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A B S T R A C T

A new micromechanics-based constitutive model for self-healing cementitious materials is proposed. The model
is aimed at self-healing materials with distributed healing mechanisms, such as materials with embedded mi-
crocapsules and enhanced autogenous healing capabilities. The model considers anisotropic microcracking and
time-dependent healing. In contrast to many existing models for self-healing cementitious materials, the new
approach imposes no limitations on the number or timing of microcracking or healing events that can be
simulated. The formulation ensures that the simulation of microcracking and healing is always consistent with
the second law of thermodynamics. The model is implemented in a three-dimensional nonlinear finite element
code that allows structural elements formed from self-healing materials to be simulated. A series of single-point
simulations illustrate the versatility of the model. The experiments considered with the model encompass a set of
cylindrical specimens formed from concrete with embedded microcapsules containing sodium silicate, and a
notched beam test series that examined the self-healing potential of concrete formed with a crystalline admix-
ture. The validations show that the model can capture the characteristic mechanical behaviour of these structural
elements with good engineering accuracy.

1. Introduction

There has been strong interest in the development of self-healing
cementitious materials (SHCM) over the last two decades due to the
need to improve the durability and resilience of civil engineering
structures. The development, design and assessment of these SHCM
structures requires accurate and robust models that can capture their
fundamental behaviour, particularly in the absence of design codes of
practice. The earliest models for self-healing systems simulated wound
healing. These models (Arnold and Adam, 1999; van Vermolen et al.,
2006) considered a diffusion process to capture healing growth within
designated wound layers. Although the development of biomimetic
construction materials is inspired by natural processes in biological
systems, the underlying cracking and healing mechanisms differ
significantly from those of their organic counterparts. Self-healing in
cementitious materials involves a series of physical and chemical pro-
cesses (Shields et al. 2021; Van Tittelboom & De Belie 2013) that
include: i) mechanical cracking and healing, ii) fluid and heat transport,
and iii) chemical reactions and the associated curing of healing agents.

Various approaches have been explored to capture the behaviour of
SCHMs in cracking-healing cycles, and several coupled models have
been presented that can simulate these processes (Jefferson et al. 2018).

In recent studies, morphological methods have been employed to
establish a mathematical relationship between healing mechanisms and
post-healed mechanical properties (Lee & Anthony 2023; Ponnusami
et al. 2019; Zhou et al. 2017). However, most existing models are either
fully or semi-empirical in nature and require considerable experimental
data to calibrate their response for a particular SCHM. This implies that
these models are only valid within the data range considered.

In general, two general approaches have been employed to simulate
mechanical self-healing processes; namely, the discrete crack approach
(Abu Al-Rub 2016; Cibelli et al. 2022; Freeman et al. 2020; Jefferson &
Freeman 2022) and the smeared crack approach (Davies & Jefferson
2017; Dutta & Kishen 2019; Han et al. 2021a; James et al. 2014; Zhou
et al. 2016; Zhu et al. 2015, 2016).

Several constitutive models have employed Continuum Damage
Healing Mechanics (CDHM) as a modelling framework (Oucif & Mau-
ludin 2018). In this approach, the evolution of healing is linked to the
degree of damage by introducing a healing variable (scalar or tensor)
that describes the proportion of the effective damage area that has
healed. This progresses according to a phenomenological healing evo-
lution function (Abu Al-Rub & Darabi 2012; Darabi et al. 2012).

For ductile materials, the elastoplastic constitutive formulation
proposed by Barbero et al. (2005) has been used by several authors
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(Voyiadjis et al. 2011). This formulation uses the concept of elastic strain
energy equivalence to derive damage-healing tensors. This idea was
subsequently extended by Subramanian & Mulay (2022) to encompass
self-healing in shape memory polymers.

Several investigators have shown that micromechanics-based models
are able to describe the behavioural characteristics of multiphase quasi-
brittle materials (Monchiet et al. 2012). In the case of cementitious
materials, a micromechanical formulation has been employed to
represent various mechanisms and processes, including the hydration
reactions of distinct phases within a cement paste (Königsberger et al.
2020; Pichler et al. 2013; Pichler & Hellmich 2011). The micro-
mechanics approach has also been used to simulate the effects of
microcracks on the overall response of cement paste arising from early-
age cracking and/or mechanical loading (Dutta & Kishen 2019; Pensée
et al. 2002; Pichler et al. 2007).

Employing micromechanics formulations to represent cracking in
quasi-brittle composite materials has also enabled the development of
mechanistic models suitable for self-healing applications in these ma-
terials. Chen et al. 2022; Zhu & Arson 2014; Zhu et al. 2015, 2016
employed a 2D micromechanical framework to simulate the behaviour
of microencapsulation self-healing systems under tensile and compres-
sive loads. They used classical fracture mechanics to establish a micro-
cracking evolution relationship and derived a compliance tensor for the
healed material. Subsequently, Chen et al. (2022) considered aligned
penny-shaped microcracks to evaluate the overall compliance matrix for
concrete after healing as a function of the crack healing ratio. In their
formulation, crystallization reaction kinetics was used to compute the
degree of healing.

In another significant study, Davies and Jefferson (2017) developed
a 3D model aimed at describing autogenous self-healing in cementitious
materials. The model is able to simulate anisotropic microcracking and
healing, but healing was considered to be instantaneous and thus the
model did not consider the time-dependent nature of healing. The ma-
jority of these models considered single healing events although some
also incorporated re-damage in their mathematical formulations (Oucif
& Mauludin 2018).

More recently, Han et al. 2021a, 2021b proposed a micromechanical
formulation to simulate the mechanical behaviour of self-healing con-
crete. Their approach adopted linear fracture mechanics criteria for both
damage initiation and evolution. In a broader context, Sanz-Herrera
et al. (2019) introduced a comprehensive framework that considers
multiple healing cycles in self-healing materials, based on the assump-
tion that each healing step is initiated under fully unloaded conditions.

In this paper, a micromechanics-based constitutive model for SHCMs
is presented, which incorporates directional microcracking and rate-
dependent healing. The primary novel aspect of the work is the intro-
duction of rate dependent healing into a micromechanical model that
does not have restrictions on the number of healing cycles, the strain
conditions under which healing takes place, and which also allows
simultaneous microcracking and healing. This builds on previous work
by the authors’ team on micromechanical models for cementitious
composites (Mihai and Jefferson, 2011) and − specifically- on the work
of Davies and Jefferson (2017) on a micromechanical model for self-
healing cementitious materials, which had considerable restrictions, as
explained above. This research also draws upon the theory developed for
a discrete damage-healing model that was applied to elements with
embedded strong discontinuities (Jefferson and Freeman, 2023). A
second, more arcane, contribution relates to the strict enforcement of
the condition that there should be zero-stress change during an incre-
ment of pure healing. This condition is important for ensuring that
spurious energy is not created during healing. The way that this con-
dition was considered in Davies and Jefferson’s model is inadequate for
the more general microcracking-healing scenarios of this paper.

The layout of the remainder of this paper is as follows; section 2
presents the basic model theory followed by a description of its nu-
merical implementation; in section 3 the constitutive response predicted

by the model is illustrated using a series of single material point simu-
lations, and this is followed by the presentation of a boundary value
problem in section 4. Finally, the main conclusions from the work are
drawn in section 5. In this paper, the only damage considered is me-
chanical loss of strength and stiffness due to microcracking.

2. Constitutive formulation for microcracking and healing

The main concepts of the constitutive model are presented in Fig. 1.
The cementitious composite is modelled as an elastic solid containing a
series of randomly distributed circular microcracks which can have any
orientation, defined by ψ and θ (see Fig. 1a). Each direction has a set of
local unit vectors, with the vector r being normal to the microcrack
plane, and s and t being in-plane vectors. The model simulates healing
using time dependent variables to describe the repair of these directional
microcracks (see Fig. 1b). In addition, a set of healing strain tensors are
introduced for every local microcracking direction to simulate the per-
manent strains that occur when healing agent cures in openmicrocracks.
The formulation ensures that no spurious energy is created when healing
occurs.

2.1. Constitutive equations for a model with directional microcracking

The model draws on a series of previous micromechanics-based
constitutive formulations for cementitious materials (Davies & Jeffer-
son, 2017; Jefferson& Bennett 2007; Jefferson and Bennett, 2010; Mihai
& Jefferson 2011). The essential equations from the underlying micro-
mechanical model, required for the derivation of the new healing model,
are summarised in Table 1. In the Table, ‘total’ refers stress, strain and
constitutive tensors in Cartesian axes, and ‘local’ refers to directional
terms, which are either integrated to give the total terms (see equation
2) or transformed from total tensors (see equations 8 and 9).

Fig. 2a illustrates the microcracking strain surface (equation 5) and
Fig. 2b shows a set of parallel microcracks in the cementitious
composite.

2.2. Derivation of model constitutive equations

Healing is simulated by the addition of a new term to the right-hand-
side of the local constitutive equation (4) such that the local stress in an
RME comprises two components, the first term representing the pro-
portion of un-microcracked material, and the second term giving the
proportion of healed – re-microcracked material. The resulting equation
is as follows:

sLh = (1 − ω)DL: εL + hv(1 − ωh)DLh : (εL − εh) (10)

where sLh, which replaces s used in equation 4, is the local stress
tensor allowing for any healing, and DLh the local elasticity matrix of the
healed material, εh is the healing strain and ωh is the re-microcracking
variable. It is noted that sLh,ω, εL,ωh, εL& εh all vary with time (t) and
with direction (ψ and θ), but these dependencies have been omitted for
clarity of presentation.

The healing variable (hv ∈ [0, ω]) represents the proportion of
microcracked material that is healed at a given time in the absence of re-
microcracking. More specifically, hv is equal to the maximum healing
front position, in increasing microcracking terms, in a given direction.
The evolution of hv for the present micromechanical model is explained
in section 2.3. The model accounts for re-microcracking of healed ma-
terial by employing a second microcracking variable (ωh ∈ [0,1]), which
gives the proportion of hv that has re-microcracked. When healed ma-
terial re-microcracks, ωh evolves according to equations (11) and (12),
which are the healing counterparts to equations (7) and (5) respectively.

ωh(ζh) = 1 −
εt
ζh
e
− c

(
ζh − εht
εh0 − εht

)

(11)
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Table 1
Summary of equations from the underlying microcracking model.

Equation Number Description (Jefferson and Bennett, 2007 & 2010)

σ = D : (ε − εadd) (1) Total constitutive relationship.

εadd =
1
2π∯ SNε : εα dS

(2) Total added strain tensor obtained by integrating the local added strain tensor (which varies with direction) over a hemisphere.

εα =
( ω
1 − ω

)
CL : s (3) Local added strain tensor in terms of the local stress, elastic compliance and local microcracking variable.

s = (1 − ω)DL : εL (4) Local constitutive relationship in terms of the local strain (sum of elastic and added local strains) and local elasticity tensor.
Fζ(εL, ζ) = ζef (εL) − ζ = 0
subject to
Fζ ≤ 0; ζ̇ ≥ 0; Fζ ζ̇ = 0

(5)

(6)

Microcracking function in terms of the local microcracking strain (ζef ) (see footnotes) and the local microcracking strain parameter.
Fζ(εL , ζ) is subject to the Karush–Kuhn–Tucker conditions, equation (6), which are applied to equation (5) such that local strains remain
on the microcracking surface when local microcracking is active in a particular direction (Mihai& Jefferson, 2012). In the present case,
this involves updating ζ to the value of ζef (εL), if the latter exceeds the value of the former from the last converged state.

ω(ζ) = 1 −
εt
ζ
e
− c

(
ζ− εt

ε0 − εt

)
(7) Local microcracking variable in terms of the microcracking strain parameter.

s = N : σ
εL = Nε

T : ε
(8)
(9)

Transformations for local stress and strain from their total counterparts.

Notation and notes.
εadd is the overall additional strain tensor due to microcracking, σ and ε are the total stress and strain tensors respectively, D is the elasticity tensor, N is the stress
transformation tensor, Nʹ, in matrix terms, is equal to NT, Nε is a strain transformation tensor, εα is the local added strain tensor, S denotes the surface of a unit
hemisphere, ω is the directional microcracking variable, CL is the local elastic compliance tensor, s is the local stress tensor,DL = CL − 1 is the local elasticity tensor, εL is
a local strain tensor that comprises the sum of the added (εα) and the elastic (εLe) local strains, Fζ is the microcracking function (also known as the local microcracking
strain surface), ζef is the effective microcracking strain (see below), ζ is the microcracking strain parameter, c is the microcrack evolution constant, ε0 = uo/l e is the
strain at the fully microcracked state, uo is displacement at the end of the softening curve, l e is the finite element characteristic length, εt = ft/E, ft is the uniaxial tensile
stress at which microcracking initiates and E is Young’s modulus of the cementitious matrix material. Local tensors are expressed in a reduced vector or matrix form in
which only those terms that can be non-zero are included e.g. s = [srrsrssrt ]T.

ζef (εL) =

(
εLrr
2

(

1+
(

μ
q

)2
)

+
1
2q2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ε2Lrr(q2 − μ2)2 + 4q2γ2
√

)

, in which μ =
μsE
G
, γ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ε2Lrs + ε2Lrt
√

, q =
qsE
G
, μs is an internal friction parameter and qs is the ratio of

interface shear strength to matrix tensile strength.

Fig. 1. Schematic representation of RME. a) Coordinate system: b) illustration of microcracked (left) and partially healed (right), material states.
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Fζh(εL, εh, ζ) = ζhef (εL − εh) − ζh = 0 (12)

where ζhef , ζh, εh0&εht are the healing counterparts to the microcracking
function/parameters ζefζ,ε0&εt . It is noted that when re-healing occurs,
ωh reduces, as explained below.

The general form of equation (10) is similar to the local constitutive
equation employed by Davies and Jefferson (2017), but the meaning of
the healing and re-microcracking variables and the way that they are
updated are quite different. This is because the model by Davies and
Jefferson only allowed one healing and one re-microcracking event.
Furthermore, in their model, healing terms did not evolve over time.

When healing agent cures in an open microcrack, there is a moment
in time when solid material first bridges between the opposing crack
faces. This is when mechanical healing of the crack commences, and it is
assumed that this bridging material is stress free at the time of forma-
tion. This ‘stress free at formation’ condition is assumed to apply to
every new increment of bridging material. This assumption is not only
consistent with experimental data (Selvarjoo et al. 2020), but also en-
sures that the simulation of healing does not create spurious energy and
therefore does not violate the second law of thermodynamics. Expand-
ing on this issue; when healing is simulated, the stiffness of the material
increases. Thus, if the strain remained constant, the stress and the strain
energy would increase. This would violate the second law unless the
increase in strain energy was matched by the release of thermal-
chemical energy. Since there is no evidence that the stress rises during
healing, the surest way to ensure that the model satisfies thermody-
namics principles is to introduce a healing strain (εh) that evolves such
that the stress does not change due to healing alone. Furthermore, this
strain simulates the permanent strains associated with solidified healing
agent, which prevents microcracks from fully closing. This permanent
strain is evident in experiments in which healing has occurred in open
cracks (Selvarajoo et al., 2020). A mathematical treatment of this issue
may be found in Appendix B of Jefferson and Freeman (2022), in the
context of a discrete cracking model. The method used to update εh is
discussed below.

The derivation now proceeds by determining the total inelastic strain
tensor for each direction, which is the equivalent of equation (3). This is
accomplished by rearranging equation (10) to give the local strain, as
follows:

εL = [(1 − ω)DL + hv(1 − ωh)DLh ]
− 1

: [sLh + hv(1 − ωh)DLh : εh ] (13)

Then, the local inelastic strain tensor (εα) is found by removing the
elastic component of strain from εL (i.e. εα = εL − εLe, where εLe =
CL: sLh). Thus, from (13), the additional local inelastic strain is given by:

εα = [(1 − ω)DL + hv(1 − ωh)DLh ]
− 1

: [sLh + hv(1 − ωh)DLh : εh ] − CL : sLh
(14)

which is rearranged to group local stress and healing strain terms, as
follows:

εα =
[
[(1 − ω)DL + hv(1 − ωh)DLh ]

− 1
− CL

]

: sLh +
[

(1 − ω)
hv(1 − ωh)

CLh • DL + I2s
]− 1

: εh (15)

where I2s is the second order identity tensor, and CLh = D− 1
Lh .

The total inelastic strain tensor is obtained by integrating the con-
tributions from (15) around a hemi-sphere, in the same way that the
equivalent term was obtain in equation (2), giving the following:

εadd =
1
2π∯ SNε :

(
[
[(1 − ω)DL + hv(1 − ωh)DLh ]

− 1
− CL

]

: sLh +
[

(1 − ω)

hv(1 − ωh)
CLh⋅DL + I2s

]− 1

: εh

)

dS (16)

The two components of equation (16) are now separated, as follows:

εat =
1
2π∯ SNε⋅

[
[(1 − ω)DL + hv(1 − ωh)DLh ]

− 1
− CL

]
: sLhdS (17)

εah =
1
2π∯ SNε⋅

[
(1 − ω)

hv(1 − ωh)
CLh⋅DL + I2s

]− 1

: εhdS (18)

The first term (εat) gives the inelastic strain induced by the local
stresses and the second term gives the total permanent strain due to
cured healing agent.

The method used to evaluate εh is described in Section 2.3 and
expanded upon in A ppendix B. The latter accounts for interactions
between healed microcracks in different directions, which were not
considered in the method proposed by Davies and Jefferson (2017).

The relationship between the total stress and strain tensors is derived
by replacing εadd in equation (1) with the two components from equa-
tions (17) and (18), as follows:

σ = D : (ε − εat − εah) (19)

The final steps in this derivation involve using equations (17) and (18) in
equation (19), employing the static constraint (equation (20) and rear-
ranging to obtain equation (21).

sLh = N : σ (20)

σ = Dsech : (ε − εah) (21)

where Dsech is the equivalent secant stiffness tensor, as given below.

Dsech =

(

I4s +
D
2π⋅
(
1
2π∯ SNε⋅

[
A− 1 − CL

]
⋅NdS

)− 1

⋅D

)

(22)

where I4s is fourth order identity tensor and A =

[(1 − ω)DL+hv(1 − ωh)DLh ].

Fig. 2. Microcracking strain surface, b) parallel set of microcracks.
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2.3. Time dependent healing evolution

In this section, the method used to simulate the evolution of the
healing variables is explained. This starts with a consideration of the
relative proportion of material available to heal at a given time t, which
is denoted by a(t). It is assumed that healing agent is supplied instan-
taneously to any new microcracks and, thus, a(t) increases at the same
rate as ω(t), as follows:

ȧ(t) = ω̇(t) (23)

in which the superior dot denotes the time derivative.
Healing occurs by healing-agent curing in microcracks. The function

used to simulate the evolution of the degree of cure (ϕ ∈ [0,1]) is taken
from Freeman and Jefferson (2022, 2023), as follows:

ϕ(t) = (1 − e− tc/τ) (24)

where τ is the curing time parameter, which depends on the chemical
properties of the healing agent and the current curing time (tc = t − tc0).

With these assumptions, and in the absence of re-microcracking, the
virgin healing variable at time t is given by the following convolutional
integral:

hv(t) = ϕhe
∫ t

s=tc0

∂a(s)
∂s (1 − e− (

t− s
τ )
)dS (25)

where ϕhe is a healing efficiency parameter.
The assumption that the degree of cure matches the degree of healing

is different from that used in the macrocrack healing model of Jefferson
and Freeman (2022), in which healing was computed from the overlap
of curing fronts within a macrocrack. However, in microcracks with
relatively small crack opening displacements, the degree of healing may
be equated directly to ϕ.

Re-healing is simulated by a reduction in the re-microcracking var-
iable (ωh) such that the total proportion of healed material (h) at time t
is:

h(t) = hv(t)(1 − ωh(t)) (26)

The relative proportion of material available for re-healing (ar) is given
by:

ar(t) = hv(t)ωh(t) (27)

The re-healing variable is then obtained from:

hr(t) = ϕhe
∫ t

thr

∂ar
∂s (1 − e

− t/τ)ds (28)

where thr is the re-healing activation time.
The process of updating ωh is best explained by considering a finite

healing period from time t to t+Δth and exploring the changes in the
healing variables over that period. The increment of virgin healing Δhv
is computed from equation (29) using equation (25), the amount of re-
healing Δhr from equation (30) using equation (28), and ωh by
applying the healing increment to equation (26) to obtain equation (31)
and rearranging to give equation (32):

Δhv = hv(t+Δth) − hv(t) (29)

Δhr = hr(t+Δth) − hr(t) (30)

(1 − ωh(t + Δth) )hv(t+Δth) = (1 − ωh(t) )hv(t)+Δhv +Δhr (31)

ωh(t+Δth) = 1 −
(1 − ωh(t) )hv(t) + Δhv + Δhr

hv(t + Δth)
(32)

The representation of healing, re-microcracking and re-healing by
equation (26) implies a homogenisation of material states across an
RME. This is because the model does not track each separate directional
component of micro-cracked and healed material that forms at a
particular time; rather, these are grouped together and represented by a
single virgin healing variable, a single microcracking variable and a
single healing strain tensor (εh) for each microcracking direction. These
microcracking and healing processes are illustrated in Fig. 3.

The next healing component that needs to be considered is the
healing strain. As discussed in Section 2.2, the condition used to
compute εh is that the state of stress should not change when healing
alone occurs. If the local stress is considered and there is no change in

Fig. 3. Schematic representation of material states in successive microcracking and healing cycles.
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either ω or εL over the healing increment, then the zero change in the
local stress condition may be written as follows:

ΔsLh = hv(t + Δth)(1 − ωh(t + Δth) )DLh : (εL − εh(t + Δth) )

= hv(t)
(
1 − ωhp

)
DLh : (εL − εh(t) ) = 0 (33)

where ωhp is the microcracking variable at the start of the healing sub-
step.

Then, the change in the value of εh at the end of the healing incre-
ment may be deduced to be:

εh(t+Δth)=
hv(t+Δth)(1 − ωh(t+Δth))εL − hv(t)

(
1 − ωhp

)
(εL − εh(t))

hv(t+Δth)(1 − ωh(t+Δth))
(34)

This update ignores the interaction between local directions and
means that if εh from equation (34) were to be used directly in equation
(18) the condition that the total stress remains constant over a healing
increment would not be guaranteed. The solution to this problem in-
volves the introduction of an interaction factor (αj) for each micro-
cracking direction (j), as explained in Appendix B. These interaction
factors modify the contribution of each local healing strain tensor (εh) to
the total healing tensor εah. The modified εah tensor is denoted εGh (see
equation (B.8) and is given by:

εGh = Cαεh (35)

The expression in equation (35) then replaces εah in equation (21), as
follows:

σ = Dsech : (ε − εGh) (36)

The final aspect of the management of the healing variables is the update
of the healing strain parameter (ζh) to account for the change in ωh due
to healing. This is obtained by solving the following nonlinear equation
which is derived by equating ωh(t+Δth) from equation (32) to the
expression for ωh given in equation (11), as follows:

solveωh(t+Δth) −

⎛

⎜
⎝1 −

εt
ζh
e
− c

(
ζh(t+Δth)− εht

εh0 − εht

)⎞

⎟
⎠ = 0 for ζh(t+Δth) (37)

2.4. Update algorithm for healing variables

The numerical solutions used for the above equations are now
considered. Firstly, hv and hr are defined by the convolution integrals
given in equations (25) and (28) respectively, which may be solved
conveniently by using a standard two-level recursive scheme (Simo and
Hughes, 1998; Mergheim and Steinmann, 2013). The resulting expres-
sions for hv and hr are as follows, noting that times t and t+Δth are now
denoted by subscripts i and i + 1respectively:

hvi+1 = hvi e
−

Δth
τ +ϕheai+1(1 − e

−
Δth

τ ) (38)

hri+1 = hri e
−

Δth
τ +ϕheari+1

⎛

⎝1 − e−
Δth

τ

⎞

⎠ (39)

Each time step is sub-divided into a microcracking sub-step and a
healing sub-step. The solution is quasi-static such that no inertia terms
are included, and it is assumed that any changes to the microcracking
field occur instantaneously at the start of each time step. Healing is then

considered to occur over the time step, starting from the current state of
microcracking. Thus, the healing sub-step (Δth) is the same duration as
the overall time step (Δt).

The algorithm developed for computing the stress and updating the
microcracking and healing variables at a particular timestep is given in
Algorithm box 1. The primary directional microcracking and healing
variables/tensors to be updated are ζ, ζh,ωh, hv and εh. The dependent
variables include ω&hr. It is noted that ωh is a dependent variable during
a microcracking sub-step but is updated directly during a healing sub-
step. In the latter, ζh is updated according to the new value of ωh .

The vectors containing the values from all directions are denoted
with bold non-italic text. The values from a previous step, or sub-step,
are denoted with the subscript p.

The integration over the hemispherical domain is evaluated
numerically using MacLaurin’s 29 point integration rule (i.e. nd = 29)
(Stroud, 1973). These directions and the associated integration weights
are given in A ppendix A. For convenience, Voigt notation is used in the
description of algorithm 1.

Algorithm 1 Computational algorithm.
The starting variable values for all directions from the previous time step (null if first
step) ζp,ζhp,hvp & εhp and the total stress (σ) to be updated for the new total strain
ε + Δε, for time t to t + Δt, noting that Δt = Δth

Mechanicalsub − step
forj = 1tond Loop over spherical integration directions (see App. A for integration
directions and weights)

εLj = Nεj (ε + Δε)) Calculate local strain tensor

ζef
(
εLj
)
&ζhef

(
εLj − εhpj

)
Find effective strains for original and healed material (eq.

5&12)
Update ζj(ζef j, ζp j), ζhj(ζhef , ζhpj),ωj

(
ζj
)
,ωhj(ζhj) Update local microcracking

parameters and variables for original material (eq. 5–7)& healed material (eq. (11)–
(12)

Δωj = ωj − ωp j&Δωj = ωhj − ωhpj Compute the increments of the microcracking
variables for original and healed material

hrj = hvp j
(
1 − ωhj

)
Update the re-healing variable for microcracking

Aj =
[(
1 − ωj

)
DL +hvp j

(
1 − ωhj

)
DLh

]
Compute the local microcracking – healed

constitutive tensor (see line below eq. (22)
endjloop Close loop over integration directions
ζhp = ζh;hvp = hv;hrp = hr
ωhp = ωhp(ζhp) Record values of healing and re-microcracking variables that have
been updated for new microcracking.

Healing sub-step, if healing is activeIf healing is activated continue, else jump to
end of section.

forj = 1tond Loop over spherical integration directions
aj = apj + Δωj
ar j = arp j +Δhvp jωhpj Calculate proportions of material available for healing (eq. (23)
and re-healing (eq. (27)

hvj = hvpje
− Δt

τ + aj(1 − e
− Δt

τ )

hrj = hrp je
−

Δt
τ + ϕhearj

⎛

⎝1 − e−
Δt
τ

⎞

⎠

Δhvj = hvj − hvp j
Δhrj = hrj − hrp j Update the virgin healing and re-healing variables (eqs. (38) & (39)
along with their increments (eqs. (29) & (30)

ωhj = 1 −

(
1 − ωhpj j

)
hvpj + Δhvj + Δhrj
hvj

Update the healed material microcracking

variables due to re-healing. (eq. (32)

Solveωhj −

⎛

⎜
⎝1 −

εt
ζhj
e
− c

(
ζh j − εht
εh0 − εht

) ⎞

⎟
⎠ = 0

for ζhj
Update the nonlinear equation for the microcracking strain parameter for healing. (eq.
(37)

(continued on next page)
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(continued )

εh j =
hvj
(
1 − ωhj

)
εL j − hvj(1 − ωhpj)

(
εL j − εhp j

)

hvj
(
1 − ωhj

) Compute the current local healing

strains (eq. (34)

Aj =
[(
1 − ωj

)
DL +hvj

(
1 − ωhj

)
DLh

]
Update the local microcracking – healed

constitutive tensor (eq. (22)
endjloop Close loop over integration directions
End if: active healing

Dsech =

(

I +
Del

2π
∑nd

j=1
NT

εj

[
A− 1
j − CL

]
Njwdj

)− 1

Del Update the secant stiffness (eq.

(22)
εGh = Cαεh
σ = Dsech(ε − εGh) Update the total healing strain tensor, allowing for interactions (eq
(35) and A ppendix B), noting that the vector εh contains the stacked local healed
strain vectors εh j for all local directions j = 1 to nd

Compute the total stress.
end

The schematics in Fig. 3 illustrate the changing state of material during
successive microcracking-healing cycles within an RME, and the
homogenised representation of the RME based on equation (26).

The new micromechanics based self-healing constitutive model was
implemented in a finite element code developed at Cardiff University. A
standard virtual work formulation was adopted to evaluate the stiffness
matrix. Material nonlinearity was considered, and the domain was
assumed to be continuous throughout the loading history. The nonlinear

system of equations is solved using a standard Newton incremental
iterative scheme.

3. Single point simulations

A series of single-point simulations is presented in this section in
order to illustrate the performance of the proposed constitutive model.
The material properties such as the modulus of elasticity (E), tensile
strengths (ft) and Poisson’s ratio for original and healed materials
(denoted by subscript h) that used for the simulations are given in
Table 2. The first example replicates a uniaxial tensile test with an
applied strain rate of 5 × 10-6 /s in the xx-direction. The simulations
were undertaken for a range of curing time parameters (see τ range in
Table 2) and healing scenarios. The latter comprise no-healing (Nh),
single healing (Sh) and multiple healing (Mh) scenarios. ‘Multiple
healing’ means that the mechanism within the model to simulate an
unlimited number of simultaneous microcracking and healing steps is
active.

The overall responses for each scenario, along with the associated
evolutions of the microcracking variables, are given in Fig. 4.

In this example, healing was assumed to commence when the strain
reached 0.003. For the material properties given, this strain value would
be associated with substantial microcracking in a real self-healing ma-
terial and is approximately 70 times greater than the crack initiation
strain. It is noted that the healing activation criterion varies

Table 2
Material properties.

Variables E(N/mm2) Eh(N/mm2) ν,νh ft , fth(N/mm2) τ(s) ε0, ε0h

Properties 24,000 12,000 0.15 1 1–60-200 0.0067

Fig. 4. Computed uniaxial responses, a) variation of stress with time, b) re-microcracking variables, c) Stiffness matrix component for τ = 1s and d) stiffness matrix
component for τ = 200s.
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considerably with the type of healing system and with the properties of
the host material.

The results show that the response is strongly affected by the value of
the curing time parameter with the healing response being less abrupt
for larger values of τ. It is noteworthy that the responses of the three
healed material simulations tend to the same asymptotic stress, which is
associated with balanced healing and microcracking rates. Furthermore,
the ability of the model to capture anisotropic behaviour is explored by
considering the changes to the components of the stiffness tensor over
the prescribed strain path. The secant stiffness tensor (in Voigt matrix
form) is normalised with the elasticity tensor (matrix), such that M =

D− 1Dsech. The component numbers shown in Fig. 4c and 4d are selected
matrix terms in Voigt notation. The changes in these matrix terms are
illustrated in Fig. 4c and d for τ = 1 and 200 (s) respectively. The results
show that the relative matrix terms change in an anisotropic manner as
microcracking and healing progress.

In order to provide more insight into the anisotropic behaviour of the
model, the variation of the microcracking and healing variables for four
selected directions have been plotted for all three healing scenarios for
the τ = 60s case in Fig. 5. The direction numbers correspond with the
spherical integration directions given in Appendix A.

As may be expected, the maximummicrocracking occurs in direction
1 which coincides with the loading direction. The microcracking vari-
able in direction 1 (i.e.ω1) has a value of 0.99 at the time healing

initiates; by contrast, the corresponding value of ω28 = 0.90. The ω
values for the directions that do not correspond with the loading di-
rection illustrate the effect of the local shear strains, as well as the local
normal strains, on the degree of microcracking around the hemisphere.
As may be expected, the progression of the microcracking and healing
responses for the non-coincident directions lag those of direction 1, with
the lag increasing as the angle between direction 1 and the normal to the
local direction under consideration increases. The microcracking and
healing variables are visualised in the polar plots shown in Fig. 5. These
polar plots are given at times 10, 20, 75 and 175 s for the microcracking
variables and 610, 700, 800 and 1800 s for the healing and re-
microcracking variables.

3.1. Parametric study

The results of a systematic parametric study are now presented in
which the model was used to predict the uniaxial response of a self-
healing cementitious sample. The reference properties are those given
in Table 2. The material properties altered sequentially in the study were
the curing time, healed material Young’s modulus and healed material
strength. The sequence of values used for each parameter are given in
Table 3. The range of healing scenarios considered are as follows:

Fig. 5. Microcracking and healing variable evolution, a) virgin microcracking b) virgin healing, c) re-microcracking for single healing cycle and d) re-microcracking-
re-healing variables for multiple healing cycles.
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i) single healing under continuous monotonic loading (ε̇ = 5×
10− 6 /s ):

ii) multiple microcracking-healing under continuous monotonic
loading (ε̇ = 5× 10− 6 /s ):

iii) multiple microcracking-healing events under loading–unloading-
reloading conditions (loading ε̇ = 5× 10− 6; unloading ε̇ = − 5×
10− 6; reloading rate varies as shown in Fig. 6)

Fig. 6 presents the predicted mechanical response for all of the cases
considered. The relative effect of changing each parameter in turn is
evident from the graphs, with changes in the healed-material strength
and stiffness greatly affecting the post-healed peak load and post-peak
softening response. As already mentioned, changing τ has a profound
influence on the apparent stiffness and ductility of the post-healed
response, with lower values of τ being associated with lower post-
healed peak strengths and an apparent more ductile response.

For real cases, the model parameters are calibrated by using exper-
imental data from uniaxial microcracking tests to determine the soft-
ening parameters of equation (7), such that the peak and post-peak
behaviour are captured accurately. Then, the healing-efficiency

parameter (ϕhe) is found using data from uniaxial microcracking –
healing tests, with ϕhe being calibrated such that the computed overall
stiffness recovery matches the corresponding experimental value. The
healing activation time is obtained through direct observation. These
microcracking and healing parameters are variable since they depend on
the mechanical properties of the overall self-healing system, as well as
those of the components, such as microcapsule shells and vascular
network channels.

3.2. Microencapsulated uniaxial test

The proposed model’s ability to replicate the mechanical response of
samples formed from a self-healing cementitious material containing
microcapsules is assessed by considering the experimental tests on a set
of cylindrical samples undertaken by James et al. (2014). In this work,
the investigators measured the effects of healing on the elastic modulus
of a microencapsulated self-healing cementitious material system. The
tests considered material samples formed with 400–500 µm sized micro-
capsules containing sodium silicate at dosages of 0.5 % and 1 % by
volume of the cement paste. The tests followed a procedure from ASTM
C469 for measuring the static elastic modulus. Each cylindrical sample
was loaded axially up to 70 % of the nominal compressive strength in
order to induce a degree of microcracking. The samples were then
unloaded and allowed to heal for 3 days and then reloaded to failure.

The material properties used for the simulations are presented in
Table 4.

Fig. 6. Parametric study results.

Table 3
Material properties for parametric study.

Case/material
properties

Ranges τ(sec) Eh(N/
mm2)

fth(N/
mm2)

τ 1, 10, 50, 100,
400

variable 12,000 1

Er = Eh/E* 0.25, 0.5, 1, 1.5,
2

50 variable 1

frfth/ft** 0.25, 0.5, 1, 1.5,
2

50 12,000 variable

* Er denotes the ratio of the elastic modulus of healing material to original
material.
** fr denotes the ratio of the tensile strength of healing material to original

material.

Table 4
Material properties.

Material/properties E(N/mm2) ν ft(N/mm2) ε0

Matrix 32,430 0.25 1 0.0025
Capsule 3000 0.2 − ​
Healing agent 3000 0.2 5 0.0003
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The results of the simulations are presented in Fig. 7, with Fig. 7a
giving the loading protocol and Fig. 7b the experimental and numerical
values of the elastic moduli before and after healing for each case. It is
evident from the differences between the initial stiffnesses of the control
samples and the samples containing microcapsules that the presence of
the microcapsules reduced the stiffness of the material.

The results of the samples with microcapsules shows that the model
is able to reproduce the increase in stiffness brought about by healing,
and to capture the effect of increasing the dosage of microcapsules. It is
noted that the experimental data did not include any load–displacement
responses.

4. Finite element example: Self-healing beam tests

The 3-point beam bending experiments conducted by Ferrara et al.
(2014) are considered in this example. In these experiments, concrete
beams of size 450 × 100 × 50 mm (Fig. 8a), were cast and loaded until
the crack mouth opening displacement (CMOD) reached 150 µm and
300 µm for first and second healing cycle respectively. Some of these
beams were formed from a standard concrete mix and others were
formed with a concrete containing a proprietary crystalline admixture
(CA) (Ferrara et al. 2014), which was assumed to act as an autogenous
healing enhancer. Ater cracking, each sample was stored for 12 months
in either, (i) dry air or (ii) a water curing tank. The beams were then re-
loaded until failure. The cases considered are summarised in Table 5.

The material properties used for the simulations (see Table 5) were

Fig. 7. Experimental validation, a) loading protocol, b) stiffness recovery comparison.

Fig. 8. (a) Beam geometry and boundary conditions, b) finite element mesh.
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based on those reported by Di Luzio et al. (2018); Ferrara et al. (2014)
and Cibelli et al. (2022). The beam was modelled with the finite element
program containing the new constitutive model. The testing arrange-
ment, specimen geometry, boundary conditions and finite element mesh

used for the analysis are illustrated in Fig. 8.
The simulations of the control specimens (without CA) only consid-

ered the first healing cycle, since no appreciable healing was observed in
the second cycle. By contrast, the second healing cycle was considered

Fig. 9. Experimental and numerical control beam responses, a) load v CMOD response, b) microcracking variables at a CMOD of 150 μm.

Fig. 10. Load-CMOD response for WCAD samples (a-b) and WCAW (c-d), a) loading − reloading response with healing, b) magnified illustration of (a), c) reloading
with healing for WCAW, and d) magnified illustration of (c).

Table 5
Material properties used for bvp simulation.

Case/ parameter Curing condition Name E,Eh(N/mm2) ν,νh ft (N/mm2) fth (N/mm2) τ(days) ϕhe ε0, ε0h

Healing without CA Dry WCAD 35,000 0.25 0.1 0.5 270 0.01 0.0025
Healing without CA Wet WCAW 35,000 0.25 0.3 0.5 270 0.02 0.0025
Healing with CA Dry CAD 35,000 0.25 0.45 0.5 135 0.08 0.0025
Healing with CA wet CAW 35,000 0.25 0.5 0.5 135 0.1 0.0025
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for the specimens with CA. This is because negligible healing was
observed in the first cycle for the CA samples, but significant healing was
measured for the second cycle.

The experimental and numerical responses of the control samples are
given in Fig. 9, which also shows the distribution of selected micro-
cracking variables. The results show that the model is able to simulate
the overall response of the control specimens with good accuracy.

The mean experimental and numerical load-CMOD responses, for the
samples without and with CA, are given in Fig. 10 and Fig. 11 respec-
tively. In these graphs, the post-curing reloading response commences
from the unloading point of the initial cracking stage.

Comparing Fig. 10b and c with 10e and f, shows that the stiffness and
strength recoveries due to healing were significantly less for dry cured
specimens than for the wet-cured specimens without CA. The model
captures this difference, although does show a small increase in post-
healed strength for the dry specimens that was not evident in the cor-
responding ‘wet’ experiments. However, in wet conditions the strengths
increased up to 10 %. The effect of CA on mechanical recovery shows
itself in both strength and stiffness regains, as illustrated in Fig. 11 c and
f.

Fig. 12 gives plots that show the distribution of the healing and re-
microcracking variables at selected stages of the analysis for the CAW
case. Fig. 12a shows that, at the start of reloading stage, the healed
material re-microcracking value is zero, since at this point the healed
material has just formed in a stress-free condition. It subsequently ex-
periences microcracking. Re-microcracking values for the normal crack
direction are shown in Fig. 12 b and c for CMOD values of 310 and 350
µm respectively. This figure also shows that the further microcracking is

localised where healing material was formed.

5. Conclusions

A new micromechanical model for simulating the response of self-
healing cementitious materials has been presented in this paper. The
proposed constitutive formulation captures the time-dependent behav-
iour of these materials with good accuracy using relatively few physi-
cally meaningful material parameters.

The model simulates microcracking and its healing using the
assumption that all microcracked material has the potential to be
healed. The micromechanical formulation is well suited to simulating
distributed cracking and healing for systems in which the healing ma-
terial is spread throughout the structural element. This applies to heal-
ing systems that use embedded microcapsules. The model is not aimed at
simulating discrete cracks or systems that use vascular networks,
although some aspects of the behaviour of the latter can be captured by
the model.

The constitutive model was implemented in a 3D finite element
framework for simulating boundary value problems. Based on the re-
sults, the following conclusions can be drawn:

• the mechanical properties of healed material − often a healing-agent
cementitious-matrix composite- greatly affect the post-cracking
mechanical response of self-healing materials:

• the recursive scheme used to update the healing and re-cracking
variables is an effective way to simulate the response of elements

Fig. 11. Load-CMOD response for samples with CA cured in dry (CAD) (a-b) and wet conditions (c-d) (CAW), a) loading reloading process with healing for CAD, b)
magnified illustration of (a), c) Loading reloading with healing for CAW and d) magnified illustration of (c).
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to multiple and continuous microcracking-healing cycles in a
computationally efficient manner:

• the model predictions exhibit significant anisotropy due to the
directional variations in the degrees of microcracking and healing.

• a series of simulations, including a parametric study, shows that the
overall microcracking-healing response is strongly dependent on the

curing time parameter of the self-healing agent, as well as the degree
of microcracking at which healing is assumed to commence:

• the proposed model can simulate different types of self-healing sce-
narios and is able to replicate the behaviour of structural elements
undergoing simultaneous microcracking and healing.

Fig. 12. Healed material status after reloading a) healing at CMOD = 275 µ m, b) re-microcracked at CMOD = 310 µ m c) re-cracking at CMOD = 350 µ m, d)
overlapping cracking and healing illustration, and e) load-CMOD response for CAW.
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Appendix A. . Weights and corresponding directions for spherical numerical integration

Point number i, direction rdi (also equals the position on a unit hemisphere) and integration weights wdi.

Fig. A1. Spherical integration directions, a) positions on a sphere, b) numerical integration directions and weights

Appendix B. . Thermodynamic consistency

The constitutive formulation should be consistent with the second law of thermodynamics. This may be satisfied, during healing, if the model
ensures that no energy is created due to healing alone. The condition implies that the stress tensor in local and global coordinates before and after an
increment of healing should be the same; thus, the corresponding eigenstrain for each healed set of microcracks is evaluated such that the overall
global stress does not change due to healing alone. This condition may be expressed mathematically as follows, noting that here i and i-1 refer to states
before and after a healing sub-step respectively:

σi = Dsech : (ε − εah) = σi− 1 (B.1)

Re-arranging the above equation gives:

εah = ε − D− 1
sechσi− 1 (B.2)

εah is given in equation (18). To allow for interaction effects between microcracking directions, a variable α has been added to the equation. The
resulting equations in standard and discretised forms are given B.3 and B.4 respectively.
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εGh =
1
2π

∫∫

◯SNε⋅
[

(1 − ω)

hv(1 − ωh)
CLh⋅DL + I2s

]− 1

: α : εh (B.3)

εGh =
∑29

id=1
Nεid •

[
(1 − ωid)

hvid
(
1 − ωhid

)CLh•DL + I2s
]− 1

αidεhid (B.4)

The aim is to find αid such that equation (B.1) is satisfied, with εGh in place of εah; however, this gives 6 equations with 87 unknowns as noted below.
This equation is therefore an undetermined equation which has an infinite number of solutions. This may be resolved by applying the least squares

constraint and assuming that N εid •Nεid •

[

(1− ωid)
hvid(1− ωhid )

CLh•DL + I2s
]− 1

is a coefficient matrix for each direction considered (i.e. each spherical inte-

gration direction), as follows:

∑29

id=1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Cid11 Cid12 Cid13
Cid21 Cid22 Cid23
Cid31 Cid32 Cid33
Cid41 Cid42 Cid43
Cid51 Cid52 Cid53
Cid61 Cid62 Cid63

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

εidh1
εidh2
εidh3

⎤

⎥
⎥
⎥
⎦

αid =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

εGh1
εGh2
εGh3
εGh4
εGh5
εGh6

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(B.5)

Expanding the above series leads to following 6 equations:
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C111ε1h1+ C112ε1h2+ C113ε1h3+ C211ε2h1+ C212ε2h2+ C213ε2h3 ⋯ C2911ε29h 1+ C2912ε29h 2+ C2913ε29h 3
C121ε1h1+ C122ε1h2+ C123ε1h3+ C221ε2h1+ C222ε2h2+ C223ε2h3 ⋯ C2921ε29h 1+ C2922ε29h 2+ C2923ε29h 3
C131ε1h1+ C132ε1h2+ C133ε1h3+ C231ε2h1+ C232ε2h2+ C233ε2h3 ⋯ C2931ε29h 1+ C2932ε29h 2+ C2933ε29h 3
C141ε1h1+ C142ε1h2+ C133ε1h3+ C241ε2h1+ C242ε2h2+ C243ε2h3 ⋯ C2941ε29h 1+ C2942ε29h 2+ C2943ε29h 3
C151ε1h1+ C152ε1h2+ C133ε1h3+ C251ε2h1+ C252ε2h2+ C253ε2h3 ⋯ C2951ε29h 1+ C2952ε29h 2+ C2953ε29h 3
C161ε1h1+ C162ε1h2+ C133ε1h3+ C261ε2h1+ C262ε2h2+ C263ε2h3 ⋯ C2961ε29h 1+ C2962ε29h 2+ C2963ε29h 3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

εGh1
εGh2
εGh3
εGh4
εGh5
εGh6

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(B.6)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C111 C112 C113 C211 C212 C213 ⋯ C2911 C2912 C2913
C121 C122 C123 C221 C222 C223 ⋯ C2921 C2922 C2923
C131 C132 C133 C231 C232 C233 ⋯ C2931 C2932 C2933
C141 C142 C143 C241 C242 C243 ⋯ C2941 C2942 C2943
C151 C152 C153 C251 C252 C253 ⋯ C2951 C2952 C2953
C161 C162 C163 C261 C262 C263 ⋯ C2961 C2962 C2963

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

6×87

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
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(B.7)

This is rewritten in matrix form as:

εGh = Cαεh (B.8)

Equation (B.8) is solved for the unknowns α, with εGh in the right-hand-side being equal to εah from equation (B.2).

Data availability

Data will be made available on request.
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