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Abstract: Defect detection plays a crucial role in industrial production, and the implementation
of this technology has significant implications for improving both product quality and processing
efficiency. However, the limited availability of defect samples for training deep-learning-based object
detection models within industrial processes poses challenges for model training. In this paper, we
propose a novel deep convolutional generative adversarial network with self-attention mechanism
for the data augmentation of infrared thermal images for the application of aluminum foil sealing. To
further expand its applicability, the proposed method is designed not only to address the specific
needs of aluminum foil sealing but also to serve as a robust framework that can be adapted to a
wide range of industrial defect detection tasks. To be specific, the proposed approach integrates a
self-attention module into the generator, adopts spectral normalization in both the generator and
discriminator, and introduces a two time-scale update rule to coordinate the training process of these
components. The experimental results validated the superiority of the proposed approach in terms
of the synthesized image quality and diversity. The results show that our approach can capture
intricate details and distinctive features of defect images of aluminum foil sealing. Furthermore,
ablation experiments demonstrated that the combination of self-attention, spectral normalization, and
two time-scale update rules significantly enhanced the quality of image generation, while achieving
a balance between stability and training efficiency. This innovative framework marks a notable
technical breakthrough in the field of industrial defect detection and image synthesis, offering broad
application prospects.

Keywords: infrared thermography; aluminum foil sealing; data augmentation; self-attention; GAN

1. Introduction

With advancements in industrial manufacturing capabilities, the utilization of alu-
minum foil packaging has become widespread and convenient across various sectors,
including food packages, medical bottles, and chemical containers. This packaging tech-
nique involves the application of heat to the aluminum foil, resulting in localized melting
and a viscous state at the bottle mouth, as depicted in Figure 1. Following the application
of a specific pressure until the sealing process is complete, the foil cools down and forms a
tight seal. Nonetheless, issues such as loose seals and leakage commonly arise during the
aluminum foil sealing process. Detecting these minuscule defects and liquid leaks with
the naked eye within a short time frame poses difficulties. Improper sealing can lead to
product degradation, compromising consumer safety and resulting in substantial economic
losses. For instance, a single bottle leaking can cause entire batches to be rejected, and in the
case of pesticide leakage, it can pose serious health risks to personnel handling the goods,
potentially endangering their lives. Therefore, even the rarest of defects must be strictly
avoided to prevent such occurrences. Consequently, conducting comprehensive sealing
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tests on aluminum foil packaging is of utmost importance. By implementing suitable test-
ing techniques, such as infrared imaging technology, the sealing performance of aluminum
foil can be accurately evaluated, thus ensuring product integrity and safety. (This not only
protects consumers from potential health risks but also minimizes the economic losses
associated with product recalls and contamination incidents.)

Food package PET medicine bottle Cosmetic cream cap

Milk bottle Motor oil cap Chemical containers

Figure 1. Diverse applications of aluminum foil sealing in industrial packaging.

Traditional methods for detecting the closure area of aluminum foil predominantly
rely on manual inspections or single-point temperature measurements, as well as water
detection methods, among others. Within the confines of a bottle, it is impossible to visually
ascertain the presence of aluminum foil without unscrewing the cap. Nevertheless, this
approach not only elevates production costs but also diminishes processing efficiency. On
the other hand, the single-point temperature measurement method merely identifies the
absence of aluminum foil and fails to assess the sealing performance of all contact surfaces,
potentially resulting in missed detections. To effectively evaluate the sealing performance
of the complete closed area, encompassing all contact surfaces of the aluminum foil sealing,
an alternative solution utilizing infrared imaging technology can be employed. Infrared
imaging enables comprehensive visualization of the shape and temperature distribution of
the measured thermal images, addressing the shortcomings associated with the traditional
methods of tightness detection in aluminum foil seals, including limited accuracy, high
labor costs, and inherent defects.

In recent years, deep-learning-based methods have proven to be effective for defect
detection, due to their ease of use, cost-effectiveness, real-time capabilities, and accurate
target detection [1–3]. However, similarly to other supervised deep learning approaches,
object detection requires a significant amount of training data. To achieve high accuracy
and generalization, an algorithm needs to be trained on diverse image datasets that contain
various types of defects, allowing it to learn relevant features effectively. Unfortunately, in
many industrial environments [4,5], the majority of products meet production standards,
and equipment typically remains in normal condition throughout its life-cycle. As a result,
acquiring a substantial amount of labeled defect data becomes a challenging and time-
consuming task, often accompanied by high costs or even feasibility issues. Effective
neural network training for defect detection usually requires hundreds to thousands of
images to achieve robust performance. However, production facilities for pesticides and
pharmaceuticals are often located in remote areas, making it logistically challenging to
collect and label large datasets. Moreover, the occurrence of defects is relatively rare,
meaning that even when access to production sites is possible, the number of defect
samples available may still be limited. Therefore, overcoming the challenge of limited
defect sample size is critical for the successful implementation of object detection in defect
detection applications.
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Researchers have devoted considerable efforts to addressing the issue of inadequate
samples in industrial settings by developing data augmentation methods aimed at enhanc-
ing accuracy. Wan et al. [6] utilized a contrastive learning model to tackle the issue of
insufficient samples. Cao et al. [7] applied a domain-shared convolutional neural network
(CNN) to overcome the challenge of limited samples in machine fault diagnosis, particu-
larly in cases with time-varying speed. Zhang et al. [8] introduced a prototype matching
network model to handle cross-domain diagnosis with limited data. In a similar vein,
Hu et al. [9] proposed a meta-learning model for task ranking, providing a solution for
fault diagnosis with a small sample size. However, many of the aforementioned studies
on insufficient samples heavily depended on the data distribution or learning strategies
from other fields [10]. To address data scarcity, generative adversarial networks (GANs)
have emerged as a commonly used data augmentation method [11]. Gao et al. [12] pre-
sented a Wasserstein generative adversarial network with gradient penalty (WGAN-GP) to
augment low-dimensional fault data. Chen et al. [13] developed an end-to-end generative
adversarial network (PadGAN) for generating low b-value diffusion magnetic resonance
imaging (dMRI) data, improving the data quality and detail of macaque brain dMRI images.
Shang et al. [14] introduced a GAN-based method with fused attention and perceptual qual-
ity enhancement to improve the quality and detail of solar coronal images, enhancing the
observation and prediction of solar activities. Wang et al. [15] proposed a super-resolution
image reconstruction method using cascaded generative adversarial networks (GANs)
for Sentinel-2 and Gaofen-2 images, enhancing image quality and detail. Liu et al. [16]
proposed a CVAEGAN method for fault diagnosis, incorporating self-modulation into the
generator based on the input and feedback from the discriminator. A conditional varia-
tional autoencoder (AE) was integrated into the conditional Wasserstein GAN to generate
higher-quality synthetic images. Nevertheless, GANs suffer from two major drawbacks:
inconspicuous defect features and unstable training. The generator is not incentivized to
learn the difference between local and global features, resulting in inconspicuous features
in the synthesized images. Additionally, during training, the density ratio estimation of
the discriminator is inaccurate and unstable, impeding the generator’s ability to effectively
learn the multimodal structure of the target distribution. Consequently, the GAN frame-
work is inherently unstable and susceptible to loops during training. Further research and
innovation are necessary to address these challenges and improve the effectiveness of data
augmentation techniques in industrial fault diagnosis.

To address the challenges outlined above, this study proposes a novel deep convo-
lutional generative adversarial network with self-attention mechanism, named SAITI-
DCGAN, to facilitate the efficient and high-quality generation of defect images for alu-
minum foil sealing. This approach addresses the issue of insufficient training samples
of equipment or product defects in industrial processes, accomplishing this through the
synthesis of image samples. Our approach can leverage the knowledge acquired from
existing defect samples by integrating an enhanced deep convolutional generative ad-
versarial network, self-attention mechanism learning, spectrum normalization, and data
augmentation via two scale-time update rules. This synthesis results in the autonomous
creation of novel defect sample data, without relying on external information from other
domains. The primary contributions of this work are summarized as follows:

• The proposed approach integrate a self-attention mechanism into the generator of
GANs to assess characteristics through weight assignment and selective information
extraction. The objective is to improve the fidelity of infrared thermal images and
produce synthetic counterparts that possess a heightened sense of realism.

• The adoption of spectral normalization entails a weight normalization that is seam-
lessly integrated with network adjustment. By imposing Lipschitz constraints on the
parameter matrices of both the generator and discriminator, this approach effectively
enhances the stability of the training process.

• The model incorporates a two time-scale update rule to expedite the generator’s adap-
tation process in response to the discriminator’s feedback. This integration aims to
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improve the equilibrium between the generator and the discriminator. Consequently,
it can accelerate the overall convergence, reduce the training duration, mitigate the
likelihood of mode collapse, and foster increased diversity in the outputs generated
by the generator.

The remainder of this paper is structured as follows: Section 2 introduces the prelimi-
naries of data augmentation, the GAN architecture, and the attention mechanism. Section 3
provides a detailed description of the proposed approach. In Section 4, we conduct experi-
mental and comparative verification analyses of the proposed model. Section 5 discusses
the implications and insights gained from the results. Section 6 addresses potential threats
to the validity of our study. Finally, we conclude the work in Section 7.

2. Preliminaries
2.1. Data Augmentation

Data augmentation is the most direct and effective way to increase the number of data
samples. Methods can be divided into two categories: image mixing and image generation.
In the first category, new images are generated by randomly erasing existing pixels [17,18] or
mixing with other image information, such as pixels [19,20], patches [21,22], and manifold
structures [23,24]. These methods usually do not solely rely on deep models or lightweight
models. With regard to image generation, GAN-based generative models [25] have been
widely used in the field of data augmentation. GANs can decouple images into the structure
and style of latent layers. The decoupled information can be reconstructed to generate
a new image. Our proposed approach also belongs to the method of image generation.
The difference is that our approach incorporates a self-attention network, resulting in
remarkably diverse generated images.

2.2. Deep Convolutional Generative Adversarial Networks

GAN models are widely employed across computer vision, natural language process-
ing, and other fields. The primary structure of GANs comprises a generator, denoted as G,
and a discriminator, denoted as D, as illustrated in Figure 2.

Generator z

DiscriminatorReal 

sample

Random 

noise z

x

G(z)

Fake

Or

Real

Fake

Figure 2. The basic structure of generative adversarial networks (GANs).

The typical process of sample generation unfolds as follows. Initially, noise z is input
into the generator G to produce synthetic data G(z), which resemble real data x, with the
intention of deceiving the discriminator. Subsequently, both the generated synthetic data
and real samples are fed into the initial discriminator D until the discriminator becomes
unable to distinguish between the genuine and synthetic data. It is commonly assumed
that random noise z follows a Gaussian distribution. Ultimately, if the input data from
the generator closely approximate the real data, the goal of learning the approximate
distribution of genuine images is achieved.

GANs are non-cooperative game-based models optimized through the maximization
and minimization of probabilistic outputs. The generator and discriminator iteratively
update their model parameters until reaching a Nash equilibrium state. This state refers to a
condition where neither the generator nor the discriminator can improve their performance
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by unilaterally changing their strategies. Specifically, this means that the generator pro-
duces samples that the discriminator cannot reliably distinguish from real data, while the
discriminator maximizes its ability to differentiate between real and generated data given
the current capabilities of the generator. This concept is fundamental to understanding the
training dynamics of GANs. In this state, the generator is capable of producing samples
akin to real data, while the discriminator struggles to accurately discern the authenticity
of the generator’s input data. This process can be formalized as a non-cooperative game
that involves maximizing and minimizing the value function, denoted as V(D, G). The
generator’s objective is to maximize this value function, making it challenging for the
discriminator to differentiate between samples generated by the generator and real data.
Conversely, the discriminator aims to minimize the value function, enhancing its ability to
distinguish between generator-produced samples and genuine data. The objective function
is expressed as follows:

min
G

max
D

V(D, G) = Ex∼pdata(x)[logD(x)]

+Ez∼pz(z)[log(1 − D(G(z)))],
(1)

where pdata(x) denotes the distribution of real data x, Pz(z) indicates the prior distribution
of the noise vector z, and D(x) and D(G(z)) represent the probabilities of real data and
generated data, respectively.

However, GANs can be unstable during training, leading to instances where the
generator produces invalid outputs. A DCGAN [26] shares the same goal as traditional
GANs. The primary distinction lies in the fact that a DCGAN utilizes multiple convolutional
blocks to construct its generator and discriminator. Specifically, the generator employs a
deconvolutional architecture, while the discriminator employs a convolutional architecture.
The structures of the generator and discriminator of the DCGAN are illustrated in Figure 3.

4×4×1024 8×8×512 16×16×256
32×32×128

64×64×3

100

1

Reshape Deconv1 Deconv2 Deconv3 Deconv4

Noise

Vector

Z

64×64×1
32×32×128 16×16×256

8×8×512
4×4×1024

FlattenConv1 Conv2 Conv3 Conv4

BN ReLU Tanh Leaky ReLU Sigmoid

Generator

Discriminator

Figure 3. The structures of the generator and discriminator of a DCGAN.

We can see that BN indicates a batch normalization operation, ensuring that its mean
and unit variance are zero, thereby stabilizing learning. ReLU, leaky ReLU, and tanh repre-
sent three distinct activation functions that aim to expedite model learning and saturate
the color space for comprehensive coverage. The aforementioned structure possesses a
remarkable capability to generate high-quality images.
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2.3. Attention Models

Recently, attention mechanisms have become an integral part of models designed to
capture global dependencies [27–30]. In particular, self-attention [31,32], also known as
intra-attention, computes the response at a specific position in a sequence by attending
to all positions within the same sequence. Vaswani et al. [33] demonstrated that state-of-
the-art results can be achieved in machine translation models using self-attention alone.
Parmar et al. [34] introduced an image Transformer model that incorporates self-attention
into an autoregressive framework for image generation. Wang et al. [35] formalized
self-attention as a non-local operation to model spatio-temporal dependencies in video
sequences. Despite these advancements, self-attention has yet to be explored in the context
of DCGANs. Although an AttnGAN [36] employs attention for word embeddings in
the input sequence, it does not use self-attention for internal model states. Thus, our
proposed approach aims at efficiently discovering global, long-range dependencies within
the internal representations of images.

3. Materials and Methods

The main structure of the proposed SAITI-DCGAN approach can be summarized as
follows. A self-attention module is integrated into the generator, and spectral normalization
is adopted for both the generator and discriminator. In addition, the two time-scale update
rule is applied to both the generator and discriminator, utilizing distinct learning rates. The
general framework of the proposed approach is depicted in Figure 4.

Noise  z
Original 

data
Spectral 

Normalization

Two Timescale 

Update Rule

+

+

Discriminator

Spectral 

Normalization

Two Timescale 

Update Rule

+

+

Discriminator

Generator

Self-attention

Module

Spectral 

Normalization

Two Timescale 

Update Rule

+

+

+

Generator

Self-attention

Module

Spectral 

Normalization

Two Timescale 

Update Rule

+

+

+

Synthetic dataSynthetic data

Figure 4. The general framework of our proposed SAITI-DCGAN approach.

3.1. Self-Attention DCGAN

The traditional DCGAN generates high-quality and intricate features by utilizing fixed
spatial local information within an image, exhibiting remarkable performance for texture
features. Nevertheless, capturing specific geometric features remains challenging [37]. To
address this issue, a self-attention mechanism is introduced into the DCGAN framework
in this work. During the image generation process, the generator coordinates fine details
from each position with distant parts of the image, allowing it to disregard irrelevant
information and enhance the significance of key feature details. This combination of the
attention mechanism is applied to the middle layer of the generator, enabling it to effectively
extract local image features and enhance the generation diversity. The network structure of
the self-attention module is illustrated in Figure 5.

The image features from the previous hidden layer x ∈ RC×N are first transformed into
two feature spaces f and g to calculate the attention, where f (x) = W f x, and g(x) = Wgx.
Here, C indicates the number of channels, and N represents the number of feature locations.
The transpose of f (xi) is multiplied by g(xj) to obtain the correlation Sij. Then, Sij are
normalized using Softmax to generate the attention feature, which is calculated as follows:

β j,i =
exp (Sij)

∑n
i=1 exp (Sij)

, where Sij = f (xi)
T g(xj). (2)

Here, β j,i represent the extent to which the model focuses its attention on the i-th position
when synthesizing the j-th region. It is important to note that the layer’s output is denoted
as o = (o1, o2, ..., oj, ..., oN),
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oj = v(
N

∑
i=1

β j,ih(xi)), where h(xi) = Whxi, v(xi) = Wvxi. (3)

Here, the weight matrices Wg ∈ RC×C, W f ∈ RC×C, Wh ∈ RC×C, and Wv ∈ RC×C imple-
ment 1 × 1 convolutions. After multiple training iterations on ImageNet, no significant
performance degradation was observed when reducing the number of channels in C to C/k,
where (k = 1, 2, 4, 8). To enhance the memory efficiency, we chose k = 8 (i.e., C = C/8) for
all experiments.

1×1 Conv

1×1 Conv

1×1 Conv

1×1 Conv

f(x)

g(x)

softmax

h(x)

Original 

feature map(x)

attention map

self-attention 

feature map(o)

v(x)

Reshape Upsample Deconv1 Deconv2 Deconv3

Noise

Vector

Z

Self-attention Self-attentionUpsample

Figure 5. The network structure of the self-attention module with DCGAN.

Additionally, the output of the attention layer is scaled by a factor and then added to
the input feature map. As a result, the final output is obtained as follows:

yi = γoi + xi. (4)

Here, γ indicates a scalar value that can be learned and starts with an initial value of 0.
The purpose of introducing the learnable γ is to prompt the network to initially depend
on information from local neighborhoods, which is simpler, and then gradually acquire
knowledge from non-local sources to assign greater importance. This strategy is adopted
to facilitate the sequential learning of simpler tasks before gradually transitioning to
complex tasks. In the proposed approach, an attention module is incorporated into both
the generators and discriminators, which are trained alternately using a minimized form of
the adversarial loss function [38–40].

LD =−E(x,y)∼pdata
[min(0,−1 + D(x, y))]

−Ez∼pz ,y∼pdata [min(0,−1 − D(G(z), y))],

LG = −Ez∼pz ,y∼pdata D(G(z), y),

(5)

where pdata represents the sample distribution, and E denotes the expected distance. D(x, y)
is the discriminator that takes (x, y) as input and outputs a scalar, and G(z) is the generator
in which a sample z can be drawn from a distribution pz to the input space.

Compared to existing GAN models that have introduced self-attention mechanisms [16,37],
our approach has several distinct features: it is specifically designed for industrial pro-
duction, focusing on enhancing infrared thermal images for industrial defect detection.
We integrate the self-attention module into the middle layer of the generator to capture
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long-range dependencies and enhance the feature extraction. Our model uses a learnable
scaling factor γ to gradually transition from local to global information, and we reduce the
number of channels in the self-attention module to C/8 to improve the memory efficiency,
without significant performance degradation.

The generator is composed of a 7-layer convolutional network, as shown in Table 1. It
incorporates two self-attention modules, three deconvolution layers, and two upsampling
layers. The 262,144-dimensional feature vector is transformed into 256 × 256 × 3 images as
the input. Furthermore, the deconvolution layer adopts the LeakyReLU activation function
and batch normalization, while the output layer employs the hyperbolic tangent activation
function (tanh).

Table 1. Detailed information of the proposed generator.

Input Image Size Convolution Operation Output Image Size

1 × 262,144 Reshape (BN) 64 × 64 × 64
64 × 64 × 64 Upsample:2 64 × 128 × 128

64 × 128 × 128 Self-attention 64 × 128 × 128
64 × 128 × 128 Deconv2d:64 3 × 3 64 × 128 × 128

stride = 1 (BN ReLU)
64 × 128 × 128 Upsample:2 64 × 256 × 256
64 × 256 × 256 Deconv2d:32 3 × 3 32 × 256 × 256

stride = 1 (BN ReLU)
32 × 256 × 256 Self-attention 32 × 256 × 256
32 × 256 × 256 Deconv2d:3 3×3 3 × 256 × 256

stride = 1 (Tanh)

3.2. Spectral Normalization for Generator and Discriminator

In stable GAN training methods, spectral normalization has recently been imple-
mented in the discriminator, as introduced in the study in [41]. This technique constrains
the Lipschitz constant of the discriminator by bounding the spectral norm of each layer.
The spectral norm serves as an approximation of the Lipschitz constant for a composite
function, which can be thought of as a sequence of convolutional layers and activation func-
tions. According to the Lipschitz continuity theory, a composite function retains Lipschitz
continuity if each individual function within it maintains this property. In the discriminator,
the activation function is LeakyReLU, which inherently satisfies Lipschitz continuity and
contributes to the stable training of the GAN network. Notably, unlike other normalization
methods, spectral normalization does not necessitate additional hyperparameter tuning
(in our experiments, setting the spectral norm of all weight layers to 1 yielded satisfactory
results). Consequently, every convolutional layer must be designed to satisfy Lipschitz
continuity. When considering an input h and a parameter matrix A for a convolutional
layer, the spectral norm σ(A) is calculated as follows:

σ(A) := max
h:h ̸=0

||Ah||2
||h||2

= max
||h||2≤1

||Ah||2. (6)

This value is equivalent to the largest singular value of matrix A, and it corresponds
to the Lipschitz continuity constant, which is also equal to the spectral norm of the pa-
rameter matrix. By determining the spectral norm σ(W) of the parameter matrix W for
the convolutional layer, we ensure that the maximum singular value of the normalized
convolutional layer parameter matrix WSN remains at 1. Consequently, for a linear layer,
the norm can be expressed as g(h) = Wh, and its Lipschitz constant is calculated as
||g||Lip = suphσ(∇g(h)) = suphσ(W) = σ(W). The computation of WSN is outlined
as follows:

WSN(W) =
W

σ(W)
. (7)
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Recent research has emphasized the significance of modulating generators for improv-
ing the performance of GANs. In particular, studies have shown that applying spectrum
normalization to generators can yield several benefits [42]. By employing spectrum normal-
ization, the risk of parameter escalation is minimized and potential gradient irregularities
are avoided. Empirical evidence suggests that this technique encourages the generator to
rely on a smaller number of discriminators per update, resulting in a significant reduction
in computational training costs. Additionally, spectrum normalization has been observed
to enhance training stability.

To provide additional information, the DCGAN incorporates spectrum normalization
in its discriminator’s convolutional network, as shown in Table 2. The input consists of
images with dimensions of 256 × 256 × 3. The convolutional kernel size is set to 3 × 3, and
the channel lengths progress as 16, 32, 64, 128, and 128. To improve training stability, all
layers are augmented with batch normalization (BN) and spectral normalization (SN). The
LeakyReLU activation function from ref. [43] with a slope of 0.2 is utilized. Additionally,
25% of the input data channels are randomly dropped, aiding the model in achieving
improved generalization over the training data. Ultimately, linear and sigmoid functions
are employed for classification purposes.

Table 2. Detailed information of the proposed discriminator.

Input Image Size Convolution Operation Output Image Size

3 × 256 × 256 Conv2d:16 3 × 3 stride = 2 16 × 256 × 256
(BN SN 0.2 leakyReLU

Dropout)
16×256 × 256 Conv2d:32 3 × 3 stride = 2 32 × 256 × 256

(BN SN 0.2 leakyReLU
Dropout)

32 × 256 × 256 Conv2d:64 3 × 3 stride = 2 64 × 256 × 256
(BN SN 0.2 leakyReLU

Dropout)
64 × 256 × 256 Conv2d:128 3 × 3 stride = 2 128 × 256 × 256

(BN SN 0.2 leakyReLU
Dropout)

128 × 256 × 256 Flatten (Liner Sigmoid) 1 × 262,144

3.3. Two Time-Scale Update Rule

In previous research, it has been noted that the orthogonalization of the discrimina-
tor [44] can hinder the learning progress of GANs. Specifically, the process of training the
orthogonalized discriminator often requires multiple updates of the discriminator for every
update of the generator. To tackle this challenge, Heusel et al. [45] proposed a solution
known as the two time-scale update rule (TTUR), which involves assigning distinct learning
rates to the generator and discriminator. The TTUR approach aims to mitigate the issue of
slow learning when training the orthogonalized discriminator.

The TTUR method suggests employing fewer discriminator update steps for each
generator update step whenever possible. By adopting this technique, it becomes feasible
to achieve improved outcomes within the same time frame. In the context of the two
time-scale update rule, the learning rates a(n) and b(n) are utilized for generator and
discriminator updates, as follows:

wn+1 =wn + b(n)(g(θn, wn) + M(w)
n )

θn+1 =θn + a(n)(h(θn, wn) + M(θ)
n ),

(8)

where w and θ represent the parameter vectors of the discriminator D(., w) and the gener-
ator G(., θ), respectively. In addition, g(θ,w) and h(θ, w) indicate the true gradient of the
discriminator and generator, and M(w) and M(θ) are random variables.
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The flowchart presented in Figure 6 illustrates the proposed approach, which pro-
gresses through four distinct steps. Firstly, the integration of the self-attention module
occurs in both the low-dimensional and high-dimensional convolutional layers of the
generator. This integration plays a crucial role in generating the synthetic data. Secondly,
spectral normalization is employed to train both the generator and the discriminator. The
discriminator evaluates the authenticity of both the synthetic and real data. Thirdly, differ-
ent learning rates are assigned to the generator and discriminator. Lastly, a cyclic training
process is executed for the discriminator and generator, continuously improving the quality
of the synthesized images until a state of Nash equilibrium has been achieved. The losses
associated with the generator and discriminator guide the parameter updates in their
respective networks.
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Noise

Vector

Z

DCGAN generator
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Figure 6. Flowchart of the proposed SAITI-DIGAN approach.

4. Results

To verify the effectiveness of our SAITI-DCGAN approach, a set of qualitative and
quantitative comparison experiments were conducted. The total number of epochs and
the learning rates of the generator and discriminator were set to 5000, 0.0002, and 0.0001,
respectively. The hardware configuration for the experiments included an AMD (R) Ryzen
(TM) 5 5600H @ 3.30 GHz CPU, manufactured by Advanced Micro Devices, Inc., Austin,
TX, USA; an NVIDIA GeForce RTX 3050 GPU, and 16 GB of memory, both manufactured by
NVIDIA Corporation, Santa Clara, CA, USA. The experiments were conducted within the
Python 3.6 operating environment, utilizing the PyTorch platform (version 1.13.1+cu117)
for model implementation. The operating system employed was Windows 11.

4.1. Data Collection

The dataset of aluminum foil sealing was collected on-site through infrared thermal
imaging. In the absence of designated domain experts, we engaged several senior engineers
from within the company, who possess substantial practical experience in pertinent fields, to
contribute to the collection process. Guided by these experts, we performed an exhaustive
classification of on-site acquired samples and meticulously selected representative instances
of both normal and anomalous cases to compile our training and testing datasets. This
methodological approach enriched the diversity and complexity of the dataset, thereby
ensuring its fidelity to real-world scenarios.

A total of three categories of aluminum foil sealing defect images were collected, with the
resolution spanning from 100 × 100 pixels to 384 × 288 pixels. Infrared thermal images were
captured within a specific spectral range of 7.5 to 14 µm. To enhance the visual contrast and
improve feature extraction, we generated 24-bit false color images by mapping different infrared
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bands to colors in the visible spectrum. Specifically, the red channel captured high-temperature
features, the green channel captured mid-high temperature features, and the blue channel
captured low-temperature features. This enhanced contrast helped the network more effectively
distinguish different features. The RGB values were mapped within the range of 0 to 255 to
ensure compatibility with standard image processing techniques. To prepare the data for model
training, we resized the height and width of the defect images to 256 × 256 pixels, preserving the
aspect ratio to maintain the fundamental morphological characteristics of the defects. During the
preprocessing phase of the dataset, random rotation, flipping, and Gaussian blurring techniques
were employed to enhance the quality of the generated images. Representative samples with
various defects are presented in Table 3. To be specific, the types are divided into the following
categories: broken aluminum foil (BAF), missing aluminum foil (MAF), and loose or crooked
caps (LCC).

Table 3. Collected dataset images of aluminum foil sealing.

Type Description Example

BAF broken aluminum foil

MAF missing aluminum foil

LCC loose or crooked caps

4.2. Qualitative Evaluation

Images generated by the GAN, DCGAN, and our SAITI-DCGAN approach are il-
lustrated in Figure 7. In the left-most column, various types of infrared thermal images
of aluminum foil sealing are displayed. Specifically, it includes images of broken alu-
minum foil within the bottle cap (BAF), images that depict the absence of aluminum foil in
the bottle cap (MAF), and images showcasing instances where the bottle cap was either
inadequately tightened or skewed during the tightening process (LCC). The final row
presents the generation outcomes obtained from the GAN, DCGAN, and our proposed
SAITI-DCGAN approach. Given the large number of test samples, for each type of defect
generation, the input used for comparison in Figure 7 was randomly selected from the
normal samples in the test set. All samples were rigorously screened and classified under
the guidance of domain experts, ensuring that they not only accurately reflected both
normal and abnormal conditions in real-world application scenarios but also maintained
internal consistency within each category of images. Consequently, even randomly selected
samples, particularly the normal samples, possessed characteristics that were represen-
tative of their respective categories. Furthermore, to ensure the fairness and directness
of the model output comparisons, all tests were conducted at the same iteration stage on
identical inputs. This meant that the different network architectures faced exactly the same
input conditions at the same training stage, thereby making the comparison of output
results more equitable and comparable. The results shown are the outputs of the networks
at different iteration stages for the same input. Further analysis of these results will be
provided based on the subsequent experimental findings.

We can observe that in the GAN model, during the initial 100 training iterations for the three
defect cases (i.e., BAF, MAF, and LCC), the generated images exhibited significant blurriness
and noise, lacking distinct forms for the defects. After 1000 iterations, the generated images still
retained some blurriness, but they showcased enhanced content and sharpness compared to
the 100 iteration stage. By the time the training reached 1500 iterations, the generated images
began to exhibit the rudimentary form of the defects. With further training iterations, at around
2000 iterations, the generated images became clearer, containing richer detail information than
that at 1500 iterations. The images produced after 2000 iterations were close to the actual defect
images. With the original DCGAN model, the internal defect structure of the generated images
from 100 to 500 training iterations remained chaotic. Stability in shape was gradually achieved
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around 750 training iterations, occasionally accompanied by aberrant images. This pattern
was particularly evident in the BAF and LCC cases, while well-defined MAF defect images
emerged as the training progressed to 1750 iterations. In comparison, the generated images
of our SAITI-DCGAN yielded a stable and clear structure after approximately 750 training
iterations with respect to all three categories.
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Figure 7. Comparison of the existing image generation models and the model proposed in this paper
(the numbers below the images correspond to the model’s iterations).

In evaluating the generated anomaly samples, we collaborated with industry experts
to conduct a detailed comparative analysis. Leveraging their extensive experience in
defect detection and image processing, the experts provided critical guidance and feedback
throughout the process. Their input was essential in ensuring the scientific rigor and
reliability of our findings.

Firstly, the GAN model was easily influenced by noise during the training process.
Moreover, the images generated by the GAN for the three types of defects exhibited a
monotonous style, lacking diversity and randomness. Notably, the generated LCC defect
images differed greatly from the original training set, indicating that the GAN model
failed to effectively capture the image features. With respect to the DCGAN model, the
generated images displayed considerable instability and were prone to collapsing. Even
after 2000 training iterations, the generated defect images remained less effective compared
to the original images. In contrast, our proposed SAITI-DCGAN model could surpass the
above two models by learning local features and also by presenting superior texture details.

4.3. Quantitative Evaluation
4.3.1. Evaluation Metrics

Considering the potential impact of subjective factors such as individual variances and
preferences, the qualitative evaluation of experimental outcomes may inherently exhibit a
degree of bias. To attain a more objective and accurate assessment of the generated image
quality, this study incorporated two evaluation metrics: inception score (IS) [46] and Frechet
inception distance (FID) [46].

The IS represents a metric employed to assess the diversity and quality of generated
images. This metric involves categorizing the images generated by a classification model,
typically employing the Inception V3 model. The IS value is derived by computing the
entropy of the softmax output distribution for the generated images, combined with the
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exponent of the average class probability. The higher the value of IS, the better the diversity
and quality of the generated images. The IS can be calculated by

IS(G) = exp(Ex∼pg DKL(p(y|x)||p(y))), (9)

where x ∼ pg denotes the generated image, and p(y|x) indicates that the generated image x is
input into the initial model to obtain a 1000-dimensional vector y, i.e., the probability distribution
of the image represents various types. Moreover, p(y) means the average corresponding
probability distribution vector obtained by N generated images input into the initial model, i.e.,
the marginal distribution of the image generated by the generator in all categories.

The FID is utilized to quantify the dissimilarity between generated and real images.
This assessment involves passing both generic and authentic data through a pre-trained
Inception V3 model [47] originally trained on the ImageNet dataset [48] to extract visually
relevant features. The mean and covariance of the authentic and generated features are rep-
resented by (Mt, Ct) and (Mg, Cg), respectively, and Tr denotes the trace of the covariance
matrix of the feature vectors of the real data. This metric can be calculated by

FID = ||Mt − Mg||22 + Tr(Ct + Cg − 2(CtCg)
1
2 ). (10)

A lower FID value indicates that the generated images are closer to real images in terms of
visual quality, diversity, and distribution of features.

4.3.2. Evaluation Results

Here, we employed the IS, FID, and loss function as quantitative evaluation metrics.
The generator’s loss function typically hinges on the discriminator’s predictions concerning
the generated samples. Specifically, the generator aims to minimize the probability of the
discriminator classifying the generated sample as fake. Conversely, the discriminator’s
loss function typically relies on its classification outcomes for both real and generated
samples. Figure 8 illustrates the fluctuation patterns of the generator’s and discriminator’s
loss functions across different model variants. The graph indicates that the discriminator’s
loss function experienced notable fluctuations during the early stages. On the other hand,
the generator’s loss function exhibited significant fluctuations in the beginning due to
its limited capacity to create authentic defect images. This made it susceptible to being
identified as a fake sample by the discriminator. As the training progressed, the generator’s
loss function gradually increased, signifying an improved ability to generate samples
resembling real defect images. In comparison with our proposed approach, we can see
that the error between the maximum value of the loss function of the generator and the
discriminator was one to three times in the GAN and DCGAN models. The loss of the
generator and discriminator of our approach was significantly lower than for the other two
models, and it also demonstrated robust convergence and performance.

Figure 9 depicts the performance for the FID and IS values across different models
and defect cases. In all three defect cases, the FID value consistently decreased as the
optimization and training of the model progressed. This trend signifies that the quality
of the generated images steadily approached that of real images, reflecting an overall
enhancement in the performance of the generated model. Conversely, the IS value exhibited
a more intricate pattern of change. The IS value tended to increase over time, indicating
an enhancement in the quality and diversity of the generated images. However, changes
in the IS can be complex due to its potential sensitivity to specific categories of generated
images during diversity evaluation. Consequently, the improvement in the quality of
certain categories of generated images may be very slow. We can see that the GAN model
showed a sharp downward trend in terms of the IS value for the LCC defect, similar to the
trend observed for the BAF defect with the DCGAN model. This indicates that the training
process of these models was not stable. In contrast, when employing imbalanced learning
rates for training both the generator and discriminator within our proposed model, the
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generated images consistently exhibited a monotonic change with respect to the FID and
the IS values throughout the training process.
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Figure 8. Comparison of the loss function of the generator and discriminator under different models.

GAN DCGAN SAITI-DCGAN

Figure 9. Comparison of the IS and FID metrics under different models.

We also detail the FID and IS values in Table 4. We can see that the image generation
model introduced in this paper achieved better results.

For the IS value, our model outperformed both the DCGAN and GAN models for all
defect types, showing substantial improvements. For the BAF defect, our model signifi-
cantly outperformed both comparison models. For MAF and LCC defects, our model also
demonstrated notable improvements over the DCGAN and GAN models.
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Regarding the FID values, our model achieved impressively low scores for all defect
types, significantly lower than those of the DCGAN and GAN models. These results
indicate that the proposed model consistently produced superior images compared to the
existing models.

Table 4. Results of the different models for the three defects.

Type Description
FID (Avg) Inception Score (Avg)

GAN DCGAN SAITI-DCGAN GAN DCGAN SAITI-DCGAN

BAF broken aluminum foil 0.050169 0.028795 0.025064 0.567541 0.433728 0.606708
MAF missing aluminum foil 0.044233 0.02598 0.025588 0.373805 0.56516 0.590326
LCC loose and crooked caps 0.22409 0.028959 0.019037 0.048396 0.306051 0.336719

4.4. Ablation Experiments

In this paper, we also conducted ablation experiments to validate the effectiveness of
the individual modules. The use of each module is indicated by ✓, while its absence is
denoted by ×. All three modules generated images of size 256 × 256 × 3. Table 3 presents
a subset of the original defect images, while Table 5 displays the synthesized images of
different defects (i.e., BAF, MAF, and LCC) under different modules.

The first three rows show images generated with one module removed, while the
last three rows display images generated with two modules removed. Overall, the image
quality remained acceptable, but images generated using the SA module exhibited a
higher coherence in layout and better alignment with the original images, enhancing
their similarity.

According to Table 5, the image quality was slightly lower when only the SN and
TTUR modules were used compared to when only the SA module was included. This
is expected, as the SN module stabilizes the training process but does not improve the
image details. Table 6 presents a comparative analysis of the training losses of the genera-
tor and discriminator under the different module configurations, and discriminator loss
comparisons under the different modules. In Table 6, the loss curves of the generator and
discriminator are represented by the blue and orange lines, respectively. Models with the
SN module exhibited less loss fluctuation, indicating enhanced training stability. The TTUR
module, by using a smaller learning rate for the discriminator and a larger one for the
generator, improves the data distribution representation and adversarial learning stability,
leading to better generator quality and reduced loss. The generator’s loss value varied the
most, suggesting that the model effectively leveraged the capabilities of the SA, SN, and
TTUR modules to enhance the image quality.

When one module was removed, as shown in the first three rows, removing the SN
module had a minor impact on the image quality and training stability. However, when
two modules were removed, as demonstrated in the last three rows, the decline in image
quality and training stability was more pronounced. Specifically, removing both the SA
and SN modules led to a significant deterioration in visual quality and training instability,
characterized by large fluctuations in training loss (Table 6). Removing the SA and TTUR
modules resulted in a substantial drop in image quality due to the lack of key image feature
capture and optimized learning rate adjustment (Table 5).
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Table 5. Synthesized images of different defects under different modules.

Module
BAF MAF LCC

SA SN TTUR

✓ ✓ ✓

× ✓ ✓

✓ × ✓

✓ ✓ ×

✓ × ×

× ✓ ×

× × ✓
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Table 6. Training loss of the generator and discriminator under different modules.

Module
BAF MAF LCC

SA SN TTUR

✓ ✓ ✓
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5. Discussion

In this paper, we evaluated the SAITI-DCGAN (spectral and spatial attention improved
thermal image deep convolutional generative adversarial network) using self-collected
infrared thermal images. Our assessment included both qualitative analysis and quanti-
tative metrics such as the inception score (IS) and Frechet inception distance (FID). The
results indicate that our model generated more realistic and higher-quality defect images
compared to the traditional GAN and DCGAN models, because of the spectral–spatial
attention mechanism that enhanced the feature extraction and image fidelity.

While the trained discriminator can extract useful features for defect detection via
transfer learning, its primary role in distinguishing real from generated images limits its
fine-grained recognition capabilities. For optimal defect detection, we recommend using
the generated images for data augmentation and employing specialized detection models
for precise identification.

Future work will focus on refining the attention mechanisms to improve the image
realism, integrating multi-source data for richer training sets, and developing customized
algorithms for specific defect types. This approach aims to enhance the application of
infrared thermal imaging in non-destructive testing.

6. Threats to Validity

The dataset used in this study consists of self-collected infrared thermal images. The
images provide valuable controlled data but may not fully represent the diverse variations
found in industrial settings. This limitation could affect the model’s adaptability to real-
world conditions, impacting the generalizability of our findings.

For quantitative evaluation, we used the Frechet inception distance (FID) metric based
on a pre-trained Inception V3 model. While FID is widely accepted, its reliance on a
network trained on natural RGB images may introduce biases when applied to infrared
thermography, potentially leading to inaccurate assessments of image quality due to
mismatches with unique characteristics like temperature gradients and material emissivity.

To ensure practical applicability and robustness, additional validation methods are
necessary. Human expert evaluations can provide critical insights into the realism and
diagnostic value of generated images. Real-world testing in industrial environments helps
identify limitations and areas for improvement. Integrating user feedback and existing
inspection workflows further refines a model’s utility.

In summary, while the current dataset and FID metric offer valuable insights, they
highlight the need for a more comprehensive validation approach. Future work should
expand the dataset and develop metrics specific to infrared thermal imaging to better meet
the demands of industrial defect detection.

7. Conclusions and Future Outlook

In this paper, we proposed a novel deep convolutional generative adversarial network
that incorporates self-attention, spectral normalization, and two time-scale update rules,
named SAITI-DCGAN, to enhance the synthesis quality of infrared thermal images for alu-
minum foil sealing. Specifically, a self-attention module was embedded into the generator,
and spectral normalization was adopted for both the generator and discriminator. In addi-
tion, a two time-scale update rule was applied to coordinate the training of the generator
and discriminator. With respect to the functionalities of these modules, we integrated the
self-attention into the generator to capture the global dependencies of the images, thereby
enhancing the quality and variety of the generated images. Subsequently, we elaborated
on the roles and advantages of spectral normalization and how to apply it to generators
and discriminators for stabilizing the training process, with the aim of preventing gradient
anomalies and pattern crashes. The two time-scale update rule was adopted to expedite
the generator’s adaptation to the discriminator feedback. This mechanism can improve the
balance between the generator and discriminator and enhance convergence.
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In the experiments, we utilized self-collected infrared thermal images of aluminum
foil sealing as a dataset for comprehensive verification. We considered both qualitative
and quantitative metrics, including the inception score and the Frechet inception distance,
to demonstrate the superiority of our proposed SAITI-DCGAN model in terms of image
quality and diversity. Compared to traditional GAN and DCGAN models, the images
generated by our SAITI-DCGAN were more realistic and of higher quality, as it could
capture intricate details and distinctive features of the defect images of aluminum foil
sealing. In addition, we also conducted ablation experiments to verify the roles of the self-
attention, spectral normalization, and two time-scale update rules in improving the model
performance. The results indicate that the combination of these modules significantly
enhanced the image generation quality and achieved a balance between stability and
training efficiency.

In conclusion, the proposed SAITI-DCGAN model achieved remarkable results in the
quality and diversity of synthesized infrared thermal images for aluminum foil sealing.
Our work also provides a strong impetus for the application and innovation of infrared
thermal imaging technology. In the future, we will continue to explore and optimize the
model, so as to meet the requirements of various practical application scenarios in the
industrial field.
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