an Ne of 55. An Ne below 50 is typically considered as endangered and can lead to declining 

fitness within the population (Taberlet et al., 2008; Kristensen et al., 2015). However, RV_UK2 

is a small farm and the ratio between Ne and census size (Nc) greatly favours Ne suggesting 

high variation within the population in line with genetic diversity results. Any long-term 

isolation of this population can be easily managed with addition of unrelated individuals from 

other farms as the breed-wide Ne of Mediterranean buffalo is likely much greater (Angst et 

al., 2022). Meanwhile, RV_UK1 Ne did not seem to decline until about 40 generations ago 

suggesting a maintenance of genetic diversity or potentially some influx near the point for the 

Ne estimate showing a bump in the trend. It is known that RV_UK1 is an expanding farm and 

that is regularly obtaining new individuals from Italy. The high genetic diversity and increased 

Ne suggests that RV_UK1 may be a suitable population where selection intensity can increase 

without threatening putting at risk the populations genetic diversity and adaptive potential 

(Hayes et al., 2008; Rexroad and Vallejo, 2009). Following implementation of selection 

programme and stability of breeding herd, it would be expected that Ne declines in the near 

future as fewer lineages with favourable traits are selected for (Biegelmeyer et al., 2016; 

Makanjuola et al., 2020). The differences in Ne were reflected in IBD as RV_UK2 featured 

significantly higher IBD than RV_UK1. Like population structure results, LAMP-ANC showed 

strong Italian ancestry within UK buffaloes, however differences in ancestry proportions, 

unique clustering of RV_UK2, and its smaller Ne suggest genetic drift is present within this 

population. 

2.5.3. Runs of Homozygosity and Candidate Genes of Selection 

RV_UK2 featured a greater FROH and longer ROHs on average compared to RV_UK1 

following expectations from linkage disequilibrium results, however these statistics were non-

significant. FROH values of 0.142 and 0.159 for UK buffaloes were similar to FROH values across 

European buffaloes fitting that UK buffaloes have not lost genetic diversity (Macciotta et al., 

2021; Noce et al., 2021). In comparing ‘sum of ROHs’ against ‘total ROH per individual’, both 

populations sat to the upper right of x = y line indicating some presence of consanguineous 

breeding and leaning towards a smaller effective population size. This occurs in livestock 
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species as breeding of individuals is biased towards the small number individuals with the 

greatest preferred traits (Kirin et al., 2010; Purfield et al., 2012; Ferenčaković et al., 2013; 

Peripolli et al., 2017).  

Generation by generation, genetic diversity is generated through new mutations and 

distributed in a population via recombination during meiosis as individuals reproduce (Wright, 

2005; Webster and Hurst, 2012; Arbel-Eden and Simchen, 2019). The expectation from this 

observation would be that genetic variation is randomly distributed across the genome. ROHs 

go against this as positive selection preserves long stretches of the genome without any 

genetic variation (Quilez et al., 2011; Bosse et al., 2012; Keller et al., 2012; Pemberton et al., 

2012). The presence of selection on these regions implies that the underlying functions are 

important for that population or species in question (Peripolli et al., 2017; Rebelato and 

Caetano, 2018). Candidates of selection within significant ROHs were identified in both UK 

populations, giving 17 and 15 ROH regions in RV_UK1 and RV_UK2 featuring 101 and 128 

genes. Functional analysis of these genes showed that there was greater connectivity among 

genes in RV_UK2 than RV_UK1 in both protein-protein interactions, and gene ontology. From 

Ne analysis, RV_UK2 appears to have a more isolated population and therefore a possibly 

more stable genomic landscape. The absence of new genetic diversity will lead to the 

retention of ROHs within the population, which is beneficial when ROHs surround targets of 

selection.  

With new genetic diversity in the population, ROHs in regions without shared ancestry 

will be broken down due to the presence of different alleles. Admixed populations typically 

feature low levels of ROHs through influx of genetic variation from the new population in 

regions that were previously homozygous, which may disrupt targets of selection (Ceballos et 

al., 2018; Szpiech et al., 2019; Yoshida et al., 2020). Although not an admixed population in 

terms of crossbreeding, RV_UK1 has obtained individuals from different farms which to some 

extent may be from different sub-populations. As such, different sources of genetic diversity 

may disrupt interacting ROHs. Over time, more targets of selection may be revealed as 

unneeded genetic variation is filtered out. QTL results surprisingly show that milk QTLs are 

underrepresented in RV_UK1 whilst production and exterior based traits are 

overrepresented. Mediterranean buffaloes are farmed for the highly nutritious milk that is 

rich in fat and protein for mozzarella and as such, the quality of the milk is already ideal. Water 
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buffaloes’ downfall is that their milk yields are lower than that of commercial cattle. Thus, 

increased selection on production-based traits may increase growth rates of buffaloes and 

yields in order to become economically viable in comparison to commercial cattle farms.  

In addition to identifying candidate genes in ROHs, genes under recent positive 

selection were detected. Populations introduced to new environmental conditions can be 

subjected to new selective pressures and undergo rapid adaptation (Qanbari and Simianer, 

2014; Pitt, Bruford, et al., 2019). This often occurs through positive selection whereby the 

favourable allele rapidly nears fixation across the population and in doing so, causes near 

fixation of flanking genomic regions, leaving a detectable signature through long haplotypes 

(Sabeti et al., 2006; Qanbari and Simianer, 2014). XP-EHH was used to detect recent positive 

selection in UK buffaloes by testing against a Mediterranean buffalo population from outside 

of the UK. The logic here being that the variation across the genome will be consistent except 

for those regions under selection where allele frequencies will near fixation in one (Sabeti et 

al., 2007). Signatures of positive selection found in both UK populations were inferred as 

potential candidates of UK adaptation. Six regions totalling 24 genes (Table 2.5) were found 

under selection in both populations. Functions behind these genes often fell into a number 

of reoccurring categories of which included milk production, immune pathways and 

antioxidant functions among others. These functions are biologically relevant to buffaloes due 

to their dairy and immunity traits.  

Several candidate genes under selection were associated with milk traits, such as milk 

production or associated with mammary tissues. As primarily a dairy livestock species, this is 

to be expected as farmers select for the most productive individuals which in turn leads to an 

underlying selective pressure upon genes involved in milk production although these 

candidate genes may indicate recent changes in milk production as you would expect historic 

selection of milk associated genes would be close to fixation and therefore, ability to detect 

selection using long range methods have reduced power (Sabeti et al., 2007; Hayes et al., 

2008). In the ROH gene cluster in RV_UK1, BCL2L15 has been found to increase in expression 

in mammary tissue during lactation in sheep compared to pregnancy suggesting a role in 

maintaining milk secretory cells and milk production, whilst in goats, depletion of BCL2L15 

reduced endometrial receptivity through activation of STAT1 and STAT3 pathways (Paten et 

al., 2015; Yang et al., 2020).  
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The BTRC candidate of selection in RV_UK2 is associated with milk production across 

a number of cattle breeds. Across Holstein and Jersey dairy cattle, this gene was associated 

with milk production traits and within a highly significant fat kg QTL (Raven et al., 2016). BTRC 

functions within the Wnt/-catenin signalling pathway and indirectly activates nuclear factor 

kappa-B (NF-kB) which is relevant in mammary development and pregnancy (Raven et al., 

2016). This gene was also found to be significantly associated with udder morphology in 

Holstein, Montbeliarde, and Normande dairy cattle, and present in ROHs across Holstein-

Friesian (Red-and-White variety), White-Backed, Polish Red-and-White and Polish black and 

white and attributed to mammary gland development (Marete et al., 2018; Szmatoła et al., 

2019). BTRC has also been found associated with body size and leg conformation in Brown 

Swiss cattle and is known to be behind split-hand and foot malformations (van den Berg et 

al., 2014; Fang and Pausch, 2019). In ERBB3 we see a gene involved in regulation of cell 

proliferation and differentiation, therefore has a wide range of biological effects. ERBB3 has 

been found to be a crucial in proliferation of the alveolar mammary epithelial cells in clinical 

mice trials and its function through the PI3K/Akt pathway supports and regulates milk 

production (Ollier et al., 2007; Li et al., 2016; M. M. Williams et al., 2017). PA2G4 similarly 

regulates cell proliferation and differentiation and interacts with ERBB3 to enact its function 

(Ollier et al., 2007; Stevenson et al., 2020; Alan Harris et al., 2023). RPS26 has been associated 

with fat yield in Brazilian buffaloes milk and decreased expression during lactation in sheep 

(de Camargo et al., 2015; Wang et al., 2020). 

Further milk associated genes were found in the XP-EHH results shared in both UK 

populations. SLC37A1 features increased expression in the bovine mammary glands and 

associated with milk yield, composition, mineral content, somatic cell score (Raven et al., 

2016; M. M. Williams et al., 2017; Iung et al., 2019; Sanchez et al., 2021). This gene along with 

PDE9A in the same selection signature has been shown to be under positive selection in 

murrah buffalo (Tyagi et al., 2021). This region may be retained in Mediterranean buffalo 

since domestication in India or these genes are important for greater milk production as 

murrah, and Mediterranean buffalo are the two most productive river breeds. GAS1 (Growth 

Arrest Specific 1), is involved with growth suppression by blocking entry of the cell cycle into 

S phase. GAS1 has been shown to be linked to mammary gland development, alpha casein 

synthesis, and is a candidate gene for mastitis (Naderi et al., 2018; N. Song et al., 2022). 
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CSNK1G3 phosphorylates and conducts post translational modifications of caseins in cattle 

(Buitenhuis et al., 2016). Phosphorylation of such caseins is important for calcium in milk and 

CSNK1G3 has been suggested as a candidate gene behind economic focus on protein yields in 

cattle milk (Bijl et al., 2014; Kim, Sonstegard and Rothschild, 2015). SLC51B (Solute Carrier 

Family 51 Subunit Beta) is essential for intestinal bile acid absorption and dietary lipid 

absorption (Ballatori et al., 2013). Expression of this gene is significantly associated with lipid 

droplet area and inflammation it is highly likely linked to bovine milk fatty acid composition 

(Gebreyesus et al., 2019; Herrera-Marcos et al., 2022). PTGER2 (Prostaglandin E Receptor 2) 

is a metabolite of arachidonic acid and has different biological activities in a wide range of 

tissues. PTGER2 is expressed in the endometrium and contributes to endometrial growth in 

cattle, therefore important in pregnancy (Atli et al., 2010; Gao et al., 2017). 

A host of genes relating to immune and inflammatory responses were found under 

selection in UK buffaloes. In RV_UK1, the ROH found on chromosome 6 was additionally found 

under positive selection in river buffalo that largely comprised of Italian Mediterranean (Sun, 

Shen, et al., 2020). Notably the overlapping genes were AP4B1, PHTF1 and BCL2L15. Whilst 

PHTF1 and BCL2L15 have been linked with general immunity and apoptotic functions, AP4B1 

is associated with Bovine Leukaemia Virus in Holstein cows. This gene has been found to be 

involved in activation of nuclear factor kappa B (NFKB) and becoming highly expressed in B 

lymphocytes upon stimulation (Brym et al., 2016; Lobo-Alves, de Oliveira and Petzl-Erler, 

2019). This selection signature in RV_UK1 is therefore most likely derived from its original 

Italian population and has so far been maintained. Mediterranean buffalo directly contributed 

approximately 700 million Euros to the Italian economy and any prevalence of infectious 

diseases in buffalo can contribute to significant economic losses through reduced yields, 

culling, and a decrease in market value of milk (Villanueva et al., 2018; Chirone et al., 2022; 

Vecchio et al., no date). The Italian buffalo industry has invested in improving Mediterranean 

buffaloes’ health and milk yields through, for example, improved farming conditions, feed 

optimization, and genomic selection (Biffani, Gómez and Cesarani, 2021; Cesarani et al., 2021; 

Salzano et al., 2021, 2023; Gowane and Vohra, 2022; Vecchio et al., no date). Underlying 

selection in immunity genes contribute to resistance of disease outbreaks that occur on large 

farms. In the case of ovine herpesvirus 2, which Italian buffalo can contract, there is an 

absence of rapid disease spread to all individuals appear to suggest some form of innate 
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immunity within herds (Rozins and Day, 2016; Amoroso, Galiero and Fusco, 2017; Ferrara et 

al., 2023). Therefore, maintenance of selection signatures like this may be of importance in 

UK buffalo in developing resistant large-scale farms. RSBN1, MAGI3, and OLFM3 are further 

found within this selection signature and associated with immune functions. Chromatin 

remodelling gene, RSBN1 is upregulated upon infection with Type 1 PRRSV strains and is a 

target of HIV-1 (Kaminski et al., 2016; Crisci et al., 2020). MAGI3 features links to immunity 

through ATK3 gene and interactions with Human T-cell leukaemia virus type 1 Tax 

oncoprotein (Ohashi et al., 2004; Farmanullah et al., 2020). While OLFM3 is associated with 

microglia functions (Neidert et al., 2018; Chen et al., 2020; Toedebusch et al., 2021). 

Regarding RV_UK2 ROHs, POLL appears linked to reduced B-cell diversity and 

prevalence in deficient mice and DPCD is upregulated during ciliogenesis (Lee, 2013; 

Ovsyannikova et al., 2016). Four STAT genes were found within RV_UK2 ROHs. STAT genes 

are a family of transcription activators that operate through the cytokine stimulated JAK/STAT 

pathway. This pathway can regulate cellular processes such as growth, proliferation, 

differentiation, and apoptosis but is prominently involved in immune response (Villarino, 

Kanno and O’Shea, 2017; Owen, Brockwell and Parker, 2019; Hu et al., 2021). STAT1 is 

involved in regulation of cell growth, tumour inhibition and regulation of the immune system 

(Owen, Brockwell and Parker, 2019; Hu et al., 2021). Reduced or loss of function of STAT1 

increases susceptibility to pathogenic diseases of all kinds (Hu et al., 2021). In buffaloes, STAT1 

has been found to be 99% identical to Bos taurus and is expressed mostly in the lymph tissues. 

Further expression is found in the mammary tissues leading to STAT1 being described as a 

candidate gene for milk production traits (Deng et al., 2015, 2016). This follows the same 

trend seen in cattle as variants surrounding STAT1 have been associated with a variety of milk 

traits in Holstein, Jersey, Brown Swiss, and Czech Fleckvieh cattle (Cobanoglu et al., 2006; 

Askari et al., 2013; Rychtářová et al., 2014; Ozden Cobanoglu et al., 2016; Pegolo et al., 2016). 

Additionally, STAT1 may regulate the endometrium during pregnancy in cattle (Dickson et al., 

2022). Interferon pathways involving STAT1 are upregulated during pregnancy and associated 

with lower conception rates in cattle under heat stress (Catozzi et al., 2020). One study in 

buffaloes showed that almost all buffalo cows that stopped reproducing, and therefore, 

stopped producing milk showed moderate to severe endometriosis, a disease which increases 

growth of the endometrium (Salzano et al., 2020). Although unclear as to how, STAT1 related 
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pathways may be involved in endometriosis (Hou et al., 2022; Park and Han, 2022). The other 

STAT genes found within RV_UK2 ROHs were STAT2, STAT4, and STAT6. STAT2 forms a 

complex with STAT1 and operates within its immune response, pro-inflammatory, and anti-

tumour pathways while STAT4 immune response involves T cell activation (Villarino, Kanno 

and O’Shea, 2017; Owen, Brockwell and Parker, 2019; Hu et al., 2021). Although involved in 

immune responses, STAT6 has been found within ROHs of Iranian buffalo and under selection 

within Brazilian murrah buffaloes and is thought to increase resilience of buffalo cows to 

negative energy balance (Ghoreishifar et al., 2020; de Araujo Neto et al., 2022). This occurs 

when energy expenditure of an individual is greater than its intake and dairy cows are 

susceptible after giving birth causes detrimental effects to their health and milk production 

(Mozduri, Bakhtiarizadeh and Salehi, 2018). 

Several genes involved in immune response were found under positive selection in 

both UK populations. TUT7 is expressed in macrophages and impacts innate immune 

responses, showing antiviral functions (Kozlowski et al., 2017; Le Pen et al., 2018). PDCD7 

promotes apoptosis when overexpressed. This gene is induced by glucocorticoids and is 

involved in regulation of T-cells whilst a target of influenza and staphylococci (Guan et al., 

2019; Shaohua Wang et al., 2021; Ghafouri-Fard et al., 2022). ANKDD1A meanwhile is tightly 

associated with T cells that function in immune responses to tumour growth (Zhao et al., 

2021).  

As seen, many of the genes found in ROH and XP-EHH analysis are associated with milk 

production and immunity in UK buffaloes which follows two of the key traits of keeping 

buffaloes as livestock. Genes surrounding antioxidant and thermal regulation were 

additionally found that may support the health and productivity of water buffaloes. Under 

selection in both populations, CBS is active in the production of taurine that produces an 

antioxidant function by preventing the build-up of reactive oxygen substances in the 

respiratory chain and participates in energy homeostasis (Zhou et al., 2017; Lopreiato et al., 

2020; Darang et al., 2022). Found alongside CBS, NDUFV3 is directly involved in ATP 

production due to being an accessory subunit of mitochondrial Complex I. This gene has been 

found under selection in fine-wool sheep in cold climates suggesting adaptive role in 

thermogenesis (T. Guo et al., 2021). PKNOX1 meanwhile is a regulator of oxidative 

phosphorylation components (Kanzleiter et al., 2014). CRYAA in the same region is a heat 
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shock protein that is a major component within the eye lens that maintains transparency and 

refractive power (Chang et al., 2022; Chakraborty, De and Saha, 2023). CRYAA along with CBS, 

NDUFV3, and PKNOX1 are found in the same region under selection as PDE9A which is seen 

under selection in murrah buffalo (Tyagi et al., 2021). Therefore, it may be automatically 

assumed that this region is key to milk production in tropical climate however, CRYAA is has 

been shown to be robust across a variety of temperatures and is adaptable across organisms 

in different environmental temperatures (Posner et al., 2012; Malik et al., 2021; Chang et al., 

2022). This region may present an opportunity to identify environmental adaptation in river 

buffaloes.  

The genes highlighted above show associations with relevant biological functions for 

livestock that can be used to maintain productive and healthy stock. Water buffaloes originate 

from topical/sub-tropical Asia and as such are adapted to these climates. Therefore, since 

residing in Europe, water buffaloes likely largely still possess these tropical adaptations. They 

may, however, be evolving to European conditions if natural and artificial selective pressures 

are present or buffaloes are resilient to environmental change through phenotypic plasticity 

(Fox et al., 2019). For example, water buffalo calves are born with fur all over however into 

adulthood they lose this fur to help with heat regulation in India (Yáñez et al., 2020). 

Meanwhile in colder European climates, this hair is not completely lost (Yáñez et al., 2020). 

Due to Italy’s organised buffalo industry, research is actively being conducted on 

Mediterranean buffaloes for improvement of the local industry. Recently, it was found that 

Mediterranean buffaloes are productive at a temperature-humidity index (THI) above 60 

(Matera et al., 2022). Below this, general declines in productivity are observable as milk yield 

declines and somatic cell score increases (Matera et al., 2022). Somatic cell score is a major 

milk indicator for dairy livestock as the majority of cells comprising this statistic are leukocytes 

(Bradley and Green, 2005; Lindmark-Månsson et al., 2006; Sant’Anna and Paranhos da Costa, 

2011). An increase in somatic cell score in milk suggests greater vulnerabilities to infections, 

particularly mastitis, and other implications such as greater level of inflammation (Bradley 

and Green, 2005; Lindmark-Månsson et al., 2006; Sant’Anna and Paranhos da Costa, 2011). 

The UK has an average THI of 59 and as such, buffaloes in the UK face conditions at times of 

the year that are not ideal for productivity (Dunn et al., 2014). Therefore, the genes found 

under selection may suggest the UK buffaloes are adapting to the UK through immunity 
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related genes to overcome greater susceptibility to infection, therefore minimizing any 

potential loss in productivity. Lastly, a region under selection that features linked milk 

production and thermoregulatory genes may indicate additional adaption to a new 

environment, however further analysis is required to decipher whether this region has been 

maintained from India or if divergence is present. 

2.6. Conclusion 

The results found in this study reveal the extent of genetic variation among UK buffalo 

for the first time. The generation of novel genomic data can uncover the evolutionary history 

behind UK buffaloes’ genetic diversity, identifying any detrimental effects or important 

regions for preservation. As such, these can aid in initiating development of genomic data into 

management plans to ensure adaptable, robust, and productive buffaloes for the future. High 

levels of genetic diversity in UK buffaloes show that despite their low numbers of individuals, 

they have avoided any potential harmful genetic effects such a bottlenecks and inbreeding 

depression. This is likely due to the lack of intense artificial selection in the history of river 

buffaloes that other commercial livestock breeds have faced. Additionally, despite UK 

buffaloes being almost entirely of Italian descent, imported individuals have likely come from 

a range of lineages maintaining variation across the genome. This variation likely means that 

there is a great potential to shape UK buffaloes to their surrounding environment and to 

improve their productivity. The advent of genomic data means that this can be planned 

thoroughly as to minimize loss of genetic diversity and risk of genetic inbreeding leading to 

health problems. A range of candidate genes were identified that may be of importance to 

buffaloes in the UK. Several genes were found relating to milk production, immunity, 

antioxidant, and thermoregulation, all of which would be expected given river buffalo are 

known for their milk, disease resistance, and adaptations to tropical climate. Interestingly 

though, UK farms displayed little consistency in their underlying regions of selection. 

Functional analysis of QTLs showed an excess of production associated regions in RV_UK1 

which is the production-orientated farm, whilst more classical milk associated regions were 

found in RV_UK2, the hobby-orientated farm. This implies that despite the relatively little 

amount of time of water buffalo in the UK, they are able to genetically respond to differing 



Chapter Two 
Demography and Selection in UK Water Buffalo  

71 
 

selective pressure and this evidence of adaptability provides encouragement for future food 

security and changing climate in the UK. 
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Chapter Three 

Recent Selection and Adaptation in Murrah Water 

Buffalo 

 

3.1. Abstract 

The murrah buffalo breed comprises approximately 25% of the global population and 

is the most important riverine breed. The productivity of this dairy breed has led to its global 

transportation in the past century, therefore exposing the breed to new biota, environments, 

and differing demands from people. This chapter genotyped a novel Indian murrah population 

and performed a comparative analysis to global murrah buffalo populations to understand 

changes in genetic variation and identify genomic regions of recent adaptation. All 

populations featured high levels of heterozygosity as expected due to originating from Indian 

stock where genetic diversity is greatest for river buffalo. No incidences of increased 

inbreeding were found in newly established populations following exportation out if India. A 

population expansion was observed within Indian murrah buffaloes, possibly representing a 

potential historical admixture event ~250 years ago that led to breeding with local buffalo 

breeds. Sub-population structuring found within the novel Indian murrah population may 

indicate development of the breed with those genes under selection relating to milk and 

reproductive functions. Genes linked with energy regulation were found in Brazilian murrah, 

a population farmed in modern, commercial farming set-ups. Selection for alternative 

livestock traits were found in Colombian buffalo that have ancestry in the draught buffalypso 

breed, and in Bulgarian murrah as coat colour related genes that may be linked to energy 

demands for meat and draught. Lastly, evidence of adaptations to new environments were 

identified through genes relating to neuronal, vascular, and metabolic functions that may 

enable buffaloes to alter their behaviour and homeostatic processes in response. Results from 

this chapter indicated that buffaloes can adapt to differing selective pressures.  
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3.2. Introduction 

Approximately 97% of the global water buffalo population is found across tropical and 

sub-tropical Asia with greater than 50%, totalling 110 million heads, residing in India alone 

(FAO STAT; DAHD 2023). The extensive use of buffaloes in Southern Asia has been 

underpinned by their adaptations to a tropical and sub-tropical climate. Buffaloes feature 

both physical, and behavioural adaptations that enable them to reduce stress and remain 

productive under harsh conditions (Yáñez et al., 2020; Bertoni et al., 2021; Mota-Rojas et al., 

2021). For example, buffalo breeds in India feature high melatonin levels to cope with high 

temperatures and exposure to sunlight, whilst always losing fur in adulthood (Yáñez et al., 

2020). Behaviourally, buffaloes thrive alongside water as wallowing is needed to overcome 

overheating due to their inability to sweat whilst mud helps to resist diseases and parasites 

(Yáñez et al., 2020; Mota-Rojas et al., 2021). Due to the need for buffaloes to remain near 

water bodies, there has been little historical movement out of their natural domestic range 

in Southern Asia. Other livestock species such as cattle or equids are more capable of moving 

large distances across dry lands at quicker speeds (National Research Council 1981; Siddiky 

and Faruque, 2017). Historical migrations of domestic buffaloes only led to the founding of 

sporadic populations across wetlands areas of the Middle East and Mediterranean (Colli, 

Milanesi, Vajana, et al., 2018; Zhang, Colli and Barker, 2020; Wordsworth et al., 2021). 

Development of the modern world and globalization over the past 100 years has enabled easy 

transfer of goods and services around the world with livestock being no exception.  

Water buffaloes have been transported across the globe, albeit in very small numbers, 

reaching countries such as Brazil and Colombia in South America, Cuba in the Caribbean, 

Mozambique in Africa, Australia, and Central Europe (Colli, Milanesi, Vajana, et al., 2018; 

Zhang, Colli and Barker, 2020). These countries have imported buffalo largely for their milk 

production, but also for beef and draught. Countries importing livestock in modern times have 

had the luxury of importing the most suitable and productive breeds, and with technology 

such as assisted reproductive technologies (ART), there is greater access to highly valuable 

individuals (Hansen, 2014, 2020; Gelayenew and Asebe, 2016). The ability to specifically 

choose the best breeds and individuals typically leads to a small number of international 

breeds within a livestock species (Hoffmann, 2011; Biscarini et al., 2015; Sponenberg et al., 

2018). Well known examples of this are the Holstein-Friesian cattle and Large White pigs 
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(Marshall, 2014). In water buffalo, the murrah breed from India is the most frequent and 

globally traded breed, whilst the Mediterranean buffalo from Italy, and Nili-Ravi breed from 

Pakistan are used to a lesser extent (Maheswarappa et al., 2022). The murrah buffalo as a 

breed falls under the riverine buffalo species (Bubalus bubalis bubalis), deriving from the Jind, 

Hisar, and Rohtak districts of the Haryana province in North-western India (Pawar, 2012; 

Singh, 2014; Kumar et al., 2019). 

Murrah buffalo account for 44% (48 million) of the Indian buffalo population (Table 

3.1) and their dominance as a breed has been due to their greater milk yields and productivity 

(DHAD 2013). No other breed in India makes up greater than 4% of the buffalo population, 

with only non-descript buffaloes matching a similar share at 43% of the population (DHAD, 

2013). Murrah buffalo on average exceed 2,000kg per 305 days of lactation with elite milkers 

producing up to 5,000kg (Borghese, 2013b; Thiruvenkadan et al., 2014; Verma et al., 2016; 

Kumar et al., 2019; Zhang, Colli and Barker, 2020; Bharadwaj et al., no date; Jakhar, Vinayak 

and Singh, no date). Buffalo in India are effective milk producers, contributing approximately 

55% of the total milk production, despite comprising of 35% of total cattle (Geetha, 

Chakravarty and Kumar, 2006; Cruz, 2007; Valsalan et al., 2014). Their milk is rich in protein 

and fat, therefore providing an important energy source particularly for rural communities 

(Nanda and Nakao, 2003; Kumar et al., 2019). Buffalo in India are integral for smallholders as 

more than a source of food. Buffalo are known as a living bank, and are generally considered 

as an important asset for family wealth (Nanda and Nakao, 2003). The majority of buffaloes 

are kept by small holdings that mostly keep a few individuals in low external input systems 

(Deb et al., 2016). Larger commercial operations such as those seen in developed countries 

are rare (Kumar et al., 2019). Therefore, despite the development of murrah buffalo, this 

breed still does not match the outputs of industrial cattle breeds that have access to modern 

optimized farming systems and sophisticated breeding management schemes including 

genomic selection (Zhang, Colli and Barker, 2020). With the movement of buffalo today and 

ease of access to genetically improve individuals through ART, farmers and countries can 

invest into murrah buffalo and therefore continue to develop the breed. In their native India, 

murrah buffalo are frequently bred with local buffalo to produce a cross termed graded 

murrah (Kumar et al., 2017). This increases the productivity of the local buffaloes, but also 

helps to retain some local adaptations and disease resistance. This theme and purpose of 
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crossbreeding is common among all countries of importation. Brazil primarily import murrah 

buffaloes and, to a lesser extent, other breeds such as Mediterranean and swamp carabao to 

establish an organised farming system (da Silva et al., 2021). The majority of murrah 

importations are for the purpose of improving local breeds and populations through 

crossbreeding.  

Table 3.1: Number of buffaloes per breed in India as of livestock census 2012 (Taken from 

DHAD 2013). Graded buffaloes are crossbred individuals of mixed ancestry. 

Breed Number of 

Purebred 

Individuals 

Number of 

Graded 

Individuals 

Total Number 

of Individuals 

per Breed 

(Pure + Graded) 

Proportion of 

Total Indian 

Buffaloes (%) 

Murrah 11,686,198 36,568,676 48,254,874 44.39 

Surti 1,886,280 2,006,614 3,892,894 3.58 

Mehsana 2,676,699 948,426 3,625,125 3.33 

Jaffarabadi 571,077 1,200,421 1,771,498 1.63 

Bhadawari 583,599 1,170,188 1,753,787 1.61 

Nili Ravi 129,411 547,834 677,245 0.62 

Pandharpuri 287,751 195,987 483,738 0.45 

Banni 239,572 142,550 382,122 0.35 

Marathwadi 278,502 98,093 376,595 0.35 

Nagpuri 73,584 117,410 190,994 0.18 

Khalahandi 115,213 26,802 142,015 0.13 

Toda 3,003 2,533 5,536 0.01 

Chilika 2,599 787 3,386 0.00 

Non-Descript   47,142,313 43.37 

Total 18,533,185 43,023,385 108,702,122 100.00 

 

Bulgaria imported murrah in 1962 to cross with their indigenous Mediterranean 

buffaloes, forming the Bulgarian murrah breed that has since been maintained (Borghese, 

2013b). With development of this new breed, milk yields increased proving the programme 
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to be successful (Borghese, 2013a). Similarly, the Philippines imported a large number of 

Indian and Bulgarian murrah to cross with their swamp carabao buffalo (Cruz, 2007). Swamp 

buffaloes were historically domesticated for draught however recent mechanisation across 

South East Asia has led to a continuing decline in population size (Cruz, 2007; Zhang, Colli and 

Barker, 2020) Therefore, swamp buffaloes have recently been repurposed for greater food 

production. At an adult size of 250-300kg, they are far smaller than river buffaloes (450-

600kg), producing less beef (Cruz 2009). Additionally, swamp buffaloes produce little milk at 

400-800kg per lactation cycle, far less than 1500kg of undeveloped river buffalo (Cruz 2009). 

Crossbreeding with murrah buffalo greatly increases the productivity of swamp buffalo for 

food production, with hybrids typically producing an intermediate phenotype. 

Newly established murrah populations will encounter new environmental and farming 

pressures. Therefore, this chapter looks to identify recent adaptations occurring across global 

murrah buffaloes. This includes the addition of a newly genotyped Indian murrah population 

to the growing data generated using the AxiomTM Buffalo Genotyping Array. This novel Indian 

population was compared to five populations from South America, Philippines and Bulgaria 

depicting the most prominent murrah utilizing countries. The study had two aims. The first 

aim was to genetically characterize murrah populations, assessing differences in levels of 

genetic diversity and inbreeding. Strong selection for increased yields is typically found in 

tandem with declines in genetic diversity as individuals regarded to be of less merit are 

removed from the breeding pool (Blackburn, 2012; Leroy, 2014). Reduced diversity can lead 

to reduced adaptability or an increase in inbreeding depression (Doublet et al., 2019). 

Examples of this has been observed in other livestock species through increased incidence of 

reproductive issues that decreases productivity (Malhado et al., 2013; Manoj et al., 2017) 

The second aim of the study was to identify unique regions under selection in each 

population. Recent adaptations can occur through a variety of selective pressures between a 

livestock population, its environment, and production system. Identifying the underlying 

genetic changes behind adaptations will aid in conservation of genetic resources in livestock 

and improve breed management for future economic goals and environmental resilience 

(Biscarini et al., 2015). Selection is expected to leave distinct footprints on the genome, 

however detecting these can be challenging due to a variety of factors including 

recombination, selection intensity, demography, and admixture (Pritchard, Pickrell and Coop, 
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2010; Hermisson and Pennings, 2017). A range of methods have been produced to study 

selection, of which several are employed here. Hard selective sweeps can be identified 

through long haplotypic methods that detect alleles nearing fixation across a population due 

to a rapid shift in the frequency of a beneficial allele (Qanbari and Simianer, 2014; Saravanan 

et al., 2020). These sweeps typically cause linked flanking regions to also appear under 

selection (Qanbari and Simianer, 2014; Saravanan et al., 2020). Contrastingly, soft sweeps 

affect shorter regions, and typically leave more standing genetic variation across the 

population, making them harder to detect (Saravanan et al., 2020). Several studies have 

focused on selection in buffaloes using runs of homozygosity (Davoudi et al., 2020; Fallahi et 

al., 2020; Ghoreishifar et al., 2020; Macciotta et al., 2021; Nascimento et al., 2021; Noce et 

al., 2021; S. Liu et al., 2022), long haplotypic methods (Mokhber et al., 2018; Lu et al., 2020), 

and association studies with livestock traits (de Camargo et al., 2015; Cesarani et al., 2021). 

This study attempts to include finer scale selection occurring in buffaloes which may 

represent local adaptations. The use of spatial and landscape genomics will be critical for 

maintaining productivity of domesticated species in differing environments to avoid reduced 

or low-quality yields from maladapted individuals (Hayes, Lewin and Goddard, 2013). 

3.3. Materials and Methods 

3.3.1. Sample Collection & Data Generation 

A total of 156 Indian murrah buffalo were sampled across central India. Samples were 

processed and genotyped at United Biologicals using the AxiomTM Buffalo Genotyping Array 

(Iamartino et al., 2017). The raw genotyped data was analysed in AxiomTM Analysis Suite 

Software v4.03 along with the UK buffaloes studied in Chapter One. 148 samples successfully 

passed genotyping to give 75,679 SNPs, and 130 samples for 63,603 SNPs after quality control 

in PLINK (Chang et al., 2015). All quality control parameters used in genotyping and PLINK can 

be found in Section 2.3.1 of Chapter One. 

Likewise with Chapter Two, Indian murrah buffalo dataset was merged with public 

datasets of Colli et al., (2018) and Noce et al., (2021) to obtain five additional murrah derived 

populations from South America, Europe, and Philippines (Table 3.2). The combined datasets 

resulted in a total of 40,695 SNPs genotyped for 232 individuals. This dataset was used for 

Sections 3.3.3 – 3.3.6. An independent set of SNPs was generated via linkage disequilibrium 
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pruning in PLINK for analysis of genetic diversity and population structure (Section 3.3.2). The 

first SNP of every linked pair of markers was removed using a sliding window approach of 50 

SNPs, step size of 10 SNPs and an R2 threshold of 0.05 above which markers were considered 

in LD; this pruning resulted in 6,510 SNPs being retained. To determine that the results were 

repeatable, the dataset was randomly split in two and analyses were run on each dataset to 

check that results were consistent across both. 

Table 3.2: Murrah derived buffalo populations analysed in this chapter. Locations of origin, 

breed, sample size, and referenced studies for each population are given. 

Population ID Country Region Breed Sample 
Size 

Reference 

RV_IND India Karnataka, 
Andhra 
Pradesh, 
Tamil Nadu 

Murrah 130  

      
RV_BRA Brazil  Murrah 15 (Colli, Milanesi, 

Vajana, et al., 
2018) 

RV_COL Colombia  No Description 12  
RV_PH_BUL Philippines  Bulgarian Murrah 11  
RV_PH_IND Philippines  Murrah 6  
      
RV_BUL_VAR Bulgaria Varna Bulgarian Murrah 58 (Noce et al., 2021) 

 

3.3.2. Genetic Diversity & Population Structure 

Observed (HO) and expected (HE) heterozygosity along with inbreeding coefficient (F) 

were calculated for each population in PLINK v1.9 and analysed in R v4.0.0 (R Core Team, 

2018) using custom R scripts. An ANOVA was used to test for significant differences in HO 

across populations while a Welch’s t-test (non-normality determined using Shapiro-Wilk test) 

tested for significant differences between HO and HE within each population. 

Genetic differentiation between murrah populations was assessed using pairwise FST. 

Pairwise population FST was calculated using Arlequin v3.5.2.2 (Excoffier and Lischer, 2010). A 

neighbour-net network to illustrate the relationships between groups of murrah buffaloes 

was created in SplitsTree v4.14.4 (Huson and Bryant, 2006). Genetic clustering of individuals 

was done using ADMIXTURE v1.3.0 (Alexander, Novembre and Lange, 2009), testing for the 

ideal number of unique ancestral genetic clusters (K) across the dataset. Values of K from 1 
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to 20 were tested. A cross-validation method, implemented within ADMIXTURE, was used to 

determine the most suitable value of K in the data.  

3.3.3. Linkage Disequilibrium & Effective Population Size  

Pearson’s correlation coefficient, r2, between pairs of SNPs was calculated in PLINK for 

each population. SNP comparisons were calculated between adjacent SNPs and SNPs 

separated by up to 10Mbp to estimate average linkage across the genome. Linkage decay was 

estimated up to 1Mbp using bins of 50kbp intervals. The distance when r2 equalled 0.2 for 

each population was taken as the linked flanking distance away from a SNP to detect genes 

under selection (Mokhber et al., 2019).  

Effective population size (Ne) was calculated following the method of Sved (1971) used 

in Chapter Two (Section 2.3.4, Equations 1, 2 & 3) (Mokhber et al., 2019). In summary, Sved, 

1971 Ne equations evaluates the average r2 linkage values (adjusted for unequal sample sizes) 

and distance, c, between SNPs in Morgans.  

3.3.4. Runs of Homozygosity  

Runs of Homozygosity (ROH) were calculated in PLINK. Parameters used to identify 

ROHs can be found in Chapter Two Section 2.3.5, briefly: the minimum number of SNPs per 

ROH in each population was calculated using Equation 4 in Section 2.3.5 (Lencz et al., 2007; 

Purfield et al., 2012). The minimum number of SNPs per ROH for each murrah population 

resulted in counts between 23 – 34 (RV_BRA = 31, RV_BUL_VAR = 34, RV_COL = 29, RV_IND_1 

= 29, RV_IND_2 = 30, RV_IND_3 = 34, RV_PH_IND = 23, RV_PH_BUL = 27). ROH PLINK outputs 

were analysed and summarised using detectRUNs package in R (Biscarini et al, 2019). An 

ANOVA was conducted to test for significant differences in both FROH and length of ROHs 

between populations in R. 

To identify areas of divergence in murrah buffaloes that may relate to recent selection, 

pairwise population FST values were calculated for all population comparisons. FST was 

calculated in a windowed manner using VCFtools (Danecek et al 2011). Window sizes were 

1Mbp with a step size of 100kbp. Windows with high FST values occurring in ROHs within 

populations may indicate areas of divergence and underlying adaptive regions. Genes within 

ROHs featuring high FST were identified as candidate genes of selection, and their functions 

were identified. 
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3.3.5. Environmental & Spatial Selection 

PCAdapt (Luu, Bazin and Blum, 2017) was used to find SNPs under selection while 

accounting for population structure among murrah buffaloes, and R-Samβada (Stucki et al., 

2017; Duruz et al., 2019) was used to identify SNPs associated with differences in 

environmental variables between the countries. Using PCAdapt, the dataset was summarised 

into 20 principal components (PC) before identifying the ideal number of PCs that reflected 

population structure using Cattell’s rule. After retaining meaningful PCs, the SNP loadings of 

each PC were checked for even distribution. A q-value was generated from the p-values for 

each SNP by applying a false discovery rate (FDR) of 10% (Luu, Bazin and Blum, 2017). 

Retained SNPs had their associated PC identified and genes within 120,000bp either side were 

identified as being linked and potentially under selection. 

Selection occurring in buffaloes relating to environmental variables was conducted 

using R-Samβada. Coordinates for murrah populations taken from Colli et al., (2018) and Noce 

et al., (2021) were approximated by taking primary regions of buffalo industry in said 

countries as follows; RV_BUL_VAR (43.236073, 27.84434), RV_BRA (-23.563483, -46.730364), 

RV_COL (2.576514, -77.870692), RV_PH_BUL and RV_PH_IND (15.73717, 120.936379). 

Environmental variables were obtained from WorldClim v2.1 

(https://worldclim.org/data/worldclim21.html), at a spatial resolution of 5 minutes to allow 

for a regional average of the surrounding area. Various metrics measuring temperature and 

precipitation were obtained from the WorldClim dataset. Collinearity was reduced from the 

dataset of environmental variables by removing the second variable of pairs with an r2 > 0.8, 

leaving nine variables (Longitude, Latitude, bio1, bio2, bio3, bio13, bio14, tmax7, prec11). 

Population structure was accounted for in the analysis via a PCA method implemented within 

R-Samβada. Six PCs were used in line with population structure results from ADMIXTURE and 

PCAdapt analysis here (Sections 2.4.1 & 2.4.4). After applying an FDR of 10%, the most 

significant SNPs for each environmental variable were analysed for their nearest gene to 

identify potential adaptive properties (Luu, Bazin and Blum, 2017; Duruz et al., 2019). 

3.3.6. Signatures of Positive Selection 

Cross-population extended haplotype homozygosity (XP-EHH) implemented in selscan 

(Szpiech and Hernandez, 2014) was used to identify recent positive selective sweeps unique 
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to each murrah population. All populations were phased in Beagle v3.3 (Browning and 

Browning, 2007), before calculation of pairwise XP-EHH scores using standard settings. 

Pairwise comparisons for all population combinations were computed. XP-EHH scores were 

normalised using the norm package of selscan. The median value was calculated for each SNP 

of all pairwise comparisons for each population to identify SNPs persistently under selection. 

Median XP-EHH scores were then converted into p-values and negative log10 values. SNPs 

featuring a p-value below 0.001 (extreme outliers), and with an XP-EHH score greater than 2 

were considered as candidates of selection and associated genes were identified.  

3.4. Results 

3.4.1. Genetic Diversity & Population Structure 

Genetic diversity was high across all murrah populations. HO ranged from 0.448 

(RV_BRA) to 0.506 (RV_PH_IND) with a mean of 0.469 (±0.020) across all populations (Table 

3.3). HO was non-significantly higher than HE for all populations. There was no presence of 

inbreeding in any population as F was negative across all populations (-0.242 – -0.007). HO (χ2 

= 189.77, df = 5, p < 0.0001) and HE (χ2 = 786.43, df = 5, p < 0.0001) significantly differed across 

the six murrah populations. 

Table 3.3: Genetic diversities across murrah buffalo populations. HO = Observed 

Heterozygosity, HE = Expected Heterozygosity, F = Inbreeding Coefficient. Bold HO & HE values 

are significantly different (P < 0.05). An ANOVA of HO results showed that RV_PH_BUL and 

RV_PH_IND had significantly greater HO compared to the other populations. 

Population HO (±SD) HE (±SD) F (±SD) 

RV_IND 0.465 ± 0.090 0.462 ± 0.078 -0.007 ± 0.032 
RV_BRA 0.448 ± 0.145 0.437 ± 0.089 -0.025 ± 0.067 
RV_COL 0.462 ± 0.160 0.442 ± 0.087 -0.045 ± 0.034 
RV_PH_BUL 0.474 ± 0.178 0.432 ± 0.097 -0.120 ± 0.176 
RV_PH_IND 0.506 ± 0.239 0.432 ± 0.097 -0.242 ± 0.158 
RV_BUL_VAR 0.459 ± 0.121 0.441 ± 0.097 -0.039 ± 0.039 

 

Average FST values across all pairwise combinations were low at an average of 0.022 

(±0.011), ranging from 0.007 (RV_PH_IND – RV_IND) to 0.049 (RV_BUL_VAR – RV_BRA). A 

neighbour-net network generated from pairwise FST scores is shown below (Figure 3.1). The 
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network shows a simple pattern as Indian murrah are found at centrally while South American 

and Bulgarian populations are found at opposing ends.  

 

Figure 3.1: FST network of murrah buffalo populations. Indian murrah sits at the centre of the 

network with Bulgarian murrah and South American murrah sitting at opposing ends.  

Genetic clustering (Figure 3.2) using ADMIXTURE revealed that K=6 was the most 

preferred solution (CV values found in Figure S3.1). However, only sub structuring of 

RV_BUL_VAR and RV_IND was found. Populations of RV_BRA, RV_COL, RV_PH_BUL, and 

RV_PH_IND remained genetically clustered with the main group of RV_IND. Sub structuring 

of RV_BUL_VAR occurred at K=2 and K=3. RV_IND sub structuring occurred at K= 4 and K=5. 

Further sub structuring of RV_BUL_VAR was captured at K=6. Sub structuring of RV_IND was 

accounted for by separation of its three genetic clusters for selection studies. RV_BUL_VAR 

was not split up due to mosaicism rather than underlying genetic structure. 
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Figure 3.2: ADMIXTURE plots showing genetic clustering of murrah buffalo populations for 

K=2 to K=6. K=6 provided the most efficient solution according to cross-validation results. 
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3.4.2. Linkage Disequilibrium & Effective Population Size  

Average linkage disequilibrium ranged between 0.240 (RV_IND_3) to 0.415 

(RV_PH_IND) at 50kbp from the SNP in question (Figure 3.3). All populations LD descended 

towards a plateau at 1Mbp. RV_IND_3 was found to have the lowest levels of r2, declining to 

0.018, as RV_PH_IND was found with the highest r2 levels of 0.270 at 1Mbp. RV_PH_IND 

features far greater levels of linkage between SNPs than the other populations owing to its 

small sample size (n = 6). When adjusted for sample size as used in Ne, the r2 values are 0.298 

(50kbp) and 0.123 (1Mbp). The majority of murrah populations showed similar levels of 

linkage disequilibrium across the genome however, the crossbred RV_BUL_VAR and sub-

population of RV_IND_3 showed lower levels. Linkage disequilibrium was used to estimate 

the length of flanking regions either side of SNPs under selection for each population at r2 = 

0.2. Lengths ranged from approximately 75kbp (RV_IND_3) to 175kbp (RV_PH_BUL), 

excluding RV_PH_IND, with a mean of approximately 120kbp across murrah buffalo.  

 

Figure 3.3: Average linkage disequilibrium between SNPs over 1Mbp away from a locus across 

each murrah buffalo population. Average linkage disequilibrium ranges from 0.240 

(RV_IND_3) to 0.415 (RV_PH_IND) at 50kbp from a SNP declining to 0.018 (RV_IND_3) to 

0.270 (RV_PH_IND) at 1Mbp. RV_PH_IND higher linkages is likely due to small sample size (n 

= 6). FID = Family ID (i.e. population). 

Ne (Figure 3.4) ranged from 19 (RV_PH_IND) to 1,744 (RV_IND_3) 5 generations ago. 

The majority of murrah populations showed similar trends of declining Ne from past to 
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present except RV_IND_3. This Indian population showed a spike peaking at 32 generations 

ago reaching an Ne of 3,619, indicative of a population expansion before declining until the 

present day. All populations converge after 250 generations ago towards an Ne of 

approximately 1,500 at 1,000 generations ago. 

 

Figure 3.4: Effective population sizes of each murrah buffalo population over the last 1,000 

generations. Most populations displayed the typical declining trend from past to present 

except RV_IND_3 that presented a peak at 32 generations ago indicating a population 

expansion. FID = Family ID (i.e. population). 

3.4.3. Runs of Homozygosity 

The lengths and frequencies of ROHs differed between the populations. An overview 

is shown in Table 3.4. FROH was low across all populations although significant differences were 

found between populations for both FROH (F222,7 = 11.55, p < 0.001) and length of ROHs (F3412,7 

= 30.88, p < 0.001). FROH
 featured an average of 0.029 (± 0.035) across all buffaloes, ranging 

from 0.013 (RV_IND_1) to 0.071 (RV_BRA). Tukey’s HSD (Table S3.2) showed that RV_BRA and 

RV_BUL_VAR both had a significantly greater proportion of their genomes as ROHs, and 

significantly longer ROHs than other populations. Murrah populations outside of RV_BRA and 

RV_BUL_VAR were dominated by short ROHs with a near absence of long ROHs. 
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Table 3.4: ROH metrics across murrah populations. FROH being the inbreeding coefficient for 

ROHs. 

Population FROH Mean 
Length 

Average Number of ROHs Per Class (Mb) Per 
Individual 

1-2 2-4 4-8 8-16 >16 

RV_BRA 0.071  
(± 0.058) 

7.50 
(± 10.02) 

5.07  
(± 2.49) 

8.80  
(± 3.00) 

3.40  
(± 2.10) 

3.33  
(± 2.97) 

2.73  
(± 3.03)  

RV_BUL_VAR 0.049  
(± 0.036) 

6.47 
(± 7.11) 

1.93  
(± 1.30) 

8.62  
(± 2.57) 

3.86 
(± 3.03) 

2.53  
(± 2.13) 

1.74  
(± 2.19) 

RV_COL 0.027  
(± 0.018) 

3.38 
(± 3.48) 

8.25  
(± 2.34) 

8.42  
(± 4.27) 

1.33 
(± 1.50) 

1.58 
(± 2.11) 

0.42 
(± 0.79) 

RV_IND_1 0.013  
(± 0.002) 

2.38 
(± 1.15) 

6.36 
(± 2.24) 

6.36 
(± 1.98) 

0.93 
(± 1.00) 

0.14 
(± 0.36) 

0.00 
(± 0.00) 

RV_IND_2 0.022  
(± 0.034) 

3.68 
(± 7.57) 

5.59 
(± 2.76) 

7.00 
(± 2.15) 

1.41 
(± 1.46) 

0.41 
(± 1.22) 

0.29 
(± 1.21) 

RV_IND_3 0.014  
(± 0.024) 

3.73 
(± 5.57) 

2.19 
(± 1.44) 

5.66 
(± 2.22) 

0.90  
(± 1.01) 

0.34 
(± 0.72) 

0.24 
(± 1.48) 

RV_PH_BUL 0.039  
(± 0.034) 

3.84 
(± 8.92) 

11.20  
(± 5.92) 

10.20 
(± 5.61) 

1.30 
(± 1.34) 

1.70 
(± 1.89) 

0.50 
(± 0.97) 

RV_PH_IND 0.019  
(± 0.015) 

2.00 
(± 1.65) 

17.67 
(± 10.91) 

4.33 
(± 3.20) 

0.50 
(± 0.84) 

0.50 
(± 1.22) 

0.00 
(± 0.00) 

 

Extreme (top 1% SNPs) ROHs were identified in all populations. The number of ROH 

outliers rapidly increased as sample size decreased. The population with the most samples, 

RV_IND_3 (n = 99), featured 13 ROHs meanwhile RV_PH_IND (n = 6) presented 113 ROHs. 

This is due to threshold for a ROH to be considered significant being increasingly easier to 

exceed at small samples. For example, RV_PH_IND only required a ROH to occur in one 

individual. Therefore, it is important to take results cautiously at small sample sizes that may 

not have strong population-based evidence. Following the application of FST scores, the 

number of ROHs showing high FST scores (indicating potential divergence) was far lower in 

line with low divergence between populations. Diverging ROHs may infer regions of 

adaptations in murrah populations. Proportion of divergent significant ROHs for each 

population can be found in Table 3.5. All populations showed similar numbers of diverging 

ROHs (0 – 10). Only RV_IND_3 featured zero diverging ROHs. 
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Table 3.5: Number of divergent significant ROHs per population. Divergent ROHs were 

determined as regions where high FST SNPs overlapped with ROH outliers. 

Population Number of 
Significant ROHs 

Number of Divergent 
ROHs  

(ROH & FST outliers) 

Percentage of 
Divergent ROHs (%) 

RV_BRA 23 5 21.74 
RV_BUL_VAR 15 3 20.00 
RV_COL 49 3 6.12 
RV_IND_1 35 4 11.43 
RV_IND_2 14 4 28.57 
RV_IND_3 13 0 0.00 
RV_PH_BUL 16 4 25.00 
RV_PH_IND 113 10 8.85 

 

The full table of diverging ROHs and the genes found within these can be seen in Table 

S3.3. One region on chromosome 9 appeared in three populations that were RV_BRA, 

RV_IND_2, and RV_PH_BUL, whilst one region on chromosome 2 appeared in both RV_IND_2 

and RV_COL. Genes found within diverging ROHs were studied through scientific literature to 

identify putative environmental or livestock adaptive properties. RV_BRA showed gene 

functions relating to reproduction (BBU9: 58046218 – 62175428), brain and CNS 

development (BBU1: 4713280 – 49099346), and growth (BBU12: 46848107 - 48349500) 

functions, whilst South American counterpart RV_COL ROH (BBU2: 45662839 – 48841313) 

featured several muscle and growth traits. RV_IND_2 ROHs overlapped with RV_BRA and 

RV_COL, however further ROHs featured functions in reproduction (BBU14: 77753047 – 

80039684; BBU17: 28910234 – 30395257). Whilst additional Indian population RV_IND_3 

showed no divergent ROHs, RV_IND_1 featured genes relating to immunity, reproduction, 

and milk production. Bulgarian murrah populations of RV_BUL_VAR and RV_PH_BUL 

meanwhile featured genes frequently relating to growth. 

QTLs overlapping divergent ROHs were identified across all populations (Table S3.3). 

The number of QTL traits found across populations ranged from 0 to 113. QTL traits were 

typically spread across Exterior, Milk, Production, and Reproduction QTL classes, while Health, 

and Meat & Carcass rarely featured. Contrastingly, RV_IND_3 and RV_PH_IND featured no 

QTLs, despite being on opposing ends of the spectrum for number of divergent ROHs. Due to 

featuring no QTLs for RV_IND_1 and RV_PH_IND, a chi-square was run for the remaining six 
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populations. Chi-square test returned a non-significant result (χ = 22.9225, p = 0.582). Counts 

of QTL traits for each population can be found in Table S3.4. 

3.4.4. Environmental & Spatial Selection 

PCA results reflected those of ADMIXTURE. Of 20 principal components initially 

computed, 6 were carried forward for identifying significant SNPs relating to population 

structure. These 6 PCs captured a total of 80.6% of variation across the dataset. PC1 (18.2%) 

and PC2 (14.4%) largely separated RV_BUL_VAR from the remaining populations (Figure 3.5). 

PC3 (13.3%) split the sub-populations within RV_IND, whilst PC4 (12.3%) separated South 

American populations from Indian. PC5 (11.7%) showed further variation within RV_BUL_VAR 

and PC6 (10.7%) again showing separation of RV_IND and RV_BRA.  

 

Figure 3.5: PCA plot displaying population structure across murrah buffalo populations. PC1 

captured 18.2% of variation across the dataset, while PC2 captured 14.4%. Genotypes for 

significant SNP AX-85052722 are displayed via shapes with 0 being homozygote allele A, 1 

being heterozygote, and 2 meaning homozygote allele B.  

PC loadings were evenly distributed across all SNPs with no particular genomic regions 

dominating. Therefore, the full SNP dataset was retained. 405 SNPs were retained as the top 

1% most significant SNPs associated with the PCs. After generating q-values via application of 

a false discovery rate of 10%, 8 SNPs remained. 6 of the 8 SNPs were significantly associated 

with PC1 that separate Bulgarian murrah from pure murrah. One SNP was associated with 
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PC4 and PC6 each. Significant SNPs and associated genes are found in Table 3.6. PCA plots 

showing all distribution of genotypes for significant SNPs can be found in Figures (3.5 & S3.5 

– S3.11).  

Table 3.6: Significant SNPs related to population structure across murrah buffaloes. SNPs are 

associated with different retained principal components after filtering via q-values applying a 

false discovery rate of 10%. Associated genes were identified within 120,000bp flanking 

regions of the SNP in question.  

 

A total of 11 known protein coding genes were associated with PC1 across 

chromosomes BBU11, BBU16, and BBU19 covering a range of functions. These genes featured 

several functions such as DNA repair (RAD51B), embryonic CNS development (PRTG), protein 

degradation (NEDD4), transcription export complex (CPLX2, THOC3), and cell death (DAP). No 

genes were found associated with AX-85114321 on BBU16 at position 14825721. The closest 

gene LRRC4C (Leucine Rich Repeat Containing 4C) is a member of netrin family of axon 

guidance molecules. One gene was found linked to the SNP at BBU1 61409049 associated 

with PC4, appearing linked with South American populations of RV_BRA and RV_COL. Only 

TRNAC-GCA was found in this region however the nearest gene was NCAM2 (Neural Cell 

Adhesion Molecule 2), an immunoglobulin membrane protein, that has previously been 

associated with milk yields in Brazilian buffalo (de Camargo et al., 2015). Several genes were 

found associated with PC6 on BBU12 (position 2572267) with these functioning across energy 

metabolism and reproduction.  

R-Samβada analysis revealed a multitude of SNPs associated with the environmental 

variables used (Correlations between environmental variables shown in Figures S3.12 and 

SNP Chromosome Position Principal 
Component 

Genes 

AX-85115728 1 61409049 4 TRNAC-GCA 
AX-85126364 11 23558419 1 RAD51B, ZFYVE26 
AX-85042861 11 48810245 1 PRTG, NEDD4 
AX-85052722 11 97245872 1 HRH2, CPLX2, THOC3 
AX-85136739 12 2572267 6 ARID5A, KANSL3, FER1L5, LMAN2L, CNNM4, 

CNNM3, ANKRD23, ANKRD39, SEMA4C, 
FAM178B 

AX-85112690 16 10093932 1 TSPAN18, CD82  
AX-85114321 16 14825721 1 - 
AX-85092744 19 62289241 1 DAP, ANKRD33B 
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S3.13). The top outlier SNPs for each environmental variable were analysed for their nearest 

gene. An example of this is shown in Figure 3.6 showing q-values of SNPs in relation to average 

precipitation in November (mm). Investigated SNPs and genotypes for each environmental 

variable and their nearest gene can be found in Table S3.14.  

 

Figure 3.6: Manhattan plot showing SNP q-values calculated from G-score for association with 

average precipitation in November (mm). The red line indicates the threshold for top 0.1% 

SNPs, and the red dot shows SNP AX-85126469 where the genotype GG is highly associated 

with precipitation. The SNPs is nearby the gene CHL1 which has thermotolerance functions. 

Density of plot includes all three genotypes for each locus. 

Functions relating to regulation of lipid metabolism involved TBC1D4 (GG at AX-

85059527; Longitude), LYPLAL1 (TT at AX-85142269; Latitude), RAB18 (AA at AX-85104855; 

bio3), IRS1 (GG at AX-85105029; bio3). Several genes found have associations with functions 

surrounding high altitude or cold temperature. These were TENM2 (GG at AX-85106286; 

Longitude), NBEAL1 (TT at AX-85061534; bio2), HS3ST4 (CC at AX-85098066; bio2), and CHL1 

(GG at AX-85126469; prec11). An example of the distribution of the genotype of GG for SNP 

AX-85126469 across murrah buffaloes is plotted in Figure 3.7. This SNP was nearby the CHL1 

gene and associated with average precipitation in November (mm). 31.5% of Indian murrah 

(RV_IND) featured the GG genotype that was rare amongst other populations (9.8%). 
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Additionally, different environments host a variety of alternative diseases and pathogens, and 

genes with functions relating to immune response were found such as TENT5A (AA at AX-

85094684; bio2), MFSD1 (CC at AX-85130232; bio14), IGSF21 (CC at AX-85045997; tmax7). 

 

Figure 3.7: Plot showing presence/absence of GG genotype at SNP AX-85126469 in murrah 

buffalo that was associated with Average Precipitation in November (mm) plotted against 

longitude. GG genotype is frequent among Indian (RV_IND) populations. Populations displays 

as clusters using geom_jitter in GGPlot2 to reduce overlapping of points. 

3.4.5. Signatures of Positive Selection 

Regions under positive selection were identified in all populations. The distribution of 

these regions can be seen in Figure 3.8. The full list of regions under selection and the genes 

associated can be found in Table S3.15. RV_IND_3 featured the fewest number of SNPs at 17, 

whilst RV_IND_1 featured the most at 26 SNPs. Gene ontology analysis was carried out and 

enriched pathways can be found in Table S3.16. 
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Figure 3.8: Significant SNPs under selection in each murrah population. Median was taken 

from XP-EHH scores computed across all pairwise combinations before p-values were 

generated for each SNP. The top 0.1% (red line) and SNPs with an XP-EHH score greater than 

2 were taken as significant candidates of selection. 
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3.5. Discussion 

Intense selection upon productive breeds often leads to a reduction in genetic 

diversity (FAO, 2007; Groeneveld et al., 2010). Murrah buffalo are the most productive and 

popular buffalo breed (Kumar et al., 2019; Zhang, Colli and Barker, 2020). Because of this, 

they have been transported across Asia, South America, and Europe to establish new 

populations or improve local buffaloes through crossbreeding. Having unlikely undergone 

intense selection for commercial purposes, murrah buffalo may still possess high levels of 

genetic diversity that may be associated with local adaptions (Groeneveld et al., 2010; Naskar 

et al., 2012; Hoffmann, 2013; Biscarini et al., 2015; Velado-Alonso, Morales-Castilla and 

Gómez-Sal, 2020). This study analysed murrah buffalo from five countries to assess the levels 

of genetic diversity and identify any unique regions of genome that could suggest recent 

adaptations within the breed. 

3.5.1. Genetic Variation and Population Structure 

Genetic diversity was high across all populations with an average HO ranging from 

0.448 (RV_BRA) to 0.506 (RV_PH_IND). The Philippine populations of RV_PH_BUL and 

RV_PH_IND featured unusually high HO, however this may be due to uneven sampling or small 

sample sizes as their HE were the two lowest. Nevertheless, HE was also high (0.412 – 0.462) 

across all populations. Murrah originate from the Haryana region of North-West India, nearby 

the putative domestication centre (Indus valley) for river buffalo (Satish Kumar et al., 2007; 

Colli, Milanesi, Vajana, et al., 2018). Genetic diversity is typically highest at the domestication 

centre, therefore the murrah buffalo here likely capture a large proportion of this original 

standing variation (Bruford, Bradley and Luikart, 2003; Gepts and Papa, 2003; Colli, Milanesi, 

Vajana, et al., 2018). Genetic diversity in river buffalo has also been supplemented via gene 

flow with the wild Asian water buffalo (Bubalus arnee) since domestication (Satish Kumar et 

al., 2007; Kandel et al., 2019). Only Philippine populations significantly differed in HO to other 

populations indicating that exported populations have generally captured enough genetic 

diversity from their stock population in India. In tandem with high levels of HO, there was an 

absence of inbreeding in all populations. 

Expectedly, there was low divergence between the populations with an average FST of 

approximately 2%. Divergence among river buffalo breeds is typically low (Kumar et al., 2006; 
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Colli, Milanesi, Vajana, et al., 2018; Thakor et al., 2021). The greatest difference found 

between populations was between RV_BRA and RV_BUL_VAR at 4.9%. As both populations 

share no relation to each other since being established, this increase may be due to several 

reasons. For example, i) each population likely captured a marginally different subset of 

diversity from stock populations (Bruford, Bradley and Luikart, 2003), ii) RV_BUL_VAR 

features unrelated Mediterranean ancestry (Borghese, 2013a), iii) enacting evolutionary 

forces such as drift and selection (Willi et al., 2007). This translates to the pattern revealed in 

the FST network as Indian populations sit at the centre whilst South American and Bulgarian 

murrah populations oppose each other. The ADMIXTURE results further explain this pattern 

(Figure 3.9). RV_BUL_VAR produces intrapopulation variation, showing ancestry from three 

genetic sources. This is likely splitting the individuals by the proportions of murrah and 

Mediterranean ancestry that features in the genome. Homogenous clustering would be 

expected over time as the key genetic diversity for the Bulgarian murrah breed is retained, 

and any unwanted murrah and Mediterranean ancestry is removed. The majority of RV_IND 

showed genetic similarity; however, two small clusters of individuals became distinguishable. 

Individuals within these clusters occurred at limited sites at the edge of the sampling range. 

These cluster may relate to underlying population structure, isolation of breeding individuals, 

or potential selection and breed development. South American and Philippine populations 

did not become distinguishable from the majority of Indian murrah buffalo highlighting low 

levels of divergence in line with FST results. Therefore, RV_PH_BUL is likely dominated by 

murrah ancestry as opposed to Mediterranean.  

The absence of inbreeding and high levels of genetic diversity were reflected in the 

linkage disequilibrium results. All populations bar RV_PH_IND started with an r2 of 

approximately 0.3, descending to <0.15 by 1Mb. RV_IND_3 features the lowest r2 values 

starting at 0.240 and descending to 0.018 indicating the great variety of individuals within this 

population. This translates to a far greater effective population size for RV_IND_3 starting at 

1,744 (5 generations ago). Interestingly, a peak is observed in RV_IND_3 at 32 generations 

ago reaching a maximum Ne of 3,619, indicating an increase in genetic diversity at this time 

before declining. Since, underlying population structure has been accounted for according to 

ADMIXTURE results here by way of separation of RV_IND, this expansion event is potentially 

due to an admixture event in the history of murrah buffalo. The expansion observed 
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corresponds to a time point around 1800CE (generation time = 6 years). This corresponds to 

a period of power transfer from the Mughal and Maratha Empires to colonisation by the 

British in the 19th century (Guha, 2019). This transfer of power coincided with a period of 

drought in India leading to the decline in agricultural output (Clingingsmith and Williamson, 

2008). The drought led people to move from rural areas to urban defensive centres 

(Clingingsmith and Williamson, 2008). A lack of crops and labourers in rural areas, facilitates 

farmers selling livestock to raise cash for food (Clingingsmith and Williamson, 2008; Venot, 

Reddy and Umapathy, 2010). This theme still occurs today as livestock are used as a source 

of wealth and a buffer to crisis in India (Venot, Reddy and Umapathy, 2010). Perhaps 

admixture within murrah buffalo has been triggered by societal and environmental factors 

that led to the dispersal of murrah and subsequent contact with other breeds or populations.  

 

Figure 3.9: Map of average ancestry (calculated from ADMIXTURE results; K = 6) across 

murrah populations. Blue countries indicate countries possessing murrah derived populations 

used in this study. Charts are placed in their approximate geographic locations. 
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Murrah buffaloes are frequently crossed with local buffaloes across India, producing 

graded buffaloes. The purpose of these crosses is to upgrade yields of local buffaloes whilst 

retaining some local adaptations and disease resilience (Kumar et al., 2017). From Table 3.1, 

there is a 1:3 proportion of pure to graded murrah. It’s likely that the murrah sampled here 

have previously mixed with local buffaloes which would explain why the population expansion 

is only observed in RV_IND_3, and not all murrah populations here. Although RV_IND_3 

appears homogenous, incorporation of variation from populations outside of original murrah 

lineages will inflate estimates of Ne (Orozco-terWengel, 2016). Following this logic, it may be 

expected to observe this signal in RV_BUL_VAR that is a known crossbreed. In this case, not 

enough time has passed to observe an expansion in Ne. Recent crossing between two 

populations results in long tracts of ancestry pertaining to each source (Harris and Nielsen, 

2013; Loh et al., 2013; Jin et al., 2014; Korunes and Goldberg, 2021). Over time, recombination 

will break down and mixed these ancestral tracts and an expansion event will become visible 

(Harris and Nielsen, 2013; Loh et al., 2013; Jin et al., 2014; Korunes and Goldberg, 2021). 

Remaining populations meanwhile are probably founded from purebred murrah and 

therefore will not show an expansion event in Ne. 

3.5.2. Signatures of Selection 

India 

River buffaloes have persisted in India for the past 6,000 years since domestication in 

the Indus valley region (Satish Kumar et al., 2007). Murrah buffaloes rose to prominence due 

to their greater milk production capabilities, becoming the most popular buffalo breed 

(Kumar et al., 2019). As such, murrah buffaloes are inherently adapted to being productive in 

tropical and sub-tropical climates (Yáñez et al., 2020). In the Indian murrah (RV_IND) 

populations here, particularly that of RV_IND_3, low levels of linkage disequilibrium were 

observed along with high levels of heterozygosity translating into the absence of long 

homozygous tracts such as ROHs. These observations can be explained by frequent uptake of 

new genetic diversity through further breeding with wild buffaloes and crosses with local 

buffaloes across India. Adaptations of river buffalo to India are likely older, enabling 

recombination to break down any selective sweeps to shorter regions surrounding the 

beneficial locus (Stephan, 2019). RV_IND populations were among the shortest lengths for 

ROHs, and no unique ROHs were found in RV_IND_3 in comparison with other murrah 
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buffaloes. This is likely because RV_IND_3 shares genetic variation with all populations 

making it unlikely to harbour large unique genomic regions and is probably the closest 

population in this analysis to a de facto stock population of which other murrah populations 

are founded from. Furthermore, significant SNPs in the PCAdapt analysis appear driven by 

other isolated populations. 

This trend continued in XP-EHH results as RV_IND_3 featured the fewest SNPs under 

selection. However, these regions found followed traits that may contribute to murrah’s 

popularity. On BBU1 (47237918 – 47596180; 47715670 – 47750793), OLIG2, PAXBP1, SYNJ1, 

CFAP298, and EVAC1 are all involved in the development of the central nervous system (CNS), 

and this region has been associated with the polled horn phenotype in cattle and yaks (Meijer 

et al., 2012; Liang et al., 2016; Stafuzza et al., 2018; Wang et al., 2019; H. Jiang et al., 2022). 

OLIG2 generates motor neurons and oligodendrocytes that form myelin sheaths, increase 

neuronal impulse speeds through saltatory conduction of action potential (Meijer et al., 2012; 

Komatsu et al., 2020). OLIG2 is involved in horn ontogenesis of taurine cattle, and horn bud 

differentiation and frontal skin in cattle (Allais-Bonnet et al., 2013; Wiedemar et al., 2014; 

Stafuzza et al., 2018). PAXBP1 (PAX3 and PAX7 Binding Protein 1) is expressed in the cerebellar 

hemisphere and cerebellum and muscle precursor cells and potentially has a role in facial 

bone development (Mohammadparast et al., 2014; Alharby et al., 2017; Aldersey et al., 2020; 

Zhou et al., 2021). SYNJ1 (Synaptojanin 1) meanwhile plays a role in phosphorylation and 

recycling of synaptic vesicles (Al Zaabi, Al Menhali and Al-Jasmi, 2018). CFAP298 (Cilia and 

Flagella Associated Protein 298) controls spinal cord formation and functionality of cilia in 

central canal in zebrafish (Bearce et al., 2022). These cilia ensure circulation of cerebrospinal 

fluid in the lumen of brain and spinal cord cavities, and mutations result in scoliosis-like 

deformities of the spine in zebrafish (Marie-Hardy et al., 2021). EVAC1 (Eva-1 Homolog C) is 

involved with neuron survival and growth and development of olfactory and optic sensory 

axons and neural structures (James et al., 2013; Casto-Rebollo et al., 2020). The polled 

phenotype is not present in buffaloes unlike cattle and yak, however murrah feature altered 

horn morphology with small, curled horns. Selection on horn size and the central nervous 

system typically occurs in livestock to increase docility and reduce risk of harm to humans 

(Haskell, Simm and Turner, 2014; Norris et al., 2014; Simon, Drögemüller and Lühken, 2022; 
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Algra et al., 2023). This region may contribute to the ease of handling of murrah resulting in 

their popularity across India. 

A host of genes found under selection in RV_IND_3 appeared to be involved in 

metabolic activities which may relate to murrah buffaloes’ ability to remain productive under 

stressful conditions. GRPEL2 (GrpE Like 2, Mitochondrial; BBU9) regulates the mitochondrial 

import process to maintain mitochondrial homeostasis (Yang et al., 2023). The encoded 

protein acts as a sensor of oxidative stress and interacts with mtHSP70 in states of high 

oxidative stress to prevent misfolding of mitochondrial imported proteins (Srivastava et al., 

2017; Konovalova et al., 2018; Heras-Molina et al., 2022). Increased expression has been 

found coinciding with times of greater lipid oxidation in pigs (Heras-Molina et al., 2022). AUP1 

(AUP1 Lipid Droplet Regulating VLDL Assembly Factor) meanwhile regulates Rtg3 required for 

stationary phase in mitophagy and may function to transduce a signal from specific 

hyperoxidized proteins to activate the retrograde response that impact metabolic states 

(Journo, Mor and Abeliovich, 2009; Chen et al., 2022). MRPL53 (Mitochondrial Ribosomal 

Protein L53) encodes a large subunit of mitochondrial ribosome 39S and part of the machinery 

for the mitochondrial oxidative phosphorylation system whilst INO80B (INO80 Complex 

Subunit B) is a DNA damage repair gene (Serber et al., 2016; Li et al., 2022). DCTN1 (Dynactin 

Subunit 1) is an axonal transport gene for maintaining motor neurons and has been associated 

with milk yield in murrah buffalo further highlighting the importance of this region in the 

breed (Kumar et al., 2023). Increased stress on livestock reduces productivity, and for dairy 

buffalo, a reduction in milk yields (De Rosa et al., 2009; Caroprese et al., 2010; Pawar, 2012; 

de la Cruz-Cruz et al., 2019; Saqib et al., 2022). Oxidative stress occurs when reactive oxygen 

species are not effectively removed following metabolic processes, causing cellular damage, 

and activating apoptotic pathways (Puppel, Kapusta and Kuczyńska, 2015). This stress can be 

exacerbated through environmental conditions such as heat or poor feed (Sordillo and Aitken, 

2009; Pedernera et al., 2010; Z. Guo et al., 2021). Genes such as these may underline murrah 

buffaloes’ ability to remain productive in low quality environments.  

The genetic separation of RV_IND_1 and RV_IND_2 may indicate murrah buffalo 

lineages and individuals that are being selected for and developed. Unlike RV_IND_3, these 

two populations did feature unique ROHs. For RV_IND_1, genes found within divergent ROHs 

surrounded immunity and production. ALCAM (Activated Leukocyte Cell Adhesion Molecule) 
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and CBLB (Cbl Proto-Oncogene B) are markers for mastitis and are important for cell adhesion 

and signalling in T-cells respectively (Lkhagvadorj et al., 2010; Ju et al., 2018; S. Han et al., 

2020; Dysin, Barkova and Pozovnikova, 2021). CD47 (CD47 Molecule) is an immune response 

gene that becomes upregulated in lactating mammary gland (Suchyta et al., 2003). 

TNFRSF13C (TNF Receptor Superfamily Member 13C) encodes a receptor for B cell activating 

factor (Demasius et al., 2013). Increased BAFF expression was found in infected dairy goats 

spleen (Fu et al., 2022). Nearby, SHISA8 (Shisa Family Member 8) is associated with somatic 

cell score in Brazilian murrah buffalo (Lázaro et al., 2021). In the same region, GRAP2 (GRB2 

Related Adaptor Protein 2) is upregulated in buffalo milk somatic cells and functions in the T 

cell receptor signalling pathway while immune-related gene MTMR11 (Myotubularin Related 

Protein 11) has additionally been observed under selection in river buffaloes (Ahlawat et al., 

2021; Ravi Kumar et al., 2023). The ROH on BBU6 features TENT5C, VTCN1, TRIM45, CD101, 

and CD2, all of which have immune functions (Brym et al., 2016; Dai et al., 2019; Simons et 

al., 2019; Liudkovska et al., 2022; Etchevers et al., 2023). Many genes across the ROHs were 

linked to milk production in livestock. SREBF2 (Sterol Regulatory Element Binding 

Transcription Factor 2) regulates expression of lipogenic genes and is involved in milk fat 

synthesis in buffaloes (Piantoni et al., 2010; Ye et al., 2022). Further lipid metabolic genes for 

dairy cattle include POLR3H, EP300, ANXA9, CERS2 (Kulig et al., 2010, 2013; Martínez-Royo et 

al., 2010; Romao et al., 2014; Puig-Oliveras et al., 2016; Rico et al., 2016; Palombo et al., 2018; 

McFadden and Rico, 2019; Hu et al., 2021; Pecka-Kiełb et al., 2021). CTSK on BBU6 has been 

found under increased expression in mammary glands during lactation in buffaloes (Sodhi et 

al., 2023).  

The balance between immunity and milk production is important for economic output 

as both processes are energetically expensive to dairy livestock. High yielding dairy cattle have 

been shown to feature defective inflammatory responses and reduced immunity owing to 

intense metabolic changes around calving (Bronzo et al., 2020). Infection in cows can lead to 

great economic loss through reduced milk yields, veterinary costs, and loss of livestock 

(Bronzo et al., 2020). Milk yields are reduced as greater energy and nutrient demands are 

placed on producing immunity-related cells (Rauw, 2012). The calorific requirements are 

increased in infected cows which are met by utilising energy stores such as fat reserves (Rauw, 

2012). Additionally, integrity of the blood-milk barrier is impaired, preventing the required 
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nutrients being transferred to milk secreting cells (Wellnitz and Bruckmaier, 2021). Effective 

immune systems leads to lower somatic cell counts in milk, meaning higher quality and longer 

lasting products (Alhussien and Dang, 2018). Selection of immunity and milk production genes 

may explain why this genetic cluster is found across several locations as farmers may be 

identifying the most productive and resilient murrah buffaloes. Further evidence of these 

results occurs in XP-EHH regions in the form of PTAR1 (virus resistance), MAMDC2 (Antiviral 

response in microglia), MORN2 (facilitates phagocytosis), RFXAP (regulates MHC II genes), and 

SKAP2 (modulates immunity) (Wu et al., 2008; Butte et al., 2012; Abnave et al., 2014; Cho et 

al., 2014; Hanna and Etzioni, 2014; Riblett et al., 2016; Tumasian et al., 2021; Yiliang Wang et 

al., 2022). These immunity genes can be found alongside production associated genes such 

as ALG5. This gene is differentially expressed at different stages of lactation and participates 

in lipid biosynthesis and glycerolipid metabolic processes (Gebreyesus et al., 2019).  

RV_IND_2 has two ROHs that overlapped with RV_COL and RV_BRA populations, while 

additional ROHs further highlight reproductive functions. On BBU14, JAG1 (Jagged Canonical 

Notch Ligand 1) operates via the Notch pathway, a conserved pathway crucial to embryonic 

development. This gene has shown signalling function in embryogenesis and has been 

associated to reproductive function in Nellore cattle, and promotion of mammary cell 

proliferation during early lactation in cows (Tripurani et al., 2011; Wang et al., 2012; Sbardella 

et al., 2021). Genes on BBU17 include ZNF84 (Zinc Finger Protein 84) that is a key regulator in 

ovaries of Brahman cattle with expression changes in uterine tissues associated with puberty 

(Nguyen et al., 2017; Fortes et al., 2018). Associations with puberty have also been observed 

in the adjacent ZNF605 (Zinc Finger Protein 605) (Fortes et al., 2018). Furthermore, GUCY1A1 

is associated with litter size in sheep and ASIC5 variants linked to pregnancy loss (Al Qahtani 

et al., 2021). ASIC5 has previously been found under selection in river buffalo (Saravanan, 

Rajawat, et al., 2022). Further reproductive genes were found in XP-EHH results as TUSC3 

(Tumour Suppressor Candidate 3) is expressed in spermatocytes, inducing sperm 

differentiation and maturation (Zhou and Clapham, 2009; Yu et al., 2017; Sun et al., 2023). 

GRHL1 (Grainyhead Like Transcription Factor 1) functions in placenta development and has 

been associated with litter traits in pigs while the absence of TAF1B (TATA-box binding protein 

associated factor, RNA polymerase I Subunit B) causes the accumulation of late stage egg 

chambers in ovaries (Ding et al., 2021; S.-Y. Chen et al., 2022; X. Wang et al., 2022). Analysis 
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of mRNA expression of this gene corresponds with success of AI-pregnant heifers (Dickinson 

et al., 2018; Moorey and Biase, 2020). TAF1B also is associated with body weight of yaks at 

the time weaning (Jia et al., 2020). Similarly, TDO2 (Tryptophan 2,3-Dioxygenase) is also linked 

with weaning weight in Charolais cattle (Garza-Brenner et al., 2020). These genes may 

indicate potential development of murrah buffaloes in RV_IND_2 for increased reproductive 

and infantile developmental success.  

India has been upgrading buffaloes through national programmes to increase milk 

yields and avoid unproductive buffaloes via genetic erosion. Uninformed admixture (or 

outbreeding) is frequent in rural areas as buffaloes are grazed in common lands allowing free 

admixture of breeds. Uninformed admixture results in reduced productivity through erosion 

of beneficial haplotypes maintained by breed selection. In a bid to reduce the impact of 

genetic erosion (and improve milk yields via more efficient selection) of buffaloes in India, the 

government began implementing ART schemes since the 1950s (Singh and Balhara, 2016). 

The first strategic artificial insemination programme (1951 – 1956) targeted 150 key villages 

to improve cattle and buffaloes (Singh and Balhara, 2016). The current National Dairy Plan 

now incorporates 14 major milk producing states accounting for more than 80% of the 

country’s cattle and buffalo population, and greater than 90% of the country’s milk 

production (Singh and Balhara, 2016). The scheme uses a strict number of breeding buffalo 

bulls produced through progeny testing and pedigree selection programmes (Singh and 

Balhara, 2016). Through modernisation and greater use of ART in India, highly productive 

buffaloes can be developed more easily via selection of elite individuals. The two unique 

clusters within India murrah buffaloes may be evidence of lineages being selected for 

improved milk production and reproduction success.  

South America 

Numerous livestock species have been imported into the Americas and have 

successfully adapted to its climate. The evolution of Creole cattle is an example of this. Iberian 

cattle were imported to central America late 15th century, and these adapted to various 

ecotypes forming the creole breeds (Pitt et al., 2019). Adaptations of creole cattle include the 

thermoregulatory slick hair phenotype (Pitt et al., 2019). Buffalo arrived in South America 

later, being imported to Brazil from the 1890s onwards (da Silva et al., 2021). The majority of 
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these were either Mediterranean buffalo from Italy or murrah of Indian origin. Swamp 

buffaloes have also been imported to a lesser extent. Unlike previous livestock species, 

buffaloes were imported for their natural tropical adaptations. Adaptations to hot climates, 

pathogenic resistance, and productivity in harsh conditions are ideal for use in South America. 

Buffaloes were therefore imported to replace locally adapted but low productive breeds such 

as creole cattle (da Silva et al., 2021). Although both RV_BRA and RV_COL are genetically 

similar to their Indian ancestors, regions under selections suggest that some recent 

adaptation to South America.  

Divergent ROHs in RV_BRA were found associated with neural development, energy 

metabolism, reproduction, milk production, and immune response. The ROH on BBU1 

overlapped with XP-EHH results in RV_IND_3 including genes OLIG2, PAXBP1, SYNJ1, 

CFAP298, and EVAC1. Additional genes captured in the longer ROH include URB1 (URB1 

Ribosome Biogenesis Homolog), MRAP (Melanocortin 2 Receptor Accessory Protein), MIS18A 

(MIS18 Kinetochore Protein A), HUNK (Hormonally Up-Regulated Neu-Associated Kinase), and 

SCAF4 (SR-Related CTD Associated Factor 4) all of which are expressed in the brain and CNS. 

MRAP and SCAF4 have been shown to be involved with regulation of metabolism, appetite, 

and food intake (Webb and Clark, 2010; Zhang et al., 2021; Novo et al., 2022). SOD1 

(Superoxide Dismutase 1) and TIAM1 (TIAM Rac1 Associated GEF 1) were also found in this 

region and both genes have been linked with heat stress (Flori et al., 2012; Lopreiato et al., 

2020; Khan et al., 2021; Zeng et al., 2022). Therefore, this cluster of genes under selection 

may allude to behavioural adaptations in murrah buffalo through improved management of 

buffaloes. In this case, for example, stress may be reduced through increased docility (Canario 

et al., 2013; Friedrich, Brand and Schwerin, 2015). Lazarov et al., (2021) found SNPs 

surrounding URB1 and MIS18A were linked with somatic cell score in Brazilian buffaloes. 

Reduced stress through docility and thermotolerance would reduce the release of stress 

hormones leading to a reduction in inflammatory signalling and immune response therefore 

reducing number of white blood cells in milk (Rauw, 2012; Alhussien and Dang, 2018; Matera 

et al., 2022).  

BBU9 revealed a range of genes associated with thermoregulation and reproduction. 

DELE1 (DAP3 Binding Cell Death Enhancer 1) responds to mitochondrial stress and is able 

upregulate heat shock proteins (Fessler et al., 2020; Guo et al., 2020; Girardin et al., 2021; 
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Huynh et al., 2023). TAF7 (TAT-Box Binding Protein Associated Factor 7) can regulate heat 

shock proteins and enhance efficient recovery of cells to thermal stress (Nagashimada et al., 

2018; Y. Liu et al., 2022). Expression of CD14 (CD14 Molecule) has been linked with tropical 

thermal stress (Alhussien et al., 2018). TMEM173 (Also known as STING1) has been found 

under selection in Fuzhong swamp buffalo, a place that faces hot and humid summers (Sun, 

Huang, et al., 2020). Selection of this gene has additionally been found in Southern Chinese 

cattle (Y. Liu et al., 2022). ECSCR (Endothelial Cell Surface Expressed Chemotaxis and 

Apoptosis Regulator) encodes a protein primarily found in endothelial cells and blood vessels, 

and therefore may have a role in tolerance to heat stress in cattle (Peripolli et al., 2018). 

Reproductive genes include GNPDA1 (Glucosamine-6-Phosphate Deaminase 1) which is 

upregulated in pLH blastocysts under ART (Dyck et al., 2014). HDAC3 (Histone Deacetylase 3) 

has been shown related to competence of bovine oocytes, and higher transcripts in cows 

suggest importance for preparation of oocytes (Silva et al., 2019; Kawamoto et al., 2022). 

Furthermore, expression of this gene is linked with improvement of bovine embryo 

production and preimplantation development (Silva et al., 2019). HB-EGF (Heparin Binding 

EGF Like Growth Factor) has shown evidence for pregnancy success (Sá Filho et al., 2017; 

Dolebo et al., 2019). Other genes such as EGR1 and KDM3B have been linked to fertility (Mota 

et al., 2017; Dolebo et al., 2019; Kang et al., 2022). Brazil are among the world’s largest users 

of ART to support their meat and dairy production that ranks 2nd and 5th in the world, 

respectively (Sartori et al., 2016). Year on year increases in artificial inseminations, embryonic 

transfers, and somatic cell nuclear transfers have been observed (Sartori et al., 2016). 

Therefore, it is of no surprise that genes relating to success of pregnancy are observed under 

selection. The additional occurrence of thermotolerance genes in this region may help 

mitigate additional stress on cows that can occur from increase metabolic rates during 

energetically expensive processes such as reproduction (Cartwright et al., 2023). This ROH 

was additionally found in RV_IND_2 and RV_PH_BUL, likely being used in a similar context, 

particularly that of RV_PH_BUL which also resides in hot and humid conditions. On BBU12, 

EIF2AK3 and FABP1 may have roles in energy balance while FOXI3 regulates hair follicle 

development (McCarthy et al., 2010; Shahzad et al., 2015; Guan et al., 2016; Diniz et al., 2020; 

Bolormaa et al., 2021; García-Roche et al., 2021). 
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Regions under recent selection in RV_BRA from XP-EHH results may further add to 

these themes. VPS13A (Vacuolar Protein Sorting 13 Homolog A) encodes the protein chorein. 

This protein is chief moderator of secretion and density of blood platelets. Heat stress raises 

platelet numbers of blood density which raises danger of cerebral and coronary thrombosis. 

Therefore, this gene may act to mitigate risk of damage from increased heat (Amiri 

Ghanatsaman et al., 2023; Zhong et al., 2023). CSNK1G1 (Casein Kinase 1 Gamma 1) is 

associated with cattle temperament whilst GRM7 (Glutamate Metabotropic Receptor 7) 

operates in excitatory glutamatergic synapses and is associated with behavioural neurological 

disorders such as autism and ADHD (Alvarenga et al., 2023). PCAdapt revealed a SNP 

associated with RV_BRA. NCAM2 (Neural Cell Adhesion Molecule 2) was the closest gene and 

has previously been associated with dairy cattle and goats (Ding et al., 2022; Amiri 

Ghanatsaman et al., 2023). This gene has also been found associated with milk, fat, and 

protein yield in Brazilian buffaloes indicating that selection on livestock traits is affecting 

genetic structuring of murrah populations (Venturini et al., 2014). 

In the Colombian population, the few genes found within ROHs appeared to revolve 

mostly around growth. On BBU2, genes were found associated with body and carcass traits 

relating to fat (LRRC1, HCRTR2, HMGCLL1, BMP5), and muscle (MLIP, FAM83B, COL21A1) 

functions (Ahmady et al., 2011; Shao et al., 2011; Tetens et al., 2015; Falker-Gieske et al., 

2019; Ghosh et al., 2019; Tang et al., 2019; Yuan et al., 2019; Chen et al., 2020; Sigdel et al., 

2020; Park et al., 2021; Tumasian et al., 2021; Ramos et al., 2023). Meanwhile CACYBP 

(Calcyclin Binding Protein) on BBU5 relates to skeletal muscle function in Holstein cattle 

(Yougbaré et al., 2021). Although not defined as a breed in Colli et al., (2018), RV_COL is 

genetically very murrah-like. Water buffalo were originally imported to Colombia from the 

1970s (Zava, 2009). Buffaloes were obtained from nearby countries such as Trinidad & 

Tobago, before defined breeds such as murrah were imported from neighbouring Brazil (Zava, 

2009). Here in the Caribbean, river buffalo of Indian origin (e.g., murrah and Jafferabadi) were 

developed for draft power and greater meat production leading to buffaloes with increased 

muscle mass, coined the buffalypso (Bennett, Garcia & Lampkin, 2007). Ne results in section 

3.4.2 show elevated Ne for RV_COL, though not a distinctive population expansion like 

RV_IND_3, which could be explain by breeding between closely related gene pools, e.g., 
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closely related Indian breeds (Thakor et al., 2021). Therefore, these genes relating to growth 

functions may be traces of alternative use from dairy to draught in river buffaloes. 

Colombian buffalo revealed little information on potential adaptations to South 

America in lieu of XP-EHH results. Of the genes found under selection, STXBP5L (Syntaxin 

Binding Protein 5L) is associated with skin photoaging, while its paralog STXB5 promotes 

platelet secretion (Le Clerc et al., 2013; Gorski et al., 2019). Adjacent to this is POLQ (DNA 

Polymerase Theta), which participates in DNA repair. Loss of POLQ in humans and mouse cells 

causes sensitivity to ionizing radiation (Yousefzadeh and Wood, 2013). GSDME (Gasdermin E) 

is key for induction of pyroptosis, a form of cell death regulated via inflammation (Hikima and 

Morimoto, 2023). On BBU9, EDIL3 (EGF Like Repeats And Discoidin Domain 3) mediates 

angiogenesis and participates in inflammatory pathways (Gasca et al., 2020; Becker et al., 

2022; Sokolova et al., 2023). GLRB (Glycine Receptor Beta) and GRIA2 (Glutamate Ionotropic 

Receptor AMPA Type Subunit 2) are neuronal genes both of which are associated with flight 

speed and temperament in cattle, respectively (Santos et al., 2017; Ruiz-De-La-Cruz et al., 

2023). These genes indicate increased exposure to solar radiation. Several buffalo farms can 

now be found in states (e.g., Antioquia & Santander) at higher altitudes, where cooler 

temperatures mean that buffaloes may not need to wallow, and as such, are more exposed 

to solar radiation. Alternatively, in tandem with neuronal genes and growth traits from ROHs, 

these genes may further contribute to adaptation to draught usage. 

Bulgaria 

Buffalo in Europe almost entirely comprise of the Mediterranean breed that adapted 

to Europe over the past 1,500 years (Colli, Milanesi, Vajana, et al., 2018; Zhang, Colli and 

Barker, 2020). Although Italy has bred Mediterranean buffaloes to be among the most 

productive breeds of river buffalo, those in Eastern Europe lacked significant improvement in 

milk production. Farmers in Bulgaria proceeded to import murrah buffaloes to improve milk 

production and increase disease resistance within the breed (Borghese, 2013a). The result of 

this crossbreed formation has produced a higher frequency of longer ROHs compared to other 

murrah populations. This may be due to regions of either Mediterranean or murrah buffalo 

being selected for, or not enough time has passed to break down these regions from 

recombination. Most significant SNPs identified from PCAdapt analysis likely relate to 
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Mediterranean ancestry as PC1 distinguishes between pure murrah and the crossbred 

murrah. Several SNPs relate to genes associated to growth traits. Local Bulgarian buffaloes 

prior to crossbreeding were additionally used for draught and meat purposes and are among 

the fastest growing and largest of riverine buffaloes (Antonio, 2010; Borghese, 2013a; Noce 

et al., 2021). RAD51 (RAD51 Recombinase) and ZFYVE26 (Zinc Finger FYVE-Type Containing 

26) have been associated with carcass fatness in Nellore cattle and residual feed intake in 

pigs, respectively (Do et al., 2014; Martins et al., 2021). PRTG is associated with back fatness 

in Nellore cattle and average daily gain in Italian beef cattle (Júnior et al., 2016; Mancin et al., 

2022). NEDD4 has been found associated with meat traits in Nellore cattle and sheep, and is 

involved in promotion of bone development, cellular growth (Barnes et al., 2019; Bakoev et 

al., 2020; Frezarim et al., 2022; Krivoruchko et al., 2023). Other genes found in this analysis 

include TSPAN18, CD82, ANKRD33B all may play roles in inflammation and immune response, 

while CPLX2 is a encodes a presynaptic protein and this gene is found under selection Bashan 

cattle, known for their gentle temperament (Sun et al., 2023). 

Genes associated with growth traits and immunity are further observed in 

RV_BUL_VAR within divergent ROHs and under selection in XP-EHH results. Within the ROH 

on BBU4, RBFOX2 (RNA Binding Fox-1 Homolog 2) regulates MEF2D-V4 which promotes 

differentiation of chicken myoblasts, while knockouts in mice disrupt SLC25A4 involved in 

energy production, leading to heart and skeletal muscle defects (Ouyang et al., 2020; 

Wierzbicka et al., 2023). This gene has been under selection in Boer goats that excel on growth 

performance over other breeds (Yuan et al., 2022). Interestingly, on BBU14, a QTL for coat 

colour pigmentation in cattle is found. This corresponds with the gene ATRN (Attractin) that 

has been shown to influence coat colour in mice, and linked to pigment switching in Holstein 

and Hanwoo cattle (Seo et al., 2007; Pausch et al., 2012). River buffaloes typically feature near 

black coat phenotypes, however brown coats have previously been developed in Bulgarian 

buffaloes (Borghese, 2013b). ATRN is a receptor for the ASIP protein that is well known for 

coat colour phenotypes in animals (Y. Liu et al., 2018). Also, ATRN can promote degradation 

of melanocortin receptors which influences intracellular cAMP levels. Increased cAMP is able 

to influence lipolysis in adipose tissue and energy metabolism in liver and muscle (Y. Liu et al., 

2018). Therefore, development of the brown coat phenotype may be potentially linked to 

selection of any growth or energy related traits. 
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The remaining genes observed were frequently associations with the following: 

SIGLEC1, MAVS, DMBT1, CPXM2, ABRAXAS2 with immunity; HSPA12B, PANK2, PCNA, 

SLC23A2 for thermotolerance; and BMP2, PROKR2, CDS2, PRDX3, GRK5 BAG3, ACADSB, 

CTBP2, ADAM12 associated with various lipid and metabolic functions. Notably, CRLS1 

(Cardiolipin Synthase 1) is involved in mitochondrial membrane function and is predominantly 

expressed by tissues with high levels of energy metabolism and has been linked with cold 

adaptation (Trovato et al., 2015; You et al., 2020). The SNP under selection at 43545229 on 

BBU23 overlapped with ROH results for RV_BUL_VAR. Within this, we find NKX1-2 (NK1 

Homeobox 2) that promotes adipogenesis and inhibits osteoblastogenic differentiation, and 

differential methylation of this gene can be observed at lower temperatures (0.8 – 13C) in 

humans (Chen et al., 2019; Xu et al., 2020; Wang et al., 2023). Adjacent to this, LHPP 

(Phospholysine Phosphohistidine Inorganic Pyrophosphate Phosphatase) catalyses hydrolysis 

of imidodiphosphate which is essential for maintaining mitochondrial membrane potential 

(Conte et al., 2021). This gene is expressed in mammary glands of Holstein cows and ewes 

where metabolic changes are highly regulated at a transcriptional level (Mach et al., 2012; 

Conte et al., 2021). Genes under selection in Bulgarian murrah buffaloes appear related to 

energy homeostasis. Whether this is due to adaptation to a colder environment, greater milk 

production from crossbreeding Mediterranean and murrah buffaloes, or additional selection 

on growth traits can be further investigated.  

Philippines 

The Philippines is within the historic range of the swamp buffalo having been 

introduced to the islands post domestication 4,000 years ago (Barker, 2014; Colli, Milanesi, 

Vajana, et al., 2018). With the decline in swamp buffalo population owing to mechanization 

of farming and low production (milk and meat) capabilities, the Philippines have established 

river buffalo populations to hybridise with swamp buffaloes. Due to increasing frequency of 

typhoons, flooding, and droughts ruining crop production, smallholders in Philippines are 

increasingly swapping crop production to livestock (Escarcha et al., 2020). With the help of 

CDP, river buffalo are used to increase growth speeds (70 – 100% increase) and milk 

production (200 – 300% increase) of local swamp buffaloes to increase income for families 

across Philippines (Cruz, 2015). Murrah buffaloes from India and Bulgaria are the main source 

of river buffalo genetic variation used for crossbreeding. Although one Philippine murrah 
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(RV_PH_IND) populations is of small sample size, the Philippine Bulgarian murrah population 

still revealed regions under selection. Across ROH on BBU8 in RV_PH_BUL, several genes 

relate to growth traits. PPP1R3A (Protein Phosphatase 1 Regulatory Subunit 3A) encodes a 

subunit of PP1 involved in insulin signalling pathway promoting glycogen synthesis and has 

shown to be downregulated in cattle with restricted feed (Keogh et al., 2015). LSMEM1 

(Leucine Rich Single-Pass Membrane Protein 1), IFRD1 (Interferon Related Developmental 

Regulator 1), ZNF277 (Zinc Finger Protein 277), DOCK4 (Dedicator of Cytokinesis 4), LRRN3 

(Leucine Rich Repeat Neuronal 3) all have roles in cellular growth, proliferation, 

differentiation, and apoptosis (Cheng et al., 2014; Wang, Chen and Wang, 2019; Y. Song et al., 

2022; Téteau et al., 2023). IFRD1 in particular has been associated with average daily gain in 

Nellore and Marchigiana cattle whilst expression differed in rapid growth Dorset sheep 

compared to slow growth small tail han sheep (Miao, Luo and Qin, 2015; Sorbolini et al., 2017; 

Peripolli et al., 2018). This gene may also potentially be involved in the double muscle 

phenotype in Charolais cattle (Jahuey-Martínez et al., 2019). Therefore, this region could be 

a useful candidate region for increased growth of buffalo in the Philippines. The ROH on 

BBU20 meanwhile provided MPHOSPH10 (M-Phase Phosphoprotein 10) and MCEE 

(Methymalonyl-CoA Epimerase), both of which have been attributed to adipose functions in 

cows and pigs (Moisá et al., 2017; Y. Jiang et al., 2022). 

Again, a gene relating to coat colour was found under selection. This time, in 

RV_PH_BUL, FOXP2 (Forkhead Box P2) was found within the ROH on BBU8. FOXP2 is a well-

known language and speech related gene in humans that is integral to brain development 

(Dediu and Christiansen, 2016). However, this gene has additionally been linked to coat colour 

in Vrindavani cattle (Chhotaray et al., 2021). TRPM1 (Transient Receptor Potential Cation 

Channel Subfamily M Member 1) was additionally found, this time in the ROH on BBU20. 

TRPM1 is a calcium channel where knockdowns in the gene causes an influx of calcium ions 

into melanocytes (Devi et al., 2013; Shenyuan Wang et al., 2021). Signalling through Ca2+, such 

as level of exposure to solar UV radiation, controls cellular melanogenesis (Bellono and 

Oancea, 2014; Dumbuya, Hafez and Oancea, 2020). Variants in TRPM1 are responsible for 

spotting phenotype in horses while high expression in goats corresponded with brown skin 

(Peng et al., 2017; Derks and Steensma, 2021). Along with the gene in RV_BUL_VAR, these 
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genes can be explored in the future to determine if they feature any further functionality or 

purely visual.  

XP-EHH results in RV_PH_BUL revealed further metabolic and growth-related genes. 

SLC13A1 (Solute Carrier Family 13 Member 1) that encodes a renal sodium/sulphate 

cotransporter and is involved in sulphate homeostasis (Boegheim et al., 2017). Sulphate is 

essential for several processes such as cellular metabolism and growth. SLC13A1 has been 

associated with bone disorders in Simmental cattle, and sulphated proteoglycans are 

essential for maintaining normal structure during bone and cartilage formation (Bordbar et 

al., 2019). Within the same region, IQUB (IQ Motif and Ubiquitin Domain) was found and 

knockdowns of this gene can prevent c-myc expression, a muscle regulator gene (Li et al., 

2018; Bordbar et al., 2019). NDUFA5 (NADH: Ubiquinone Oxidoreductase Subunit A5) 

participates in transportation of electrons in mitochondria and therefore energy production 

while GRIA4 (Glutamate Ionotropic Receptor AMPA Typer Subunit 4) may additionally be 

involved in metabolic homeostasis as this gene has been linked with cold adaptation in 

Siberian cattle (Bordbar et al., 2019; Igoshin et al., 2019, 2021; Swartz et al., 2021). ASB15, 

LMOD2, and WASL all have roles in muscle development (McDaneld, Hancock and Moody, 

2004; Yu et al., 2007; McDaneld and Spurlock, 2008; Yamashiro et al., 2012; Bordbar et al., 

2019; Lange et al., 2021). RV_PH_IND revealed various genes related to livestock productivity 

however with no clear pattern. 

Environmental Adaptations 

Selection in livestock is largely dictated by pressures on production traits. Declines in 

productivity are realised when livestock encounter environments that they are not adapted 

to as energy is required to maintain bodily functions under stressful conditions (Niyas et al., 

2015; Bernabucci, 2019; Passamonti et al., 2021). In response, individuals with beneficial 

alleles may display greater productivity due to being more resilient and better adapted, i.e. a 

higher fitness (Kawecki and Ebert, 2004; Savolainen, Lascoux and Merilä, 2013). Over time, 

this will lead to a population or breed becoming locally adapted to the new environment 

(Passamonti et al., 2021; Velado-Alonso, Morales-Castilla and Gómez-Sal, 2022). The top SNPs 

associated with environmental variables tested here elucidated potential environmental 
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adaptability capabilities in domestic buffalo for the first time. Associated genes appear to 

mostly relate to thermoregulation and altitude, according to current literature.  

TENM2 (Teneurin Transmembrane Protein 2), associated with temperature and 

longitude, is a nerve system gene found under selection in high altitude ranging feral Andean 

horses (Hendrickson, 2013). This gene is involved in embryogenesis and neuronal 

development. Changes surrounding TENM2 may yield altered behavioural responses as 

differences in methylation were found in algae eating rock dweller cichlids compared to other 

species (Vernaz et al., 2021). Under colder conditions, buffaloes increase food consumption 

to increase metabolism, alter resting behaviours and maintain close body contact with other 

individuals (Yáñez et al., 2020). NBEAL1 (Neurobeachin Like 1) has previously been linked to 

high altitude adaptation in several livestock species and features in thermal adaptation via 

regulation of synaptic transmission (Serranito et al., 2021). NBEAL1 is abundantly expressed 

in arteries and involved in cholesterol metabolism which may explain links to thermal 

adaptation (Bindesbøll et al., 2020). CHL1 (Cell Adhesion Molecule L1 Like) is vital for brain 

and neural development, but is also found expressed in the carotid body (Huang et al., 2013; 

Fischer and Drago, 2017). Results show this genotype frequent in RV_IND individuals and 

associated with low precipitation. CHL1 recruits heat shock protein Hsc70 (HSP70) to the 

synaptic membrane and vesicles (Leshchyns’ka et al., 2006). A study on buffaloes at different 

altitudes showed that low altitude populations are vulnerable to chronic heat stress, and this 

would be exacerbated in areas of low precipitation (Lan et al., 2022). HSP70 has been 

associated with vascular diseases such as strokes (Mehta et al., 2005; Allende et al., 2016; Kim 

et al., 2018). Therefore, changes in CHL1 function may assist against neuronal and vascular 

diseases under heat stress. TBC1D4 (TBC1 Domain Family Member 4) and HS3ST4 (Heparan 

Sulfate-Glucosamine 3-Sulfotransferase 4) have both been associated with cold adaptation. 

TBC1D4 found under selection in Beringia humans from the arctic region and is likely involved 

in fat metabolism and changes due to low carbohydrate diet (McGarrah, 2017). HS3ST4 

meanwhile, produces heparan sulfate that affects blood thickness and is also under selection 

in arctic inuit population (Reynolds et al., 2019). Another gene relating to coat colour was 

found dominated in Bulgarian murrah. ADAMTS20 (ADAM Metallopeptidase With 

Thrombospondin Type 1 Motif 20) regulates melanocyte colonization of skin and is associated 

with coat colour variation in goats (Oget, Servin and Palhière, 2019).  
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Although recent changes mostly link to production traits in buffaloes, these genes 

indicate that buffaloes can adapt to different climates. Changes in neuronal, metabolic, and 

vascular genes may help buffaloes alter their behaviour and maintain homeostatic body 

function to mitigate stress. This capability makes them potentially ideal livestock species for 

changing future climatic conditions in addition to their current traits of being disease resistant 

and maintaining productivity in low quality conditions.  

3.6. Conclusion 

The findings presented here show the level genetic variation across murrah buffaloes 

and reveal potential adaptations occurring across the globe. All populations featured high 

levels of heterozygosity with low levels of genetic differentiation between populations as 

expected. As such, the majority of murrah buffaloes clustered together except for the 

crossbred RV_BUL_VAR, and two small groups of individuals within RV_IND. Genes identified 

under selection may relate to how each population has been used. The few regions under 

selection in RV_IND_3 were associated with oxidative stress in addition to brain and CNS 

development, which may relate to temperament and adaptation to low quality environments. 

RV_IND_1 and RV_IND_2 differed in that their genes under selection appear associated with 

milk production, reproduction, and immunity, suggesting potential development of the 

breed. RV_BRA shared similarities in terms of genes geared towards productivity with buffalo 

farming in Brazil taking place in a larger scale operation. Colombian buffalo featured loci 

under selection associated with muscle development which may relate to ancestry from the 

buffalypso breed that was used in draught. Meanwhile genes affecting coat colour were 

identified across all selection methods in Bulgarian murrah that uniquely features the brown 

coat colour. Evidence of adaptations to the environment were found in relation to neuronal, 

vascular, and metabolic functions that may help buffaloes regulate homeostasis under 

different conditions. In summary, a range of potential population specific candidate genes 

and genomic loci have been identified aiding in understanding the adaptive potential of 

buffaloes.  
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Chapter Four 

Mitigating the Effects of Ascertainment Bias using 
Linkage Disequilibrium Pruning 

 

4.1. Abstract 

SNP genotyping arrays are comprised of highly polymorphic markers that can discern 

between closely related individuals at an affordable cost. This is beneficial for linking 

differences in SNPs with phenotypic variation. Though useful for genomic selection within the 

commercial livestock sector, evolutionary studies face bias as natural genetic variation often 

features an abundance of lowly frequency alleles. Furthermore, for the AxiomTM Buffalo 

Genotyping Array, swamp buffalo were not included in SNP selection. This creates further bias 

in the array as the genetic variation in swamp buffalo is underrepresented. This chapter 

evaluates ascertainment bias within the AxiomTM Buffalo Genotyping Array in comparison to 

whole genome sequencing data. This chapter additionally attempts to reduce bias in the array 

for swamp buffalo by using linkage disequilibrium to prune overrepresented low frequency 

SNPs. MAF distributions revealed the disparity in allele frequencies between the two species 

and between data types as an abundance of high frequency alleles were found in the river 

buffalo array data. Ascertainment bias was evident across most statistical analysis as river 

buffalo array data was unaffected by LD pruning while swamp and WGS data fluctuated. LD 

pruning did reduce ascertainment bias as differences between river and swamp buffalo could 

be minimized with swamp diversity increasing. This trend was not shared by WGS data where 

results are mirrored depending on the LD pruning target. Therefore, LD pruning in WGS data 

captured unique genetic variation specific to either species. Without unique swamp variation, 

LD pruning in the SNP array retained ancestral SNPs that have remained in both species via 

processes such as balancing selection. ABC results showed that the consequences were that 

genetic relationships between river and swamp buffalo appeared closer. Studies using the 

AxiomTM Buffalo Genotyping Array should only focus on river buffalo as swamp buffalo 

require a new array that incorporates the species unique variation. 
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4.2. Introduction 

The ability to sequence genomes rapidly expanded our understanding of genetic 

variation and its effects on biological processes across a range of species (Cunningham et al., 

2019; Giani et al., 2020). The greatest impact in humans, the has been in medicine where 

genetics has improved diagnostic services and treatments of many diseases (Manolio et al., 

2019; Green et al., 2020). Elsewhere, access to genomic information for the livestock industry 

provides the raw material for formation of precision breeding plans, targeting alleles that 

express a desired trait (Meuwissen, Hayes and Goddard, 2013; Georges, Charlier and Hayes, 

2019; Burrow and Goddard, 2023). Whole genome sequencing for livestock species provides 

the full complement of genetic variation, however sequencing as, data storage, and 

processing infrastructure is costly for large numbers. Utilising genomics without substantial 

monetary backing is therefore challenging, though large-scale sequencing projects do exist 

(Daetwyler et al., 2014). The production of single nucleotide polymorphism (SNP) genotyping 

arrays (henceforth referred to as SNP arrays) offers a cost effective and reproducible vector 

of genomic data that maintains a high resolution (Syvänen, 2005; Gurgul et al., 2014; Georges, 

Charlier and Hayes, 2019). As of 2016, over 1.2 million dairy cattle have been genotyped using 

SNP arrays in the US alone (Wiggans et al., 2017). 

SNP array panels may feature upwards of hundreds of thousands of nucleotide probes 

that hybridise to complementary regions of the tested DNA. Multiple microarray technologies 

have been developed with Affymetrix and Illumina being the major producers. Affymetrix 

microarray technology functions uses probe-pairs that compose of a perfect match probe and 

a mismatch probe differing in a single nucleotide (LaFramboise, 2009). Alternative binding of 

the complementary DNA to the different probes produces detectable difference in signal 

intensities. In comparison, Illumina microarrays use extensions of fluorescently labelled 

nucleotides, conveying SNP genotypes through colour ratios (LaFramboise, 2009). The 

allocated probes are predefined based on informative polymorphic SNPs selected through the 

SNP discovery process (Figure 4.1).  

Selection of SNPs for microarrays are often based upon a small number of sequenced 

DNA samples. In the livestock sector, these samples will usually cover breeds of interest. 

Following sequencing and SNP detection, several stages of filtering and validation, whilst also 

considering practical factors such as cost, occur to obtain to final SNP set for microarray 
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production (Geibel et al., 2021). Importantly, the resulting set of SNPs from this process 

captures tens of thousands of evenly distributed polymorphic SNPs across the genome 

providing a high resolution for which differences in variation between individuals can be 

quantified and attributed to functional traits (Gurgul et al., 2014; Georges, Charlier and Hayes, 

2019; Berry and Spangler, 2023). The first commercial high density SNP array for livestock 

produced was the Illumina Bovine SNP50 BeadChip for cattle (Matukumalli et al., 2009).This 

array contained 54,001 SNPs that enabled the selection of highly desirable individuals on a 

commercial scale through generation of genomic estimated breeding values (EBVs) 

developed by Meuwissen et al, (2001). Production of various SNP array platforms have been 

extended to a variety of livestock species, e.g., sheep (Kijas et al., 2009), goats (Tosser-Klopp 

et al., 2014), and pigs (Ramos et al., 2009), facilitating the genetic improvement of livestock 

and intensification of the industry (Hayes et al., 2009; Hayes, Lewin and Goddard, 2013; Stock 

and Reents, 2013; Gorjanc et al., 2015; Brito et al., 2021).  

The AxiomTM Buffalo Genotyping Array became commercially available in 2017, 

featuring 89,988 SNP markers (Iamartino et al., 2017). This marked the first opportunity for 

large-scale genomic testing of domestic buffaloes, leading to the formation and 

implementation of genomic selection programmes. Outside of commercial interest, the cost 

effective and reproducible state of SNP arrays makes the buffalo array an attractive source of 

genomic information for studying the global patterns of genetic variation and investigation of 

their evolutionary history (Auton et al., 2009; Kijas et al., 2009; Orozco-terWengel et al., 2015; 

Iamartino et al., 2017; Colli, Milanesi, Vajana, et al., 2018; Rougemont and Bernatchez, 2018; 

Muñoz et al., 2019; Pitt et al., 2019; Eusebi, Martinez and Cortes, 2020; Olschewsky and 

Hinrichs, 2021). Both river and swamp buffalo derive from the same wild ancestor and are 

able to hybridise to produce fertile offspring, yet there are substantial genomic, phenotypic, 

and livestock trait (i.e., milk or draught) differences (Colli, Milanesi, Vajana, et al., 2018; 

Zhang, Colli and Barker, 2020). Understanding the genetic variation within domestic buffaloes 

will greatly contribute to the effective management of genetic resources across the two 

species. In turn, this will guide breeding of genetically healthy and productive livestock while 

avoiding any detrimental effects such as inbreeding or genetic erosion (Plastow, 2016; Rauw, 

2016; Lopes et al., 2017; Georges, Charlier and Hayes, 2019; Mrode et al., 2019; Wu and Zhao, 

2021).  
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Figure 4.1: Flowchart of SNP genotyping array design for the AxiomTM Buffalo Genotyping 

Array. Information in figure on array design has been obtained from Iamartino et al., (2017). 

Four river buffalo populations were used to identify potential SNPs for the buffalo array. A 

series of filtering, validation, and down sampling processes (array design indicated by blue 

background) take place to select final SNP subset. Array was produced (array production & 

assessment in grey background) using Affymetrix probe-pair technology and 31 buffalo 

populations were used to assess the performance of the array. Stages are in order and 

direction is shown via arrows. Graphic adapted from Geibel et al., (2021). 
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Representative samples are required to obtain accurate statistical outputs and 

interpretations of those populations studied. Genetic studies require a representative sample 

of the standing genetic variation. While SNP genotyping arrays provide ample benefits, they 

however do not typically represent standard levels of genetic variation (Albrechtsen, Nielsen 

and Nielsen, 2010; Lachance and Tishkoff, 2013; Benjelloun et al., 2019; Geibel et al., 2021). 

SNP arrays are deliberately produced with an abundance of highly polymorphic SNPs , with 

rarer SNPs avoided (Nielsen, 2004; Albrechtsen, Nielsen and Nielsen, 2010; Lachance and 

Tishkoff, 2013; Geibel et al., 2021). This form of ascertainment bias leads to distortions in 

allele frequency and overinflation of statistics (Albrechtsen, Nielsen and Nielsen, 2010; 

Lachance and Tishkoff, 2013; Malomane et al., 2018; Benjelloun et al., 2019; Geibel et al., 

2021). For example, allele frequency distributions produce a signal more akin to genetic 

bottlenecks due to the absence of rare alleles, while estimates of heterozygosity and 

divergence are frequently over or under represented in comparison to WGS (Nielsen, 2004; 

Albrechtsen, Nielsen and Nielsen, 2010; Lachance and Tishkoff, 2013; Malomane et al., 2018; 

Benjelloun et al., 2019).  

Statistics such as principal component analysis (PCA) are more robust against 

ascertainment bias, therefore providing possibilities to reduce its impact on results (McTavish 

and Hillis, 2015). Linkage disequilibrium is used over frequency-based methods for identifying 

regions under selection in SNP arrays due to the bias in allelic frequencies(Qanbari and 

Simianer, 2014). However, the skewed allele frequencies in SNP arrays is not the only bias. 

The SNPs in the Axiom™ Buffalo Genotyping Array were selected on Murrah (30%), 

Mediterranean (30%), Jaffarabadi (20%), and Nili-Ravi (20%), thus, the genetic variation 

present in the SNP array represents polymorphisms found in these breeds (Iamartino et al., 

2017). When genotyping breeds and populations outside of those in the discovery panel, no 

further variation unique to those breeds can be captured (Pérez-Enciso, Rincón and Legarra, 

2015; Eusebi, Martinez and Cortes, 2020; Olschewsky and Hinrichs, 2021). Recently diverged 

and isolated populations will share the majority of their genetic variation, and therefore will 

be minimally affected in statistical analysis. Populations that are less related (i.e. older 

divergence) will share less genetic variation with respect to that captured by the SNP array, 

and the SNPs will largely appear as monomorphic or rare alleles. These genotyped 

populations will consequently appear as though they possess little genetic diversity when, in 
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reality, their diversity is simply not captured by the array (Nielsen, 2004; Albrechtsen, Nielsen 

and Nielsen, 2010; Malomane et al., 2018). The four breeds that founded the buffalo array 

are all riverine breeds thus a bias is created against swamp buffalo.  

This chapter evaluates ascertainment bias between river and swamp buffaloes 

present in the Axiom™ Buffalo Genotyping Array and attempts to minimize its effects through 

alternative selection of independent SNPs. Several strategies have been suggested to 

minimize bias in arrays. Some studies use quality control filtering such as minor allele 

frequencies to remove rare alleles or SNPs out of Hardy-Weinberg’s Equilibrium while others 

use statistics resistant to bias (Albrechtsen, Nielsen and Nielsen, 2010; Lachance and Tishkoff, 

2013; Malomane et al., 2018). Other studies specifically model ascertainment bias in their 

analysis, thus matching neutral models to observed data (Quinto-Cortés et al., 2018). The use 

of linkage disequilibrium (LD) pruning is used within this chapter and has been previously 

suggested to reduce the effects of ascertainment bias across populations of wild and domestic 

chicken (Malomane et al., 2018). The rationale behind this is that LD pruning removes nearby 

SNPs that reflect the same genealogical history, i.e. are linked. This method may aid in 

removal of the excess of monomorphic and rare alleles that are not reflective of their natural 

genetic variation. Here, LD pruning is alternatively conducted on the two domestic buffalo 

species and to understand if ascertainment bias can be removed (extending using LD to 

mitigate ascertainment bias to two different species). This strategy was replicated in WGS 

data to compare to the array data. 

4.3. Materials and Methods 

4.3.1. Sample Collection & Data Generation 

15 Indian murrah buffaloes generated in Chapter Three were chosen and added to 

Colli et al, (2018) global buffalo SNP array dataset. In line with previous Chapters, the SNP 

array dataset featured 40,695 SNPs. Quality control filters to obtain this number of SNPs can 

be found in Chapter Two Section 2.3.1. Populations that were present in Luo et al, (2021) 

whole genome sequencing dataset were kept for comparative analysis between arrays and 

WGS. The full breakdown of populations used in this chapter and their sample sizes can be 

found in Table 4.1. Seven river buffalo populations and six swamp buffalo populations were 

available across both datasets. Both species featured populations covering their core historic 
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range. I.e., river buffalo populations represented India, Pakistan, Middle East, and Europe, 

while swamp populations represented China, Thailand, Philippines, and Indonesian islands.  

The full Axiom™ Buffalo Genotyping Array features up to 89,988 SNPs. Analysis was 

carried out to check that the distribution of SNPs between the full probe map and the reduced 

genotyped data were similar across chromosomes. The full annotation was acquired from 

ThermoFisher Scientific (available at: 

https://www.thermofisher.com/order/catalog/product/550431). SNPs were removed if they 

were missing chromosomal locations, present on non-autosomal chromosomes, or were 

duplicated quality control probes so to match the genotyped data. The distances between 

SNPs on the probe map and genotyped data were computed and summarised using R (R Core 

Team 2018). A Pearson’s rank correlation test was conducted between the ThermoFisher 

probe map and present genotyped data for the total number of SNP markers present on each 

chromosome.  

Table 4.1: Buffalo population details and samples sizes available across both SNP array and 

WGS datasets. RV_IND was produced within this thesis (see Chapter Three Section 3.3.1 for 

further details), all other populations were obtained from Colli et al, (2018) and Luo et al, 

(2021). 

Population Species Breed ID SNP Array 
Sample Size 

WGS  
Sample Size 

India River Murrah RV_IND 15 3 
Pakistan  Aza Kheli RV_AZA 3 5 
  Kudhi RV_KUN 10 5 
  Nili-Ravi RV_NR 15 8 
Iran  Khuzestani RV_KHU 10 5 
  Mazandari RV_MAZ 8 4 
Italy  Mediterranean RV_MED 15 13 

River Sub-Total   76 43 

China Swamp Guizhou SW_GZ 11 12 
  Hunan SW_HUN 15 5 
Philippines   SW_PHI 15 5 
Indonesia   SW_SUL 11 5 
   SW_SUM 13 5 
Thailand   SW_THA 6 5 

Swamp Sub-Total   71 37 

 

WGS data obtained from Luo et al, (2021) contained 33,516,506 SNP markers. To 

remove the excessive difference in resolutions between WGS and the Axiom™ Buffalo 
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Genotyping Array, a pseudo-SNP array dataset was generated using WGS data. A gamma 

distribution was fitted to the distribution of distances between SNPs in the probe map using 

the fitdistplus R package (Delignette-Muller & Dutang, 2015). Using this gamma distribution, 

a vector of 72,434 randomly generated SNP distances were sampled. These distances were 

used to extract SNPs from the WGS data, producing a pseudo-array that with SNP markers 

distributed approximately equally to the Axiom™ Buffalo Genotyping Array. 

To evaluate ascertainment bias within the SNP array, subsets of SNPs obtained from 

different populations were generated using linkage disequilibrium (LD) pruning using PLINK 

(Chang et al, 2015). LD pruning was conducted using the settings of window size of 50 SNPs, 

window step size of 10 SNPs, and r2 thresholds set at 0.01, 0.05, 0.1, 0.2, 0.5 and 0.8. Multiple 

datasets were generated at these r2 thresholds targeting different species and populations 

(Figure 4.2). The following LD pruning sets were formed: No LD pruning (referred to as all no 

pruning - ALL NP/r2 = 1.00), LD pruning across all samples (ALL), LD pruning across all river 

samples (RIVER), LD pruning across all swamp samples (SWAMP), LD pruning across a 

population representative of river domestication centre (RIVPK_NIL), LD pruning across a 

population representative of river non-domestication centre (RIVIT_MED), LD pruning across 

a population representative of swamp domestication centre (SWATH_THS), and LD pruning 

across a population representative of swamp non-domestication centre (SWACN_GUI). The 

number of SNP markers retained across all datasets can be found in Supplementary Table 

S4.1. Due to the number of repetitive datasets formed, this report henceforth refers to i) data 

as being either SNP array or WGS, ii) dataset being how the data was LD pruned (e.g., ALL, 

RIVER, SWAMP), and iii) r2 threshold as the r2 (0.8, 0.5, 0.2 etc) used in LD pruning. 
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Figure 4.2: Species and populations targeted for generating each LD dataset. Same 

populations were used for SNP array and WGS data. River (blue) and swamp (red) are defined 

by the different colours. Each buffalo represents a single population. The number and colour 

of populations shown for each dataset indicates which populations were used in selecting 

SNPs by linkage disequilibrium (LD) pruning. Dataset names are linked to the populations that 

LD pruning was used on, i.e. ALL = LD pruning on all buffalo populations, RIVIT_MED = LD 

pruning only on the river population from Italy. 

4.3.2. Genetic Diversity & Population Structure 

Genetic diversities across all LD datasets were measured using a variety of metrics. 

PLINK was used to calculate minor allelic frequencies (--freq) and both observed (HO) and 
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expected (HE) heterozygosity (--hardy) across all SNPs per population per dataset. The 

inbreeding coefficient (F) was calculated using moments of method calculation (--het, 

Equation 1) across all polymorphic SNPs per population in PLINK. All outputs were analysed 

in R using custom scripts. Choice of T-test was determined through use of Shapiro-Wilks test 

for normality (P < 0.05 being non-normally distributed) and equal variances test (P < 0.05 

being unequal variances between groups) were conducted for each comparison. ANOVAs 

were used to test for significant differences across r2 thresholds within a dataset, and across 

datasets of the same r2 threshold. 

𝐹 =  
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐻𝑜𝑚𝑜𝑧𝑦𝑔𝑜𝑡𝑒 𝐶𝑜𝑢𝑛𝑡 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐻𝑜𝑚𝑜𝑧𝑦𝑔𝑜𝑡𝑒 𝐶𝑜𝑢𝑛𝑡

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑎𝑟𝑘𝑒𝑟𝑠 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐻𝑜𝑚𝑜𝑧𝑦𝑔𝑜𝑡𝑒 𝐶𝑜𝑢𝑛𝑡
 

            (1) 

Pairwise population FST comparisons were calculated within each dataset using 

VCFtools (Danecek et al, 2011). Parametric and non-parametric T-tests were used to 

determine significant differences between species and data. Parametric and non-parametric 

T-tests and ANOVAs were used to analyse differences across species, data, datasets and r2 

thresholds. FST results were further analysed via Pearson’s correlation tests to determine if 

the same patterns in genetic variation were present between datasets. P-values from 

correlation test outputs were adjusted using the false discovery rate (FDR) to account for 

multiple testing. Consistency of population structure was further analysed using a non-

multidimensional scaling (NMDS) analysis in PLINK to support FST results. 20 synthetic 

components were computed in PLINK and NMDS outputs were analysed using custom R 

scripts. Correlation tests were completed to identify significant correlation across major axis 

between datasets, with P-values adjusted for multiple testing using FDR. 

4.3.3. Runs of Homozygosity 

Runs of homozygosity (ROH) provided a statistic that is calculated per individual 

instead of being population based. ROHs were calculated in PLINK (--homozyg) using settings 

found in (Macciotta et al., 2021) that were done using the Colli et al, (2018) SNP array dataset. 

Outputs were analysed in R using the package detectRUNS (Biscarini et al, 2019). The settings 

used to calculate ROHs were 1Mb minimum ROH length, 15 SNPs minimum number of SNPs 

in ROH, 0 heterozygous or missing SNPs in ROH. ROHs were summarised by three metrics 
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being i) Number of ROHs, ii) Length of ROHs, and iii) Distribution of ROH classes. Parametric 

and non-metric T-tests were used to determine significant differences in these measures 

between species and between datasets, again accounting for normality and equal variances. 

4.3.4. Demographic Modelling 

Approximate Bayesian Computation (ABC) was used to observe how different LD 

datasets affected demographic modelling. No evolutionary model has currently been 

produced for domestic water buffalo, therefore the simplest of models was generated for this 

analysis. One river and one swamp population were used that joined at some point back in 

time. The two populations used were a Mediterranean river buffalo (RIVIT_MED) population 

composing of 13 individuals and a Chinese swamp buffalo population (SWACN_GUI) of 11 

individuals. Populations were selected by way of the largest WGS populations available, and 

datasets were randomly sampled for 2,500 SNP markers to reduce computational time for 

ABC simulations. Three models were simulated being i) no migration, ii) river to swamp 

migration, and iii) swamp to river migration. The ABCtoolbox pipeline was used (Wegmann et 

al., 2010). ABCsampler implemented within ABCtooolbox was used to randomly sample 

parameter values from defined prior ranges for effective population sizes (Ne), divergence 

time, and migration rates (Table 4.2). One million backward coalescent simulations were 

generated using FastSimCoal v2.6 with summary statistics of the simulated genetic variation 

calculated using Arlequin v2.6.2.2 (Excoffier and Lischer, 2010; Excoffier et al., 2013, 2021). 

The closest 1,000 simulations by distance to observed summary statistics were retained for 

generating posterior distributions using ABCestimator within ABCtoolbox.  

Table 4.2: Prior ranges and distributions for parameter sampling 

Parameter Abbreviation Parameter Sampling 
Distribution 

Minimum Maximum 

Effective Population Size River NR Log10 2 7.5 

Effective Population Size 
Swamp 

NS Log10 2 7.5 

Effective Population Size Wild 
Ancestor 

NA Log10 2 8 

Divergence Time T-Split Log10 1 6 

Migration Rate River to 
Swamp 

MRS Log10 -6 0 

Migration Rate Swamp to 
River 

MSR Log10 -6 0 
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4.4. Results 

4.4.1. Dataset Generation 

123,040 SNP markers were found in the full Axiom™ Buffalo Genotyping Array probe 

map. After removal of markers such as duplicated quality control markers, and those with 

missing locations, 72,434 autosomal SNP markers remained for further filtering. 40,695 SNPs 

remained in the observed SNP array dataset following quality control filtering and merging of 

datasets (Chapter Two, Section 2.3.1). The distribution of SNPs across chromosomes for the 

full probe map and genotyped dataset can be seen in Figure 4.3. SNP distributions between 

the probe map and observed SNP data significantly correlated (r2 = 0.999, p < 0.0001). 

Therefore, despite the loss of SNPs in the observed genotyped data, the distribution is still 

representative of the full probe map.  

 

Figure 4.3: Total number of SNP markers found across each chromosome in the full Axiom™ 

Buffalo Genotyping Array probe map (blue) and present genotyped buffalo populations (red). 

Reduced numbers of SNPs in the observed data led to larger distances between SNPs 

(Figure 4.4). Observed genotyped data featured an average distance of 60.7kbp (±57.3) 

between SNPs, compared to 34.2kbp (±20.4) in the full probe map. A gamma distribution was 

fitted to the probe map, giving a shape 5.59 and rate of 0.000169 for which 72,434 SNPs were 

randomly extracted from WGS dataset according to distances similar to that of the SNP array. 

Datasets for SNP array and WGS array then underwent linkage disequilibrium pruning. The 
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number of SNP markers retained in each LD dataset can be found in Supplementary Table 

S4.1.  

 

Figure 4.4: Distribution of distances between SNPs in the full Axiom™ Buffalo Genotyping 

Array probe map (blue) and present genotyped dataset (red). Reduced SNP markers led to 

larger SNP distances in the genotyped dataset increasing from approximately 34.2 kbp to 60.7 

kbp. 

4.4.2. GENETIC DIVERSITIES  

It is well known that allele frequencies in SNP arrays typically do not represent that of 

natural genetic variation owing to the selection of SNP markers with higher frequencies 

(Nielsen, 2004; Clark et al., 2005; Lachance and Tishkoff, 2013; Benjelloun et al., 2019). Minor 

allele frequencies (MAF) were calculated across all populations for all datasets for both SNP 

array and WGS data. MAF distributions for river and swamp buffalo in all SNP markers for SNP 

array and WGS data, and LD pruned (r2 = 0.2) data are shown in Figure 4.5. River buffalo MAFs 

in the SNP array are uncorrelated with the majority of WGS comparisons (Supplementary 

Table S4.2). SNP array and WGS MAF distributions become significantly correlated when LD 

pruning is carried out on specific populations (RIVIT_MED & RIVPK_NIL) and low r2 thresholds 

(≤ 0.1) within RIVER LD dataset. Swamp buffalo MAFs between SNP array and WGS data are 

significantly correlated for all LD datasets bar r2 = 0.01 and r2 = 0.05 in the ALL LD dataset 

(Supplementary Table S4.2). Natural genetic variation typically shows an abundance of low 
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frequency alleles as seen across WGS. Instead in SNP arrays, an abundance of higher 

frequency alleles was observed as seen across all SNP array dataset for river buffaloes (Figure 

4.5). A large majority of low frequency alleles are observed across most WGS datasets. MAF 

distributions shift towards higher frequencies in a species as the r2 threshold becomes closer 

to 0 when LD pruning is conducted on that same species (i.e. higher allele frequencies found 

in river buffalo when LD pruning targets river buffalo). When LD pruning does not include a 

species, the MAF distribution remains shifted towards an abundance of low frequency alleles. 

Therefore, MAF distributions between species within WGS data are only correlated in the ALL 

LD dataset that incorporates both river and swamp buffalo (Supplementary Table S4.2). River 

buffalo MAF distributions are largely unaffected by LD pruning in the SNP array and remain 

uncorrelated with swamp buffalo MAF distributions until LD pruning is specifically conducted 

of swamp buffalo (SWAMP, SWACN_GUI, SWATH_THS; Supplementary Table S4.2). 

A similar pattern was found in heterozygosity results (Supplementary Tables S4.3, 

S4.4, S4.7, and S4.8). Both HO and HE remained high across all LD datasets and r2 thresholds 

for river buffalo in the SNP array dataset (HO: 0.373 – 0.472; HE: 0.352 – 0.444). In contrast HO 

and HE greatly fluctuated in the swamp buffalo SNP data (HO: 0.115 – 0.429; HE: 0.112 – 0.421) 

and both species in WGS data (River HO: 0.125 – 0.473; River HE: 0.112 – 0.416; Swamp HO: 

0.094 – 0.423; Swamp HE: 0.089 – 0.408) depending upon the LD dataset and r2 threshold. HO 

and HE are shown for both species across SNP array and WGS data for no LD pruning and r2 = 

0.2 for ALL, RIVER, and SWAMP LD datasets in Figures 4.6 and Figure 4.7, respectively. HO and 

HE was significantly greater (P < 0.05) in SNP array data for river buffaloes than WGS data for 

the majority of LD datasets bar lower r2 thresholds in RIVER, RIVIT_MED, and RIVPK_NIL LD 

datasets (Supplementary Tables S4.11). In SNP array data, HO and HE became significantly 

greater as r2 threshold decrease in RIVER, RIVIT_MED, and RIVPK_NIL LD datasets, while there 

was no effect in other datasets (Supplementary Tables S4.11). HO and HE for river buffalo 

became significantly greater in all LD datasets in WGS data as r2 decreases, as a wider 

spectrum of allele frequencies was included. This effect was far larger in ALL, RIVER, 

RIVIT_MED, and RIVPK_NIL, compared to SWAMP, SWATH_THS, and SWACN_GUI LD 

datasets. This trend was not consistent in the SNP array probably because the SNPs in the 

array are selected for alleles occurring at medium to high frequencies. Swamp buffalo HO and 

HE typically only increased when included in LD pruning in both SNP array and WGS data.  
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Figure 4.5: MAF frequency distributions across river (left) and swamp (right) buffalo for SNP 

array (red) and WGS (blue) data. First row features all SNPs with no LD pruning, second row 

features LD pruning across all buffalo individuals, third row features SNP obtained from LD 

pruning across river buffalo, and fourth row from LD pruning across swamp buffalo. Rows two 

to four are LD pruning with an r2 threshold of 0.2. 

HO and HE was significantly greater in river buffaloes than swamp buffaloes in SNP 

array data across most LD datasets and r2 thresholds (Supplementary Tables S4.3 & S4.4), 

although at low r2 thresholds in swamp pruned LD datasets, this difference rapidly decreased 

or was even overturned. For example, SWAMP r2 = 0.01: Swamp HO = 0.429, River HO = 0.396, 

while in comparison HO across the original non-pruned SNP dataset is 0.397 for river buffalo, 

and 0.118 for swamp buffalo. The same did not occur in WGS data where river buffalo HO and 
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HE was greater across all r2 thresholds in ALL, RIVER, RIVIT_MED, and RIVPK_NIL LD datasets, 

whereas swamp HO and HE was greater in SWAMP, SWATH_THS, and SWACN_GUI LD datasets 

(Supplementary Tables S4.7 & S4.8). Significant differences in HO and HE were found between 

SNP array and WGS data in swamp buffaloes except for when LD pruning was conducted 

solely on swamp buffalo (SWAMP, SWACN_GUI, SWATH_THS LD datasets) (Supplementary 

Tables S4.11). Swamp buffalo HO and HE was highest when river buffalo were excluded from 

LD pruning.  

 

Figure 4.6: Observed heterozygosity for river (left) and swamp (right) buffaloes in SNP array 

(red) and WGS (blue) data across ALL (NP & r2 = 0.2), RIVER, and SWAMP (both r2 = 0.2). River 

buffalo HO remains high across all SNP array datasets whilst swamp buffalo HO increases when 

incorporated in LD pruning. HO usually increases in the species the LD pruning is used on for 

WGS data.  
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Figure 4.7: Expected heterozygosity for river (left) and swamp (right) buffaloes in SNP array 

(red) and WGS (blue) data across ALL (NP & r2 = 0.2), RIVER, and SWAMP (both r2 = 0.2). River 

buffalo HE remains high across all SNP array datasets whilst swamp buffalo HE increases when 

incorporated in LD pruning. HE usually increases in the species the LD pruning is used on for 

WGS data. 

In contrast to the fluctuations found in HO and HE across data and species, F remained 

stable across datasets and r2 thresholds (Reduced plot in Figure 4.8). Inbreeding was 

effectively near absent across both river and swamp buffaloes across all data, datasets and r2 

thresholds, on average being found approximately 0 or negative. F was on average higher for 

both river and swamp buffalo in SNP array data compared to WGS data (Supplementary 

Tables S4.6 & S4.10). Sporadic significant differences were found in F when comparing river 

and swamp buffaloes in both SNP array and WGS data though the general trends were i) 

swamp buffalo featured a marginally higher F than river, ii) SNP array data featured higher F 

values than WGS data, and iii) F was largely unaffected by LD pruning and r2 thresholds 

(Supplementary Table S4.6, S4.10 & S4.11). 
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Figure 4.8: Inbreeding coefficient for river (left) and swamp (right) buffaloes in SNP array (red) 

and WGS (blue) data across ALL (NP & r2 = 0.2), RIVER, and SWAMP (both r2 = 0.2). F was 

largely unaffected by LD pruning, and most LD datasets for both river and swamp found that 

F ≤ 0, indicating an absence of inbreeding across both species. 

FST values were minimally affected within species, however interspecies comparisons 

fluctuated greatly (reduced plot Figure 4.9). No significant differences were found for river-

river comparisons between SNP array and WGS data, LD dataset or r2 thresholds 

(Supplementary Table S4.12). Swamp-swamp pairwise FST results were additionally 

unaffected by LD pruning though r2 thresholds of 0.01 and 0.05 did produce significant 

differences across LD datasets (Supplementary Table S4.13). River-swamp FST values were 

frequently found to be significantly lower in WGS data compared to SNP array data 

(Supplementary Table S4.14) for ALL, RIVER, RIVIT_MED, and RIVPK_NIL LD datasets. 

However, in SWAMP, SWACN_GUI, SWATH_THS LD datasets, FST for river-swamp 

comparisons were significantly greater in WGS data than SNP array data. Patterns of FST 

between data and LD datasets became uncorrelated as LD pruning specifically targeted 

species and at lower r2 thresholds. 
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Figure 4.9: Average pairwise FST values for river-river (left), river-swamp (central), and swamp-

swamp (right) buffaloes in SNP array (red) and WGS (blue) data across ALL (NP & r2 = 0.2), 

RIVER, and SWAMP (both r2 = 0.2). FST was unaffected by LD pruning for both within species 

pairwise comparisons however fluctuated greatly in river-swamp pairwise comparisons. 

4.4.3. Population Structure  

NMDS analysis evaluating differences in population structure was affected by data and 

LD pruning. In all data and datasets, component 1 (reduced plot in Figure 4.10) distinguished 

river and swamp buffalo populations with all pairwise comparisons between datasets being 

significantly correlated (3655 total pairwise comparisons covering all datasets, 100% 

significant correlations). Component 2 (reduced plot in Figure 4.10) distinguished European 

and non-European river buffalo across most SNP array datasets, and all WGS datasets 

including river buffalo in SNP selection. WGS datasets that conducted LD pruning on swamp 

buffalo led to component 2 differentiating between continental and Southeast Asian swamp 

buffalo populations. As a result, 63.9% of pairwise comparisons (covering all datasets) were 

significantly correlated for component 2. The majority of differences were led by WGS 

SWAMP, WGS SWACN_GUI, and WGS SWATH_THS. Low r2 thresholds (0.01, 0.05) for SNP 

array data for LD pruning on swamp buffalo also followed this pattern. Component 3 (reduced 

plot in Figure 4.11) again showed divisions between datasets capturing variation across river 

or swamp buffaloes. From this component onwards, the targeting of LD pruning dictated the 

population structuring. For datasets under river buffalo LD pruning, component 3 
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differentiated between Middle Eastern and non-Middle Eastern river buffalo. While in swamp 

buffalo LD pruning datasets, component 3 continued to divide swamp buffalo populations. 

Notably though, original non-LD pruned datasets in both SNP array and WGS datasets 

captured river buffalo variation across components 2 and 3, while conventional LD pruning 

captured swamp buffalo variation from component 3. The greater division between variation 

captured in component 3 meant that 38.7% of pairwise FST comparisons across all datasets 

significantly correlated with each other. No further components were analysed after 

component 3 due to small amounts of variation captured. 
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Figure 4.10: NMDS plot showing components 1 and 2 for all buffalo populations across SNP array (Top) and WGS (Bottom) data. LD datasets ALL 

(NP & r2 = 0.2), RIVER, and SWAMP (Both r2 = 0.2) are shown. Component 1 remains constant across all LD datasets, however component 2 

capture swamp buffalo variation when LD pruning targets swamp buffalo (bottom right). 
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Figure 4.11: NMDS plot showing components 1 and 3 for all buffalo populations across SNP array (Top) and WGS (Bottom) data. LD datasets ALL 

(NP & r2 = 0.2), RIVER, and SWAMP (Both r2 = 0.2) are shown. Component 3 captures river or swamp buffalo variation depending upon the LD 

pruning target. 
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4.4.4. Runs of Homozygosity 

ROHs (>1 Mb) were measured using three metrics: i) number of runs, ii) length of runs, 

and iii) ROHs per class. Across ALL, SWAMP, SWACN_GUI, and SWATH_THS, river buffalo 

possessed fewer ROHs in SNP array data compared to WGS (fewer in RIVER, RIVIT_MED, and 

RIVPK_NIL) (Supplementary Table S4.15). The number of ROHs was frequently higher in 

swamp buffalo SNP array data than WGS in all LD datasets (Supplementary Table S4.16). In 

WGS data, the species that LD pruning was conducted on, featured fewer number of ROHs 

(Figure 4.12). However, the same pattern is not repeated in SNP array data where swamp 

buffalo either possessed substantially more ROHs than river buffalo (e.g., ALL, RIVER, 

RIVIT_MED & RIVPK_NIL datasets) or produced a similar number of ROHs (e.g. SWAMP, 

SWACN_GUI & SWATH_THS). In the full dataset, 11.750 ROHs per individuals were found 

across river buffaloes compared to 19.973 in WGS, whilst the difference in swamp buffalo was 

far greater at 41.042 ROHs in SNP array compared to 26.674 in WGS data. 

 

Figure 4.12: Average number of ROHs across river (circle) and swamp (triangle) compared to 

number of markers present in each LD dataset. 

The greater number of ROHs detected, on average, translated into significantly longer 

ROHs in SNP array data in both river and swamp buffalo species for the majority of LD datasets 

compared to WGS data (Figure 4.13, Supplementary Tables S4.17-S4.19). ROHs were 

significantly shorter in swamp buffalo compared to river buffalo in both SNP array and WGS 
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data at higher r2 thresholds. The length of ROHs became similar in SNP array as LD pruning 

increasingly targeted swamp buffalo (SWAMP, SWACN_GUI, SWATH_THS). ROH lengths in 

WGS became similar as r2 thresholds decreased in all LD datasets. 

 

Figure 4.13: Average length of ROHs across river (left) and swamp (right) buffaloes for SNP 

array (red) and WGS (blue) data for non-LD pruned and r2 = 0.2 in ALL, RIVER, and SWAMP LD 

datasets. 

Shorter ROHs in WGS data resulted in an abundance of ROHs in smaller ROH class 

sizes. Few ROHs were detected in both river and swamp buffaloes in SNP array data for class 

1 (<1 per individual), while WGS data produced averages of 12.6 and 10.5 1-2Mb ROHs for 

river and swamp buffalo, respectively (Table 4.3; Supplementary Table S4.20). Shorter ROHs 

were largely undetectable upon LD pruning in both SNP array and WGS data. ROHs were 

numerous in Class 2 (2-4Mb) for both SNP array and WGS data in the absence of LD pruning. 

River buffalo SNP array data featured the lowest number of average class 2 ROHs at 5.4 per 

individual (compared to 11.9 in river WGS), while swamp SNP array data featured far more 

than WGS at 25.3 compared to 8 (Table 4.4; Supplementary Table S4.21). The number of ROHs 

in larger class sizes (3,4,5) declines rapidly in WGS data whereas SNP array data decreases to 

approximately 1 ROH per individual in classes 4 and 5. Swamp buffalo SNP array data is more 

greatly affected by LD pruning compared to river buffaloes. Number of ROHs per class for 

classes 3, 4, and 5 can be found in Supplementary Tables S4.22 – S4.24). 
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Table 4.3: Number of Class 1 sized ROHS (1-2Mb). Full table found in Supplementary Table 

S4.20. 

 

Table 4.4; Number of Class 2 sized ROHS (2-4Mb). Full table found in Supplementary Table 

S4.21. 

 

Table 4.5; Number of Class 3 sized ROHS (4-8Mb). Full table found in Supplementary Table 

S4.22. 

 

4.4.5. Demographic Modelling 

The outcome of LD pruning on previous statistics was observed in evolutionary 

modelling using ABC (Figure 4.14; Supplementary Figures S4.1 & S4.2). Standard deviation for 

river, swamp, and total HO, mean HO, total HO, and pairwise FST were retained for posterior 

estimation. Ne for river and swamp populations, time of divergence, and migration were most 

affected by LD pruning. River buffalo Ne increased from between 2.5-3.5 to 4.5-5 under LD 

pruning across all individuals in the SNP array and WGS data. The same trend was observed 

for Ne for swamp buffalo however LD pruning on swamp buffalo in the SNP array also 

produced an increase. Ancestral Ne sizes were largely unaffected by LD pruning, as was 

Data Species LD Pruned Dataset 
  ALL (NP) ALL (0.2) River Swamp 

SNP River 0.039 0.013 0.000 0.013 
 Swamp 0.268 0.000 0.056 0.014 
WGS River 12.605 0.000 0.057 0.023 
 Swamp 10.459 0.000 0.000 0.000 

Data Species LD Pruned Dataset 
  ALL (NP) ALL (0.2) River Swamp 

SNP River 5.395 0.237 0.092 0.158 
 Swamp 25.282 0.268 0.521 0.113 
WGS River 11.860 0.070 0.163 0.028 
 Swamp 8.000 0.000 0.351 0.000 

Data Species LD Pruned Dataset 
  ALL (NP) ALL (0.2) River Swamp 

SNP River 4.263 0.789 1.224 0.474 
 Swamp 12.986 0.465 7.563 0.437 
WGS River 2.093 2.442 2.116 4.977 
 Swamp 1.378 1.784 4.568 1.432 
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mutation rate. Time of divergence decreased from approximately 3.7 to below 3 when LD 

pruning across all individuals for SNP array and WGS, and across swamp buffalo in the SNP 

array. Although previous migration between domestic buffalo species seems unlikely to have 

occurred, increased migration rates were found in these datasets (Supplementary Figures 

S4.1 & S4.2).  
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Figure 4.14: Posterior distributions estimated in a no migration model between river and swamp buffalo for WGS and SNP data and LD datasets. 

The black line displays the prior distribution for each parameter. 
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4.5. Discussion 

SNP arrays provide accessibility to genomic resources in species that would otherwise 

be challenging and costly to obtain. However, minimizing ascertainment bias is important for 

ensuring accurate, and robust evolutionary studies within SNP arrays. The Axiom™ Buffalo 

Genotyping Array is the only affordable and reproducible source of genomic data for analysis 

of large-scale domestic buffalo populations (Iamartino et al., 2017). Furthermore, this array 

is commercially valuable, enabling the establishment of genomic selection programmes 

monitoring genetic health of buffaloes and identifying key genes for increased production 

yields or greater adaptability (Venturini et al., 2014; Mokhber, 2017; Colli, Milanesi, Vajana, 

et al., 2018; Du et al., 2019; Lázaro et al., 2021; Macciotta et al., 2021; Nascimento et al., 

2021; Noce et al., 2021; Rahimmadar et al., 2021; S. Liu et al., 2022). However, as SNP markers 

selected for the buffalo array were chosen on polymorphic states solely within river buffalo 

species, this creates two forms of ascertainment bias, as i) SNPs do not represent natural 

standing genetic variation, and ii) swamp diversity will be underrepresented in comparison to 

river buffalo (Iamartino et al., 2017; Colli, Milanesi, Vajana, et al., 2018). Though 

ascertainment bias could be overcome by other sequencing technologies, WGS remains costly 

for large scale analysis and methods such as ddRAD-seq tends to result in losses in the number 

of SNP markers in both pre- and post-sequencing procedures (Cumer et al., 2021; Ros-

Freixedes et al., 2022). This chapter has studied the extent of the bias found within the 

Axiom™ Buffalo Genotyping Array and provides advice of how to manage this in analysis. 

Genetic variation is usually observed in the form of an abundance of low frequency 

that are population or geographically unique with far fewer high frequency alleles that are 

common across populations or species (Nielsen, 2004; Albrechtsen, Nielsen and Nielsen, 

2010). This natural order of genetic variation was observed in the WGS datasets sampled here 

for both river and swamp buffaloes as expected (Section 4.4.2, Figure 4.5). In comparison with 

the two species for SNP array data, a very different result was found. Swamp buffalo SNP 

array data significantly reflected that of WGS data in its entirety, showing similar patterns of 

MAF distributions across all datasets. Consequently, river buffalo SNP data revealed the 

opposite with numerous high frequency alleles, and few low frequency alleles. Fewer rare 

alleles occur in SNP arrays as SNP discovery is based on a small subset of individuals and 

therefore loci where rare alleles are found in the wider population will be perceived as 
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monomorphic, and thus avoided in SNP selection (Geibel et al., 2021). This pattern of MAF 

distributions is common across SNP platforms for various species and is the main form of 

ascertainment bias in arrays (Nielsen, 2004; Clark et al., 2005; Lachance and Tishkoff, 2013; 

Malomane et al., 2018; Geibel et al., 2021; Olschewsky and Hinrichs, 2021). Therefore, river 

buffalo SNP array data was largely found to not significantly correlate with WGS data nor 

swamp buffalo data (Supplementary Table S4.2). This was until selection of higher allelic 

frequencies occurred in WGS and swamp buffalo through lower r2 thresholds or targeted LD 

pruning.  

Interestingly, when WGS data was LD pruned specifically for either river or swamp 

buffalo, only high frequency alleles found in the targeted species were retained. Lower 

frequency or monomorphic SNPs that are highly correlated with each are more likely to be 

removed (VanLiere and Rosenberg, 2008; Malomane et al., 2018). However, the same did not 

occur for the other species, suggesting that retained SNPs are unique to the target species. 

This result indicated that river and swamp buffalo are considerably different genetically and 

that variation is not consistent between the two species. This pattern was not replicated 

across the SNP array data as river buffalo MAF distributions remained consistent across all 

datasets, and swamp buffalo MAF distributions only shifted towards high frequencies when 

LD pruning is targeted. These patterns displayed the bias between river and swamp buffalo in 

the array as the markers almost represent a near random selection for swamp buffalo, aside 

from exclusion of unique swamp variation. Meanwhile genetic variation in river buffalo is 

unlikely to be affected by data processing techniques. This observation may not be as harsh 

in other livestock SNP arrays as greater diversities of breeds are accounted for in SNP 

discovery (Vaysse et al., 2011; Ahmad et al., 2020).  

The distribution of allele frequencies shown above translated into profound effects on 

diversity estimates, notably heterozygosity measured here (Section 4.4.2). HO and HE 

produced the same results. When LD pruning included a species, both HO and HE increased, 

further increasing as r2 thresholds lowered (Supplementary Tables S4.3, S4.4, S4.7 & S4.8). 

Removal of lower frequency alleles will result in higher heterozygosity values. When LD 

pruning was carried out in the opposing species, HO and HE remained fairly consistent with 

few significant differences between r2 thresholds. Without LD pruning, there was a large 

significant difference between river and swamp buffalo HO and HE. Average HO in river buffalo 
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was high at 0.397 +- 0.048 (He = 0.373 +- 0.022) while swamp HO is 0.118 +- 0.011 (He = 0.114 

+- 0.004). Genetic diversity metrics are frequently overestimated in SNP arrays therefore the 

outcome of swamp buffalo is likely similar to the real value, while the biased river diversity 

results is likely overestimated (Nielsen, 2004; Geibel et al., 2021). This difference only 

increased when LD pruning is targeted at river buffaloes.  

The differences in HO and HE can be reduced or even removed when LD pruning 

targeted swamp buffalo due to the greater emphasis on swamp diversity. When LD pruning 

was undertaken on both species, river buffalo HO and HE remained higher than swamp 

buffaloes, but this difference became non-significant from an r2 of 0.1 or less. When LD 

pruning focused on swamp buffalo, this difference was overcome at low r2 thresholds as 

significantly higher HO and HE estimates in swamp buffalo were found. For example, at r2 = 

0.01, swamp HO was 0.421 +- 0.016 (in SWAMP LD dataset) while river HO was 0.373 +- 0.021. 

Although the difference between river and swamp diversity estimates can be removed, it is 

important to question whether this is correct. Though the difference between river and 

swamp diversity is overestimated in the SNP array data, it does appear that river buffalo do 

possess higher levels of genetic diversity across WGS studies (Luo et al., 2020; Sun, Shen, et 

al., 2020). Therefore, any data handling or statistical analysis in the SNP array should probably 

be done with caution to ensure that results are correct, and that misinterpretations generated 

from the influence of ascertainment bias are avoided. 

Similar observations were found in WGS HO and HE results except for that river buffalo 

results now fluctuated. When LD pruning was conducted across both species, river buffalo HO 

and HE consistently remained significantly higher than swamp buffalo across most r2 

thresholds. When LD pruning focused on swamp buffalo, river buffalo HO and HE dropped to 

between 0.1 – 0.2 similar to that of swamp buffalo in the SNP array data. The lack of shared 

SNP variation between river and swamp buffaloes is a common theme across WGS results 

that is not reflected in SNP array data. The retention of high HO and HE values in river buffalo 

SNP array data when LD pruning on swamp buffalo occurred indicates that the retained SNPs 

are frequent in both species despite divergence. Therefore, these SNPs may be shared 

ancestral variation and diversity may have been kept high through balancing selection, 

preventing processes such as genetic drift diverging the markers in the absence of migration 

between species (Asthana, Schmidt and Sunyaev, 2005; Fijarczyk and Babik, 2015; Gao, 
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Przeworski and Sella, 2015). It is also noteworthy that at low r2 thresholds, the datasets 

consisted of a small number of markers (e.g. < 1000 SNPs), therefore results are at greater 

risk of showing more extremes values (Benjelloun et al., 2019). 

While HO and HE are greatly affected by SNP selection, other statistics are more robust 

to ascertainment bias. The inbreeding coefficient, F, evaluates the difference between HO and 

HE, therefore is only dependent upon what is expected of that dataset, and thus decoupled 

from differences in SNP selection. As a result, the different datasets and r2 thresholds had 

little difference, and significant results were unlikely overly meaningful as majority of F results 

were negative indicating an absence of inbreeding within buffaloes (Colli et al., 2018). F values 

for river buffalo were typically lower in both SNP array and WGS data despite any LD pruning 

and often no significant differences were found between species or between data within 

species. A caveat of the calculation of F here is that it is calculated per population. In this case, 

swamp F would likely be far higher as monomorphic SNPs would be included, perceiving 

swamp buffalo as more inbred, a result that appears false.  

The correct estimation of statistics such as HO and HE may not be as important in 

biased data if patterns of genetic variation remain the same. I.e., there is acknowledgement 

that river buffalo HO is inflated, however the important message is that river buffaloes feature 

greater levels of diversity compared to swamp buffalo. Patterns of genetic variation were 

further explored using FST and NMDS in population structure analysis. FST results found here 

revealed that within species comparisons were unaffected by LD pruning or array/WGS data. 

FST is a product of variation between populations, therefore the similarity of WGS and SNP 

array FST values indicates that ascertainment bias is not affecting within species comparisons 

(Albrechtsen, Nielsen and Nielsen, 2010). However, between river and swamp populations, 

FST was drastically affected by LD pruning. FST was in excess of 0.3 in both WGS and SNP array 

data without any LD pruning and was maintained at this level when LD pruning focused solely 

on river buffalo (Section 4.4.2). The inclusion of swamp buffalo within LD pruning led to a 

reduction in FST values in the SNP array (Supplementary Table S4.14). Within WGS data, FST 

values would reduce until r2 = 0.2, and then begin increasing again. Selection of common, 

higher frequency SNPs by LD pruning across river and swamp populations leads to less 

variation across the dataset, and lower values of FST (Albrechtsen, Nielsen and Nielsen, 2010). 

However, due to the dissimilarity between river and swamp buffalo, inflated estimates of FST 
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at high r2 thresholds were observed. This result was likely due to drift on older SNPs, while 

selection of those SNPs shared across both species led to underestimated FST values at lower 

r2 thresholds compared to WGS data, making the two species appear more similar 

(Albrechtsen, Nielsen and Nielsen, 2010; Lachance and Tishkoff, 2013). Inconsistencies in FST 

under LD pruning between distantly related populations was also identified in Malomane et 

al, (2018). 

While overall FST values may change, patterns of variation also changed between 

datasets. Correlation analysis revealed that FST values across population comparisons became 

uncorrelated as LD pruning focused on swamp buffalo, therefore indicating that alternative 

LD pruning, and attempts to mitigate ascertainment bias, can impact overall patterns of 

variation and therefore impact interpretations. This is evident from NMDS analysis. From 

component 2 onwards, different LD pruned datasets captured different proportions of 

variation between the species (Figures 4.10 & 4.11). Focus on river buffalo populations 

distinguished between river populations initially, while the opposite largely occurred for 

swamp buffalo. The original datasets or LD pruning on both species appeared to show the 

same results. PCA-based methods are considered to be resilient against ascertainment bias 

between SNP array and WGS data (McTavish and Hillis, 2015). 

Runs of homozygosity provided an alternative statistic to assess ascertainment bias as 

this is a statistic calculated per individual, rather than per population. Although as the number 

of markers decreased and allele frequencies increased down r2 thresholds, detectability of 

ROHs became increasingly difficult, this method provided the means to assess captured 

variation across the LD datasets (Hillestad et al., 2017). The number of ROHs captured in river 

and swamp buffalo in the ALL dataset in WGS remained fairly similar for each with river 

buffalo (~5 ROHs more per individual at an r2 threshold >= 0.5). SNP array data goes against 

this as swamp buffalo possessed approximately 2-4 times as many ROHs as river buffalo, 

evidencing the disparity of low frequency/monomorphic markers in SNP array data between 

species. Furthermore, WGS data revealed a reciprocal pattern as LD pruning is focused on 

each species. River buffalo possessed more ROHs in swamp pruned datasets and vice versa, 

further displaying the dissimilarity is SNPs in WGS data. Meanwhile in SNP array data, swamp 

buffalo ROHs were either higher or equal to river buffaloes. This supported indications that 
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when LD pruning is carried out on swamp buffalo, shared diversity between species was 

retained and therefore similar levels of ROHs were captured in each species.  

Increased number of ROHs did not translate into longer ROHs in swamp buffalo SNP 

array data. Instead, river buffalo ROHs were often significantly greater than swamp buffalo 

ROHs, however this disparity was removed at lower r2 thresholds. Significantly shorter ROHs 

were found in both buffalo species compared to SNP array data. This may be due to the 

increased number of SNPs present in WGS datasets capturing genetic diversity that is not 

present in the SNP array data. WGS data has been found to detect shorter ROHs than SNP 

array due to the presence of heterozygous regions missed in lower density SNP arrays 

(Szmatoła et al., 2019). 

ABC offers a flexible and efficient mechanism of studying evolutionary histories of 

species. However, its use of summary statistics may leave it vulnerable to the effects of 

ascertainment bias. Within this study, posterior estimation used heterozygosity and FST as 

summary statistics. As observed above, these were affected by ascertainment bias within the 

SNP array and knock on effects were observed in ABC modelling. Posteriors were largely 

similar between SNP array and WGS data, however LD pruning across all buffaloes resulted in 

shifts in river and swamp Ne, time of divergence, and migration. Increases in river and swamp 

Ne were observed, while time of divergence decreased (Figure 4.14, Supplementary Figures 

S4.1 & S4.2). Greater selection of higher frequency SNPs leads to increases in heterozygosity 

and therefore overestimation of effective population sizes, while the absence of rare alleles 

leads to lower FST values and more recent times of divergence (Nielsen, 2004). Migration rate 

consistently tended towards the lower boundary of the parameter, though the addition LD 

pruning across all individuals had some effect. The retention of ancestral SNPs makes the two 

species appear as though gene flow has occurred. However, these SNPs were retained by both 

species upon divergence (Wakeley et al., 2001; Nielsen, 2004). Greater selection of SNPs 

shared across river and swamp buffalo would play into this overestimation. The only other LD 

dataset to share the results with ALL datasets is SWAMP in the SNP array data, therefore 

emphasising the impact of ancestrally shared SNPs or those under balancing selection on the 

results. This outcome is problematic as although these models are the most simplified for 

buffaloes, posterior estimates would go against current literature of buffalo domestication.  
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It is increasingly clear that river and swamp buffalo are separate species with an older 

divergence than expected (Wang et al., 2017; Luo et al., 2020; Sun, Shen, et al., 2020; Zhang, 

Colli and Barker, 2020; Curaudeau, Rozzi and Hassanin, 2021). Posterior estimates of < 1,000 

generations (~6,000 years) for divergence time as seen in some LD datasets would suggest a 

post-domestication divergence which is unlikely. The lack of shared mitochondrial and Y-

chromosome haplotypes, along with nuclear FST estimates greater than approximately 0.3 

suggest that river and swamp are distinct species with little presence migration (Wang et al., 

2017; Colli, Milanesi, Vajana, et al., 2018; Luo et al., 2020; Sun, Shen, et al., 2020; Zhang, Colli 

and Barker, 2020; Curaudeau, Rozzi and Hassanin, 2021). Previous studies have identified 

mechanisms of reducing impact of ascertainment bias on ABC models. Quinto-Cortes et al, 

(2018) biased their coalescent simulations to match that of SNP array dataset by providing 

quality control filters to simulated genetic variation.  

4.6. Conclusion 

This study evaluated ascertainment bias found within the Axiom™ Buffalo Genotyping 

Array. Considerable differences between raw values were found across statistics between 

SNP array and WGS data for river buffaloes which is explained by the choice of high frequency 

markers found in SNP arrays. Swamp buffalo results for SNP array data were underestimated 

in comparison of river buffalo SNP array data as a result of ascertainment bias derived from 

array design. Swamp buffalo results for the SNP array frequently replicated WGS data. This 

result indicates that the SNPs in the array are reflective of natural genetic variation for swamp 

buffalo as the divergence between river and swamp buffalo is great enough that the 

specifically selected polymorphic SNPs for river buffalo appear to mimic a random subset in 

swamp buffalo. Reciprocal patterns of genetic variation captured by LD pruning that targeted 

each species in WGS LD datasets further showed that river and swamp buffalo are genetically 

dissimilar. This pattern was not shared in SNP array data as river buffalo variation was largely 

unaffected by LD pruning. Within the SNP array data, the bias between river and swamp 

buffalo could be reduced by LD pruning, although extensive pruning altered patterns of 

variation that is likely not representative across buffaloes. While LD pruning on WGS data 

appears to capture unique variation in each species, increased selection of higher frequency 

markers in SNP array data likely retains alleles that are polymorphic in both species and thus 

under balancing selection. The SNP array is unsuitable for analysis in swamp buffalo due to 
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the extent of differentiation between river and swamp buffalo. It would therefore be 

recommended for future studies that evolutionary studies comparing river and swamp 

buffalo should utilise less biased methods such as ddRAD sequencing to capture variation 

across both species. The lack of polymorphic SNPs in the array for swamp buffalo makes the 

array unsuitable for genomic selection programmes, therefore a second array either unique 

to swamp buffalo or containing both species would be needed. 
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Chapter Five 

Evolutionary Modelling of Domestic Water 

Buffaloes using Approximate Bayesian 

Computation 

 

5.1. Abstract 

Modelling evolutionary histories of species can provide valuable knowledge on how 

populations have changed throughout time. The knock-on effect presents opportunities to 

infer impacts from external factors such as fluctuations in environmental conditions and 

human societies. Furthermore, these models provide a neutral comparison that may aid 

future studies in identifying important genomic regions under selection. This chapter 

quantified and modelled genetic variation across global domestic water buffalo populations 

of both river and swamp species. Genetic diversity was found to be highest in India, the 

putative domestication centre for river buffalo. The assemblage of an extensive European 

dataset here revealed greater variability between Eastern and Western populations than 

found in Colli et al., (2018). Evolutionary modelling results indicated that divergence times of 

river buffalo matched migration of humans out of India. Translocation of river buffaloes from 

the India to the Middle East may have begun early in the common era with the settlement of 

‘al-Zuṭṭ’ across marginal wetlands of the Middle East. An influx of new genetic diversity likely 

continued from India to the Middle East maintaining genetic similarity between these regions 

as observed by a more recent divergence between Indian and Middle Eastern populations. 

The greater divergence found in European buffaloes compared to non-European populations 

suggests isolation of Mediterranean populations. Despite river and swamp both likely deriving 

from Bubalus arnee, modelling results indicate that their wild progenitors diverged in the 

Pleistocene. This result supports that river and swamp buffalo were independently 

domesticated. Results revealing loci under balancing selection found genes associated with 

survivability and cell viability. The lack of genetic divergence at key biological pathways may 
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be the reason why river and swamp buffalo are able to hybridise and successfully produce 

fertile offspring. Regions of divergence between river and swamp genomes were found to be 

linked with livestock function. Results of this chapter found that genetic variation across river 

and swamp buffaloes has been greatly shaped by humans. 
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5.2. Introduction 

The subtribe Bubalina, comprising of all buffalo species, arose in the Late Miocene 

following rapid diversification of Bovini (Hassanin and Ropiquet, 2004; MacEachern, McEwan 

and Goddard, 2009; Hassanin et al., 2012; Hassanin, 2014). African and Asian groups can be 

found within Bubalina that are denoted by the genera Syncerus and Bubalus, respectively. 

The divergence between these groups dates back to between 5 – 8.5 Ma, although some 

estimates indicate divergence times as recent as 2.6 Ma (Hassanin and Ropiquet, 2004; 

MacEachern, McEwan and Goddard, 2009; Hassanin et al., 2012; Hassanin, 2014; Curaudeau, 

Rozzi and Hassanin, 2021). It appears that the transition from tropical woodland to tropical 

grasslands in Arabia between 11.6 – 7.25 Ma facilitated the spread of Syncerus and Bubalus 

predecessor, perhaps Pachyportax, from Southern Asia into Africa (Pound et al., 2012; 

Hassanin, 2014). Precise splitting of African and Asian lineages is not clear, though 

desertification of Arabia post 7 Ma may be the underlying cause (Pound et al., 2012; Hassanin, 

2014). Paleontological data finds separation within Bubalina during the Pliocene. In Africa, 

Ugandax found in eastern and southern Africa between 2 – 5.7 Ma and is thought to have 

given rise to Syncerus (Hassanin 2014). Meanwhile, Proamphibos (2.2 – 3.5 Ma), and later 

Hemibos in the Early Pleistocene, are potential predecessors to the Bubalus lineage across 

Asia (Hassanin 2014). 

The dynamic Pleistocene offered a plethora of opportunities for Bubalus. Southern 

Asia presented a stronghold for the group with fossil records showing species ranging into 

Southeast Asia, Northeastern China, and Europe. Five species of Hemibos have been identified 

across Eurasia all dating to the Early and Middle Pleistocene. Three (H. acuticornis, H. 

triquetricornis, and H. antelopinus) of these have been found in Upper Siwaliks deposits of 

the Pinjor Formation, while H. gracilis was found in Longdan, China, and H. galerianus in Spain 

and Italy (Martıńez-Navarro and Palombo, 2004; Wang, 2006; Martinez-Navarro & Palombo, 

2007; Martínez-Navarro et al., 2011; Siddiq et al., 2019). Transitioning into the Middle-Upper 

Pleistocene, an emergence of Bubalus species is observed. Fossils of Bubalis murrensis, the 

rare European water buffalo, have been found across continental Europe (Koenigswald et al., 

2019). This species appeared to have struggled with periods of cold temperatures, and likely 

fluctuated between Northern and Southern latitudes in sync with glaciations (Koenigswald et 
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al., 2019; Vislobokova et al., 2021). The most recently dated fossil specimen corresponds to 

12.7 kya, prior to the Younger Dryas (Vislobokova, Tarasenko and Lopatin, 2020; Vislobokova 

et al., 2021). In China, a series of shorthorn buffalo persisted in Northeastern regions through 

the Pleistocene and into the Holocene. Cladistic analysis suggests that as many as six Bubalus 

species may have been present in China with the oldest species, B. brevicornis, found in 

Queque cave deposits dating to 1 Ma (Dong et al., 2014). The most well-known shorthorn 

species, B. mephistopheles, was briefly touted as a potential progenitor to domestic swamp 

buffalo before mitochondrial analysis showed otherwise (Yang et al., 2008). This species 

survived into the Holocene, and remains from human hunting can be dated up until 3.6 kya 

(Yang et al., 2008). The most important Pleistocene Bubalus species are likely that of B. 

paleoindicus and B. paleokerbau whose distributions likely shaped the current extant species.  

Four wild extant species of Bubalus can be found in Southeast Asia. Two species of 

anoa (Bubalus depressicornis – the lowland anoa, Bubalus quarlesi – the mountain anoa) are 

both found in tropical rainforests on Sulawesi and Buton Island. The third species, the 

tamaraw (Bubalus mindorensis), persists on Mindoro Island of the Philippines. How these 

three species got to occupy these islands is not fully clear. No wild relatives currently live on 

nearby islands such as Borneo, Java, and Sumatra. In the case of Borneo, no Bubalus fossils 

have been found, as opposed to fossils of B. paleokerbau on Sumatra and Java (Rozzi, 2017). 

In the case of anoa, genetic studies suggest a divergence time of anoa and water buffalo of 

between 0.5 – 3 Ma depending on the use of mitochondrial or nuclear DNA (Priyono et al., 

2020; Curaudeau, Rozzi and Hassanin, 2021; Schreiber and Seibold, no date). The current 

accepted divergence hypothesis suggests migration of B. paleokerbau during times of low sea 

levels from continental Southeast Asia through Sumatra and into Java, before reaching 

Sulawesi (Rozzi, 2017). Changes in sea level over the Pleistocene caused the fragmentation of 

Sulawesi into smaller islands, possibly facilitating the evolution of two distinct anoa species 

as seen in other species on Sulawesi (Burton, Hedges and Mustari, 2005). The tamaraw 

provides a more difficult case to explain due to the lack of fossil records hinting at a dispersal 

route through Southeast Asia. However, the tamaraw may represent an alternative dispersal 

to anoa as another Bubalus species (the extinct B. cebuensis) was found on the neighboring 

island of Cebu, and a third much larger species more comparable to B. arnee was identified 

on the island of Luzon dating back to 65 kya (Croft et al., 2006; Amano et al., 2013).  
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The Asian wild water buffalo (B. arnee) is the fourth extant species. Less than 5,000 

individuals remain across wetlands in Northern India and remnant populations in continental 

Southeast Asia (Kaul et al, 2019). A recent emergence of B. arnee from B. palaoindicus has 

been hypothesized, with B. palaeindicus fossils having been found in central India dating to 

the Late Pleistocene (Badam, Sathe and Kajale, 1996). B. palaeindicus remains have been 

found alongside extinct megafauna such as the Indian hippopotamus indicating a previous 

wetter landscape (Badam, Sathe and Kajale, 1996). Aridification of the landscape may have 

pushed Bubalus spp northwards to where B. arnee is found today, consistent with claims that 

B. arnee has never been further south in India than the Godavari River (Zhang, Colli and 

Barker, 2020). The Asian wild water buffalo is the only buffalo species to have been 

domesticated, having given rise to two domestic species, the riverine (Bubalus bubalis 

bubalus) and the swamp (Bubalus bubalis carabanensis) buffalo (Zhang, Colli and Barker, 

2020). River buffalo predominantly exist across the Indian subcontinent whilst swamp buffalo 

can be found in China and Southeast Asia. Initial work focused on identification of 

domestication origins of river and swamp species, deducing whether one or two 

domestication events had occurred and should the two forms of domestic species be 

considered the same species (Kumar et al., 2006; Satish Kumar et al., 2007; S. Kumar et al., 

2007; Yang et al., 2008; Zhang et al., 2011, 2016; Yue et al., 2013; Wang et al., 2017).  

Mitochondrial analysis shows clear genetic distinctions between river and swamp 

buffaloes. Estimates of divergence from mitochondrial DNA between domestic buffaloes 

range between 0.1 – 2 Ma (Tanaka et al., 1996; Lau et al., 1998; Wang et al., 2017). However, 

the generation of additional nuclear markers presented new evidence with microsatellite and 

RFLP data supporting a Pleistocene divergence although estimate were more recent at 10,000 

– 15,000 ya (Barker et al., 1997). NGS data has since suggested at an intermediate divergence 

between mitochondrial and microsatellite data between 0.2 and 0.5 Ma (Luo et al., 2020; Sun, 

Shen, et al., 2020; Curaudeau, Rozzi and Hassanin, 2021). Supporting genetic data, river and 

swamp buffalo feature different chromosomal numbers at 24 and 23 pairs, respectively 

(Ulbrich & Fischer 1967; Fischer & Ulbrich 1968; Iannuzzi 1998). Swamp buffalo feature a 

chromosomal fusion between what are chromosomes 2 and 3 in the river buffalo (Ulbrich & 

Fischer 1967; Fischer & Ulbrich 1968; Iannuzzi 1998). Domestic buffaloes are also 

morphologically distinct. River buffaloes feature large bodies with a near black coloration all 
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over, along with small, curled horns while the swamp buffaloes feature white legs and 

chevron under neck with large horns like its wild ancestor, although with a smaller stature 

(Zhang, Colli and Barker, 2020).  

Evidence overwhelmingly shows that river and swamp buffaloes are different species 

and genetically distinct (Barker et al., 1997; S. Kumar et al., 2007; Yindee et al., 2010; Zhang 

et al., 2011; Wang et al., 2017; Luo et al., 2020; Sun, Shen, et al., 2020; Zhang, Colli and Barker, 

2020; Curaudeau, Rozzi and Hassanin, 2021). However, both species are fully capable of 

interbreeding to produce fertile offspring which will remain possible until biological processes 

between species become incompatible (Ottenburghs et al., 2020). (Zhang, Colli and Barker, 

2020). Our understanding of the evolutionary relationship between river and swamp buffalo 

is unclear with a large variation in estimations. Furthermore, how domestic buffaloes have 

diverged but remain capable of hybridizing has not been investigated. Previous studies have 

inferred the demographic history of river and swamp buffaloes, however this is yet to have 

been explicitly modelled(Mintoo et al., 2019; Luo et al., 2020; Sun, Shen, et al., 2020). 

This chapter quantifies genetic variation across river and swamp buffalo populations 

and models their evolutionary history, estimating changes in Ne, divergence times and 

presence of gene flow post-split. The models further investigate recent divergence between 

river breeds through modelling the number of dispersals out of India. Evolutionary modelling 

is conducted using Approximate Bayesian Computation (ABC) as this enables efficient testing 

of multiple specific scenarios (Csilléry et al., 2010). Following modelling, loci under divergent 

or balancing selection are tested for to identify genes associated with behind the genetic 

divergence of domestic buffalo species. 

5.3. Materials and Methods 

5.3.1. Sample Collection & Data Generation 

The full buffalo genotyping dataset was used here consisting of UK buffalo (Chapter 

Two), Indian murrah (Chapter Three), European populations from Noce et al, (2021), and 

global population data from Colli et al, (2018). Full details of population used can be found in 

Table 5.1 below. Two populations (RIVPK_AZK & SWACN_WEN from Colli et al., 2018) were 

excluded from analysis due to small sample sizes (both n=3). Dataset generation was the same 

as Chapter Two and Chapter Three, giving a dataset of 821 individuals covering 40,695 SNPs 
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from the Axiom™ Buffalo Genotyping Array. Due to the ascertainment bias found within the 

array between river and swamp buffalo, polymorphic markers (MAF > 0.05) found across 

swamp buffalo were retained for analysis. LD pruning was not used to generate a dataset due 

to potentially emphasising areas of balancing selection that may make river and swamp 

buffalo appear evolutionary closer (Chapter Four). 

5.3.2. Genetic Diversities & Population Structure 

The observed (HO) and expected (HE) heterozygosity (--hardy), and inbreeding 

coefficient (F) (--het) were calculated for each breed in PLINK v1.9 (Chang et al, 2015). 

Summaries (e.g., mean) and analysis of genetic diversities was completed in R v4.0.0 using 

custom R scripts (R Core Team, 2018). An ANOVA was used to test for significant differences 

in heterozygosity across populations. Following Shapiro-Wilkes tests of normality, a Welsh’s 

t-test was used to test for significant differences between HO and HE within each population. 

Population structure across the global dataset buffaloes was assessed using several 

methods. Pairwise population FST was calculated using Arlequin v3.5.2.2 (Excoffier and 

Lischer, 2010), and summarised with a neighbour-net network created in SplitsTree v4.14.4 

(Huson and Bryant, 2006). Major axes of variation were generated via a multidimensional 

scaling (MDS) analysis using raw Hamming’s distance to reduce the dataset to 20 dimensions 

via PLINK, observing major divisions in populations. Genetic clustering of individuals was 

achieved using ADMIXTURE v1.3.0 (Alexander, Novembre and Lange, 2009). This tests for the 

ideal number of unique ancestral genetic clusters (K) across the dataset. Values of K from 1 

to 40 were tested along with a cross-validation method implemented within ADMIXTURE that 

repeated each value of K five times to identify the most efficient value of K that explained the 

data. An AMOVA was used to further understand the distribution of variation across the 

dataset in Arlequin. Treemix was used to detect the presence of gene flow between 

populations by incrementally adding migration events between populations (Pickrell and 

Pritchard, 2012). Like ADMIXTURE, this tests between a defined number of migrations (K) 

however, the ideal value of K was selected when variation explained across the dataset 

exceeded 99.8% in accordance with Pickrell and Pritchard (2012). Values of K were tested 

from 1 to 15. 
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5.3.3. Approximate Bayesian Computation 

Evolutionary modelling was conducted using Approximate Bayesian Computation 

(ABC) pipeline implemented in ABCtoolbox (Wegmann et al., 2010). A series of models were 

defined depicting a split between river and swamp buffalo followed by two further splits 

within river buffalo (Figure 5.1). These additional splits represent dispersal of river buffalo out 

of India into the Middle East and Europe. Parameters were established to randomly sample 

values for divergence times, effective population sizes, and migration rates. Details of these 

can be found in Supplementary Table S5.1. FastSimCoal v2.6 was used to generate backward 

coalescent simulations (Excoffier et al., 2021). 1,000,000 simulations were generated for each 

scenario simulating 2,500 unlinked SNPs, and summary statistics (observed data results across 

summary statistics found in Supplementary Table S5.2) were calculated in arlsumstat v3.5.2.2 

(Excoffier and Lischer, 2010). The closest 1,000 simulations by distance to the observed data 

were retained to calculate posterior distributions. Generation of posterior distributions was 

completed using ABCestimator within ABCtoolbox. Highly linked summary statistics identified 

by Spearman’s ranked correlation including Bonferroni’s correction for multiple comparisons 

were removed. Model fit was assessed by ensuring observed summary statistics fell within 

the 95% quantiles of the simulated distribution for each statistic. A GLM computing the 

likelihood of observed data compared to likelihoods of each retained simulation was carried 

out to further assess model fit (Leuenberger and Wegmann, 2010). A posterior probability p-

value was generated that represented the proportion of retained simulations with an equal 

or smaller likelihood than the observed data. Model discrimination was assessed by 

calculating the Bayes Factor (BF) by taking the quotient marginal densities of two models. A 

BF greater than 3 suggests strong support of the first model.  
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Figure 5.1: Model scenarios tested in ABC analysis. A. Model 1 shows two river (blue) buffalo 

dispersals out of India whereas B. Model 5 features one dispersal out of India followed by a 

split in this population as buffaloes reach Europe. Both models additionally estimate the 

divergence time between river and swamp buffaloes. Subsequent models tested presence of 

migration between river and swamp species, and from India to M. East post-split as indicated 

by the arrows. 

5.3.4. Diverging Loci & Balancing Selection 

River and swamp buffalo are genetically distinct, however are successfully able to 

hybridise to produce fertile offspring (ref). Loci under selection were identified between river 

and swamp buffalo using neutrality tests within Arlequin v3.5.2.2, via the command line 

executable arlsumstat (Excoffier and Lischer, 2010). The identification of diverging loci and 

loci that remain polymorphic in both species (balancing selection) was achieved by comparing 

FST and HO values in the observed data against 1,000 bootstrap replicates of 50 individuals 

randomly sampled for river (25 samples) and swamp (25 samples) data. This enabled 



Chapter Five 
Evolutionary Modelling of Domestic Water Buffaloes using Approximate Bayesian Computation 
 

156 
 

detection of loci persistently under selection despite any underlying population within each 

species. HO and FST of each locus were compared to coalescent simulations generated using a 

hierarchical island model to obtain a p-value. For each of the 1,000 bootstrap replicates, 

20,000 coalescent simulations were generated to estimate p-values, simulating 2 groups of 

25 demes each to match that of the observed data. No limits were set for expected 

heterozygosity or derived allele frequency for simulations. Proportion of differences was 

selected as the distance method for AMOVA computations. Average median p-value across 

all replicates was calculated for each locus and loci with a p-value <0.05 were deemed to be 

under selection. 

5.4. Results 

5.4.1. Genetic Diversity  

Values of HO, HE, and F can be found in Table 5.1. HO ranged from 0.244 (SWA_ID_NUT) 

to 0.449 (RV_PH_IMR). River buffaloes featured an average HO of 0.387 (±0.029) that was 

significantly greater than swamp (HO = 0.301 ±0.042; W = 380, p < 0.0001). River HO ranged 

from 0.338 to 0.449 with those populations originating from India featuring the highest 

diversity closely followed by Middle Eastern populations. Populations of Mediterranean 

buffaloes originating from Europe typically possessed the lowest HO of river buffaloes. Swamp 

buffalo HO ranged from 0.244 (SWA_ID_NUT) to 0.430 (SWA_PH_ADM). Again, populations 

surrounding its domestication origin (e.g. SWA_TH_THS) featured higher HO whereas those 

further afield (e.g. SWA_ID_NUT) featured lower HO. HO significantly differed across all (χ = 

41195, df = 41, p < 0.0001), river (χ = 7425, df = 26, p < 0.0001), and swamp (χ = 8080, df = 14, 

p < 0.0001) populations. Similar patterns of variation were found across HE that ranges from 

0.236 (SWA_ID_NUT) to 0.417 (RV_IND). River buffalo HE ranged from 0.298 (RV_MZ) to 0.417 

(RV_IND), while swamp ranged from 0.236 (SWA_ID_NUT) to 0.397 (SWA_PH_ADM). River HE 

was significantly greater than swamp (HE = 0.290 ±0.035; W = 381, p < 0.0001). HE significantly 

differed across all (χ = 44525, df = 41, p < 0.0001), river (χ = 10513, df = 26, p < 0.0001), and 

swamp (χ = 7382, df = 14, p < 0.0001). The majority of populations did not show significant 

differences between HO and HE. F was largely negative across all populations, ranging from -

0.222 (RV_PH_IMR) to 0.004 (SWA_ID_SUW), indicating an absence of inbreeding within 

buffaloes.  
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Population ID Species Breed Country Sample 

Size 

HO  (±SD) HE  (±SD) F  (±SD) Reference 

RV_UK1 River Mediterranean UK 39 0.367 ±0.154 0.362 ±0.139 -0.014 ±0.049  

RV_UK2 River Mediterranean UK 27 0.362 ±0.173 0.348 ±0.148 -0.042 ±0.083  

RV_IND River Murrah India 130 0.420 ±0.101 0.417 ±0.092 -0.005 ±0.029  

RV_BUL_VAR River 
Bulgarian 

Murrah 
Bulgaria 58 0.406 ±0.129 0.397 ±0.112 -0.024 ±0.043 (Noce et al., 2021) 

RV_GER_BOR River Mediterranean Germany 28 0.380 ±0.155 0.374 ±0.132 -0.016 ±0.055  

RV_GET_JUT River Mediterranean Germany 27 0.382 ±0.186 0.341 ±0.150 -0.120 ±0.104  

RV_GER_STAD River Mediterranean Germany 26 0.364 ±0.162 0.362 ±0.139 -0.006 ±0.074  

RV_GER_WIES River Mediterranean Germany 28 0.390 ±0.164 0.371 ±0.136 -0.051 ±0.058  

RV_HUN_CSAK River Mediterranean Hungary 17 0.346 ±0.184 0.338 ±0.157 -0.025 ±0.072  

RV_HUN_HT River Mediterranean Hungary 19 0.364 ±0.194 0.336 ±0.160 -0.082 ±0.057  

RV_HUN_TISZ River Mediterranean Hungary 19 0.340 ±0.209 0.311 ±0.173 -0.092 ±0.080  

RV_ROM_MERA River Mediterranean Romania 16 0.372 ±0.171 0.366 ±0.138 -0.016 ±0.083  

RV_ROM_SERC River Mediterranean Romania 47 0.375 ±0.165 0.355 ±0.145 -0.054 ±0.043  

RV_BR_MUR River Murrah Brazil 15 0.410 ±0.155 0.401 ±0.112 -0.022 ±0.067 (Colli et al, 2018) 

RV_COL River - Colombia 12 0.422 ±0.165 0.405 ±0.106 -0.042 ±0.025  

RV_EG River Egyptian Egypt 16 0.392 ±0.166 0.380 ±0.127 -0.037 ±0.084  

RV_IR_AZA River Azari Iran 9 0.395 ±0.195 0.374 ±0.134 -0.057 ±0.036  

RV_IR_KHU River Khuzestani Iran 10 0.373 ±0.189 0.368 ±0.138 -0.013 ±0.106  

RV_IR_MAZ River Mazandarani Iran 8 0.373 ±0.213 0.350 ±0.153 -0.068 ±0.056  

RV_IT_MED River Mediterranean Italy 15 0.364 ±0.179 0.355 ±0.145 -0.026 ±0.043  

RV_MZ River Mediterranean Mozambique 7 0.338 ±0.243 0.298 ±0.179 -0.135 ±0.082  
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RV_PH_BMR River 
Bulgarian 

Murrah 
Philippines 11 0.431 ±0.187 0.392 ±0.119 -0.121 ±0.169  

RV_PH_IMR River Murrah Philippines 6 0.449 ±0.246 0.371 ±0.141 -0.222 ±0.125  

RV_PK_KUN River Kundhi Pakistan 10 0.420 ±0.183 0.394 ±0.118 -0.066 ±0.021  

RV_PK_NIL River Nili-Ravi Pakistan 15 0.426 ±0.153 0.404 ±0.106 -0.055 ±0.035  

RV_ROM River Mediterranean Romania 13 0.405 ±0.216 0.353 ±0.152 -0.159 ±0.158  

RV_TR_ANA River Anatolian Turkey 15 0.395 ±0.160 0.392 ±0.119 -0.008 ±0.037  

SWA_BR_MUR Swamp Carabao Brazil 10 0.324 ±0.228 0.289 ±0.177 -0.123 ±0.081  

SWA_CN_ENS Swamp - China 15 0.292 ±0.198 0.287 ±0.173 -0.017 ±0.038  

SWA_CN_FUL Swamp - China 15 0.296 ±0.199 0.286 ±0.173 -0.033 ±0.013  

SWA_CN_GUI Swamp - China 11 0.291 ±0.202 0.288 ±0.173 -0.008 ±0.095  

SWA_CN_HUN Swamp - China 15 0.305 ±0.194 0.295 ±0.167 -0.035 ±0.048  

SWA_CN_YAN Swamp - China 14 0.314 ±0.205 0.294 ±0.168 -0.069 ±0.107  

SWA_CN_YIB Swamp - China 15 0.293 ±0.197 0.287 ±0.173 -0.022 ±0.022  

SWA_ID_JAV Swamp - Indonesia 13 0.265 ±0.212 0.256 ±0.186 -0.034 ±0.121  

SWA_ID_NUT Swamp - Indonesia 7 0.244 ±0.234 0.236 ±0.197 -0.037 ±0.089  

SWA_ID_SUM Swamp - Indonesia 13 0.307 ±0.203 0.295 ±0.169 -0.044 ±0.114  

SWA_ID_SUW Swamp - Indonesia 11 0.255 ±0.212 0.257 ±0.188 0.004 ±0.105  

SWA_PH Swamp - Philippines 15 0.281 ±0.193 0.280 ±0.172 -0.003 ±0.116  

SWA_PH_ADM Swamp - Philippines 10 0.430 ±0.193 0.397 ±0.114 -0.084 ±0.098  

SWA_TH_THS Swamp - Thailand 6 0.321 ±0.226 0.300 ±0.168 -0.069 ±0.092  

SWA_TH_THT Swamp - Thailand 8 0.298 ±0.205 0.298 ±0.168 0.000 ±0.122  

Table 5.1: Domestic water buffalo populations used in study including metadata and calculated summary statistics. 
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5.4.2. Population Structure & Gene Flow 

FST values across the dataset ranged from 0.004 (SWA_CN_GUI vs SWA_CN_YIB) to 

0.432 (SWA_ID_NUT vs RV_MZ). Within river buffaloes these ranged from 0.009 

(RV_HUN_CSAK vs RV_HUN_HT) to 0.219 (RV_HUN_TISZ vs RV_MZ), averaging 0.094 

(±0.043). Comparisons within swamp buffalo showed similar levels of differentiation, 

averaging 0.095 (±0.058) and ranging from 0.004 (SWA_CN_GUI vs SWA_CN_YIB) to 0.243 

(SWA_BR_MUR vs SWA_ID_NUT). FST values were greatest between river and swamp 

buffaloes ranging from 0.100 (SWA_PH_ADM vs RV_CO) to 0.432 (SWA_ID_NUT vs RV_MZ) 

with an average of 0.309 (±0.056). A network summarising an FST distance matrix can be found 

in Figure 5.2. River and swamp buffaloes can be found an opposing ends of the network with 

admixed swamp populations of SWA_BR_MUR and SWA_PH_ADM found centrally. Within 

the river buffalo cluster, RV_IND population generated within this thesis was found at the 

core of the cluster. Populations of Indian origin and Pakistan populations were found nearby, 

while Middle Eastern populations formed their own cluster. European populations were 

found to be more distantly related to Indian populations than Middle Eastern populations 

with greater subdivision as Eastern (RV_HUN & RV_ROM populations) and Western clusters 

(RV_IT & RV_UK populations) were visible. Thai swamp populations were found at the core of 

the swamp cluster with Chinese populations clustering together whereas Southernly 

Indonesian populations (SWA_ID_NUT, SWA_ID_JAV, SWA_ID_SUW) were found more 

distantly related. All pairwise FST comparisons were significant bar SWA_TH_THS vs 

SWA_TH_THT. 

ADMIXTURE results revealed populations structuring across river and swamp 

buffaloes (Figure 5.3 & Figure 5.4). K = 2 separated river and swamp buffaloes with admixed 

populations of SWA_BR_MUR and SWA_PH_ADM evident from partial river ancestry. The 

following values of K distinguished various European populations (K = 4 split East and West 

European populations) until K = 7 where the first within-swamp clustering occurred via 

separation of three Indonesian populations. At K = 10, Middle Eastern river populations 

clustered together away from Indian and Pakistan populations. At K = 11 and K = 12, Brazilian 

carabao of SWA_BR_MU and Philippine swamp SWA_PH became distinct, respectively. 

Although K = 24 is the most efficient clustering solution (Supplementary Figure S5.3), CV 

values do not improve much following K = 12, with ADMIXTURE plots becoming biologically 
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obscure (Supplementary Figure S5.4). MDS analysis (Supplementary Figure S5.6) produced 

three major components of variations (eigenvalue > 1) with splits similarly captured by FST 

and ADMIXTURE. Component 1 captured 56.6% of variation across the dataset distinguishing 

between river and swamp species. Admixed populations of SWA_BR_MUR and 

SWA_PH_ADM were found with intermediatory values. Component two captured 11.3% of 

variation, separating European from Asian populations. Component three (6.6%) further 

separated European populations into East and West. 

 

 

Figure 5.2: Neighbour-net network based upon pairwise population FST scores. River (right) 

and swamp (left) show substantial genetic differences, with known hybrid populations 

occurring centrally. Coloured lines indicate the main genetic clusters. 
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Figure 5.3: Population clustering analysis from ADMIXTURE. K = 2 split river and swamp 

buffalo. K = 4 showed separation into East and West within Mediterranean populations. 

Further separation occurred within river buffalo until K = 10 where swamp buffalo began 

separating via Indonesian populations. CV values and biological interpretation did not 

radically improve after K = 12. K = 24 was the best fitting value of K in shown in Supplementary 

Figure S5.3. River buffalo indicated by prefix ‘RV’, and swamp buffalo prefix is ‘SWA’. 
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Figure 5.4: Map of average ancestry (ADMIXTURE results at K = 12; colours not matching 

Figure 5.3) across global buffalo populations. Charts are in their approximate geographic 

locations. 

Treemix analysis elucidated pathways of migration within the dataset. 99.8% of 

variation was accounted for at K = 2 (Figure 5.5). Migration axes were found between from 

RV_PK_NIL to the admixed swamp population SWA_PH_ADM, and between German 

populations of RV_GER_JUT and RV_GER_BOR. Admixture detected in SWA_BR_CAR in MDS 

and ADMIXTURE analysis was identifiable at K = 3 in Treemix. Variance explained and log 

likelihoods for all values of K are shown in Supplementary Table S5.5. AMOVA results 

indicated that the majority of variation is held within individuals (70.7%) followed by across 

groups (e.g. river and swamp) (23.2%) as shown in Supplementary Table S5.7. 
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Figure 5.5: Treemix model that accounted for 99.8% of variation. Two migration edges were 

found in the preferred model. The only migration found between river and swamp involved 

the hybrid swamp population. 

5.4.3. Evolutionary Modelling 

Reconstruction of buffalo demographic history was achieved using an ABC pipeline 

incorporating backwards coalescent simulations. 17 summary statistics were retained, with 

those being heterozygosity (total and per population), and pairwise FST. All retained observed 

statistics fell within the 95% quantiles of simulated statistics across all scenarios. Model 4 

consistently outperformed all scenarios in terms of Bayes Factor (>3). Posterior distributions 

for model 4 are shown in Figure 5.6. Indian murrah buffalo featured the largest Ne at 105.76 

while Iran (103.63), Italy (103.31), and swamp (103.21) buffalo populations were all far smaller. 

Moving backwards from India to ancestral populations, Ne declined prior to river and swamp 

divergence (105.98 > 103.39 > 102.42). Iranian and Italian populations dispersed separately out of 

India. Italian ancestors diverged from India approximately 337 generations ago, while Iranian 

divergence from India was more recent at 194 generations. River and swamp buffalo featured 

an older divergence at 2451 generations ago, with detection of swamp migration into river 

buffalo. 
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Table 5.2: Resulting p-values and marginal densities of each simulated model. The best performing model was identified using Bayes Factor 

(MD(A)/MD(B)) greater than 3 (in bold). N.D = Number of Dispersals, Mig = Migration Direction, P = P-value, MD = Marginal Density 

N.D Mig Model P MD Bayes Factor 

 1 2 3 4 5 6 7 8 

Two None 1 0.495 0.194 - 0.039 0.024 0.000 0.119 0.024 0.006 0.421 

 India > Iran 2 0.293 4.939 25.425 - 0.610 0.007 3.024 0.607 0.140 10.692 

 River > Swamp 3 0.518 8.103 41.707 1.640 - 0.011 4.961 0.996 0.229 17.539 

 Swamp > River 4 0.411 735.032 41.707 148.807 90.713 - 450.048 90.327 20.816 1590.978 

One None 5 0.386 1.633 8.407 0.331 0.202 0.002 - 0.201 0.046 3.535 

 India > Iran 6 0.418 8.137 41.885 1.647 1.004 0.011 4.982 - 0.230 17.613 

 River > Swamp 7 0.330 35.311 181.755 7.149 4.358 0.048 21.620 4.339 - 76.431 

 Swamp > River 8 0.396 0.462 2.378 0.094 0.057 0.001 0.283 0.057 0.013 - 
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Figure 5.6: Posterior distributions (red) for the best performing model (4) that simulated 

divergence of river and swamp buffalo followed by two dispersals of river buffaloes out of 

India, with additional migration occurring from swamp to river buffalo. Black lines indicate 

the prior distribution. NE = Effective population size, MIG = Migration Rate, and T = 

Divergence time. 
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5.4.4. Selection between Domestic Buffaloes 

Testing for selection between river and swamp contributed to unearthing the genetic 

mechanisms behind an older divergence but maintaining two compatible species for 

interbreeding. 88 SNPs proved significant (p < 0.05) with 25 showing high FST scores suggesting 

divergent selection, and 63 with low FST under balancing selection (Supplementary Table 

S5.8). Approximately half of SNPs were found within genes with 14/25 (56%) SNPs within 

genes for divergent selection, and 30/63 (48%) for balancing selection. Figure 5.7 shows the 

distribution of SNPs for FST and HO values. Genes linked with SNPs with high FST values can be 

attributed to livestock function such as milk production (NCKAP5, CAMK2D, PDE4D) and 

sperm quality (MARCH1, PCSK6) in line with river buffalo function. Whereas a number of 

genes related to neuronal (NLGN1, TMEM156) and body growth (DLG2, FGF3, BMP2, RBMS3, 

SNX29) fitted swamp buffalo draught function. In contrast, genes under balancing selection 

related to survival notably in immune genes (NCAM2, TREM1, SPPL2A, OCLN), sensory 

(OTOL1, TMEM132E, RGS7BP), reproductive viability (WIF1, CRISPDL1, PDLIM1), and 

examples of genes where heterozygote advantage prevents lethality (RNASEH2B, MAJIN).  
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Figure 5.7: Significant loci under selection between river and swamp buffalo via comparison 

of observed FST and HO to neutral coalescent simulations. Red points indicate SNP markers 

significantly under selection (P<0.05). 

5.5. Discussion 

Uncovering domestic water buffaloes’ evolutionary history will provide a variety of 

benefits for farming of this livestock species. Quantifying genomic resources across the 

agricultural industry is crucial for safeguarding genetic variability for future use (Taberlet et 

al., 2011; Biscarini et al., 2015; Bruford et al., 2015; Eusebi, Martinez and Cortes, 2020; 

Gicquel et al., 2020). Increasing intensification of the livestock industry favoring few beneficial 

commercial breeds is leading to genetic erosion through extinction of less productive 

individuals and breeds (FAO, 2007; Yaro et al., 2017; Eusebi, Martinez and Cortes, 2020). 

Reduced genetic diversity often leads to reduced adaptability in species, and with increasing 

consequences of climate change, variability in livestock will be essential to breeding resilient 

stock (Naskar et al., 2012; Eusebi, Martinez and Cortes, 2020; Rovelli et al., 2020). Modelling 

domestic buffaloes’ evolutionary history and understanding genetic variation across the 

species will aid in identifying key regions of the genome that may be of adaptive importance, 

be it environmental or productivity. This knowledge will help manage each species correctly 

and advise on beneficial crossbreeding that increases productivity while maintaining adaptive 

traits (Eusebi, Martinez and Cortes, 2020). Additional knowledge may also be revealed such 

as elucidating societal and cultural dynamics in historic human populations (Felius et al., 2014; 

Scheu et al., 2015; Almathen et al., 2016; Colli et al., 2018). This chapter quantified genetic 

variation across global buffalo populations, modelled river and swamp buffalo evolution, and 

provided functional evidence behind the genomic discrepancies between buffalo species.  

5.5.1. Demography 

The two species of domestic water buffaloes provide important livestock functions to 

the communities they serve. The dairy producing river buffalo provides a vital source of food 

security in marginal lands where crop growth is not reliable, meanwhile swamp buffaloes are 

an excellent means of draught across agricultural wetlands such as rice paddies (Zhang, Colli 

and Barker, 2020). The two species are physiologically, genetically, and geographically 

distinct, though the ability to successfully hybridise leaves their evolutionary history unclear 
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(Zhang, Colli and Barker, 2020). The addition of Indian river buffalo to the global buffalo array 

dataset provided important representation for the putative domestication centre for river 

buffalo. Trends in genetic diversity in livestock species typically decreases away from 

domestication centres (Bruford, Bradley and Luikart, 2003; Groeneveld et al., 2010). This is 

due to subsets of variation being captured as new populations are often established on small 

founding populations. Domestic buffaloes follow this trend. Colli et al, (2018) showed that 

river buffaloes genetic diversity decreased away from India and into Europe. The same is 

found in mitochondrial data as Northwest India possesses the greatest diversity of haplotypes 

(Kumar et al., 2006; S. Kumar et al., 2007). Here, Indian and Pakistan populations all featured 

the highest HO (> 0.4). HO can be affected by sample size, and although the large RV_IND 

population does not feature the highest HO, it does possess the highest HE (0.417). Thus, the 

newly sampled Indian murrah population fulfills expectation that genetic diversity is greatest 

where domestication originated. The addition of UK buffaloes provided populations at the 

very edge of river buffaloes historic range, and again, in line with expectations UK buffaloes 

were among the lowest HO & HE with only Hungarian and Mozambique populations found 

with lower. Historic populations of Italy, Romania, and Middle East were found with 

intermediate levels of genetic diversity between Indian and fringe European populations.  

Ascertainment bias within the array means that river buffalo diversity is likely inflated 

compared to sequencing data, whilst swamp diversity is underrepresented in comparison to 

river results (Iamartino et al., 2017; Colli et al., 2018). Chapter Four revealed that selection of 

increasingly more polymorphic markers can remove this difference, although this may distort 

the true pattern of genetic diversity across domestic buffaloes. A MAF cutoff was 

implemented in swamp buffalo that increased their genetic diversity comparatively compared 

to the original dataset in Chapter Four. Importantly this maintained the trend that river 

buffaloes possess greater levels of diversity than swamp buffalo as observed in previous 

studies (Colli, Milanesi, Talenti, et al., 2018; Luo et al., 2020; Sun, Shen, et al., 2020). The 

dataset generated here maintained the trends in genetic diversity of swamp buffalo found in 

Colli et al, (2018) where diversity is greatest in continental Southeast Asian, with decreasing 

diversity in more isolated island populations of Philippines and Southern Indonesia. Despite 

lower estimates of diversity, no populations appear to suffer from any inbreeding with 

negative inbreeding coefficients found across the majority of populations. This may instead 
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indicate an isolated breaking effect driven by some admixture (Wahlund, 1928; Šnjegota et 

al., 2021; Kanaka et al., 2023). Domestic buffaloes have largely been farmed in low external 

input systems with little intensification and selection on populations. Although defined 

breeds do exist, buffaloes are often allowed to mix with other individuals leading to high 

numbers of non-descript and graded buffaloes (DAHD, 2023). Additionally, the overlap in 

domestic and wild buffalo ranges means that genetic exchange between these species is likely 

to have occurred far beyond initial domestication times (Satish Kumar et al., 2007; 

Choudhury, 2014; Nagarajan, Nimisha and Kumar, 2015; Kandel et al., 2019). Such 

opportunities for admixture within buffaloes and an absence of intensification may explain 

the little evidence of inbreeding. 

The addition of Indian buffalo along with UK and other European populations revealed 

further variability across river water buffalo that was previously undetected(Noce et al., 

2021). Across the dataset, four main genetic clusters were found. Those of Indian and Pakistan 

origin clustered together in FST, ADMIXTURE and MDS analysis. Populations that were recently 

exported e.g., South America and Philippine Indian originating populations showed little 

evidence of substantial divergence (average FST < 0.03 in comparison to RV_IND and RV_PK). 

The Bulgarian murrah (RV_BUL_VAR) cross revealed more variation owing to mixed ancestry 

of Mediterranean and murrah breeds as seen in MDS and ADMIXUTRE results (Borghese, 

2013a). Middle Eastern populations of Iran, Egypt, and Turkey formed their own cluster away 

from European populations suggesting that these populations are unrelated despite being 

geographical neighbours. Domestic buffaloes depend upon nearby water sources for 

thermoregulation as they lack sweat glands (Marai and Haeeb, 2010; Yáñez et al., 2020). The 

arid landscape west of the Indus valley is unlikely to be traversable for river buffaloes, unlike 

oxen. Instead, Colli et al, (2018) hypothesized a maritime pathway between India and Middle 

East. The dissimilarity found between Middle Eastern and European populations may be 

explained through replenishment of genetic diversity from new trade from India. 

Documentation of buffalo trade is rare with little apparent cultural importance outside of 

India. Until the mid-20th century, the Southern wetlands of Iraq was an important place of 

historic buffalo farming, with buffaloes maintaining waterways for transport, controlling 

vegetation through grazing, and economic gain through milk production (Fazaa, Dunn and 

Whittingham, 2018). The Basra region was economically crucial throughout Late Antiquity 
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and a key port for Indian Ocean trade (Simpson, n.d.). These active trade routes may have led 

to translocation of domestic buffaloes. It is known that Indian traders were able to access the 

Middle East via Basra and formed trade routes up the Euphrates and Tigris rivers (Simpson, 

n.d.). If Middle Eastern populations represent a new influx of diversity, European populations 

may indicate an original historic dispersal out of India. The division of European populations 

into East and West indicates separate transport routes across the Mediterranean to the 

wetlands of Italy and Danube delta. Despite all European buffaloes falling under the 

Mediterranean breed, these East and West populations appear genetically distinct with little 

genetic evidence of interaction post-split. Europe was already dominated by productive 

livestock such as taurine cattle, and resilient species such as sheep and goats for less 

productive environments. Water buffalo were likely inferior to these established species and 

of little use outside of wetlands. German populations showed admixture between East and 

West Mediterranean populations that may be due to establishment of farms using cheap 

Eastern buffalo before uptake of more expensive and productive Italian buffalo. 

Population structure results detected the same structuring pattern across swamp 

buffalo as Colli et al, (2018), however the variation contributions from swamp buffalo were 

far smaller (e.g. clustering occurred at higher values of K in ADMIXTURE). This may be due to 

the greatly increased number of river buffaloes added to the dataset (Colli river n = 155, here 

river n = 643), along with the variability of the buffalo array being dedicated to river buffalo. 

Patterns of variation across swamp buffalo are largely geographic. Zhang et al, (2016) found 

that mitochondrial haplotypes were highly structured across Southeast Asia. Dispersal of 

swamp buffalo may have only occurred in tandem with rice cultivation (Zhang et al., 2016). 

Thai populations are found close to the center of swamp buffalo clusters in FST network, and 

along with higher HO, this suggests a potential location for swamp domestication. Analysis of 

swamp mitochondrial and Y-chromosome haplotypes across Southeast Asia found that 

diversity was greatest in surrounding Northern Thailand and Southern China (Zhang et al., 

2016; Wang et al., 2017). Here, results revealed that Chinese populations cluster closely 

together, while Southern Indonesian populations are more distantly related which is likely 

due to small, isolated populations being susceptible to genetic drift (Colli, Milanesi, Vajana, 

et al., 2018). 
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 Patterns of genetic variation across domestic water buffalo shows several trends such 

as genetic diversity being greatest in river than swamp, and greatest in India and Northern 

Thailand, river and swamps respective domestication origins (Satish Kumar et al., 2007; S. 

Kumar et al., 2007; Zhang et al., 2011, 2016; Colli, et al., 2018; Luo et al., 2020; Sun et al., 

2020). Questions remain as to timings of divergence and levels of gene flow between species 

and populations. Scenarios modelled tested the divergence times of river and swamp species, 

and level of migration between species. The scenarios further modeled river buffaloes’ 

historic dispersal out of India, and into the Middle East and Europe. Due to ascertainment bias 

of the buffalo array and potential effects of over parameterization in ABC, swamp buffalo 

dispersals were not further modelled (Csilléry et al., 2010; Quinto-Cortés et al., 2018).  

Model 4 was the most favorable outcome of ABC analysis. This model encompassed a 

river-swamp divergence with subsequent migration from swamp to river. River buffalo were 

found to have been exported out of India to the Middle East twice, led first by the ancestors 

of European populations. Replacement of this genetic diversity within the Middle East likely 

occurred via new supply of buffaloes from India to the Middle East. As stated previously, 

domestic buffaloes are greatly productive in tropical and sub-tropical environments, being 

resilient to higher temperatures, diseases and parasites, and effective on low-quality feed 

(Marai and Haeeb, 2010; Yáñez et al., 2020). However, due to the inability to sweat, buffaloes 

require a source of water for thermoregulation (Marai and Haeeb, 2010; Yáñez et al., 2020). 

This means that water buffaloes are more geographically restricted to lowland wetlands. The 

inability to venture long distances in drier environments means that separate buffalo 

populations are unlikely to interact without environmental change or translocation from 

humans, hence explaining genetic structuring between Europe, Middle East, and Asia (plus 

river between swamp). Although modelling of further swamp populations does not occur 

here, current literature suggests that there is geographical sub structuring in swamp buffalo 

that may be due to isolation in swamp buffalo populations by river basins or local geographical 

factors (Zhang et al., 2016). Within this chapter, this is observable from Southeast Asian island 

populations. River buffalo meanwhile were historically isolated to wetland environments 

across India (Indus valley), Middle East (Fertile Crescent), and Europe (Pontine Marshes and 

Danube), all of which are accessible through known maritime trade routes.  
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The dispersal of river buffalo from India occurred within the past 6,000 years, the 

domestication point for river buffalo ( Zeuner, 1963; Patel & Meadow, 1998; Satish Kumar et 

al., 2007). From mitochondrial analysis, it is known that all river buffaloes originally derive 

from India (Coroian et al., 2015; Zhang, Colli and Barker, 2020). The latter divergence between 

river and swamp species is expected to date prior to the Holocene although precise estimates 

are yet to be determined (Wang et al., 2017; Luo et al., 2020; Sun, Shen, et al., 2020; 

Curaudeau, Rozzi and Hassanin, 2021). ABC results estimated divergence times for within 

river buffaloes to be ~2,000 YA for initially dispersal out of India to the Middle East of which 

European buffaloes are derived from. This genetic distinction between European and Middle 

Eastern populations is likely due to replacement of genetic diversity within the Middle East. 

Estimates from ABC results suggest Middle East populations diverged from India more 

recently at ~1,150 YA. A few hypotheses occur as to river buffalo dispersal through the Middle 

East and into Europe involving Crusaders, gifts to the King of Lombardy, and Saracen traders 

(Colli et al., 2018). Wordsworth et al, (2021) analysed historic buffalo remains in the Middle 

East and dated the occurrence of buffaloes to the region and alluded to mechanisms of arrival. 

The arrival of Indian people called ‘al Zutt’ into Southern Mesopotamia was identified. These 

people reached Antakya (ancient Antioch) under the Umayyad Caliphate by the end of Late 

Antiquity (Simpson, n.d.). These settlers likely brought native livestock, probably domestic 

river buffalo. Following initial arrival in Southern Mesopotamia early in the Common Era, river 

buffalo likely dispersed along the Euphrates and Tigris rivers towards Europe. Reaching 

Antakya by the onset of the 9th century, river buffaloes likely crossed the Mediterranean along 

Saracen trade routes (Colli et al., 2018). Estimates of Ne trends found in both UK buffalo using 

linkage disequilibrium inferred a divergence time of ~1,500 YA, further supporting ABC results 

(Chapter Two). European buffaloes may well derive from the original dispersal of 

domesticated river buffalo out of India. Current Middle Eastern buffalo appear genetically 

more similar to Indian buffalo, indicating that an influx of genetic diversity occurred within 

the region displacing original European ancestors (Colli et al., 2018). Maritime trade routes 

between India and Middle East were a significant source of commerce between the regions, 

and water buffalo may have been continually traded following initial arrival (Simpson, n.d.). 

The port of Basra was a prominent gateway for Indian Ocean trade into Mesopotamia. 



Chapter Five 
Evolutionary Modelling of Domestic Water Buffaloes using Approximate Bayesian Computation 
 

173 
 

Current NGS estimates of river and swamp buffalo divergence range up to 800,000 YA 

(Wang et al., 2017; Luo et al., 2020; Sun, Shen, et al., 2020; Curaudeau, Rozzi and Hassanin, 

2021). The extensive genetic differentiation between the two species suggests an absence of 

interaction post divergence. The preferred model here supports some swamp to river 

migration. The time of divergence from ABC results here estimated ~14,700 YA, prior to the 

onset of the Younger Dryas and Holocene. This result maintains two independent 

domestication events for river and swamp (splitting time pre-domestication). However, this 

presents the most recent divergence time in current literature. Recency of the estimate may 

be down to the data used within the study. Chapter Four showed that the use of SNPs that 

were polymorphic across both species resulted in more recent estimates of divergence 

between river and swamp. Here, SNPs that were monomorphic/lowly polymorphic in swamp 

were removed to overcome some bias towards river buffaloes. Consequently, this likely 

selected ancestral SNPs shared by both species and those retained under balancing selection, 

thus the two species appeared more closely related. Faster mutation rates permitted here 

may also reduce splitting times. With a p-value of 0.411, there is greater scope to refine the 

ABC model. This data type may also underlie migration found as all the swamp variation is 

present in river buffalo. Mimicking SNP discovery (and therefore ascertainment bias)in the 

coalescent simulations like in Quinto-Cortés et al., (2018) may aid in producing more realistic 

model outputs for river and swamp comparison. Regardless of the timing of divergence,, it 

appears that river and swamp buffalo separation is linked to glacial periods within the 

Pleistocene (Mintoo et al., 2019; Luo et al., 2020). Lower sea levels surrounding Southeast 

Asia led to an increase in landmass as previous marine environments became occupied with 

humid and marshy vegetation (Wang et al., 2009; Hamilton et al., 2024). These new 

landmasses may have facilitated the dispersal of Bubalus arnee (or ancestral species) from 

Northern India into Southeast Asia by providing a bypass around the Indo-Burma Mountain 

ranges. This migratory route is hypothesised for the evolution of the anoa (Rozzi, 2017). 

Estimates of Ne in the ABC analysis largely followed genetic diversity results. India 

featured the largest Ne at 105.76 while Middle East, Europe, and swamp populations all feature 

smaller values of Ne at 103.63
, 103.31, and 103.21, respectively. Middle East and European 

populations likely captured a subset of genetic diversity from India, therefore smaller Ne are 

logical. Swamp Ne may be underestimated due to ascertainment bias in the array, or 
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conversely, river buffalo Ne being inflated. Ne typically declines back in time with estimates of 

river buffalo Ne changing from 105.76 to, 105.98, 103.39 and 102.42. Analysis of mitochondrial 

haplotypes in river buffalo shows that there has been continuous introgression from wild 

buffalo, and as such, predicting precise estimates of domestication in river buffalo is difficult 

(Nagarajan, Nimisha and Kumar, 2015). The resulting pattern is that Ne continually increases 

over time in river buffalo. 

5.5.2. Genetic Divergence 

Isolated populations will naturally diverge to become separate species. In practice, 

this requires sufficient genetic change between populations to become biologically 

incompatible. Genetic evidence indicates that domestic riverine and swamp buffalo are 

separate species (Wang et al., 2017; Curaudeau, Rozzi and Hassanin, 2021). Within pure 

populations, there is an absence of shared mitochondrial and Y-chromosome haplotypes, 

chromosomal numbers differ, and they present high level of genomic differentiation (Barker 

et al., 1997; S. Kumar et al., 2007; Yindee et al., 2010; Zhang et al., 2011; Wang et al., 2017; 

Luo et al., 2020; Sun, Shen, et al., 2020; Zhang, Colli and Barker, 2020; Curaudeau, Rozzi and 

Hassanin, 2021). In this study here, FST values (Section 5.4.1) between river and swamp 

populations similarly result in average values > 0.3 and the first division in clustering solutions 

consistently resolve riverine and swamp individuals (Section 5.4.2). Furthermore, ABC 

evolutionary modelling produces a probable divergence time before the Holocene, agreeing 

with independent domestication events for riverine and swamp buffaloes. Despite this 

however, riverine and swamp buffaloes are fully capable of hybridising indicating that on a 

cellular level, they remain similar.  

More than twice as many SNPs were identified relating to balancing selection between 

buffalo species than divergent selection. This in part may be due to the ascertainment bias of 

the Axiom™ Buffalo Genotyping Array as all SNPs included in the panel are targeted at river 

buffalo. Therefore, without unique swamp buffalo variation, the array will not be able to 

detect further regions of divergence. Of the SNPs that were identified under divergent 

selection associated genes appear to relate to livestock function of each buffalo species. River 

buffalo were primarily domesticated for their milk production. PDE4D (Phosphodiesterase 

4D) and CAMK2D (Calcium/Calmodulin Dependent Protein Kinase II Delta) were all found in 

divergent SNPs. PDE4D may impact fat yield in milk via cAMP signalling (Kim et al., 2021). 
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CAMK2D takes part in calcium signalling and this gene has previously been linked to 

differences between thin and fat tailed sheep bred for milk or meat production (Luo et al., 

2022). NCKAP5 (NCK Associated Protein 5) was additionally found nearby a divergent SNP. 

This gene has been found under selection in river buffaloes and has been attributed to 

temperament in cattle (Valente et al., 2016; Saravanan et al., 2023) 

Alternatively, swamp buffalo as draught livestock require adaptations for docility and 

endurance. NLGN1 (Neuroligin 1) and TMEM156 (Transmembrane Protein 156) are two 

neuronal genes that may signify selection upon draught ability of swamp buffalo. Both genes 

have been linked with mental disorders or differences in neuronal function but more 

specifically, NLGN1 functions in synaptic transmission and effects behaviour via differential 

expression altering excitatory/inhibitory balance in hippocampus (Kilaru et al., 2016; 

Nakanishi et al., 2017; Katzman and Alberini, 2018; Gupta et al., 2022; Chalkiadaki et al., 

2023). NLGN1 has previously been found in enriched neuronal pathways in swamp buffalo 

(Sun, Shen, et al., 2020). DLG2 (Discs Large MAGUK Scaffold Protein 2) shows further neuronal 

function as knockdown study in mice suggests this gene effects striatal connectivity and 

frequency of excitatory spontaneous postsynaptic currents, and this gene has been shown 

under differential selection between herding dogs and livestock guardians (Yoo et al., 2020). 

In cattle, DLG2 has been associated with digital cushion thickness and destructive lesions 

(Stambuk, Staiger, Heins, et al., 2020; Stambuk, Staiger, Nazari-Ghadikolaei, et al., 2020; Li et 

al., 2023). Swamp buffalo are known for being more resilient as draught animals than cattle, 

showing reduced hoof lesions and injuries, whilst also recovering at a faster rate. FGF3 

(Fibroblast Growth Factor 3), BMP2 (Bone Morphogenetic Protein 2), RBMS3 (RNA Binding 

Motif Single Stranded Interacting Protein 3), SNX29 (Sorting Nexin 29) all appear to have 

function relating to growth or muscle function. FGF3 is an oncogene and growth factor and 

has been associated with average daily gain (Seong et al., 2022). BMP2 has been identified 

under selection Bulgarian river buffalo in Chapter Three, an example of river buffalo 

population bred for increased growth and meat traits. RBMS3 has been previously found 

under selection in swamp buffalo and belongs to the family of c-Myc genes and may effect 

bone density while (Ravi Kumar et al., 2020).  

As river and swamp buffalo can interbreed, the expectation may be that reproductive 

functions are near identical. Genes associated with reproduction were found for both 
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divergent and balancing selection SNPs. For divergent SNPs, MARCH1 (Membrane Associated 

Ring-CH-Type Finger 1) and PCSK6 (Proprotein Convertase Subtilisin/Kexin Type 6) were 

found. MARCH1 functions in immunological pathways however has been linked to various 

bull semen traits in cattle (Liu et al., 2017; Modiba et al., 2022; Mukherjee et al., 2023). PCSK6 

processes proteins in secretory pathway but has been linked with reproductive function, 

while also occurring in a CNV region in Iranian river buffalo (Strillacci et al., 2021). Increasing 

intensification and genetic improvement of river buffaloes has led to widespread use of 

assisted reproductive technologies (ART). Therefore, genes under selection for semen quality 

traits may influence to success of ART but may not interfere with essential reproductive 

pathways.  

SNPs under balancing selection with reproductive gene links may function in pivotal 

roles. ATF2 (Activating Transcription Factor 2) features oncogenic function and responds to 

genotoxic stress. Studies have linked this gene to fertility with knockouts of this gene result 

in lethality and expression is crucial for survival of bovine embryos (Lau and Ronai, 2012; 

Orozco-Lucero, Dufort and Sirard, 2017; Tarekegn et al., 2021). WIF1 (WNT Inhibitory Factor 

1) participates in WNT signalling, a known critical pathway for embryonic development. 

Expression is important for cell proliferation and differentiation across a wide variety of cell 

and tissue types, but notably is essential for embryo implantation and development in cattle 

(Nascimento et al., 2018). KAZN (Kazrin, Periplakin Interacting Protein) is a diagnostic marker 

for ovarian cancer with further links to pregnancy complications and poly cystic ovary 

syndrome (Barbitoff et al., 2020; Egashira et al., 2022; Zhu et al., 2022). CRISPLD1 (Cysteine 

Rich Secretory Protein LCCL Domain Containing 1) was found to influence calcium regulation 

via a binding site similar to that of helothermine toxin that blocks cardiac ryanodine receptor 

channels, thus leading to heart failure (Khadjeh et al., 2020). Calcium is important in 

fertilization and Sujit et al, (2018) elucidated CRISPLD1 as a seminal plasma biomarker. 

PDLIM1 (PDZ And LIM Domain 1) is a cytoskeletal protein that is essential for spermatid 

differentiation and spermatogenesis and as such, was found to have strong predictive power 

for uterine embryo presence (Shang et al., 2016; Kusama et al., 2021). Divergence of 

reproductive genes under balancing selection may be impossible due to causing cancers or 

infertility and therefore current viable genetic variation is maintained. Adding to this 

RNASEH2B (Ribonuclease H2 Subunit B) is an example of a gene under balancing selection in 
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livestock as a homozygous deletion was identified that causes embryonic lethality however, 

carriers are maintained in Nordic Red cattle due to positive effects on milk yield and 

composition (Kadri et al., 2014). 

A variety of immune genes were found under balancing selection. NCAM2 (Neural Cell 

Adhesion Molecule 2) is part of the immunoglobulin superfamily and a cell adhesion molecule 

that is regulated by STAT5 and cytokines for natural killer cell survival and differentiation 

(Nelson et al., 2006). Although NCAM2 appears under balancing selection across buffaloes, 

this gene shows value to Brazilian murrah buffaloes from Chapter Three and GWAS studies 

(de Camargo et al., 2015). TREM1 (Triggering Receptor Expressed On Myeloid Cells 1) is an 

immunoglobulin receptor present on macrophages and neutrophils and is involved in 

triggering inflammatory responses (Ornatowska et al., 2007). SPPL2A (Signal Peptide 

Peptidase Like 2A) is crucial for B cell development by maintaining integrity of MHCII 

containing endosomes (Schneppenheim et al., 2012). SNP nearby NEU1 (Neuraminidase 1) 

was found within the MHC region whereby it is known that alleles are shared across both river 

and swamp buffaloes (Sena et al., 2003; Mishra et al., 2020). Maintaining genetic variation 

across immune genes is crucial for adaptable, responsive and effective immune system vital 

for survival of organisms in face of disease and parasites. Similarly, genetic variation may be 

beneficial for sensory traits enabling species to adapt to changes in the environment and 

faunal composition. OTOL1 (Otolin 1), TMEM132E (Transmembrane Protein 132E), and 

RGS7BP (Regulator Of G Protein Signalling 7 Binding Protein) have all been linked to 

expression within and development of inner ears (Seim et al., 2013; Megdiche et al., 2019; 

Yuan Wang et al., 2022). Domestic buffaloes are predominantly kept in low input extensive 

systems and are allowed to roam freely. Living across Southern Asia, their range entirely 

overlaps with tigers that are the apex predator in the region where water buffaloes fulfil a 

primary source of prey. Studies on livestock predation show that water buffaloes are 

predated far less than cattle (up to 25 times less likely) which may be due to their greater 

ability to detect and defend against predators compared to cattle whose reactions are 

dispersal (Hoogesteijn and Hoogesteijn, 2008; Miller, Jhala and Jena, 2016; Kolipaka et al., 

2017). As water buffalo are farmed more intensively, there may be a decoupling of genes 

under balancing selection that are useful within a natural context. 
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5.6. Conclusion 

This chapter further studies the genetic variation present across global domestic water 

buffalo; quantifying and explaining the patterns and differences between species and 

populations. The valuable addition of an Indian murrah population provides further 

knowledge surrounding river buffalo ancestry and available genetic diversity. This population 

originates from the putative river buffalo domestication location (India), and as such, was 

found to possess the highest genetic diversity in line with domestication expectations. 

Additional European populations from Noce et al, (2021), and UK buffalo genotyped here 

shows revealed greater variability in Europe, previously not detected, mostly through an East 

and West split. Modelling of domestic buffalo evolution produced greater insights into the 

dispersal of buffaloes. Mediterranean buffaloes likely derived from the first dispersal out of 

India, via settlement of the ‘al-Zuṭṭ’ people in the Middle East early in the Common Era. 

Translocation of river buffaloes likely continued from India to the Middle East, replacing 

original genetic diversity creating the observed genetic differences to European populations. 

River and swamp species were independently domesticated and diverged during the 

Pleistocene, although accurate estimates may not be achievable using buffalo array data due 

to ascertainment bias. Although river and swamp buffalo are genetically, they are successfully 

able to hybridise. Divergent loci between the species were found associated with livestock 

function (suggesting artificial selection), while loci under balancing selection appeared 

important for survivability and cell viability. Therefore, important regions for biological 

compatibility between buffalo species may have remained similar, thus allowing 

hybridisation. 
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Chapter Six  

General Discussion 

 

6.1. Background 

Agriculture and livestock industries are integral for producing enough food to support 

the large human populations seen today. An increase in human population coupled with 

development of countries has seen the demand for livestock products rapidly increase in the 

past 50 years (Steinfeld, Wassenaar and Jutzi, 2006; FAO, 2009; Godde et al., 2018). 

Anthropomorphic change on the planet is having severe consequences in environmental 

effects. Rising global temperatures, demands on freshwater resources, and a spread in 

diseases are placing human society under pressure (Tomley and Shirley, 2009; Thornton, 

2010; Baumgard et al., 2012; Leng and Hall, 2021; Cheng, McCarl and Fei, 2022). The 

consequences threaten food production systems as the degradation of seasonal weather 

patterns effect reliability of crop production, and extreme weather conditions, e.g., heat 

waves and drought, cause serious health conditions in livestock that drastically reduce yields 

(Thornton, 2010; Cheng, McCarl and Fei, 2022). 

 To mitigate such conditions whilst retaining productive livestock, breeding programs 

must be optimized and complex genotype-phenotype interactions understood (Goddard, 

2012; Hayes, Lewin and Goddard, 2013; Meuwissen, Hayes and Goddard, 2013). The 

availability of large-scale genomic data has provided ample opportunities for guiding livestock 

breeding (Hayes, Lewin and Goddard, 2013; Meuwissen, Hayes and Goddard, 2013; Gorjanc 

et al., 2015). While genomics has improved production gains, the same must be achieved with 

environmental adaptivity. Local livestock breeds host a wealth of genetic diversity relating to 

environmental adaptation (Hoffmann, 2013; Savolainen, Lascoux and Merilä, 2013; Biscarini 

et al., 2015). These breeds are typically farmed in extensive systems and as such, have 

become inherently adapted to their immediate surroundings. However, due to their small 

distributions, and lower productivity, local livestock breeds have typically not been genetically 

characterized and monitored. 16% of livestock breeds are at risk of extinction, and a further 
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35% are uncharacterized presenting a serious threat to future food security if these genetic 

resources are lost (FAO, 2015).  

The domestic water buffalo is an example of this. Water buffalo have been among the 

most important livestock species to Southern Asia with 95% of the global population found 

here but gains little attention elsewhere. Adaptations to tropical conditions, e.g., 

thermotolerance, feed efficiency, and resistance to diseases and parasites, may be of great 

use to northernly latitudes as climates become more tropical (Marai and Haeeb, 2010; Yáñez 

et al., 2020). Genomic resources have become easily accessible for large scale population 

analysis in the form of the AxiomTM Buffalo Genotyping Array, presenting the opportunity to 

understand the genetic variation found across domestic buffaloes and evaluate their adaptive 

potential.  

6.2. Completion of Aims 

The primary goal of a livestock species is the production of a valuable commodity. In 

the case of domestic water buffalo, riverine breeds are dairy producers while swamp buffalo 

provide draught (Zhang, Colli and Barker, 2020). Both domestic species provide meat as a 

secondary product. Chapters Two and Three studied breeds of river buffalo that are 

becoming commercially relevant and beginning to be subjected to the pressures of modern 

farming systems. Chapter Two analyzed 69 individuals of Mediterranean buffaloes sampled 

across two farms from the United Kingdom and compared differences in genetic variation to 

populations across Europe. The aims of this chapter were to genetically characterize these 

populations and identify any notable changes in genetic variation. Such changes may take the 

form of significant declines in genetic diversity since importation, or rapid shifts in allelic 

frequencies suggesting recent selection. 

Although observed heterozygosity of UK buffaloes was lower than continental 

counterparts, differences were non-significant. Declines in genetic diversity can often be seen 

in newly formed populations as a limited amount of genetic variation is captured from the 

original population in founding individuals (Bruford, Bradley and Luikart, 2003). It is important 

to monitor genetic diversity over time in livestock populations. The consequences of reduced 

diversity include an increased risk in inbreeding that may result in adverse health effects. This 

is especially important under commercial scale farming as genomic selection programs often 
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see an increase in inbreeding (Meuwissen, Hayes and Goddard, 2013; Meuwissen et al., 

2020). Despite a marginal decline, comparative levels of observed heterozygosity across UK 

buffaloes suggests that a variety of individuals have been imported. Furthermore, HO was 

found to be higher than HE across both populations, a signal observed in the presence of 

recent gene flow, indicating that recent imports are bringing new variation into UK 

populations. This result was also found across other populations in Chapters Two, Three, and 

Five. As a result of this observation, there is an absence of inbreeding found within UK 

buffaloes. The high levels of variation identified indicate that an abundance of variation is 

available for genomic gain of production yields through selective breeding. 

Successful breeding programs rely upon breeding individuals that share the desired 

trait so that underlying genotypes are maintained (Meuwissen, Hayes and Goddard, 2001). 

Breeding of closely related individuals will result in increased inbreeding down generations 

(Hayes et al., 2009; Meuwissen et al., 2020). An influx of new genetic variation obtained by 

breeding more distantly related individuals together will overcome any inbreeding; however, 

this may disrupt the desired phenotype and regions under selection (Toosi, Fernando and 

Dekkers, 2010). It is essential to identify the genetic origins of novel populations so that future 

imports can be targeted for minimal disruption. Using FST, MDS, and ADMIXTURE analysis, UK 

populations are shown to tightly cluster with Italian populations. Some deviation was 

observed between UK populations, particularly that of RV_UK2 looking more unique. Further 

exploration of differences between UK populations was conducted using IBS and LAMP-ANC 

analysis. Mediterranean buffaloes in the UK are known to originate from two sources, Italy 

and Romania (Borghese, 2013a). Farmers initially import less productive, and therefore 

cheaper Romanian buffaloes to establish herds before increasing production capabilities by 

importing more valuable Italian individuals (Borghese, 2013a). The similarity of UK buffaloes 

to Italian buffaloes was further observed in LAMP-ANC analysis that identified proportions of 

the genome relating to either Italian or Romanian ancestry. Both UK populations featured 

greater than 85% of the genome as Italian ancestry, indicating any potential admixture from 

Romanian populations was low. Notably, Romanian ancestry was largely located in the same 

genomic regions of both populations suggesting these regions may have been maintained 

since pre-importation to UK. A greater proportion of Romanian ancestry was identified in 

RV_UK2 than RV_UK1, however population structure results (e.g., FST, ADMIXTURE) show 
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both UK populations to be dissimilar to Romanian populations. Therefore, it was suspected 

that RV_UK2 may be undergoing some genetic drift due to the smaller size and less 

commercial activity of the farm. Conversely, it is known that RV_UK1 is continually importing 

further Italian individuals. IBS results show that individuals in RV_UK2 are significantly more 

related to each other than RV_UK1. Therefore, RV_UK2 may be more susceptible to genetic 

drift as allelic frequencies can change more rapidly and become fixated in smaller 

populations. Genetic drift and any potential threat of future inbreeding can be easily 

mitigated through incorporation of new individuals.  

Genomic selection using genotyping arrays is frequently carried out by i) close 

associations between alleles and observed phenotypes (e.g., GWAS), or ii) identification of 

genomic regions under higher linkage disequilibrium encapsulating functional genes (e.g., XP-

EHH). In the absence of phenotypic data for either UK population, LD was explored. Both 

populations featured reasonably low levels of LD compared to other livestock species, 

reflecting the high levels of genetic diversity found. Additionally, patterns of LD were not 

consistent between UK populations, and as such, transfer of genomic selection programs 

would have low confidence of success. Recent trends in genetic diversity through time were 

reconstructed by calculation of Ne from LD. Both populations displayed decreasing estimates 

of Ne as time became more recent with RV_UK1 possessing higher Ne until approximately 250 

generations ago. Higher estimates of Ne in RV_UK1 indicate that implementation of genomic 

selection programs would be more powerful than in RV_UK2. The translation of lower Ne in 

RV_UK2 meant that a greater proportion of the genome possessed ROHs compared to 

RV_UK1, although this difference was non-significant. The maintenance of ROHs within each 

population revealed clusters of interconnected genes functioning in relevant livestock traits 

(e.g., milk production) that may be under selection. Interestingly, representation of QTL 

classes differed between UK populations. RV_UK1 featured a significant overrepresentation 

of exterior and production QTL classes that incorporate traits such as udder morphology, 

while RV_UK2 featured a more classical expectation of an overrepresentation of milk QTLs. 

Genes relating to morphology may therefore be of greater importance in increasing milk 

yields in domestic buffaloes. The differences in UK populations were further observed with 

little overlap in genes under selection from XP-EHH results. Though, having only been present 
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in the UK for around 50 years, and with little environmental change to continental Europe, 

there may not be extensive selection pressures on UK buffalo. 

Likewise with Mediterranean buffalo, the Indian murrah buffalo is another 

commercially relevant breed. In Chapter Three, global populations of murrah buffaloes were 

compared to an Indian population to evaluate the adaptability of domestic buffaloes. Unique 

adaptations found in newly formed populations would suggest that domestic buffaloes are 

adaptable to changing climatic conditions. Similarly to Chapter Two, all murrah populations 

showed high levels of genetic diversity and an absence of genetic diversity. Again, it is likely 

due to the lack of intensive selection on domestic buffalo populations. Despite continental 

separation of studied murrah populations (Asia, Europe & South America), divergence was 

low with average FST scores of 2.2%, though this is marginally inflated due to incorporation of 

Mediterranean ancestry found within the crossbred population of RV_BUL_VAR (Bulgarian 

murrah). ADMIXTURE results were unable to distinguish between populations bar detecting 

different ancestry within RV_BUL_VAR and some potential underlying structure within the 

Indian murrah population. 

Assessment of LD across all populations revealed rapid rates of decay within Indian 

murrah buffalo. Interestingly, a population expansion event was found in Indian murrah 

buffalo in Ne results (after controlling for any population structure). This expansion peaked at 

32 generations ago that relates to approximately 192 years ago. Indian murrah individuals 

here were sampled from eastern and central India whilst the murrah breed originated from 

the Haryana province in Northwest India (Kumar et al., 2019). This timepoint corresponds to 

a period of drought and power transfer in India that may have led to dispersals of people and 

livestock (Clingingsmith and Williamson, 2008; Guha, 2019). Alternatively, murrah buffalo are 

frequently bred with local breeds to improve milk production whilst maintaining local 

adaptivity (Kumar and Singh, 2010; Kumar, 2015; Kumar et al., 2019). Graded murrah 

buffaloes outnumber purebred murrah by a ratio of 3:1, therefore this expansion signal may 

be due to persistent admixture with local breeds. All other murrah populations featured lower 

Ne as expected due to each capturing a subset of variation of the original population. 

The adaptive potential of murrah buffaloes was evaluated through detecting unique 

regions of the genome under selection in each population. Due to the very recent exportation 

of murrah buffalo out of India (<100 years), unique regions under selection may indicate a 
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rapid shift in allelic frequencies in response to new selection pressures. This was evaluated 

using multiple methods: i) ROHs, ii) XP-EHH, iii) PCAdapt, and iv) R-Samβada. The former two 

methods provided selection signatures based on elevated levels of LD, meanwhile the latter 

targeted fine scale selection that may be a response to wider variation in environmental 

changes. What was found was that ROHs and XP-EHH analysis revealed genes that relate to 

alternative functions between murrah populations. For example, genes relating to increased 

growth or muscle function were found under selection in RV_BUL_VAR and RV_CO 

(Colombia). Bulgarian murrah have been reared for increased muscle mass for greater meat 

production whilst Colombian buffalo have been imported from the Caribbean where the 

buffalypso (derived from murrah and other Indian breeds) was turned into a draught breed. 

The Brazilian murrah population is subject to greater intensity of milk production, and in this 

population an array of genes was linked to energy metabolism, thermoregulation, and 

reproduction. Milk production in dairy livestock is energetically expensive and physiologically 

demanding, even more so under tropical climatic conditions (Collier, Renquist and Xiao, 2017; 

Cheng, McCarl and Fei, 2022). These genes may represent candidates for buffalo farming, 

particularly in stock health and maintenance over generations. Indian murrah featured fewer 

unique regions under selection, most probably because similar signals are also found in other 

murrah populations due to little divergence. However, genes under selection did link to 

relevant livestock processes such as oxidative stress and immune responses. Though this 

study lacked fine scale sampling, R-Samβada results may provide some inferences into 

environmental adaptation of domestic buffaloes. CHL1 was found linked with precipitation 

with alternative genotypes found in Indian murrah to other murrah populations. These 

buffaloes reside in the driest areas studied here. CHL1 functions by recruiting Hsc70 that helps 

against neuronal and vascular diseases under heat stress, of which these buffaloes will more 

likely be subjected to with reduced access to water. 

The AxiomTM Buffalo Genotyping Array provides the most affordable and reproducible 

opportunity for large scale genomic studies of domestic water buffalo. Genotyping 

microarrays have provided easy access for farmers to genetically analyse their livestock to a 

reasonably high genomic resolution. Livestock microarrays are purpose built for the ability to 

generate genomic selection programs in their target species (Hayes et al., 2009; Hayes, Lewin 

and Goddard, 2013; Meuwissen, Hayes and Goddard, 2013, 2016; Kemper et al., 2016; 
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Georges, Charlier and Hayes, 2019). This goal is achieved by utilizing linkage disequilibrium to 

attribute changes in SNP markers to functional genes. SNPs of higher frequencies that are 

common across host breeds are deliberately chosen to differentiate between closely related 

individuals. Whilst useful for microarray function, these SNPs no longer represent natural 

variation of populations that normally possess an abundance of low frequency alleles 

(Albrechtsen, Nielsen and Nielsen, 2010; Lachance and Tishkoff, 2013; McTavish and Hillis, 

2015; Benjelloun et al., 2019). Bias in allelic frequencies will likely distort statistical analysis 

within evolutionary studies (Albrechtsen, Nielsen and Nielsen, 2010; Lachance and Tishkoff, 

2013; Malomane et al., 2018). Chapter Four evaluated and analysed ascertainment bias 

within the AxiomTM Buffalo Genotyping Array in comparison to WGS data obtained from Luo 

et al, (2020). In addition to biased allele frequencies in comparison to natural variation, SNP 

selection for the AxiomTM Buffalo Genotyping Array only included river breeds. Therefore, 

further bias is present as swamp buffalo genetic variation is underrepresented when 

genotyped with this array. 

Chapter Four revealed that river buffalo genetic diversity is significantly inflated 

compared to natural variation found in WGS data. Shifts in allelic frequencies towards higher 

frequencies are observed and MAF distributions did not correlate with WGS data. This 

outcome is common across microarrays as observed in cattle (Pitt, Sevane, et al., 2019), sheep 

(Benjelloun et al., 2019), and chickens (Malomane et al., 2018). Despite inflated diversity 

estimates, patterns of variation across river buffalo populations were minimally affected by 

ascertainment bias within the array. This result suggests that interpretations are likely correct 

bar differences in raw values. Swamp buffalo meanwhile were found to have significantly 

lower genetic diversity in comparison to river buffalo in both array and WGS data. However, 

the difference in diversity between river and swamp buffalo was far greater in array data, 

clearly visualizing the effect of ascertainment bias between the species. Swamp buffalo 

diversity largely mimicked WGS data. This suggests that the SNP array is effectively a random 

subset of markers to swamp buffalo, though lacking in swamp specific variation. The knock-

on effects of the differences between river and swamp buffalo means that comparative 

analysis is distorted (e.g., FST overestimated in comparison to WGS).  

Ascertainment bias within the array between river and swamp buffalo could be 

overcome through LD pruning techniques by targeting SNP selection in swamp buffalo. 
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Differences in genetic diversities were minimised, and FST scores reduced. However, LD 

pruning only increased diversity within swamp buffalo, with minimal effect on river buffalo 

diversity. This result was not replicated in WGS data. Therefore, the SNPs retained were likely 

targets of shared ancestral genetic variation, or those markers under balancing selection. This 

pattern was most easily observed in ROH analysis. LD pruning in each species in WGS data 

resulted in lower detection of ROHs as removal of monomorphic linked SNP markers were 

removed from the dataset. In the other species, ROHs presence increased as genetic variation 

is not shared between river and swamp buffalo. In the array, swamp buffalo always featured 

more ROHs unless LD pruning targeted swamp buffalo, in which case ROHs became similar to 

river buffalo. The outcome of ascertainment bias meant that estimates of evolutionary history 

may be distorted as SNP datasets that targeted the markers of shared variation resulted in 

more recent estimates of divergence. Future evolutionary studies across river and swamp 

buffalo would benefit from using less biased methods such as ddRAD-sequencing, and future 

SNP arrays should either focus solely on swamp buffalo or incorporate both species in SNP 

discovery. 

Evolutionary studies on domestic buffalo have elucidated relationships between 

populations and quantified levels of genetic variation (Satish Kumar et al., 2007; Zhang et al., 

2016; Colli, Milanesi, Vajana, et al., 2018; Luo et al., 2020; Sun, Shen, et al., 2020; Curaudeau, 

Rozzi and Hassanin, 2021). Chapter Five aimed to establish a cohesive model of evolution for 

domestic buffaloes, performing complex modelling to estimate divergence between river and 

swamp species. The modelling additionally investigated the cause of observed genetic 

structuring across river buffalo. Several theories hypothesize how buffaloes reached Europe 

including gifts to the King of Lombardy, returning crusaders, and Arab traders (Colli, Milanesi, 

Vajana, et al., 2018). Results of the final model scenarios consistently favoured two dispersals 

of river buffalo from India. Indian Ocean trade has been an incredibly important source of 

commerce throughout human society; therefore, it is unsurprising that water buffaloes may 

have been translocated by Indian people. The preferred model estimated an initial dispersal 

of river buffalo from India approximately 2,000 YA. This time aligns with Indians settlers, 

called ‘al-Zutt’ reaching the Middle East early in the Common Era (Wordsworth et al., 2021; 

Simpson, n.d.). The initial river buffalo founding population likely spread up through 

Mesopotamia along the Euphrates and Tigris rivers reaching ancient Antioch around the 9th 
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century (Wordsworth et al., 2021; Simpson, n.d.). Current European and Middle Eastern 

buffalo populations appear genetic dissimilar. The model estimated a more recent divergence 

of Middle Eastern buffalo from India approximately 1,100 YA. This new influx of genetic 

diversity likely replaced the original diversity from European ancestors in the area. Buffaloes 

reaching Europe, likely via Arab trade routes across the Mediterranean, likely became 

isolated, becoming more distantly related and possessing lower genetic diversity (Colli, 

Milanesi, Vajana, et al., 2018; Zhang, Colli and Barker, 2020; Wordsworth et al., 2021). Ne 

trend results from Chapter One additionally supported this timing of river buffalo divergence.  

Precise estimates of river-swamp species divergence have been challenging to obtain. 

Current literature produces a range of estimates over the course of the Pleistocene (Wang et 

al., 2017; Luo et al., 2020; Sun, Shen, et al., 2020; Curaudeau, Rozzi and Hassanin, 2021). The 

preferred model estimated a divergence time of ~14,700 YA, before the Holocene. This 

estimate is notably the most recent estimate of divergence in comparison to previous studies. 

However, there may be several caveats throwing caution to interpretation of the result. ABC 

attempts to characterize complex events spanning long time periods in a single model. Thus, 

outcomes of the models rely heavily upon some assumptions that include that i) populations 

are sufficiently sampled, ii) model parameters chosen are capable of depicting the species 

evolutionary history, and that iii) genetic variation is capable of being condensed into chosen 

summary statistics (Beaumont, 2010; Csilléry et al., 2010). The AxiomTM Buffalo Genotyping 

Array provides significant bias within the data as shown in Chapter Four. River buffalo 

diversity is inflated compared to natural genetic variation due to a deliberate selection of 

higher frequency alleles in probe production. Comparatively, swamp buffalo diversity is 

underrepresented due to being absent during SNP selection. Polymorphic SNPs present in 

both species are likely shared ancestral variation which will present a more recent divergence 

time. Furthermore, the model here permits a higher substitution rate that additionally would 

reduce divergence times. Substitution rates across the genome can vary, and with the added 

complexity of distorted allelic frequencies, this makes defining an exact rate troublesome 

(Goldman and Yang, 1994; Excoffier, Foll and Petit, 2009). Nevertheless, river and swamp 

buffalo were certainly domesticated independently, and shared a Pleistocene divergence. 

Both species show distinct genetic differences yet viably hybridize. Analysis of selection 

signatures relating to areas of divergence or similarity provided inferences into functional 
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underlying reasons. Within divergent markers, genes were frequently attributed to livestock 

functions such as milk production (e.g., CAMK2D) or increased growth (e.g., FGF3). Markers 

under balancing selection were associated with survival, such as immune response (e.g., 

NCAM2) or cell lethality (e.g., RNASEH2B). The validity of these genes would need to be 

further explored as it is difficult to distinguish between spurious outlier loci of chance, or 

genuine selection signatures (Kelley et al., 2006). 

6.3. Future Directions 

This thesis was largely successful in achieving its aims in characterizing genetic 

resources for domestic water buffalo and uncovering their adaptive potential. Future work 

should therefore focus on genetic improvement and implementation of genetic breeding 

strategies. Samples from the two most productive buffalo breeds were analyzed in Chapter 

Two and Chapter Three, with those being the Mediterranean and murrah breeds, 

respectively. A range of candidate genes under positive selection that may be important for 

domestic buffaloes were identified. Inferences could only be made using prior literature. 

Phenotypic data should be collected on all individuals to assign greater functionality to SNPs 

for targeting increased production yields. Using a combination of phenotypic and genotypic 

data would enable the use of genome-wide association studies (GWAS) and genomic breeding 

values (GEBVs) (Meuwissen, Hayes and Goddard, 2013, 2016). These tests would allow for 

quantification of variation in phenotypic traits being accounted for by specific genotypes. 

With this data, genomic breeding programs could be established. Reliable results for 

quantitative genetics require hundreds of individuals and such studies are often out of scope 

for research projects or smallholders. Therefore, genomic selection needs to be led by more 

commercialized farms. In buffaloes, current GWAS analysis is predominantly found associated 

with Italian and Brazilian where large scale buffalo farms occur (Venturini et al., 2014; de 

Camargo et al., 2015; Iamartino et al., 2017; Cesarani et al., 2021). Within commercial 

environments, any genetic improvement is likely to be focused on productive gains leading to 

a decoupling of environmental fitness. The public availability of genetic data would help the 

involvement of researchers to analyze environmental traits in livestock for future 

adaptability.  

 A new database of buffalo specific QTLs should be formed and generation of novel 

genomic resources and knowledge for domestic buffaloes improves. Current studies, likewise, 
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with Chapter Two, use transferred cattle QTLs to the buffalo genome, which may not share 

functionality. Kumar et al, (2023) established QTLs for murrah buffaloes using double 

digestion RAD sequencing, however the replicability of these results will be difficult as the 

generation of exact SNP markers in ddRAD-seq each time is not guaranteed. With the 

availability of the AxiomTM Buffalo Genotyping Array, a dedicated QTL database can be 

established from SNP markers here. Such improvements in buffalo genomics would be greatly 

beneficial in modernizing buffalo farming in line with industrialized livestock breeds. 

The exacerbation of climate change threatens the reliable production of food as 

environmental conditions become altered and the frequency of extreme weather patterns 

increase. In the absence of successful crop growth, examples of farmers in Southeast Asia 

switching to buffalo farming is already occurring (Escarcha et al., 2018, 2020). For livestock, 

species must remain adaptable to changing environmental conditions whilst still producing 

viable quantities of milk and meat (or other products). Genomic studies on livestock are often 

limited to small regions such as single farms. To link genetic variation to environmental 

factors, individuals need to be sampled in a sufficient manner to capture a wealth of 

environmental variation. Likewise, in Chapter Three, our sampling is limited to country level 

resolution. Therefore, future sampling strategies of buffalo studies should focus on identifying 

individuals across a large range to capture fine-scale changes in environments. Additional 

efforts need to ensure sampled individuals originate from those areas and are not 

translocated frequently so that genotypes reflect their environment.  

With continual genomic studies on buffaloes, fine scale environmental studies will 

eventually be possible, however, results will likely be biased towards buffaloes in larger farms 

with greater financial resources. Most buffaloes are farmed by small holders across southern 

Asia. These buffaloes are farmed in low input external systems, and likely hold a large amount 

of genetic variation useful for environmental adaptivity. Therefore, efforts should be made to 

study buffalo in areas without great financial resources. This will aid small-scale farmers in 

breeding more productive stock, but also enable evaluation of genetic variation of local 

breeds, something that is currently lacking (FAO, 2015). With the rarity of the wild Asian water 

buffalo, obtaining new genetic variation associated with environmental fitness would be 

incredibly difficult. This is likely impossible for swamp buffalo as their wild ancestral 

populations are almost certainly extinct (Kaul et al, 2019). The extinction of wild ancestors to 
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livestock (e.g., aurochs) is a common trend, and one with negative consequences of lost 

genetic variation that simply cannot be recovered. Rural populations of domestic buffaloes 

may hold a wealth of genetic variation that needs to be characterized and conserved. 

The AxiomTM Buffalo Genotyping Array was founded solely from river buffalo breeds. 

It is now abundantly clear that river buffalo and swamp buffalo are considerably different 

genetically. River buffaloes are commercially more relevant with their global population size 

growing each year due to their milk production (Zhang, Colli and Barker, 2020). However, for 

swamp buffalo, population sizes are in decline (Zhang, Colli and Barker, 2020). The loss of 

swamp buffalo would result in a loss of unique genetic variation (genetic erosion) that may 

be valuable in the future for adaptivity. Therefore, future work should commit more resources 

towards swamp buffalo to conserve the unique genetic variation that they hold. 

Problematically, without swamp buffalo being a productive livestock species and generating 

a commercial interest, this goal is difficult to achieve. While commercial interest will 

continually develop river buffalo resources, future research focusing on swamp buffalo will 

be valuable in filling those knowledge gaps left by industry. Farms across Southeast Asia and 

China are already repurposing swamp buffalo for greater meat and milk production which 

may provide appetite for more swamp buffalo research (Escarcha et al., 2018; Deng et al., 

2019; Shaari et al., 2019). Generation of swamp specific genomic resources such as a 

dedicated genotyping array may help improve swamp buffalo breeding plans at commercial 

farms. Any creation of such an array should focus on commercial farms to maintain viability 

of the livestock product and have the financial backing to generate a commercial breed of 

swamp buffalo so that swamp buffalo have a role in future farming. 

Genetic improvement of swamp buffalo is currently achieved via crossbreeding with 

river buffalo. Chapter Five showed that divergence of river and swamp buffalo genomes is 

greatest where genes are attributed to production qualities and livestock traits. Persistent 

hybridization may lead to genetic erosion of swamp buffalo. Future research surrounding 

river and swamp buffalo hybridization would be of great value to identify those genotypes 

that improve production traits for swamp buffalo while minimizing the genetic erosion of 

other regions of the genome that may be useful for, e.g., local environmental adaptations.  

The implications of Chapter Four and Chapter Five’s research, is that river and swamp 

buffalo should be treated as two separate species, as proposed in Curaudeau, Rozzi and 
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Hassanin, (2021). Therefore, genetic variation should be conserved and managed separately, 

not relying on the persistence of one species over the other, particularly as swamp buffaloes 

are in decline. Furthermore, major splits in river buffalo populations were tracked inferring 

that dispersal out of India is linked with movements of Indian and Arabian traders. The 

resulting model should be further refined and provide opportunities for identification of 

important genes under selection during key events in buffalo evolution. Further investigation 

into domestic buffaloes’ history in the Middle East may reveal new information into the 

cultural history of people in the region and reveal how people lived and moved in historic 

times (Wordsworth et al., 2021). 
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Table S2.1: Quality control thresholds used to call genotypes from raw data in AxiomTM 

Analysis Suite Software v4.03. 

Threshold Type Metric Threshold Value 

Sample Quality Control DQC ≥ 0.82 
 Quality Control Call Rate ≥ 97 
 Percent of Passing Samples  ≥ 95 
 Average Call Rate for Passing Samples ≥ 97 
SNP Quality Control Species Type Diploid 
 Call Rate Cutoff ≥ 97 
 FLD Cutoff ≥ 3.6 
 Het So Cutoff ≥ -0.1 
 Het so X Chr Cutoff ≥ -0.1 
 Het So OTV Cutoff ≥ -0.3 
 Hom RO 1 Cutoff ≥ 0.6 
 Hom Ro 2 Cutoff ≥ 0.3 
 Hom Ro 3 Cutoff ≥ -0.9 
 Hom Ro True 
 Hom Het True 
 Num Minor Allele Cutoff  ≥ 2 
 Hom Ro Hap 1 X Chr Cutoff ≥ 0.1 
 Hom Ro Hap 1 MT Chr Cutoff ≥ 0.4 
 Hom Ro Hap 2 X Chr Cutoff ≥ 0.05 
 Hom Ro Hap 2 MT Chr Cutoff ≥ 0.2 
 AAF X Chr Cut < 0.36 
 FLD X Chr Cut ≥ 4 
 HomFLD X Chr Cut ≥ 6.5 
 HomFLD Y Chr Cut ≥ 6.5 
 Min Y Chr Samples Cut ≥ 5 
 Sign Diff Hom 1 Cutoff ≥ 0.5 
 Sign Diff Hom 2 Cutoff ≥ 0.4 
 Min Mean CP2 Cutoff ≥ 9 
 Max Mean CP2 Cutoff ≤ 15 
 Priority Order PolyHighResolution, 

NoMinorHom, OTV, 
MonoHighResolution, 
CallRateBelowThreshold 

 Recommended PolyHighResolution, 
NoMinorHom, 
MonoHighResolution, 
Hemizygous 

 Y Restrict ≤ 0.2 
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Table S2.2: Eigenvalues for each component captured by multidimensional scaling analysis. 

Component Eigenvalues 

1 1.537370 
2 1.087450 
3 0.793862 
4 0.606121 
5 0.459875 
6 0.390526 
7 0.335176 
8 0.321959 
9 0.264270 

10 0.222226 
11 0.217258 
12 0.205966 
13 0.193472 
14 0.180692 
15 0.168650 
16 0.160560 
17 0.151979 
18 0.148897 
19 0.142883 
20 0.140051 

 

Table S2.3: AMOVA results showing partitioning of variation across individuals and 

populations. 

Source of Variation d.f. Sum of Squares Variance 
Components 

Percentage of 
Variation 

Among Populations within 
Groups 

13 57241.897 69.96408 Va 9.11 

Among Individuals Within 
Populations 

365 247309.819 -20.56309 Vb -2.68 

Within Individuals 379 272382.500 718.68734 Vc 93.57 

Total 757 576934.215 768.08832  
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Figure S2.4: FST distributions generated by bootstrap replicates of RV_UK1 vs RV_ITA and 

RV_UK2 vs RV_ITA 

 

Figure S2.5: FST distributions generated by bootstrap replicates of RV_UK1 vs RV_ROM_CL 

and RV_UK2 vs RV_ROM_CL 
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Figure S2.6: FROH distributions generated in RV_UK1 and RV_UK2 

 

Figure S2.7: Plot showing sum ROHs vs total number of ROHs for all individuals of RV_UK1 

and RV_UK2. X = y shown by dashed black line. 
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Table S2.8: Significant ROHs and genes found within regions for both RV_UK1 and RV_UK2. 

Population Chromosome 
(BBU) 

Start  End Genes  

RV_UK1 1 40618376 44032773 CSMD1, MYOM2, KBTBD11, ARHGEF10, CLN8, 
TRNAW-CCA, DLGAP2 

  50404478 51196161 CLDN17, GRIK1 
  76018494 76518042  
 2 117129833 117517993 NCKAP5 
 3 61862936 61969410 - 
  64021694 64797055 CBR4, SH3RF1, NEK1, CLCN3, TRNAH-AUG, MFAP3L 
  82344868 83657693 IZUMO3, TRNAW-CCA, ELAVL2  
 4 103159550 105807905 MGAT4C, NTS, RASSF9, ALX1, LRRIQ1, TSPAN19, 

SLC6A15 
 5 75486279 79733876 TRNAC-ACA, PANX1, HEPHL1, VSTM5, MED17, 

TAF1D, CEP295, DEUP1, SLC36A4, MTNR1B, FAT3, 
TRNAC-GCA 

  83413928 85500121 TMEM135, FZD4, PRSS23, ME3, CCDC81, HIKESHI, 
EED, PICALM, CCDC83, SYTL2 

 6 28106618 29855359 TSPAN2, TSHB, SYCP1, SIKE1, CSDE1, NRAS, 
AMPD1, DENND2C, BCAS2, TRIM33, SYT6, OLFML3, 
HIPK1, DCLRE1B, AP4B1, BCL2L15, PTPN22, RSBN1, 
PHTF1, MAGI3  

 14 62533451 63775086 MALRD1, ARL5B, CCDC7 
 15 50475003 50726444 CPA6 
 19 15255940 17233155 HTR1A, IPO11, DIMT1, KIF2A  
  44467270 45125124 TRNAY-GUA, TRNAC-GCA 
  55683549 57425155 BASP1, MYO10, RETREG1, ZNF622, MARCH11, 

FBXL7 
 21 13844195 14950320 ULK4, TRAK1, CCK, LYZL4, TRNAG-CCC, VIPR1, 

SEC22C, SS18L2, NKTR, ZBTB47, KLHL40, HHATL, 
CCDC13, HIGD1A, ZNF662, TRNAG-CCC 

RV_UK2 1 43763283 45246299 DLGAP2, ERICH1 
  76018494 77767873 CADM2 
  92325535 93881377 - 
 2 53232270 53595544 OCA2, HERC2, TRNAE-CUC 
  81227949 82277332 B3GALT1, XIRP2  
  120494471 121809491 DPP10  
  130097357 130310554 - 
  131521600 133260286 TRNAC-ACA, GYPC, TEX51, GLS, STAT1, STAT4, 

MYO1B, TRNAE-UUC, NABP1 
 3 143189749 144021308 DAPK1, TRNAY-AUA, CTSL, FBP2, FBP1  
 4 61937971 64525598 TRNAG-CCC, METTL7B, ITGA7, BLOC1S1, RDH5, 

CD63, GDF11, SARNP, ORMDL2, DNAJC14, MMP19, 
PYM1, DGKA, PMEL, CDK2, RAB5B, SUOX, IKZF4, 
RPS26, ERBB3, PA2G4, ZC3H10, ESYT1, MYL6B, 
MYL6, SMARCC2, TRNAS-CGA, RNF41, NABP2, 
SLC39A5, ANKRD52, COQ10A, CS, CNPY2, PAN2, 
TRNAE-UUC, IL23A, STAT2, APOF, TIMELESS, MIP, 
SPRYD4, GLS2, RBMS2, BAZ2A, ATP5F1B, PTGES3, 
NACA, PRIM1, TRNAG-CCC, SDR9C7, GPR182, 
ZBTB39, TAC3, MYO1A, NEMP1, NAB2, STAT6, 
LRP1, NXPH4, SHMT2, NDUFA4L2, STAC3, R3HDM2, 
INHBC, INHBE, GLI1, ARHGAP9, MARS, DDIT3, 
MBD6, DCTN2, KIF5A, PIP4K2C, DTX3, ARHGEF25, 
SLC26A10, B4GALNT1, OS9 
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  131296877 132073992 CHRM3 
 5 75857249 79733876 PANX1, HEPHL1, VSTM5, MED17, TAF1D, CEP295, 

DEUP1, SLC36A4, MTNR1B, FAT3, TRNAC-GCA 
 6 45760687 47489139 DPYD, PTBP2  
 7 42446383 43345211 - 
 23 21754196 22410305 TLX1, LBX1, BTRC, POLL, DPCD, FBXW4, FGF8, 

NPM3, OGA, KCNIP2, ARMH3 

 

Table S2.9: Gene ontology results for genes found in significant ROHs for both RV_UK1 and 

RV_UK2. 

Population Gene Ontology 
Class 

Biological 
Pathway 

Description 

RV_UK1 Process GO:2000564 Regulation of CD8-positive, alpha-
beta T cell proliferation 

  GO:0046328 Regulation of JNK cascade 
  GO:0015824 Proline transport 

RV_UK2 Component GO:0070876 SOSS complex 
  GO:0016459 Myosin complex 
 Function GO:0042132 Fructose 1,6-bisphosphate 1-

phosphatase activity 
  GO:0004359 Glutaminase activity 
  GO:0003774 Motor activity 
  GO:0030898 Actin-dependent ATPase activity 
 Process GO:0005986 Sucrose biosynthetic process 
  GO:0007259 JAK-STAT cascade 
  GO:0097696 STAT cascade 
  GO:0006543 Glutamine catabolic process 
  GO:0005985 Sucrose metabolic process 
  GO:0009312 Oligosaccharide biosynthetic 

process 
  GO:0006537 Glutamate biosynthetic process 
  GO:0046351 Disaccharide biosynthetic process 
  GO:0014037 Schwann cell differentiation 
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Figure S2.10: QTL class distribution across RV_UK1 significant ROHs 

 

Figure S2.11: QTL class distribution across RV_UK2 significant ROHs 
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Table S2.12: Significant genes found in XP-EHH analysis for RV_UK1 vs RV_GER_STA and 

RV_UK2 vs RV_GER_STA 

Population Chromosome Start End Genes 

RV_UK1 1 27425486 28113771 TRNAC-ACA-4, TRIML1, 
TRIML2, ZFP42 

  29984786  30123983 SORBS2, PDLIM3, CCDC110, 
C1H4orf47, UFSP2, ANKRD37, 
LRP2BP, SNX25, CFAP97, 
SLC25A4, HELT 

  132745375  132868674 GNB4, MFN1, ZNF639, 
KCNMB3, PIK3CA, 
LOC112587440, ZMAT3, 
TRNAW-CCA-7, TRNAG-UCC-
4, KCNMB2 

  151230397 151336861 PPM1L, ARL14, KPNA4 
  187354770  187861398 TFF2, TFF1, TMPRSS3, 

UBASH3A, RSPH1, SLC37A1, 
PDE9A, WDR4, NDUFV3, 
PKNOX1, CBS, U2AF1, CRYAA 

 2 36017854  37531045 PEX6, GNMT, CNPY3, PTCRA, 
C2H6orf226, RPL7L1, BICRAL, 
TBCC, PRPH2, UBR2, TRNAG-
UCC-7, TRERF1, MRPS10, 
GUCA1B, GUCA1A, TRNAW-
CCA-13, C2H6orf132, TAF8, 
CCND3, BYSL, MED20, USP49, 
PRICKLE4, TOMM6, FRS3, 
PGC, TFEB, MDFI, FOXP4, 
NCR2, TREM1, TREML2, 
TREM2, TRNAG-UCC-8, 
TREML1, NFYA, OARD1, 
APOBEC2, TSPO2, UNC5CL 

  117087325 118055365 NCKAP5, LYPD1, GPR39, 
SLC35F5 

  152419212 152773351 ERBB4 
 3 3930106 3955743 - 
  15387323 15446777 SMARCD2, PSMC5, FTSJ3, 

DDX42, CCDC47, STRADA, 
LIMD2, MAP3K3, DCAF7, 
KCNH6, TANC2 

  142275429 142464858 TUT7 
  154753980 155449850 CYLC2 
  169852072 169979708 TLR4 
 4 8971634 9212951 TNRC6B, FAM83F, GRAP2, 

ENTHD1, CACNA1I, RPS19BP1, 
ATF4, MIEF1, TRNAG-CCC-33, 
MGAT3, TRNAG-CCC-34, 
TAB1, SYNGR1 

  84453485 84625128 TMEM117, NELL2 
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  152915324 - KCNMA1, DLG5, POLR3A, 
RPS24 

 5 123444264 123938178 TRNAR-CCU-11, LTO1, CCND1, 
FGF19, FGF4, FGF3, ANO1, 
FADD, PPFIA1, CTTN 

 6 81971515 82153482 ATG4C, DOCK7, ANGPTL3 
  109602412 111177583 CLSPN, C6H1orf216, PSMB2, 

TFAP2E, NCDN, KIAA0319L, 
ZMYM4, SFPQ, ZMYM1, 
ZMYM6, TMEM35B, DLGAP3, 
SMIM12, GJA4, GJB3, GJB4, 
GJB5, C6H1orf94, CSMD2 

 7 78966472 79380792 TRNAC-GCA-116 
  115977766 - QRFPR, TNIP3, TRNAY-AUA-8, 

NDNF 
 8 100183355 100279260 CHRM2 
 9 56467422 56534117 - 
  69973920 70459326 TRIM58, GCSAML, NLRP3, 

ZNF496 
  81392762 81499515 CSNK1G3 
  83180816 83312296 - 
 11 90660253 90691830 PARP16, TRNAG-CCC-98, CILP, 

CLPX, PDCD7, UBAP1L, 
KBTBD13, RASL12, SLC51B, 
MTFMT, SPG21, TRNAC-GCA-
171, ANKDD1A, PTGER2 

 12 76869798 76933547 - 
 13 2064219 2932876 NAXD, RAB20, COL4A2, 

COL4A1, IRS2, MYO16, 
TRNAY-GUA-17 

 15 44970558 45102329 JPH1, TRNAE-UUC-100, LY96, 
TRNAC-GCA-211, TMEM70, 
ELOC, UBE2W, STAU2 

  53620530 54056901 YTHDF3, TTPA 
  61672639 - SNTG1 
 16 26803089 27164245 LIN7C, LGR4, CCDC34, BBOX1, 

FIBIN 
  44986300 - TEAD1 
 17 23746675 24674935 TRNAC-GCA-224, TMEM132C, 

TRNAS-GGA-40, SLC15A4, 
GLT1D1, TRNAE-UUC-106 

  50280821 50688764 - 
 18 41136026 41466603 ZNF536, TSHZ3 
  65245471 65268241 ZNF671 
 19 56539547 57486561 RETREG1, ZNF622, MARCH11, 

FBXL7 
 20 30917827 - - 
  53507848 54572685 SV2B, SLCO3A1 
 22 20011293 20178300 PIEZO2, NAPG, APCDD1, 

VAPA, TXNDC2, RAB31 
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 24 17141512 17217979 XPO6, GSG1L, KIAA0556, 
TRNAG-UCC-70, TRNAG-UCC-
71 

RV_UK2 1 34633398 34884805 TENM3 
  187578102 187861398 SLC37A1, PDE9A, WDR4, 

NDUFV3, PKNOX1, CBS, 
U2AF1, CRYAA 

  189237181 189278514 TSPEAR, UBE2G2, SUMO3, 
PTTG1IP, ITGB2, FAM207A 

 2 81785127 82330005 SCN7A, SCN9A 
  108719654 - - 
  109201735 109844693 LRP1B 
 3 50923062 - USP32, C3H17orf64, APPBP2, 

PPM1D 
  132330123 133177884 BMP1, PHYHIP, POLR3D, 

PIWIL2, SLC39A14, PPP3CC, 
SORBS3, PDLIM2, C3H8orf58, 
CCAR2, EGR3, PEBP4, 
RHOBTB2, CHMP7, R3HCC1, 
LOXL2, ENTPD4, SLC25A37 

  142170136 142735671 C3H9orf153, ISCA1, TUT7, 
GAS1 

  154753980 155514138 CYLC2 
 4 25326050 25436574 MGP, ERP27, ARHGDIB, 

PDE6H, RERG, PTPRO 
  96290081 96340164 CEP83, PLXNC1 
  128531484 128885769 GPR137B, ERO1B, EDARADD, 

LGALS8, HEATR1, ACTN2, 
MTR, TRNAE-UUC-37 

  129278440 130812166 RYR2, ZP4 
 5 20720027 21220496 ABL2, TOR3A, FAM20B, 

RALGPS2, ANGPTL1, TEX35, 
RASAL2, TRNAC-GCA-91 

  24155057 24746031 TNR, KIAA0040, TNN, 
MRPS14, CACYBP, RABGAP1L 

 6 97691915 97975136 SLC5A9, TRABD2B 
 7 12189331 12701213 CLNK, ZNF518B, WDR1, 

SLC2A9, DRD5, OTOP1, 
TMEM128, LYAR, ZBTB49, 
NSG1, STX18 

  79432960 79558879 - 
  102600603 102880560 STPG2 
  109507742 109871388 CCSER1 
 8 30432198 30553964 DNAH11, CDCA7L, RAPGEF5 
  98863064 99047114 STRA8, CNOT4, TRNAR-GCG-2, 

NUP205, STMP1, SLC13A4, 
FAM180A 

 9 2246697 2428110 PJA2, FER 
  90516686 90546137 GNG7, DIRAS1, SLC39A3, 

SGTA, THOP1, ZNF554, TLE6, 
TLE2, AES, GNA11, TRNAG-
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CCC-90, GNA15, S1PR4, NCLN, 
CELF5 

 10 43016086 - RNGTT 
  67437756 - - 
  68087621 68110776 HDAC2, HS3ST5 
  72440018 72687011 MCM9, FAM184A, MAN1A1 
 11 90784888 90819545 PDCD7, UBAP1L, KBTBD13, 

RASL12, SLC51B, MTFMT, 
SPG21, TRNAC-GCA-171, 
ANKDD1A, PTGER2, TXNDC16 

  94642838 95043496 AGGF1, CRHBP, S100Z, F2RL1, 
F2R, IQGAP2, F2RL2, SV2C 

  96429678 96798725 DRD1, SFXN1 
 12 18833396 18887222 CRIM1, TRNAC-ACA-69, FEZ2, 

VIT 
  24154753 24358605 PKDCC, EML4 
  24765361 24795830 KCNG3, MTA3 
 13 40601425 40625833 TBC1D4 
  80309628 80336316 TRNAG-UCC-44 
 15 3353707 3976502 RALYL 
 16 28014281 28234371 ANO3, GDPD4, MYO7A, 

CAPN5, OMP, B3GNT6 
 17 19424207 19565039 RNF34, KDM2B, ORAI1, 

MORN3, TMEM120B, RHOF, 
SETD1B, HPD, PSMD9, 
WDR66, BCL7A, MLXIP 

  20509691 20834314 CCDC62, HIP1R, VPS37B, 
TRNAC-ACA-93, ABCB9, 
OGFOD2, ARL6IP4, PITPNM2, 
MPHOSPH9, C17H12orf65, 
CDK2AP1, SBNO1, KMT5A, 
RILPL2, SNRNP35, RILPL1, 
TMED2, DDX55, EIF2B1, 
GTF2H3, TCTN2 

 19 3809158 4316279 STK10, EFCAB9, UBTD2, 
SH3PXD2B, NEURL1B, DUSP1, 
ERGIC1, RPL26L1 

  40711638 40954154 NPR3, SUB1, ZFR, MTMR12 
 21 6275741 6782333 STT3B, OSBPL10, TRNAG-CCC-

155, TRNAG-CCC-156, TRNAG-
CCC-157, GPD1L, CMTM8, 
CMTM7, CMTM6 

 23 9415256 9562200 PAPSS2, TRNAC-ACA-119, 
ATAD1, PTEN 

  20429959 21882369 GOT1, NKX2-3, SLC25A28, 
ENTPD7, TRNAG-GCC-26, 
CUTC, ABCC2, DNMBP, CPN1, 
ERLIN1, CHUK, CWF19L1, 
BLOC1S2, PKD2L1, SCD, 
TRNAC-ACA-121, WNT8B, 
SEC31B, NDUFB8, TRNAC-
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GCA-269, HIF1AN, PAX2, 
TRNAG-UCC-68, SLF2, 
SEMA4G, MRPL43, TWNK, 
LZTS2, PDZD7, SFXN3, 
KAZALD1, TLX1, LBX1, BTRC 

 24 4774595 4981253 RSPH10B, CCZ1, LMTK2, 
BHLHA15, TECPR1, BRI3, 
BAIAP2L1, NPTX2, TMEM130 
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Figure S3.1: Cross validation results from ADMIXTURE with K=6 being the most efficient 

model. 

 

 

Table S3.2: Tukey’s HSD post hoc test showing p-values for pairwise comparisons between 

murrah populations ROH lengths (above diagonal) and FROH (below diagonal). Significant 

results are shown in bold. 

 RV_BRA RV_BUL_VAR RV_COL RV_IND RV_PH_BUL RV_PH_IND 

RV_BRA - 0.199 0.000 0.000 0.000 0.000 
RV_BUL_VAR 0.222 - 0.000 0.000 0.000 0.000 
RV_COL 0.008 0.355 - 0.791 1.000 0.997 
RV_IND 0.000 0.003 0.942 - 0.476 0.190 
RV_PH_BUL 0.000 0.036 1.000 0.994 - 1.000 
RV_PH_IND 0.000 0.000 0.853 1.000 0.979 - 
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Table S3.3: Locations of significant and divergent ROHs, the genes found within ROHs, and overlapping QTLs. Significance determined by SNPs 

exceeding the top 1% threshold, and divergent runs identified by regions of high FST scores. 

Population Chromosome Start 
Position 

End 
Position 

Genes QTL Traits 

RV_BRA 1 47135280 49099346 OLIG2, PAXBP1, SYNJ1, CFAP298, EVA1C, URB1, MRAP, 
MIS18A, HUNK, SCAF4, SOD1, TIAM1 

Luteal activity, Dry matter intake, 
Residual feed intake, Body weight 
(yearling), Carcass weight, Milk iron 
content,  

 1 61373189 61984973 TRNAC-GCA Body weight gain 
 2 133666865 137040288 TMEFF2, TRNAS-GGA Milk kappa-casein percentage, Bovine 

tuberculosis susceptibility 
 9 58046218 62175428 NDFIP1, GNPDA1, RNF14, PCDH12, DELE1, PCDH1, TRNAC-

GCA, ARAP3, FCHSD1, RELL2, HDAC3, DIAPH1, PCDHGC4, 
TAF7, PCDHB15, PCDHB10, PCDHB8, PCDHB7, PCDHB5, 
PCDHB4, PCDHB1, PCDHAC1, ZMAT2, HARS2, HARS, DND1, 
WDR55, IK, NDUFA2, TMCO6, CD14, SLC35A4, APBB3, SRA1, 
EIF4EBP3, SLC4A9, HBEGF, PFDN1, CYSTM1, IGIP, PURA, 
NRG2, PSD2, CXXC5, UBE2D2, TMEM173, SMIM33, ECSCR, 
DNAJC18, SPATA24, PROB1, MZB1, SLC23A1, PAIP2, MATR3, 
SIL1, CTNNA1, LRRTM2, HSPA9, ETF1, EGR1, REEP2, KDM3B, 
FAM53C, CDC25C, GFRA3, TRNAE-UUC, CDC23, KIF20A, 
BRD8, NME5, WNT8A, FAM13B, TRNAG-UCC, PKD2L2, 
MYOT, HNRNPA0, KLHL3 

Milk kappa-casein percentage, Milk 
unglycosylated kappa-casein 
percentage, Milk protein percentage, 
Stillbirth, Calving ease, Foot angle, 
Udder attachment, Rear leg placement - 
rear view, PTA type, Calving ease 
(maternal), Stature, Body depth, 
Strength, Net merit, Milk fat percentage, 
Daughter pregnancy rate, Inseminations 
per conception, Milk protein yield, Milk 
yield, Milk fat yield, Calving to 
conception interval, Calving interval, 
Gestation length, Body weight 
(yearling), Shear force, Conception rate 

 12 46848107 48349500 RPIA, TRNAG-UCC, EIF2AK3, TEX37, FOXI3, THNSL2, FABP1, 
SMYD1, KRCC1, CD8B, CD8A, RMND5A, RNF103, CHMP3, 
KDM3A, REEP1 

Milk riboflavin content, Body weight 
gain, Age at puberty, Hoof and leg 
disorders, Body weight (mature), 
Somatic cell score 

RV_BUL_VAR 4 45440372 47480462 MYH9, RBFOX2, MB, RASD2, MCM5, HMOX1, TOM1, 
HMGXB4, ISX, TRNAR-CCU  

Body weight gain, Body weight 
(yearling), Body weight (birth), Udder 
depth, Somatic cell score, Stillbirth, Net 
merit, Milk protein yield, Rump width, 
Feet and leg conformation, Calving ease, 
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Rear leg placement - rear view, Teat 
length, Rear leg placement - side view, 
Length of productive life, Calving ease 
(maternal), Daughter pregnancy rate, 
Foot angle, Teat placement – front, 
Strength, Inseminations per conception, 
PTA type, Udder attachment, Body 
depth, Stature, Milk fat percentage, Milk 
fat yield, Body weight (weaning), Milk 
protein percentage, Interval to first 
estrus after calving, Shear force 

 14 32123680 37890053 ATRN, GFRA4, ADAM33, SIGLEC1, HSPA12B, SPEF1, CENPB, 
CDC25B, AP5S1, MAVS, PANK2, RNF24, TRNAE-UUC, SMOX, 
ADRA1D, TRNAC-ACA, HAO1, BMP2, TRNAC-GCA, FERMT1, 
LRRN4, CRLS1, MCM8, TRMT6, CHGB, SHLD1, GPCPD1, 
PROKR2, CDS2, PCNA, TMEM230, SLC23A2, RASSF2, PRND, 
PRNP, ZMYND11, DIP2C, LARP4B, TRNAG-CCC, GTPBP4, 
WDR37, ADARB2  

Eye area pigmentation 
Milk yield 
Inhibin level, Average daily gain, 
Metabolic body weight, Interval to first 
estrus after calving, Net merit, Rear leg 
placement - side view, Milk fat yield, 
Rear leg placement - rear view, Stature, 
Body depth, Foot angle, Calving ease, 
Milk protein yield, Strength, Body 
weight gain, Milk rennet coagulation 
time, Milk potassium content, PTA type, 
Udder attachment, Udder height, Udder 
depth, Rump width, Milk iron content, 
Milk fat percentage, Milk protein 
percentage 

 23 37731334 45481611 RAB11FIP2, FAM204A, PRLHR, CACUL1, TRNAG-CCC, 
NANOS1, EIF3A, FAM45A, SFXN4, PRDX3, GRK5, TRNAC-GCA, 
RGS10, TIAL1, TRNAG-CCC, BAG3, INPP5F, MCMBP, SEC23IP, 
PLPP4, WDR11, FGFR2, ATE1, NSMCE4A, TACC2, BTBD16, 
PLEKHA1, HTRA1, DMBT1, CUZD1, TRNAQ-UUG, FAM24A, 
PSTK, IKZF5, ACADSB, HMX3, HMX2, BUB3, GPR26, CPXM2, 
CHST15, OAT, NKX1-2, LHPP, FAM53B, EEF1AKMT2, 
ABRAXAS2, ZRANB1, CTBP2, TEX36, EDRF1, UROS, BCCIP, 
DHX32, TRNAE-CUC, FANK1, ADAM12  

Milk yield, M. paratuberculosis 
susceptibility, Milk yield, Milk linoleic 
acid content, Twinning, Stature, Udder 
depth, Foot angle, Rear leg placement - 
side view, Calving ease, Calving ease 
(maternal), Rear leg placement - rear 
view, Stillbirth (maternal), Length of 
productive life, Stillbirth, Somatic cell 
score, Feet and leg conformation, Udder 
attachment, Strength, Rump width, Net 
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merit, Udder height, PTA type, Body 
depth, Milk protein percentage, Milk 
stearic acid content, Milk protein yield, 
Milk fat yield, Milk fat percentage, Teat 
length, Body weight (yearling), Age at 
puberty, Milk C16 index, Milk 
palmitoleic acid content, Average daily 
gain, Lean meat yield, Milk protein 
percentage, Angularity, Milk protein 
yield, Milk kappa-casein percentage, 
Milk glycosylated kappa-casein 
percentage, Daughter pregnancy rate, 
Teat thickness, Udder structure 

RV_COL 2 45662839 48841312 LRRC1, MLIP, TRNAW-CCA, TRNAC-GCA, TINAG, FAM83B, 
HCRTR2, GFRAL, HMGCLL1, BMP5, COL21A1, DST 

Bovine tuberculosis susceptibility, Milk 
glycerophosphocholine content, Body 
weight (mature), Stillbirth (maternal), 
Feet and leg conformation, Length of 
productive life, Udder depth, Udder 
attachment, Somatic cell score, 
Daughter pregnancy rate, PTA type, 
Lean meat yield, Fertility treatments, 
Bovine leukemia virus susceptibility, Net 
merit, Body depth, Foot angle, Udder 
cleft, Stature, Teat placement – front, 
Strength, Rump width, Udder height, 
Calving ease (maternal), Milk kappa-
casein percentage, Dairy form, Stillbirth, 
Rear leg placement - side view, Body 
weight gain, Teat length, Calving ease, 
Milk glycosylated kappa-casein 
percentage 

 5 24129102 25636234 TNR, KIAA0040, TNN, MRPS14, CACYBP, RABGAP1L, TRNAG-
ACC, TRNAC-ACA, GPR52 

Milk glycosylated kappa-casein 
percentage, Milk potassium content, 
Milk alpha-lactalbumin percentage, 
Interval to first estrus after calving, Body 
weight (yearling) 
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 12 73764413 73764413 - - 
RV_IND_1 1 92570342 98163171 TRNAR-GCG, ALCAM, CBLB, CCDC54, BBX, CD47, IFT57, 

HHLA2, MYH15, CIP2A 
Bovine tuberculosis susceptibility, Milk 
kappa-casein percentage, Milk 
glycosylated kappa-casein percentage, 
Age at puberty, Bovine respiratory 
disease susceptibility, Milk beta-
lactoglobulin percentage, Milk yield, 
Milk protein yield, Milk fat yield, Lean 
meat yield, Average daily gain, Body 
weight (yearling), Body weight gain, 
Interval from first to last insemination, 
Inseminations per conception, Udder 
height, Feet and leg conformation, 
Stillbirth (maternal), Calving ease 
(maternal), Stature, Foot angle, Udder 
attachment, Net merit, PTA type, Length 
of productive life, Stillbirth, Udder 
depth, Average daily gain, Milk 
riboflavin content 

 4 7280087 8951770 CENPM, TNFRSF13C, SHISA8, SREBF2, CCDC134, MEI1, 
SNU13, XRCC6, DESI1, PMM1, CSDC2, TRNAM-CAU, POLR3H, 
ACO2, PHF5A, TOB2, TEF, ZC3H7B, TRNAG-UCC, RANGAP1, 
CHADL, L3MBTL2, EP300, RBX1, XPNPEP3, DNAJB7, ST13, 
SLC25A17, MCHR1, MRTFA, SGSM3, ADSL, TNRC6B, FAM83F, 
GRAP2, ENTHD1 

Length of productive life, Strength, Net 
merit, Foot angle, Rear leg placement - 
side view, Calving ease, Milk fat 
percentage, Dairy form, Feet and leg 
conformation, Daughter pregnancy rate, 
Milk protein percentage, Calving ease 
(maternal), Stillbirth, Teat length, Rear 
leg placement - rear view, Milk iron 
content, Body weight (yearling), 
Maturity rate, Sire conception rate, Milk 
protein yield, Milk yield, Milk fat yield, 
Marbling score, Fat thickness at the 12th 
rib 

 6 19447997 21540090 BNIPL, PRUNE1, MINDY1, ANXA9, CERS2, SETDB1, ARNT, 
CTSK, CTSS, HORMAD1, GOLPH3L, ENSA, MCL1, ADAMTSL4, 
TRNAS-GGA, TRNAG-UCC, ECM1, TARS2, TRNAE-UUC, 
RPRD2, PRPF3, MRPS21, CIART, APH1A, CA14, ANP32E, 

Lean meat yield, Rump conformation, 
Milk yield, Milk protein percentage, 
Pregnancy rate, Body weight gain 
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PLEKHO1, VPS45, TRNAW-CCA, OTUD7B, MTMR11, SF3B4, 
SV2A, BOLA1, TRNAE-CUC, TRNAN-GUU, TRNAH-GUG, 
TRNAG-CCC, TRNAE-UUC, TRNAE-UUC, TRNAN-GUU, TRNAH-
GUG, TRNAN-GUU, TRNAV-UAC, TRNAQ-CUG, TRNAN-GUU, 
TRNAV-CAC, TRNAV-AAC, TRNAV-UAC, TRNAN-GUU, TRNAV-
CAC, TRNAG-CCC, TRNAV-AAC, TRNAV-CAC, TRNAQ-CUG, 
TRNAN-GUU, TRNAV-CAC, TRNAE-UUC, TRNAG-CCC, TRNAV-
AAC, TRNAH-GUG, TRNAG-CCC, TRNAV-AAC, TRNAV-UAC, 
TRNAQ-CUG, TRNAN-GUU, TRNAV-CAC, TRNAV-AAC, 
TRNAV-AAC, TRNAH-GUG, TRNAG-CCC, TRNAV-AAC, TRNAV-
UAC, TRNAQ-CUG, TRNAN-GUU, TRNAV-CAC, TRNAV-AAC, 
TRNAV-AAC, TRNAH-GUG, TRNAG-CCC, TRNAE-UUC, TRNAV-
CAC, TRNAN-GUU, TRNAQ-CUG, TRNAV-AAC, TRNAV-UAC, 
TRNAQ-CUG, TRNAN-AUU, TRNAV-CAC, TRNAG-CCC, TRNAV-
AAC, TRNAV-AAC, TRNAH-GUG, TRNAG-CCC, TRNAE-UUC, 
TRNAV-CAC, TRNAN-GUU, TRNAQ-CUG, TRNAQ-CUG, 
TRNAN-GUU, TRNAV-CAC, TRNAE-UUC, TRNAG-CCC, TRNAH-
GUG, TRNAV-AAC, TRNAV-AAC, TRNAG-CCC, TRNAV-CAC, 
TRNAN-GUU, TRNAQ-CUG, TRNAV-UAC, TRNAV-AAC, 
TRNAG-CCC, TRNAV-CAC, TRNAN-GUU, TRNAQ-CUG, 
TRNAV-UAC, TRNAN-GUU, TRNAV-AAC, TRNAN-GUU, 
TRNAH-GUG, TRNAN-GUU, TRNAV-AAC, TRNAV-CAC, 
TRNAN-GUU, TRNAH-GUG, TRNAG-CCC, TRNAE-UUC, 
TRNAH-GUG, TRNAN-GUU, TRNAH-GUG, TRNAN-GUU, 
TRNAV-CAC, TRNAV-AAC, TRNAN-GUU, TRNAH-GUG, 
TRNAQ-CUG, TRNAN-GUU, TRNAV-CAC, TRNAE-UUC, 
TRNAN-GUU, TRNAN-GUU, TRNAK-CUU, TRNAH-GUG, 
TRNAG-UCC, TRNAE-CUC, HJV, TXNIP, POLR3GL, ANKRD34A, 
LIX1L, RBM8A, PEX11B, ITGA10, ANKRD35, PIAS3, NUDT17, 
POLR3C, RNF115, CD160, PDZK1 

 6 24093261 26523748 SPAG17, WDR3, GDAP2, TENT5C, MAN1A2, TRNAE-UUC, 
VTCN1, TRIM45, TTF2, CD101, PTGFRN, CD2, IGSF3 

Length of productive life, Dairy capacity 
composite index, Milk fat percentage, 
Milk protein yield, Milk casein 
percentage, Milk protein yield, Milk fat 
percentage, Milk alpha-S2-casein 
percentage, Milk phosphorylated alpha-
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S2-casein percentage, Bovine leukemia 
virus susceptibility, Tenderness score, 
Body weight (yearling), Bovine 
respiratory disease susceptibility 

RV_IND_2 2 45919131 47487099 MLIP, TRNAW-CCA, TRNAC-GCA, TINAG, FAM83B, HCRTR2, 
GFRAL, HMGCLL1 

Milk glycerophosphocholine content, 
Body weight (mature), Stillbirth 
(maternal), Feet and leg conformation, 
Length of productive life, Udder depth, 
Udder attachment, Somatic cell score, 
Daughter pregnancy rate, PTA type, 
Lean meat yield 

 9 58362401 62412285 ARAP3, FCHSD1, RELL2, HDAC3, DIAPH1, PCDHGC4, TAF7, 
PCDHB15, PCDHB10, PCDHB8, PCDHB7, PCDHB5, PCDHB4, 
PCDHB1, PCDHAC1, ZMAT2, HARS2, HARS, DND1, WDR55, 
IK, NDUFA2, TMCO6, CD14, SLC35A4, APBB3, SRA1, 
EIF4EBP3, SLC4A9, HBEGF, PFDN1, CYSTM1, IGIP, PURA, 
NRG2, PSD2, CXXC5, UBE2D2, TMEM173, SMIM33, ECSCR, 
DNAJC18, SPATA24, PROB1, MZB1, SLC23A1, PAIP2, MATR3, 
SIL1, CTNNA1, LRRTM2, HSPA9, ETF1, EGR1, REEP2, KDM3B, 
FAM53C, CDC25C, GFRA3, TRNAE-UUC, CDC23, KIF20A, 
BRD8, NME5, WNT8A, FAM13B, TRNAG-UCC, PKD2L2, 
MYOT, HNRNPA0, KLHL3, SPOCK1 

Milk kappa-casein percentage, Milk 
unglycosylated kappa-casein 
percentage, Milk protein percentage, 
Stillbirth, Calving ease, Foot angle, 
Udder attachment , Rear leg placement - 
rear view, PTA type, Calving ease 
(maternal), Stature, Body depth, 
Strength, Net merit, Milk fat percentage, 
Inseminations per conception, Milk 
protein yield, Milk yield, Milk fat yield, 
Calving to conception interval, Calving 
interval, Gestation length, Body weight 
(yearling), Shear force, Conception rate, 
Length of productive life, Rump width, 
Udder depth, Daughter pregnancy rate, 
Somatic cell score 

 14 77753047 80039684 BTBD3, TRNAC-ACA, JAG1, SLX4IP, MKKS Body depth, Udder cleft, Stature, 
Daughter pregnancy rate, Stillbirth 
(maternal), PTA type, Rear leg 
placement - rear view, Dairy form, Milk 
yield, Teat length, M. paratuberculosis 
susceptibility, Milk fat yield, Shear force, 
Length of productive life, Udder depth, 
Rump width, Feet and leg conformation, 
Calving ease (maternal), Teat placement 
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– front, Foot angle, Udder attachment, 
Strength, Teat placement – rear, Udder 
height, Rear leg placement - side view, 
Net merit, Somatic cell score, Rump 
width, Milk protein yield, Stillbirth, 
Conception rate 

 17 28910234 30395257 ZNF84, ZNF26, ZNF605, GUCY1A1, GUCY1B1, ASIC5, TDO2, 
CTSO 

Milk myristoleic acid content, Milk C14 
index, Tick resistance 

RV_PH_BUL 8 517175 3385871 TRNAY-AUA Metabolic body weight, Calving ease, 
Luteal activity, Fecal egg count 

 8 53912684 57223933 FOXP2, PPP1R3A, SMIM30, GPR85, BMT2, TMEM168, 
LSMEM1, IFRD1, ZNF277, DOCK4, TRNAC-ACA, IMMP2L, 
LRRN3 

Milk fat yield, Average daily gain, Bovine 
tuberculosis susceptibility ,Milk kappa-
casein percentage 

 9 61665681 62869428 BRD8, NME5, WNT8A, FAM13B, TRNAG-UCC, PKD2L2, 
MYOT, HNRNPA0, KLHL3, SPOCK1 

Conception rate, Calving ease, Udder 
attachment, Milk fat percentage, 
Stature, Strength, Length of productive 
life, Stillbirth, Rump width, Foot angle, 
Milk fat yield, Udder depth, Daughter 
pregnancy rate, Body depth, Net merit, 
PTA type, Somatic cell score, Calving 
ease (maternal), Milk protein 
percentage, Rear leg placement - rear 
view, Milk protein yield, Milk yield, Feet 
and leg conformation, M. 
paratuberculosis susceptibility 

 20 41869077 42150353 TRPM1, MTMR10, FAN1, MPHOSPH10, MCEE Interval to first estrus after calving 
RV_PH_IND 2 125608406 127008452 TRNAL-CAA, TFCP2L1, CLASP1, NIFK, TSN, TRNAY-GUA - 
 3 55724516 67567277 TRIM25, DGKE, NOG, ANKFN1, TMEM100, MMD, HLF, 

STXBP4, TOM1L1, TRNAC-GCA, KIF2B, CA10, TRNAS-GGA, 
MFSD14B, ANXA10, DDX60, PALLD, CBR4, SH3RF1, NEK1, 
CLCN3, TRNAH-AUG, MFAP3L, AADAT, GALNTL6  

- 

 3 81810890 85696041 IZUMO3, TRNAW-CCA, ELAVL2, DMRTA1, CDKN2B, MTAP, 
IFNE 

- 

 3 115661427 117152262 PRUNE2, FOXB2, VPS13A, GNA14, CEP78 - 
 4 54379396 59331565 GNPTAB, SYCP3, CHPT1, MYBPC1, SPIC, ARL1, UTP20, 

SLC5A8, ANO4, TRNAW-CCA, TRNAC-ACA, GAS2L3, NR1H4, 
- 
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SLC17A8, SCYL2, DEPDC4, ACTR6, UHRF1BP1L, ANKS1B, 
TRNAG-CCC, FAM71C, APAF1, IKBIP, SLC25A3, TMPO, 
TRNAW-CCA, TRNAD-GUC, NEDD1, CFAP54, CDK17 

 6 34302312 35846761 GPSM2, AKNAD1, STXBP3, FNDC7, PRPF38B, HENMT1, 
FAM102B, TRNAC-GCA, VAV3, NTNG1 

- 

 9 63761276 71039923 TGFBI, LECT2, IL9, SLC25A48, CXCL14, TRNAA-AGC, 
NEUROG1, TIFAB, PITX1, CATSPER3, PCBD2, TXNDC15, 
DDX46, CAMLG, SEC24A, SAR1B, JADE2, CDKN2AIPNL, 
UBE2B, CDKL3, PPP2CA, SKP1, TCF7, TRNAC-GCA, VDAC1, 
C9H5orf15, FSTL4, HSPA4, ZCCHC10, AFF4, LEAP2, GDF9, 
SHROOM1, SOWAHA, TRNAC-GCA, BTBD2, CSNK1G2, 
SCAMP4, ADAT3, ABHD17A, KLF16, REXO1, ATP8B3, 
ONECUT3, TCF3, MBD3, MEX3D, PLK5, ADAMTSL5, REEP6, 
PCSK4, APC2, RPS15, DAZAP1, GAMT, NDUFS7, TRNAN-GUU, 
TRNAF-GAA, EFNA2, CIRBP, MIDN, ATP5F1D, CBARP, STK11, 
SBNO2, GPX4, POLR2E, ARHGAP45, ABCA7, CNN2, 
TMEM259, GRIN3B, WDR18, ARID3A, KISS1R, TRNAW-CCA, 
R3HDM4, MED16, CFD, ELANE, PRTN3, AZU1, PLPPR3, 
PTBP1, MISP, PALM, PRSS57, FSTL3, RNF126, FGF22, 
POLRMT, HCN2, BSG, GZMM, CDC34, TPGS1, MADCAM1, 
ODF3L2, SHC2, C2CD4C, THEG, MIER2, PLPP2, PGBD2, 
TRNAE-CUC, TRNAL-CAA, ZNF692, ZNF672, SH3BP5L, LYPD8, 
TRIM58, GCSAML, NLRP3, ZNF496, TRIM52, RACK1, TRIM41, 
TRNAV-CAC, TRNAK-CUU, TRNAV-AAC, TRNAK-CUU, TRNAA-
UGC, TRIM7, TRNAT-UGU, TRNAL-AAG 

- 

 15 29589045 30861497 CSMD3 - 
 17 59617565 72540565 HHIP, ANAPC10, ABCE1, OTUD4, TRNAC-GCA, SMAD1, 

MMAA, ZNF827, LSM6, REELD1, SLC10A7, TTC29, POU4F2, 
EDNRA, TMEM184C, PRMT9, ARHGAP10, TRNAC-ACA, 
NR3C2, TRNAC-GCA, IQCM, TRNAE-UUC, DCLK2, LRBA, 
MAB21L2, RPS3A, SH3D19, PRSS48, FAM160A1, GATB, 
TRNAW-CCA, FBXW7, TMEM154, TIGD4, ARFIP1, FHDC1, 
TRIM2, MND1, TMEM131L, TLR2, RNF175, SFRP2, DCHS2, 
PLRG1, FGB, FGA, FGG, LRAT, RBM46, NPY2R, MAP9, TLL1, 
CPE, MSMO1, KLHL2 

- 
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 18 38417846 39651090 PMFBP1, DHX38, TXNL4B, HP, DHODH, IST1, ZNF821, 
ATXN1L, AP1G1, PHLPP2, MARVELD3, TAT, CHST4, ZNF19, 
TRNAG-CCC, ZNF23, TRNAM-CAU, CALB2, CMTR2, HYDIN 

- 
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Table S3.4: Frequency Table of unique QTLs per murrah population 

QTL Class RV_BR
A 

RV_BUL_VA
R 

RV_CO
L 

RV_IND_
1 

RV_IND_
2 

RV_IND_
3 

RV_PH_BU
L 

RV_PH_IN
D 

Exterior 6 32 12 15 23 0 7 0 
Health 2 3 3 4 6 0 4 0 
Meat & 
Carcass 

2 2 1 5 3 0 0 0 

Milk 15 35 6 25 19 0 7 0 
Production 11 24 8 14 15 0 7 0 
Reproductio
n 

12 17 7 13 17 0 8 0 

 

Figures S3.5 – S3.11: Distribution of genotypes for significant SNPs identified in PCAdapt 

analysis. In order: S2.6 AX-8511578 (BBU1: 61409049), S2.7 AX-85126364 (BBU11: 

23558419), S2.8 AX-85042861 (BBU11: 48810245), S2.9 AX-85136739 (BBU12: 2572267), 

S2.10 AX-85112690 (BBU16: 10093932), S2.11 AX-85114321 (BBU16: 14825721), S2.12 AX-

85092744 (BBU19: 62289241). 
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Figure S3.12 & S3.13: Correlation plots of r2 values between environmental variables. S2.13 

showing independent variables used. 
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Table S3.14: R.Sambada Top SNPs per Environmental Variable: 

SNP Genotype Environmental 
Variable 

Q-value (G) Chromosome Position Nearest Gene 

AX-85106286 GG Longitude 1.06E-06 9 31993994 TENM2 
AX-85059527 GG  2.92E-06 13 40889619 TBC1D4 
AX-85074562 CC  3.25E-06 6 14685275 MSTO1 
AX-85094684 AA Latitude 3.68E-11 10 83054152 TENT5A 
AX-85142269 TT  3.68E-11 5 58652853 LYPLAL1 
AX-85103603 TT  3.68E-11 4 82674961 ADAMTS20 
AX-85092168 AA bio1 2.29E-12 1 195528219 ERG* 
AX-85094684 AA  5.98E-12 10 83054152 TENT5A 
AX-85104855 AA  5.98E-12 14 46542199 RAB18 
AX-85061534 TT bio2 1.07E-05 2 144216220 NBEAL1* 
AX-85098066 CC  1.34E-05 24 19052822 HS3ST4* 
AX-85069096 GG  1.50E-05 2 144304554 NBEAL1* 
AX-85104855 AA bio3 7.30E-10 14 46542199 RAB18 
AX-85105029 GG  1.40E-08 2 167810729 IRS1 
AX-85094684 AA  1.40E-08 10 83054152 TENT5A 
AX-85104855 AA bio13 5.97E-11 14 46542199 RAB18 
AX-85079551 TT  2.10E-08 19 31332072 ZNF131 
AX-85066583 CC  5.31E-08 16 40734610 STK33 
AX-85096756 CT bio14 7.19E-08 15 59087609 MOS 
AX-85056537 TT  8.35E-07 4 65746631 LRIG3 
AX-85130232 CC  2.07E-06 1 153165367 MFSD1 
AX-85045997 CC tmax7 1.32E-09 2 187296850 IGSF21 
AX-85106286 GG  1.40E-08 9 31993994 TENM2 
AX-85103137 GG  5.55E-08 14 78164084 BTBD3 
AX-85104083 CT prec11 5.96E-06 17 24985973 TMEM132D* 
AX-85104083 CC  1.64E-05 17 24985973 TMEM132D* 
AX-85126469 GG  3.26E-05 21 25791681 CHL1 

* SNP within gene 
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Table S3.15: XP-EHH selection signatures across each population 

Population Chromosome Start Position End Position Genes 

RV_BRA 1 133779976 133807071 - 
 3 115919425 116229194 PRUNE2, FOXB2, VPS13A, GNA14 
 6 63286893 - - 
 9 19058695 - - 
 10 39950115 40271533 NT5E, SNX14, SYNCRIP  
  40858698 - - 
 11 57861601 - CSNK1G1, PCLAF, TRIP4, ZNF609, OAZ2 
 13 74125028 - LRCH1, RUBCNL, LRRC63 
 21 19523761 - GRM7 

RV_BUL_VAR 1 194336469 194565143 DYRK1A, KCNJ6 
 5 70529743 70873701 - 
 10 84863876 84958414 SH3BGRL2 
  86179124 - - 
 23 43545229 - OAT, NKX1-2, LHPP 

RV_COL 1 110440719 110586482 STXBP5L, POLQ 
 8 70999063 - GSDME, MPP6 
 9 26295138 - EDIL3 
  26460169 26672900 - 
 13 29240287 29454906 - 
 17 30963813 31151252 GLRB, GRIA2 

RV_IND_1 3 108794711 - PTAR1, TRNAY-AUA, C3H9orf135 
  108913910 108966422 MAMDC2 
 8 69083066 69226073 SNX10, SKAP2 
 9 78347381 78367978 - 
  78488459 78579231 - 
 12 21145631 21300884 DHX57, MORN2, ARHGEF33, SOS1, CDKL4, MAP4K3 
  21406441 21456965 - 
  21569223 21649366 TMEM178A, THUMPD2 
 13 65859076 66046219 SERTM1, RFXAP, SMAD9, ALG5, EXOSC8, SUPT20H 

RV_IND_2 1 24166681 24505558 TUSC3, TRNAG-CCC, MSR1  



Supplementary Material 

278 
 

 2 166439814 166710773 NYAP2 
 7 6332726 - TAPT1, PROM1  
 12 87087448 - RRM2, CYS1, KLF11, GRHL1, TAF1B 
  87213093 - - 
 17 30161501 30215234 TDO2, CTSO 
 21 42157322 - - 

RV_IND_3 1 47237918 47326479 OLIG2, C1H21orf62 
  47447328 - PAXBP1, SYNJ1 
  47596180 - CFAP298, EVA1C 
  47715670 47750793 URB1, MRAP 
 9 50452405 50525772 IL17B, PCYOX1L, GRPEL2, AFAP1L1, ABLIM3 
 12 9926660 - SEMA4F, M1AP, DOK1, LOXL3, HTRA2, AUP1, DQX1, TLX2, PCGF1 
  10027482 10064161 LBX2, TTC31, CCDC142, MRPL53, MOGS, WBP1, INO80B, RTKN, WDR54, C12H2orf81, 

DCTN1 
 15 31216570 31411859 CSMD3 

RV_PH_BUL 5 28545216 - KAZN  
 8 87497483 88023496 SLC13A1, IQUB, NDUFA5, ASB15, LMOD2, WASL¸HYAL4, TMEM229A 
  90305818 90381562 GRM8 
 15 36559391 36700146 SAMD12 
 16 82456798 82525348 GRIA4 
 23 6014005 - - 

RV_PH_IND 1 112883396 113079871 HACD2, MYLK, CCDC14, ROPN1, KALRN 
 3 116130568 116294369 VPS13A, GNA14 
 4 3937165 4071981 WNT7B, ATXN10, FBLN1, RIBC2, SMC1B, 
 9 77356325 77401670 - 
 16 51482636 - BSX, JHY, CRTAM, UBASH3B 
 17 67333585 67363978 TRNAW-CCA, FBXW7 
 18 9853920 10131682 CDH13, HSBP1, MLYCD, SLC38A8, MBTPS1, HSDL1, DNAAF1, TAF1C, ADAD2, KCNG4, 

WFDC1, ATP2C2, TLDC1 



Chapter Four: Mitigating the Effects of Ascertainment Bias using Linkage Disequilibrium Pruning 

279 
 

Table S3.16: XP-EHH Gene Ontology 

Population Gene 
Ontology 

Class 

Biological 
Pathway 

Description Genes 

RV_BRA Process 
GO:0030382 

sperm mitochondrion 
organization 

VPS13A 

  GO:0046086 adenosine biosynthetic process NT5E 
 Function GO:0010855 adenylate cyclase inhibitor activity GRM7 
  

GO:0010854 
adenylate cyclase regulator 
activity 

GRM7 

RV_BUL_VAR Process 
GO:0010121 

arginine catabolic process to 
proline via ornithine 

OAT 

  
GO:0019544 

arginine catabolic process to 
glutamate 

OAT 

  
GO:0019493 

arginine catabolic process to 
proline 

OAT 

 Function 
GO:0004587 

ornithine-oxo-acid transaminase 
activity 

OAT 

  
GO:0050155 

ornithine(lysine) transaminase 
activity 

OAT 

RV_COL Function GO:0022835 transmitter-gated channel activity GLRB, GRIA2 
  

GO:0022824 
transmitter-gated ion channel 
activity 

GLRB, GRIA2 

  
GO:0005230 

extracellular ligand-gated ion 
channel activity 

GLRB, GRIA2 

  GO:0030594 neurotransmitter receptor activity GLRB, GRIA2 
 Component 

GO:0016935 
glycine-gated chloride channel 
complex 

GLRB 

RV_IND_2 Process GO:0000083 regulation of transcription 
involved in G1/S transition of 
mitotic cell cycle 

RRM2, KLF11 

 Component 
GO:0070860 

RNA polymerase I core factor 
complex 

TAF1B 

RV_PH_BUL Process 
GO:0030041 actin filament polymerization 

LMOD2, 
WASL 

  
GO:0007215 

glutamate receptor signaling 
pathway 

GRM8 

  
GO:0008154 

actin polymerization or 
depolymerization 

LMOD2, 
WASL 

 Function GO:0008066 glutamate receptor activity GRM8, GRIA4 
RV_PH_IND Process 

GO:0061180 
mammary gland epithelium 
development 

WNT7B, 
ATP2C2 

  

GO:0030324 lung development 

WNT7B, 
FBXW7, 
DNAAF1 
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Supplementary Table S4.1: Number of markers retained by LD pruning in each dataset for 

SNP array and WGS. 

LD Pruning 
Target 

Species r2 Threshold 

0.01 0.05 0.1 0.2 0.5 0.8 1 

ALL SNP 944 2739 5265 9952 27891 38397 40695 

WGS 1177 2826 7189 20656 53738 67457 72434 

RIVER SNP 1213 3780 9369 19847 33406 38178  

WGS 1590 3668 9445 23929 43549 49959  

RIVIT_MED SNP 852 1292 1764 3415 15153 27116  

WGS 1358 1860 2502 4920 17912 29334  

RIVPK_NIL SNP 952 1581 2259 4573 23613 36469  

WGS 1657 1879 2580 4069 14157 31443  

SWAMP  SNP 1162 4203 8643 13663 19000 21135  

WGS 1581 3681 8814 21663 38070 41271  

SWACN_GUI SNP 871 1257 1785 3313 9741 12272  

WGS 1395 2084 2979 5821 21602 31140  

SWATH_THS SNP 931 1054 1281 1949 5259 9690  

WGS 1627 1705 1875 2476 5929 12020  
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Supplementary Table S4.2: MAF Correlation Tests between buffalo species (river MAF vs 

swamp MAF), and genomic data (SNP array MAF vs WGS MAF) 

LD Pruning 
Target 

Prune Within Species between Data Within Data between Species 

  River Swamp SNP WGS 

ALL 1.00 0.378 < 0.001 0.276 < 0.001 
 0.80 0.400 < 0.001 0.278 < 0.001 
 0.50 0.317 < 0.001 0.331 < 0.001 
 0.20 0.175 < 0.001 0.011 < 0.001 
 0.10 0.409 0.016 < 0.001 < 0.001 
 0.05 0.247 0.810 < 0.001 0.007 
 0.01 0.687 0.772 < 0.001 0.810 

RIVER 0.80 0.585 < 0.001 0.275 0.284 
 0.50 0.583 < 0.001 0.274 0.189 
 0.20 0.308 < 0.001 0.308 0.136 
 0.10 0.003 < 0.001 0.402 0.257 
 0.05 < 0.001 < 0.001 0.491 0.717 
 0.01 < 0.001 < 0.001 0.484 0.410 

RIVIT_MED 0.80 0.002 < 0.001 0.294 0.641 
 0.50 0.002 < 0.001 0.294 0.904 
 0.20 < 0.001 < 0.001 0.334 0.748 
 0.10 < 0.001 < 0.001 0.356 0.340 
 0.05 < 0.001 < 0.001 0.361 0.255 
 0.01 < 0.001 < 0.001 0.362 0.245 

RIVPK_NIL 0.80 0.003 < 0.001 0.277 0.373 
 0.50 < 0.001 < 0.001 0.296 0.343 
 0.20 < 0.001 < 0.001 0.400 0.386 
 0.10 < 0.001 < 0.001 0.429 0.401 
 0.05 < 0.001 < 0.001 0.436 0.423 
 0.01 < 0.001 < 0.001 0.457 0.433 

SWAMP 0.80 0.299 0.004 0.451 0.482 
 0.50 0.301 0.001 0.624 0.573 
 0.20 0.299 < 0.001 0.373 0.527 
 0.10 0.309 < 0.001 0.020 0.321 
 0.05 0.326 < 0.001 < 0.001 0.105 
 0.01 0.364 < 0.001 < 0.001 0.126 

SWACN_GUI 0.80 0.297 < 0.001 < 0.001 0.993 
 0.50 0.302 < 0.001 < 0.001 0.961 
 0.20 0.326 < 0.001 < 0.001 0.513 
 0.10 0.336 < 0.001 < 0.001 0.399 
 0.05 0.336 < 0.001 < 0.001 0.419 
 0.01 0.331 < 0.001 < 0.001 0.433 

SWATH_THS 0.80 0.315 < 0.001 < 0.001 0.482 
 0.50 0.320 < 0.001 < 0.001 0.417 
 0.20 0.330 < 0.001 < 0.001 0.334 
 0.10 0.322 < 0.001 < 0.001 0.373 
 0.05 0.321 < 0.001 < 0.001 0.361 
 0.01 0.320 < 0.001 < 0.001 0.366 

 



Supplementary Materials   

282 
 

Table S4.3: HO across SNP array for River and Swamp. Bold values indicate significant results between species, r2 thresholds and LD datasets. 

 

 

LD Pruning 
Target 

Species r2 Threshold Significant 

0.01 0.05 0.1 0.2 0.5 0.8 1 

ALL River 0.402  
(±0.045) 

0.410 
(±0.049) 

0.396  
(±0.047) 

0.373  
(±0.046) 

0.392  
(±0.048) 

0.397  
(±0.048) 

0.397  
(±0.048) 

0.153 

Swamp 0.374  
(±0.015) 

0.387 
(±0.018) 

0.361  
(±0.016) 

0.300  
(±0.013) 

0.157  
(±0.011) 

0.123  
(±0.011) 

0.118  
(±0.011) 

< 0.001 

RIVER River 0.472  
(±0.052) 

0.466 
(±0.053) 

0.436  
(±0.050) 

0.410  
(±0.048) 

0.399  
(±0.048) 

0.398  
(±0.048) 

 < 0.001 

Swamp 0.124  
(±0.011) 

0.121 
(±0.011) 

0.124  
(±0.012) 

0.122  
(±0.011) 

0.121  
(±0.011) 

0.119  
(±0.011) 

 0.937 

RIVIT_MED River 0.443  
(±0.052) 

0.442 
(±0.054)  

0.439  
(±0.054) 

0.430  
(±0.050) 

0.408  
(±0.049) 

0.405  
(±0.050) 

 0.025 

Swamp 0.123  
(±0.007) 

0.120 
(±0.009) 

0.121  
(±0.010) 

0.122  
(±0.010) 

0.120  
(±0.011) 

0.120  
(±0.011) 

 0.987 

RIVPK_NIL River 0.456  
(±0.054) 

0.456  
(±0.054) 

0.452  
(±0.052) 

0.445  
(±0.051) 

0.406  
(±0.048) 

0.399  
(±0.048) 

 0.155 

Swamp 0.118  
(±0.011) 

0.115  
(±0.009) 

0.120  
(±0.010) 

0.120  
(±0.013) 

0.121  
(±0.011) 

0.119  
(±0.011) 

 0.940 

SWAMP  River 0.396  
(±0.049) 

0.398  
(±0.047) 

0.398  
(±0.047) 

0.399  
(±0.048) 

0.400  
(±0.048) 

0.400  
(±0.048) 

 0.836 

Swamp 0.429  
(±0.021) 

0.330  
(±0.013) 

0.292  
(±0.013) 

0.268  
(±0.017) 

0.229  
(±0.011) 

0.214  
(±0.012) 

 < 0.001 

SWACN_GUI River 0.399 
(±0.047) 

0.403  
(±0.050) 

0.403  
(±0.049) 

0.399  
(±0.049) 

0.398  
(±0.048) 

0.398  
(±0.048) 

 0.729 

Swamp 0.425 
(±0.024) 

0.416  
(±0.024) 

0.408  
(±0.023) 

0.375  
(±0.017) 

0.324  
(±0.016) 

0.318  
(±0.017) 

 < 0.001 

SWATH_THS River 0.403 
(±0.045) 

0.403  
(±0.046) 

0.402  
(±0.047) 

0.401  
(±0.046) 

0.402  
(±0.047) 

0.400  
(±0.048) 

 0.984 

Swamp 0.416 
(±0.017) 

0.408  
(±0.018) 

0.404  
(±0.015) 

0.391  
(±0.010) 

0.349  
(±0.008) 

0.329  
(±0.007) 

 0.027 

Significant River 0.002 0.001 0.051 0.012 0.347 0.758   

 Swamp < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001   
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Table S4.4: HE across SNP array for River and Swamp. Bold values indicate significant results between species, r2 thresholds and LD datasets. 

 

 

LD Pruning 
Target 

Species r2 Threshold Significant 

0.01 0.05 0.1 0.2 0.5 0.8 1 

ALL River 0.381  
(±0.018) 

0.387 
(±0.021) 

0.373  
(±0.021) 

0.352  
(±0.021) 

0.370  
(±0.022) 

0.373  
(±0.022) 

0.373  
(±0.022) 

0.258 

Swamp 0.366  
(±0.010) 

0.379 
(±0.012) 

0.354  
(±0.011) 

0.293  
(±0.005) 

0.153  
(±0.004) 

0.120  
(±0.004) 

0.114  
(±0.004) 

< 0.001 

RIVER River 0.444  
(±0.031) 

0.438 
(±0.025) 

0.409  
(±0.021) 

0.384  
(±0.021) 

0.374  
(±0.022) 

0.373  
(±0.022) 

 < 0.001 

Swamp 0.121  
(±0.004) 

0.118 
(±0.004) 

0.120  
(±0.004) 

0.119  
(±0.004) 

0.117  
(±0.004) 

0.116  
(±0.004) 

 0.915 

RIVIT_MED River 0.414  
(±0.040) 

0.413 
(±0.045)  

0.412  
(±0.038) 

0.402  
(±0.023) 

0.382  
(±0.022) 

0.380  
(±0.022) 

 0.242 

Swamp 0.121  
(±0.003) 

0.117 
(±0.003) 

0.117  
(±0.003) 

0.119  
(±0.004) 

0.117  
(±0.004) 

0.120  
(±0.004) 

 0.909 

RIVPK_NIL River 0.427  
(±0.004) 

0.428  
(±0.043) 

0.425  
(±0.042) 

0.416  
(±0.031) 

0.380  
(±0.022) 

0.375  
(±0.023) 

 0.048 

Swamp 0.114  
(±0.005) 

0.112  
(±0.005) 

0.118  
(±0.005) 

0.117  
(±0.005) 

0.118  
(±0.004) 

0.116  
(±0.004) 

 0.941 

SWAMP  River 0.373  
(±0.021) 

0.374  
(±0.021) 

0.374  
(±0.022) 

0.375  
(±0.022) 

0.376  
(±0.023) 

0.376  
(±0.023) 

 0.899 

Swamp 0.421  
(±0.016) 

0.322  
(±0.006) 

0.284  
(±0.006) 

0.261  
(±0.005) 

0.222  
(±0.004) 

0.208  
(±0.005) 

 < 0.001 

SWACN_GUI River 0.375 
(±0.024) 

0.376  
(±0.023) 

0.377  
(±0.023) 

0.377  
(±0.023) 

0.375  
(±0.023) 

0.375  
(±0.022) 

 0.994 

Swamp 0.413 
(±0.039) 

0.407  
(±0.036) 

0.396  
(±0.029) 

0.365  
(±0.018) 

0.316  
(±0.014) 

0.311  
(±0.015) 

 < 0.001 

SWATH_THS River 0.377 
(±0.021) 

0.376  
(±0.021) 

0.377  
(±0.022) 

0.377  
(±0.022) 

0.378  
(±0.022) 

0.377  
(±0.022) 

 0.999 

Swamp 0.404 
(±0.040) 

0.396  
(±0.036) 

0.399  
(±0.034) 

0.384  
(±0.030) 

0.339  
(±0.023) 

0.322  
(±0.022) 

 0.005 

Significant River < 0.001 0.002 0.020 0.024 0.830 0.871   

 Swamp < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001   
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Table S4.5: Number of Markers across SNP array for River and Swamp 

 

 

LD Pruning 
Target 

Species r2 Threshold 

0.01  0.05  0.1  0.2  0.5  0.8  1  

Total Poly Total Poly Total Poly Total Poly Total Poly Total Poly Total Poly 

ALL River 944 919 
(±28.0) 

2739 2682.5 
(±75.4) 

5265 5121.5 
(±177.1) 

9952 9599.5 
(±430.2) 

27891 27229 
(±989.4) 

38397 37582.5 
(±1277.3) 

40,695 39843 
(±1355.8) 

Swamp  878 
(±25.6) 

 2627 
(±62.7) 

 4923 
(±133.1) 

 8179 
(±267.0) 

 14094 
(±1509.2) 

 16357 
(±2734.5) 

 16729 
(±3014.2) 

RIVER River 1213 1208.5 
(±10.7) 

3780 3761 
(±37.8) 

9369 9247 
(±185.1) 

19847 19460 
(±583.6) 

33406 32692.5 
(±1098.8) 

38178 37376.5 
(±1263.5) 

  

Swamp  511 
(±99.4) 

 1583 
(±297.4) 

 4021 
(±729.3) 

 8448.0 
(±1489.0) 

 14035 
(±2452.8) 

 15859 
(±2804.5) 

  

RIVIT_MED River 852 848 
(±19.5) 

1292 1287 
(±32.7) 

1764 1757.0 
(±42.1) 

3415 3402 
(±88.5) 

15153 15068 
(±473.4) 

27116 26955.5 
(±871.1) 

  

Swamp  368 
(±62.3) 

 542 
(±95.4) 

 740 
(±136.8) 

 1447 
(±267.2) 

 6376 
(±1132.3) 

 11382 
(±2023.7) 

  

RIVPK_NIL River 952 947 
(±14.3) 

1581 1574.5 
(±22.6) 

2259 2252.5 
(±34.4) 

4573 451.5 
(±78.3) 

23613 23191 
(±743.9) 

36469 35762 
(±1215.3) 

  

Swamp  386 
(±73.3) 

 641 
(±124.4) 

 957 
(±171.2) 

 1933 
(±361.0) 

 9883 
(±1743.3) 

 15158 
(±2678.6) 

  

SWAMP River 1162 1137 
(±36.3) 

4203 4106.5 
(±133.7) 

8643 8464.5 
(±280) 

13663 13405.5 
(±439.0) 

19000 18648.5 
(±609.5) 

21135 20736 
(±676.0) 

  

Swamp  1140 
(±18.6) 

 3687 
(±111.3) 

 7306 
(±327.2) 

 11216 
(±567.3) 

 13893 
(±899.8) 

 14628 
(±1226.3) 

  

SWACN_GUI River 871 853 
(±28.4) 

1257 1235 
(±39.0) 

1785 1755.5 
(±55.9) 

3313 3251 
(±105.5) 

9741 9557 
(±318.4) 

12272 12038.5 
(±397.9) 

  

Swamp  859 
(±20.4) 

 1234 
(±31.9) 

 1743 
(±51.1) 

 3139 
(±136.3) 

 8795 
(583.6) 

 11035 
(±763.0) 

  

SWATH_THS River 931 904 
(±27.9) 

1054 1024.5 
(±31.7) 

1281 1248.5 
(±38.6) 

1949 1904.5 
(±59.6) 

5259 5156.5 
(±157.1) 

9690 9506 
(±304.5) 

  

Swamp  914 
(±24.8) 

 1018 
(±30.2) 

 1250.5 
(±35.6) 

 1878 
(±59.8) 

 4832 
(±237.1) 

 8700 
(±488.3) 
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Table S4.6: F across SNP array for River and Swamp. Bold values indicate significant results between species, r2 thresholds and LD datasets. 

 

 

LD Pruning 
Target 

Species r2 Threshold Significant 

0.01 0.05 0.1 0.2 0.5 0.8 1 

ALL River -0.043 
(±0.066) 

-0.050 
(±0.061) 

-0.050 
(±0.062) 

-0.048 
(±0.060) 

-0.046 
(±0.060) 

-0.053 
(±0.060) 

-0.052 
(±0.060) 

0.988 

Swamp -0.017 
(±0.085) 

-0.030 
(±0.076) 

-0.021 
(±0.074) 

-0.023 
(±0.081) 

0.003  
(±0.160) 

0.025  
(±0.220) 

0.026  
(±0.231) 

< 0.001 

RIVER River -0.044 
(±0.068) 

-0.052 
(±0.059) 

-0.051 
(±0.059) 

-0.055 
(±0.057) 

-0.054 
(±0.059) 

-0.053 
(±0.060) 

 0.999 

Swamp 0.026  
(±0.236) 

0.025 
(±0.240) 

0.026  
(±0.227) 

0.018  
(±0.227) 

0.025  
(±0.225) 

0.025  
(±0.228) 

 0.999 

RIVIT_MED River -0.059 
(±0.072) 

-0.053 
(±0.065)  

-0.055 
(±0.061) 

-0.054 
(±0.059) 

-0.057 
(±0.059) 

-0.053 
(±0.060) 

 0.972 

Swamp 0.039  
(±0.223) 

0.016 
(±0.231) 

0.020  
(±0.225) 

0.017  
(±0.227) 

0.030  
(±0.227) 

0.022  
(±0.226) 

 0.812 

RIVPK_NIL River -0.049 
(±0.077) 

-0.052 
(±0.069) 

-0.054 
(±0.062) 

 -0.053 
(±0.062) 

-0.054 
(±0.060) 

-0.053 
(±0.060) 

 0.988 

Swamp 0.020  
(±0.244) 

0.030  
(±0.255) 

0.034  
(±0.237) 

0.026  
(±0.239) 

0.027  
(±0.226) 

0.025  
(±0.228) 

 0.959 

SWAMP  River -0.045 
(±0.065) 

-0.052 
(±0.063) 

-0.046 
(±0.059) 

-0.051 
(±0.060) 

-0.055 
(±0.060) 

-0.053 
(±0.060) 

 0.999 

Swamp -0.025 
(±0.074) 

-0.018 
(±0.081) 

-0.020 
(±0.090) 

-0.019 
(±0.103) 

0.007  
(±0.138) 

0.001  
(±0.164) 

 0.266 

SWACN_GUI River -0.054 
(±0.068) 

-0.052 
(±0.065) 

-0.053 
(±0.066) 

-0.045 
(±0.061) 

-0.048 
(±0.060) 

-0.051 
(±0.059) 

 0.921 

Swamp -0.035 
(±0.077) 

-0.018 
(±0.076) 

-0.034 
(±0.076) 

-0.027 
(±0.074) 

-0.023 
(±0.079) 

-0.024 
(±0.059) 

 0.648 

SWATH_THS River -0.057 
(±0.077) 

-0.058 
(±0.073) 

-0.054 
(±0.073) 

-0.050 
(±0.061) 

-0.054 
(±0.062) 

-0.050 
(±0.060) 

 0.997 

Swamp -0.026 
(±0.085) 

-0.034 
(±0.085) 

-0.032 
(±0.080) 

-0.022 
(±0.077) 

-0.022 
(±0.077) 

-0.027 
(±0.078) 

 0.601 

River  0.946 0.978 0.985 0.961 0.966 0.998   

Swamp  0.003 0.008 0.005 0.008 0.018 0.031   
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Table S4.7: HO across WGS for River and Swamp. Bold values indicate significant results between species, r2 thresholds and LD datasets. 

 

 

LD Pruning 
Target 

Species r2 Threshold Significant 

0.01 0.05 0.1 0.2 0.5 0.8 1 

ALL River 0.301  
(±0.028) 

0.300 
(±0.029) 

0.232  
(±0.029) 

0.181  
(±0.027) 

0.196  
(±0.025) 

0.204  
(±0.025) 

0.200  
(±0.025) 

< 0.001 

Swamp 0.209  
(±0.015) 

0.244 
(±0.018) 

0.201  
(±0.019) 

0.160  
(±0.018) 

0.153  
(±0.016) 

0.149  
(±0.015) 

0.144  
(±0.014) 

< 0.001 

RIVER River 0.473  
(±0.047) 

0.435 
(±0.040) 

0.345  
(±0.032) 

0.300  
(±0.031) 

0.284  
(±0.030) 

0.283  
(±0.030) 

 < 0.001 

Swamp 0.111  
(±0.012) 

0.111 
(±0.011) 

0.118  
(±0.012) 

0.112  
(±0.012) 

0.108  
(±0.012) 

0.106  
(±0.012) 

 0.689 

RIVIT_MED River 0.415  
(±0.048) 

0.413 
(±0.051)  

0.407  
(±0.047) 

0.371  
(±0.035) 

0.337  
(±0.037) 

0.334  
(±0.040) 

 0.001 

Swamp 0.097  
(±0.011) 

0.094 
(±0.011) 

0.097  
(±0.012) 

0.104  
(±0.012) 

0.102  
(±0.012) 

0.098  
(±0.011) 

 0.594 

RIVPK_NIL River 0.446  
(±0.044) 

0.440  
(±0.042) 

0.432  
(±0.045) 

0.420  
(±0.042) 

0.362  
(±0.037) 

0.333  
(±0.039) 

 0.008 

Swamp 0.098  
(±0.013) 

0.097  
(±0.013) 

0.095  
(±0.013) 

0.095  
(±0.012) 

0.094  
(±0.010) 

0.096  
(±0.011) 

 0.986 

SWAMP  River 0.169  
(±0.023) 

0.166  
(±0.025) 

0.152  
(±0.025) 

0.139  
(±0.024) 

0.134  
(±0.024) 

0.132  
(±0.023) 

 0.002 

Swamp 0.423  
(±0.033) 

0.393  
(±0.030) 

0.318  
(±0.025) 

0.271  
(±0.026) 

0.246  
(±0.026) 

0.243  
(±0.026) 

 < 0.001 

SWACN_GUI River 0.169 
(±0.027) 

0.155  
(±0.026) 

0.148  
(±0.025) 

0.142  
(±0.025) 

0.130  
(±0.024) 

0.125  
(±0.023) 

 0.007 

Swamp 0.403 
(±0.038) 

0.393  
(±0.039) 

0.381  
(±0.038) 

0.345  
(±0.032) 

0.285  
(±0.033) 

0.277  
(±0.035) 

 < 0.001 

SWATH_THS River 0.149 
(±0.028) 

0.151  
(±0.025) 

0.153  
(±0.025) 

0.155  
(±0.024) 

0.141  
(±0.024) 

0.141  
(±0.023) 

 0.455 

Swamp 0.381 
(±0.036) 

0.381  
(±0.030) 

0.379  
(±0.025) 

0.367  
(±0.026) 

0.341  
(±0.026) 

0.322  
(±0.026) 

 0.217 

Significant River < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001   

 Swamp < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001   
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Table S4.8: HE across WGS for River and Swamp. Bold values indicate significant results between species, r2 thresholds and LD datasets. 

 

 

LD Pruning 
Target 

Species r2 Threshold Significant 

0.01 0.05 0.1 0.2 0.5 0.8 1 

ALL River 0.265  
(±0.010) 

0.265 
(±0.008) 

0.206  
(±0.005) 

0.161  
(±0.006) 

0.173  
(±0.003) 

0.180  
(±0.003) 

0.177  
(±0.003) 

< 0.001 

Swamp 0.193  
(±0.003) 

0.230 
(±0.004) 

0.190  
(±0.004) 

0.151  
(±0.004) 

0.142  
(±0.002) 

0.139  
(±0.001) 

0.134  
(±0.001) 

< 0.001 

RIVER River 0.416  
(±0.030) 

0.382 
(±0.017) 

0.303  
(±0.008) 

0.264  
(±0.008) 

0.251  
(±0.009) 

0.250  
(±0.009) 

 < 0.001 

Swamp 0.105  
(±0.005) 

0.104 
(±0.004) 

0.111  
(±0.004) 

0.107  
(±0.004) 

0.103  
(±0.004) 

0.101  
(±0.004) 

 0.339 

RIVIT_MED River 0.364  
(±0.054) 

0.363 
(±0.049)  

0.357  
(±0.036) 

0.324  
(±0.016) 

0.296  
(±0.016) 

0.296  
(±0.019) 

 0.007 

Swamp 0.091  
(±0.005) 

0.089 
(±0.005) 

0.092  
(±0.005) 

0.098  
(±0.005) 

0.097  
(±0.004) 

0.094  
(±0.005) 

 0.351 

RIVPK_NIL River 0.390  
(±0.048) 

0.388  
(±0.047) 

0.382  
(±0.045) 

0.371  
(±0.036) 

0.319  
(±0.022) 

0.295  
(±0.023) 

 0.001 

Swamp 0.095  
(±0.004) 

0.094  
(±0.004) 

0.093  
(±0.004) 

0.093  
(±0.005) 

0.091  
(±0.005) 

0.093  
(±0.005) 

 0.822 

SWAMP  River 0.148  
(±0.003) 

0.145  
(±0.003) 

0.135  
(±0.004) 

0.123  
(±0.004) 

0.119  
(±0.004) 

0.117  
(±0.004) 

 < 0.001 

Swamp 0.408  
(±0.036) 

0.376  
(±0.023) 

0.301  
(±0.012) 

0.255  
(±0.012) 

0.230  
(±0.011) 

0.227  
(±0.011) 

 < 0.001 

SWACN_GUI River 0.142 
(±0.004) 

0.137  
(±0.004) 

0.133  
(±0.004) 

0.127  
(±0.004) 

0.116  
(±0.004) 

0.112  
(±0.004) 

 < 0.001 

Swamp 0.386 
(±0.054) 

0.379  
(±0.050) 

0.366  
(±0.042) 

0.329  
(±0.025) 

0.269  
(±0.020) 

0.260  
(±0.022) 

 < 0.001 

SWATH_THS River 0.133 
(±0.005) 

0.134  
(±0.005) 

0.135  
(±0.004) 

0.138  
(±0.004) 

0.126  
(±0.004) 

0.125  
(±0.004) 

 0.185 

Swamp 0.374 
(±0.060) 

0.372  
(±0.058) 

0.370  
(±0.057) 

0.361  
(±0.053) 

0.327  
(±0.037) 

0.310  
(±0.033) 

 0.213 

Significant River < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001   

 Swamp < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001   
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Table S4.9: Number of Markers across WGS for River and Swamp 

 

 

LD Pruning 
Target 

Species r2 Threshold 

0.01  0.05  0.1  0.2  0.5  0.8  1  

Total Poly Total Poly Total Poly Total Poly Total Poly Total Poly Total Poly 

ALL River  869 
(±77) 

 2085 
(±172) 

 4308 
(±457) 

 9599.5 
(±430.2) 

 27229 
(±989.4) 

 37582.5 
(±1277.3) 

 36420 
(±3618) 

Swamp  639 
(±77) 

 1841 
(±219) 

 4187 
(±674) 

 8179 
(±267.0) 

 14094 
(±1509.2) 

 16357 
(±2734.5) 

 30342 
(±4885) 

RIVER River  1533 
(±50) 

 3406 
(±134) 

 7700 
(±505) 

 19460 
(±583.6) 

 32692.5 
(±1098.8) 

 37376.5 
(±1263.5) 

  

Swamp  521 
(±88) 

 1171 
(±186) 

 3234 
(±484) 

 8448.0 
(±1489.0) 

 14035 
(±2452.8) 

 15859 
(±2804.5) 

  

RIVIT_MED River  1250 
(±91) 

 1711 
(±125) 

 2284 
(±174) 

 3402 
(±88.5) 

 15068 
(±473.4) 

 26955.5 
(±871.1) 

  

Swamp  395 
(±68) 

 528 
(±89) 

 716 
(±116) 

 1447 
(±267.2) 

 6376 
(±1132.3) 

 11382 
(±2023.7) 

  

RIVPK_NIL River  1529 
(±84) 

 1733 
(±97) 

 2349 
(±141) 

 4510.5 
(±78.3) 

 23191 
(±743.9) 

 35762 
(±1215.3) 

  

Swamp  486 
(±85) 

 539 
(±93) 

 741 
(±127) 

 1933 
(±361.0) 

 9883 
(±1743.3) 

 15158 
(±2678.6) 

  

SWAMP River  658 
(±57) 

 1534 
(±137) 

 3441 
(±310) 

 13405.5 
(±439.0) 

 18648.5 
(±609.5) 

 20736 
(±676.0) 

  

Swamp  1469 
(±87) 

 3281 
(±216) 

 7090 
(±732) 

 11216 
(±567.3) 

 13893 
(±899.8) 

 14628 
(±1226.3) 

  

SWACN_GUI River  573 
(±52) 

 842 
(±78) 

 1174 
(±108) 

 3251 
(±105.5) 

 9557 
(±318.4) 

 12038.5 
(±397.9) 

  

Swamp  1268 
(±96) 

 1870 
(±148) 

 2618 
(±237) 

 3139 
(±136.3) 

 8795 
(583.6) 

 11035 
(±763.0) 

  

SWATH_THS River  642 
(±62) 

 683 
(±66) 

 756 
(±75) 

 1904.5 
(±59.6) 

 5156.5 
(±157.1) 

 9506 
(±304.5) 

  

Swamp  1459 
(±128) 

 1515 
(±135) 

 1656 
(±151) 

 1878 
(±59.8) 

 4832 
(±237.1) 

 8700 
(±488.3) 
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Table S4.10: F across WGS for River and Swamp. Bold values indicate significant results between species, r2 thresholds and LD datasets. 

 

 

LD Pruning 
Target 

Species r2 Threshold Significant 

0.01 0.05 0.1 0.2 0.5 0.8 1 

ALL River -0.096 
(±0.131) 

-0.111 
(±0.117) 

-0.050 
(±0.062) 

-0.048 
(±0.060) 

-0.046 
(±0.060) 

-0.053 
(±0.060) 

-0.098 
(±0.102) 

1.000 

Swamp -0.059 
(±0.122) 

-0.030 
(±0.102) 

-0.021 
(±0.074) 

-0.023 
(±0.081) 

0.003  
(±0.160) 

0.025  
(±0.220) 

-0.056 
(±0.100) 

0.998 

RIVER River -0.099 
(±0.100) 

-0.100 
(±0.101) 

-0.051 
(±0.059) 

-0.055 
(±0.057) 

-0.054 
(±0.059) 

-0.053 
(±0.060) 

 0.996 

Swamp -0.005 
(±0.166) 

-0.025 
(±0.142) 

0.026  
(±0.227) 

0.018  
(±0.227) 

0.025  
(±0.225) 

0.025  
(±0.228) 

 0.977 

RIVIT_MED River -0.111 
(±0.101) 

-0.101 
(±0.101)  

-0.055 
(±0.061) 

-0.054 
(±0.059) 

-0.057 
(±0.059) 

-0.053 
(±0.060) 

 0.989 

Swamp -0.036 
(±0.151) 

-0.030 
(±0.154) 

0.020  
(±0.225) 

0.017  
(±0.227) 

0.030  
(±0.227) 

0.022  
(±0.226) 

 0.987 

RIVPK_NIL River -0.111 
(±0.111) 

-0.089 
(±0.109) 

-0.054 
(±0.062) 

 -0.053 
(±0.062) 

-0.054 
(±0.060) 

-0.053 
(±0.060) 

 0.994 

Swamp 0.016  
(±0.161) 

0.010  
(±0.152) 

0.034  
(±0.237) 

0.026  
(±0.239) 

0.027  
(±0.226) 

0.025  
(±0.228) 

 0.998 

SWAMP  River -0.113 
(±0.127) 

-0.100 
(±0.118) 

-0.046 
(±0.059) 

-0.051 
(±0.060) 

-0.055 
(±0.060) 

-0.053 
(±0.060) 

 0.967 

Swamp -0.024 
(±0.101) 

-0.030 
(±0.100) 

-0.020 
(±0.090) 

-0.019 
(±0.103) 

0.007  
(±0.138) 

0.001  
(±0.164) 

 0.872 

SWACN_GUI River -0.091 
(±0.131) 

-0.087 
(±0.130) 

-0.053 
(±0.066) 

-0.045 
(±0.061) 

-0.048 
(±0.060) 

-0.051 
(±0.059) 

 0.993 

Swamp -0.029 
(±0.098) 

-0.021 
(±0.098) 

-0.034 
(±0.076) 

-0.027 
(±0.074) 

-0.023 
(±0.079) 

-0.024 
(±0.059) 

 0.876 

SWATH_THS River -0.087 
(±0.130) 

-0.087 
(±0.126) 

-0.054 
(±0.073) 

-0.050 
(±0.061) 

-0.054 
(±0.062) 

-0.050 
(±0.060) 

 0.997 

Swamp 0.000 
(±0.104) 

-0.015 
(±0.104) 

-0.032 
(±0.080) 

-0.022 
(±0.077) 

-0.022 
(±0.077) 

-0.027 
(±0.078) 

 0.991 

Significant River 0.970 0.999 0.960 0.993 0.989 0.999   

 Swamp 0.737 0.870 0.715 0.475 0.320 0.227   
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Table S4.11: T.test results for between SNP array data vs WGS for Ho, He, and F 

LD Prune Target R2 Threshold HO  HE  F  
  River Swamp River Swamp River Swamp 

ALL 1.00 0.000583 0.006610 0.000000 0.000000 0.097320 0.010450 
 0.80 0.000583 0.008658 0.000583 0.041126 0.097319 0.008658 
 0.50 0.000583 0.588745 0.000583 0.240260 0.097319 0.015152 
 0.20 0.000583 0.002165 0.000583 0.002165 0.208625 0.093074 
 0.10 0.000583 0.002165 0.000583 0.002165 0.164918 0.484848 
 0.05 0.000583 0.002165 0.000583 0.002165 0.164918 0.699134 
 0.01 0.000583 0.002165 0.000583 0.002165 0.164918 0.179654 

RIVER 0.80 0.000583 0.179654 0.000583 0.064935 0.097319 0.041126 
 0.50 0.000583 0.179654 0.000583 0.064935 0.097319 0.025974 
 0.20 0.000583 0.179654 0.000583 0.132035 0.072844 0.015152 
 0.10 0.000583 0.588745 0.000583 0.179654 0.053030 0.015152 
 0.05 0.164918 0.240260 0.002331 0.132035 0.053030 0.041126 
 0.01 0.901515 0.179654 0.128205 0.132035 0.053030 0.132035 

RIVIT_MED 0.80 0.001166 0.041126 0.000583 0.015152 0.072844 0.025974 
 0.50 0.001166 0.041126 0.000583 0.041126 0.026224 0.025974 
 0.20 0.006993 0.064935 0.004079 0.041126 0.017483 0.064935 
 0.10 0.259324 0.025974 0.037879 0.008658 0.017483 0.393939 
 0.05 0.455711 0.025974 0.037879 0.008658 0.026224 0.132035 
 0.01 0.317599 0.015152 0.037879 0.008658 0.037879 0.064935 

RIVPK_NIL 0.80 0.017483 0.015152 0.002331 0.008658 0.097319 0.093074 
 0.50 0.037879 0.015152 0.006993 0.008658 0.053030 0.093074 
 0.20 0.534965 0.025974 0.097319 0.008658 0.164918 0.309524 
 0.10 0.455711 0.025974 0.164918 0.008658 0.128205 0.393939 
 0.05 0.534965 0.041126 0.128205 0.064935 0.053030 0.240260 
 0.01 0.620047 0.064935 0.164918 0.041126 0.097319 0.393939 

SWAMP 0.80 0.000583 0.025974 0.000583 0.179654 0.208625 0.025974 
 0.50 0.000583 0.132035 0.000583 0.818182 0.208625 0.041126 
 0.20 0.000583 0.937229 0.000583 0.937229 0.164918 0.132035 
 0.10 0.000583 0.132035 0.000583 0.484848 0.097319 0.393939 
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 0.05 0.000583 0.004329 0.000583 0.002165 0.128205 0.309524 
 0.01 0.000583 0.937229 0.000583 0.484848 0.097319 0.699134 

SWACN_GUI 0.80 0.000583 0.041126 0.000583 0.025974 0.164918 0.240260 
 0.50 0.000583 0.041126 0.000583 0.025974 0.208625 0.179654 
 0.20 0.000583 0.240260 0.000583 0.240260 0.128205 0.393939 
 0.10 0.000583 0.484848 0.000583 0.393939 0.317599 0.699134 
 0.05 0.000583 0.588745 0.000583 0.393939 0.208625 0.937229 
 0.01 0.000583 0.484848 0.000583 0.393939 0.208625 0.937229 

SWATH_THS 0.80 0.000583 0.818182 0.000583 0.393939 0.208625 0.588745 
 0.50 0.000583 0.818182 0.000583 0.484848 0.164918 0.699134 
 0.20 0.000583 0.309524 0.000583 0.393939 0.164918 0.818182 
 0.10 0.000583 0.309524 0.000583 0.393939 0.128205 0.393939 
 0.05 0.000583 0.393939 0.000583 0.393939 0.208625 0.484848 
 0.01 0.000583 0.309524 0.000583 0.309524 0.455711 0.484848 
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Table S4.12: FST values within river comparisons. Bold values indicate significant results between species, r2 thresholds and LD datasets. 

 

LD Pruning 
Target 

Species r2 Threshold Significant 

0.01 0.05 0.1 0.2 0.5 0.8 1 

ALL SNP 0.047  
(± 0.034) 

0.049  
(± 0.035) 

0.048  
(± 0.036) 

0.046  
(± 0.034) 

0.049  
(± 0.037) 

0.050  
(± 0.037) 

0.050  
(± 0.037) 

1.000 

WGS 0.054 
(± 0.036) 

0.050 
(± 0.035) 

0.046 
(± 0.035) 

0.048 
(± 0.036) 

0.053 
(± 0.038) 

0.054 
(± 0.038) 

0.054 
(± 0.038) 

0.988 

RIVER SNP 0.051 
(± 0.036) 

0.042 
(± 0.030) 

0.041 
(± 0.029) 

0.046 
(± 0.034) 

0.049 
(± 0.037) 

0.049 
(± 0.037) 

 0.939 

WGS 0.057 
(± 0.041) 

0.048 
(± 0.032) 

0.042 
(± 0.027) 

0.045 
(± 0.030) 

0.052 
(± 0.036) 

0.054 
(± 0.038) 

 0.683 

RIVIT_MED SNP 0.035 
(± 0.022) 

0.037 
(± 0.023) 

0.037 
(± 0.024) 

0.041 
(± 0.028) 

0.048 
(± 0.035) 

0.047 
(± 0.034) 

 0.759 

WGS 0.048 
(± 0.031) 

0.047 
(± 0.030) 

0.047 
(± 0.030) 

0.046 
(± 0.029) 

0.045 
(± 0.029) 

0.044 
(± 0.028) 

 0.993 

RIVPK_NIL SNP 0.051 
(± 0.040) 

0.048 
(± 0.039) 

0.049 
(± 0.039) 

0.050 
(± 0.038) 

0.050 
(± 0.038) 

0.050 
(± 0.037) 

 0.999 

WGS 0.055 
(± 0.042) 

0.055 
(± 0.043) 

0.057 
(± 0.044) 

0.056 
(± 0.043) 

0.054 
(± 0.042) 

0.053 
(± 0.043) 

 0.997 

SWAMP  SNP 0.049 
(± 0.038) 

0.048 
(± 0.036) 

0.048 
(± 0.037) 

0.049 
(± 0.037) 

0.049 
(± 0.037) 

0.049 
(± 0.037) 

 0.999 

WGS 0.053 
(± 0.035) 

0.052 
(± 0.035) 

0.052 
(± 0.036) 

0.050 
(± 0.035) 

0.051 
(± 0.035) 

0.052 
(± 0.035) 

 0.999 

SWACN_GUI SNP 0.051 
(± 0.036) 

0.050 
(± 0.036) 

0.049 
(± 0.036) 

0.048 
(± 0.036) 

0.050 
(± 0.037) 

0.049 
(± 0.038) 

 0.999 

WGS 0.053 
(± 0.034) 

0.052 
(± 0.033) 

0.051 
(± 0.033) 

0.052 
(± 0.033) 

0.052 
(± 0.034) 

0.052 
(± 0.034) 

 0.999 

SWATH_THS SNP 0.051 
(± 0.038) 

0.051 
(± 0.038) 

0.050 
(± 0.036) 

0.049 
(± 0.037) 

0.049 
(± 0.038) 

0.049 
(± 0.037) 

 0.999 

WGS 0.054 
(± 0.034) 

0.054 
(± 0.034) 

0.057 
(± 0.035) 

0.055 
(± 0.034) 

0.053 
(± 0.034) 

0.054 
(± 0.035) 

 0.998 

Significant SNP 0.841 0.921 0.945 0.995 0.999 0.999   

 WGS 0.994 0.997 0.849 0.932 0.997 0.990   
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Table S4.13: FST values within swamp comparisons. Bold values indicate significant results between species, r2 thresholds and LD datasets. 

 

LD Pruning 
Target 

Species r2 Threshold Significant 

0.01 0.05 0.1 0.2 0.5 0.8 1 

ALL SNP 0.067 
(± 0.035) 

0.068 
(± 0.035) 

0.068 
(± 0.037) 

0.066 
(± 0.034) 

0.053 
(± 0.024) 

0.048 
(± 0.021) 

0.047 
(± 0.020) 

0.157 

WGS 0.059 
(± 0.029) 

0.056 
(± 0.028) 

0.050 
(± 0.025) 

0.050 
(± 0.025) 

0.057 
(± 0.027) 

0.058 
(± 0.027) 

0.058 
(± 0.027) 

0.935 

RIVER SNP 0.045 
(± 0.020) 

0.047 
(± 0.020) 

0.047 
(± 0.021) 

0.047 
(± 0.020) 

0.047 
(± 0.021) 

0.047 
(± 0.021) 

 0.989 

WGS 0.050 
(± 0.024) 

0.052 
(± 0.026) 

0.055 
(± 0.025) 

0.055 
(± 0.025) 

0.057 
(± 0.026) 

0.057 
(± 0.026) 

 0.957 

RIVIT_MED SNP 0.049 
(± 0.021) 

0.047 
(± 0.020) 

0.047 
(± 0.020) 

0.047 
(± 0.021) 

0.047 
(± 0.021) 

0.047 
(± 0.021) 

 0.999 

WGS 0.058 
(± 0.025) 

0.056 
(± 0.025) 

0.055 
(± 0.026) 

0.055 
(± 0.026) 

0.055 
(± 0.026) 

0.055 
(± 0.026) 

 0.996 

RIVPK_NIL SNP 0.045 
(± 0.018) 

0.044 
(± 0.018) 

0.045 
(± 0.020) 

0.047 
(± 0.020) 

0.047 
(± 0.021) 

0.047 
(± 0.020) 

 0.990 

WGS 0.060 
(± 0.026) 

0.058 
(± 0.026) 

0.056 
(± 0.025) 

0.057 
(± 0.027) 

0.056 
(± 0.026) 

0.056 
(± 0.026) 

 0.996 

SWAMP  SNP 0.065 
(± 0.034) 

0.053 
(± 0.026) 

0.052 
(± 0.026) 

0.055 
(± 0.027) 

0.053 
(± 0.025) 

0.052 
(± 0.024) 

 0.704 

WGS 0.070 
(± 0.032) 

0.063 
(± 0.030) 

0.055 
(± 0.026) 

0.053 
(± 0.025) 

0.058 
(± 0.027) 

0.059 
(± 0.028) 

 0.511 

SWACN_GUI SNP 0.069 
(± 0.039) 

0.070 
(± 0.039) 

0.069 
(± 0.038) 

0.064 
(± 0.037) 

0.061 
(± 0.034) 

0.061 
(± 0.034) 

 0.793 

WGS 0.063 
(± 0.032) 

0.066 
(± 0.034) 

0.066 
(± 0.034) 

0.066 
(± 0.034) 

0.059 
(± 0.032) 

0.057 
(± 0.032) 

 0.895 

SWATH_THS SNP 0.071 
(± 0.035) 

0.073 
(± 0.035) 

0.072 
(± 0.036) 

0.068 
(± 0.035) 

0.066 
(± 0.033) 

0.065 
(± 0.033) 

 0.824 

WGS 0.066 
(± 0.030) 

0.066 
(± 0.029) 

0.065 
(± 0.029) 

0.067 
(± 0.031) 

0.065 
(± 0.031) 

0.062 
(± 0.032) 

 0.997 

Significant SNP 0.031 0.024 0.076 0.169 0.379 0.389   

 WGS 0.621 0.732 0.610 0.620 0.985 0.998   
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Table S4.14: FST values between species comparisons. Bold values indicate significant results between species, r2 thresholds and LD datasets. 

LD Pruning 
Target 

Species r2 Threshold Significant 

0.01 0.05 0.1 0.2 0.5 0.8 1 

ALL SNP 0.242 
(± 0.024) 

0.140 

(± 0.025) 
0.124 

(± 0.025) 
0.142 

(± 0.023) 
0.278 

(± 0.044) 
0.352 

(± 0.050) 
0.360 

(± 0.051) 
< 0.001 

WGS 0.529 
(± 0.024) 

0.281 

(± 0.023) 
0.165 

(± 0.024) 
0.133 

(± 0.020) 
0.208 

(± 0.021) 
0.275 

(± 0.022) 
0.304  

(± 0.023) 
< 0.001 

RIVER SNP 0.372 
(± 0.053) 

0.374 

(± 0.052) 
0.368 

(± 0.052) 
0.366 

(± 0.051) 
0.360 

(± 0.051) 
0.359 

(± 0.051) 
 0.264 

WGS 0.352 
(± 0.045) 

0.346 

(± 0.043) 
0.330 

(± 0.036) 
0.316 

(± 0.035) 
0.311 

(± 0.035) 
0.309 

(± 0.036) 
 < 0.001 

RIVIT_MED SNP 0.350 
(± 0.051) 

0.357 
(± 0.051) 

0.357 
(± 0.051) 

0.357 
(± 0.052) 

0.355 
(± 0.052) 

0.356 
(± 0.051) 

 0.917 

WGS 0.331 
(± 0.045) 

0.331 
(± 0.046) 

0.331 
(± 0.045) 

0.333 
(± 0.041) 

0.318 
(± 0.042) 

0.311 
(± 0.045) 

 0.128 

RIVPK_NIL SNP 0.377 
(± 0.053) 

0.379 
(± 0.052) 

0.376 
(± 0.052) 

0.374 
(± 0.052) 

0.361 
(± 0.051) 

0.359 
(± 0.051) 

 0.074 

WGS 0.339 
(± 0.046) 

0.341 
(± 0.046) 

0.341 
(± 0.047) 

0.332 
(± 0.046) 

0.316 
(± 0.045) 

0.303 
(± 0.045) 

 < 0.001 

SWAMP  SNP 0.132 
(± 0.028) 

0.199 
(± 0.024) 

0.227 
(± 0.026) 

0.243 
(± 0.027) 

0.277 
(± 0.031) 

0.292 
(± 0.032) 

 < 0.001 

WGS 0.302 
(± 0.058) 

0.293 
(± 0.056) 

0.284 
(± 0.052) 

0.271 
(± 0.050) 

0.272 
(± 0.049) 

0.272 
(± 0.050) 

 0.037 

SWACN_GUI SNP 0.137 

(± 0.041) 
0.138 

(± 0.040) 
0.147 

(± 0.038) 
0.167 

(± 0.033) 
0.202 

(± 0.028) 
0.206 

(± 0.028) 
 < 0.001 

WGS 0.292 

(± 0.057) 
0.292 

(± 0.056) 
0.290 

(± 0.057) 
0.286 

(± 0.057) 
0.268 

(± 0.057) 
0.264 

(± 0.058) 
 0.086 

SWATH_THS SNP 0.146 

(± 0.044) 
0.154 

(± 0.044) 
0.153 

(± 0.043) 
0.157 

(± 0.041) 
0.190 

(± 0.035) 
0.201 

(± 0.035) 
 < 0.001 

WGS 0.308 

(± 0.057) 
0.305 

(± 0.057) 
0.307 

(± 0.056) 
0.306 

(± 0.057) 
0.291 

(± 0.058) 
0.286 

(± 0.058) 
 0.341 

Significant SNP < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001   

 WGS < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001   
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Table S4.15: Average Number of ROHs per individual found in river buffalo for SNP array and WGS data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LD Pruning 
Target 

Species r2 Threshold 

0.01 0.05 0.1 0.2 0.5 0.8 1 

ALL SNP  0.013 0.697 2.197 5.368 9.816 11.750 

WGS   1.000 3.907 15.209 22.395 19.973 

RIVER SNP  0.092 1.711 3.329 7.158 9.592  

WGS  0.047 0.791 2.884 8.000 9.674  

RIVIT_MED SNP    0.013 2.816 5.066  

WGS    0.233 1.930 4.070  

RIVPK_NIL SNP    0.263 4.289 8.803  

WGS    0.070 1.791 5.628  

SWAMP  SNP  0.145 1.908 2.500 3.487 4.039  

WGS  0.163 2.349 7.047 15.721 18.535  

SWACN_GUI SNP    0.066 2.197 2.645  

WGS    1.930 8.535 14.581  

SWATH_THS SNP     0.579 2.250  

WGS        
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Table S4.16: Average Number of ROHs per individual found in swamp buffalo for SNP array and WGS data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LD Pruning 
Target 

Species r2 Threshold 

0.01 0.05 0.1 0.2 0.5 0.8 1 

ALL SNP  0.028 0.676 1.704 10.915 32.211 41.042 

WGS   1.216 2.514 11.054 16.730 26.674 

RIVER SNP  0.535 5.592 12.761 28.127 35.282  

WGS  0.162 2.514 6.270 15.351 18.892  

RIVIT_MED SNP    0.183 11.042 21.761  

WGS    0.973 5.676 11.811  

RIVPK_NIL SNP    1.972 16.803 33.085  

WGS    0.297 5.324 13.432  

SWAMP  SNP  0.239 1.493 2.169 3.887 4.915  

WGS  0.054 1.054 2.270 4.973 5.297  

SWACN_GUI SNP    0.014 1.775 2.211  

WGS    0.676 2.324 3.486  

SWATH_THS SNP     0.620 1.859  

WGS        
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Table S4.17: Length of ROHs found in River Buffalo  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LD Pruning 
Target 

Species r2 Threshold 

0.01 0.05 0.1 0.2 0.5 0.8 1 

ALL SNP  6.377163 7.770428 9.99534 8.976598 6.358075 5.849415 

   3.163246 6.224376 7.216448 5.683332 5.288308 

WGS   6.879351 7.948545 3.273327 2.613099 2.41778 

    3.476924 3.364939 1.418265 1.211308 1.127796 

RIVER SNP  6.606411 11.46987 11.29229 7.517095 6.428623  

  1.50716 6.948855 8.160584 6.302996 5.700813  

WGS  11.10059 11.13674 6.700971 3.870795 3.522569  

   4.994857 4.780819 3.113 1.556985 1.460487  

RIVIT_MED SNP    8.070136 11.19799 9.050028  

     6.825088 7.301163  

WGS    8.090354 8.536977 5.704417  

     2.084583 3.214333 1.898155  

RIVPK_NIL SNP    6.962482 10.0809 6.748153  

    2.243432 7.865282 5.995352  

WGS    9.04633 10.95363 5.483895  

     0.414428 4.295299 2.142996  

SWAMP  SNP  6.61105 10.89944 12.33063 11.24909 10.47303  

  1.856229 7.398633 7.457768 7.368319 7.329266  

WGS  7.029019 10.56151 7.664243 4.417576 4.078838  

   1.095541 5.271674 3.735468 2.004296 1.819658  

SWACN_GUI SNP    6.226767 9.990285 10.42957  

    1.049246 5.904383 6.216093  

WGS    8.046731 7.5989 5.379694  

     2.959045 3.254798 2.337067  

SWATH_THS SNP     7.459488 9.369351  

     2.896947 5.460894  

WGS     7.643293 11.6173  

      2.199452 6.059968  
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Table S4.18: Length of ROHs found in Swamp Buffalo  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LD Pruning 
Target 

Species r2 Threshold 

0.01 0.05 0.1 0.2 0.5 0.8 1 

ALL SNP  8.859883 8.10881 10.64231 6.865855 4.697449 4.409093 

  0.925171 3.202039 7.012179 5.639626 3.518486 3.238162 

WGS   7.153756 7.50774 3.149178 2.533506 2.355389 

    2.986621 3.0692 1.43917 1.175823 1.120654 

RIVER SNP  7.43469 10.27233 8.298671 5.298731 4.685899  

  1.26273 6.126037 5.56217 3.962302 3.490649  

WGS  7.423859 10.31546 6.825857 3.812199 3.437852  

   1.721703 5.049682 3.169043 1.900606 1.730057  

RIVIT_MED SNP    8.65044 9.141854 6.233638  

    2.274464 5.088793 4.354573  

WGS    7.907126 8.297564 5.445422  

     2.152215 3.48878 2.72638  

RIVPK_NIL SNP    7.705773 7.262316 4.917264  

    2.208629 4.854226 3.74569  

WGS    10.08309 10.40986 5.30314  

     2.641715 4.807705 2.779106  

SWAMP  SNP  7.529808 11.96813 12.7516 10.15265 9.208415  

  2.217859 7.718384 8.431463 7.976811 7.043697  

WGS  5.804966 11.86213 7.695908 4.277271 3.976708  

   0.395222 6.581165 2.721006 1.605221 1.532613  

SWACN_GUI SNP    7.685149 10.51374 11.23017  

     5.94526 6.583303  

WGS    8.060783 7.788592 5.414443  

     3.076988 3.271926 2.18514  

SWATH_THS SNP     7.637219 10.45389  

     3.015344 6.786465  

WGS     8.625152 10.945  

      4.391659 4.585062  
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Table S4.19: P Values for t.tests for Length of ROHs 

LD Dataset R2 Threshold Between Species Between Data 
  SNP WGS River Swamp 

ALL 1.00 < 0.001 0.040 < 0.001 < 0.001 
 0.80 < 0.001 0.069 < 0.001 < 0.001 
 0.50 < 0.001 0.043 < 0.001 < 0.001 
 0.20 0.850 0.194 0.003 0.007 
 0.10 0.593 0.452 0.029 0.121 

RIVER 0.80 < 0.001 0.038 < 0.001 < 0.001 
 0.50 < 0.001 0.064 < 0.001 < 0.001 
 0.20 < 0.001 0.973 < 0.001 < 0.001 
 0.10 0.118 0.303 0.669 0.561 

RIVIT_MED 0.80 < 0.001 < 0.001 < 0.001 < 0.001 
 0.50 < 0.001 0.386 0.001 0.019 
 0.20  0.915  0.408 

RIVPK_NIL 0.80 < 0.001 0.006 0.853 < 0.001 
 0.50 < 0.001 0.126 < 0.001 < 0.001 
 0.20 0.198 0.876 0.091 0.006 

SWAMP 0.80 0.002 0.937 < 0.001 < 0.001 
 0.50 0.005 0.982 < 0.001 < 0.001 
 0.20 0.850 0.271 < 0.001 < 0.001 
 0.10 0.226 0.271 0.575 0.673 

SWACN_GUI 0.80 0.167 0.603 < 0.001 < 0.001 
 0.50 0.427 0.672 < 0.001 0.001 
 0.20  0.997 0.149  

SWATH_THS 0.80 0.189 0.651 < 0.001 0.091 
 0.50 0.973 0.851 0.332 0.407 
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Table S4.20: Number of 1-2Mb ROHs in River Buffalo per individual  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Species LD Pruning 
Target 

Data r2 Threshold 

 0.01 0.05 0.1 0.2 0.5 0.8 1 

River ALL SNP 0.000 0.000 0.000 0.013 0.013 0.039 0.039 

 WGS 0.000 0.000 0.000 0.000 1.279 8.163 12.605 

 RIVER SNP 0.000 0.000 0.013 0.000 0.039 0.053  

 WGS 0.000 0.000 0.000 0.047 0.023 0.047  

 RIVIT_MED SNP 0.000 0.000 0.000 0.000 0.026 0.026  

 WGS 0.000 0.000 0.000 0.000 0.023 0.000  

 RIVPK_NIL SNP 0.000 0.000 0.000 0.000 0.026 0.000  

 WGS 0.000 0.000 0.000 0.000 0.000 0.000  

 SWAMP  SNP 0.000 0.000 0.000 0.013 0.000 0.013  

 WGS 0.000 0.000 0.000 0.023 0.023 0.047  

 SWACN_GUI SNP 0.000 0.000 0.000 0.000 0.000 0.039  

 WGS 0.000 0.000 0.000 0.000 0.023 0.000  

 SWATH_THS SNP 0.000 0.000 0.000 0.000 0.000 0.013  

 WGS 0.000 0.000 0.000 0.000 0.000 0.047  

Swamp ALL SNP 0.000 0.000 0.000 0.000 0.099 0.155 0.268 

  WGS 0.000 0.000 0.000 0.000 0.838 6.865 10.459 

 RIVER SNP 0.000 0.000 0.028 0.056 0.141 0.254  

  WGS 0.000 0.000 0.000 0.000 0.135 0.351  

 RIVIT_MED SNP 0.000 0.000 0.000 0.000 0.085 0.099  

  WGS 0.000 0.000 0.000 0.000 0.000 0.000  

 RIVPK_NIL SNP 0.000 0.000 0.000 0.000 0.042 0.169  

  WGS 0.000 0.000 0.000 0.000 0.000 0.054  

 SWAMP  SNP 0.000 0.000 0.000 0.014 0.000 0.014  

  WGS 0.000 0.000 0.000 0.000 0.000 0.000  

 SWACN_GUI SNP 0.000 0.000 0.000 0.000 0.000 0.042  

  WGS 0.000 0.000 0.000 0.000 0.027 0.000  

 SWATH_THS SNP 0.000 0.000 0.000 0.000 0.000 0.000  

  WGS 0.000 0.000 0.000 0.000 0.000 0.000  
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Table S4.21: Number of 2-4Mb ROHs per individual  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Species LD Pruning 
Target 

Data r2 Threshold 

 0.01 0.05 0.1 0.2 0.5 0.8 1 

River ALL SNP 0.000 0.000 0.026 0.237 0.513 3.855 5.395 

 WGS 0.000 0.000 0.186 0.070 10.814 11.907 11.860 

 RIVER SNP 0.000 0.000 0.145 0.092 1.566 3.553  

 WGS 0.000 0.000 0.000 0.163 5.279 7.233  

 RIVIT_MED SNP 0.000 0.000 0.000 0.000 0.184 0.566  

 WGS 0.000 0.000 0.000 0.000 0.023 0.581  

 RIVPK_NIL SNP 0.000 0.000 0.000 0.000 0.197 2.921  

 WGS 0.000 0.000 0.000 0.000 0.023 1.209  

 SWAMP  SNP 0.000 0.000 0.132 0.158 0.118 0.171  

 WGS 0.000 0.000 0.140 0.000 8.977 12.163  

 SWACN_GUI SNP 0.000 0.000 0.000 0.000 0.158 0.171  

 WGS 0.000 0.000 0.000 0.023 0.116 3.907  

 SWATH_THS SNP 0.000 0.000 0.000 0.000 0.013 0.316  

 WGS 0.000 0.000 0.000 0.000 0.023 0.256  

Swamp ALL SNP 0.000 0.000 0.000 0.268 1.859 17.648 25.282 

  WGS 0.000 0.000 0.135 0.000 8.216 8.243 8.000 

 RIVER SNP 0.000 0.000 0.451 0.521 10.549 19.169  

  WGS 0.000 0.000 0.162 0.351 10.784 14.757  

 RIVIT_MED SNP 0.000 0.000 0.000 0.000 0.634 4.183  

  WGS 0.000 0.000 0.000 0.000 0.108 2.946  

 RIVPK_NIL SNP 0.000 0.000 0.000 0.000 1.296 15.817  

  WGS 0.000 0.000 0.000 0.000 0.162 3.892  

 SWAMP  SNP 0.000 0.000 0.085 0.113 0.211 0.211  

  WGS 0.000 0.000 0.054 0.027 2.676 3.324  

 SWACN_GUI SNP 0.000 0.000 0.000 0.000 0.169 0.155  

  WGS 0.000 0.000 0.000 0.027 0.027 0.865  

 SWATH_THS SNP 0.000 0.000 0.000 0.000 0.000 0.254  

  WGS 0.000 0.000 0.000 0.000 0.000 0.108  
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Table S4.22: Number of 4-8Mb ROHs in River Buffalo per individual  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Species LD Pruning 
Target 

Data r2 Threshold 

 0.01 0.05 0.1 0.2 0.5 0.8 1 

River ALL SNP 0.000 0.013 0.421 0.789 2.776 3.908 4.263 

 WGS 0.000 0.000 0.581 2.442 2.884 2.186 2.093 

 RIVER SNP 0.000 0.066 0.487 1.224 3.526 3.987  

 WGS 0.000 0.023 0.233 2.116 2.442 2.233  

 RIVIT_MED SNP 0.000 0.000 0.000 0.000 0.763 2.421  

 WGS 0.000 0.000 0.000 0.116 0.953 3.047  

 RIVPK_NIL SNP 0.000 0.000 0.000 0.171 2.092 3.829  

 WGS 0.000 0.000 0.000 0.000 0.372 3.791  

 SWAMP  SNP 0.000 0.132 0.750 0.474 1.303 1.789  

 WGS 0.000 0.140 0.698 4.977 5.837 5.558  

 SWACN_GUI SNP 0.000 0.000 0.000 0.066 0.803 0.855  

 WGS 0.000 0.000 0.000 1.140 5.674 9.140  

 SWATH_THS SNP 0.000 0.000 0.000 0.000 0.368 0.842  

 WGS 0.000 0.000 0.000 0.000 1.163 0.581  

Swamp ALL SNP 0.000 0.000 0.423 0.465 6.577 12.056 12.986 

  WGS 0.000 0.000 0.649 1.784 1.784 1.486 1.378 

 RIVER SNP 0.000 0.338 1.718 7.563 14.718 13.380  

  WGS 0.000 0.108 0.865 4.568 3.973 3.297  

 RIVIT_MED SNP 0.000 0.000 0.000 0.085 4.324 14.000  

  WGS 0.000 0.000 0.000 0.486 3.189 7.541  

 RIVPK_NIL SNP 0.000 0.000 0.000 1.197 11.592 14.577  

  WGS 0.000 0.000 0.000 0.054 1.108 8.216  

 SWAMP  SNP 0.000 0.155 0.493 0.437 1.704 2.606  

  WGS 0.000 0.054 0.297 1.432 2.081 1.811  

 SWACN_GUI SNP 0.000 0.000 0.000 0.014 0.507 0.493  

  WGS 0.000 0.000 0.000 0.432 1.514 2.243  

 SWATH_THS SNP 0.000 0.000 0.000 0.000 0.408 0.521  

  WGS 0.000 0.000 0.000 0.000 0.270 0.243  
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Table S4.23: Number of 8-16Mb ROHs in River Buffalo per individual  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Species LD Pruning 
Target 

Data r2 Threshold 

 0.01 0.05 0.1 0.2 0.5 0.8 1 

River ALL SNP 0.000 0.000 0.237 0.829 1.487 1.526 1.566 

 WGS 0.000 0.000 0.233 1.302 0.233 0.140 0.116 

 RIVER SNP 0.000 0.026 0.684 1.434 1.513 1.513  

 WGS 0.000 0.023 0.488 0.535 0.256 0.163  

 RIVIT_MED SNP 0.000 0.000 0.000 0.013 1.329 1.447  

 WGS 0.000 0.000 0.000 0.116 0.860 0.442  

 RIVPK_NIL SNP 0.000 0.000 0.000 0.092 1.395 1.526  

 WGS 0.000 0.000 0.000 0.070 1.233 0.628  

 SWAMP  SNP 0.000 0.013 0.658 1.224 1.421 1.421  

 WGS 0.000 0.023 1.233 1.837 0.860 0.767  

 SWACN_GUI SNP 0.000 0.000 0.000 0.000 0.947 1.171  

 WGS 0.000 0.000 0.000 0.767 2.512 1.442  

 SWATH_THS SNP 0.000 0.000 0.000 0.000 0.184 0.789  

 WGS 0.000 0.000 0.000 0.000 0.930 2.116  

Swamp ALL SNP 0.000 0.028 0.239 0.662 1.859 1.803 1.958 

  WGS 0.000 0.000 0.432 0.649 0.216 0.135 0.135 

 RIVER SNP 0.000 0.197 2.718 4.056 2.211 1.958  

  WGS 0.000 0.054 1.216 1.270 0.432 0.459  

 RIVIT_MED SNP 0.000 0.000 0.000 0.099 5.408 2.901  

  WGS 0.000 0.000 0.000 0.486 2.270 1.189  

 RIVPK_NIL SNP 0.000 0.000 0.000 0.775 3.225 2.000  

  WGS 0.000 0.000 0.000 0.243 3.622 1.054  

 SWAMP  SNP 0.000 0.085 0.606 1.127 1.479 1.577  

  WGS 0.000 0.000 0.486 0.757 0.216 0.162  

 SWACN_GUI SNP 0.000 0.000 0.000 0.000 0.789 1.113  

  WGS 0.000 0.000 0.000 0.216 0.649 0.378  

 SWATH_THS SNP 0.000 0.000 0.000 0.000 0.197 0.789  

  WGS 0.000 0.000 0.000 0.000 0.162 1.162  
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Table S4.24: Number of >16Mb ROHs in River Buffalo per individual  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Species LD Pruning 
Target 

Data r2 Threshold 

 0.01 0.05 0.1 0.2 0.5 0.8 1 

River ALL SNP 0.000 0.000 0.013 0.329 0.579 0.487 0.487 

 WGS 0.000 0.000 0.000 0.093 0.000 0.000 0.000 

 RIVER SNP 0.000 0.000 0.382 0.579 0.513 0.487  

 WGS 0.000 0.000 0.070 0.023 0.000 0.000  

 RIVIT_MED SNP 0.000 0.000 0.000 0.000 0.513 0.605  

 WGS 0.000 0.000 0.000 0.000 0.070 0.000  

 RIVPK_NIL SNP 0.000 0.000 0.000 0.000 0.605 0.500  

 WGS 0.000 0.000 0.000 0.000 0.163 0.000  

 SWAMP  SNP 0.000 0.000 0.368 0.632 0.645 0.645  

 WGS 0.000 0.000 0.279 0.209 0.023 0.000  

 SWACN_GUI SNP 0.000 0.000 0.000 0.000 0.289 0.408  

 WGS 0.000 0.000 0.000 0.000 0.209 0.093  

 SWATH_THS SNP 0.000 0.000 0.000 0.000 0.013 0.289  

 WGS 0.000 0.000 0.000 0.000 0.000 0.605  

Swamp ALL SNP 0.000 0.000 0.014 0.310 0.521 0.549 0.549 

  WGS 0.000 0.000 0.000 0.081 0.000 0.000 0.000 

 RIVER SNP 0.000 0.000 0.676 0.563 0.507 0.521  

  WGS 0.000 0.000 0.270 0.081 0.027 0.027  

 RIVIT_MED SNP 0.000 0.000 0.000 0.000 0.592 0.577  

  WGS 0.000 0.000 0.000 0.000 0.108 0.135  

 RIVPK_NIL SNP 0.000 0.000 0.000 0.000 0.648 0.521  

  WGS 0.000 0.000 0.000 0.000 0.432 0.216  

 SWAMP  SNP 0.000 0.000 0.310 0.479 0.493 0.507  

  WGS 0.000 0.000 0.216 0.054 0.000 0.000  

 SWACN_GUI SNP 0.000 0.000 0.000 0.000 0.310 0.408  

  WGS 0.000 0.000 0.000 0.000 0.108 0.000  

 SWATH_THS SNP 0.000 0.000 0.000 0.000 0.014 0.296  

  WGS 0.000 0.000 0.000 0.000 0.054 0.162  
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Figure S4.1: Posterior Distributions for River to swamp migration 
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Figure S4.2: Posterior Distribution for Swamp to River migration 
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Supplementary Table S5.1: ABC parameter defined and priors used. 

Parameter Description Scale Minimum Maximum 

Ne_India Effective population size of India Log10 2 7 
Ne_Iran Effective population size of Iran Log10 2 7 
Ne_Italy Effective population size of Italy Log10 2 7 
Ne_Swamp Effective population size of Swamp Log10 1 5 
Ne_River1 Effective population size of first 

ancestor river population 
Log10 2 8 

Ne_River2 Effective population size of second 
ancestral river population 

Log10 2 8 

Ne_Ancestor Effective population size of pre river 
and swamp ancestor 

Log10 1 7 

T_River1 Time of split for most recent river 
populations 

Log10 0 3.3 

T_River2 Time of split for most first river 
populations 

Log10 0 3.3 

T_River_Swamp Time of split for river and swamp 
buffaloes 

Log10 2.22 7 

MutRate Mutation Rate Log10 -8 -2 
Mig_India_Iran Migration between Indian and Iranian 

buffaloes 
Log10 -3 0 

Mig_River_Swamp Migration between river and swamp 
buffaloes 

Log10 -6 0 

Mig_Swamp_River Migration between swamp and river 
buffaloes 

Log10 -6 0 
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Supplementary Table S5.2: Summary statistics calculated for ABC posterior estimation. 

Greyed out rows were not used. Population numbers correspond to: India (1), Iran (2), Italy 

(3), and China (4). 

Statistic Description Observed Data 

K_1 Mean number of alleles over loci in population 1 1.991 
K_2 Mean number of alleles over loci in population 2 1.958 
K_3 Mean number of alleles over loci in population 3 1.954 
K_4 Mean number of alleles over loci in population 4 1.879 
Ksd_1 Standard deviation over loci in population 1 of the mean number 

of alleles  
0.097 

Ksd_2 Standard deviation over loci in population 2 of the mean number 
of alleles 

0.202 

Ksd_3 Standard deviation over loci in population 3 of the mean number 
of alleles 

0.210 

Ksd_4 Standard deviation over loci in population 4 of the mean number 
of alleles 

0.326 

mean_K Mean number of alleles over loci of all populations 1.945 
sd_K Standard deviation of the mean number of alleles over all 

populations 
0.047 

tot_K Mean total number of alleles 2.000 
H_1 Mean heterozygosity over loci in population 1 0.413 
H_2 Mean heterozygosity over loci in population 2 0.386 
H_3 Mean heterozygosity over loci in population 3 0.367 
H_4 Mean heterozygosity over loci in population 4 0.297 
Hsd_1 Standard deviation over loci in population 1 of heterozygosity 0.118 
Hsd_2 Standard deviation over loci in population 2 of heterozygosity 0.147 
Hsd_3 Standard deviation over loci in population 3 of heterozygosity 0.150 
Hsd_4 Standard deviation over loci in population 4 of heterozygosity 0.177 
mean_H Mean heterozygosity over loci of all populations 0.366 
sd_H Standard deviation of the heterozygosity over loci in all 

populations 
0.049 

tot_H Mean total heterozygosity 0.441 
FST_2_1 Pairwise FST between populations 1 and 2 0.050 
FST_3_1 Pairwise FST between populations 1 and 3 0.114 
FST_3_2 Pairwise FST between populations 2 and 3 0.128 
FST_4_1 Pairwise FST between populations 1 and 4 0.288 
FST_4_2 Pairwise FST between populations 2 and 4 0.318 
FST_4_3 Pairwise FST between populations 3 and 4 0.331 
PI_2_1 Mean number of differences between populations 1 and 2 759.710 
PI_3_1 Mean number of differences between populations 1 and 3 792.624 
PI_3_2 Mean number of differences between populations 2 and 3 778.250 
PI_4_1 Mean number of differences between populations 1 and 4 900.869 
PI_4_2 Mean number of differences between populations 2 and 4 897.710 
PI_4_3 Mean number of differences between populations 3 and 4 896.220 
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Supplementary Figure S5.3: Best fitting value of K in ADMIXTURE (K = 24) 

 

Supplementary Figure S5.4: CV values across values of K tested in ADMIXTURE. 

 

Supplementary Table S5.5: Treemix outputs showing variance explained by each number of 

migrations included and their log likelihoods. m=2 surpassed the 99.8% threshold. 

m Variance 
Explained 

M sign Percentage 0 Log 
Likelihood 

M Log 
Likelihood 

0 0.99737 0 0 915.392 915.392 
1 0.99774 1 100 906.413 1344.47 
2 0.99853 2 100 915.392 3804.48 
3 0.99887 3 100 915.392 4335.2 
4 0.99901 4 100 906.413 4542.64 
5 0.99922 5 100 892.017 4635.35 
6 0.99909 6 100 915.392 4700.76 
7 0.99920 7 100 915.392 4926.06 
8 0.99946 8 100 915.392 5019.7 
9 0.99945 9 100 906.413 5052.11 

10 0.99960 10 100 915.392 5351.08 
11 0.99959 11 100 915.392 5314.49 
12 0.99968 12 100 892.017 5562.1 
13 0.99972 13 100 915.392 5643.63 
14 0.99969 14 100 892.017 5538.75 
15 0.99976 15 100 915.392 5703.14 
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Supplementary Figure S5.6: MDS analysis showing components 1, 2, and 3 
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Supplementary Table S5.7: AMOVA result 

Source of 
variation 

Degrees of 
freedom 

Sum of squares Variance 
component 

Percentage 
variation 

Among groups 1 505711.960 887.32416 23.15939 
Among 
populations within 
groups 

40 505403.179 264.05577 6.89192 

Among individuals 
within populations 

775 2054294.077 -29.03842 -0.75791 

Within individuals 815 2213116.500 2709.03760 70.70659 

Total  5278525.742 3831.37910  

 

Supplementary Table S5.8: Genes found under balancing and divergent selection between 

river and swamp buffaloes. * Indicates nearest gene within 100,000bp as opposed to SNP 

featuring within genes 

Inferred 
Selection 

SNP Chromosome Position HO FST P-
value 

Gene 

Divergent AX-85059449 1 137805119 0.532 0.674 0.043 NLGN1 
 AX-85074379 2 117197387 0.496 0.668 0.021 NCKAP5 
 AX-85130617 5 86875705 0.718 0.856 0.028 DLG2 
 AX-85098108 5 123612840 0.315 0.534 0.049 FGF3* 
 AX-85068609 7 13135978 0.461 0.644 0.028 - 
 AX-85053103 7 29497048 0.521 0.667 0.038 - 
 AX-85092885 7 59228951 0.516 0.654 0.039 TMEM156 
 AX-85053669 7 59261804 0.511 0.676 0.021 TMEM156 
 AX-85141759 7 76125508 0.480 0.629 0.042 KCNIP4 
 AX-85123264 7 87537289 0.348 0.552 0.043 CAMK2D 
 AX-85100415 7 113766499 0.394 0.569 0.049 MARCH1 
 AX-85122178 8 89393319 0.607 0.731 0.035 - 
 AX-85064549 9 36156687 0.465 0.679 0.011 - 
 AX-85078335 10 47108337 0.594 0.726 0.038 - 
 AX-85123889 14 7117671 0.592 0.724 0.035 - 
 AX-85115030 14 34586497 0.416 0.597 0.033 BMP2* 
 AX-85092242 14 34644384 0.417 0.598 0.033 - 
 AX-85080355 19 1027972 0.419 0.593 0.040 LOC112580673 
 AX-85095904 19 4930295 0.420 0.638 0.015 - 
 AX-85173042 19 19062193 0.418 0.594 0.041 PDE4D 
 AX-85109455 19 19090790 0.424 0.640 0.017 PDE4D 
 AX-85156949 20 40534232 0.562 0.703 0.034 PCSK6 
 AX-85109516 21 3721217 0.565 0.701 0.032 RBMS3 
 AX-85080769 24 31495868 0.630 0.745 0.050 SNX29 
 AX-85043173 24 38742317 0.391 0.576 0.039 UBALD1* 
Balancing AX-85077866 1 55546207 0.229 0.023 0.047 LOC112583954 
 AX-85108159 1 59994964 0.378 0.014 0.038 NCAM2 
 AX-85068810 1 85408765 0.328 0.030 0.049 - 
 AX-85114914 1 121168884 0.493 0.016 0.046 LOC112585195 
 AX-85090080 1 134494382 0.321 0.026 0.043 LOC112585597 
 AX-85159363 1 150365153 0.498 0.012 0.040 OTOL1* 
 AX-85052477 2 25475840 0.267 0.010 0.035 NEU1* 
 AX-85087584 2 37264933 0.476 0.000 0.034 TREM1 
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 AX-85112910 2 41710900 0.339 0.029 0.047 CPNE5 
 AX-85105035 2 74209524 0.375 0.015 0.039 ATF2 
 AX-85120212 3 11177522 0.182 0.007 0.046 LOC102410316 
 AX-85058807 3 48001841 0.229 0.017 0.045 TMEM132E* 
 AX-85174824 3 74461115 0.280 0.006 0.035 ACO1 
 AX-85066277 3 74679688 0.484 0.011 0.040 - 
 AX-85088622 3 126549607 0.234 0.003 0.035 GABBR2 
 AX-85122185 4 13975944 0.335 0.009 0.034 CRACR2A 
 AX-85072461 4 71601048 0.242 0.018 0.044 WIF1* 
 AX-85083446 4 98709789 0.456 0.010 0.040 - 
 AX-85077110 4 155750012 0.404 0.028 0.048 - 
 AX-85067417 5 6622618 0.401 0.015 0.038 - 
 AX-85086486 5 27591985 0.452 0.017 0.046 KAZN 
 AX-85095818 5 50309636 0.499 0.014 0.042 SMYD3 
 AX-85064355 5 100456933 0.368 0.014 0.036 NAV2* 
 AX-85067692 5 119820501 0.197 0.013 0.049 MAJIN 
 AX-85169249 6 27619169 0.343 0.028 0.048 VANGL1* 
 AX-85119775 6 56879244 0.277 0.021 0.043 CLCA4 
 AX-85068645 7 23640037 0.476 0.003 0.033 - 
 AX-85075338 7 45668788 0.344 0.018 0.038 AASDH 
 AX-85153345 7 62586729 0.402 0.015 0.039 - 
 AX-85069405 7 66942094 0.444 0.010 0.039 - 
 AX-85063644 7 78250793 0.418 0.017 0.043 - 
 AX-85090615 8 6647576 0.237 0.025 0.050 - 
 AX-85081730 8 30931972 0.408 0.016 0.040 LOC112586464 
 AX-85109656 8 111682591 0.226 0.008 0.038 CNTNAP2 
 AX-85112337 9 21765795 0.311 0.024 0.046 - 
 AX-85082311 9 23945538 0.475 -0.005 0.030 - 
 AX-85124176 9 44887825 0.392 0.017 0.042 - 
 AX-85092905 9 55481311 0.356 0.034 0.047 - 
 AX-85092488 9 75375969 0.501 0.016 0.042 - 
 AX-85056106 11 4811606 0.370 0.000 0.028 - 
 AX-85051746 11 43792867 0.302 0.013 0.038 SPPL2A 
 AX-85133095 12 131865 0.337 0.008 0.034 ZC3H8 
 AX-85103904 12 3024058 0.433 0.017 0.040 TMEM131 
 AX-85057934 12 40144595 0.500 0.012 0.037 - 
 AX-85106510 12 77734826 0.227 0.019 0.048 - 
 AX-85175464 12 85135298 0.391 0.024 0.045 - 
 AX-85047589 13 70312558 0.275 0.021 0.043 RNASEH2B 
 AX-85047955 14 16762379 0.423 0.010 0.039 VSTM2L* 
 AX-85102486 15 43900948 0.481 0.004 0.037 CRISPLD1* 
 AX-85104025 16 55600588 0.345 0.008 0.033 TREH 
 AX-85101944 17 2084327 0.225 0.011 0.042 LOC102408479 
 AX-85053946 17 4390666 0.504 0.006 0.033 NF2 
 AX-85111891 17 41978525 0.501 0.015 0.045 - 
 AX-85176273 18 64601486 0.501 -0.001 0.031 LOC102399551 
 AX-85087562 19 10020060 0.494 0.012 0.042 OCLN 
 AX-85046689 19 14526456 0.335 0.012 0.037 SHISL2B* 
 AX-85123100 19 14719215 0.439 0.010 0.037 RGS7BP* 
 AX-85068339 19 68553602 0.446 0.005 0.034 - 
 AX-85070718 20 50558766 0.425 0.024 0.046 NTRK3 
 AX-85073019 21 20176221 0.293 0.009 0.036 - 
 AX-85077610 22 38659850 0.301 0.027 0.048 ASXL3 
 AX-85112930 22 39062144 0.502 0.022 0.041 NOL4 
 AX-85042968 23 16533814 0.324 0.017 0.038 PDLIM1* 

 


