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In the following, we provide more implementation de-
tails of our StyleGAN-∞, and the dataset processing details
for multi-human generation task in Sec. 1. In Sec. 2, we show
more evaluation results using sketches and other conditions,
as well as results in other domains.

1 IMPLEMENTATION DETAILS

1.1 Dataset Processing Details
To generate blurry backgrounds in our dataset, we use a
Gaussian function with the kernel size of 25 × 25. The
corresponding standard deviation along the X and Y axis
are both set to 0.

1.2 Training Implementation Details
For the training, we use Adam optimizer with a learning
rate 10−4, b1 = 0.5 and b2 = 0.9 for training. The hyper-
parameters in Eq. 9 are set to λm = 1.0, λadv = 0.8 and
λp = 0.8. We implement all experiment using Pytorch and
run them on a single Nvidia GeForce RTX 3090.

For distilling features of StyleGAN [1], [2] to learn the
StyleBook in Stage I under different domains, we use the
pre-trained StyleGANv2 [2] models which are trained on
FFHQ [2] (portrait) and LSUN [3] (church, horse and cat)
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datasets. The weight of StyleGAN is fixed during the whole
training process. Meanwhile, same as sketch-to-portrait, we
apply the edge extractor [4] to obtain the corresponding
sketch for other domains. The hyper-parameters of loss
functions for training in non-human domains are the same
as in the multi-human translation task.

1.3 Model Architecture
In this section, we present more detailed information about
the architecture of our proposed StyleGAN-∞ model, in-
cluding more details about the Style Injection module, En-
coder, Decoder, Dual Embedding Module, Transformer, and
Discriminator.

To enhance the clarity in illustrating the structure of our
network model, we present a structured Tab. 2 detailing the
relevant modules utilized, including SE Module, Resnet-
Block, AttnBlock, DownBlock and StyleInjector. Addition-
ally, comprehensive information is provided regarding the
network structure and associated parameter in Tab. 3 for
key modules including the Style Injection Module, Encoder,
Decoder, and Dual Embedding Module. Within this frame-
work, variables such as H and W denote the length and
width of the input condition image, while c represents the
number of channels in the input condition image. Further-
more, StyleFx represents the features extracted from the
StyleGAN layer (top to bottom), and Fx denotes the output
of the x-th layer of the Style Injection Module.

Transformer Architecture. In the second stage, Our
transformer model architecture adopts the structure of GPT2
[5], and the corresponding hyperparameters are changed
for our method architecture as shown below. We set the
number of Transformer blocks nlayer = 24, the number of
attention heads in the Transformer nh = 16, the embedding
of Stylebook entries nembed = 1024, the dimensionality of
Stylebook entries nz = 256, the number of Stylebook entries
Z = 1024, the dropout rate to 0.0, the length of the input
sequence to 512. Additionally, we set the temperature t to
1.0 and the cutoff value k to 100 for top-k random selection
in StyleBook.

Discriminator Architecture. For the discriminator, we
use a patch-based model as in [6].
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TABLE 1: Quantitative comparison with state-of-the-art
methods pretrained on FFHQ of multi-human translation
using different conditions on the corresponding test set.

Conditions Methods FID↓ LPIPS↓ IS↑

Segmentation

CycleGAN [7] 169.76 0.538 1.287
Pix2PixHD [8] 95.86 0.449 1.402

VQGAN [9] 94.32 0.463 1.469
BiCycleGAN [10] 124.06 0.471 1.372

TSIT [11] 116.13 0.437 1.413
SPADE [12] 124.06 0.470 1.372

Ours 73.89 0.406 1.602

Segmentation
+ Sketch

CycleGAN [7] 126.59 0.495 1.454
Pix2PixHD [8] 77.63 0.363 1.528

VQGAN [9] 78.09 0.351 1.621
BiCycleGAN [10] 120.39 0.479 1.563

TSIT [11] 97.31 0.361 1.495
SPADE [12] 97.88 0.436 1.397

Ours 61.87 0.272 1.782

Modules
SE Module(C1)

AdaptiveAvgPool2d(1) +
Conv2d(1 × 1, C1, Chidden, stride=1) + ReLU() +
Conv2d(1 × 1, Chidden, C1, stride=1) + Sigmoid()

ResnetBlock(Cin, Cout, dropout)
GroupNorm(32, Cin) +
Conv2d(3 × 3, Cin, Cout, stride=1, padding=1) +
GroupNorm(32, Cout) + Dropout(dropout) +
Conv2d(3 × 3, Cout, Cout, stride=1 padding=1)

AttnBlock(Cin)
GroupNorm(32, Cin) +
(q): Conv2d(1 × 1, Cin, Cin, stride=1, padding=0) +
(k): Conv2d(1 × 1, Cin, Cin, stride=1, padding=0) +
(v): Conv2d(1 × 1, Cin, Cin, stride=1, padding=0) +
Conv2d(1 × 1, Cin, Cin, stride=1, padding=0)

DownBlock(Cin, Cout, dropout=0.0)
ResnetBlock(Cin, Cout, dropout=dropout) +
ResnetBlock(Cout, Cout, dropout=dropout) +
Conv2d(3 × 3, Cout, Cout, stride=2, padding=0)

StyleInjector(f1, f2, Cin, Cout, C2, dropout)
Concat(f1, f2) + SEModule(Cin, C2) +
ResnetBlock(Cin, Cout, dropout)

TABLE 2: The architecture of the relevant modules of
StyleGAN-∞ model. The input and output channels’ size of
each module are denoted as Cin and Cout, respectively. C1

and C2 are the input channels and middle channel number
division ratio of channels of the SE module. D is the dropout
rate. The detailed structure of each module is also provided.

2 MORE EVALUATION RESULTS

2.1 Comparisons with State-of-the-art Methods
In Fig. 1, we present more quantitative results compared
with the baselines (CycleGAN [7], Pix2PixHD [8], VQ-
GAN [9], BiCycleGAN [10], TSIT [11], SPADE [12], and Con-
trolNet [14]) in the multi-human sketch-to-image translation
task. Our method can preserve richer details and produce
better overall image quality during image generation.

2.2 Other Conditions for Multi-human Synthesis
We show more evaluations of our model in multi-human
image generation guided by three other types of conditions,
including low-resolution images, segmentation maps, and
compound conditions (segmentation and sketch). For seg-
mentation maps and compound conditions, we first build
two corresponding test sets, each consisting of 216 images

with different ratios/resolutions, then we present the quan-
titative (in Tab. 1) and qualitative (in Fig. 2) comparison
with the baselines. We do not compare our method with
ControlNet [14] in this study because there are no well-
pretrained weights available for these specific conditions.
Our model is able to adapt well to both segmentation
maps and compound conditions, achieving the best numeri-
cal performance and generating corresponding high-quality
images compared to our baselines. Since the structure of
the model needs to be modified accordingly to make it
adaptable to low-resolution images as conditions, to ensure
fairness we do not compare our model with baselines when
using limited pixels as conditions for multi-human image
translation. Instead, we only present these results in Fig. 3,
fully demonstrating the excellent performance of our model
in super-resolution tasks.

2.3 Results in Different Domains
We also extend our model to other non-human domains
including Church (Fig. 4 and Fig. 5), Cat (Fig. 6), and Horse
(Fig. 7 and Fig. 8). Our model can still produce high-quality
and realistic translation results of arbitrary ratio/resolution
in different domains. This further demonstrates the power-
ful ability of our method on general image translation tasks.
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Multi-human sketch CycleGAN Pix2PixHD VQGAN BiCycleGAN TSIT SPADE ControlNet Ours

Fig. 1: More qualitative comparison with state-of-the-art methods on multi-human sketch-to-image translation task. Zoom
in for better view.

Segmentation map CycleGAN Pix2PixHD VQGAN BiCycleGAN TSIT SPADE Ours

Segmentation map
+ sketch CycleGAN Pix2PixHD VQGAN BiCycleGAN TSIT SPADE Ours

Fig. 2: More qualitative comparison of synthesizing images from segmentation and compound condition of sketch and
segmentation. Zoom in for better view.
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Block name Output size Detail
Stage I - Style Injection Module

Input 256× 256× 128 (StyleF0)

I0 128× 128× 256
Conv2d(3 × 3, 128, 128, stride=1) +
DownBlock(128, 256, 0.0) (output F0)

I1 64× 64× 512
StyleInjector(F0, StyleF1, 512, 256, 16, 0.0) +
DownBlock(256, 512, 0.0) (output F1)

I2 32× 32× 512
StyleInjector(F1, StyleF2, 1024, 512, 16, 0.0) +
DownBlock(512, 512, 0.0) (output F2)

I3 16× 16× 512
StyleInjector(F2, StyleF3, 1024, 512, 16, 0.0) +
DownBlock(512, 512, 0.0) (output F3)

I4 16× 16× 512

StyleInjector(F3, StyleF4, 1024, 512, 16, 0.0) +
ResnetBlock(512, 512, 0.0) +
ResnetBlock(512, 512, 0.0) +
AttnBlock(512) (output F4)

OutLayer 16× 16× 256
GroupNorm(32, 512) + SELU() +
Conv2d(3 × 3, 512, 256, stride=1, padding=1)

Decoder
Input H

16
× W

16
× 256 Input feature

InputLayer H
16

× W
16

× 256
Conv2d(3 × 3, 256, 256, stride=1, padding 1) +
ResnetBlock(512, 512, 0.0) + AttnBlock(512) +
ResnetBlock(512, 512, 0.0)

D0
H
8

× W
8

× 256
(ResnetBlock(512, 512, 0.0) + AttnBlock(512)) × 3
+ interpolate(scaleFactor=2.0, mode=nearest) +
Conv2d(3 × 3, 512, 512, stride=1, padding=1)

D1
H
4

× W
4

× 256

ResnetBlock(512, 256, 0.0) +
(ResnetBlock(256, 256, 0.0)) × 2 +
interpolate(scaleFactor=2.0, mode=nearest) +
Conv2d(3 × 3, 256, 256, stride=1, padding=1)

D2
H
2

× W
2

× 256

ResnetBlock(256, 128, 0.0) +
(ResnetBlock(128, 128, 0.0)) × 2 +
interpolate(scaleFactor=2.0, mode=nearest) +
Conv2d(3 × 3, 128, 128, stride=1, padding=1)

D3 H ×W × 256

ResnetBlock(128, 64, 0.0) +
(ResnetBlock(64, 64, 0.0)) × 2 +
interpolate(scaleFactor=2.0, mode=nearest) +
Conv2d(3 × 3, 64, 64, stride=1, padding=1)

D4 H ×W × 128 ResnetBlock(128, 128, 0.0) × 3

OutLayer H ×W × 3
GroupNorm(32, 128) + SELU() +
Conv2d(3 × 3, 128, 3, stride=1, padding=1)

Encoder
Input H ×W × c Conditional Image

InputLayer H ×W × 3
Conv2d(3 × 3, c, 128, stride=1, padding=1) +
ReLU()

E0
H
2

× W
2

× 128 DownBlock(128, 128, 0.0)

E1
H
4

× W
4

× 128 DownBlock(128, 128, 0.0)

E2
H
8

× W
8

× 256 DownBlock(128, 256, 0.0)

E3
H
16

× W
16

× 512 DownBlock(256, 256, 0.0)

E4
H
16

× W
16

× 512
ResnetBlock(256, 512, 0.0) +
(AttnBlock(512) + ResnetBlock(512, 512, 0.0)) × 3

OutLayer 16× 16× 256
GroupNorm(32, 512) +
SELU() +
Conv2d(3 × 3, 512, 256, stride=1, padding=1)

Dual Embedding Module

Input H
16

× W
16

× 512
Concatenated Feature (Complementary Feature +
Style Feature)

F1
H
16

× W
16

× 384
Conv2d(3 × 3, 512, 384, stride=1, padding=1) +
ReLU()

F2
H
16

× W
16

× 256
Conv2d(3 × 3, 384, 256, stride=1, padding=1) +
ReLU()

F3
H
16

× W
16

× 256
(Conv2d(3 × 3, 256, 256, stride=1, padding=1) +
ReLU()) × 2

TABLE 3: Model architecture of our proposed StyleGAN-∞, including the Style Injection Module, Encoder, Decoder, and
Dual Embedding Module. Here, H and W are the height and width of the input image, respectively, and c represents the
number of channels in the input condition image. StyleFx represents the features extracted from the StyleGANx layer (top
to bottom), and Fx denotes the output of the xth layer of the Style Injection Module. SELU() is the scaled exponential linear
unit activation function proposed in [13].
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Low-resolution ( 1
32×) Super-resolution result Low-resolution ( 1

32×) Super-resolution result

Fig. 3: More qualitative results of super-resolution.
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Fig. 4: Samples synthesized from sketch under church domain.
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Fig. 5: Samples synthesized from sketch under church domain.
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Fig. 6: Samples synthesized from sketch under cat domain.
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Fig. 7: Samples synthesized from sketch under horse domain.
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Fig. 8: Samples synthesized from sketch under horse domain.


