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Abstract: The need to enrich the semantic completeness of OpenStreetMap (OSM) data is crucial for
its effective use in geographic information systems and urban studies. Addressing this challenge,
our research introduces a novel hierarchical feature augmentation approach to developing machine
learning classifiers by the features retrieved from various levels of road network connectivity. This
method systematically augments the feature space by incorporating measure values of connected
road features, thereby integrating extensive contextual information from the network hierarchy. In
our evaluation, conducted across diverse urban landscapes in six cities in Italy and Türkiye, we tested
two geometry-, six centrality-, and eight semantic-based features to predict road functional classes
stored as a highway = * key in OSM. The findings indicate a marginal impact of geometric features
and city identifiers on classification performance. Utilizing centrality attributes alongside semantic
features in a direct, non-hierarchical manner results in an F1 score of 80%. However, integrating these
features in our network-based hierarchical feature augmentation process remarkably increases the F1
score up to 85%. The success of our approach underlines the importance of network-based feature
engineering in capturing the complex dependencies of geographic data, considering a more accurate
and contextually aware OSM classification framework.

Keywords: VGI; machine learning; feature engineering; centrality measure; road network; OpenStreetMap

1. Introduction

Volunteer Geographic Information (VGI) refers to community-driven efforts that gen-
erate freely accessible geographic data. Among the various VGI platforms, OpenStreetMap
(OSM) stands out as a leading initiative, enabling users worldwide to contribute and edit
map data. However, because OSM relies heavily on volunteer contributions, it can some-
times suffer from inconsistencies in data quality, coverage, and semantic annotations [1,2].
These issues are particularly noticeable in regions with fewer active contributors. To ensure
a consistent level of data quality in OSM, particularly in such regions, it is important
to inform volunteers about the minimum requirements for their geometric or semantic
contributions. A tool based on an artificial intelligence (AI) framework could provide
help-assistant-like suggestions and guidance to users as they contribute raw or current
data, helping them to assign appropriate classifications as semantic key values and improve
the completeness and also the accuracy of their contributions [3,4]. Developing such AI
tools requires extensive research on predictive models validated with geographic data
from various regions representing distant topographic characteristics (i.e., both natural
and constructed) of urban and rural areas. The most critical parameter for these prediction
models is the quality of and variation in features derived from the data. In this context,
the only available data are the existing OSM elements, tags, and the newly added raw
road geometry from the user. Therefore, the feature extraction process must be deeply
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investigated in an intrinsic analysis of OSM data structures, enabling the development of
robust AI tools that can effectively support users.

Road lines are the main contributions of OSM volunteers, which are parallel to the OSM
semantic classes given at OSM Map Features [5]. Also, they are fundamental components
of urban systems once they are structured as in network topology, playing a critical role in
shaping urban form, accessibility, and mobility patterns [6–8]. Recent studies have indicated
the potential of OSM data in analyzing urban studies based on road networks, such as
traffic flow, routing, accessibility, and vulnerability [9–11]. Despite their flexibility, working
with OSM data is not without its challenges. Being a collaborative dataset, contributions
may have different levels of detail, completeness, and accuracy across different regions.
Moreover, the quality of the metadata itself can be a problem, with several overlapping,
contradictory, or missing semantic tags plus inconsistencies and errors that often require
extensive preprocessing [12,13]. In particular, the variation in the completeness of road
tags reduces the applicability of a trusted network-based method to places having fewer
active contributors [14,15]. Therefore, research focused on developing a prediction model
for classifying roads based on their functionalities and integrating the classes with OSM
data as semantic tags defined as in OSM Map Features [5] is innovative.

The evaluation of OSM data quality has been a central theme in VGI research, utilizing
both intrinsic and extrinsic approaches. Intrinsic evaluations rely on the dataset’s own char-
acteristics, emphasizing geometric and semantic coherence, whereas extrinsic evaluations
compare OSM data with authoritative datasets to assess accuracy and completeness [16,17].
Reference-based studies have demonstrated OSM’s robustness in urban contexts but also
identified regional disparities in data coverage and quality [18–20]. However, intrinsic
analyses have focused on network analysis, tagging trends, and tag generation [21–28].

Research utilizing machine learning (ML) techniques to derive intrinsic information
from OSM data has been growing significantly. Jilani et al. [22] proposed an alternative
representation to primal or dual forms of road networks, then suggested an ML model [14]
to automate highway tag assessments that refer to OSM road classes. After using the
relatively reliable OSM road data in London as a reference, they found that more than
50% of the residential, pedestrian, primary, motorway, primary_link, and motorway_link data
were predicted correctly, while less than 40% of the cycleway, bridleway, path, secondary,
and secondary_link data were correct. Corcoran et al. [23] proposed a method for inferring
semantic type information from a geometric representation of a road network that involves
modeling the network as a probabilistic graphical model and utilizing maximum-margin
learning alongside a fusion move approach for inference. This method captures features of
individual streets, like linearity, and relationships between streets, such as semantic type
co-occurrences. They obtained a test result of 68% in precision. Basiri et al. [3] proposed an
approach to creating new map elements or editing current data using mining techniques,
which include cartographic generalization and matching steps. Keller et al. [24] developed
an ML-based framework that predicts the average speed on rural roads based on road
information in OSM. Hacar [25] explored using geometric (rectangularity, density, area,
and distance to bus stops and shops) and semantic (amenity) attributes for leisure tag identi-
fication in OSM data, improving the completeness and quality of the information available.
Vargas Munoz et al. [4] developed an ML-based interactive method that assists OSM vol-
unteers in annotating and validating rural building information, which can improve the
efficiency and accuracy of humanitarian mapping projects. Alghanim et al. [26] developed
a new trustworthiness measure based on the edit history and contributor behavior, which
significantly improved the ML model’s accuracy for road classification to 87.75% when
using trusted data, compared with 57.98% with untrusted data. This demonstrates the
importance of data quality in VGI for developing prediction models. Their model was
tested in London, which is one of the most actively contributed-to datasets in the OSM
repository [27,28]. However, the semantic type of information they used (i.e., tunnel, bridge,
maxspeed, and oneway) for feature generation could be problematic if the area of interest is
devoid of those tags in the OSM history due to having fewer active contributors. Pazoky
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and Pahlavani [29] evaluated various ML classifiers for enriching OSM road class data
using centrality measures as predictive features (independent variables). Among the classi-
fiers, random forest (RF) demonstrated prominent performance. However, the exclusion of
road functional tags such as motorway and various _link tags from the testing dataset, along
with expert-driven filtering of the test data, limits the generalizability of their approach
to other OSM data. Juhász et al. [30] proposed an approach to generating semantic road
classes by using ChatGPT. They prompted a detailed chat to classify the objects in the
input street-view image. Then, they instructed the generative model to suggest the most
appropriate tagging for each road in OSM. The experimental result in a small test area in
Miami shows that their prompting approach performed at 62% for semantic road categories.
Yang et al. [31] developed a neural-based Geographic Knowledge Base Question Answering
(GeoKBQA) system that connects natural language questions to OSM data. They created
a large GeoKBQA dataset and used an end-to-end entity-linking method to identify and
relate spatial entities. Their system translates place-related questions into GeoSPARQL
queries, offering a practical and scalable approach to improving the usability of OSM data,
overcoming the limitations of earlier rule-based methods. Hochmair et al. [32] evaluated
the performance of generative AI. Their study compared the correctness of four prominent
chatbots (ChatGPT-4, Gemini, Claude-3, and Copilot) across 76 spatial tasks, highlighting
strengths in spatial literacy and GIS theory and underscoring the growing role of LLMs in
geoscience, particularly their application in geo-data analysis, GISs, and mapping.

Previous studies, briefly, have led us to consider that there is a need to test the proposed
prediction model in different areas of interest for the validation of the harmony between
intrinsic features and the network samples. Moreover, the studies show that there are
some possibilities:

• to apply ML-based approaches to assess the quality of current OSM road data,
• to apply these approaches to enrich the semantic tags of OSM road data,
• to use intrinsic measures of OSM roads in a prediction model, and
• to use geometry-, semantic-, and centrality-based measures as the predictive features.

OSM data are widely used in navigation systems, urban planning, and geospatial
analyses; however, inconsistencies and gaps in road classification present challenges for
their effective use. For instance, improved road classification can significantly benefit
traffic navigation systems by ensuring that routes are planned based on accurate road
functionalities, while urban planners can use these insights to prioritize key road segments
for infrastructure improvements. This study introduces a novel method for predicting road
classes, addressing these challenges by improving the accuracy and completeness of OSM
data, and aims to enrich the semantic information of OSM roads, stored as highway = * tags,
by developing a prediction model utilizing intrinsic features retrieved from OSM road
networks. We propose a novel network-based hierarchical feature augmentation approach
that systematically expands the feature space by incorporating aggregated measures from
connected road lines across multiple levels of the network. This allows the model to repre-
sent not only the local characteristics of each road segment but also the broader contextual
information from the surrounding network hierarchy. The evaluation was conducted using
data from the three most populous cities in both Türkiye and Italy, ensuring the model’s
robustness across diverse urban environments with varying local morphology patterns
and contributor activities. The subsequent sections are organized as follows. Section 2 first
introduces the geometry-, centrality-, and semantic-based measures. It then demonstrates
the proposed network-based feature augmentation approach. Finally, it presents the case
study areas and the data structure of the road networks. Section 3 gives the results of the
ML prediction model both with and without using the feature augmentation and evaluates
the model performance across pairwise feature sets. The final section includes the study
outcomes and discusses the further optimization of the model.
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2. Materials and Methods
2.1. Geometry-, Centrality-, and Semantic-Based Measures

In this study, we employed a diverse set of geometry-, centrality-, and semantic-based
measures to effectively represent the characteristics of road lines within the OSM dataset
(Table 1). The selection of these measures was driven by their ability to represent various
dimensions of road characteristics. Geometric measures provide basic physical properties,
centrality measures capture the segment’s role and importance within the network, and
semantic measures add contextual information. Together, they form a comprehensive
feature set that effectively differentiates between various road classes.

Table 1. Geometric-, topologic-, and semantic-based measures.

Measure Type Measure Name Formula

Geometry-based

Length
(L) L =

n−1
∑

i=1

√
(Xi+1 − Xi)

2 + (Yi+1 − Yi)
2

Sinuosity
(SN) SN = LEuclidean

L

Centrality-based

Straightness
(ST)

ST(i) =
1

n − 1 ∑
j∈V,j ̸=i

dEuclidean
ij

dij

where dEuclidean
ij is the Euclidean distance between nodes i

and j along a straight line.

Betweenness
(B)

B(v) = ∑
s,t∈V

σ(s, t/v)
σ(s, t)

where v represents an intermediary node in the graph,
which lies on the shortest path between the source node s

and target node t.

Connectivity
(C)

C = e/v
Number of edge connections (e) at a junction node (v)

Angular Connectivity
(AC)

AC = ∑
u∈N

w(u, v)

Segment angular connectivity is defined as the cumulative
turn angle (w) between a node (v) and its neighbor (u)

Angular Total Depth (ATD) ATD = ∑
k

dθCk

Angular Integration (AIn) AIn = 1/n ∑
k

dθπX,i

Angular Choice (ACh) ACh = ∑
j

∑
k

g(i)lg(j<k)
jk jk

Normalized Angular Choice (NACH) NACH = log(AChℓα(x)+1)
log(ATDℓ

α(x)+3)

Normalized Angular Integration (NAIN) NAIN = n1.2

ATDℓ
α(x)

Semantic-based Distance to

gas station
(D_fuel)

Di =
√
(X2 − X1)

2 + (Y2 − Y1)
2

bank
(D_bank)

pharmacy
(D_pharmacy)

cafe
(D_cafe)

school
(D_school)

restaurant
(D_restaurant)

hospital
(D_hospital)

bus_station
(D_bus_stop)
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Geometric measures provide fundamental information about the physical properties
of road segments, which seems significant for distinguishing between different functional
road classes. The length (L) of a road segment is a basic yet significant geometric property,
representing the spatial extent of the road. It helps differentiate between long, continuous
roads like highways and shorter, more segmented roads such as local streets. Sinuosity (SN)
quantifies how much a road deviates from a straight line. This measure is particularly useful
in urban areas where winding roads indicate residential zones, as opposed to straighter
roads found in commercial or industrial areas. These geometric measures were chosen for
their ability to capture basic yet distinct physical characteristics that are often correlated
with different road functionalities.

Centrality measures are crucial for understanding the role of each road segment
within the broader network. They highlight the importance and connectivity of roads,
which are essential for distinguishing major thoroughfares from minor streets. Also, they
help in understanding the evolution and organization of road networks across different
urban settlements, revealing patterns that can be applied to various urban studies [33–42].
Straightness centrality (ST) is theoretically similar to Sinuosity but is measured on nodes. It
is calculated as a ratio between the real and Euclidean distance from each node to every
other node. Therefore, to make it represent a road line, the mean value of the start and end
nodes would be a good approach. Roads with a high degree of straightness are typically
key routes for through traffic, suggesting their higher functional importance. Betweenness
centrality (B) evaluates the significance of each node or edge within the network in terms
of travel. It quantifies how frequently a node/edge is utilized when taking the shortest
route between each pair of nodes [7,43,44]. It is similar to angular choice in the Space
Syntax [45–47], but, in our study, to reflect different characteristics of road networks, B is
computed on a primal graph instead of a dual one.

Connectivity (C) and Angular Connectivity (AC) assess the local and angular con-
nectivity of a road segment, respectively, providing insights into how well a segment is
integrated into the local road network. High connectivity values often indicate crucial
junctions or segments acting as junctions in the network. Angular Total Depth (ATD) is the
sum of the angular weighted (θ) topological distance (d) among all nodes (streets in the
dual approach). Angular Integration (AIn) measures the relative accessibility from a node
toward all others in the system (n). Angular Choice (ACh) is the number of times a certain
node is traversed in order to reach all others in the system. It denotes the preferential routes.
ACh, ATD, and AIn are used to calculate the Normalized Angular Choice (NACH) and Nor-
malized Angular Integration (NAIN) [48], detailed in Table 1, capturing the navigational
complexity and accessibility of road segments. They are particularly useful for identifying
roads that serve as key connectors or destinations within the network. Also, we employed
the preprocessing approach presented by Hacar et al. [49], where roads are split at the
connections to maintain non-topologically connected road intersections after the following
simplification process. To reduce the computational time and speed up the calculation
of C, AC, NACH, and NAIN in our road networks, the split roads were simplified using
the Douglas–Peucker [50] algorithm. Then, these measures were calculated based on the
segments of the simplified roads. The inclusion of all these centrality measures allows us
to model the influence and accessibility of road segments more accurately, reflecting their
functional significance within the urban road network.

Semantic measures were selected to capture the contextual and functional aspects of
road segments relative to their surrounding environment. They provide information on the
proximity of roads to various amenities, which is crucial for understanding the intended
use and importance of these roads. Distances to amenities such as gas stations, banks,
pharmacies, and other amenities (Table 1) provide a contextual understanding of the road
segment’s environment. Each semantic measure was chosen to reflect specific aspects of
the road’s context, which is essential for distinguishing roads serving different functional
purposes, such as residential streets versus highways that typically lack close proximity
to amenities.
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Geometric and semantic measures were calculated using the software described in [51]
and the Python package described in [52], respectively. The centrality metrics B and ST
were computed with the package described in [53], while C, AC, NACH, and NAIN were
derived utilizing the background of [45,48,54] and the software described in [47].

2.2. The Proposed Network-Based Hierarchical Feature Augmentation

In this section, we present our approach for expanding the feature set of each road
line through network-based hierarchical feature augmentation. This method systematically
enriches the feature space by aggregating the measures of neighboring road lines over
multiple hierarchical levels (Figure 1).
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• Level 0: Base Features
Each road line, referred to as Line l, initially possesses its intrinsic geometric, centrality,
and semantic measures, as detailed in the previous section (Table 1). These measures
form the Level 0 feature set and solely describe the road itself without considering its
relationship with the surrounding road network.

• Level 1: Direct Neighbor Aggregation
To incorporate contextual information, we augment the feature set of Line l by including
aggregated measures of its directly connected neighboring road lines (red lines in
Figure 1). They are the immediate connections to Line l and provide additional context
about the local network configuration. The resulting doubled features, along with the
original Level 0 features, constitute the Level 1 feature set. In this study, we adopted
the mean aggregation method for all levels of networks, as it provides a balanced
representation of the neighboring characteristics.

• Level 2: Indirect Neighbor Aggregation
Expanding further, the Level 2 feature set is derived by aggregating the measures of
all roads connected to the direct neighbors (Level 1) of Line l. This process considers
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the indirect neighbors (blue lines in Figure 1), effectively capturing information from
a broader section of the road network. The aggregated features are combined with
the Level 1 feature set. This approach enables the inclusion of second-degree neigh-
borhood information, ensuring the contextual understanding of each road within the
network hierarchy.

• Level 3 and Beyond
The hierarchical aggregation can be extended to further levels, such as Level 3, by
incorporating measures from roads connected to the Level 2 neighbors of Line l.
At each level, the feature set of the target road line is incrementally augmented by
incorporating the aggregated measures of increasingly distant, but converging, lines
(yellow lines in Figure 1) within the network. Finally, the number of features is
augmented as N+1 times for Level N (Figure 1).

This augmented feature sets reflect a progressively broader range of contextual infor-
mation, which can be particularly beneficial for complex road networks. It allows for a
more comprehensive representation of road lines, capturing both their local and global
network characteristics.

2.3. The Network Data and the Study Areas

OSM data are structured with nodes, ways, and relations, each attributed by tags that
provide semantic information [55,56]. This study focused on road data extracted from
OSM ways, with the datasets sourced from Geofabrik.de [57]. Provincial administrative
boundaries from GADM [58] were used to clip the datasets by using the osmosis tool [59].
For this study, only functional road types were filtered as motorway, motorway_link, primary,
primary_link, secondary, secondary_link, tertiary, tertiary_link, trunk, trunk_link, and residen-
tial [5]. The study covered the three most populous metropolitan cities in Türkiye (Istanbul,
Ankara, and Izmir) and Italy (Rome, Milan, and Naples) (Figure 2). It is important to
clarify that the term ‘city’, as used in this study, refers to the administrative boundaries
of provinces in Türkiye and Italy. These provinces include both urban cores and their
surrounding rural areas, ensuring a diverse representation of geographic and demographic
contexts. The RF classifier employed in the study was randomly fed with data from both
urban and rural areas within these provinces. This ensured that the training and testing
phases of the classifier accounted for the diverse characteristics of road networks in different
geographic contexts, enabling a robust and inclusive analysis.
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3. Results
3.1. Determining the Aggregation Techniques During the Network’s Regeneration

Due to the transformation of OSM roads into smaller segments for the calculation
of centrality measures, it was necessary to aggregate these segment-level features back
to the corresponding road line for the training and testing phases. Therefore, adopting
suitable techniques ensures a more accurate and context-aware classification of road net-
works and increases the performance of the road classification model. In this section, we
explain the process of selecting the optimal techniques for transferring centrality-based
measures from network segments back to the original OSM road lines. Various aggrega-
tion techniques were considered, including the mean, maximum, minimum, and sum, to
summarize the segment-level measures into road-level features. The RF classifier was used
to evaluate the performance of each technique in predicting road classes, and the results
are depicted in the feature importance chart below (Figure 3). The minimum technique
yielded the highest feature importance for the B and NAIN measures, suggesting it is the
most effective method for these centrality metrics. On the other hand, the mean technique
showed superior performance for all other centrality measures (ST, C, AC, and NACH).
Moreover, the centrality-based measures calculated for each city are shown in Figure 4,
where each measure highlights distinct characteristics of the roads in the respective city.
The dataset used in the ML model integrates both urban and rural samples, ensuring a
diverse geographic representation. Features like ST and C effectively present the linearity
and junction density of rural roads, while measures like NACH and NAIN highlight the
navigational complexity and accessibility inherent to urban networks. By incorporating
this broad range of features, the model is able to distinguish urban roads, which typically
serve as hubs within a dense network, from rural roads, which are often more isolated
and linear. Figure 4 highlights these differences visually, illustrating how the centrality
measures vary spatially within each province. These patterns allow the model to inherently
account for urban–rural distinctions without the need for explicit categorization.
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3.2. Evaluation of the Prediction Results Before Feature Augmentation

We used the RF, XGBoost, and LightGBM classifiers, with the geometry-, centrality-,
and semantic-based features mentioned in Table 1, to predict road functional classes stored
in the highway = * tag. As a preprocess for all alternative prediction models, all measures
were normalized. While they were used as independent prediction features, the highway
feature was used as the dependent variable in our model. highway values were selected as
motorway, motorway_link, primary, primary_link, residential, secondary, secondary_link, tertiary,
tertiary_link, trunk, and trunk_link.

The RF model performed well in identifying various road types within the OSM data,
as reflected by the precision, recall, and F1-scores in Table 2. It was the most accurate with
residential roads, showing high scores across precision and recall, indicating a strong ability
to correctly identify and capture the majority of residential roads in the dataset. motorways
and trunk roads also saw high precision, suggesting that the model reliably recognized
these road types when they were present. However, the model was less effective with link
roads, particularly primary_link, secondary_link, and tertiary_link roads, as evidenced by
lower recall scores. This suggests that, although the model usually correctly classifies link
roads when it considers them suitable for classification, it misses a significant proportion
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of classes related to the use of existing features. The overall weighted scores across all
road types were solid, indicating robust model performance in general, but with room for
improvement in distinguishing certain road types, particularly those represented as link
roads in the dataset. Also, the overall accuracies of XGBoost and LightGBM were 80.1%
and 80.2%, respectively, without using city identifiers.

Table 2. The results in RF prediction by geometry-, semantic-, and centrality-based features.

Key Value Precision Recall F1-Score Object Count Area of Interest

motorway 0.85 0.85 0.85 876

All cases without
a city identifier

motorway_link 0.73 0.39 0.51 971
primary 0.75 0.56 0.64 3366

primary_link 0.68 0.18 0.28 895
residential 0.85 0.98 0.91 55,912
secondary 0.69 0.44 0.54 4911

secondary_link 0.77 0.11 0.19 562
tertiary 0.65 0.48 0.55 10,444

tertiary_link 0.84 0.11 0.19 427
trunk 0.86 0.64 0.73 1210

trunk_link 0.78 0.23 0.35 1116

Weighted 0.80 0.82 0.80 80,690

The overall weighted scores for precision, recall, and F1-score are all slightly higher
in Table 3, which includes city identifiers, pointing to a marginal enhancement in model
performance. This indicates that the geographic context plays a role in the effectiveness
of the prediction model. For the motorway class, the precision and recall increased slightly,
indicating that the model became more accurate and consistent when city data were
factored in. Similarly, for primary and tertiary roads, we saw a marginal increase in both
precision and recall, suggesting that including city identifiers helps the model to better
classify these road types. However, the performance on link roads still shows low recall
values. The notable increase in precision for tertiary_link roads, up to 0.86, is tempered by
the recall remaining low (0.13), indicating that these types of roads are still challenging
for the model to consistently identify. Moreover, trunk roads also saw an improvement
in precision and recall, but trunk_link roads, much like the link roads, although better in
precision, still lagged in recall. This pattern across the link road categories suggests that,
while the model is refining its predictions with the additional city context, there is still
a tendency to miss identifying some instances of less common road types. The overall
accuracies of XGBoost and LightGBM are 80.8% and 81.0%, respectively, indicating similar
weighted trends with RF. As a result, while the incorporation of city identifiers and the
combination of geometry-, semantic-, and centrality-based features have improved the
model’s performance in predicting road types, there remains the potential for further
improvement. Specifically, the model’s ability to recognize and accurately classify link
roads could benefit from additional refinement on features.

Analyzing the performance of the RF classifier using different feature sets can provide
information on the strengths and weaknesses of each approach and highlight opportunities
for improvement. When we look at Table 4, which presents the results using only geometry-
based features, we see that the model had a particularly challenging time identifying most
road types, except for residential roads. For instance, the precision for motorway was just
0.20, and the recall was even lower at 0.06, leading to an F1-score of 0.10. This suggests that
geometric features alone are not sufficient for the model to accurately predict motorway.
The recall figures across all road types are low, which indicates that the model missed a
significant number of true cases. However, residential roads stand out as an exception, with
relatively high precision and recall values, which could be due to the higher prevalence of
these road types in the dataset or the specific distinction in geometric properties (i.e., L and
SN), making it easier for the model to learn and predict.
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Table 3. The results in RF prediction by a city identifier and geometry-, semantic-, and centrality-
based features.

Key Value Precision Recall F1-Score Object Count Area of Interest

motorway 0.88 0.87 0.87 876

All cases with
city identifiers

motorway_link 0.73 0.41 0.53 971
primary 0.75 0.58 0.66 3366

primary_link 0.62 0.24 0.34 895
residential 0.85 0.98 0.91 55,912
secondary 0.70 0.47 0.56 4911

secondary_link 0.78 0.14 0.24 562
tertiary 0.68 0.49 0.57 10,444

tertiary_link 0.86 0.13 0.22 427
trunk 0.86 0.67 0.75 1210

trunk_link 0.78 0.26 0.39 1116

Weighted 0.81 0.83 0.81 80,690

Table 4. The results in RF prediction by only geometry-based features.

Key Value Precision Recall F1-Score Object Count Area of Interest

motorway 0.20 0.06 0.10 876

All cases without
a city identifier

motorway_link 0.02 0.01 0.01 971
primary 0.08 0.03 0.04 3366

primary_link 0.03 0.01 0.01 895
residential 0.73 0.92 0.81 55,912
secondary 0.12 0.05 0.07 4911

secondary_link 0.03 0.01 0.01 562
tertiary 0.32 0.16 0.21 10,444

tertiary_link 0.02 0.00 0.01 427
trunk 0.12 0.04 0.06 1210

trunk_link 0.01 0.00 0.00 1116

Weighted 0.56 0.66 0.60 80,690

In Table 5, we see a marked improvement in precision and recall across almost all
road types. For example, the precision for motorway improved to 0.75 and the recall to
0.56, resulting in a higher F1-score of 0.64 compared with the geometry-based model. This
improvement indicates that semantic features have a significant impact on the model’s
ability to classify road types accurately. The results for secondary roads and links are
notably better than those in Table 4, demonstrating that semantic features provide valuable
information that aids the classification process.

Table 5. The results in RF prediction by only semantic-based features.

Key Value Precision Recall F1-Score Object Count Area of Interest

motorway 0.75 0.56 0.64 876

All cases without
a city identifier

motorway_link 0.65 0.53 0.58 971
primary 0.66 0.44 0.53 3366

primary_link 0.51 0.32 0.39 895
residential 0.84 0.97 0.90 55,912
secondary 0.70 0.47 0.56 4911

secondary_link 0.54 0.30 0.38 562
tertiary 0.75 0.47 0.58 10,444

tertiary_link 0.55 0.33 0.42 427
trunk 0.62 0.45 0.52 1210

trunk_link 0.59 0.45 0.51 1116

Weighted 0.80 0.81 0.79 80,690
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Looking at Table 6, which outlines the performance using only centrality-based fea-
tures, we observe that the RF model performed moderately well, especially for residential
roads, with a precision of 0.82 and recall of 0.97. Also, it predicted motorway roads better
than the usage of only semantic-based features. However, the model’s effectiveness varied
for other road types. For instance, the precision for motorway_links was 0.49 with a recall
of 0.25, and other link roads had a maximum recall of 0.08. This variability suggests that,
while centrality features contribute to the model’s predictive capability, they may not be as
reliable when used in isolation, particularly for less common road types.

Table 6. The results RF in prediction by only centrality-based features.

Key Value Precision Recall F1-Score Object Count Area of Interest

motorway 0.78 0.73 0.75 876

All cases without
a city identifier

motorway_link 0.49 0.25 0.33 971
primary 0.57 0.39 0.46 3366

primary_link 0.37 0.04 0.08 895
residential 0.82 0.97 0.88 55,912
secondary 0.47 0.26 0.33 4911

secondary_link 0.55 0.02 0.04 562
tertiary 0.49 0.33 0.39 10,444

tertiary_link 0.67 0.01 0.02 427
trunk 0.69 0.48 0.56 1210

trunk_link 0.48 0.08 0.14 1116

Weighted 0.72 0.76 0.73 80,690

Comparing these results to those in Tables 2 and 3, we can see that the model achieves
the best performance when it utilizes a combination of city, geometry-, semantic-, and
centrality-based features. The weighted scores in Tables 2 and 3 are generally higher than
those in Tables 4–6, which demonstrates the benefits of a multi-feature approach over
single-feature models.

The overall findings indicate that, while there is potential in using semantic- and
centrality-based features for road type classification, there is still a need for (1) fine-tuned
existing features or (2) new features to better capture the complexities of road type clas-
sification in OSM data. Our first approach to increasing the RF classifier’s performance
was using K-means clusters of the lowest features, which were SN and L in the geometric-
based features. The number of clusters was determined to be 3, which is supported by the
Elbow graph (Figure 5). Table 7 is a modified version of Table 3, using geometric-based
clusters instead of original features. Although the motorway and primary road predic-
tion performance experienced little increases, there were areas where the introduction of
geometric-based clusters did not lead to an increase. For instance, the recall values for
primary_link, secondary_link, and tertiary_link roads remained low, which implies that the
model still struggled to identify all instances of these road types. Secondly, we used all
features as K-means clusters in their respective measure types in Table 1. We used three
clusters for each feature group (geometric, semantic, and centrality). However, none of
the alternatives yielded improved results. The F1-scores of the RF classifications were
81%, 76%, and 76% when each feature group of geometry-, semantic-, and centrality-based
measures was clustered, respectively. Some of the measures, like SN and distance to ameni-
ties, were grouped into a quantile interval. Nonetheless, the performance remained on
par with the model utilizing clustering techniques, suggesting no tangible benefit from
this level of measure categorization. The underperformance of measure categorization
could be attributed to the intrinsic mechanics of the RF classifier. RF is inherently adept at
handling continuous variables and exploiting the subtle variances within them to make
decisions. By categorizing the measures, we may inadvertently obscure these nuances,
reducing the algorithm’s ability to leverage the full spectrum of information provided by
the raw data. The categorization may also introduce artificial boundaries that do not align
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with the natural distributions of the data, leading to a loss of valuable context that could
aid in classification.
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Table 7. The results in RF prediction by a city identifier, semantic- and centrality-based features, and
geometric-based clusters.

Key Value Precision Recall F1-Score Object Count Area of Interest

motorway 0.89 0.88 0.89 876

All cases with a
city identifier

motorway_link 0.76 0.47 0.58 971
primary 0.77 0.62 0.68 3366

primary_link 0.65 0.17 0.27 895
residential 0.85 0.98 0.91 55,912
secondary 0.73 0.48 0.58 4911

secondary_link 0.81 0.09 0.16 562
tertiary 0.72 0.47 0.57 10,444

tertiary_link 0.72 0.07 0.12 427
trunk 0.88 0.70 0.78 1210

trunk_link 0.75 0.31 0.44 1116

Weighted 0.82 0.83 0.81 80,690

3.3. Evaluation of the Prediction Results After Feature Augmentation

We increased the number of features in each city by using the network-based hierarchi-
cal feature augmentation approach detailed in Section 2.2. The RF classifier’s performance
in the feature enrichment process is reflected in the F1-score matrices of Tables 8–10 with
pairwise feature sets. Firstly, as we incorporated higher levels of surroundings for geometry
(G) and centrality (CN) features, the F1-scores improved without using semantic-based
features and a city identifier (Table 8). We observed the highest scores when the level of the
surroundings reached 50 for both types of features (G-50, CN-50), with an F1-score of 83%.
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Table 8. Prediction results using geometry- and centrality-based features.

F1-Score Matrix (%) Without CN CN-0 CN-5 CN-10 CN-25 CN-50

Without G - 73 77 78 80 81

G-0 60 74 78 79 81 82

G-5 65 75 79 80 81 82

G-10 65 75 80 80 81 82

G-25 66 76 80 81 82 83

G-50 67 76 81 82 83 83
G, level of the surroundings in geometry-based features; CN, level of the surroundings in centrality-based features.

Table 9. Prediction results using geometry- and semantic-based features.

F1-Score Matrix (%) Without S S-0 S-5 S-10 S-25 S-50

Without G - 79 79 79 79 80

G-0 60 74 77 78 79 80

G-5 65 71 76 77 79 80

G-10 65 71 76 77 78 80

G-25 66 71 76 77 79 80

G-50 67 72 76 78 79 80
G, level of the surroundings in geometry-based features; S, level of the surroundings in semantic-based features.

Table 10. Prediction using semantic- and centrality-based features.

F1-Score Matrix (%) Without CN CN-0 CN-5 CN-10 CN-25 CN-50

Without S - 73 77 78 80 81

S-0 79 80 80 81 81 82

S-5 79 82 83 83 83 83

S-10 79 83 83 83 83 83

S-25 79 84 84 84 84 84

S-50 80 84 85 84 84 84
CN, level of the surroundings in centrality-based features; S, level of the surroundings in semantic-based features.

Table 9, focusing on only geometry- and semantic-based features, also shows an
upward trajectory in F1-scores with increasing levels of surroundings. Notably, when the
level of the surroundings in semantic features (S) was maximized to 50 (S-50), alongside
a high level of geometry-based surroundings (G-50), the model achieved an F1-score of
80%. Table 10 offers the most compelling evidence for the effectiveness of feature-level
augmentation in the predictive model. The model achieves its highest performance, with
an F1-score of 85%, when semantic-based features are expanded to the maximum level
of 50 (S-50) and centrality-based features are enriched to just a level of 5 (CN-5). This
targeted strategy leads to a more efficient and effective predictive model, emphasizing
that the road to optimization may require a balance rather than a uniform maximization
of feature levels. As a result, this particular combination suggests that a comprehensive
semantic context, paired with a moderate level of centrality context, substantially increases
the model’s performance in predicting road types within the OSM data.

If we were to follow the trend observed in previous tables, where increased levels of
feature aggregation generally led to improved predictive performance, we might hypothe-
size that higher levels of geometric features (e.g., G-25, G-50) would further maximize the
model’s performance. However, the analysis of Table 11’s results shows that adding the
geometric context to the already robust S-50 and CN-5 feature set, with or without a city
identifier, does not provide any change in the model’s performance.
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Table 11. Prediction using all levels of geometric-based features with Level 50 semantic-based (S-50)
and Level 5 centrality-based (CN-5) features.

Weighted Precision Weighted Recall Weighted F1-Score Object Count Area of Interest

Without G

85 86 85 80,690
All cases with or

without a city
identifier

G-0

G-5

G-10

G-25

G-50

G, level of the surroundings in geometry-based features.

Table 12 shows that, for cases without a city identifier, the model with the S-50 and CN-
5 combination performs commendably across various road types. Notably, the precision
and recall for motorway_link roads are higher than any previous testing, indicating that
the model can reliably identify these road types. residential roads also had very high
precision and recall values, likely due to their prevalence in the dataset, which allows
the model to learn from a large number of examples. For tertiary_link and secondary_link,
the model exhibits better but not ideal performance, which could be an area of focus for
future improvements.

Table 12. The results in prediction by S-50 and CN-5 features.

Key Value Precision Recall F1-Score Object Count Area of Interest

motorway 0.85 0.90 0.87 876

All cases without
a city identifier

motorway_link 0.78 0.77 0.78 971
primary 0.76 0.68 0.72 3366

primary_link 0.70 0.45 0.55 895
residential 0.88 0.98 0.93 55,912
secondary 0.75 0.57 0.65 4911

secondary_link 0.67 0.31 0.43 562
tertiary 0.80 0.53 0.64 10,444

tertiary_link 0.73 0.28 0.40 427
trunk 0.81 0.70 0.75 1210

trunk_link 0.74 0.65 0.69 1116

Weighted 85 86 85 80,690

In Table 13, where city identifiers are included alongside the S-50 and CN-5 features,
the precision and recall for most road types are slightly improved or remain stable compared
with Table 12. For example, motorway roads show a slight increase in recall, and motorway
links maintain high precision and recall. primary_link and secondary_link roads see a slight
improvement in precision, which might suggest that smaller city identifiers (e.g., district or
town boundary files) contribute to the model’s ability to discern these road types better.
The overall weighted performance remains consistent with that in Table 12. As a result,
the model has reached a peak where the inclusion of additional geometric context or a city
identifier does not contribute additional discriminative power for the prediction task.
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Table 13. The results in prediction by a city identifier and S-50 and CN-5 features.

Key Value Precision Recall F1-Score Object Count Area of Interest

motorway 0.84 0.91 0.88 876

All cases with a
city identifier

motorway_link 0.79 0.78 0.78 971
primary 0.77 0.68 0.72 3366

primary_link 0.72 0.46 0.56 895
residential 0.89 0.98 0.93 55,912
secondary 0.75 0.57 0.65 4911

secondary_link 0.71 0.31 0.43 562
tertiary 0.79 0.54 0.64 10,444

tertiary_link 0.77 0.29 0.42 427
trunk 0.83 0.72 0.77 1210

trunk_link 0.74 0.63 0.68 1116

Weighted 85 86 85 80,690

The heatmap in Figure 6 provides a comparative analysis of F1-scores across different
cities, revealing distinct patterns in model performance using only the respective city’s
samples for training. Each cell represents the F1-score of the prediction test within each city,
with the color intensity indicating the level of performance. This visualization highlights
the comparative strengths and weaknesses of the model’s performance in different urban
contexts. In other words, the RF classification results offer a window into the model’s
variable performance across different cities, revealing how urban-specific characteristics
influence predictive accuracy. Milan and İzmir stand out with the highest accuracy and
weighted F1-score at 89% and 88%, respectively, showcasing the model’s strong predictive
capabilities in these environments. Particularly in Milan, the results across various road
classes are consistently satisfying, indicating a well-trained model for the city’s road
types. A consistent pattern emerges where residential and motorway roads achieve the
highest predictive accuracy in each city, a testament to the robustness of the model for
these categories. Conversely, link roads exhibit lower predictive performance, suggesting
that these might be more challenging to classify due to their varied and less consistent
representation in the data. Interestingly, the model more accurately predicts motorway_link,
primary_link, and trunk_link roads compared with other link types. This trend suggests
that the more significant (major) a link road is within the road network hierarchy, the more
accurately the model can predict its functional class. As a result, the study underscores
the comparative strengths and weaknesses of the model, highlighting the impact of our
model’s performance on different urban areas.
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4. Discussion

The results of this study highlight the effectiveness and challenges of predicting road
functional classes in OSM using a machine learning approach enhanced with network-
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based hierarchical feature augmentation. The findings are discussed below in relation to
implications for OSM data enrichment, the model’s feature engineering, and performance
variations across road classes and cities.

The findings of this study present significant implications for improving the com-
pleteness and accuracy of OSM data. The proposed hierarchical feature augmentation
approach provides a scalable framework for enriching OSM road tags, making the dataset
more reliable for applications such as urban planning, navigation systems, and disaster
management. The ability to predict road classes with an average F1-score of 85%, without
relying on geometric properties, demonstrates the potential of this method to contribute
missing semantic information in OSM data.

The evaluation of the prediction results obtained before augmenting the features
revealed key strengths and limitations of the model. The RF classifier performed exception-
ally well in predicting residential roads, with F1-scores exceeding 90%, due to the prevalence
of these roads and their distinct features. Similarly, major road types such as motorway
and trunk roads were classified with high precision and recall, reflecting the reliability of
the feature set for these categories. However, the model struggled with link roads (e.g.,
secondary_link and tertiary_link), as evidenced by lower recall scores. These road types
often lack consistent tagging or distinctive features, making them harder to classify. The
inclusion of city identifiers marginally improved the performance for some road types,
suggesting that geographic context plays a role in improving classification accuracy.

The inclusion of hierarchical levels, as detailed in Section 3.3, further enriched the
feature set by representing both local and global network characteristics. The highest
F1-scores were achieved when semantic-based features were expanded to Level 50 (S-50)
and centrality-based features to Level 5 (CN-5), underscoring the importance of balancing
feature complexity and computational efficiency. The model’s performance in predicting
road types across six cities highlights notable differences in prediction accuracy, with cities
such as Milan and Izmir achieving the highest weighted F1-scores (88%), indicating that
the feature level combination tested with the whole dataset is also compatible with specific
study areas (Izmir and Milan). Also, it seems that there may be a better combination
for Istanbul, where the S-50 and CN-5 combination performed at 83%. Residential roads
consistently showed strong performance across all cities, reflecting their prevalent tagging
and distinct characteristics in the dataset. Conversely, secondary_link and tertiary_link roads
demonstrate lower scores, particularly in Ankara, where the less consistent tagging and
variations in the representation pose challenges for classification [42]. These findings
underline the model’s effectiveness in densely populated urban areas and its limitations in
handling underrepresented road types, emphasizing the importance of data completeness
and quality across diverse urban contexts for future optimization.

There are some minor differences among the prediction performances using only
samples of the city of interest for training. However, the model’s hierarchical, network-
based approach seems to present geographic and morphological distinctions, potentially
making explicit city information redundant once it is trained with the random data in all
cities. This could account for the observed insubstantial impact of the city identifier on the
model’s performance, as the network features might already represent spatial relationships
and contextual properties inherent to specific urban settings.

Despite its success in general prediction performance, this study has certain limitations.
The model’s reliance on existing OSM data may introduce biases in regions with fewer
contributors or incomplete tagging since the proposed semantic features are computed
from the intrinsic amenity tags contributed by volunteers. Additionally, the challenges in
predicting link roads highlight the need for further refinement in feature engineering.

5. Conclusions

Our conclusions align with the principle of parsimony in model building, where
the goal is to achieve the maximum predictive power with the simplest model possible,
avoiding overfitting and ensuring that the model is as generalizable as possible. The
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predictive model has reached a performance threshold where the further inclusion of
geometric data or city identifiers does not significantly optimize the predictive accuracy.
This plateau suggests that the combination of semantic- and centrality-based features at
certain levels already captures essential classification information, rendering additional
geometric detail superfluous. This discovery is novel, as it utilizes a simplified model
structure, minimizing unnecessary complexity and computational demands. The prediction
performance also highlights the model’s reliability, particularly for well-defined road types
such as residential, motorway, trunk, and primary roads. Also, the use of intrinsic road
network characteristics, including centrality measures and semantic features, significantly
improved the prediction accuracy by capturing the functional and structural distinctions
within road networks.

Our feature augmentation approach creates a hierarchical network around each road,
aggregating features from directly connected, secondarily connected, and sequentially
graded connected road lines. These aggregated features likely provide a rich set of data
(N+1 times more than Level 0) that reflects not just the properties of the individual road
but also the characteristics of the Level N surrounding road network.

Future studies will involve the model’s refinement, exploring diverse feature level
combinations with new centrality- and semantic-based features, and maintaining an auto-
mated, iterative process to determine the best level of the network hierarchy per feature set.
Moreover, understanding the influence of volunteer contributions on the model’s accuracy
could provide a new step for improving data consistency and reliability. In addition, an-
swering the question of how the quality of the data contributed by OSM volunteers impacts
the performance of this prediction model will be important to visualize the complex behav-
ior of volunteers. Finally, integrating the proposed approach into an AI-based assistant tool
within the OSM platform could assist contributors in accurately assigning semantic values
when adding or editing road line objects that lack road class information.
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