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Abstract 6 

A new micromechanics-based constitutive model for self-healing cementitious materials 7 

is proposed. The model is aimed at self-healing materials with distributed healing 8 

mechanisms, such as materials with embedded microcapsules and enhanced 9 

autogenous healing capabilities. The model considers anisotropic microcracking and 10 

time-dependent healing. In contrast to many existing models for self-healing 11 

cementitious materials, the new approach imposes no limitations on the number or 12 

timing of microcracking or healing events that can be simulated. The formulation ensures 13 

that the simulation of microcracking and healing is always consistent with the second 14 

law of thermodynamics. The model is implemented in a three-dimensional nonlinear 15 

finite element code that allows structural elements formed from self-healing materials 16 

to be simulated. A series of single-point simulations illustrate the versatility of the model. 17 

The experiments considered with the model encompass a set of cylindrical specimens 18 

formed from concrete with embedded microcapsules containing sodium silicate, and a 19 

notched beam test series that examined the self-healing potential of concrete formed 20 

with a crystalline admixture. The validations show that the model can capture the 21 



characteristic mechanical behaviour of these structural elements with good engineering 22 

accuracy.       23 

Keywords: Micromechanical model, rate-dependent healing, finite element analysis, 24 

self-healing.  25 

1 Introduction 26 

There has been strong interest in the development of self-healing cementitious materials 27 

(SHCM) over the last two decades due to the need to improve the durability and 28 

resilience of civil engineering structures. The development, design and assessment of 29 

these SHCM structures requires accurate and robust models that can capture their 30 

fundamental behaviour, particularly in the absence of design codes of practice. The 31 

earliest models for self-healing systems simulated wound healing. These models (Arnold 32 

& Adam 1999; Vermolen, et al. 2006) considered a diffusion process to capture healing 33 

growth within designated wound layers. Although the development of biomimetic 34 

construction materials is inspired by natural processes in biological systems, the 35 

underlying cracking and healing mechanisms differ significantly from those of their 36 

organic counterparts. Self-healing in cementitious materials involves a series of physical 37 

and chemical processes (Shields et al. 2021; Van Tittelboom & De Belie 2013) that 38 

include: i) mechanical cracking and healing, ii) fluid and heat transport, and iii) chemical 39 

reactions and the associated curing of healing agents. 40 

Various approaches have been explored to capture the behaviour of SCHMs in cracking-41 

healing cycles, and several coupled models have been presented that can simulate these 42 

processes (Jefferson et al. 2018). In recent studies, morphological methods have been 43 

employed to establish a mathematical relationship between healing mechanisms and 44 



post-healed mechanical properties (Lee & Anthony 2023; Ponnusami et al. 2019; Zhou 45 

et al. 2017). However, most existing models are either fully or semi-empirical in nature 46 

and require considerable experimental data to calibrate their response for a particular 47 

SCHM. This implies that these models are only valid within the data range considered.  48 

In general, two general approaches have been employed to simulate mechanical self-49 

healing processes; namely, the discrete crack approach (Al-Rub 2016; Caggiano et al. 50 

2017; Cibelli et al. 2022; Freeman et al. 2020; Jefferson & Freeman 2022) and the 51 

smeared crack approach (Davies & Jefferson 2017; Dutta & Kishen 2019; Han et al. 52 

2021a; James et al. 2014; Zhou et al. 2016; Zhu et al. 2015, 2016). 53 

Several constitutive models have employed Continuum Damage Healing Mechanics 54 

(CDHM) as a modelling framework (Oucif & Mauludin 2018). In this approach, the 55 

evolution of healing is linked to the degree of damage by introducing a healing variable 56 

(scalar or tensor) that describes the proportion of the effective damage area that has 57 

healed. This progresses according to a phenomenological healing evolution function 58 

(Abu Al-Rub & Darabi 2012; Darabi et al. 2012).  59 

For ductile materials, the elastoplastic constitutive formulation proposed by Barbero 60 

et al. (2005) has been used by several authors (Voyiadjis et al. 2011). This formulation 61 

uses the concept of elastic strain energy equivalence to derive damage-healing tensors. 62 

This idea was subsequently extended by Subramanian & Mulay (2022) to encompass self-63 

healing in shape memory polymers. 64 

Several investigators have shown that micromechanics-based models are able to 65 

describe the behavioural characteristics of multiphase quasi-brittle materials (Monchiet 66 

et al. 2012). In the case of cementitious materials, a micromechanical formulation has 67 



been employed to represent various mechanisms and processes, including the hydration 68 

reactions of distinct phases within a cement paste (Königsberger et al. 2020; Pichler et 69 

al. 2013; Pichler & Hellmich 2011). The micromechanics approach has also been used to 70 

simulate the effects of microcracks on the overall response of cement paste arising from 71 

early-age cracking and/or mechanical loading (Dutta & Kishen 2019; Pensée et al. 2002; 72 

Pichler et al. 2007). 73 

Employing micromechanics formulations to represent cracking in quasi-brittle 74 

composite materials has also enabled the development of mechanistic models suitable 75 

for self-healing applications in these materials. Chen et al. 2022; Zhu & Arson 2014; Zhu 76 

et al. 2015, 2016 employed a 2D micromechanical framework to simulate the behaviour 77 

of microencapsulation self-healing systems under tensile and compressive loads. They 78 

used classical fracture mechanics to establish a microcracking evolution relationship and 79 

derived a compliance tensor for the healed material. Subsequently, Chen et al. (2022) 80 

considered aligned penny-shaped microcracks to evaluate the overall compliance matrix 81 

for concrete after healing as a function of the crack healing ratio. In their formulation, 82 

crystallization reaction kinetics was used to compute the degree of healing.  83 

In another significant study, Davies and Jefferson (2017) developed a 3D model aimed 84 

at describing autogenous self-healing in cementitious materials. The model is able to 85 

simulate anisotropic microcracking and healing, but healing was considered to be 86 

instantaneous and thus the model did not consider the time-dependent nature of 87 

healing. The majority of these models considered single healing events although some 88 

also incorporated re-damage in their mathematical formulations (Oucif & Mauludin 89 

2018). 90 



  More recently, Han et al. 2021a, 2021b proposed a micromechanical formulation to 91 

simulate the mechanical behaviour of self-healing concrete. Their approach adopted 92 

linear fracture mechanics criteria  for both damage initiation and evolution. In a broader 93 

context, Sanz-Herrera et al. (2019) introduced a comprehensive framework that 94 

considers multiple healing cycles in self-healing materials, based on the assumption that 95 

each healing step is initiated under fully unloaded conditions. 96 

In this paper, a micromechanics-based constitutive model for SHCMs is presented, 97 

which incorporates directional microcracking and rate-dependent healing. The primary 98 

novel aspect of the work is the introduction of rate dependent healing into a 99 

micromechanical model that does not have restrictions on the number of healing cycles, 100 

the strain conditions under which healing takes place, and which also allows 101 

simultaneous microcracking and healing. This builds on previous work by the authors’ 102 

team on micromechanical models for cementitious composites (Mihai and Jefferson, 103 

2011) and -specifically- on the work of Davies and Jefferson (2017) on a micromechanical 104 

model for self-healing cementitious materials, which had considerable restrictions, as 105 

explained above. This research also draws upon the theory developed for a discrete 106 

damage-healing model that was applied to elements with embedded strong 107 

discontinuities (Jefferson and Freeman, 2023). A second, more arcane, contribution 108 

relates to the strict enforcement of the condition that there should be zero-stress change 109 

during an increment of pure healing. This condition is important for ensuring that 110 

spurious energy is not created during healing. The way that this condition was 111 

considered in Davies and Jefferson’s model is inadequate for the more general 112 

microcracking-healing scenarios of this paper.   113 



The layout of the remainder of this paper is as follows; section 2 presents the basic 114 

model theory followed by a description of its numerical implementation; in section 3 the 115 

constitutive response predicted by the model is illustrated using a series of single 116 

material point simulations, and this is followed by the presentation of a boundary value 117 

problem in section 4. Finally, the main conclusions from the work are drawn in section 118 

5.  In this paper, the only damage considered is mechanical loss of strength and stiffness 119 

due to microcracking.  120 

2 Constitutive formulation for microcracking and healing 121 

The main concepts of the constitutive model are presented in Figure 1. The cementitious 122 

composite is modelled as an elastic solid containing a series of randomly distributed 123 

circular microcracks which can have any orientation, defined by ψ and θ (see Figure 1a). 124 

Each direction has a set of local unit vectors, with the vector r being normal to the 125 

microcrack plane, and s and t being in-plane vectors. The model simulates healing using 126 

time dependent variables to describe the repair of these directional microcracks (see 127 

Figure 1b). In addition, a set of healing strain tensors are introduced for every local 128 

microcracking direction to simulate the permanent strains that occur when healing agent 129 

cures in open microcracks. The formulation ensures that no spurious energy is created 130 

when healing occurs.    131 

  132 



 
(a) 

 
(b) 

Figure 1. Schematic representation of RME.  a) Coordinate system:  b) illustration of 133 
microcracked (left) and partially healed (right), material states.  134 

2.1 Constitutive equations for a model with directional microcracking 135 

The model draws on a series of previous micromechanics-based constitutive 136 

formulations for cementitious materials (Davies & Jefferson, 2017; Jefferson & Bennett 137 

2007; Jefferson and Bennett, 2010;  Mihai & Jefferson 2011). The essential equations 138 

from the underlying micromechanical model, required for the derivation of the new 139 

healing model, are summarised in Table 1. In the Table, ‘total’ refers  stress, strain and 140 

constitutive tensors in Cartesian axes, and ‘local’ refers to directional terms, which are 141 

either integrated to give the total terms (see equation 2) or transformed from total 142 

tensors (see equations 8 and 9).  143 
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Table 1. Summary of equations from the underlying microcracking model. 144 

Equation                         Number Description (Jefferson and Bennett, 2007 & 2010) 

𝛔 = 𝐃: (𝛆 − 𝛆add)        (1)  Total constitutive relationship. 

𝛆add =
1

2𝜋
∯ 𝐍 ε: 𝛆α 

𝑆
d𝑆       (2) Total added strain tensor obtained by integrating the local added 

strain tensor (which varies with direction) over a hemisphere. 

𝛆α = (
𝜔

1−𝜔
)𝐂L: 𝐬         (3) Local added strain tensor in terms of the local stress, elastic 

compliance and local microcracking variable.  

𝐬 = (1 − 𝜔)𝐃L: 𝛆L        (4) Local constitutive relationship in terms of the local strain (sum of 

elastic and added local strains) and local elasticity tensor. 

𝐹(𝜺𝐿, ) = 𝜁𝑒𝑓(𝜺𝐿) −  = 0  (5) 

subject to 

𝐹𝜁 ≤ 0; 𝜁̇ ≥ 0; 𝐹𝜁𝜁̇ = 0        (6) 

Microcracking function in terms of the local microcracking strain 

(𝜁𝑒𝑓 )  (see footnotes) and the local microcracking strain 

parameter.  

𝐹(𝜺𝐿, ) is subject to the Karush–Kuhn–Tucker conditions, 

equation (6), which are applied to equation (5) such that local 

strains remain on the microcracking surface when local 

microcracking is active in a particular direction (Mihai & Jefferson, 

2012). In the present case, this involves updating  to the value of 

𝜁𝑒𝑓 (𝜺𝐿), if the latter exceeds the value of the former from the last 

converged state. 

𝜔() = 1 −
𝜀𝑡


𝑒

−𝑐(
−𝜀𝑡

𝜀0−𝜀𝑡
)
        (7) 

Local microcracking variable in terms of the microcracking strain 

parameter. 

𝐬 = 𝐍: 𝛔         (8) 

𝛆L = 𝐍 ε
T: 𝛆         (9) 

Transformations for local stress and strain from their total 

counterparts.  

Notation and notes. 

𝛆add is the overall additional strain tensor due to microcracking, 𝛔 and 𝛆 are the total stress and 

strain tensors respectively, 𝐃 is the elasticity tensor, N is the stress transformation tensor, 𝐍′, in 

matrix terms, is equal to 𝐍T, 𝐍𝜀 is a strain transformation tensor,  is the local added strain tensor, 

S denotes the surface of a unit hemisphere,  𝜔 is the directional microcracking variable,  𝐂L is the 

local elastic compliance tensor, 𝐬 is the local stress tensor,  𝐃L = 𝐂L
−1 is the local elasticity tensor, 

𝛆L is a local strain tensor that comprises the sum of the added (𝛆α) and the elastic (𝛆Le) local strains, 

𝐹 is the microcracking function (also known as the local microcracking strain surface), 𝜁𝑒𝑓  is the 

effective microcracking strain (see below),   is the microcracking strain parameter, c  is the 

microcrack evolution constant, 𝜀0 = 𝑢𝑜 ℓ𝑒⁄   is the strain at the fully microcracked state, 𝑢𝑜 is 

displacement at the end of the softening curve, ℓ𝑒 is the finite element characteristic length, 𝜀𝑡 =

𝑓𝑡 𝐸⁄ , 𝑓𝑡   is the uniaxial tensile stress at which microcracking initiates and 𝐸 is Young’s modulus of 

the cementitious matrix material.  Local tensors are expressed in a reduced vector or matrix form in 

which only those terms that can be non-zero are included e.g. 𝐬 = [𝑠𝑟𝑟  𝑠𝑟𝑠 𝑠𝑟𝑡]
T.  

𝜁𝑒𝑓 (𝛆𝐿) = (
𝐿𝑟𝑟

2
(1 + (

𝜇

𝑞
)

2

) +
1

2𝑞2 √𝐿𝑟𝑟
2 (𝑞2 − 𝜇2)2 + 4𝑞2𝛾2), in which  𝜇 =

𝜇𝑠𝐸

𝐺
, 𝛾 = √𝐿𝑟𝑠

2 + 𝐿𝑟𝑡
2 ,  𝑞 =

𝑞𝑠𝐸

𝐺
, 

𝜇𝑠 is an internal friction parameter and 𝑞𝑠 is the ratio of interface shear strength to matrix tensile 

strength. 
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Figure 2a illustrates the microcracking strain surface (equation 5) and Figure 2b shows a 146 

set of parallel microcracks in the cementitious composite.  147 

 

 

(a) (b) 

Figure 2. Microcracking strain surface, b) parallel set of microcracks  148 

2.2 Derivation of model constitutive equations 149 

Healing is simulated by the addition of a new term to the right-hand-side of the local 150 

constitutive equation (4) such that the local stress in an RME comprises two components, 151 

the first term representing the proportion of un-microcracked material, and the second 152 

term giving the proportion of healed – re-microcracked material. The resulting equation 153 

is as follows:  154 

where 𝐬Lh, which replaces s used in equation 4, is the local stress tensor allowing for 155 

any healing, and 𝐃Lhthe local elasticity matrix of the healed material, 𝛆h is the healing 156 

strain and 𝜔ℎ  is the re-microcracking variable. It is noted that  157 

𝐬Lh, 𝜔, 𝛆L, 𝜔ℎ , 𝛆L & 𝛆h all vary with time (t) and with direction (ψ and θ), but these 158 

dependencies have been omitted for clarity of presentation.  159 

   The healing variable (ℎ𝑣  ∈ [0, 𝜔]) represents the proportion of microcracked material 160 

that is healed at a given time in the absence of re-microcracking. More specifically, ℎ𝑣  is 161 
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𝐬Lh = (1 − 𝜔)𝐃L: 𝛆L + ℎ𝑣(1 − 𝜔ℎ)𝐃Lh: (𝛆L − 𝛆h) (10) 



equal to the maximum healing front position, in increasing microcracking terms, in a 162 

given direction. The evolution of ℎ𝑣  for the present micromechanical model is explained 163 

in section 2.3. The model accounts for re-microcracking of healed material by employing 164 

a second microcracking variable  (𝜔ℎ ∈ [0,1]), which gives the proportion of ℎ𝑣  that has 165 

re-microcracked. When healed material re-microcracks, 𝜔ℎ evolves according to 166 

equations (11) and (12), which are the healing counterparts to equations (7) and (5) 167 

respectively. 168 

𝜔ℎ(
ℎ
) = 1 −

𝜀𝑡

ℎ
𝑒

−𝑐(
ℎ−𝜀ℎ𝑡

𝜀ℎ0−𝜀ℎ𝑡
)
          (11) 169 

𝐹ℎ(𝜺𝐿, 𝛆h , ) = 𝜁ℎ𝑒𝑓(𝛆L − 𝛆h) − 
ℎ
 = 0        (12)  170 

   where 𝜁ℎ𝑒𝑓 , 
ℎ
, 𝜀ℎ0 & 𝜀ℎ𝑡 are the healing counterparts to the microcracking 171 

function/parameters 𝜁𝑒𝑓, 𝜀0 & 𝜀𝑡. It is noted that when re-healing occurs, 𝜔ℎreduces, as 172 

explained below.  173 

   The general form of equation (10) is similar to the local constitutive equation employed 174 

by Davies and Jefferson (2017), but the meaning of the healing and re-microcracking 175 

variables and the way that they are updated are quite different. This is because the 176 

model by Davies and Jefferson only allowed one healing and one re-microcracking event. 177 

Furthermore, in their model, healing terms did not evolve over time.   178 

   When healing agent cures in an open microcrack, there is a moment in time when solid 179 

material first bridges between the opposing crack faces. This is when mechanical healing 180 

of the crack commences, and it is assumed that this bridging material is stress free at the 181 

time of formation.  This ‘stress free at formation’ condition is assumed to apply to every 182 

new increment of bridging material. This assumption is not only consistent with 183 



experimental data (Selvarjoo et al. 2020), but also ensures that the simulation of healing 184 

does not create spurious energy and therefore does not violate the second law of 185 

thermodynamics. Expanding on this issue; when healing is simulated, the stiffness of the 186 

material increases. Thus, if the strain remained constant, the stress and the strain energy 187 

would increase. This would violate the second law unless the increase in strain energy 188 

was matched by the release of thermal-chemical energy. Since there is no evidence that 189 

the stress rises during healing, the surest way to ensure that the model satisfies 190 

thermodynamics principles is to introduce a healing strain (h) that evolves such that the 191 

stress does not change due to healing alone. Furthermore, this strain simulates the 192 

permanent strains associated with solidified healing agent, which prevents microcracks 193 

from fully closing. This permanent strain is evident in experiments in which healing has 194 

occurred in open cracks (Selvarajoo et al., 2020). A mathematical treatment of this issue 195 

may be found in Appendix B of Jefferson and Freeman (2022), in the context of a discrete 196 

cracking model. The method used to update h  is discussed below.  197 

   The derivation now proceeds by determining the total inelastic strain tensor for each 198 

direction, which is the equivalent of equation (3). This is accomplished by rearranging 199 

equation (10) to give the local strain, as follows: 200 

Then, the local inelastic strain tensor () is found by removing the elastic component 201 

of strain from 𝛆L (i.e. 𝛆𝛼  = 𝛆L − 𝛆Le, where 𝛆Le = 𝐂L: 𝐬Lh).  Thus, from (13), the 202 

additional local inelastic strain is given by: 203 

which is rearranged to group local stress and healing strain terms, as follows:  204 

𝛆L = [(1 − 𝜔)𝐃L + ℎ𝑣(1 − 𝜔ℎ)𝐃Lh]
−1: [𝐬Lh + ℎ𝑣(1 − 𝜔ℎ)𝐃Lh: εh] (13) 

𝛆𝛼 = [(1 − 𝜔)𝐃L + ℎ𝑣(1 − 𝜔ℎ)𝐃Lh]
−1: [𝐬Lh + ℎ𝑣(1 − 𝜔ℎ)𝐃Lh: 𝛆h] − 𝐂L: 𝐬Lh  (14) 



where 𝐈𝟐𝒔  is the second order identity tensor, and  𝐂Lh = 𝐃Lh
−1

 . 205 

   The total inelastic strain tensor is obtained by integrating the contributions from (15) 206 

around a hemi-sphere, in the same way that the equivalent term was obtain in equation 207 

(2), giving the following: 208 

𝛆add =
1

2𝜋
∯ 𝐍 ε: ([[(1− 𝜔)𝐃L + ℎ𝑣(1− 𝜔ℎ)𝐃Lh]

−1 − 𝐂L]: 𝐬Lh + [
(1−𝜔)

ℎ𝑣(1−𝜔ℎ)
𝐂Lh ∙ 𝐃L + 𝐈𝟐𝒔]

−1

: 𝛆h)d𝑆 
𝑆

 209 

                        (16) 210 

The two components of equation (16) are now separated, as follows:  211 

The first term (𝛆at) gives the inelastic strain induced by the local stresses and the second 212 

term gives the total permanent strain due to cured healing agent.  213 

The method used to evaluate 𝛆h is described in Section 2.3 and expanded upon in 214 

Appendix B. The latter accounts for interactions between healed microcracks in different 215 

directions, which were not considered in the method proposed by Davies and Jefferson 216 

(2017).     217 

The relationship between the total stress and strain tensors is derived by replacing 𝛆add  218 

in equation (1) with the two components from equations (17) and (18), as follows:   219 

𝛔 = 𝐃: (𝛆 − 𝛆at − 𝛆ah)         (19) 220 

The final steps in this derivation involve using equations (17) and (18) in equation (19), 221 

employing the static constraint (equation 20) and rearranging to obtain equation (21). 222 

𝛆𝛼 = [[(1− 𝜔)𝐃L + ℎ𝑣(1− 𝜔ℎ)𝐃Lh]−1 − 𝐂L]: 𝐬Lh + [
(1 − 𝜔)

ℎ𝑣(1− 𝜔ℎ)
𝐂Lh ∙ 𝐃L + 𝐈𝟐𝒔]

−1

: 𝛆h (15) 

  𝛆at =
1

2𝜋
∯ 𝐍ε ∙ [[(1 − 𝜔)𝐃L + ℎ𝑣(1 − 𝜔ℎ)𝐃Lh]

−1 − 𝐂L]: 𝐬Lh  
𝑆

 d𝑆 (17) 

𝛆ah =
1

2𝜋
∯ 𝐍ε ∙ [

(1−𝜔)

ℎ𝑣(1−𝜔ℎ)
𝐂Lh ∙ 𝐃L + 𝐈𝟐𝒔]

−1

: 𝛆h𝑆
 d𝑆     (18) 



𝐬Lh = 𝐍: 𝛔 (20) 

 223 

where 𝐃𝑠𝑒𝑐ℎis the equivalent secant stiffness tensor, as given below. 224 

𝐃sech = (𝐈𝟒𝐬 +
𝐃

2𝜋
∙ (

1

2𝜋
∯𝐍ε ∙ [𝐀−1 − 𝐂L] ∙ 𝐍

𝑆

 d𝑆)

−1

∙ 𝐃)     (22) 

   where 𝐈𝟒𝐬  is fourth order identity tensor and  𝐀 = [(1 − 𝜔)𝐃L + ℎ𝑣(1 − 𝜔ℎ)𝐃Lh].  225 

2.3 Time dependent healing evolution  226 

In this section, the method used to simulate the evolution of the healing variables is 227 

explained. This starts with a consideration of the relative proportion of material available 228 

to heal at a given time 𝑡, which is denoted by 𝑎(𝑡). It is assumed that healing agent is 229 

supplied instantaneously to any new microcracks and, thus, 𝑎(𝑡) increases at the same 230 

rate as (t), as follows:     231 

in which the superior dot denotes the time derivative. 232 

Healing occurs by healing-agent curing in microcracks. The function used to simulate 233 

the evolution of the degree of cure (𝜙 ∈ [0,1]) is taken from Freeman & Jefferson 234 

(2022a, 2023), as follows:  235 

where 𝜏 is the curing time parameter, which depends on the chemical properties of 236 

the healing agent and the current curing time (𝑡𝑐 = 𝑡 − 𝑡𝑐0). 237 

𝛔 = 𝐃sech ∶ (𝛆 − 𝛆ah) (21) 

𝑎̇(𝑡) = 𝜔̇(𝑡) (23) 

𝜙(𝑡) = (1 − 𝑒−𝑡𝑐/𝜏) (24) 



With these assumptions, and in the absence of re-microcracking, the virgin healing 238 

variable at time t  is given by the following convolutional integral: 239 

where 
ℎ𝑒

 is a healing efficiency parameter. 240 

The assumption that the degree of cure matches the degree of healing is different from 241 

that used in the macrocrack healing model of Jefferson and Freeman (2022), in which 242 

healing was computed from the overlap of curing fronts within a macro-crack. However, 243 

in microcracks with relatively small crack opening displacements, the degree of healing 244 

may be equated directly to .  245 

  Re-healing is simulated by a reduction in the re-microcracking variable (𝜔ℎ) such that 246 

the total proportion of healed material (h) at time t is: 247 

   The relative proportion of material available for re-healing (𝑎𝑟) is given by: 248 

   𝑎𝑟(𝑡) = ℎ𝑣(𝑡)𝜔ℎ(𝑡)          (27) 249 

   The re-healing variable is then obtained from: 250 

where 𝑡ℎ𝑟   is the re-healing activation time.  251 

   The process of updating 𝜔ℎ is best explained by considering a finite healing period from 252 

time 𝑡 to 𝑡 + Δ𝑡ℎ and exploring the changes in the healing variables over that period. 253 

The increment of virgin healing Δℎ𝑣  is computed from equation (29) using equation (25), 254 

ℎ𝑣(𝑡) = 
ℎ𝑒

∫
𝜕𝑎(𝑠)

𝜕𝑠
(1 − 𝑒−(

𝑡−𝑠
𝜏

))𝑑𝑆
𝑡

𝑠=𝑡𝑐0

 (25) 

ℎ(𝑡) = ℎ𝑣(𝑡)(1 − 𝜔ℎ(𝑡)) (26) 

ℎ𝑟(𝑡) = 
ℎ𝑒

∫
𝜕𝑎𝑟

𝜕𝑠
(1 − 𝑒−𝑡/𝜏)𝑑𝑠

𝑡

𝑡ℎ𝑟

 (28) 



the amount of re-healing Δℎ𝑟  from equation (30) using equation (28), and 𝜔ℎ  by applying 255 

the healing increment to equation (26) to obtain equation (31) and rearranging to give 256 

equation (32):  257 

 258 

Δℎ𝑣 = h𝑣(𝑡 + Δ𝑡ℎ) − h𝑣(𝑡)           (29) 259 

Δℎ𝑟 = h𝑟(𝑡 + Δ𝑡ℎ) − h𝑟(𝑡)           (30) 260 

(1 − 𝜔ℎ(𝑡 + Δ𝑡ℎ))ℎ𝑣(𝑡 + Δ𝑡ℎ) = (1 − 𝜔ℎ(𝑡))ℎ𝑣(𝑡) + Δℎ𝑣 + Δℎ𝑟      (31) 261 

𝜔ℎ(𝑡 + Δ𝑡ℎ) = 1 − 
(1−𝜔ℎ(𝑡))ℎ𝑣(𝑡)+Δℎ𝑣+Δℎ𝑟

ℎ𝑣(𝑡+Δ𝑡ℎ)
       (32) 262 

  The representation of healing, re-microcracking and re-healing by equation (26) 263 

implies a homogenisation of material states across an RME. This is because the model 264 

does not track each separate directional component of micro-cracked and healed 265 

material that forms at a particular time; rather, these are grouped together and 266 

represented by a single virgin healing variable, a single microcracking variable and a 267 

single healing strain tensor (εh) for each microcracking direction. These microcracking 268 

and healing processes are illustrated in Figure 3. 269 

   The next healing component that needs to be considered is the healing strain. As 270 

discussed in Section 2.2, the condition used to compute εh is that the state of stress 271 

should not change when healing alone occurs. If the local stress is considered and there 272 

is no change in either  or 𝛆L over the healing increment, then the zero change in the 273 

local stress condition may be written as follows: 274 

Δ𝐬Lh = ℎ𝑣(𝑡 + Δ𝑡ℎ)(1 − 𝜔ℎ(𝑡 + Δ𝑡ℎ))𝐃Lh: (𝛆L − 𝛆h(𝑡 + Δ𝑡ℎ)) = ℎ𝑣(𝑡) (1 − 𝜔ℎ𝑝)𝐃Lh: (𝛆L − 𝛆h(𝑡)) = 𝟎 (33)  275 

  where 𝜔ℎ𝑝is the microcracking variable at the start of the healing sub-step.  276 



   Then, the change in the value of 𝛆h at the end of the healing increment may be deduced 277 

to be:  278 

𝛆h(𝑡 + Δ𝑡ℎ)= 
ℎ𝑣(𝑡+Δ𝑡ℎ)(1−𝜔ℎ(𝑡+Δ𝑡ℎ))𝛆L − ℎ𝑣(𝑡)(1−𝜔ℎ𝑝

)(𝛆L−𝛆h(𝑡))

ℎ𝑣(𝑡+Δ𝑡ℎ)(1−𝜔ℎ(𝑡+Δ𝑡ℎ))
                    (34) 279 

   This update ignores the interaction between local directions and means that if 𝛆h from 280 

equation (34) were to be used directly in equation (18) the condition that the total stress 281 

remains constant over a healing increment would not be guaranteed. The solution to this 282 

problem involves the introduction of an interaction factor (j) for each microcracking 283 

direction (j), as explained in Appendix B.  These interaction factors modify the 284 

contribution of each local healing strain tensor (h) to the total healing tensor ah. The 285 

modified ah tensor is denoted Gh  (see equation B.8) and is given by: 286 

𝛆Gh = 𝐂 𝛂 𝛆h           (35) 287 

   The expression in equation (35) then replaces ah in equation (21), as follows: 288 

𝛔 = 𝐃sech ∶ (𝛆 − 𝛆Gh)          (36) 289 

    The final aspect of the management of the healing variables is the update of the 290 

healing strain parameter (h) to account for the change in 𝜔ℎ  due to healing. This is 291 

obtained by solving the following nonlinear equation which is derived by equating  292 

𝜔ℎ(𝑡 + Δ𝑡ℎ) from equation (32) to the expression for 𝜔ℎ given in equation (11), as follows: 293 

𝑠𝑜𝑙𝑣𝑒  𝜔ℎ(𝑡 + Δ𝑡ℎ) − (1 −
𝜀𝑡

ℎ
𝑒

−𝑐(
ℎ(𝑡+Δ𝑡ℎ)−𝜀ℎ𝑡

𝜀ℎ0−𝜀ℎ𝑡
)

) = 0    for   
ℎ
(𝑡 + Δ𝑡ℎ)                 (37) 294 

  295 



2.4 Update algorithm for healing variables  296 

The numerical solutions used for the above equations are now considered. Firstly, hv 297 

and ℎ𝑟  are defined by the convolution integrals given in equations (25) and (28) 298 

respectively, which may be solved conveniently by using a standard two-level recursive 299 

scheme (Simo and Hughes, 1998; Mergheim and Steinmann, 2013). The resulting 300 

expressions for ℎ𝑣  and ℎ𝑟  are as follows, noting that times 𝑡 and 𝑡 + Δ𝑡ℎ are now 301 

denoted by subscripts i and i+1respectvely: 302 

   Each time step is sub-divided into a microcracking sub-step and a healing sub-step. 303 

The solution is quasi-static such that no inertia terms are included, and it is assumed that 304 

any changes to the microcracking field occur instantaneously at the start of each time 305 

step. Healing is then considered to occur over the time step, starting from the current 306 

state of microcracking.  Thus, the healing sub-step (Δ𝑡ℎ) is the same duration as the 307 

overall time step (Δ𝑡).  308 

   The algorithm developed for computing the stress and updating the microcracking and 309 

healing variables at a particular timestep is given in Algorithm box 1. The primary 310 

directional microcracking and healing variables/tensors to be updated are 311 

𝜁, 𝜁ℎ , 𝜔ℎ , ℎ𝑣  and 𝜺ℎ. The dependent variables include 𝜔 & ℎ𝑟. It is noted that 𝜔ℎ is a 312 

dependent variable during a microcracking sub-step but is updated directly during a 313 

healing sub-step. In the latter, 𝜁ℎ is updated according to the new value of 𝜔ℎ .  314 

ℎ𝑣𝑖+1
= ℎ𝑣𝑖  

𝑒−
Δ𝑡ℎ
𝜏 + 

ℎ𝑒
𝑎𝑖+1(1 − 𝑒−

Δ𝑡ℎ
𝜏 )   

ℎ𝑟𝑖+1
= ℎ𝑟𝑖  

𝑒−
Δ𝑡ℎ
𝜏 + 

ℎ𝑒
𝑎𝑟𝑖+1 (1 − 𝑒−

Δ𝑡ℎ
𝜏 )   

(38) 

(39) 



 The vectors containing the values from all directions are denoted with bold non-italic 315 

text. The values from a previous step, or sub-step, are denoted with the subscript p.  316 

   The integration over the hemispherical domain is evaluated numerically using 317 

MacLaurin’s 29 point integration rule (i.e. nd=29) (Stroud 1973). These directions and the 318 

associated integration weights are given in Appendix A. For convenience, Voigt notation 319 

is used in the description of algorithm 1. 320 

  321 



Algorithm 1. Computational algorithm  322 

The starting variable values for all directions from the 
previous time step (null if first step) 𝛇p, 𝛇hp

, 𝐡vp
 & 𝛆𝐡p

 

and the total stress (𝝈) to be updated for the new total 

strain 𝛆 + Δ𝛆, for time t to t+t, noting that t=th   

 

 

𝐌𝐞𝐜𝐡𝐚𝐧𝐢𝐜𝐚𝐥 𝐬𝐮𝐛 − 𝐬𝐭𝐞𝐩    

𝒇𝒐𝒓 𝑗 = 1 𝑡𝑜 𝑛𝑑 Loop over spherical integration directions (see App. A for 

integration directions and weights) 

 𝜺𝐿𝑗
= 𝐍𝜀𝑗

(𝛆 + 𝚫𝛆)  Calculate local strain tensor  

 
𝑒𝑓

(𝜺𝐿𝑗
)  &  

ℎ𝑒𝑓
(𝜺𝐿𝑗

 − 𝜺ℎ𝑝𝑗
)  Find effective strains for original and healed material (eq. 

5&12) 

  Update 

𝜁𝑗(
𝑒𝑓𝑗

, 𝜁𝑝𝑗
), 𝜁ℎ𝑗

(
ℎ𝑒𝑓

, 𝜁ℎ𝑝𝑗
), 𝜔𝑗(𝜁𝑗), 𝜔ℎ𝑗

(𝜁ℎ𝑗
) 

Update local microcracking parameters and variables for 

original material (eq. 5-7) & healed material (eq. 11-12) 

 Δ𝜔𝑗 = 𝜔𝑗 − 𝜔𝑝𝑗
    &    Δ𝜔𝑗 = 𝜔ℎ𝑗

− 𝜔ℎ𝑝𝑗
  Compute the increments of the microcracking variables for 

original and healed material 

 ℎ𝑟𝑗
= ℎ𝑣𝑝𝑗

(1 − 𝜔ℎ𝑗
)  Update the re-healing variable for microcracking 

 𝐀𝑗 = [(1 − 𝜔𝑗)𝐃L + ℎ𝑣𝑝𝑗
(1 − 𝜔ℎ𝑗

)𝐃Lh]  Compute the local microcracking – healed constitutive tensor 

(see line below eq. 22) 

𝒆𝒏𝒅 𝑗 𝑙𝑜𝑜𝑝 Close loop over integration directions 

 
𝜻𝒉𝒑

= 𝜻𝒉; 𝒉𝒗𝒑
= 𝒉𝒗; 𝒉𝒓𝒑

= 𝒉𝒓   

 𝝎𝒉𝒑
= 𝝎𝒉𝒑

(𝜻𝒉𝒑
)   

Record values of healing and re-microcracking variables that 

have been updated for new microcracking.  

Healing sub-step, if healing is active If healing is activated continue, else jump to end of section. 

 𝒇𝒐𝒓 𝑗 = 1 𝑡𝑜 𝑛𝑑 Loop over spherical integration directions 

  𝑎𝑗 = 𝑎𝑝𝑗
+  Δ𝜔𝑗  

𝑎𝑟𝑗
= 𝑎𝑟𝑝𝑗

+  Δℎ𝑣𝑝𝑗
𝜔ℎ 𝑝

𝑗

  

Calculate proportions of material available for healing (eq. 23) 
and re-healing (eq. 27) 

  ℎ𝑣𝑗
= ℎ𝑣𝑝𝑗

𝑒
−Δ𝑡

𝜏 + 𝑎𝑗(1 − 𝑒
−Δ𝑡

𝜏 )  

ℎ𝑟𝑗
= ℎ𝑟𝑝𝑗  

𝑒−
Δ𝑡

𝜏 + 
ℎ𝑒

𝑎𝑟𝑗
(1 − 𝑒−

Δ𝑡

𝜏 )   

Δℎ𝑣𝑗
= ℎ𝑣𝑗

− h𝑣𝑝𝑗
   

Δℎ𝑟𝑗
= ℎ𝑟𝑗

− h𝑟𝑝𝑗
  

Update the virgin healing and re-healing variables (eqs. 38 & 

39) 

along with their increments (eqs. 29 & 30) 

  

 𝜔ℎ𝑗
= 1 −  

(1−𝜔ℎ𝑝𝑗𝑗
)ℎ𝑣𝑝𝑗

+Δℎ𝑣𝑗
+Δℎ𝑟𝑗

ℎ𝑣𝑗

 

Update the healed material microcracking variables due to re-

healing. (eq. 32) 

 

  

𝑆𝑜𝑙𝑣𝑒 𝜔ℎ𝑗
− (1 −

𝜀𝑡

ℎ𝑗

𝑒
−𝑐(

ℎ𝑗
−𝜀ℎ𝑡

𝜀ℎ0−𝜀ℎ𝑡
)

) = 0   

for 
ℎ𝑗

 

 

Update the nonlinear equation for the microcracking strain 

parameter for healing. (eq. 37) 

  

𝛆h𝑗
= 

ℎ𝑣𝑗
(1−𝜔ℎ𝑗

)𝛆L𝑗 − ℎ𝑣𝑗(1−𝜔ℎ𝑝𝑗
)(𝛆L𝑗−𝛆h𝑝𝑗

)

ℎ𝑣𝑗
(1−𝜔ℎ𝑗

)
 

Compute the current local healing strains (eq. 34) 

 

  𝐀𝑗 = [(1 − 𝜔𝑗)𝐃L + ℎ𝑣𝑗
(1 − 𝜔ℎ𝑗

) 𝐃Lh] Update the local microcracking – healed constitutive tensor 

(eq. 22) 

 𝒆𝒏𝒅 𝑗 𝑙𝑜𝑜𝑝 Close loop over integration directions 

End if: active healing  

𝐃sech = (𝐈 +
𝐃el 

2𝜋
∑ 𝐍 εj

T [𝐀𝑗
−1 − 𝐂L]𝐍j

𝑛𝑑

𝑗=1

𝑤𝑑𝑗
)

−1

𝐃el  

Update the secant stiffness (eq. 22) 

𝜺Gh = 𝐂 𝛂 𝛆𝐡  

 

𝛔 = 𝐃sech(𝛆 − 𝛆Gh) 

Update the total healing strain tensor, allowing for 

interactions (eq 35 and Appendix B), noting that the vector 𝛆𝐡 

contains the stacked local healed strain vectors 𝛆h𝑗
 for all 

local directions j=1 to nd  

Compute the total stress. 

𝒆𝒏𝒅   



 323 

   The schematics in Figure 3 illustrate the changing state of material during successive 324 

microcracking-healing cycles within an RME, and the homogenised representation of the 325 

RME based on equation 26.  326 

 327 

Figure 3. Schematic representation of material states in successive microcracking and 328 
healing cycles 329 

   The new micromechanics based self-healing constitutive model was implemented in a 330 

finite element code developed at Cardiff University.  A standard virtual work formulation 331 

was adopted to evaluate the stiffness matrix. Material nonlinearity was considered, and 332 

the domain was assumed to be continuous throughout the loading history.  The 333 

nonlinear system of equations is solved using a standard Newton incremental iterative 334 

scheme. 335 
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3 Single point simulations 336 

A series of single-point simulations is presented in this section in order to illustrate the 337 

performance of the proposed constitutive model. The material properties such as the 338 

modulus of elasticity (𝐸), tensile strengths (𝑓𝑡) and  Poisson’s ratio for original and healed 339 

materials (denoted by subscript h) that used for the simulations are given in Table 2. The 340 

first example replicates a uniaxial tensile test with an applied strain rate of 5×10-6 /s in 341 

the xx-direction. The simulations were undertaken for a range of curing time parameters 342 

(see  range in Table 2) and healing scenarios. The latter comprise no-healing (Nh), single 343 

healing (Sh) and multiple healing (Mh) scenarios. ‘Multiple healing’ means that the 344 

mechanism within the model to simulate an unlimited number of simultaneous 345 

microcracking and healing steps is active.  346 

The overall responses for each scenario, along with the associated evolutions of the 347 

microcracking variables, are given in Figure 4. 348 

Table 2. Material properties 349 

Variables 𝐸 (𝑁/𝑚𝑚2) 𝐸ℎ  (𝑁/𝑚𝑚2) 𝜈, 𝜈ℎ  𝑓𝑡 , 𝑓𝑡ℎ  (𝑁/𝑚𝑚2)  (𝑠) 𝜀0, 𝜀0ℎ
 

Properties 24000 12000 0.15 1 1-60-200 0.0067 

In this example, healing was assumed to commence when the strain reached 0.003.   350 

For the material properties given, this strain value would be associated with substantial 351 

microcracking in a real self-healing material and is approximately 70 times greater than 352 

the crack initiation strain. It is noted that the healing activation criterion varies 353 

considerably with the type of healing system and with the properties of the host 354 

material. 355 

The results show that the response is strongly affected by the value of the curing time 356 

parameter with the healing response being less abrupt for larger values of . It is 357 



noteworthy that the responses of the three healed material simulations tend to the same 358 

asymptotic stress, which is associated with balanced healing and microcracking rates. 359 

Furthermore, the ability of the model to capture anisotropic behaviour is explored by 360 

considering the changes to the components of the stiffness tensor over the prescribed 361 

strain path. The secant stiffness tensor (in Voigt matrix form) is normalised with the 362 

elasticity tensor (matrix), such that 𝐌 = 𝐃−1 𝐃sech. The component numbers shown in 363 

Figure 4c and 4d are selected matrix terms in Voigt notation.  The changes in these matrix 364 

terms are illustrated in Figure 4c and d for =1 and 200 (s) respectively. The results show 365 

that the relative matrix terms change in an anisotropic manner as microcracking and 366 

healing progress. 367 

  

(a) (b) 

 

 
 

(c) (d) 

  



Figure 4. Computed uniaxial responses, a) variation of stress with time, b) re-368 
microcracking variables, c) Stiffness matrix component for 𝜏 = 1𝑠 and d) stiffness 369 
matrix component for 𝜏 = 200𝑠. 370 

In order to provide more insight into the anisotropic behaviour of the model, the 371 

variation of the microcracking and healing variables for four selected directions have 372 

been plotted for all three healing scenarios for the 𝜏 = 60𝑠 case in Figure 5. The direction 373 

numbers correspond with the spherical integration directions given in Appendix  A.  374 

As may be expected, the maximum microcracking occurs in direction 1 which coincides 375 

with the loading direction. The microcracking variable in direction 1 (i.e.1) has a value 376 

of 0.99 at the time healing initiates; by contrast, the corresponding value of 28 =0.90. 377 

The  values for the directions that do not correspond with the loading direction 378 

illustrate the effect of the local shear strains, as well as the local normal strains, on the 379 

degree of microcracking around the hemisphere. As may be expected, the progression of 380 

the microcracking and healing responses for the non-coincident directions lag those of 381 

direction 1, with the lag increasing as the angle between direction 1 and the normal to 382 

the local direction under consideration increases. The microcracking and healing 383 

variables are visualised in the polar plots shown in Figure 5. These polar plots are given 384 

at times 10, 20, 75 and 175 seconds for the microcracking variables and 610, 700, 800 385 

and 1800 seconds for the healing and re-microcracking variables.    386 

 387 

 388 

 389 

 390 



 391 

 392 

  

  
t=10 s t=20 s t=75 s t=175 s t=610 s t=700 s t=800 s t=1800 s 

(a) (b) 

  

  
t=610 s t=700 s t=800 s t=1800 s t=610 s t=700 s t=800 s t=1800 s 

(c) (d) 

Figure 5. microcracking and healing variable evolution, a) virgin microcracking b) virgin 393 
healing, c) re-microcracking for single healing cycle and d) re-microcracking-re-healing 394 
variables for multiple healing cycles. 395 

3.1 Parametric study 396 

The results of a systematic parametric study are now presented in which the model was 397 

used to predict the uniaxial response of a self-healing cementitious sample. The 398 

reference properties are those given in Table 2. The material properties altered 399 

sequentially in the study were the curing time, healed material Young’s modulus and 400 



healed material strength. The sequence of values used for each parameter are given in 401 

Table 3. The range of healing scenarios considered are as follows: 402 

i) single healing under continuous monotonic loading (𝜀̇ =  5 × 10−6 /s ):  403 

ii) multiple microcracking-healing under continuous monotonic loading (𝜀̇ =404 

 5 × 10−6 /s ):  405 

iii) multiple microcracking-healing events under loading-unloading-reloading 406 

conditions (loading 𝜀̇ = 5 × 10−6   ; unloading  𝜀̇ =  −5 × 10−6  ; reloading 407 

rate varies as shown in Figure 6) 408 

Table 3. material properties for parametric study 409 

*Er denotes the ratio of the elastic modulus of healing material to original material  410 
**fr denotes the ratio of the tensile strength of healing material to original material 411 
  412 

 413 

Figure 6. Parametric study results 414 

Case/material 
properties 

Ranges 𝜏(sec) 𝐸ℎ(N/mm2) 𝑓𝑡ℎ( N/mm2) 

𝜏 1, 10, 50, 100, 400 variable 12000 1 
𝐸𝑟 = 𝐸ℎ/𝐸* 0.25, 0.5, 1, 1.5, 2 50 variable 1 
𝑓𝑟𝑓𝑡ℎ/𝑓𝑡** 0.25, 0.5, 1, 1.5, 2 50 12000 variable 



Figure 6 presents the predicted mechanical response for all of the cases considered. 415 

The relative effect of changing each parameter in turn is evident from the graphs,  with 416 

changes in the healed-material strength and stiffness greatly affecting the post-healed 417 

peak load and post-peak softening response. As already mentioned, changing  has a 418 

profound influence on the apparent stiffness and ductility of the post-healed response, 419 

with lower values of  being associated with lower post-healed peak strengths and an 420 

apparent more ductile response.     421 

For real cases, the model parameters are calibrated by using experimental data from 422 

uniaxial microcracking tests to determine the softening parameters of equation (7), such 423 

that the peak and post-peak behaviour are captured accurately. Then, the healing-424 

efficiency parameter (
ℎ𝑒

) is found using data from uniaxial microcracking – healing tests, 425 

with 
ℎ𝑒

 being calibrated such that the computed overall stiffness recovery matches the 426 

corresponding experimental value. The healing activation time is obtained through 427 

direct observation.  These microcracking and healing parameters are variable since they 428 

depend on the mechanical properties of the overall self-healing system, as well as those 429 

of the components, such as microcapsule shells and vascular network channels.  430 

3.2 Microencapsulated uniaxial test 431 

The proposed model’s ability to replicate the mechanical response of samples formed 432 

from a self-healing cementitious material containing microcapsules is assessed by 433 

considering the experimental tests on a set of cylindrical samples undertaken by James 434 

et al. (2014). In this work, the investigators measured the effects of healing on the elastic 435 

modulus of a microencapsulated self-healing cementitious material system. The tests 436 

considered material samples formed with 400-500 µm sized micro-capsules containing 437 



sodium silicate at dosages of 0.5% and 1% by volume of the cement paste. The tests 438 

followed a procedure from ASTM C469 for measuring the static elastic modulus. Each 439 

cylindrical sample was loaded axially up to 70% of the nominal compressive strength in 440 

order to induce a degree of microcracking. The samples were then unloaded and allowed 441 

to heal for 3 days and then reloaded to failure.  442 

The material properties used for the simulations are presented in Table 4. 443 

Table 4. Material properties 444 

 445 

 446 

 The results of the simulations are presented in Figure 7,  with Figure 7a giving the 447 

loading protocol and Figure 7b the experimental and numerical values of the elastic 448 

moduli before and after healing for each case. It is evident from the differences between 449 

the initial stiffnesses of the control samples and the samples containing microcapsules 450 

that the presence of the microcapsules reduced the stiffness of the material.   451 

The results of the samples with microcapsules shows that the model is able to 452 

reproduce the increase in stiffness brought about by healing, and to capture the effect 453 

of increasing the dosage of microcapsules. It is noted that the experimental data did not 454 

include any load-displacement responses. 455 

Material/properties 𝐸 (𝑁/𝑚𝑚2) 𝜈 𝑓𝑡  (𝑁/𝑚𝑚2) 𝜀0 

Matrix 32430 0.25 1 0.0025 
Capsule 3000 0.2 -  

Healing agent 3000 0.2 5 0.0003 



 

 
(a) (b) 

Figure 7. Experimental validation, a) loading protocol, b) stiffness recovery 456 
comparison 457 

4 Finite element example: self-healing beam tests. 458 

The 3-point beam bending experiments conducted by Ferrara et al. (2014) are 459 

considered in this example. In these experiments, concrete beams of size 45010050 460 

mm (Figure 8a), were cast and loaded until the crack mouth opening displacement 461 

(CMOD) reached 150µm and 300µm for first and second healing cycle respectively. Some 462 

of these beams were formed from a standard concrete mix and others were formed with 463 

a concrete containing a proprietary crystalline admixture (CA) (Ferrara et al. 2014), which 464 

was assumed to act as an autogenous healing enhancer. Ater cracking, each sample was 465 

stored for 12 months in either, (i) dry air or (ii) a water curing tank. The beams were then 466 

re-loaded until failure. The cases considered are summarised in Table 5.  467 

The material properties used for the simulations (see Table 5) were based on those 468 

reported by Di Luzio et al. (2018); Ferrara et al. (2014) and Cibelli et al. (2022). The beam 469 

was modelled with the finite element program containing the new constitutive model.  470 

The testing arrangement, specimen geometry, boundary conditions and finite element 471 

mesh used for the analysis are illustrated in Figure 8. 472 



Table 5 material properties used for BVP simulation. 473 

The simulations of the control specimens (without CA) only considered the first healing 474 

cycle, since no appreciable healing was observed in the second cycle. By contrast, the 475 

second healing cycle was considered for the specimens with CA. This is because 476 

negligible healing was observed in the first cycle for the CA samples, but significant 477 

healing was measured for the second cycle.   478 

 
(a) 

 
(b) 

Figure 8. (a) Beam geometry and boundary conditions, b) finite element mesh 479 

450

B
100

5
0

B
Section B-B

Load

*All dimensions in mm

Case/ 
parameter 

Curing 
condition 

Name 
𝐸, 𝐸ℎ  

(N/mm2) 
𝜈, 𝜈ℎ  

ft 
(N/mm2) 

fth 
(N/mm2) 

(days) he 𝜀0, 𝜀0ℎ
  

Healing 
without 

CA 
Dry WCAD 35000 0.25 0.1 0.5 270 0.01 0.0025 

Healing 
without 

CA 
Wet WCAW 35000 0.25 0.3 0.5 270 0.02 0.0025 

Healing 
with CA 

Dry CAD 35000 0.25 0.45 0.5 135 0.08 0.0025 

Healing 
with CA 

wet CAW 35000 0.25 0.5 0.5 135 0.1 0.0025 



The experimental and numerical responses of the control samples are given in Figure 480 

9, which also shows the distribution of selected microcracking variables. The results 481 

show that the model is able to simulate the overall response of the control specimens 482 

with good accuracy.  483 

 

3D prespective-𝜔1  

 
Front elavation-𝜔1  

 
Front elavation-𝜔28  

 
(a) (b) 

Figure 9. Experimental and numerical control beam responses, a) load v CMOD 484 

response, b) microcracking variables at a CMOD of 150m 485 

The mean experimental and numerical load-CMOD responses, for the samples without 486 

and with CA, are given in Figure 10 and Figure 11 respectively. In these graphs, the post-487 

curing reloading response commences from the unloading point of the initial cracking 488 

stage.  489 

 490 

 491 



 492 
Figure 10 Load-CMOD response for WCAD samples (a-b) and WCAW (c-d), a) loading -493 
reloading response with healing, b) magnified illustration of (a), c) reloading with 494 
healing for WCAW, and d) magnified illustration of (c) 495 

 496 

 497 

 498 

 499 

  500 

 
 

(a) (b) 

  
 

(c) (d) 



   
(b) (c) 

    
 

(e) (f) 

Figure 11. Load-CMOD response for samples with CA cured in dry (CAD) (a-b) and wet 501 
conditions (c-d) (CAW), a) loading reloading process with healing for CAD, b) magnified 502 
illustration of (a), c) Loading reloading with healing for CAW and d) magnified 503 
illustration of (c) 504 

Comparing Figure 10b and c with 10e and f, shows that the stiffness and strength 505 

recoveries due to healing were significantly less for dry cured specimens than for the 506 

wet-cured specimens without CA.  The model captures this difference, although does 507 

show a small increase in post-healed strength for the dry specimens that was not evident 508 

in the corresponding ‘wet’ experiments. However, in wet conditions the strengths 509 

increased up to 10%. The effect of CA on mechanical recovery shows itself in both 510 

strength and stiffness regains, as illustrated in Figure 11 c and f. 511 

Figure 12 gives plots that show the distribution of the healing and re-microcracking 512 

variables at selected stages of the analysis for the CAW case. Figure 12a shows that, at 513 



the start of reloading stage, the healed material re-microcracking value is zero, since at 514 

this point the healed material has just formed in a stress-free condition. It subsequently 515 

experiences microcracking. Re-microcracking values for the normal crack direction are 516 

shown in Figure 12 b and c for CMOD values of 310 and 350 µm respectively. This figure 517 

also shows that the further microcracking is localised where healing material was 518 

formed.  519 

 520 

 521 

 522 

 523 

 524 

 525 
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 528 

 529 

 530 

 531 

 532 

 533 



 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 12. Healed material status after reloading a) healing at CMOD=275 µm, b) re-534 
microcracked at CMOD=310 µm c) re-cracking at CMOD=350 µm , d) overlapping 535 
cracking and healing illustration, and e) load-CMOD response for CAW 536 



 537 

5 Conclusions  538 

A new micromechanical model for simulating the response of self-healing cementitious 539 

materials has been presented in this paper. The proposed constitutive formulation 540 

captures the time-dependent behaviour of these materials with good accuracy using 541 

relatively few physically meaningful material parameters.  542 

The model simulates microcracking and its healing using the assumption that all 543 

microcracked material has the potential to be healed. The micromechanical formulation 544 

is well suited to simulating distributed cracking and healing for systems in which the 545 

healing material is spread throughout the structural element. This applies to healing 546 

systems that use embedded microcapsules. The model is not aimed at simulating 547 

discrete cracks or systems that use vascular networks, although some aspects of the 548 

behaviour of the latter can be captured by the model.    549 

 The constitutive model was implemented in a 3D finite element framework for 550 

simulating boundary value problems. Based on the results, the following conclusions can 551 

be drawn:   552 

• the mechanical properties of healed material -often a healing-agent cementitious-553 

matrix composite- greatly affect the post-cracking mechanical response of self-554 

healing materials:  555 

• the recursive scheme used to update the healing and re-cracking variables is an 556 

effective way to simulate the response of elements to multiple and continuous 557 

microcracking-healing cycles in a computationally efficient manner:  558 



• the model predictions exhibit significant anisotropy due to the directional 559 

variations in the degrees of microcracking and healing. 560 

• a series of simulations, including a parametric study, shows that the overall 561 

microcracking-healing response is strongly dependent on the curing time 562 

parameter of the self-healing agent, as well as the degree of microcracking at 563 

which healing is assumed to commence:  564 

• the proposed model can simulate different types of self-healing scenarios and is 565 

able to replicate the behaviour of structural elements undergoing simultaneous 566 

microcracking and healing. 567 
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Appendix A. Weights and corresponding directions for spherical numerical 592 
integration 593 

Point number i, direction 𝐫𝑑𝑖
 (also equals the position on a unit hemisphere) and 594 

integration weights  𝑤𝑑𝑖
. 595 

 

i 𝐫𝑑 𝒊 𝑤𝑑𝑖 i 𝐫𝑑 𝒊 𝑤𝑑𝑖 

1 (1,0,0) 0.0254 16 (
√3

3
, 
√3

3
, 
−√3

3
) 0.04219 

2 (0,1,0) 0.0127 17 (
√3

3
, 
√3

3
, 
√3

3
) 0.04219 

3 (0,0,1) 0.0127 18 (
√11

11
,
−√11

11
, 
−3√11

11
) 0.04035 

4 (0,-1,0) 0.0127 19 (
√11

11
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√11

11
, 
−3√11

11
) 0.04035 

5 (0,0,-1) 0.0127 20 (
√11

11
,
−3√11

11
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11
) 0.04035 

6 (
√2

2
, 
−√2

2
,0) 0.04515 21 (

√11

11
,
−3√11

11
, 
√11

11
) 0.04035 

7 (
√2

2
,
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2
,0) 0.04515 22 (

√11

11
,
−√11

11
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3√11

11
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2
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(a) (b) 

Figure A.1 Spherical integration directions, a) positions on a sphere, b) numerical 596 
integration directions and weights  597 
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 599 

Appendix B. Thermodynamic consistency 600 

The constitutive formulation should be consistent with the second law of 601 

thermodynamics. This may be satisfied, during healing, if the model ensures that no 602 

energy is created due to healing alone. The condition implies that the stress tensor in 603 

local and global coordinates before and after an increment of healing should be the 604 

same; thus, the corresponding eigenstrain for each healed set of microcracks is 605 

evaluated such that the overall global stress does not change due to healing alone.  This 606 

condition may be expressed mathematically as follows, noting that here i and i-1 refer 607 

to states before and after a healing sub-step respectively: 608 



Re-arranging the above equation gives: 609 

 𝛆ah  is given in equation (18). To allow for interaction effects between microcracking 610 

directions, a variable   has been added to the equation. The resulting equations in 611 

standard and discretised forms are given B.3 and B.4 respectively.  612 

 613 

The aim is to find 𝛼𝑖𝑑 such that equation B.1 is satisfied, with 𝜺Gh in place of 𝛆ah; 614 

however, this gives 6 equations with 87 unknowns as noted below. This equation is 615 

therefore an undetermined equation which has an infinite number of solutions. This may 616 

be resolved by applying the least squares constraint and assuming that 𝐍 𝛆𝐢𝐝
∙ 𝐍εid

∙617 

[
(1−𝜔𝑖𝑑)

ℎ𝑣𝑖𝑑
(1−𝜔ℎ𝑖𝑑

)
𝐂Lh ∙ 𝐃L + 𝐈𝟐𝒔]

−1

 is a coefficient matrix for each direction considered (i.e. each 618 

spherical integration direction), as follows: 619 

Expanding the above series leads to following 6 equations: 620 

𝛔𝑖 = 𝐃sech : (𝛆 − 𝛆ah) = 𝛔i−1 (B.1) 

𝛆ah = 𝛆 − 𝐃sech
−1 𝝈𝑖−1  (B.2) 

𝜺Gh  =
1

2𝜋
∯𝐍ε ∙ [

(1 − 𝜔)

ℎ𝑣(1 − 𝜔ℎ)
𝐂Lh ∙ 𝐃L + 𝐈𝟐𝒔]

−1

: 𝜶: 𝛆h

𝑆

 (B.3) 

𝜺Gh  = ∑ 𝐍εid
∙ [

(1 − 𝜔𝑖𝑑)

ℎ𝑣𝑖𝑑
(1− 𝜔ℎ𝑖𝑑

)
𝐂Lh ∙ 𝐃L + 𝐈𝟐𝒔]

−1

𝛼𝑖𝑑εhid

29

𝑖𝑑=1

 (B.4) 
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(B.5) 



 621 

 622 

This is rewritten in matrix form as: 623 

𝛆Gh = 𝐂 𝛂 𝛆ℎ                     (B.8) 624 

 Equation (B.8) is solved for the unknowns 𝛂, with 𝛆Gh in the right-hand-side being 625 

equal to 𝛆ah from equation (B.2).  626 
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