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Abstract
We obtain new transference bounds that connect the additive integrality gap and spar-
sity of solutions for integer linear programs. Specifically, we consider the integer
programs min{c · x : x ∈ P ∩ Z

n}, where P = {x ∈ R
n : Ax = b, x ≥ 0} is a

polyhedron in the standard form determined by an integer m × n matrix A and an
integer vector b. The main result of the paper gives an upper bound for the integral-
ity gap that drops exponentially in the size of the support of the optimal solutions
corresponding to the vertices of the integer hull of P . Additionally, we obtain a new
proximity estimate for the �2-distance from a vertex of P to its nearest integer point
in P . We also strengthen previously known bounds for the integer Carathéodory rank,
a key sparsity characteristic which estimates the minimum size of the support of an
integer point in P in terms of the matrix A. The proofs make use of the results from
the geometry of numbers and convex geometry.
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1 Introduction andmain results

The proximity and sparsity of solutions to integer programs are well-established direc-
tions of research in the theory of mathematical programming.

Proximity-type results study approximations of the solutions to integer programs
by the solutions of linear programming relaxations. This is a traditional research
topic with the first contributions dated back at least to Gomory [19, 20]. The most
influential results in this area also include the proximity bounds by Cook et al. [15]
and by Eisenbrand and Weismantel [18]. For more recent contributions, we refer the
reader to Celaya et al. [13], Lee et al. [21, 22], and Paat et al. [24].

Sparsity-type results study the size of support of solutions to integer programs. This
area of research takes its origin from the integer Carathéodory theorems of Cook et
al. [14] and Sebő [26] and later major contributions by Eisenbrand and Shmonin [17].
In recent years, this topic has been studied in numerous papers, including Abdi et al.
[1], Aliev et al. [2, 4, 5], Berndt et al. [7], Dubey and Liu [16] and Oertel et al. [23].

Recent works of Lee et al. [21] and Aliev et al. [3] show that the proximity and
sparsity areas are highly interconnected. The paper [3] establishes transference bounds
that link both areas in two special cases: for corner polyhedra and knapsacks with
positive entries. Remarkably, this gives a drastic improvement on the previously known
proximity bounds for knapsacks obtained in [6].

In this paper, we establish the first transference bounds that involve the integrality
gapof integer linear programs andhold in thegeneral case, addressing a future research
question posed in [3]. The proofs explore a new geometric approach that combines
Minkowski’s geometry of numbers and box slicing inequalities.

Firstly, we will introduce the proximity and sparsity results most relevant to the
contributions of this paper. Let A ∈ Z

m×n with m < n and b ∈ Z
m . We define the

polyhedron

P(A, b) = {x ∈ R
n≥0 : Ax = b}

and assume that P(A, b) contains integer points. Given a cost vector c ∈ R
n , we

consider the integer linear programming problem

min{c · x : x ∈ P(A, b) ∩ Z
n}, (1)

where c·x stands for the standard inner product. In this paper, we assume that (1) is fea-
sible and bounded. A very successful and traditional approach for solving optimisation
problems of the form (1) is based on solving their linear programming relaxations

min{c · x : x ∈ P(A, b)}, (2)

obtained by dropping the integrality constraint. Subsequently, various methods are
used to construct a feasible integer solution z∗ to (1) from a fractional solution x∗ of
(2). In this setting, the proximity-type results play a central role by providing estimates
for the size of a region containing z∗ in terms of various parameters of the matrix A.
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We will now introduce the notation needed to state the proximity results. Let [n] =
{1, . . . , n}, let ([n]

k

)
be the set of all k-element subsets of [n], and for τ = {i1, . . . , ik} ∈

([n]
k

)
with i1 < · · · < ik , let Aτ denote the m × k submatrix of A with columns

indexed by τ . In the same manner, given x ∈ R
n , we will denote by xτ the vector

(xi1 , . . . , xik )
�.

Without loss of generality, we assume that A has rank m and, for 1 ≤ r ≤ m,
denote by Δr (A) the maximum absolute value of an r × r subdeterminant of A, that
is

Δr (A) = max {| det B| : B is an r × r submatrix of A} .

Further, by ‖ · ‖1 and ‖ · ‖∞ we denote the �1 and �∞ norms, respectively.
Let x∗ be a vertex optimal solution for (2). The sensitivity theorems of Cook et

al. [15] (see also Celaya et al. [13] for further improvements) imply existence of an
optimal solution z∗ to (1) with

‖x∗ − z∗‖∞ ≤ (n − m)Δm(A). (3)

In the same setting, a more recent result of Eisenbrand and Weismantel [18] gives the
estimate

‖x∗ − z∗‖1 ≤ m(2mΔ1(A) + 1)m, (4)

which is, remarkably, independent of the dimension n.
Let IP(A, b, c) and LP(A, b, c) denote the optimal values of (1) and (2), respec-

tively. The main focus of this paper is on estimating the (additive) integrality gap
IG(A, b, c) defined as

IG(A, b, c) = IP(A, b, c) − LP(A, b, c).

The integrality gap is a fundamental proximity characteristic of the problem (1) exten-
sively studied in the literature. Upper bounds for IG(A, b, c) appear already in the
work of Blair and Jeroslow [8, 9].

In view of (3), the additive integrality gap satisfies the bound

IG(A, b, c) ≤ ‖c‖1(n − m)Δm(A). (5)

The estimate (4), in its turn, gives the bound

IG(A, b, c) ≤ ‖c‖∞m(2mΔ1(A) + 1)m . (6)

In the special cases, such as the knapsack scenario m = 1 studied in [3, 6], stronger
proximity bounds are known.

To introduce the sparsity results relevant to this paper, we will need the following
notation. Given a vector x = (x1, . . . , xn)� ∈ R

n , we will denote by supp(x) the
support of x, that is supp(x) = {i : xi 
= 0}. To measure the size of the support, we
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use the 0-norm ‖x‖0 = |supp(x)|, widely used in the theory of compressed sensing
[10, 11].

Let us consider the size of the support of solutions to the system of linear equations
Ax = b, where x is restricted to a structured domain D ⊂ R

n . The sparsest solutions
are optimal solutions of the optimisation problem

min {‖x‖0 : Ax = b, x ∈ D} . (7)

The 0-norm minimisation problem (7) is central in the theory of the compressed
sensing, where for the classical choice D = R

n an appropriate linear programming
relaxation of (7) provides a guaranteed approximation [10, 11]. The case D = Z

n≥0,
relevant to the integer programming setting, has been extensively studied in [2, 4, 5,
17] and other works.

When D = R
n and D = R

n≥0, the tight upper bounds on (7) in terms of A
are given by the rank of A, which follows from basic linear algebra and the well-
known Carathéodory’s theorem from convexity, respectively. The paper Aliev et al.
[2] introduced the integer Carathéodory rank ICR(A) of the matrix A, defined as the
tight upper bound on the optimisation problem (7) with D = Z

n≥0 in terms of A.
Specifically,

ICR(A) = max
y∈Zn≥0

min{‖x‖0 : x ∈ P(A, Ay) ∩ Z
n}.

Let

Δ(A) =
√
det AA�.

Geometrically, Δ(A) is the m-dimensional volume of the parallelepiped determined
by the rows of A. Note that

Δ(A) =
√√√√

∑

τ∈([n]
m )

det(Aτ )2 (8)

by the Cauchy-Binet formula. Let further gcd(A) be the greatest common divisor of
all m × m subdeterminants of A.

The results of Aliev et al. [4] imply the general bound

ICR(A) ≤ m +
⌊
log2

(
Δ(A)

gcd(A)

)⌋
. (9)

In what follows, we denote by cone(A) the cone generated by the columns of the
matrix A. Recall that a cone C is pointed if C ∩ (−C) = {0}. Assuming that cone(A)

is pointed, let

q(A) = min
j

√√√√
∑

σ⊂[n]:
|σ |=m, j∈σ

(det(Aσ ))2, (10)
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where theminimum in (10) is taken over the indices j which correspond to the extreme
rays of cone(A). Note that q(A) ≤ Δ(A) by (8). Theorem 3 in [2] shows that (9) can
be strengthened by replacing Δ(A) with q(A). That is the bound

ICR(A) ≤ m +
⌊
log2

(
q(A)

gcd(A)

)⌋
(11)

holds.
We will now state the main results of this paper. Observe that the integrality gap is

positive homogeneous of degree one in c, that is for t > 0

IG(A, b, tc) = t IG(A, b, c). (12)

In what follows, we use the notation ‖ · ‖2 for the �2 norm. In view of (12), we may
assume without loss of generality that c is a unit vector, that is ‖c‖2 = 1.

Given a set K ⊂ R
n we will denote by conv(K ) the convex hull of K . The poly-

hedron

PI (A, b) = conv(P(A, b) ∩ Z
n)

is traditionally referred to as the integer hull of P(A, b). Given an optimal solution z∗
to (1) which is a vertex of the integer hull PI (A, b), we obtain transference bounds
that link the integrality gap IG(A, b, c) with the size of the support of z∗.

Theorem 1 Let A ∈ Z
m×n, m < n, be a matrix of rank m, b ∈ Z

m and c ∈ R
n

be a unit cost vector. Suppose that (1) is feasible and bounded. Let z∗ be an optimal
solution to (1) which is a vertex of PI (A, b). Then

IG(A, b, c) ≤ s

2s−m−1 · Δ(A)

gcd(A)
, (13)

where s = ‖z∗‖0.
Hence, we obtain an upper bound for the integrality gap that drops exponentially in
the size of the support of any optimal solution to (1) which is a vertex of the integer
hull PI (A, b). In this vein, we remark that [3] gives optimal transference bounds for
positive knapsacks and corner polyhedra that connect the �∞-distance proximity and
the size of the support of integer feasible solutions. Theorem1 applies in the general
case m ≥ 1 and a different setting; it connects the integrality gap and the size of the
support of optimal solutions to (1).

Next,weobtain fromTheorem1 transferencebounds in termsofΔm(A) andΔ1(A).

Corollary 2 Assume the conditions of Theorem 1. Then the bounds

IG(A, b, c) ≤ s
(s+m

m

)1/2

2s−m−1 · Δm(A)

gcd(A)
(14)
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and

IG(A, b, c) ≤ s(s + m)m/2

2s−m−1 · (Δ1(A))m

gcd(A)
(15)

hold.

For a unit cost vector c, the bound (14) improves on (5) when s ≥ 4m, and the bound
(15) improves on (6) when s ≥ 6m.

The proof of Theorem 1 makes use of results from convex geometry and
Minkowski’s geometry of numbers. Exploring this geometric approach, we obtain
the following new proximity and sparsity bounds. Firstly, we estimate the �2-distance
from a vertex of the polyhedron P(A, b) a nearest integer point in P(A, b).

Theorem 3 Let A ∈ Z
m×n, m < n, be a matrix of rank m, b ∈ Z

m, and suppose that
P(A, b) contains integer points. Let x∗ be a vertex of P(A, b). There exists an integer
point z∗ ∈ P(A, b) such that

‖x∗ − z∗‖2 ≤ Δ(A)

gcd(A)
− 1 . (16)

We remark that for certain matrices A the bound (16) is smaller than the �2-norm
proximity bounds

√
n(n − m)Δm(A) and m(2mΔ1(A) + 1)m that can be derived

from [13] and [18], respectively. It is sufficient to observe that the ratio Δ(A)/Δm(A)

can be arbitrarily close to one and the ratio Δ(A)/Δ1(A) can be arbitrarily small.
For instance, we can consider the sequence of matrices At = (t Im |B) where Im
is the m × m identity matrix and B is a fixed m × (n − m) integer matrix. Then
Δ(At )/Δm(At ) → 1 as t → ∞. Further, the quantity Δ(A) is the determinant of the
lattice generated by the rows of A. The same lattice can be generated by the rows of
a matrix Ã with arbitrarily large Δ1( Ã). Hence the ratio Δ( Ã)/Δ1( Ã) can be made
arbitrarily small.

Applying Theorem3 to a vertex optimal solution x∗ of (2) we obtain the following
estimate.

Corollary 4 Let A ∈ Z
m×n, m < n, be a matrix of rank m, b ∈ Z

m and c ∈ R
n be a

unit cost vector. Suppose that (1) is feasible and bounded. Then the bound

IG(A, b, c) ≤ Δ(A)

gcd(A)
− 1 (17)

holds.

For a unit cost vector c, the bound (17) improves (5) when Δ(A)/ gcd(A) < (n −
m)Δm(A)+1 and improves (6) whenΔ(A)/ gcd(A) < mn−1/2(2mΔ1(A)+1)m+1.

Next, we use the geometric tools developed for the proof of Theorem 1 to obtain a
new estimate for the integer Carathéodory rank that generalises Theorem 4 in [2] and
strengthens the bound (11).
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Theorem 5 Let A ∈ Z
m×n, m < n, be a matrix of rank m. Assume that cone(A) is

pointed. Then

ICR(A) ≤ m +
⌊
log2

(
μ(A)

gcd(A)

)⌋
, (18)

where

μ(A) = min
j∈[n]

√√√√
∑

σ⊂[n]:
|σ |=m, j∈σ

(det(Aσ ))2. (19)

Theorem 4 in [2] gives the bound (18) in the knapsack scenario m = 1. The
bound (11), in its turn, restricts the minimum in (19) to the indices j ∈ [n] which
correspond to the extreme rays of the cone generated by the columns of A. The ratio
μ(A)/q(A) can be arbitrarily small. For instance, consider the sequence of matrices
At = (t Im |B) where B is a fixed m × (n − m) integer matrix with positive entries.
Observe that (μ(At ))

2 is a polynomial in t and its degree is 2(m − 1) for sufficiently
large t . Similarly, (q(At ))

2 is a polynomial in t of degree 2m for sufficiently large t .
Hence μ(At )/q(At ) → 0 as t → ∞.

Note also that Proposition 3 in [2] implies that the bound (18) is optimal.

2 Volumes and linear transforms

In this section, we develop geometric tools needed for the proof of the transference
bounds.

For a matrix A ∈ R
l×r we denote by lin(A) the linear subspace of R

l spanned
by the columns of A. Given a set M ⊂ R

r we let AM = {Ax ∈ R
l : x ∈ M} and

use the notation [A] = A[0, 1]r . For a set X ⊂ R
l and a linear subspace L of R

l ,
we denote by X |L the orthogonal projection of X onto L . Further, voli (·) denotes the
i-dimensional volume.

Let S be an (l − k)-dimensional subspace of R
l . Consider an orthonormal basis

s1, . . . , sl−k, sl−k+1, . . . , sl of R
l such that the first l − k vectors form a basis of S.

Let further Sl−k = (s1, . . . , sl−k) ∈ R
l×(l−k) and Sk = (sl−k+1, . . . , sl) ∈ R

l×k .
Given a measurable set M in the subspace S, we are interested in the (l − k)-

dimensional volume of its image DM , where we assume that D ∈ R
l×l is an

invertible matrix. The first result gives a general expression for voll−k(DM) in terms
of voll−k(M).

Lemma 1 Let S be an (l− k)-dimensional subspace of Rl . Let M ⊂ S be measurable,
D ∈ R

l×l be nonsingular and let the rows of B ∈ R
k×l form a basis of the subspace

(DS)⊥, the orthogonal complement of the subspace DS = lin(DSl−k). Then

voll−k(DM) = | det(D)|
√

det(BB�)

det(BDD�B�)
voll−k(M).

123



I. Aliev et al.

Proof By the elementary properties of volume, we have

voll−k(DM) = voll−k([DSl−k])voll−k(M). (20)

On the other hand, we have

| det(D)| = voll([D(Sl−k, Sk)])
= voll−k([DSl−k])volk([DSk]|lin(DSl−k)

⊥)

= voll−k([DSl−k])volk([DSk]|lin(B�)).

(21)

Now, according to the definition of projections, we have

[DSk]|lin(B�) = B�(BB�)−1B[DSk]

and hence, recalling that the columns of Sk are part of an orthonormal basis, we have

volk([DSk]|lin(B�)) =
√
det(S�

k D�B�(BB�)−1BB�(BB�)−1BDSk)

=
√
det((BB�)−1)

√
det(BDSkS�

k D�B�)

=
√
det(BDD�B�)

det(BB�)
.

Substituting this expression in (21) gives along (20) the identity. ��
The second result provides a lower bound for voll−k(DM) that involves the eigen-

values of the matrix D�D and voll−k(M).

Lemma 2 Let M ⊂ S be measurable, D ∈ R
l×l nonsingular and let λ1 ≤ λ2 ≤ · · · ≤

λl be the positive eigenvalues of D�D. Then

voll−k(DM) ≥
(
l−k∏

i=1

√
λi

)

voll−k(M).

Proof According to (20), we need to estimate

voll−k([DSl−k]) =
√
det(S�

l−kD
�DSl−k).

Let O ∈ R
l×l be a matrix such that its rows form an orthonormal basis consisting

of eigenvectors of D�D. For convenience, we will denote by diag(λi ) the diagonal
matrix with the eigenvalues λ1, . . . , λl on the main diagonal. Then we have D�D =
O�diag(λi )O.
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Let [l] = {1, . . . , l} and let
([l]
r

)
be the set of all r -element subsets of [l]. With

S̃l−k = OSl−k we get by the Cauchy-Binet formula

det(S�
l−kD

�DSl−k) = det(S̃l−k
�
diag(λ1/2i )diag(λ1/2i )S̃l−k)

=
∑

I∈( [l]
l−k)

det(diag(λ1/2i )I )2(det(S̃l−k
I
))2

≥
(
l−k∏

i=1

λi

)
∑

I∈( [l]
l−k)

(det(S̃l−k
I
))2

=
(
l−k∏

i=1

λi

)

det(S̃l−k
�
S̃l−k) =

l−k∏

i=1

λi .

Here diag(λ1/2i )I is the (l − k) × (l − k) diagonal matrix with λ
1/2
i indexed by I and

S̃l−k
I
is the (l − k)× (l − k) submatrix of S̃l−k with rows indexed by I . In the second

to last identity we used again the Cauchy-Binet formula. ��
From Lemma2 we obtain the following corollary.

Corollary 6 Let S be an (l − k)-dimensional subspace of R
l and let D =

diag(d1, . . . , dl) with 0 < d1 ≤ d2 ≤ · · · ≤ dl . Then

voll−k(D(S ∩ (−1, 1)l)) ≥ 2l−k
l−k∏

i=1

di . (22)

Proof By Vaaler’s cube slicing inequality [28], we have voll−k(S ∩ (−1, 1)l) ≥ 2l−k .
Now the bound (22) immediately follows from Lemma2. ��

3 Proofs of the transference bounds

We will derive Theorem1 from Corollary4 and from the following result.

Theorem 7 Let A ∈ Z
m×n, with n > m+1, be a matrix of rank m, b ∈ Z

m and c ∈ R
n

be a unit cost vector. Suppose that (1) is feasible and bounded. Let z∗ = (z∗1, . . . , z∗n)�
be an optimal solution of (1) which is a vertex of PI (A, b). Assuming without loss of
generality z∗1 ≤ · · · ≤ z∗n, the bound

IG(A, b, c) ≤ (n − m)
∏n−m−1

i=1 (z∗i + 1)
· Δ(A)

gcd(A)
(23)

holds.
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Proof Let c|ker(A) denote the orthogonal projection of the vector c on the kernel
subspace ker(A) = {x ∈ R

n : Ax = 0} of the matrix A. Observe first that if c is
orthogonal to ker(A), then IG(A, b, c) = 0 and the bound (23) holds. Hence, we may
assume without loss of generality that c|ker(A) is a nonzero vector.

Suppose, to derive a contradiction, that the bound (23) does not hold. Then there
exists a vertex x∗ of P(A, b) and a vertex z∗ of PI (A, b) optimising (1), such that,
assuming z∗1 ≤ · · · ≤ z∗n , we have

c · (z∗ − x∗) >
(n − m)

∏n−m−1
i=1 (z∗i + 1)

· Δ(A)

gcd(A)
. (24)

Let di = z∗i +1, i ∈ [n], D = diag(d1, . . . , dn) and let B ∈ Z
(m+1)×n be the matrix

obtained by adding the (m + 1)-st row c� to the matrix A. Let further V = ker(B).
Consider the box section

K = V ∩ (−d1, d1) × · · · × (−dn, dn).

We can write K = DM , where M is an (n −m − 1)-dimensional section of the cube
(−1, 1)n . Hence, by Corollary6,

voln−m−1(K ) ≥ 2n−m−1
n−m−1∏

i=1

di . (25)

Consider the origin-symmetric convex set

L = conv(x∗ − z∗, K , z∗ − x∗) ⊂ ker(A).

The set L is a bi-pyramid with apexes ±(x∗ − z∗) and (n −m − 1)-dimensional basis
K . As K ⊂ ker(A) ∩ ker(c) the height of x∗ − z∗ over K is given by

c| ker(A) · (z∗ − x∗)
‖c|ker(A)‖2 = c · (z∗ − x∗)

‖c|ker(A)‖2 .

Hence, we have

voln−m(L) = 2 c · (z∗ − x∗) voln−m−1(K )

(n − m)‖c|ker(A)‖2 .

Then, using (25) and (24) and noting that the assumption ‖c‖2 = 1 implies
‖c|ker(A)‖2 ≤ 1, we obtain the lower bound

voln−m(L) > 2n−m Δ(A)

gcd(A)
. (26)
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Observe that the lattice Λ(A) = ker(A) ∩ Z
n has determinant

det(Λ(A)) = Δ(A)

gcd(A)
(27)

(see e. g. [27, Chapter 1, §1]). The (n − m)-dimensional subspace ker(A) can be
considered as a usual Euclidean (n −m)-dimensional space. Therefore, by (26), (27)
andMinkowski’s first fundamental theorem (in the formof Theorem II inChapter III of
[12]), applied to the set L and the latticeΛ(A), there is a nonzero point y ∈ L∩Λ(A).

Suppose first that c · y = 0. Consider the points y+ = z∗ + y and y− = z∗ − y.
We have y+, y− ∈ (z∗ + K ) and, consequently, y+, y− ∈ P(A, b). Further, z∗ is the
midpoint of the segment with endpoints y+ and y−, contradicting the choice of z∗ as
a vertex of the integer hull PI (A, b).

It remains to consider the case c · y 
= 0. Since L is origin-symmetric, we may
assume without loss of generality that c · y < 0. Observe that the point y+ = z∗ + y
is in the set conv(z∗ + K , x∗) and hence y+ ∈ P(A, b). Now, it is sufficient to notice
that c · y+ < c · z∗, contradicting the optimality of z∗. ��

3.1 Proof of Theorem1

Given I = {i1, . . . , ik} ⊂ [n] with i1 < i2 < · · · < ik , we denote by R
I the k-

dimensional real space with coordinates indexed by I . The complement of I in [n]
will be denoted as Ī .

Let x∗ be a vertex optimal solution to (2). Clearly, wemay assume that x∗ 
= z∗. Let
I ⊂ [n] denote the set of indices i for which at least one of z∗i , x∗

i is non-zero. Let ÂI

be any integer matrix whose rows constitute a basis of the lattice of all integer points
contained inside the subspace spanned by the rows of the matrix AI . Let b̂ = ÂI z∗I ,
so that ÂI xI = b̂ and AI xI = b describe the same affine subspace in R

I . Let m̂, n̂
denote the dimensions of ÂI , so that ÂI has m̂ rows and n̂ = |I |. Note that if y ∈ R

m̂

is any vector for which y� ÂI is integral, then y itself is integral by construction of
ÂI . It follows that gcd( ÂI ) = 1 by [25, Corollary 4.1c].

We consider a new linear program

min{cI · xI : ÂI xI = b̂, xI ≥ 0}. (28)

Note that x∗
I and z∗I are optimal fractional and integral solutions, respectively, and

that z∗I is a vertex of the integer hull of P( ÂI , b̂). Note also that

Δ( ÂI ) ≤ Δ(A)

gcd(A)
. (29)

Thebound (29) follows fromLemma2.3 in [5].Geometrically, it is sufficient to observe
that the quantity on the left is a divisor of the volume of the orthogonal projection of
a parallelepiped whose volume is given by the quantity on the right.
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If n̂ = m̂ + 1, then the bound (13) immediately follows from the bound (17) in
Corollary4. Otherwise, suppose that n̂ > m̂ + 1. We have then that ÂI , b̂, cI / ‖cI‖2,
x∗
I , z

∗
I satisfy the hypotheses of Theorem 7. We therefore get

IG(A, b, c) = IG( ÂI , b̂, cI ) ≤ ‖cI‖2 · n̂ − m̂
∏

i (z
∗
i + 1)

· Δ( ÂI ), (30)

where the product in the denominator is over the n̂ − m̂ − 1 smallest coordinates of
z∗I .

Now, n̂ is equal to ‖z∗ + x∗‖0. Also, x∗ has support of size at most m̂, since
‖x∗‖0 = ∥

∥x∗
I

∥
∥
0 and x∗

I is a vertex of the new linear program (28). Thus we get

n̂ − m̂ ≤ ∥∥z∗ + x∗∥∥
0 − ∥∥x∗∥∥

0 ≤ ∥∥z∗
∥∥
0 = s. (31)

On the other hand, we have the following lower bound for the product in the denomi-
nator of (30):

∏

i

(z∗i + 1) ≥ 2n̂−m̂−1−|I \ supp(z∗I )| = 2s−m̂−1 ≥ 2s−m−1. (32)

Combining together (30), (31), (32), and the fact that ‖cI‖2 ≤ 1, we get

IG(A, b, c) ≤ s

2s−m−1 · Δ( ÂI ). (33)

The desired conclusion (13) then follows from (29) and (33).

3.2 Proof of Corollary 2

Let I and ÂI be as in the proof of Theorem 1. We will derive the bounds (14) and
(15) from the bound (33). Choose any J ⊂ [n]\I that is minimal with respect to the
property that AI∪J has rank m. Thus, |J | = m − m̂, and

|I ∪ J | = n̂ + (m − m̂) ≤ s + m̂ + (m − m̂) = s + m. (34)

We have, by Lemma 2.3 in [5],

Δ( ÂI ) ≤ Δ(AI∪J )

gcd(AI∪J )
≤ Δ(AI∪J )

gcd(A)
. (35)

By (34) and the Cauchy-Binet formula, we have

Δ(AI∪J ) ≤
(|I ∪ J |

m

)1/2

Δm(AI∪J ) ≤
(
s + m

m

)1/2

Δm(A). (36)
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Combining (33), (35), and (36), we obtain the bound (14). On the other hand, if we
use (34) and Hadamard’s inequality, we get

Δ(AI∪J ) ≤ (
√|I ∪ J | · Δ1(AI∪J ))

m ≤ (
√
s + m · Δ1(A))m . (37)

Combining (33), (35), and (37), we obtain the bound (15).

4 Proof of the �2-distance proximity bound

First, we will prove two lemmas needed for the proof of Theorem3.
Let y ∈ R

n and let

Cn( y) = {x ∈ R
n : ‖x − y‖∞ < 1}

be an open cube in R
n with edge length 2 centered at the point y. Given two points

u, v ∈ R
n we will consider an open set D(u, v) defined as

D(u, v) = conv(Cn(u),Cn(v)).

Lemma 3 Let u, v ∈ R
n≥0. Then D(u, v) ∩ Z

n = D(u, v) ∩ Z
n≥0 .

Proof Suppose, to derive a contradiction, that there exists an integer point z =
(z1, . . . , zn)� ∈ D(u, v) such that z j ≤ −1 for some j ∈ [n]. Then there exist
points x = (x1, . . . , xn)� ∈ Cn(u) and y = (y1, . . . , yn)� ∈ Cn(v) such that for
some λ ∈ [0, 1]

z j = λx j + (1 − λ)y j .

Therefore, since x j > −1 and y j > −1, we must have z j > −1. ��
Next, we consider an origin-symmetric open convex set E = E(u, v) defined as

E = conv(Cn(u − v),Cn(v − u)).

Notice that

E = (D(u, v) − v) ∪ (−D(u, v) + v). (38)

Lemma 4 Suppose that u, v ∈ P(A, b). Then the bound

voln−m(E ∩ ker(A)) ≥ 2n−m(1 + ‖u − v‖2) (39)

holds.
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Proof First, we will separately consider the case n = m + 1. Then ker(A) has dimen-
sion one and, noticing that u − v ∈ ker(A) we can write

vol1(E ∩ ker(A)) = vol1(C
n(0) ∩ ker(A)) + 2‖u − v‖2.

Since vol1(Cn(0) ∩ ker(A)) ≥ 2, we obtain the bound (39).
For the rest of the proof we assume that n > m + 1. If u = v, then E = Cn(0)

and the bound (39) immediately follows from Vaaler’s cube slicing inequality [28].
Hence, we may also assume without loss of generality that u − v 
= 0.

Let

S = Cn(0) ∩ ker(A) ∩ ker((u − v)�).

The set S is a section of the open cube Cn(0). Since u − v ∈ ker(A)\{0}, the section
S has dimension n − m − 1. Let further

S+ = {x ∈ Cn(0) ∩ ker(A) : (u − v) · x > 0}

and

S− = {x ∈ Cn(0) ∩ ker(A) : (u − v) · x < 0}.

By construction, S+, S− and S do not overlap and Cn(0) ∩ ker(A) = S+ ∪ S− ∪ S.
Further, by Vaaler’s cube slicing inequality [28], we have

voln−m(S+) + voln−m(S−) = voln−m(Cn(0) ∩ ker(A)) ≥ 2n−m (40)

and

voln−m−1(S) ≥ 2n−m−1. (41)

Observe that E ∩ ker(A) contains the sets S+ + u − v, S− + v − u and the cylinder
conv(u− v + S, v − u+ S). These three sets do not overlap and, using (40) and (41),
we have

voln−m(E ∩ ker(A)) ≥ voln−m(S+) + voln−m(S−)

+ voln−m(conv(u − v + S, v − u + S))

= voln−m(Cn(0) ∩ ker(A)) + 2 voln−m−1(S) ‖u − v‖2
≥ 2n−m(1 + ‖u − v‖2).

Hence, we obtain the bound (39). ��
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4.1 Proof of Theorem3

Wewill say that B ⊂ [n] is abasisof A if |B| = m and the submatrix AB is nonsingular.
Take any vertex x∗ ∈ P(A, b). There is a basis B of A such that, denoting by N the
complement of B in [n], we have

x∗
B = A−1

B b and x∗
N = 0N .

Choose an integer point z∗ ∈ P(A, b)with theminimum possible distance between
the points x∗

N = 0N and z∗N . Then

‖z∗N‖2 = min{‖ yN‖2 : y ∈ P(A, b) ∩ Z
n}. (42)

Suppose, to derive a contradiction, that the bound (16) does not hold for the point z∗.
Then, using (27),

‖x∗ − z∗‖2 >
Δ(A)

gcd(A)
− 1 = det(Λ(A)) − 1. (43)

Recall that we denote by Λ(A) the lattice formed by all integer points in the kernel
subspace of the matrix A.

The lower bound (43) and Lemma4 imply that for E = E(x∗, z∗) we have

voln−m(E ∩ ker(A)) > 2n−m det(Λ(A)). (44)

The (n − m)-dimensional subspace ker(A) can be considered as a usual Euclidean
(n − m)-dimensional space. Noting the bound (44), Minkowski’s first fundamental
theorem (in the formofTheorem II inChapter III of [12]) implies that the set E∩ker(A)

contains nonzero points ±z of the lattice Λ(A). Using (38), we may assume without
loss of generality that we have z ∈ D(x∗, z∗)− z∗. Therefore, the point w = z+ z∗ is
in the set D(x∗, z∗)∩(ker(A)+ z∗). By Lemma3,w ∈ Z

n≥0 and, hence,w ∈ P(A, b).
Next, we will show that ‖wN‖2 < ‖z∗N‖2, contradicting (42). Notice first that for

any x ∈ P(A, b) we have xB = A−1
B (b − AN xN ). Hence wN = z∗N implies that

w = z∗. Therefore, we may assume that wN 
= z∗N .
Take any index j ∈ N . Since w ∈ D(x∗, z∗), we have w j ≤ z∗j . Hence there is at

least one index j0 ∈ N with w j0 < z∗j0 . Therefore ‖wN‖2 < ‖z∗N‖2 and we obtain a
contradiction with (42).

5 Proof of Theorem5

We will derive Theorem5 from the following result.

Theorem 8 Let A ∈ Z
m×n, m < n, be a matrix of rank m and let b ∈ Z

m. Assume
that the polyhedron P(A, b) contains integer points and that for some index j ∈ [n]
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the linear program

max{x j : x = (x1, . . . , xn)
� ∈ P(A, b)} (45)

is bounded. Let x∗ be a vertex optimal solution to (45) with a basis γ . Then either
x∗ is integer, or there exists an integer point z = (z1, . . . , zn)� ∈ P(A, b) such that,
letting τ = supp(z) ∪ γ ∪ { j}, the bound

∏

i∈[n]\{ j}
(zi + 1) ≤ (gcd(Aτ ))

−1
√√√√

∑

σ⊂τ :|σ |=m, j∈σ

(det(Aσ )
∏

i∈σ\{ j}
(zi + 1))2 (46)

holds.

Proof of Theorem 8 Let x∗ be a non-integer vertex optimal solution to (45) with a basis
γ . Note that any integer point z ∈ P(A, b) has supp(z) ∩ γ̄ 
= ∅. Let ξ = γ ∪ { j}. If
ξ = [n] then we set z̃ = 0 ∈ Z

n . Otherwise choose an integer point z̃ ∈ P(A, b) with
the following property. The size of support of z̃ corresponding to the complementary
set ξ̄ has the minimum possible value, that is

‖ z̃ξ̄‖0 = min{‖ yξ̄‖0 : y ∈ P(A, b) ∩ Z
n}.

Next, we choose a vertex z of the convex hull F of the optimal integer solutions of
the integer linear program

max{y j : y ∈ P(A, b) ∩ Z
n and supp( y) ⊂ supp( z̃) ∪ ξ}. (47)

Let

τ = supp(z) ∪ ξ = {i1, . . . , ik}.

In what follows, we will denote by R
τ the coordinate subspace of R

n with coordinates
indexed by τ .

Consider the subspace G = ker(Aτ ) of R
τ . Since the vertex x∗ is not integer, we

have γ � τ . Consequently, |τ | = k > m and hence, noticing that rank(Aτ ) = m, we
have dim(G) = k − m ≥ 1.

Let ui = zi + 1 for i ∈ τ\{ j} and let u j = t , where t ≥ 1 is an arbitrarily chosen
real number. Let further D = diag(ui1 , . . . , uik ). We will first show that

ui1 · · · uik ≤ Δ(Aτ D)

gcd(Aτ )
. (48)

Subsequently, we will use (48) to derive the desired bound (46).
Consider the box section

K = G ∩ (−ui1 , ui1) × · · · × (−uik , uik ).
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There exists a subspace S of R
τ with dim(S) = dim(G) = k − m such that

K = DQ,

where Q = S ∩ {x ∈ R
τ : −1 < xi < 1, i ∈ τ } is a section of an open cube in R

τ .
Using Lemma1, we have

volk−m(K ) = ui1 · · · uik
Δ(Aτ )

Δ(Aτ D)
vol(Q).

By Vaaler’s cube slicing inequality [28], we have

volk−m(Q) ≥ 2k−m . (49)

Suppose, to derive a contradiction, that

ui1 · · · uik >
Δ(Aτ D)

gcd(Aτ )
. (50)

Then, using (49) and (50), we get

volk−m(K ) > 2k−m Δ(Aτ )

gcd(Aτ )
= 2k−m det(Λ(Aτ )),

where we use (27) for the last equality. Therefore, by Minkowski’s first fundamental
theorem, the box section K contains nonzero integer points ± y ∈ Λ(Aτ ). Adding
the zero coordinates indexed by [n]\τ to ± y, we obtain the n-dimensional integer
points ± ỹ. Let y+ = z + ỹ and y− = z − ỹ. Observe that by construction of K the
points y+ and y− have nonnegative coordinates indexed by [n]\{ j}. Furthermore, at
least one of the points y+ and y− has its j-th coordinate greater than or equal to z j .
Assume without loss of generality that this point is y+. Then y+ ∈ P(A, b) and we
will consider two cases.

Suppose first that

y+
j > z j .

In this case, we get a contradiction with the optimality of z for (47).
Now, consider the case y+

j = y−
j = z j . But then both points y+ and y− are in F

and z = ( y+ + y−)/2. This contradicts the choice of z as a vertex of the polyhedron
F . Therefore (50) does not hold and hence (48) is justified.

Dividing both sides of (48) by u j = t and noticing that, by the Cauchy-Binet
formula,

Δ(Aτ D) =
√√√√

∑

σ⊂τ :|σ |=m

(det(Aσ )
∏

i∈σ

(zi + 1))2,
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we obtain
∏

i∈[n]\{ j}
(zi + 1) =

∏

i∈τ\{ j}
ui ≤ (gcd(Aτ ))

−1

×
√√
√√

∑

σ⊂τ :|σ |=m, j∈σ

(det(Aσ )
∏

i∈σ\{ j}
(zi + 1))2 + O(t−2),

(51)

where the implicit constant in the O(t−2) term on the right hand side of (51) depends
on A and z only. Since the bound (51) holds for arbitrarily large t , it implies (46). ��

Now we are ready to prove Theorem5.

Proof of Theorem 5 Let us choose any y ∈ Z
m≥0 such that

ICR(A) = min{‖x‖0 : x ∈ P(A, Ay) ∩ Z
n}

and let b = Ay. It is sufficient to show that there exists an integer point z ∈ P(A, b)
with

‖z‖0 ≤ m + log2

(
μ(A)

gcd(A)

)
. (52)

Since cone(A) is pointed, P(A, b) is bounded. Further, if P(A, b) has an integer
vertex x∗, then ‖x∗‖0 ≤ m and the bound (52) is satisfied for z = x∗. Hence we may
assume that all vertices of P(A, b) are non-integer.

Choose any j ∈ [n] such that

μ(A) =
√√√√

∑

σ⊂[n]:
|σ |=m, j∈σ

(det(Aσ ))2

and apply Theorem8 with A, b and the index j . Let z be an integer point in P(A, b)
that satisfies (46).

Suppose first thatm ≥ 2. Let zi1 , . . . , zim−1 be them−1 largest entries of the point
z[n]\{ j} and let ν = {i1, . . . , im−1}. Then, dividing (46) by the product

∏
i∈ν(zi + 1),

we get

∏

i∈[n]\{ν∪{ j}}
(zi + 1) ≤ (gcd(Aτ ))

−1

×

√√√√√
√

∑

σ⊂τ :|σ |=m, j∈σ

⎛

⎝det(Aσ )

⎛

⎝
∏

i∈σ\{ j}
(zi + 1))/(

∏

i∈ν

(zi + 1)

⎞

⎠

⎞

⎠

2

≤ μ(A)

gcd(Aτ )
.

(53)
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When m = 1, we set ν = ∅ and immediately obtain (53). Observe next that, using
(53), we have

2‖z‖0 ≤ 2m
∏

i∈[n]\{ν∪{ j}}
(zi + 1) ≤ 2m

μ(A)

gcd(Aτ )
. (54)

Noticing that gcd(Aτ ) ≥ gcd(A) and taking the logarithm with base two of (54), we
obtain the bound (18).
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