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Abstract
Background  As a prevalent and deadly malignant tumor, the treatment outcomes for late-stage patients with 
cervical squamous cell carcinoma (CSCC) are often suboptimal. Previous studies have shown that tumor progression 
is closely related with tumor metabolism and microenvironment reshaping, with disruptions in energy metabolism 
playing a critical role in this process. To delve deeper into the understanding of CSCC development, our research 
focused on analyzing the tumor microenvironment and metabolic characteristics across different regions of tumor 
tissue.

Methods  Utilizing spatial transcriptomics (ST) sequencing technology, we conducted a study on FFPE (formalin-fixed 
paraffin-embedded) tumor samples from CSCC patients. Coupled with single-cell RNA sequencing (scRNA-seq) data 
after deconvolution, we described spatial distribution maps of tumor leading edge and core regions in detail. Tumor 
tissues were classified into hypermetabolic and hypometabolic regions to analyze the metabolism profiles and tumor 
differentiation degree across different spatial areas. We also employed The Cancer Genome Atlas (TCGA) database to 
examine the analysis results of ST data.

Results  Our findings indicated a more complex tumor microenvironment in hypermetabolic regions. Cell-cell 
communication analysis showed that various cells in tumor microenvironment were influenced by the signalling 
molecule APP released by cancer cells and higher expression of APP was observed in hypermetabolic regions. 
Furthermore, our results revealed the correlation between APP and the transcription factor TRPS1. Both APP and 
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Introduction
Cervical cancer exhibits high incidence and mortality 
rates, ranking fourth among all cancers in women and 
approximately 342,000 women succumb to this cancer 
annually [1]. Cervical squamous cell carcinoma (CSCC) 
has emerged as the most prevalent histological type, 
constituting about 75-80% of cervical cancers. Cur-
rently, the main treatment modalities for cervical cancer 
include surgery and radiation therapy. While localized 
CSCC carries a favorable prognosis, the five-year survival 
rate stands at a mere 16.5% for patients with late stage, 
metastatic or recurrent cancers [2]. Since Human papil-
lomavirus (HPV) infection is the primary cause, HPV 
vaccination is currently the most direct and efficacious 
strategy for preventing cervical cancer [3–5]. However, 
despite its effectiveness, the protective efficacy of vac-
cination remains limited, and ensuring high vaccination 
rates poses a challenge.

Metabolic reprogramming in cancer cells, which 
adjusts metabolism to promote cell growth and prolifera-
tion, is emerging as a key feature of cancer [6, 7]. Within 
the tumor microenvironment, different cell types engage 
in metabolic crosstalk, allowing cancer cells to thrive in 
challenging conditions [8, 9]. These metabolic adapta-
tions not only enable cancer cells to sustain rapid growth 
and survival under nutrient-deprived and hypoxic condi-
tions but also influence the surrounding microenviron-
ment by shaping immune responses, angiogenesis, and 
extracellular matrix remodeling [10–12]. Consequnently, 
understanding tumor metabolism and microenviron-
ment reshaping is critical for elucidating the mechanisms 
underlying CSCC progression. Chen et al. conducted 
RNA sequencing (RNA-Seq) of HeLa cells and demon-
strated that abnormal glucose metabolism can accelerate 
the progression of cervical cancer [13]. Kim et al. ana-
lyzed The Cancer Genome Atlas (TCGA) database and 
demonstrated the significant role of various molecules 
in disrupting glucose metabolism, regulating the tumor 
immune microenvironment, and triggering immune eva-
sion in cancer cells [14]. Utilizing TCGA data and clinical 
information, Dai et al. demonstrated that aerobic gly-
colysis was regulated in cervical cancer cells, promoting 
cancer cell growth and proliferation by accelerating cell 
cycle progression [15]. Growing evidence suggests that 

disruptions in energy metabolism are crucial for cervi-
cal cancer progression [16, 17]. However, most of these 
studies rely on cell experiments and bulk RNA-seq data, 
which offer an overall gene expression profile of cell pop-
ulations across different tissue types. Given the complex-
ity of metabolic networks, the heterogeneity of the tumor 
microenvironment, and the diversity of intercellular 
communication, investigating the relationship between 
visualizing metabolic reprogramming and cell-cell inter-
actions remains a challenging task.

Single-cell RNA sequencing (scRNA-seq) enables char-
acterization of transcriptomic profiles in human can-
cers with single-cell resolution and helps to identify cell 
populations with distinct biological functions [18, 19]. 
Spatial transcriptomics (ST), is a novel biotechnology 
that provides a comprehensive analysis of gene expres-
sion patterns and spatial distribution of various cell 
types in different tissues, addressing the spatial infor-
mation deficiency in scRNA-seq data [20–22]. Ou et al. 
utilized Stereo-seq and spatial transcriptome technol-
ogy to investigate cervical cancer cases, revealing higher 
transcriptional and translational activity, cell prolifera-
tion, oxidative phosphorylation, and immune response 
in tumor regions compared to other areas [23]. Fan et 
al. conducted a multi-omics analysis of CSCC, establish-
ing a correlation between changes in the tumor immune 
microenvironment and different cell states [24]. Beyond 
cervical cancer, ST technology has significantly advanced 
research in various types of cancers. Wu et al. utilized 
Stereo-seq to identify a new invasion area in liver cancer 
patients, providing insights for the development of treat-
ments for advanced liver cancer and other solid tumors 
[25]. The human body is a complex and highly organized 
organism, with intricate metabolic patterns and immune 
responses. Malignant tumors, while still challenging to 
understand fully, have a significant impact on human 
health. With the development of technology, we are now 
able to gain a better understanding of tumor heterogene-
ity, metabolic profiles, and tumor environments through 
bioinformatics analysis [26]. Furthermore, we can investi-
gate their influence and mechanisms on pathophysiologi-
cal functions of tumors through cellular and molecular 
experiments. In this study, we adopted a comprehensive 
approach that combined bioinformatics analysis and 

TRPS1 demonstrated significant effects on cancer cell proliferation, migration, and invasion, potentially contributing 
to tumor progression.

Conclusions  Utilizing ST, scRNA-seq, and TCGA database, we examined the spatial metabolic profiles of CSCC 
tissues, including metabolism distribution, metabolic variations, and the relationship between metabolism and tumor 
differentiation degree. Additionally, potential cancer-promoting factors were proposed, offering a valuable foundation 
for the development of more effective treatment strategies for CSCC.
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experimental techniques, including scRNA-seq, ST and 
in vitro cellular and molecular experiments. Our analy-
sis delved deeply into the metabolism of tumor regions in 
CSCC cases, investigating the diverse metabolic patterns 
across different spatial locations and their impact on the 
tumor microenvironment. Our goal is to offer valuable 
insights for the development of novel anti-tumor treat-
ment strategies that target metabolic reprogramming.

The APP gene, widely recognized for its significant 
association with Alzheimer’s disease, has predominantly 
been studied within the realm of neurodegenerative dis-
orders [27]. However, emerging research has highlighted 
its role in various signalling pathways that affect the sur-
vival and proliferation of cancer cells [28–30]. TRPS1 has 
been identified as a crucial regulator of transcriptional 
networks involved in tumor progression and differentia-
tion [31, 32]. Despite these findings, there is currently no 
research explicitly investigating whether APP and TRPS1 
serve as valuable targets for tumor progression in CSCC 
or their potential therapeutic implications. This knowl-
edge gap underscores the need for further exploration of 
these factors in CSCC.

In this study, ST analysis was conducted on two CSCC 
tissues and one normal tissue, along with scRNA-seq 
data from cervical cancer samples. The study elucidated 
the spatial distribution and immune microenvironment 
characteristics of the tumor leading-edge (LE) region and 
tumor core (TC) region, as well as investigated the cor-
relation between tumor differentiation and metabolism. 
The findings revealed that endothelial cells, CD74 + mac-
rophages, and other immune cells in the tumor microen-
vironment might be influenced by signalling molecules 
released by cancer cells, such as APP. Moreover, we 
observed a positive and significant association between 
APP expression and metabolic activity in cancer cells, 
and both APP and the transcription factor TRPS1 signifi-
cantly promoted cancer cell proliferation, migration, and 
invasion. In summary, our analysis data demonstrated the 
close association between the metabolic spatial profiles 
of CSCC tissues and the molecules in the tumor micro-
environment. Through in vitro cellular experiments, we 
demonstrated that these molecules play an essential role 
in the development of CSCC. Our research suggests that 
the metabolic spatial features of CSCC are closely related 
to its pathogenesis and progression, offering valuable 
insights for the prognosis and treatment of CSCC.

Materials and methods
Single-cell RNA-seq data processing
The sequencing data were processed using Cell Ranger 
(v.7.0.1) against the GRCh38 human reference genome. 
Subsequent quality control was applied to the obtained 
cells based on unique molecular identifier counts, 
the number of genes detected, and the proportions of 

mitochondrial, red blood cell-associated, and ribosomal 
gene counts per cell using Seurat (v.5.0.1) [33].

Specifically, cells meeting the following criteria were 
retained for further analysis: more than 200 and fewer 
than 10,000 genes, unique molecular identifier counts 
less than 60,000, a proportion of mitochondrial gene 
counts less than 25%, a proportion of red blood cell-
associated gene counts less than 25%, and a proportion 
of ribosomal gene counts less than 0.05%. Library size 
normalization was performed in Seurat on the filtered 
matrix to obtain the normalized count, which was then 
used for all downstream analysis.

Differential expression analysis was performed using 
the FindAllMarkers function to identify significantly 
differentially expressed genes across clusters, with a 
threshold of p-value < 0.05 (Wilcoxon rank-sum test). 
Additionally, the top_n function was utilized to select the 
top 20 and top 5 marker genes for each cluster based on 
average log2 fold change.

Dimension reduction and cell-type annotation
Dimension reduction and unsupervised clustering were 
applied to the single-cell data following the workflow in 
Seurat. Briefly, 3,000 highly variable genes were selected 
for downstream analysis by using the Find Variable Fea-
tures function with the parameter ‘nFeatures = 3000.’. The 
harmony package (v.1.1.0) [34] was used for scRNA-seq 
data integration. Principal component analysis (PCA) 
was performed on an integrated data matrix to reduce 
the dimensionality of the scRNA-seq dataset. Using the 
Elbow plot function of Seurat, the top 30 PCs were sub-
jected to the downstream analysis. The main cell clus-
ters were identified using the Find Clusters function in 
Seurat, with the resolution set as 0.8. Subsequently, the 
clusters were visualized by constructing UMAP plots. 
Conventional markers described in a previous study were 
used to categorize each cell into a known biological cell 
type.

Stereo-seq library preparation and sequencing
We collected one normal sample and two CSCC samples 
from two patients. The two CSCC samples were respec-
tively located at the tumor core and tumor border. Spa-
tially resolved transcriptomes were generated from these 
samples using Stereo-seq following established proto-
cols. For each FFPE sample, it was cut into two consecu-
tive sections with a thickness of 10 μm. One section was 
attached to a glass slide and stained with H&E following 
the previous protocol. The second section was mounted 
on a Stereo-seq N transcriptomics chip (Cat# 211KN114-
EA, STOmics). RNAs were captured and reverse-tran-
scribed using the Stereo-seq procedure following the 
vendor’s manual and prior publications [21, 35, 36]. 
Firstly, after drying the tissue-mounted Stereo-seq chip 
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slide, paraffin was melted at 60  °C for 1 h and removed 
through deparaffinization using a xylene substitute and 
ethanol. Following the complete removal of paraffin, 
de-crosslinking of the tissue on the slide-chip was con-
ducted using the STOmics reagent kit (Cat# 211KN114, 
STOmics). Next, the chip was immersed in pre-cooled 
methanol for tissue fixation at -20  °C for 17  min. After 
drying the chip, the tissue section was incubated in per-
meabilization buffer at 37  °C for 30  min. Subsequently, 
the FFPE Dimer Mix was added, and the chip was incu-
bated at 25 °C for 1 h. Captured RNAs were then reverse-
transcribed and ligated to probes adhered to the surface 
of the Stereo-seq chip through overnight incubation at 
42  °C. The cDNAs were subsequently released from the 
chip, followed by size selection, amplification, and puri-
fication. The cDNA concentration was quantified, and 
finally, sequencing libraries were constructed using 20ng 
of cDNA from each sample with a library preparation kit 
(Cat# 111KL114, STOmics) and sequenced on the DNB-
SEQ-G400 sequencing platform.

Stereo-seq raw data processing
Fastq files generated by DNBSEQ-G400 were paired-end. 
Read 1 contained CID (1–25  bp) and MID (26–31  bp), 
while read 2 consisted of the cDNA sequences. The BGI 
STOmics analytical pipeline SAW ​(​​​h​t​​t​p​s​​:​/​/​g​​i​t​​h​u​b​.​c​o​m​/​S​
T​O​m​i​c​s​/​S​A​W​​​​​) was used to process the raw FASTQ files. 
Briefly, CID sequences from the first reads were mapped 
to the designed coordinates of the in situ captured chip 
using the sequence-to-coordinate correspondence stored 
in the mask file, allowing for one base mismatch. Reads 
with low-quality MID (containing N bases or more than 
2 bases with a quality score lower than 10) or adapter 
sequences were filtered out. Retained reads were aligned 
to the reference genome hg38 and annotated to their 
corresponding genes. Duplicated reads, which contain 
the same CID, MID (allowing 1 mismatch to correct for 
sequencing and PCR errors), and the same gene locus, 
were collapsed. Finally, the gene expression profile matrix 
with coordinate information was generated. The expres-
sion profile matrix was divided into nonoverlapping bins 
covering 50 × 50 DNB area (bin50) for subsequent analy-
sis. All bins are remained without any filter.

Annotation of spots in stereo-seq slides with 
deconvolution analysis
To comprehensively characterize the spatial transcrip-
tomic landscape within a tumor region, a bin size of 50 
(50 × 50, 250 × 250  μm) was utilized as a fundamental 
unit (spot) for subsequent analysis (Supplementary Table 
S2). To spatially map cell types as defined by scRNA-seq 
analysis within the Stereo-seq data, we employed cell-
2location model (v.0.5-alpha) [37] with hyperparam-
eters N_cells_per_location = 6 and detection_alpha = 20. 

Specifically, we used cell2location to decompose multi-
cell spatial transcriptomics data into spatially resolved 
estimates of cell-type abundance. First, this model 
derives cell-type expression signatures by calculating the 
average expression of each gene across cell types from 
the scRNA-seq data. Next, it performs hierarchical non-
negative decomposition of the gene expression profiles 
at spatial locations (spots with multiple cells) to match 
them with the reference signatures, thereby identifying 
cell-type distributions. This tool effectively decomposes 
multi-cell ST data, providing spatially resolved estimates 
of cell-type abundance. Each bin was annotated with the 
most abundant cell type within it.

Division of regions into high and low metabolic regions
We assessed the activity of chosen pathways through two 
distinct approaches. Firstly, we employed the scanpy.
tl.score_genes() function in Scanpy (v.1.9.3) [38] to calcu-
late gene set scores within ST data, visualizing the results 
using the scanpy.pl.spatial() function. Additionally, we 
computed scores for metabolic gene sets using the GSVA 
(v.1.50.0) [39], and presented the outcomes using the 
ComplexHeatmap (2.18.0) [40]. We calculated the scores 
of metabolic pathways for each spatial region from the 
ST data and utilized these scores as biological features 
for the analysis of metabolic activity in tumor samples. 
To better understand the metabolic heterogeneity within 
the tumor, we divided the LE and TC regions into 2 and 
3 parts, respectively, with equal area for each part. The 
gene sets of the six metabolic pathways mentioned above 
were merged, and metabolic scores of representative can-
cer cells in each part were calculated. Initially, quartiles 
and medians of the metabolic pathway scores were com-
puted for each part to analyze the distribution of meta-
bolic activity within each part. Based on the comparison 
between the median score of each part and the overall 
median score, regions with scores higher than the overall 
median were classified as hypermetabolic regions, while 
those with scores lower than the overall median were 
classified as hypometabolic regions. To address concerns 
about insensitivity around the median, regions within 
± 10% of the overall median were categorized as interme-
diate metabolic regions.

Chromosomal CNV and transcription factor analysis
Inferred copy number variation (CNV) analysis was car-
ried out using the InferCNV (v.1.18.0) ​(​​​h​t​​t​p​s​​:​/​/​g​​i​t​​h​u​b​.​c​
o​m​/​b​r​o​a​d​i​n​s​t​i​t​u​t​e​/​i​n​f​e​r​C​N​V​​​​​)​. The expression intensity 
of genes across chromosomal positions for each area 
cancer cells were compared against the mean value cal-
culated for the endothelial cells and fibroblasts, and dis-
plays the relative gene expression on each chromosome 
in the form of a heatmap. Analysis of transcription factor 

https://github.com/STOmics/SAW
https://github.com/STOmics/SAW
https://github.com/broadinstitute/inferCNV
https://github.com/broadinstitute/inferCNV
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regulatory network in each region of cancer cells was 
performed using SCENIC R package (v.1.3.1) [41].

Constructing cellular trajectories using RNA velocity
The RNA velocity analysis was performed using scVelo 
(v.0.2.5) [42] in Python. After gene selection and normal-
ization, the first- and second-order moments were calcu-
lated using the scv.pp.moments() function. The velocities 
were then obtained using the scv.tl.velocity() function in 
dynamical mode. These velocities were projected onto 
diffusion maps and visualized as streamlines using the 
scv.pl.velocity_embedding_stream() function.

Differential expression and gene set enrichment analysis
The FindMarkers function in Seurat, taking the Wilcoxon 
rank-sum test as the statistical method and applying a 
minimum expression fraction of 10% (min.pct = 0.1), 
was used to analyze the differences between samples or 
cell types. Differentially expressed genes were identi-
fied based on an adjusted p-value < 0.05 and an absolute 
log2 fold change ≥ 1.5. The genes for difference analysis 
were analyzed using the clusterProfiler (v.4.10.0) [43], R 
package for Gene Ontology (GO), Kyoto Encyclopedia of 
Genes (KEGG), and GSEA enrichment [44]. The results 
of differential expression analysis and enrichment analy-
sis were visualized using ggplot2 (v.3.4.4) ​(​​​h​t​​t​p​s​​:​/​/​g​​g​p​​l​o​t​
2​.​t​i​d​y​v​e​r​s​e​.​o​r​g​/​​​​​)​.​​

Ligand–receptor interactome
The cell–cell interaction analysis was performed by Cell-
PhoneDB (v.4.0.0) [45] based on receptor-ligand interac-
tions between two cell types/subtypes. Permutation test 
repeated 1000 times was used to evaluate the significance 
for ligand–receptor pairs across each cell type. Individual 
ligand or receptor expression was threshold with a cutoff 
value based on the average log gene expression distribu-
tion for all genes across all the cell types, ensuring that 
only interactions where at least 5% of the cells expressed 
the involved ligand or receptor were considered. The 
threshold for significance was set at P < 0.05. Statistical 
evaluations of the interactions were conducted using the 
cpdb_statistical_analysis_method from CellPhoneDB, 
which generated significant means and deconvoluted 
results. The significant interactions were then extracted 
using the search_analysis_results function, enabling the 
identification of meaningful communication networks 
within the cellular microenvironment.

Bulk RNA-seq analysis
The bulk RNA-seq data of CSCC samples were down-
loaded from the TCGA CESA cohort ​(​​​h​t​​t​p​s​​:​/​/​p​​o​r​​t​a​l​.​g​
d​c​.​c​a​n​c​e​r​.​g​o​v​/​p​r​o​j​e​c​t​s​/​T​C​G​A​-​C​E​S​C​​​​​) using the ​g​d​c​-​c​l​i​
e​n​t tool. A total of 257 expression files and 255 clinical 
files were available for analysis. Low-expressed genes 

(those with counts equal to zero in more than 25% of the 
samples) were filtered out to ensure robustness in our 
analysis. After filtering, data from 233 CSCC patients 
were included in the study. Using the np.corrcoef() 
function from the numpy module in Python, we calcu-
lated the correlation of different genes in the expression 
matrix. Additionally, we employed the stats.pearsonr() 
function from the Stats module to determine the sig-
nificance of the calculated correlations. We utilized the 
survival (v.3.5.7) (https:/​/github​.com/th​erne​au/survival) 
and survminer (v.0.4.9) ​(​​​h​t​​t​p​s​​:​/​/​g​​i​t​​h​u​b​.​c​o​m​/​k​a​s​s​a​m​b​a​r​
a​/​s​u​r​v​m​i​n​e​r​​​​​) R packages. Through the surv_cutpoint() 
function, we identified the optimal cut-points for the 
expression of the ‘APP’ gene. Subsequently, the surv_cat-
egorize() function was employed to categorize the gene 
based on these cut-points. Following this, the survfit() 
function was utilized to fit a survival analysis model 
and calculate survival curves for each group. Finally, the 
ggsurvplot() function was used for visualization, gener-
ating survival curves with accompanying p-values and 
a risk table. Protein interactions were analysed using 
STRING database (v12.0) (https://string-db.org [46]. The 
interactions with a combined score > 0.7 were selected to 
construct the protein-protein interaction (PPI) networks 
using the Cytoscape (v3.8.2).

Multiplex immunofluorescence assay
Detection was based on a 4-µm thick slide cutting 
from tumor tissues. After deparaffinisation and rehy-
dration, the slides were subjected to epitope retrieval 
through boiling for 2  min in citric acid antigen repair 
buffer (pH6.0). Subsequently, endogenous peroxidase 
was blocked by incubation for 20  min in 3% hydrogen 
peroxide and later the protein was blocked in 10% goat 
serum albumin at 37  °C for 30 min. Then the four anti-
gens were labelled by cyclic staining, including incu-
bation of primary and secondary antibodies, tyramine 
signal amplification (TSA) visualization and removing 
the TSA–antibody complex in citric acid solution by 
microwave treatment for 5 min at 97 °C. In each round, 
antibody labelling was followed after epitope retrieval 
and protein blocking as mentioned above. After cycle 
staining, each slide was counterstained with DAPI for 
5  min and images were scanned using a Pannoramic 
MIDI (3DHISTECH; Budapest, Hungary). Furthermore, 
primary antibodies are as follows: (1) CD74 (HUABIO; 
cat #HA601117; 1:1000), (2) APP (Abclonal; cat #A17911; 
1:100), (3) TRPS1 (Abclonal; cat #A7743; 1:100), (4) 
KRT3 (Abclonal; cat #A0411; 1:100). For secondary anti-
bodies, we utilized goat anti-rabbit/mouse secondary 
antibody labeled with HRP (KPL; cat #074-1506; cat # 
074-1806) and incubated them for 1 h at 37 °C.

https://ggplot2.tidyverse.org/
https://ggplot2.tidyverse.org/
https://portal.gdc.cancer.gov/projects/TCGA-CESC
https://portal.gdc.cancer.gov/projects/TCGA-CESC
https://github.com/therneau/survival
https://github.com/kassambara/survminer
https://github.com/kassambara/survminer
https://string-db.org
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Immunohistochemical staining
The tumor sections (4  μm-thick) underwent deparaf-
finization, hydration, antigen retrieval, and were then 
sealed with 3% hydrogen peroxide. Subsequently, tissue 
sections were blocked with 3% bovine serum albumin 
for 30  min at room temperature, followed by overnight 
incubation at 4  °C with the primary antibody. The pri-
mary antibodies are as follows: (1) IDO1 (HUABIO; cat 
#HA721331; 1:200), (2) CD274/PD-L1 (Proteintech; cat 
#66248-1-Ig; 1:5000), (3) SPP1 (OriGene; cat #TA806784; 
1:150). After washing with PBS, the slices were incubated 
with species-specific HRP labeled secondary antibod-
ies for 50 min at room temperature. The secondary anti-
bodies are goat anti-rabbit/mouse secondary antibody 
labeled with HRP (Pinuofei Biological; cat #PN0046; 
#PN0080). After incubation, the slices were washed by 
PBS and freshly configured DAB color developing solu-
tion was added. Then ddH2O was used to terminate 
the color development. Harris hematoxylin was used to 
restain the nucleus. After dehydration and sealing with 
neutral resin, the slices were observed with the micro-
scope and the images were collected and analyzed.

RNA isolation and quantitative reverse-transcription 
polymerase chain reaction
Total RNA was extracted from the HeLa cell lines using 
TRlzol reagent(Ambion, Austin, TX, USA), and reverse 
transcribed using NovoScript®Plus All-in-one 1st Strand 
cDNA Synthesis SuperMix (gDNA Purge) (Novopro-
tein, Suzhou, China)according to the manufacturer’s 
protocols. The complementary DNA was then amplifed 
to detect APP, TRPS1, ITGA2, PRKCE, PKM, PSME4 
and NF1 by qRT-PCR using a SYBR Green Master mix 
(Yeasen, Shanghai, China) according to the manufac-
turer’s protocols. All experiments were repeated inde-
pendently three times. The mRNA expression was 
normalized to the expression of GAPDH mRNA and cal-
culated using the 2-ΔΔCt method. The PCR primers used 
are listed in Supplementary Table S11.

CCK-8 assay
The proliferation rate of HeLa cells was analyzed using 
the Cell Counting Kit-8 (CCK-8, Vazyme, Nanjing, 
China) following the manufacturer’s protocols. The cells 
were seeded and cultured in medium containing 10% FBS 
in 96-well microplates. The working solution of CCK-8 
reagent was prepared by adding 10 µL of the reagent to 
90 µL of medium. Next, 100 µL of the working solution 
was added to each well and incubated for 45 min. We per-
formed this assay at 0 h, 24 h and 48 h after transfection 
of siRNAs. All experiments were performed in triplicate. 
The absorbance at 450 nm was measured using a micro-
plate reader (Bio-Rad, Hercules, CA, USA). Cell prolif-
eration was determined based on the relative absorbance.

Transwell migration and invasion assay
The migration and invasion assays were performed using 
using an 8-mm pore size transwell system (Corning, NY, 
USA). For migration assay, HeLa cells were seeded into 
the upper chamber with serum-free medium (5 × 104 
cells). For the invasion assay, the upper chamber was 
coated with Matrigel (Corning, NY, USA), and the sub-
sequent steps were similar to the migration assay. After 
12  h, cells in the upper chamber were transfected with 
siRNAs and medium with 30% FBS was added to the bot-
tom of the chamber. After the cells migrated or invaded 
for 36 h, they were fixed with fixative solution (4% form-
aldehyde, methanol-free) (Biosharp, Anhui, China) and 
stained with 0.1% crystal violet (Macklin, Shanghai, 
China). For each insert, 5 fields were randomly selected 
to be captured under a microscope at 20×, and cell num-
bers were quantified using ImageJ2. The cell number of 
each treated group was normalized to the cell number of 
the control group to calculate the migration and invasion 
index.

Small interference RNA
Small interference RNAs (siRNA) against human APP 
and TRPS1 and the control siRNA were purchased 
from RIBOBIO (Guangzhou, China). Transfections 
were performed with Lipofectamine RNAiMAX reagent 
(Invitrogen, Carlsbad, CA, USA) following the manufac-
turer’s recommended protocol. HeLa cells were seeded 
to be 60-80% confluent at transfection. Lipofectamine 
RNAiMAX reagent were diluted in Opti-MEM medium 
(Gibco, Grand Island, NY, USA) and mixed with diluted 
siRNAs. After incubation for 10  min, siRNA-lipid com-
plex was added to cells. The siRNAs were used at 60nM 
and cells were analyzed after 36 h.

Results
ST analysis reveals spatial expression patterns of cells in 
the LE and TC regions of CSCC
Through Stereo-seq ST sequencing, CSCC tissues and 
normal tissue (NOR) were analyzed (Supplementary 
Table S1). The normal cervical tissue was obtained from 
an area adjacent to the pelvic mass. The CSCC samples 
were obtained from the LE and TC regions, respectively, 
and these samples were HPV positive (Fig. 1A). We inte-
grated published scRNA-seq data from cervical cancer 
patients to assist in the interpretation and optimization 
of the Stereo-seq data for further investigation [47]. The 
scRNA-seq data we analyzed include both CA and CSCC 
cases as references for cell annotation in ST data analy-
sis (Fig.  1C). Despite their differences in cell composi-
tion, this approach aids in characterizing cell types and 
identifying the distribution of cell types within CSCC 
tissues (Supplementary Figure S1A and Table S3). Fol-
lowing quality control, we obtained data from a total of 
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Fig. 1  Spatial expression patterns of cells in the leading edge and tumor core regions of CSCC. (A) Overview of the schematic representation of the 
study design. Tumor tissues from CSCC patients were processed into single-cell suspensions, and unsorted cells were subjected to scRNA-seq using 10x 
Genomics. ST was performed on normal tissue and tumor slices using Stereo-seq, generating ST data. Created with BioRender. (B) UMAP plots of cells 
identified from scRNA-seq data of three CSCC tissues. Different colors represent distinct cell types. (C) The integrated analysis of single-cell transcriptome 
and spatial transcriptome data using cell2location is depicted. Created with BioRender. (D-F) Cellular spatial distribution and proportions of reads count 
for each cell type in normal tissue (D), leading edge region (E), and tumor core region (F)
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15,318 cells and 29,663 genes (Fig.  1B and Supplemen-
tary Table S3). We identified 11 major cell types based on 
classic cell markers, including Fibroblasts (4,237), Can-
cer cells (3,705), Smooth muscle cells (420), Endothelial 

cells (179), T cells (2,676), Macrophages (1,210), B cells 
(943), NK cells (895), Neutrophils (860), Mast cells (127), 
and DC cells [66]. We found that cancer cells mainly 
expressed CDH1, EPCAM, CDKN2A, and TP63 in 

Fig. 2 (See legend on next page.)
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cervical cancer tissues (Fig.  1B, Supplementary Figure 
S1B, C and Supplementary Table S4). Endothelial cells 
showed high expression of CDH5, PECAM1 and VWF, 
while smooth muscle cells exhibited high expression of 
MYH11, MYLK, and RGS5. Fibroblasts displayed high 
expression of APOD and LAMA2 (Supplementary Fig-
ure S1B, C and Supplementary Table S4) [48]. Apart from 
structural cells, we also identified immune cells including 
T cells (CD3D+, CD3E+) and Macrophages (FCGR2A+, 
CD163+) [49]. These findings provided insights into the 
cellular composition of cervical cancer tissue, serving as a 
cell annotation reference for follow-up ST analysis.

To systematically localize the cell types identified by 
scRNA-seq in CSCC tissues, we utilized cell2location to 
integrate scRNA-seq with ST, mapping cells to CSCC tis-
sues [37]. In the NOR, fibroblasts, smooth muscle cells, 
endothelial cells, and a small proportion of immune cells 
were observed (Fig. 1D). Fibroblasts, had the highest pro-
portion among all the cell types in the LE. Particularly, 
immune cells, particularly macrophages, showed higher 
proportions in the LE, compared to those in the NOR 
and TC. In addition, those cells were mainly located in 
the distal region of the tumor (Fig.  1E). The TC region 
was mainly composed of cancer cells, with a few scat-
tered endothelial cells and fibroblasts (Fig.  1F). These 
findings revealed the spatial distribution of different cell 
types within CSCC tissue, enhancing our understanding 
of the tumor microenvironment of cervical cancer.

Spatial transcriptomic variations and functional 
implications in LE and TC regions of CSCC
We conducted a differential gene analysis between the LE 
and TC, revealing differences in the expression of mul-
tiple immune-related genes. Notably, genes associated 
with macrophage function, such as NRP1, NRP2, MSR1, 
and SPP1, were significantly upregulated [50, 51] (Fig. 2A 
and Supplementary Table S5). Spatial transcriptomics 
data revealed a lower proportion of immune cells in the 
NOR and TC compared to the LE. In contrast, an aggre-
gation of macrophages was observed in the area with 
fewer cancer cells in the LE region (Fig. 1D-F).

In the LE, macrophages were aggregated in spots with 
very few cancer cells. These macrophages expressed 

SPP1 at significantly higher levels in the LE compared to 
the TC and NOR (Fig. 2B and Supplementary Table S6). 
Consistently, the expression of SPP1 was found to corre-
late with the distribution of these macrophages (Fig. 2C). 
Immunohistochemistry assays further confirmed higher 
expression of SPP1 in macrophages in the LE compared 
to the NOR region (Fig.  2D). Previous research has 
shown that SPP1 + macrophages exhibit immunosup-
pressive properties [52]. Additionally, these macrophages 
also exhibited high expression of CTSB (Fig. 2B and Sup-
plementary Table S6), which is a prognostic biomarker 
for cancer progression and therapeutic target associ-
ated with immune cell infiltration and immunosuppres-
sion [53]. During cancer treatment, immune checkpoint 
genes play crucial roles in enabling cancer cells to evade 
immune system attacks, leading to tumor immune escape 
[54]. Our spatial analysis revealed substantially elevated 
expression of two immune checkpoint genes, PD-L1 
and IDO1, in the TC compared to both the LE and NOR 
regions (Fig.  2E). The immunohistochemical staining of 
FFPE tissue samples further validated our spatial tran-
scriptomics analysis, demonstrating higher expression 
levels of PD-L1 and IDO1 in the TC region (Fig. 2F).

In addition to the immune-related genes, a variety of 
metabolic genes showed significantly differential expres-
sion between the LE and TC (Fig.  2A and Supplemen-
tary Table S5). To investigate the functional implications 
of these metabolic gene changes and better understand 
the features of cancer cells in these two regions, we per-
formed Gene Set Enrichment Analysis (GSEA) which 
revealed that oxidative phosphorylation in cancer cells 
was activated in the LE compared to TC (Fig.  2J), indi-
cating spatial differences in energy requirements [55]. 
There might be metabolic differences between regions of 
the CSCC tumor architecture, which could significantly 
impact tumor growth and spread. In summary, the anal-
ysis of ST data revealed differences in immune features 
and metabolism among different tumor regions.

Dynamic resolution of tumor heterogeneous metabolic 
landscapes and cancer cell differentiation
Given that metabolic activity is a critical component of 
intra-tumor heterogeneity [56–58], we delved deeper 

(See figure on previous page.)
Fig. 2  Differential analysis of immune characteristics in different tumor regions. (A) Volcano plots (P-value and fold change) comparing gene expression 
between the leading edge and tumor core. Upregulated (orange) and downregulated genes (cyan) are highlighted, and differentially expressed immune-
related genes (dark red) or metabolic genes (red) are labelled. Horizontal dashed line indicates adjusted P-value of 0.05, while the vertical dashed lines 
represent log2FC = -1 and 1. (B) Volcano plots (P-value and fold change) comparing gene expression of macrophages between the leading edge and 
tumor core(left) or normal tissue(right). Upregulated (orange) and downregulated genes (cyan) are highlighted. Horizontal dashed line indicates adjusted 
P-value of 0.05, while the vertical dashed lines represent log2FC = -1 and 1. (C) Macrophages spatial location(left) and spatial expression of SPP1 in leading 
edge region(right). (D) Immunohistochemical images depicting endogenous protein expression levels (brown) of SPP1 in leading edge region of CSCC 
sample (left) and normal sample (right), with black arrows highlighting macrophages. (E) Spatial expression of selected immune checkpoint genes (PD-
L1 and IDO1) in normal tissue, leading edge region, and tumor core region. (F) Immunohistochemical images depicting endogenous protein expression 
levels (brown) of PD-L1 and IDO1 immune checkpoint genes in normal tissue, leading edge region, and tumor core region samples. (G) GSEA showing 
enrichment of Oxidative phosphorylation signalling pathwa in cancer cells from the leading edge and tumor core regions
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into the metabolic features of different tumor regions 
and their correlation with the cancer cell differentiation 
status. To comprehensively evaluate metabolic activity in 
different regions of tumor tissue, we focused on six meta-
bolic pathways: oxidative phosphorylation, glycolysis, 

hypoxia, lactic acid metabolism, lipid metabolism, and 
pentose phosphate [59, 60] (Supplementary Table S7). 
We calculated metabolic scores for these pathways in 
cancer cells and mapped onto tissue spatial locations 
(Fig. 3A, B). We observed that cancer cells in LE region 

Fig. 3  Metabolic score and copy number variation analysis in different tumor regions of CSCC. (A-B) Spatial score of oxidative phosphorylation, hypoxia, 
glycolysis, lactate metabolism, lipid metabolism, and pentose phosphate pathway in the leading edge (A) and tumor core region (B) of Stereo-seq 
samples. (C-D) Grid division of the leading edge and tumor core regions, with yellow representing high metabolic scores and blue representing low 
metabolic scores. Line plot displaying the distribution of Median metabolic pathway scores across the five regions (C). The heatmap illustrating GSVA 
scores for various metabolic pathways in different grid regions (D). (E) Comparison of copy number variation (CNV) between cancer cells in different 
regions, including leading edge, hypermetabolic region in the tumor core region, and hypometabolic region in the tumor core region. The CNV status of 
each cell is displayed for chromosomes 1 to 22
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showed a certain degree of metabolic activity, and their 
metabolic levels showed a relatively even distribution 
(Fig. 3A). In contrast, there were differences in metabolic 
levels among different areas in the TC region (Fig.  3B). 
These differences could be attributed to the diverse 
metabolic strategies adopted by cancer cells in response 
to varying microenvironmental conditions, ultimately 
impacting tumor progression and metastasis.

To better understand the metabolic heterogeneity 
within the tumor, the LE and TC regions were divided 
into equal parts, which showed varying metabolic path-
way scores. Regions classified as hypermetabolic had 
scores significantly above the overall median, whereas 
hypometabolic regions had scores significantly below it. 
Intermediate metabolic regions, defined as those within 
± 10% of the overall median, represented areas with 
metabolic activity close to the median value. These clas-
sifications provide a nuanced view of the metabolic land-
scape within the tumor, highlighting areas of high, low, 
and intermediate metabolic activity (Fig. 3C). Consistent 
with the method of ranking the metabolic activity based 
on the median score of six representative pathways, the 
results from GSVA demonstrated similar trends in meta-
bolic activity within the tumor regions (Fig. 3D). Interest-
ingly, all regions in the LE were hypermetabolic regions, 
whereas there was a mix of hypermetabolic and hypo-
metabolic spots in the TC, revealing the complex and 
dynamic nature of tumor metabolism.

To assess copy number variation (CNV) of cancer cells 
across different regions, we compared chromosomal 
CNV between the LE and TC regions. Hypermetabolic 
regions Leading edge1 and Leading edge2 from the 
same sample, were combined for a more comprehensive 
analysis. This consolidation allowed for a more robust 
comparison of CNV profiles between the LE and TC 
regions. Unsupervised hierarchical cluster analysis of 
CNV values revealed that hypermetabolic regions were 
clustered together, suggesting their similarity and mono-
clonal origin. Notable differences in CNV patterns of 
cancer cells between hypermetabolic and hypometabolic 
regions were observed, suggesting potential associations 
with metabolic pathway activation (Fig.  3E). Examina-
tion of the expression of metabolic genes in different 
tumor regions showed a significant upregulation of many 
metabolism-related genes, including PRKCE, GNGT1, 
and ABHD2, in cancer cells within hypermetabolic 
regions (Fig.  4A). Additionally, genes such as MDM4, 
EPAS1, and ATM also showed higher expression levels 
in endothelial cells and fibroblasts in the hypermetabolic 
regions (Fig. 4A). This finding suggests that not only the 
metabolic activity of cancer cells themselves but also sur-
rounding cell types might be involved in regulating the 
metabolic process within tumor tissues.

Transcriptional regulatory networks were distinct 
across regions at different levels of metabolic activities 
(Fig. 4B). The analysis showed that the transcription fac-
tor TRPS1 was highly expressed in the TC region, which 
was previously demonstrated involved in the occurrence 
and development of breast cancer through aberrant 
transcriptional regulation of oncogenes [31]. Mapping 
the expression of TRPS1 onto spatial locations revealed 
higher expression levels in cancer cells within hyper-
metabolic regions, with relatively high expression in the 
LE region as well (Fig. 4C). Enrichment analysis of target 
genes for TRPS1 revealed they were mainly enriched in 
cell-cell junction, cell adhesion molecule binding, and cell 
morphogenesis pathways (Fig. 4D), suggesting increased 
proliferation and differentiation potential in cancer cells 
within hypermetabolic regions [61, 62]. ZEB1, a tran-
scription factor, is recognized as an important regula-
tor for tumor metastasis and invasion [63]. It exhibited 
markedly higher expression in the LE compared to the 
TC (Fig. 4B). Mapping the expression of ZEB1 onto spa-
tial locations revealed its abundant expression in both 
LE and TC regions, with its target genes most highly 
enriched in the GMP metabolic process (Supplemen-
tary Figure S2A, B). Furthermore, RNA Velocity analysis 
indicated a differentiation trajectory of cancer cells from 
hypermetabolic to hypometabolic regions in both LE and 
TC regions (Fig. 4E). We also found that the cancer stem 
cell-associated gene CD44 was highly expressed in hyper-
metabolic regions, while its expression was reduced in 
hypometabolic regions (Supplementary Figure S2C) [64–
66]. This indicated a close correlation between metabo-
lism and cell differentiation, suggesting that important 
role of metabolism in regulating cell differentiation. 
These findings improve our understanding of intra-tumor 
heterogeneity by revealing a distinct transcriptional regu-
latory profile across hypo- and hyper-metabolic regions.

The tumor microenvironment varies across different 
metabolic regions
Cancer cells were surrounded by clustered fibroblasts 
and endothelial cells within the hypermetabolic spots 
(Fig.  5A). Further analysis of cellular composition pro-
portions revealed that in the TC, over 80% of the cells 
are cancer cells. However, the proportions of other cell 
types, such as endothelial cells and fibroblasts, remained 
higher in the hypermetabolic region (Tumor core1) com-
pared to the hypometabolic regions (Tumor core2 and 
Tumor core3) (Fig. 5A). These findings suggests that the 
hypermetabolic state of cancer cells may be regulated by 
surrounding cells, possibly through cell-cell communi-
cation. We thus assessed the receptor-ligan interactions 
between cancer cells and other cells within the tumor 
microenvironment. Multiple pairs including SEMA3C-
NRP2 and Dehydroepiandrosterone-bySTS-ESR1 were 
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interacted between cancer cells and fibroblasts. Previ-
ous studies have shown that the binding of SEMA3C to 
NRP2 can promote angiogenesis [67], and SEMA3C can 
regulate tumor progression [68]. In addition, we found 
that communication between cancer cells and DC cells, 
endothelial cells, and macrophages primarily relies on 

the APP-CD74 signalling pathway (Fig.  5B). Differential 
gene expression analysis of macrophages, DC cells, and 
endothelial cells between hypermetabolic and hypo-
metabolic regions revealed distinct differences in the 
expression patterns (Figure S3A). For instance, in hyper-
metabolic regions, endothelial cells show increased 

Fig. 4  Spatial and functional characteristics of different metabolic tumor regions in CSCC. (A) Heatmap displaying the expression profiles of 50 metabolic 
genes in different tumor regions. Colors represent the expression levels of the corresponding genes; the “blue-white-red” pattern maps to the minimum-
average-maximum expression values. (B) Heatmap showing transcription factors and their expression levels in different tumor regions. Color intensity 
represents z-score values, and the size of the dots indicates the regulon specificity score (RSS) of specific transcription factors in different tumor regions. 
(C) Spatial expression of the TRPS1 in cancer cells of leading edge and tumor core region. (D) PPI network graph depicting the interaction and enrich-
ment analysis results of TRPS1 target genes. Each pathway is presented as circular nodes in the network graph, with node size proportional to the number 
of input genes, and node color indicating the cluster it belongs to. Pathways with a similarity score greater than 0.3 are connected by edges, and edge 
thickness represents the degree of similarity between them. (E) RNA velocity streams of leading edge and tumor core region, colored by cell annotations 
for leading edge and tumor core regions
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Fig. 5  Spatial and functional characteristics of different metabolic tumor regions in CSCC. (A) Spatial distribution of cancer cells (red dashed line indicates 
hypermetabolic region, green dashed line indicates hypometabolic region) (left), and other cell types in the different regions of the leading edge and 
tumor core (middle). Proportion of each cell type in each region (right). (B) Heatmap of cell communication analysis between cancer cells and other cell 
types. Dot size reflects the significance level of cell communication, and color indicates the average expression level of interacting molecules between 
cancer cell clusters and clusters of other cell types. (C) Correlation analysis between the expression level of APP and the expression level of genes related 
to tumor metabolism (ITGA2 and PRKCE) in different cell types. (D) Correlation analysis between the expression level of APP and the tumor metabolic 
score in different gridded regions. (E) Correlation analysis between the expression level of APP and the expression level of TRPS1 in different cell types. 
(F-G) Spatial distribution of gene expression of APP (F), PRKCE and ITGA2 (G) in cancer cells. (H) Immunofluorescence microscopy observation of cervical 
cancer slices, with DAPI (blue), KRT (purple), CD74 (green), APP (red), and TRPS1 (orange) antibody staining
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mRNA expression levels of ZEB1 (Supplementary Fig-
ure S3A and Supplementary Table S8-S10), suggesting 
that metabolism regulates the tumor microenvironment 
through the EMT-inducing transcription factor ZEB1. 
Enrichment analysis showed varied signalling pathways 
of these cell types between hyper- and hypo-metabolic 
regions (Figure S3B). Notably, we observed that some 
immune response-related pathways were activated in DC 
cells within the hypermetabolic region, including ‘posi-
tive regulation of phagocytosis’.

APP-CD74 has been implicated in cellular commu-
nication within the tumor microenvironment in several 
cancer-related studies [69]. However, previous research 
has not elucidated its specific functional relevance to 
tumor progression [70]. By confirming the importance 
of APP-CD74 in tumor progression, we aim to address 
the current knowledge gap regarding its role in can-
cer biology. The correlation analysis results suggest that 
the expression of APP within the tumor microenviron-
ment is positively associated with the expression levels of 
various metabolic genes, such as PRKCE, ITGA2, PKM, 
PSME4, and NF1, genes associated with cancer progres-
sion [71–75] (Fig.  5C and Supplementary Figure S4A). 
Moreover, the expression levels of APP and TRPS1 were 
significantly positively correlated in the hypermetabolic 
regions (Fig.  5E). However, there is no significant cor-
relation between the expression of CD74 and metabolic 
genes (Supplementary Figure S4B). To further investigate 
the impact of the tumor microenvironment on cellular 
metabolism, our focus will be on exploring the relation-
ship between APP and metabolic-related genes. Upon 
closer examination, a positive correlation was found 
between the metabolic scores of cancer cells in five grid-
ded regions and the expression of APP (Fig.  5D). We 
observed higher levels of APP expression in cancer cells 
located in regions with hypermetabolic activity (Fig. 5F). 
Interestingly, other metabolic-related genes like PRKCE, 
ITGA2, PKM, PSME4, and NF1 showed a similar spatial 
distribution pattern (Fig.  5G and Supplementary Figure 
S4D). These findings suggest a potential link between 
the expression levels of APP and multiple metabolic 
genes, indicating that APP might play a role in influenc-
ing tumor metabolic activity. Immunofluorescence stain-
ing of human CSCC tissues revealed that CD74 protein 
was aggregated around cancer cells stained with KRT3. 
These cells exhibited abundant expression of APP, which 
was co-localized with TRPS1 (Fig. 5H). These results sug-
gest that CD74 is expressed in the extracellular matrix 
surrounding the cancer cells, while APP is prominently 
expressed within the cancer cells, co-localizing with 
the transcription factor TRPS1. This indicates a poten-
tial reciprocal regulatory relationship between APP and 
TRPS1. The results of correlation analysis and immuno-
fluorescence experiments suggest that APP likely plays 

a crucial role in regulating the metabolic activity of can-
cer cells. Moreover, its mechanism of action may involve 
metabolic-related genes and the transcription factor 
TRPS1.

APP and TRPS1 are associated with the progression of 
CSCC
Our research has identified the overlap of high expres-
sion of APP regions and hypermetabolic regions where 
the transcription factor TRPS1 is also expressed (Figs. 4C 
and 5F). Prior studies have shown that the cleavage prod-
uct of APP, known as Aβ, has the potential to impact 
mitochondrial oxidative stress and energy metabolism 
[76]. Furthermore, previous research has found that 
abnormal expression of TRPS1 could drive the evolution 
of the tumor genome, potentially enhancing the adapt-
ability of cancer cells [31]. Based on our previous analy-
sis, APP and TRPS1 both are closely associated with the 
metabolism of CSCC cancer cells. Therefore, we further 
explored their functional relationship and their impact 
on the metabolism and progression of CSCC. By ana-
lysing transcriptomic expression profiles of 233 CSCC 
patients from TCGA database, we found that not only is 
the expression of APP positively correlated with TRPS1, 
but it is also positively correlated with the expression lev-
els of multiple metabolic-related genes (such as ITGA2, 
PRKCE, PKM, PSME4, and NF1) (Fig.  6A and Supple-
mentary Figure S4C). These findings indicate that APP 
and TRPS1 may play a key role in regulating the meta-
bolic status of CSCC.

Cancer cell metabolism abnormalities are closely 
related to cell proliferation [7]. To explore the effects of 
APP and TRPS1 on cancer cell metabolism and prolifera-
tion in the development of CSCC, we first performed PPI 
analysis, which confirmed no direct interaction between 
APP and TRPS1 (Supplementary Figure S4E). Next, we 
individually knocked down APP and TRPS1 in the HeLa 
cell line (Fig.  6B). Initially, we observed a decrease in 
TRPS1 expression when APP expression was reduced. 
However, knocking down TRPS1 did not lead to a sig-
nificant alternation in APP expression (Fig. 6C), indicat-
ing that APP may exert its function partially through 
the regulation of TRPS1. Additionally, we evaluated the 
expression of metabolic-related genes after knocking 
down APP and observed a significant decrease in mRNA 
expression levels of genes such as ITGA2 and PRKCE 
(Fig. 6D and Supplementary Figure S4F), consistent with 
the transcriptomic analysis of CSCC. Subsequently, we 
performed CCK8 assays and Transwell experiments to 
analyse the impact of APP and TRPS1 on cancer cell pro-
liferation, migration, and invasion.

CCK8 assays showed that knocking down either APP 
or TRPS1 markedly attenuated the proliferation of HeLa 
cells within 48  h (Fig.  6E). The migration and invasion 
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Fig. 6 (See legend on next page.)
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of cells were significantly inhibited in response to either 
APP or TRPS1 knockdown (Fig. 6F). These results dem-
onstrate the important functional roles of APP and 
TRPS1 in regulating cervical cancer cell growth, further 
supporting our ST data analysis findings. To validate the 
pro-tumor effects of APP and TRPS1, we also conducted 
survival analysis using the data from TCGA CSCC 
cohort, including 233 patients. Higher expression of APP 
was found to be significantly correlated with poorer sur-
vival outcomes (p = 0.003, Fig. 6H). Similarly, higher lev-
els of TRPS1 expression were also associated with lower 
survival rates among CSCC patients (Fig. 6I, p = 0.034).

Overall, our experimental results have uncovered the 
regulatory roles of APP and TRPS1 on multiple meta-
bolic-related genes in cancer cell metabolism, aligning 
with the survival analysis using the genomics data from 
the TCGA CSCC cohort. Furthermore, both transcrip-
tional regulators are crucial in cancer cell proliferation, 
migration, and invasion. Although the precise regula-
tory interplay between APP and TRPS1 warrants further 
investigation, our study provides novel functional evi-
dence, laying a solid foundation and identifying these fac-
tors as promising targets for CSCC treatment.

Discussion
The relationship between changes in tumor metabolism 
and the occurrence and development of tumors entails 
intricate biological processes and multiple molecular 
mechanisms [7]. Cancer cells can adjust their own energy 
sensing pathways to enhance adaptation to metabolic 
stress, which increases their survival rate under low-
nutrient conditions and thus contributes to tumor drug 
resistance [77]. Currently, there are several studies on the 
metabolism and tumor progression of CSCC, but most 
of these studies lack a deep understanding of the interac-
tions between different cell types and the impact of their 
spatial positions on the tumor microenvironment [78, 
79]. Although ST technology and scRNA-seq analysis of 
cellular spatial distribution of CSCC have contributed 
to understanding of the tumor microenvironment, com-
prehensive knowledge of its metabolic characteristics is 
still lacking [23, 24, 80]. This study utilized Stereo-seq ST 
technology and scRNA-seq datasets to explore the het-
erogeneity of metabolic regions within CSCC tissues and 

correlate them with cancer cell differentiation status. The 
analysis of the tumor microenvironment unveiled the 
crucial roles of APP and TRPS1 in regulating CSCC can-
cer cell metabolism and proliferation that are associated 
with patient prognosis (Fig. 6J). These findings provide a 
new theoretical foundation and potential targets for the 
treatment and personalized therapy of CSCC.

Various types of cells and microenvironments exist 
within tumor tissues. Typically, the LE region refers to 
the part adjacent to normal tissues. It may be signifi-
cantly influenced by the tumor microenvironment and 
immune cell infiltration, showing signs of metastasis, 
infiltration, or transformation [25]. The TC region, on 
the other hand, represents the central part of the tumor 
where cancer cells have higher genomic instability, mak-
ing them more prone to metastasis and dissemination 
[81]. We utilized stereo-seq and scRNA-seq to further 
analyze the spatial molecular characteristics of the LE 
and TC regions of CSCC by deconvolution using the cell-
2location method [37]. We observed varying distribu-
tions of immune cells and metabolic activities within the 
CSCC tumor microenvironment across the LE and TC 
regions. Specifically, in the LE region, there was an accu-
mulation of macrophages expressing high levels of SPP1. 
Furthermore, previous research has also demonstrated 
that the changes in macrophage polarity defined by the 
expression of the CXCL9 and SPP1 genes are a crucial 
characteristic of the tumor microenvironment [82]. Mac-
rophages in the LE region, characterized by high SPP1 
and CTSB expression, may have immunosuppressive 
properties. Further investigation is needed to understand 
their role in immune evasion and their potential impact 
on treatment strategies and patient prognosis. In the LE 
region of CSCC tissues, apart from the accumulation of 
SPP1 + macrophages, there are indications of heightened 
inflammation-related pathways, reflecting the complex 
immune regulatory mechanisms within the tumor micro-
environment [83, 84]. The TC region exhibits a higher 
immune-suppressive environment, characterized by ele-
vated levels of PD-L1 and IDO1 expression, along with 
lower activity in inflammation-related pathways. These 
findings further underscore the crucial roles of immune 
checkpoint genes and inflammatory pathways in tumor 
development [54, 85]. In terms of metabolism, the LE 

(See figure on previous page.)
Fig. 6  Spatial and functional characteristics of different metabolic tumor regions in CSCC. (A) Correlation analysis between the expression levels of APP in 
RNA-seq data of TCGA CSCC tissues and the expression levels of the transcription factor TRPS1 and genes related to tumor metabolism (ITGA2 and PRKCE). 
(B) Bar graph showing siRNA-mediated knockdown of APP (left) and TRPS1 (right) RNA expression in HeLa cells. (C) Bar graph showing TRPS1 RNA expres-
sion in control and knockdown of APP HeLa cells (left) and APP RNA expression in control and knockdown of TRPS1 HeLa cells. (D) Bar graph showing the 
RNA expression of tumor metabolism-related genes (ITGA2 and PRKCE) in control and knockdown of APP HeLa cells. (E) Cell proliferation measured by 
CCK8 assay in HeLa cells transfected with si-APP, si-TRPS1, or si-NC. (F-G) The effect of APP or TRPS1 knockdown on HeLa cells’ migration (F) and invasion 
(G) determined by transwell assays. (H-I) Estimation of the survival probability of CSCC patients based on APP (H) or TRPS1 (I) gene expression levels. The 
analysis was performed using TCGA’s dataset of 255 CSCC samples. (J) Schematic summary illustrating immune characteristics and associations of APP 
and TRPS1 with CSCC progression, generated using BioRender (https://biorender.com/). Significant differences were determined using the two-tailed 
unpaired Student’s t-test (****p < 0.0001; ***p < 0.001; **p < 0.01; *p < 0.05; ns, not significant). P values < 0.05 were considered statistically significant

https://biorender.com/
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region displays elevated metabolic activity, such as cGMP 
metabolism, oxidative phosphorylation, and purine 
metabolism. These findings not only highlight the hetero-
geneity within CSCC tumor but also provide crucial clues 
for the discovery of personalized therapeutic targets. In 
line with our research findings, recent studies have also 
underscored the heterogeneity of various regions within 
tumors. For instance, a recent study identified distinct 
transcriptional characteristics in the TC and LE regions 
of oral squamous cell carcinoma, corroborating our 
observations [86].

Further delving into the metabolic characteristics 
within the CSCC tumor, we found that distinct meta-
bolic signatures exist even within the LE and TC regions. 
Additionally, we observed differential patterns of CNV in 
high and low metabolic areas of cancer cells, which may 
be associated with alterations in metabolic-related genes, 
suggesting a relationship between metabolic status and 
patterns of genetic variation. John et al.‘s study clarified 
that p53 promotes the differentiation of cancer cells by 
regulating cellular metabolic pathways, particularly the 
accumulation of α-ketoglutarate [87]. In our research, 
we found a close correlation between metabolic activ-
ity and the differentiation status of cancer cells, suggest-
ing that cancer cells may differentiate from regions of 
hypermetabolic activity to those of hypometabolic activ-
ity. These findings are consistent with previous studies 
showing that cancer cells often transition from a hyper-
metabolic, stem cell-like state to a hypometabolic, dif-
ferentiated state [7, 88]. This is observed in cancers such 
as breast cancer and glioblastoma, where high meta-
bolic activity not only sustains stem cell properties but 
also enables tumor heterogeneity and promotes tumor 
growth [89–91]. Additionally, our research has revealed 
close connections between metabolic activity, cancer cell 
differentiation, and transcriptional regulatory networks. 
Transcription factor analysis revealed higher expression 
of TRPS1 and ZEB1 in hypermetabolic regions. TRPS1 
and ZEB1 have been extensively studied in tumor devel-
opment and progression [92–95]. Our research found 
that their transcriptional regulation of cancer cells may 
be closely associated with tumor metabolism.

We have discovered specific cell-cell communica-
tion between cancer cells and other cell types, such as 
SEMA3C-NRP2 and APP-CD74, which may play a role 
in tumor growth and metastasis [68]. In Bian et al.‘s study, 
it was found that the heightened uptake of methionine by 
cancer cells reduces methionine availability for cytotoxic 
T cells, resulting in diminished cytotoxic T cell func-
tion and suppression of effector T cells [96]. Addition-
ally, in our study, we also found that in different regions 
of varying metabolic activity in cancer cells, other cell 
types exhibit different transcriptional patterns, reflect-
ing how cancer cells can regulate the status and function 

of immune and stromal cells surrounding them through 
metabolism. Furthermore, we have identified key regula-
tory factors APP and TRPS1, which play crucial roles in 
regulating the metabolism, proliferation, migration, and 
invasion of CSCC cancer cells. Kleffman et al. found that 
the secretion of APP by melanoma cells promotes cancer 
cell metastasis and activates an anti-inflammatory phe-
notype [97]. Yang et al.‘s study on breast cancer revealed 
the critical role of TRPS1 in driving heterochromatin 
activation and cancer cell genomic evolution [31]. These 
conclusions corroborate our research findings and com-
plement each other, elucidating their significant roles in 
the onset and progression of cancer. Targeting these fac-
tors therapeutically could present new avenues for treat-
ment. For instance, the development of APP or TRPS1 
inhibitors could potentially disrupt the pro-tumorigenic 
signalling pathways they influence [98–101].

In our study, there are some limitations that need to 
be considered. Firstly, our sample size is relatively small. 
Although we employed rigorous statistical methods dur-
ing the analysis to ensure the reliability of the results, the 
small sample size may still lead to some degree of bias 
in the outcomes. However, we have addressed this limi-
tation by validating our findings through experimental 
results. Through immunohistochemistry and immuno-
fluorescence experiments, we have obtained results con-
sistent with those from the ST data analysis. Through in 
vitro experimentation, we conducted functional valida-
tion of APP and TRPS1 by manipulating their expression 
in the HeLa cell line. This indicates that even with a lim-
ited sample size, our research findings still hold a certain 
degree of credibility and significance. Additionally, the 
spatial resolution of ST may limit the precise localization 
of cell subpopulations, thereby affecting the interpreta-
tion of results. Furthermore, sample preservation and 
processing may impact the transcriptional characteris-
tics of the cells, particularly regarding RNA degradation 
and expression changes. Finally, future studies should 
consider integrating other technologies and improved 
algorithms to overcome these limitations and provide a 
more comprehensive perspective on metabolic analysis 
[102–107]. To improve the reliability of future studies, 
larger sample sizes, especially from multicenter studies 
that include diverse populations, should be considered to 
validate our findings.

Conclusions
Overall, our research findings bridge the gap in knowl-
edge regarding tumor metabolism and CSCC develop-
ment. By elucidating the pivotal roles of APP and TRPS1 
in regulating tumor metabolism and proliferation, we 
offer new theoretical foundations and potential targets 
for CSCC treatment. Moreover, our study underscores 
the significance of recognizing metabolic heterogeneity 



Page 18 of 21Zhou et al. Journal of Translational Medicine         (2024) 22:1163 

within tumors and its implications for cancer treatment. 
In conclusion, our discoveries lay the groundwork for the 
advancement of novel therapeutic approaches targeting 
CSCC tumor metabolism, offering promising avenues for 
enhancing patient prognosis and personalized treatment 
modalities.
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