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Fig. 1. Splitting operation is needed for learning-free and explicit operations on 3D Gaussian Splatting; (Top row) however, the straightforward splitting, i.e.,
simply keeping or rejecting the Gaussians intersected by the splitting plane, will produce bulges (the third column), blurs (the fourth column) and non-uniform
distribution of locations (the last column). (Bottom row) These problems can be solved with our EVSplitting process (the first column), making Gaussians
uniform and fitting the given boundary (the second column). EVSplitting can also benefit many other applications such as part extraction, texturing, etc.
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This paper presents EVSplitting, an efficient and visually consistent split-
ting algorithm for 3D Gaussian Splatting (3DGS). It is designed to make
operating 3DGS as easy and effective as other 3D explicit representations,
readily for industrial productions. The challenges of above target are: 1) The
huge number and complex attributes of 3DGS make it tough to explicitly
operate on 3DGS in a real-time and learning-free manner; 2) The visual
effect of 3DGS is very difficult to maintain during explicit operations and
3) The anisotropism of Gaussian always leads to blurs and artifacts. As far
as we know, no prior work can address these challenges well. In this work,
we introduce a direct and efficient 3DGS splitting algorithm to solve them.
Specifically, we formulate the 3DGS splitting as two minimization problems
that aim to ensure visual consistency and reduce Gaussian overflow across
boundary (splitting plane), respectively. Firstly, we impose conservations
on the zero-, first- and second-order moments of the weighted Gaussian
distribution to guarantee visual consistency. Secondly, we reduce the bound-
ary overflow with a special constraint on the aforementioned conservations.
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With these conservations and constraints, we derive a closed-form solution
for the 3DGS splitting problem. This yields an easy-to-implement, plug-
and-play, efficient and fundamental tool, benefiting various downstream
applications of 3DGS.

CCS Concepts: • Computing methodologies → Point-based models; •
Mathematics of computing → Probabilistic algorithms.

Additional Key Words and Phrases: 3D reconstruction, Gaussian splatting,
neural rendering, 3D representation, editing
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1 introduction
A suitable 3D representation is crucial in artistic model design, spe-
cial effects production, and VR/AR applications. While some implicit
3D representations, such as neural radiance fields (NeRFs) [Milden-
hall et al. 2020], have achieved excellent results in rendering quality,
they are difficult to edit and slow to render. Consequently, most
designers and modeling artists prefer explicit representations, par-
ticularly point clouds and meshes, which can be quickly rendered
and easily edited. 3D Gaussian splatting (3DGS) [Kerbl et al. 2023] is
a novel 3D explicit representation that utilizes a set of 3D positions,
opacity, anisotropic covariance, and spherical harmonic (SH) coeffi-
cients to represent a 3D scene. 3DGS can be rapidly rendered using
a differentiable rasterization. This representation has been widely
used for learning-based 3D editing [Chen et al. 2023a; Fang et al.
2023; Lan et al. 2023] and 3D geometry generation [Chung et al.
2023; Tang et al. 2024b]. Previous works mostly concentrate on the
novel view synthesis functionality of 3DGS. However, the real-time,
learning-free operations on the 3DGS should be further researched
to make it more applicable, flexible and compatible for industrial
production, such as part/object extraction, engraving, texturing,
subdivision, conversion, etc.
The above operations in industrial production usually involve

splitting the 3DGS. For example, to engrave a 3DGS, one should
split the 3DGS along the cutting curve and discard the undesired
Gaussians. Note that two goals are pursued in splitting a 3DGS: i)
the overall visual consistency should be kept and ii) the Gaussian
overflow across the boundary (splitting plane) should be avoided.
However, the straightforward splitting, which simply keeps or re-
jects the Gaussians intersected by the splitting plane, would suf-
fer from bugles, blurs and holes in the results as shown in Fig. 1.
Even worse, a sequence of such editing operations can lead to the
collapse of the entire 3DGS model. Although Gaussian mixture
model (GMM) [Moon 1996] can approximate the splitting process
of a Gaussian distribution. It is inefficient due to non-parallel for
multiple fitted curves and iterative optimization nature, making it
inapplicable for real-time applications, especially for 3DGS, which
contains tens of thousands of Gaussian kernels.
Inspired by Hall et al. [2002], who provided an algorithm to add

and subtract eigenspaces using eigenvalue decomposition and sin-
gular value decomposition under rank conservation, we present

EVSplitting, an efficient and effective splitting algorithm for 3DGS
as shown in Fig. 2 by exploring novel conservations. We formu-
late the 3DGS splitting as two minimization problems, aiming at
ensuring the visual consistency during splitting and avoiding split
Gaussians overflowing across the boundary, respectively. We solve
the above two minimization problems by conducting the following
constraints: 1) conserve the zero-, first-, and second-order moments
of the weighted Gaussian distribution; 2) derive special variants
of the moments conversations adhering to the minimization of
Gaussian overflow; 3) combine the variants with some inherent
characteristics of Gaussian distribution to ensure the uniqueness of
the solution. This process allows us to model the Gaussian splitting
via a set of integral tensor equations, which have an efficient and
visually consistent closed-form solution.

We further demonstrate the benefits of EVSplitting across various
applications. For Gaussian-splatting-based explicit editing andmany
other applications, our method produces clearer boundaries and
consistent visual appearance. For point cloud extraction from the
3DGS model, our method enables flat, texture-less regions to be
represented by more homogeneous Gaussians, leading to a denser
and more uniform point cloud.

In summary, this paper makes the following contributions:

• We formulate Gaussian splitting as minimization problems
with energy functions for ensuring visual consistency and
avoiding Gaussian overflow.

• We derive a closed-form solution with variants of the energy
functions and convert it to an efficient split algorithm, dubbed
as EVSplitting, which is applicable to any 3DGS.

• We demonstrate how our EVSplitting benefits various appli-
cations, including part/object extraction, engraving, texturing
and point cloud extraction.

2 Related work

2.1 3D Representations
A 3D representation is a data structure for handling and storing 3D
geometry. There are many different kinds of 3D representations,
each with its own advantages and disadvantages. These represen-
tations can be divided into explicit, implicit and hybrid categories.
Implicit representations include NeRFs [Barron et al. 2022; Milden-
hall et al. 2020; Müller et al. 2022],NeuS [Wang et al. 2021], iso-
surfaces [Zhang et al. 2023],multiscale hash encoding[Deng et al.
2024], etc., supporting high-quality novel view synthesis and 3D
content generation from text [Poole et al. 2023; Wang et al. 2023b]
or images [Sun et al. 2024] due to its flexible geometry. However,
they are very difficult to be edited because of their implicit nature.
Explicit representations such as point cloud and mesh, along with
well-developed editing and processing tools [Himmelsbach et al.
2010; Sorkine and Alexa 2007], have been widely used in industrial
production. Hybrid representations like [Guo et al. 2023; Shen et al.
2021; Xu et al. 2022] try to merge the explicit representation with
implicit fields, for faster rendering and flexibility of geometry; they
are still inconvenient to be edited, as some attributes are represented
with implicit fields.
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2.2 3DGS and Its Applications
3DGS [Kerbl et al. 2023] proposes a new explicit 3D representation,
which is convenient to obtain from images with machine learn-
ing techniques. Thanks to the explicit nature, 3DGS supports real-
time, high-quality image rendering, and draws widespread interest
in many areas, such as Simultaneous Localization And Mapping
(SLAM), dynamic scene rendering, and Artificial Intelligence Gener-
ated Content (AIGC). SLAM researchers [Huang et al. 2023; Matsuki
et al. 2023] employ 3DGS as landmarks and design special tracking
and Gaussian optimization strategy, showing a huge improvement
in view synthesis. 3DGS is also extended as 4DGS to model the
dynamic scene [Wu et al. 2023; Yang et al. 2024]. AIGC researchers
explore the potential of 3DGS-based generation [Chen et al. 2023b]
by distilling image diffusion prior [Ho et al. 2020] or large reconstruc-
tion model [Tang et al. 2024a]. Though 3DGS can be edited by the
guidance of diffusion models[Chen et al. 2023a; Fang et al. 2023; Lan
et al. 2023], but there are no learning-free and real-time explicit edit-
ing operations on 3DGS as far as we know. With 3DGS, the model’s
texture and geometry are strongly related. When engraving shapes
or modifying the texture, we need to split the Gaussians adhering
to the boundaries of shapes or texture. We provide a new splitting
method for 3DGS to generate more visually consistent appearance
and clearer boundaries during explicit geometry processing, thus
benefiting such applications.

3 Efficient and Visually Consistent 3DGS Splitting
Our goal is to split the original 3DGS efficiently with high visual
consistency and low Gaussian overflow across the splitting plane.
We first briefly overview the 3DGS representation in Sec. 3.1. Then
we define the splitting problem in Sec. 3.2. We introduce some
conservation rules used in the splitting process and explain their
physical meaning in Sec. 3.3. A closed-form solution to the splitting
problem is derived in Sec. 3.4, and we consider implementation
details in Sec. 3.5.

3.1 3D Gaussian Splatting Representation
A 3DGS model represents a 3D target using a set of 3D Gaussians,
each characterized by its 3D position 𝜇, opacity 𝛼 , covariance Σ, and
spherical harmonic (SH) coefficients. A 3D point with a coordinate
x covered by a 3D Gaussian 𝑘 obtains its opacity 𝛼 (x) from that
Gaussian as below (unless specifically stated, the opacity 𝛼 is not
normalized in this paper for brevity of derivation—in the actual
implementation):

𝛼 (x) = 𝛼𝑘 pdf𝑘 (x) (1)

pdf𝑘 (x) =
1

(2𝜋)3/2
√︁
|Σ𝑘 |

exp(−1
2
(x − 𝜇𝑘 )𝑇 Σ−1𝑘 (x − 𝜇𝑘 )) (2)

where pdfk denotes the probability density function of Gaussian 𝑘 .
Due to the positive definiteness of covariance Σ, it can be decom-
posed as follows to save storage space:

Σ = 𝑅𝑆𝑆𝑇𝑅𝑇 (3)

where 𝑅 is a rotation matrix and 𝑆 is a diagonal matrix of scalings
in the principal directions. 𝑅 can be stored as a quaternion 𝑞. All of

Original Gaussian  Split Process Split Gaussians

Spliting 
Plane

Fig. 2. Gaussian splitting problem (2D example) aims to minimize the Gauss-
ian overflow while maximizing the visual consistency. The cross-boundary
part (in red circles in the second column) indicates the Gaussian overflow.
Visual consistency means the visual similarity between the initial Gaussian
(the first column) and the split Gaussians (the third column).

these can be converted to respective matrices and combined, making
sure to normalize 𝑞 to obtain a valid unit quaternion.

The rasterization process projects Gaussians into the image plane
and utilizes the alpha blending strategy to get the color. In alpha
blending, the final color is a weighted average of projected Gaus-
sians, and the weight is computed by 𝑤𝑖 = (𝛼𝑔𝑖Π𝑖−1

𝑗=1 (1 − 𝛼𝑔𝑗 ))
where 𝛼𝑔𝑖 means the opacity of the 𝑖-th nearest Gaussian in the
view direction.

3.2 Problem Definition for Gaussian Splitting
Since the scale matrix 𝑆 is square and diagonal, the eigenvalue
matrix is also square and diagonal, and can be represented by:

Λ = 𝑆𝑆𝑇 (4)

where Λ is a diagonal matrix whose elements are the squared scales
of the principal components. Each column vector of 𝑅 represents
the direction vector of a principal component. Since the covariance
matrix is a symmetric positive matrix, the three principal component
direction vectors are mutually perpendicular unit vectors.
The explicit operations, like engraving, texturing, etc., on 3DGS

should be efficient for interaction, so the split operation illustrated
in Fig. 2 should not rely on further training. Moreover, if visual
consistency cannot be guaranteed and heavy Gaussian overflow
across the splitting plane occurs in such processing, artifacts will
accumulate during the editing and extraction steps.

Preventing overflow involves ensuring that the principal compo-
nent does not become too long and exceeds the splitting boundary.
Therefore, our problem is how to split the principal components
of a 3D Gaussian to fit the boundaries while maintaining its 3D
visual consistency. Specifically, we simplify this problem to splitting
Gaussians with a plane, as any complex curve can be approximately
represented by splitting with many planes. Therefore, the problem
above is reduced to how to split a 3D Gaussian using a plane while
retaining 3D visual consistency. A plane can be expressed as:

𝑃 (n, 𝑑) = {x ∈ R3 |𝑃 (n, 𝑑) (x) ≜ n · x + 𝑑 = 0} (5)

where n denotes the unit normal of the plane, 𝑑 is its distance from
the origin and 𝑃 denotes directed distance. We then formally define

SA Conference Papers ’24, December 03–06, 2024, Tokyo, Japan.
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the splitting at the split plane 𝑃 of a Gaussian (𝛼0, 𝜇0, Σ0) into two
new (left 𝑙 and right 𝑟 ) Gaussians (𝛼𝑙 , 𝜇𝑙 , Σ𝑙 ) and (𝛼𝑟 , 𝜇𝑟 , Σ𝑟 ) as:

𝛼𝑙 , 𝛼𝑟 , 𝜇𝑙 , 𝜇𝑟 , Σ𝑙 , Σ𝑟 = 𝐹 (𝛼0, 𝜇0, Σ0, 𝑃 (n, 𝑑)) (6)

Note that in actual implementation, 𝛼0 is the denormalized opacity
of the original Gaussian, and 𝛼𝑙 and 𝛼𝑟 should be normalized to the
final split Gaussians.

As illustrated in Fig. 2, this process aims to minimize the intersec-
tion between the two new Gaussians (i.e., Gaussian overflow) while
maximizing the similarity between each new Gaussian and its own
part of the original (i.e., visual consistency). The visual consistency
performs as the unchanged rendering results. Consider that the
alpha blending process in 3DGS is an approximately of real vol-
ume rendering, the unchanged 𝛼 (x) in Eq. 1 results in unchanged
density in volume rendering. Ideally, one would require 𝛼 (x) to
remain unchanged for all position x. So, the minimization energy is
as follows:

argmin
𝛼𝑘 ,Σ𝑘 ,𝜇𝑘

∫
𝑅3\V𝑘

𝛼𝑘pdf𝑘 (v)𝑑𝑉 , 𝑘 ∈ {𝑙, 𝑟 } (7)

argmin
𝛼𝑘 ,Σ𝑘 ,𝜇𝑘

����∫
V𝑘

𝛼𝑘pdf𝑘 (v)𝑑𝑉 −
∫
V𝑘

𝛼0pdf0 (v)𝑑𝑉
���� , 𝑘 ∈ {𝑙, 𝑟 } (8)

where v is the vector corresponding to spatial integrating unit 𝑉 ,
the pdf comes from Eq. 2 andV𝑘 is the half-space on the appropriate
side of the plane:

V𝑙 = {x ∈ R3 |𝑃 (n, 𝑑) (x) < 0} (9)

V𝑟 = {x ∈ R3 |𝑃 (n, 𝑑) (x) ≥ 0} (10)

The Eqs.7 aims tominimize the volume of 3DGaussians exceeding
the boundary while the Eq.8 aims to minimize the volume changes
in the reserve part. Because 3D Gaussians have a fixed shape, it
is impossible to minimize both Eq. 7 and 8 simultaneously. Thus,
we should consider them together when evaluating 3D visual con-
sistency and extent beyond the boundary. Therefore, we define
interval error 𝐸𝑖 and external excess 𝐸𝑒 according to Eqs. 7 and 8,
respectively.

𝐸𝑒 =
1
|G|

∑︁
𝑔∈G

∑︁
𝑘∈{𝑙,𝑟 }

∫
𝑅3\V𝑘

𝛼𝑘pdf𝑘 (v)𝑑𝑉 (11)

𝐸𝑖 =
1
|G|

∑︁
𝑔∈G

∑︁
𝑘∈{𝑙,𝑟 }

����∫
V𝑘

𝛼𝑘pdf𝑘 (v)𝑑𝑉 −
∫
V𝑘

𝛼𝑔pdf𝑔 (v)𝑑𝑉
���� (12)

where G is the entire Gaussian model to be split and V𝑘 is the
half-space where the split 3D Gaussian 𝑘 is located.
In summary, reducing 𝐸𝑖 leads to new Gaussians with visual

effects more similar to those of the original Gaussian while reducing
𝐸𝑒 results in new Gaussians that better fit the border, with fewer
blurs and needle-like bulges. Both of the 𝐸𝑖 and 𝐸𝑒 affect the split
results.

3.3 Conservation and Constraints
Ensuring visual consistency is more important than reducing exceed-
ing boundaries in preventing model structure collapse. Therefore,

we should conserve the opacity distribution 𝛼 (𝑥) in Eq. 2 as much
as possible during splitting as the following three constraints. To
ensure that the new Gaussian looks the same as the original one
from any perspective to achieve a smaller 𝐸𝑖 in Eq. 12, the cumula-
tive of local opacity 𝛼 (𝑥) should be conserved, i.e., the zero-order
moment:

∫
R3

𝛼0pdf0 (v)𝑑𝑉 =

∫
R3

𝛼𝑙pdf𝑙 (v)𝑑𝑉 +
∫
R3

𝛼𝑟pdf𝑟 (v)𝑑𝑉 (13)

Similarly, to ensure that the center of the local opacity distribution
remains visually unchanged for both the original Gaussian and the
split Gaussians, we should conserve the first-order moment:

∫
R3

𝛼0vpdf0 (v)𝑑𝑉 =

∫
R3

𝛼𝑙vpdf𝑙 (v)𝑑𝑉 +
∫
R3

𝛼𝑟vpdf𝑟 (v)𝑑𝑉 (14)

For each point, to ensure that the scale of the local opacity distri-
bution remains as consistent as possible, we aim to keep the mean of
the outer product matrix unchanged. This requires the conservation
of the second-order moment:∫
R3

𝛼0vv𝑇 pdf0 (v)𝑑𝑉 =

∫
R3

𝛼𝑙vv𝑇 pdf𝑙 (v)𝑑𝑉 +
∫
R3

𝛼𝑟vv𝑇 pdf𝑟 (v)𝑑𝑉
(15)

Via these conserved quantities, we can reduce the splitting prob-
lem to an optimization problem constrained by this integral tensor
equation set (ITEs).

3.4 Closed Form Solutions for Gaussian Splitting
The Eqs. (13-15) have more than 11 variables(𝛼𝑙 , 𝛼𝑟 , 𝜇l, 𝜇r,Σl,Σr),
but there are only 11 equations in total.This makes it an underdeter-
mined system with infinitely many solutions. We still need to find
a solution that minimizes 𝐸𝑒 in Eq. 11 under these constraints. A
special solution exists by additionally requiring the two Gaussians
to be separated in space (giving a local minimal 𝐸𝑒 ), while ensuring
visual consistency of the left and right sides separately (giving a low
𝐸𝑖 as explained in Sec. 3.3):

∫
V𝑘

𝛼0𝜔 (v)pdf0 (v)𝑑𝑉 =

∫
R3

𝛼𝑘𝜔 (v)pdf𝑘 (v)𝑑𝑉 , (16)

𝑤ℎ𝑒𝑟𝑒 𝑘 ∈ {𝑙, 𝑟 }, 𝜔 (v) ∈ {1, v, vv𝑇 } (17)

These equations split the Eqs. (13-15) to maintain characteristics
conservation on both sides, respectively. Any 3D Gaussian 𝑖 satisfies
the following equation concerning its second central moment:

Σ𝑖 + 𝜇𝑖𝜇
𝑇
𝑖 =

∫
R3

vv𝑇 pdf𝑖 (v)𝑑𝑉 (18)
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Fig. 3. A 3DGS with only one Gaussian and rasterization example. The GS model uses alpha blending[Porter and Duff 1984] strategy when rendering views.
The result is represented by projection, similar to the rasterization process of 3DGS[Kerbl et al. 2023]. We display the 𝑥𝑦(top) and 𝑥𝑧(bottom) image plane.
The first column shows the alpha blending results of the original single Gaussian, the second column shows the split results and the third column shows the
alpha blending results of the split Gaussians. The last two columns display the maximum value slices of the alpha blending results from the first and the third
columns in different axes. Notably, there is no obvious difference between the alpha blending results of the original and the split Gaussians.

Combining this with Eqs. (16,17), we can derive the closed-form
solutions for the split equations below:

𝛼𝑘 = 𝛼0𝐶𝑘 , 𝑘 ∈ {𝑙, 𝑟 } (19)

𝜇𝑙 = 𝜇0 −
L0𝐷
𝜏𝐶𝑙

(20)

𝜇𝑟 = 𝜇0 +
L0𝐷
𝜏𝐶𝑟

(21)

Σ𝑙 = Σ0 +
L0L𝑇0
𝜏2

(𝑑0𝐷
𝜏𝐶𝑙

− 𝐷2

𝐶2
𝑙

) (22)

Σ𝑟 = Σ0 −
L0L𝑇0
𝜏2

(𝑑0𝐷
𝜏𝐶𝑟

+ 𝐷2

𝐶2
𝑟

) (23)

where:

𝐶𝑙 =
1
2
(1 − erf( 𝑑0√

2𝜏
)) (24)

𝐶𝑟 =
1
2
(1 + erf( 𝑑0√

2𝜏
)) (25)

𝐷 =
1

√
2𝜋

exp(−
𝑑20
2𝜏2

) (26)

L0 = Σ0n (27)

𝜏 =
√︁

n𝑇 Σ0n (28)

𝑑0 = 𝑃 (n, 𝑑) (𝜇0) (29)

In the above, erf is the error function from probability theory, and 𝑑0
is the distance from the Gaussian position to the split plane. Detailed
derivations are provided in the Supplementary Material. For a 3DGS

Table 1. Comparison of the effectiveness of reducing inhomogeneity during
training between EVSPlitting and intuitively restricted to isotropy.

Reducing Strategy 𝑃𝑆𝑁𝑅 ↓ 𝑆𝑆𝐼𝑀 ↓ 𝐿𝑃𝐼𝑃𝑆 ↑
EVSplitting 36.75 0.98 0.0238

Restricted to isotropy 34.72 0.97 0.0398

model, the color is computed based on the view direction (from the
camera position to the Gaussian position). The distance between
the new Gaussians and the original Gaussian is less than the scale
of the original Gaussian. In practical applications, the scale of the
Gaussian is much smaller than the distance between the camera and
the Gaussian, so the split operation has almost no effect on the view
direction. Therefore, we just copy the SH coefficient in the two new
Gaussians, which simplifies the calculation.

3.5 Implementation Details for Splitting
Due to floating point precision issues and the properties of Gaussian
distributions, errors will accumulate as splitting continues (e.g. when
multiple edits are performed). We use the following approach to
compensate for these problems. Firstly, if the split plane 𝑃 (n, 𝑑) is
far from the position of the original Gaussian, the split would be
unnecessary, because it creates a Gaussian that is very similar to the
original one and another Gaussian that is almost invisible due to its
very small 𝛼 . Furthermore, if splitting is applied to every Gaussian,
there will be a huge amount of needless calculation. Inspired by
the Gaussian filter[Kerbl et al. 2023]’s influence range threshold, i.e,
3 ×max(Tri(S)) (where Tri denotes the main diagonal vector), we
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choose a threshold 𝜂 for |𝑑0 |:
𝜂 = 3 ×max((𝑅 · n) ⊙ Tri(𝑆)) (30)

If |𝑑0 | < 𝜂, we split the Gaussian with the plane; otherwise, we leave
the original Gaussian unchanged.

Secondly, the weight denominators 𝐶𝑙 and 𝐶𝑟 may be very small,
compromising floating point accuracy. Thus we add an offset 𝜖 =

10−20 to 𝐶𝑙 ,𝐶𝑟 and 𝐷 :

𝐶𝑙 =
1
2
(1 − erf( 𝑑0√

2𝜏
) + 𝜖) (31)

𝐶𝑟 =
1
2
(1 + erf( 𝑑0√

2𝜏
) + 𝜖) (32)

𝐷 =
1

√
2𝜋

(exp(−
𝑑20
2𝜏2

) + 𝜖) (33)

Thirdly, floating point precision issues may cause the eigenvalue
matrix to deviate slightly from being a real positive definite matrix.
We correct any such issues in our eigenvalue matrix Λ𝑖 by replacing
it with Λ𝑡𝑖 , where:

Λ𝑡𝑖 = ReLU(Λ𝑖 ), 𝑖 ∈ G (34)

Fourthly, in computer graphics, a right-handed coordinate system
is typically used. A rotation matrix 𝑅 defining a left-handed space
cannot be transformed into a right-handed coordinate system by
a normalized quaternion (the improper rotation problem). Since a
3D Gaussian is completely centrally symmetric, we can turn the
left-handed rotation matrix 𝑅𝑖 into a right-handed rotation matrix
𝑅𝑡𝑖 by computing:

𝑅𝑡𝑖 = 𝑅𝑖 det(𝑅𝑖 ), 𝑖 ∈ G (35)

4 Experiments
To demonstrate the effectiveness of our splitting algorithm, we
apply it to explicit GS model editing, part/object extraction, engrav-
ing, texture mapping and point cloud uniformization, and compare
EVSplitting to other solutions.

4.1 Basic Split and Its Applications
To illustrate the efficiency and accuracy of EVSplitting, we per-
formed the following experiments.

Firstly, we demonstrate the core idea of EVSplitting with a simple
3DGS example using a single 3D Gaussian. Fig. 3 shows the process
of splitting this original kernel into two along the xy plane. We
provide alpha blending results from views parallel and perpendicular
to the split plane, rasterizing them to the respective view planes.
The curves before and after the split are similar, demonstrating that
our split algorithm maintains the visual appearance.
Secondly, we apply our splitting algorithm to remove inhomo-

geneous Gaussians (here, the threshold ratio of the largest to the
smallest scale exceeds 5) in the original 3DGS model from the NeRF
synthetic dataset [Mildenhall et al. 2020], as shown in Fig. 4. We
achieve an almost identical visual appearance after the split. To illus-
trate that our method is better than intuitively restricting Gaussians
to isotropy, we test our EVSplitting and the 3D isotropic Gauss-
ian Splatting in NeRF Synthetic dataset and report the quantitative
results in Table 1.

Table 2. Plane splitting quality measured by 𝐸𝑖 and 𝐸𝑒 on the Nerf syn-
thetic[Mildenhall et al. 2020] dataset

Split Strategy 𝐸𝑖 ↓ 𝐸𝑒 ↓
Naive solution 66.6819 0.01056
Move solution 0.0000 2.3823
Remove solution 15.2541 0.0000

EVSplitting 2.3819 0.0003

Table 3. Plane splitting quality measured by 𝐸𝑖 and 𝐸𝑒 on the Mip-NeRF
360[Barron et al. 2022] dataset

Split Strategy 𝐸𝑖 ↓ 𝐸𝑒 ↓
Naive solution 107.9933 1.1193
Move solution 0.0000 12.3163
Remove solution 84.4767 0.0000

EVSplitting 11.9186 0.3981

Thirdly, a Gaussian mixture model (GMM) [Moon 1996] can
be also used to split Gaussians. We use EVSplitting and GGMMs
(GMMs with GPU acceleration) to fit the same object on an NVIDIA
GeForce RTX 4090 GPU. For a 3-dimensional Gaussian split task
with 100 random Gaussians, EVSplitting takes only 0.006 s while
using GGMMs(steps = 20) takes about 1.399s, respectively. For EVS-
plitting , the average 𝐸𝑖 and 𝐸𝑒 are 0.0043 and 0.0095 while GGMMs’s
errors are 0.0038 and 0.0995. Furthermore, the GMMs algorithm has
poor parallelism and is difficult to use in a 3DGS model with tens of
thousands of points. We also trained an MLP (5 layers * 256 dims) to
split the same scene. The training time is about 2h, and the inference
time is about 0.217s. Quantitatively, the average 𝐸𝑖 and 𝐸𝑒 of this
MLP are 0.0105 and 0.1200, respectively.
Fourthly, to quantitatively evaluate EVSplitting, we introduce

“plane split”, a basic operation that splits a 3DGS model with a 3D
plane 𝑃 (n, 𝑑) and move them apart. Since EVSplitting yields a GS
model after the split, it can be applied several times to achieve
better results. We evaluate the average performance on the entire
NeRF synthetic dataset[Mildenhall et al. 2020], by splitting each
3DGS model with a randomly generated plane. We also compare
EVSplitting to three other baselines:(1) the Naive solution, which
intuitively copies, shrinks and then moves the Gaussians to the side
their poistions are on; (2) the Move solution, which aims at the
global minimum of 𝐸𝑖 , directly moving Gaussians to the side their
positions are on, and (3) the Remove solution, which aims at the
global minimum of 𝐸 𝑗 , further removing any Gaussians intersect-
ing the split plane. Quantitative results are presented in Table (2,3)
and some qualitative results are presented in the three examples of
Fig. 5. Additional results can be found in Fig. 9. EVSplitting achieves
a small value for both indicators and ensures a good compromise
between voids, blurring and needles. Note that it is impossible for
both metrics to be smaller than Move and Remove solution simulta-
neously, due to the unimodal and symmetric shape of the Gaussian
distribution. We also test the total execution and moving time of
different solutions for plane splitting on an NVIDIA GeForce RTX
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Original 3DGS
PSNR:35.12

Orginal 3DGS
PSNR:40.70

Orginal 3DGS
PSNR:28.75

Processed by EVSplitting
PSNR:35.13

Processed by EVSplitting
PSNR:39.96

Processed by EVSplitting
PSNR:28.71

Fig. 4. A 3DGS model before and after inhomogeneity removal using EVSplitting . There is almost no visual difference between them.

Move solution EVSplitting
filter solution EVSplitting

Remove solution

Fig. 5. In the above three examples, we split a chair into two parts along a
randomly chosen plane and move them apart vertically to the split plane.
EVSplitting produces sharp and smooth boundaries while maintaining visual
consistency, compared with other solutions.

4090 GPU. The EVSplittings solution takes approximately 0.52s,
compared to the Naive solution’s 0.48s, the Move solution’s 0.37s,
and the Remove solution’s 0.43s.
Plane splitting serves as a basic operation in many applications.

A straightforward extension is to generate a slice image for 3D
reconstruction [Wang et al. 2023a]. As shown in Figs. 5 and 10, our
plane split can reduce the effects of inhomogeneous Gaussians in
the model and obtain smoother split planes and curves, which is
the requirement of slice image.
Another common tool is to extract or remove some specific

parts/components from an existing model for purposes such as re-
assembly. Given a 3DGS model, we can first use point cloud segmen-
tation methods [Guo et al. 2021] to segment the parts/components
based on the Gaussian coordinates. Then we find the closest point
pair for neighboring parts to determine the split planes. Finally, we
can achieve a smooth boundary and improved segmentation effects
by applying our split operation using these splitting pairs. Some
results are shown in Figs. (5, 11).
We also apply our algorithm on a real-world dataset, i.e., mipN-

eRF360 [Barron et al. 2022], to segment out the foreground from the
background using a boundingbox hint. We measure the decompo-
sition accuracy using 3D-Intersection-over-Union (3DIoU, higher
is better) of the voxels occupied by the decomposed object and the
boundingbox. We compare our EVSplitting with the Filter solution
that simply retains Gaussians positioned within the boundingbox.
Besides, we also render 2D masks of the decomposed object and test
the 2D image IoU results with SAM [Kirillov et al. 2023] masks of
the object. Results are shown in Table 4. Although the inaccuracy

Table 4. The 3D and 2D IoU of the segmented foreground objects in mip-
nerf 360 [Barron et al. 2022] scenes.

Scene vase in garden lego in kitchen
Metric 3DIoU↑ 2DIoU↑ 3DIoU↑ 2DIoU↑

EVSplitting 94.22% 62.35% 85.17% 43.56%
Filter solution 90.16% 59.33% 78.40% 39.46%

Original with a 3D box EVSplitting Filter solution

Fig. 6. Given a 3D foreground boundingbox hint, we can decompose the
foreground from the backgroundwith our EVSplitting, producing foreground
objects with fewer artifacts compared with the Filter solution.

of SAM limits the upperbound, the significant improvement in IoU
for the entire object indicates a clear enhancement in boundary
accuracy. The 3D/2D evaluation results demonstrate our superiority
over the baseline method, proving the potential of EVSplitting for
real-world applications.

4.2 Engraving and Texture Mapping
Engraving and texturing a 3DGS model are also common tools for
geometric modeling, both requiring the indication of the regions to
be removed or colored. This can be accomplished by using polyg-
onal or curved shapes. For any polygon, we can find the outward
normals of its faces. Subproblems include determining whether a
line segment and a Gaussian intersect. For a line segment, edge pro-
jection can be applied to determine whether an intersection exists.
With a Gaussian position 𝜇0 and a line segment {A,B},we define:

𝐼 = ((A − 𝜇0) · (A − B)) ((B − 𝜇0) · (A − B)) (36)

If 𝐼 ≥ 0 and the intersection threshold 𝜂 is guaranteed, the line
segment and the Gaussian intersecisFor a more complex polyhedral
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Move solution EVSplitting
Filter solution EVSplitting

Remove solution

Fig. 7. The examples (top) show the removal of a triangular part from the
chair and the examples(bottom) demonstrate mapping a "SIG" curve to a
keyboard. EVSplitting produces smooth boundaries in various scenarios
while maintaining visual consistency compared to the Filter solution.

Table 5. The 𝐸𝑖 and 𝐸𝑒 after engraving the chair with different strategies
given different shapes.

Engraving Shapes Engraving Strategy 𝐸𝑖 ↓ 𝐸𝑒 ↓
polygon (triangle) Filter solution 0.0000 0.0668
polygon (triangle) EVSplitting 0.3610 0.0005

curve (circle) Filter solution 0.0000 0.0710
curve (circle) EVSplitting 0.3027 0.0015

bounding box, we can use a combination of the above methods or a
ray-casting algorithm to find the Gaussians in the bounding box.
For a 3D closed curved surface 𝐵(𝑥,𝑦, 𝑧) = 0, we can compute

the tangent normal n of the closest position on the curve to the
Gaussian position as n = ∇𝐵

| |∇𝐵 | | . n is an outward normal from the
inside of the curve according to the definition of the 3D closed
curve. With this normal, we can easily determine the influenced
Gaussians. We engrave the chair object from the NeRF synthetic
dataset [Mildenhall et al. 2020] with different types of shapes. We
split the intersected Gaussians with our split algorithm to obtain
clearer boundaries. We also compare our splitting algorithm to the
“Filter solution”, which directly removes or changes the Gaussians’
color in the polygon or curve. We report the quantitative results
in Table 5, and show the visual comparisons in Figs. 7 and 12. We
implemented a pipeline to engrave or texture the 3DGS models
from the SVG vector images, which are a series of Bezier curves,
and can be obtained from PNG or JPEG images using the Potrace
algorithm [Selinger 2003]. More engraving or texturing results using
SVG images can be found in Figs. 12 and 13.

4.3 Point Cloud Uniformization
A 3DGS model can be regarded as providing a kind of point cloud,
where each point represents a different shape, making the point
cloud extracted from 3DGS models non-uniform, with gaps in large

 3D GS locations EVSplitting

Fig. 8. Our splitting algorithm helps to extract more uniform and denser
point clouds from a well-trained 3DGS model for the chair object.

flat untextured regions, leading to severe problems for downstream
tasks like normal extraction, point cloud segmentation, etc.

Because EVSplitting can split a big Gaussian to two smaller one,
it can be used to increase the uniformity of extracted point clouds.
Assume that the average of each Gaussian’s maximum principal
direction scale is 𝑅𝑚 . We can define the degree of inhomogeneity
between the 𝑖-th largest and the 𝑗-th largest eigenvalue (𝑖 < 𝑗 ) as:

𝛾𝑖 𝑗 =
Tri[𝑖]

Tri[ 𝑗] + 𝑅𝑚
, (𝑖, 𝑗) ∈ {(0, 1), (1, 2), (0, 2)} (37)

If any 𝛾𝑖 𝑗 is greater than the inhomogeneity threshold 𝜂𝛾 = 2, the
Gaussian should be split at principal component 𝑖 . Splitting at the
center of a Gaussian will make the positions of new Gaussians
too close. To ensure the new Gaussians’ positions are far apart,
we select the splitting parameter 𝑑0 as 2Tri[𝑖] to ensure a proper
interval between new Gaussians. An experimental result is shown in
Fig. 8 and more results are shown in Fig. 14. EVSplitting produces a
more uniform and denser point cloud than the original 3DGS model
and has very few holes.

5 Conclusions and Future Work
In this paper, wemodel the problem of how to split an𝑁 -dimensional
Gaussian into two independent𝑁 -dimensional Gaussians and present
a closed-form solution for this problem. This enables our splitting
algorithm to be readily used with any 3DGSmodel processing. It can
be used both to produce to more uniform distributed Gaussians, and
to avoid blurring and needle-like artifacts when cutting a Gaussian
model by a plane (and indirectly, trimming it in any other way).

In the future, we hope to apply our splitting algorithm not only to
other geometric applications of Gaussian splattingmodels but also to
various models that use Gaussian distribution such as VAE [Kingma
and Welling 2014] and diffusion [Ho et al. 2020; Song et al. 2021].
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Remove solution EVSplitting onceMove solution EVSplitting twice

Fig. 9. Plane split results, showing differences between splitting algorithms more clearly. The ‘Remove’ solution leads to holes, while the ‘Move’ solution leads
to a more uneven boundary. EVSplitting produces a clear boundary between the two parts. Further results are shown in the supplementary video.

Slice ficus Slice ficus Slice chair Slice chair

Fig. 10. Slice image on the NeRF synthetic dataset [Mildenhall et al. 2020].

Original Gaussians Extracted point cloud Point cloud segmentation EVSplitting segmentation

Fig. 11. We applied point cloud segmentation on 3DGS and achieved smooth segmentation boundaries. More results are shown in the supplementary video.
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Fig. 12. Visual comparisons between EVSplitting(top) and the “Filter solution” (bottom) on engraving/texturing the chair and keyboard 3DGS models with
SVG images. EVSplitting yields clearer boundaries and textures.

Fig. 13. More results for texturing 3DGS model with SVG images.

remove solution move solution ours once ours twice

origin image filter solution ours

vanilla training ours algorithm+training

- =

- =

- =

Original 3DGS view1 EVSplitting view1 Original 3DGS view2 EVSplitting view2

Fig. 14. Example showing that EVSplitting can help extract a more uniform point cloud.
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