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Abstract: Solar energy is one of the most favorable renewable energy sources and has undergone
significant development in the past few years. This paper investigates a novel concept of harvesting
the maximum power of a photovoltaic (PV) system using a long-short term memory (LSTM) to
forecast the irradiance value and a feedforward neural network (FNN) to predict the maximum
power point (MPP) voltage. This study paves a way to mitigate avoidable inefficiencies that hinder
the optimal performance of a PV system, due to the intermittent nature of solar energy. MAT-
LAB/Simulink software platform was used to validate the proposed algorithm with real irradiance
data from different geographical and weather conditions. Furthermore, the maximum power point
tracking (MPPT) algorithm was implemented in a laboratory setup. The simulation results portray the
superiority of the proposed method in terms of tracking performance and dynamic response through
a comprehensive case study conducted with five other state-of-the-art MPPT methods selected from
conventional, AI based, and bio-inspired MPPT categories. In addition to that, faster response time
and lesser oscillations around the MPP were observed, even during volatile weather conditions and
partial shading.

Keywords: renewable energy; maximum power point tracking; long-short term memory; partial shading

1. Introduction

Renewable energy has shown exponential growth over the past decade in the en-
ergy production sector along with research developments that enhanced its efficiency and
reliability in enervating from sources such as solar and wind. When considering these
renewables, solar energy has played a pivotal role and is regarded as the most promising
alternative to fossil fuels mainly due to its cleanliness, abundance, and environmental
friendliness [1,2]. However, photovoltaic (PV) systems face challenges due to their un-
predictability, primarily caused by fluctuating weather conditions. The efficiency of a PV
system is affected by numerous factors such as inverter conversion losses, thermal losses,
and failure to track the maximum power point (MPP). Out of these, 5–30% efficiency reduc-
tion may occur due to the failure of converging to the MPP. When the installed capacity is
high, this loss is substantial [3]. Therefore, it is essential to adapt maximum power point
tracking (MPPT) techniques to ensure that the highest possible power is harvested from a
PV array under different operating conditions.

Extensive research on MPPT methods has been undertaken, and hence various tech-
niques that differ according to aspects such as tracking mechanism, implementations, and
modernity [4] can be found in the literature. Generally, these methods can be classified into
conventional, soft-computing, and hybrid. Perturb and Observe (P&O) [5–7], incremental
conductance (InC) [6–10], hill climbing, and constant voltage (CV) [4] are some popular
conventional methods. The main advantages of these methods are their simplicity and
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easy implementation. However, these conventional methods suffer from low tracking
speed, low efficiency, and high oscillations around the MPP. Thus, various developments
have been introduced to mitigate these limitations of conventional methods [11,12]. To
overcome the aforementioned limitations, soft computing-based methods have been intro-
duced which can be identified as artificial intelligence (AI)-based methods and bio-inspired
methods [13]. Despite their complex nature and considerable cost to implement, these
methods depict satisfactory performance in partial shading (PS) conditions due to their
robustness, flexibility, and reliability [4]. Widely used AI-based methods are the artifi-
cial neural network (ANN) [2,3] and fuzzy-logic control (FLC) [2,7,8], while the particle
swarm optimization (PSO) and genetic algorithm are the two most common bio-inspired
methods [2,4,7] found in the literature. ANNs are computational models inspired by the
human brain and typically a feed-forward architecture with three layers is used. On the
other hand, the most critical aspect of FLCs is converting inaccurate and qualitative in-
formation into numerical values. Importantly, these methods are favorable in practical
conditions where uncertainties exist, such as unpredictable changes, nonlinearity, and
unmodeled quantities. However, heuristic methods like PSO show high potential due to
their simple structure, easy implementation, and fast computation capability [7,14]. PSO is
considered the best method to work under partial shading conditions mostly because of
its high ability to find a global maximum power point (GMPP) [4]. On the contrary, the
computational burden is comparatively larger than that of the conventional methods, and
these methods also display significant oscillations and consume more time as they undergo
a large random search [15].

Recently, hybrid MPPT methods, which typically combine two conventional methods,
one conventional method and one soft computing method, or two soft computing methods,
have become popular. These are developed to perform mutual cancellation [16] of open
issues and provide high and robust performance in tracking the maximum power point.
To obtain a high-power efficiency and fast response, the P&O method and CV method
are fused in [17] and both simulation and experimental results have proven the novel
algorithm’s superior performance to other state-of-the-art methods. In [18], the authors
propose a hybrid method which is a combination of the conventional InC method with
variable step size and bio-inspired dragonfly optimization (DFO) algorithms that can work
efficiently in multiple weather conditions such as uniform irradiance and partial shading
conditions. Meanwhile, the limitations associated with FLC, InC, and P&O algorithms were
eliminated, with efficiency exceeding 97% using the improved hybrid algorithm-based
MPPT method presented in [19].

In addition to the above discussed techniques, numerous extensions to and develop-
ments of the existing methods and novel methods are noticeable in the literature. Hussain
Shareef et al. [9] propose a random forest-based approach to improve the MPPT perfor-
mance, and it was tested under actual environmental conditions for 24 days to validate the
accuracy and dynamic response. In addition to that, extreme seeking control (ESC) [20], an
improved team game optimization algorithm [21], a fusion firefly algorithm [22], a hierarchical
pigeon-inspired optimization-based method [23], a novel spline-MPPT technique [24], and an
improved earthquake optimization algorithm [25] are some modern concepts used in tracking
the maximum power point while addressing the different issues associated with it.

When considering the state-of-the-art methods, the integration of AI seems to be crucial
to guarantee the tracking of GMPP while increasing the overall efficiency and performance
of MPPT. Since the ANN portrays a medium algorithm complexity [26], less cost, and greater
flexibility than other improved AI-based methods, it has played a major role in manifold hybrid
methods. The neural network P&O controller is one of the most popular hybrid methods
that combines ANN with the conventional P&O method [2]. In [27], the authors propose a
unique approach to enhance the MPPT with the utilization of state estimation by sequential
Monte-Carlo (SMC) filtering, which is assisted by the prediction of MPP via an ANN.

In most cases, the major shortcomings in MPPT occur in PS and rapidly changing
weather conditions. Irradiance fluctuations that are limited to a short period lead the
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controller to change its state rapidly, resulting in unnecessary oscillations without con-
verging to the MPP. Therefore, there is room for development in MPPT algorithms that
are not affected by short-term fluctuations. If the future irradiance values are known, the
controller can act accordingly in a smooth manner since the sudden irradiance fluctuations
that are limited to a short time frame (which are called ‘dummy peaks’ in the irradiance
pattern) [28] can be avoided and the change of direction of MPP can be aligned with the
future trend. Moreover, it is important to note that, although the MPP primarily depends
on solar irradiance, there is a considerable effect from the temperature variation as well.
However, few articles in the literature have addressed this issue [29,30].

Despite the growing interest in AI and power electronics controllers for renewable
energy systems, few studies have explored the potential hardware implementation of
AI-based MPPT model for PV power optimization. These techniques generally require an
expensive and advanced microprocessor to shorten computational time. Also, challenges
arise in integrating AI-based MPPT tracking algorithms for existing control systems due to
the lack of compatibility and reliable prediction of the optimal power point.

Taking into account all the above concerns, an ANN-based MPPT with the assistance
of forecasted irradiance data is presented in this paper, which focuses on improving the ef-
ficiency and mitigating inefficient MPPT in varying environmental conditions. This hybrid
method is a combination of an irradiance forecaster and a feedforward neural network (FNN),
which strives to lessen the intermittent nature of solar energy to a considerable extent by
predicting two future irradiance points and feeding them to the neural network along
with present irradiance and temperature values. This eventually resulted in a more robust
method, and depicted superior tracking performance and dynamic response when com-
pared to other popular methods in the literature. The proposed method was validated
via the MATLAB/Simulink environment using step responses and real irradiance data
of different geographical conditions. Furthermore, the hardware implementation of the
proposed method was demonstrated in a laboratory setup.

The key contributions of this paper are three-fold, as follows:

• The proposed hybrid MPPT algorithm that utilizes the existing FNN-based MPPT
technique with the aid of an irradiance forecaster to lessen the effect of the intermittent
nature of solar energy.

• The validation and comparison of the proposed method using MATLAB/Simulink
using real irradiance data.

• The hardware implementation of the newly designed MPPT method for a single-phase
grid-connected PV system.

This paper is organized as follows: The next section provides an overview of the
PV system used, along with insights into the proposed method, including the theoretical
background and data generation. Section 3 presents the experiments conducted in this
study, with the details of hardware implementation, followed by the results and discussion
in Section 4, which includes various test cases. Finally, the main conclusions of the paper
are summarized in Section 5.

2. Materials and Methods
2.1. Proposed MPPT Algorithm

The PV system combined with the proposed MPPT algorithm used in this study is
shown in Figure 1. The PV system consists of a solar PV array, boost converter, inverter,
and utility grid with controllers. A single-phase-grid connected inverter with a boost
converter arrangement was used for this PV system. The proposed MPPT algorithm uses a
long-short term memory (LSTM) unit to predict future irradiance values. LSTM is a special
recurrent neural network (RNN) that has time-varying inputs and targets. The unique
gated unit structure of the LSTM enables it to remember information for a longer period
of time [31–34]. In this method, LSTM weights are randomly initialized and tuned using
backpropagation to minimize the irradiance prediction error. An FNN is used to predict
the MPP voltage. This selection is based on the fact that an FNN requires significantly less
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computational cost compared to convolutional and attention networks, thereby making the
model more efficient and simpler to implement. The weights of the FNN are initialized
randomly. They are tuned with the backpropagation based on the biased MPP voltage error.
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Figure 1. Proposed LSTM and FNN combined MPPT system.

Historical time series irradiance data from time 1 to time n are is fed to the LSTM
unit, which predicts future irradiance values at time n + 1 and n + 2. The current ir-
radiance value (In), along with the predicted irradiance values (In+1 and In+2) and the
temperature (Tn), are then used as inputs to the FNN. The FNN outputs the optimum
MPP voltage (V(n)

MPP,b), which is biased towards the possible upcoming MPP voltage values.
This biased voltage helps the system to avoid responding to sudden fluctuations in solar
irradiance. For example, Figure 2a shows an observed irradiance fluctuation from real
irradiance data. In this figure, it can be seen that at point n, there is a sudden irradiance
drop for a very short period. Due to this, existing MPPT algorithms change their MPP
voltage according to the irradiance value at point n. At the next time step, irradiance
increases, and the MPPT algorithm has to adjust the MPP voltage corresponding to the
new irradiance value at points n + 1 as shown in Figure 2b. This may lead the controller to
change its state rapidly where ultimately brief energy losses and transient instability may
occur. With the proposed method, the effect of the sudden drop in the irradiance value at
point n will be mitigated as the current MPP voltage is not only dependent on the irradiance
value at point n, but also on future irradiance values at point n + 1 and n + 2. Then the
controller tries to operate at the average MPP value at point b shown in Figure 2b. This
helps to avoid unnecessary rapid fluctuations in MPP voltage, thus ensuring the smooth
operation of the controller.
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The training process of the FNN is done using a dataset generated from Equation (1),
which contains 1250 data points. When generating the dataset, the irradiance step size
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was selected as 25 W/m2. Biased MPP voltage at time n (V(n)
MPPb) is calculated by adding

an ∆V value to the theoretical MPP voltage corresponding to the particular irradiance value
at time n. This ∆V value is calculated using Equation (2), with the insight of the MPP
voltages corresponding to the estimated future irradiance values.

V(n)
MPP, b = V(n)

MPP+∆V (1)

where

∆V = α


(

vMPP
(n+1) − vMPP

(n)
)

vMPP
(n)

+β


(

vMPP
(n+2) − vMPP

(n+1)
)

vMPP
(n+1)

 (2)

Here, V(n)
mpp, V(n+1)

mpp , and V(n+2)
mpp denote the MPP voltages that correspond to In, In+1,

and In+2 irradiances. α and β are the hyperparameters related to generating the training
dataset of FNN. The selected α and β values are those that correspond to the dataset that
is used to train the FNN that gives the maximum power. To select optimal α and β, the
simulation was repeated multiple times with different values of α and β. The power output
of the system for α = 1 and 1 < β < 15 for an irradiance step less than or equal to 25 W/m2

is shown in Figure 3a. Similarly, the output power for β = 10 and 0.5 < α < 2 is shown
in Figure 3b. In these figures, the y-axis refers to the captured power as a percentage
of theoretical power. For clarity and to enhance the readability of the results, we have
presented the power values in the figure for a single set of α and β values. A similar
procedure was adopted to select the values for irradiance changes above 25 W/m2. The
rule base for selecting α and β is shown in Table 1.
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Table 1. Rule base for selecting α and β.

Case α β

In = In+1 = In+2 1 10
|In − In+1|= 25 W/m2 & |In+1 − In+2| = 25 W/m2 1 10
|In − In+1|> 25 W/m2 & |In+1 − In+2| > 25 W/m2 15 2

The trained FNN gives the biased MPP voltage and it is compared with the PV module
voltage (VPV). In the boost converter controller, the error signal is fed to the PI controller,
which generates the duty ratio required to drive the PV voltage to the biased MPP voltage.
This duty ratio is fed to the boost converter as a PWM gate signal.

The performance of the MPPT algorithms was assessed based on static and dynamic
parameters. Static parameters evaluate the accuracy of the algorithm and the dynamic
parameters evaluate the response speed of the particular algorithm.
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2.2. Static Parameter

The theoretically available power at time n (P(n)
TH ) of a PV module for an instantaneous

irradiance at time n (In) is given by Equation (3).

P(n)
TH =

Pmax

Imax
× In (3)

where Pmax is the maximum power of the PV panel and Imax is the corresponding irradiance
level at Pmax.

The power extracted from the PV module using the MPPT algorithm at time n (P(n)
PV )

is calculated from Equation (4).
P(n)

PV = VPV × IPV (4)

where VPV and IPV denote the output voltage and current of the PV module.
Using Equations (3) and (4), instantaneous error at time n (e(n)) is defined by Equation (5).

e(n) = P(n)
TH − P(n)

PV (5)

Two static parameters used to evaluate the performance of MPPT algorithms are
defined using Equation (5).

1. Mean absolute error (MAE)

MAE =
|∑n

i=1 ei|
n

(6)

2. Mean squared error (MSE)

MSE =
∑n

i e2
i

n
(7)

As the third static parameter, the total energy captured for a particular time period is
used as defined in Equation (8).

3. Total energy captured (Total)

Etotal =
∫ t

1
PPVdt (8)

where PPV is the captured power variation of the PV module.

2.3. Dynamic Parameters

To evaluate the response speeds of the algorithms, the rise time and the settling time
were used [35]. Based on the PV power output in a step irradiance pattern, as shown in
Figure 4, rise time and settling time were evaluated.
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3. Experiments

In this study, various test cases were initiated using real irradiance data collected from
different geographical regions in Sri Lanka. In terms of simulations, the MPPT algorithms
were developed in the MATLAB/Simulink (version 2018b) simulation environment and
executed on a processor with an Intel Core i7-7700HQ and 32 GB RAM running at 3.4 GHz.

3.1. Optimization of P&O MPPT Algorithm

The P&O algorithm is the most widely used MPPT algorithm in applications. Due
to the widespread usage and competitive performance of the P&O algorithm, it is used
as the base algorithm for the comparison. The fundamental principle of this method is
the deliberate increment or decrement of voltage, after which the power is calculated and
compared with the previous adjacent power value [36]. The performance of this method is
highly dependent on the step size of the voltage perturbation. Therefore, it is important to
optimize the step size to harvest the maximum possible power from the P&O method.

To obtain the optimum step size, the P&O algorithm was executed for a varying
irradiance pattern that was developed using the real irradiance data collected in Kandy, Sri
Lanka on a rainy day. The irradiance pattern is shown in Figure 5a. The five different step
sizes given in Table 2 were used as Test Case A.
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Optimization for Different
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Condition
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4 D.1—Scenario 1 in Test Case (D).

3.2. Performance of Different MPPT Algorithms Under Single Day Irradiance Pattern

In this test case, different MPPT algorithms listed in Table 2 Case (B) were executed
for two irradiance patterns. These two patterns are shown in Figure 5. The pattern with
rapid changes was obtained in Kandy on a rainy day, while the smooth irradiance pattern
was obtained in Jaffna on a sunny day. These are two representative geographical locations
in Sri Lanka. The observation period was from 6.00 a.m. to 6.00 p.m. in this experiment.
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3.3. Performance of MPPT Algorithm Under Irradiance Variation of One Week

The selected MPPT algorithms listed in Table 2 Case (C) were executed for combined
irradiance patterns of seven days, which is a collection of smooth and fluctuating irradiance
variations between 6.00 am and 6.00 pm every day, as shown in Figure 6.
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3.4. Partial Shading Condition

In this test case, a PV array comprising six PV modules connected in series was
utilized. To evaluate the performance of MPPT algorithms, as outlined in Table 2 Case
(D), four distinct partial shading conditions were simulated. Partial shading conditions
were achieved by assigning different irradiance levels to each PV module, as depicted
in Figure 7.
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3.5. Hardware Implementation of the Proposed MPPT Model

An experimental PV system was developed in the laboratory to validate the proposed
MPPT algorithm, as shown in Figure 8. The generated power is fed to the local distribution
network at University of Peradeniya. As our primary focus is on enhancing the active
power generation of a PV system through the MPPT algorithm, we assumed that the
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network is equivalent to an infinite bus and that grid harmonics have no impact on the
controller’s operation. The boost converter controller was implemented using a floating-
point digital signal processor (DSP) unit TMS320F28379D. In Figure 9, the trained model of
the proposed MPPT algorithm was deployed on an ESP32 microcontroller, a system-on-
chip (SoC) and embedded device suitable for AI model deployment. Though the training
phase of our MPPT algorithm needs comparatively high computational power, for the
deployment we used the pre-trained model, which requires less computational power,
making it compatible with a simple embedded microcontroller. The current irradiance In
and temperature Tn were measured by irradiance and temperature sensors, and these data
were fed into the trained model installed on the ESP32 to predict optimal MPP voltage. The
predicted optimal MPP voltage was then transmitted to the boost converter controller via a
Serial Peripheral Interface (SPI) communication link to regulate its operation.
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4. Results and Discussion

This section highlights the performance of the proposed MPPT algorithms under
different irradiance variations. First, the results for Test Case (A) are analyzed, focusing on
both static and dynamic parameters. Next, the power captured by the grid in the simulation
models of all algorithms is evaluated for two different irradiance patterns: one with volatile
variations and the other with smooth variations. Following this, a time series analysis is
conducted for the best-performing algorithms using single-day simulations. Further, the
performance of the MPPT algorithms is assessed under partial shading conditions.

4.1. Optimizing P&O MPPT Performance

The simulation model was developed using six series-connected Yingli YL 300P-35b [37]
PV modules. The voltage perturbation step size of the P&O MPPT algorithm was adjusted
according to the scenarios outlined in Table 2. The results, including MSE, MAE, and
total energy captured, were calculated for the irradiance pattern depicted in Figure 5a.
Additionally, the rise time and settling time, determined by applying the step input shown
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in Figure 4, were obtained and are presented in Table 3. The output power variation along
with the dynamic responses is illustrated in Figure 10.

Table 3. P&O MPPT method performance comparison for different voltage perturbation step sizes.

Scenario MAE MSE E (kWh) Rise Time (ms) Settling Time (ms)

(A.1) step size 0.5 990.50 25.06 6.50 13.15 27.86
(A.2) step size 0.1 710.04 23.45 6.70 37.02 47.00

(A.3) step size 0.05 682.50 20.80 7.10 65.09 84.00
(A.4) step size 0.01 680.48 19.64 7.15 10.30 320.00

(A.5) step size 0.005 682.76 19.11 7.09 10.00 542.60
MAE—mean absolute error, MSE—mean squared error, E—total energy captured.
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It can be observed that a step size of 0.05 (A.3) provides a good balance, achieving a
low MAE (682.50) and MSE (20.80), while also capturing higher total energy (7.10 kWh). Its
rise time (65.09 ms) and settling time (84 ms) are also moderate, suggesting that it maintains
a compromise between fast convergence and steady-state accuracy. Therefore, a step size
of 0.05 was selected for further comparison with the proposed method.

4.2. MPPT Performance for a Single Day (Test Case B)

The irradiance patterns shown in Figure 4 were used as inputs to the simulation
model. The ideal power captured, calculated using Equation (3), was compared to the
actual power captured by the simulated model under various MPPT algorithms. The MAE,
MSE, and total energy captured were calculated using Equations (6)–(8), respectively, and
are summarized in Table 4. For a day having volatile irradiance, the ideal available energy
was 7.3538 kWh, while for a smooth irradiance day, it was 11.888 kWh. It can be observed
that the proposed MPPT method captured the highest energy under both volatile and
smooth irradiance conditions. Additionally, the proposed novel ANN-based MPPT method
demonstrated the lowest MAE and MSE values, indicating superior accuracy compared to
other methods. In contrast, MPPT algorithms based on fuzzy logic and PSO captured the
least amount of energy and exhibited higher MAE and MSE values. Figure 11 illustrates
the comparison between the theoretical and observed power under the irradiance pattern
shown in Figure 5a or both the proposed MPPT method and the optimized P&O method.
It also shows the MPP voltage variations for these two methods.

To analyze the dynamic performance of MPPT algorithms, a step irradiance input as
shown in Figure 4 was fed to the algorithm and the response was analyzed considering
the rise time and settling time. Table 5 shows the results of all the responses for various
MPPT algorithms.
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Table 4. MPPT method performance comparison in different irradiance variations.

Kandy Rainy Day Jaffna Sunny Day

Scenario MSE MAE E MSE MAE E

(B.1) P&O 682.50 20.80 7.10 249.09 10.72 11.53
(B.2) INC 674.94 23.45 7.02 365.04 10.07 11.37

(B.3) Fuzzy 2413.00 33.52 6.79 1236.30 19.68 11.10
(B.4) PSO 1478.90 33.89 6.98 1250.40 22.84 10.95

(B.5) ANN 661.30 20.67 7.14 145.50 9.56 11.69
(B.6) proposed MPPT 612.42 18.86 7.23 110.20 9.21 11.79

MAE—mean absolute error, MSE—mean squared error, E—total energy captured.
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Table 5. Dynamic response results summary.

Scenario Rise Time (ms) Settling Time (ms)

(B.1) P&O 16.90 24
(B.2) INC 787.90 217

(B.3) Fuzzy 19.70 42
(B.4) PSO 6.40 39

(B.5) ANN 70.90 224
(B.6) proposed MPPT 4.68 19

4.3. MPPT Performance for One Week Simulation

To assess the long-term performance of the best-performing MPPT algorithms, the
irradiance variation shown in Figure 5 was used to evaluate their effectiveness. Table 6
summarizes the MSE, MAE, and total energy captured by each MPPT algorithm over the
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specified period. The theoretical total energy available during this time was calculated
to be 57.236 kWh. Based on the data in Table 5, it can be concluded that the proposed
MPPT algorithm outperformed the others. Specifically, the proposed method demon-
strated a 3% improvement in energy-capturing capability compared to the traditional P&O
MPPT algorithm.

Table 6. Results summary of one-week simulation.

Scenario Mean Squared
Error (MSE)

Mean Absolute
Error (MAE)

Total Energy
Captured (kWh)

% of Energy
Captured w.r.t the

Theoretically
Available Energy

(C.1) P&O 738.26 20.27 54.40 95.04%
(C.2) ANN 734.37 19.67 55.44 96.86%

(C.3) proposed
MPPT 727.66 18.54 56.14 98.08%

4.4. Under Partial Shading Conditions

Figure 12 illustrates the output power variation of two different MPPT algorithms
P&O and the proposed MPPT algorithm under four different partial shading patterns. The
proposed MPPT method proves to be more effective in handling partial shading scenarios,
offering better performance in terms of stability and accurate power tracking, which leads
to higher energy efficiency.
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4.5. Hardware Implementation

Three series-connected solar panels with the electrical properties described in Table 7
are used in the PV array. Figure 13 illustrates the measured data, namely irradiance, MPP
voltage, and power fed to the grid.

Table 7. PV panel electrical characteristics.

Item Value

Solar panel YL330P-25b 1500 V
Power rating 330 W

Number of cells 72
MPPT voltage (VMPP) 37.4 V

Open circuit voltage (VOC) 46.4 V

Short circuit current (ISC) 9.29 A
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5. Conclusions

This study presents a novel maximum power point tracking (MPPT) method that
integrates LSTM networks for irradiance prediction with an FNN to enhance efficiency
and stabilize power output. The proposed algorithm consistently outperformed existing
methods, demonstrating superior performance in terms of MSE and MAE when compared
to theoretical energy capture. It achieved notable improvements in energy-capturing effi-
ciency, reduced fluctuations around the maximum power point, and excelled under partial
shading conditions. When benchmarked against five state-of-the-art MPPT algorithms, the
proposed method showed superior tracking accuracy and captured 3% more energy com-
pared to the conventional Perturb and Observe (P&O) algorithm, all while maintaining a
lower computational cost. This energy gain is expected to scale significantly over prolonged
operation, highlighting the algorithm’s long-term advantages. Additionally, the method
achieved shorter rise and settling times with minimal oscillations around the MPP, ensuring
a faster and more stable response. In terms of practical implementation, the proposed
approach can be seamlessly deployed using a pre-trained model, which reduces computa-
tional demands during real-time operation. Its successful integration on a commercially
available DSP board underscores its adaptability for use with PV inverters of varying scales.
Overall, the proposed MPPT method demonstrated advancements in both energy capture
and operational efficiency, making it a robust solution for enhancing solar panel perfor-
mance. This work also establishes a foundational framework for incorporating AI-driven
technologies into power electronics, paving the way for further exploration of AI’s potential
in optimizing solar inverter performance and advancing renewable energy systems.
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