
Computers & Industrial Engineering 200 (2025) 110838

A
0

Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier.com/locate/caie

Exact algorithms in bar nesting: How to cut general items from linear stocks
so that wastage is minimised
Rhyd Lewis a ,∗, Louis Bonnet b

a School of Mathematics, Cardiff University, CF24 4AX, Wales, United Kingdom
b Laboratory for Analysis and Architecture of Systems, CNRS, Toulouse 31031, France

A R T I C L E I N F O

Dataset link: https://doi.org/10.5281/zenodo.1
1657149

Keywords:
Manufacturing and logistics
Bar nesting
Stock cutting
Bin packing
Graph theory

A B S T R A C T

This paper proposes exact, polynomial-time algorithms that solve the problem of cutting items with angled
sides from a single linear stock so that wastage is minimised. In industry, this problem is called ‘‘bar nesting’’.
Here we give an algorithmic framework that solves several important variants of the problem, including cutting
items from stocks with asymmetric cross-sections, cutting items whose sides occur on different planes, and the
minimum score separation problem.
1. Introduction

In manufacturing and construction industries, bar nesting software
is often used to help optimise the cutting patterns of linear materials
such as reinforcing bars, girders, pipes, wooden joists, and window
frames. An important objective in such software is to determine ar-
rangements of the desired items on long stocks of the appropriate
material so that, when cut from these stocks, resultant wastage is
minimised. Several companies currently offer bar nesting software for
industrial use, often as part of a broader suite of construction-related
CAD tools. Popular vendors include AutoRebar, RebarCAD, AutoBar-
Sizer, and TopSolid Design. The third of these tools uses algorithms
previously developed by the first author of this paper (Lewis & Holborn,
2017), while contributions to TopSolid’s bar nesting functionality have
been made by the second author, who was previously employed by the
company.

The standard industrial process of cutting items from linear stocks is
illustrated in Fig. 1(a). Here, the stock (bar) is fed through a device that
allows a 360◦ rotation along its length, as indicated. Once the stock is
in position, a straight cut is then performed vertically downwards at the
desired location. The cutting blade can also be rotated through 360◦ on
the axis perpendicular to the stock, allowing angled cuts to be made.

Because stocks can be rotated between individual cuts, this allows
the angled ends of items to occur on different planes. Fig. 1(b) il-
lustrates why this is desirable, as it allows sets of items to be cut
that, when joined, can form elaborate 3D structures. The cross sections
of individual lengths of stock can also vary. Examples are shown in

∗ Corresponding author.
E-mail addresses: lewisr9@cardiff.ac.uk (R. Lewis), lbonnet@laas.fr (L. Bonnet).

Fig. 1(c), including hollow tubes, L- and I-shaped girders, and window
seals.

The standard industry practice is for linear stocks to be manufac-
tured in fixed lengths, from which the desired items are then cut. To
minimise wastage in the production of a set of items, it is therefore
necessary to partition the required items into subsets, with each subset
being assigned to a separate length of stock, such that (1) all items
assigned to a subset can be cut from an individual stock, and (2) the
number of subsets (stocks required) is minimised. The combination of
these two requirements makes the bar nesting problem a member of a
larger set of cutting and packing problems that Wäscher et al. (2007)
call ‘‘fixed-dimension input-minimisation problems’’. Perhaps the most
widely known member of this class is the famous one-dimensional bin
packing problem (BPP), which involves taking a set of items of differing
lengths and ‘‘packing’’ them into a minimum number of fixed-length
‘‘bins’’ so that the sum of item lengths in each bin does not exceed
the bin length. Garey and Johnson (1979) have shown that the BPP is
 -hard, which has led to the proposal of many different techniques
for the problem, including approximation algorithms, heuristics, and
exponential-time exact techniques (Coffman et al., 2013; Falkenauer,
1998; Garey & Johnson, 1981).

Despite the difficulty of solving the BPP, the subproblem of deciding
whether a particular set of items can be packed into a single bin is
trivial: we simply check that the sum of their lengths does not exceed
the length of the bin. The commutativity of this summing operation also
https://doi.org/10.1016/j.cie.2024.110838
Received 18 June 2024; Received in revised form 7 November 2024; Accepted 21
vailable online 31 December 2024
360-8352/© 2025 The Authors. Published by Elsevier Ltd. This is an open access ar
December 2024

ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/caie
https://www.elsevier.com/locate/caie
https://orcid.org/0000-0003-1046-811X
https://orcid.org/0009-0005-3805-2740
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
mailto:lewisr9@cardiff.ac.uk
mailto:lbonnet@laas.fr
https://doi.org/10.1016/j.cie.2024.110838
https://doi.org/10.1016/j.cie.2024.110838
http://creativecommons.org/licenses/by/4.0/

R. Lewis and L. Bonnet Computers & Industrial Engineering 200 (2025) 110838
Fig. 1. Part (a) shows how the stock and blade can be rotated during the cutting process. Part (b) shows a structure formed by joining items whose ends have been cut on
different planes. Part (c) shows cross-sections of different types of stock materials.
implies that the order in which items occur in the bin is unimportant.
Note, then, that the BPP can be considered a special case of the bar
nesting problem in which (a) all cuts are made at right angles to the
length of the stock, and (b) all cuts occur on the same plane (that is,
stocks are not rotated between cuts). This implies that the bar nesting
problem is also  -hard in general.

As we have noted, industrial applications of bar nesting problems
involve the production of items with angled ends that can occur on
different planes. Unlike the BPP, the way in which items are cut from
individual stocks (or, equivalently, packed into individual bins), can
therefore affect the amount of material wastage incurred. In this paper
we will specifically consider this latter feature, focusing on efficient
methods for arranging (and cutting) items on a single linear stock. More
specifically, given a set of items whose total length is seen to not exceed
the stock length, we will consider polynomial-time exact methods that
determine whether or not the items can be feasibly cut from this
stock. Such methods might then be used in conjunction with a broader
algorithm for tackling the multiple-stock version of this problem.

2. Literature review and contributions

In this section, we focus on cutting and packing problems specifi-
cally related to bar nesting. Each of these problems can be considered
one-dimensional in that, for a given set of items to be feasible, their
total length should not exceed the given stock length. As we have
seen, for the BPP the satisfaction of this single constraint is sufficient;
however, in the following problems, feasibility also depends on factors
including the ordering, alignment, and compatibility of items. Two
tasks can therefore be identified: (a) the single-stock (decision) sub-
problem, where we are interested in determining whether a set of items
can be cut from a single stock (or, equivalently, packed into a single
bin), and (b) the multi-stock (optimisation) problem, where we want
to determine the minimum number of stocks needed to cut/pack a set
of items.

One of the first considered problems of this type was studied
by Jansen (1999). In this work, the BPP is extended by associating each
item 𝑖 ∈ 𝐼 with a vertex 𝑣𝑖 in a simple graph 𝐺 = (𝑉 , 𝐸). An edge
{𝑣𝑖, 𝑣𝑗} ∈ 𝐸 then signifies that the pair of items 𝑖, 𝑗 are incompatible
and cannot be assigned to the same stock, even if the length of the
stock allows it. If 𝐸 = ∅, then this problem is equivalent to the
BPP; otherwise, it is an extension of the  -hard graph colouring
problem (Lewis, 2021). Note that the single-stock subproblem is easy
to solve in this case—in addition to summing the lengths of the items,
we simply need to confirm that {𝑣𝑖, 𝑣𝑗} ∉ 𝐸 for all pairs of items 𝑖, 𝑗
on the stock. Jansen (1999) also suggests an algorithm for the multi-
stock variant of this problem that gives asymptotic approximations
for several graph topologies including trees, grid graphs, and planar
graphs.
2
Shachnai and Tamir (2001) have studied a different extension to
the BPP in which each item 𝑖 is preallocated a colour 𝑐(𝑖) ∈ N. Each
stock then has an upper bound 𝑘 on the number of different colours it
can accommodate. Solving the single-stock subproblem is again easy in
this case: given a set of items 𝐼 = {𝑖1,… , 𝑖𝑛} whose total length does
not exceed the stock length, we simply determine the set of colours
used by these items, 𝐶 = {𝑐(𝑖) ∶ 𝑖 ∈ 𝐼}, and check that |𝐶| ≤ 𝑘.
A second problem variant is also considered by Shachnai and Tamir
(2001) in which each item 𝑖 has a choice of which colour to assume,
giving 𝑐(𝑖) ⊆ N. In this case, solving the single-stock subproblem is
equivalent to the task of finding a set cover of size 𝑘 (or less) for the
universe 𝐼 using the family of subsets {{𝑖 ∶ 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝑐(𝑖)} ∶ 𝑗 ∈ N}.
The set cover problem is known to be  -complete, however (Garey
& Johnson, 1979).

Another variant of the BPP in which items are preallocated colours
is considered by Borges et al. (2024). In this problem, items on the same
stock cannot be placed in adjacent positions when they have the same
colour. The single-stock subproblem therefore involves determining a
sequence ⟨𝑖1,… , 𝑖𝑛⟩ of the given items such that 𝑐(𝑖𝑗) ≠ 𝑐(𝑖𝑗+1) ∀𝑗 ∈
{1,… , 𝑛− 1}. Borges et al. (2024) show that such a sequence will exist
whenever ⌈𝑛∕2⌉ or fewer items have the same colour. They also give an
(𝑛) algorithm for producing such sequences, which they then combine
with other operators to tackle the multi-stock problem variant.

In other work, Goulimis (2004) considers an extension to the BPP
that arises in the manufacture of cardboard boxes. In this problem, each
item 𝑖 ∈ 𝐼 has a length 𝑙𝑖 and, in addition, is marked with two vertical
score lines in predetermined places. The distances between each score
line and the nearest end of the item are then known as the score lengths
𝑥𝑖 and 𝑦𝑖 (where 𝑥𝑖 + 𝑦𝑖 < 𝑙𝑖). In the described industrial process, when
a cut is performed on the stock, two scores are made simultaneously on
the items on either side at the prescribed distances; however, because of
the way cuts are performed, these scores cannot be less than 𝜏 distance
units apart, making some arrangements of items infeasible.

More formally, the single-stock subproblem of Goulimis (2004)
involves taking a set of items 𝐼 = {𝑖1,… , 𝑖𝑛} whose combined length
∑

𝑖∈𝐼 𝑙𝑖 does not exceed the stock length. From this, the multiset 𝑃 =
{{𝑥𝑖, 𝑦𝑖} ∶ 𝑖 ∈ 𝐼} is formed, and the task is to determine a sequence
of the elements of 𝑃 in which each item is an ordered pair such that
the sum of adjacent values from neighbouring ordered pairs is not less
than 𝜏. For example, using the input 𝑃 = {{1, 2}, {1, 4}, {2, 3}, {2, 4}}
with 𝜏 = 5, a feasible solution is ⟨(2, 3), (2, 4), (1, 2), (4, 1)⟩, whereas
the solution ⟨(3, 2), (2, 4), (1, 2), (4, 1)⟩ is infeasible (the adjacent values
between the first and second elements sum to a value less than 𝜏).
In the literature, the above single-stock subproblem is known as the
minimum score separation problem. Lewis et al. (2011) proposed a greedy
heuristic for this problem, though it was proved to be polynomially
solvable by Becker (2010) using the concept of alternating Hamiltonian
paths. More recently, Hawa et al. (2022) extended these ideas to give

R. Lewis and L. Bonnet Computers & Industrial Engineering 200 (2025) 110838
Fig. 2. A small trapezoid packing problem instance involving four items. Part (a) shows an optimal arrangement when both left- and up-rotations are permitted; Part (b) shows
the optimum solution when only up-rotations are permitted.
an exact (𝑛2) algorithm for the problem. They then combined this with
heuristic operators to tackle the multi-stock variant.

Garraffa et al. (2016) have also considered a BPP in which the
order and alignment of items on a stock are important. In their case,
material wastage is said to occur between each pair of adjacent items
𝑖, 𝑗 on a stock, defined by a value 𝑤(𝑖, 𝑗). The single-stock subproblem
then involves determining a sequence ⟨𝑖1,… , 𝑖𝑛⟩ of the given items
such that the combined length and wastage, ∑𝑛

𝑗=1 𝑙𝑖𝑗 +
∑𝑛−1

𝑗=1 𝑤(𝑖𝑗 , 𝑖𝑗+1),
does not exceed the stock length. In their case, values for 𝑤(𝑖, 𝑗) are
defined using an arbitrarily filled 𝑛 × 𝑛 matrix, so solving the single-
stock subproblem is equivalent to the  -complete travelling salesman
problem (TSP). In addition, Garraffa et al. (2016) note that the multi-
stock variant is equivalent to the  -hard distance-constrained vehicle
routing problem.

A problem related to this was previously considered by Lewis et al.
(2011), who examined the problem of cutting trapezoidal items from
stocks. This problem originated in the roofing industry, where roof
trusses need to be cut from long pieces of timber. Here, all items have
the same height, but their lengths and end angles can vary. The single-
stock subproblem then involves determining a sequence and orientation
of the given trapezoids so that the inter-item wastage is minimised. If
this inter-item wastage plus the total area of the items is seen to be less
than the area of the stock, then an arrangement exists that allows all
items to be cut from the stock.

A small example of this trapezoid packing problem (TPP) is shown
in Fig. 2(a). Note that items can be left-rotated and/or up-rotated in
this problem. In Part (a) of the figure, for example, the yellow item
has been both left- and up-rotated from its original state. This leads
to a choice of four different orientations for each item. Importantly,
the use of up-rotations also allows adjacent angled ends to be nested,
ensuring that ‘‘⟋’’ angles are always adjacent to other ‘‘⟋’’ angles, and
‘‘⟍’’ angles are always adjacent to other ‘‘⟍’’ angles. Lewis et al. (2011)
made use of greedy heuristics and integer programming for the single-
stock TPP, though Lewis and Holborn (2017) later found the problem
to be polynomial-time solvable using their (𝑛3) Euler-Splice algorithm.
The latter paper also suggested several ways of combining Euler-Splice
with specialised heuristics for tackling the multi-stock version of the
problem.

A single-stock problem related to the TPP is also considered by
Gilmore and Gomory (1964). Here, a problem instance is defined by
a multiset of ordered integer pairs 𝑃 = {(𝑥𝑖, 𝑦𝑖) ∶ 𝑖 ∈ 𝐼}, and the
aim is to determine a sequence of these elements such that the sum
of the costs occurring between adjacent pairs is minimised. Although
this problem is  -hard under an arbitrary cost function, Gilmore and
Gomory (1964) give an exact quadratic-time algorithm for cases where
the cost between neighbouring values 𝑦 and 𝑥 in a solution can be
written as
⎧

⎪

⎪

⎨

⎪

⎪

⎩

∫

𝑥

𝑦
𝑔1(𝑧) 𝑑 𝑧 if 𝑥 ≥ 𝑦

∫

𝑦

𝑥
𝑔2(𝑧) 𝑑 𝑧 otherwise

(1)

where 𝑔1(𝑧) and 𝑔2(𝑧) are any integrable functions satisfying

𝑔1(𝑧) + 𝑔2(𝑧) ≥ 0. (2)

Note that this algorithm does not support the rotation of items; how-
ever, it is still suitable for solving a variant of the TPP considered in
Section 3.2 later.
3
2.1. Contributions and paper plan

The next section of this paper begins with a more detailed descrip-
tion of the (single-stock) trapezoid packing problem (TPP) and shows
how and when it can be used in industrial bar nesting applications.
We then show how the Euler-Splice method for this problem can be
(a) modified to feature an improved complexity of (𝑛2), and also
(b) adapted to solve a more restricted version of the TPP in which
items cannot be left-rotated. Formal proofs of correctness, which have
hitherto not been given for the Euler-Splice method, are presented in
Section 3.3.

In Section 4 we then expand significantly on this work by using
our previous method of proof to define a generalised polynomial-
time algorithm that, for the first time, exactly solves several other
problem variants arising in industrial bar nesting applications. These
include situations involving angled cuts on bars with asymmetric cross-
sections, cuts occurring on different planes, and also the minimum score
separation problem described earlier. Section 5 presents an empirical
analysis of these algorithms over a large set of problem instances while,
finally, Section 6 concludes the work and makes suggestions for future
research.

3. Euler-Splice and bar nesting

As noted in the previous section, the TPP involves taking a set of
fixed-height trapezoidal items and arranging them onto a single stock
(bar) such that inter-item wastage is minimised. More formally, we are
given a set of items 𝐼 = {𝑖1,… , 𝑖𝑛} in which each item 𝑖 has the same
height 𝐻 , a ‘‘central length’’ 𝑐𝑖, and two ‘‘projection lengths’’ 𝑥𝑖 and 𝑦𝑖
that define the angles of its lateral sides (see Fig. 2). The area of an
item 𝑖 is denoted by 𝐴(𝑖) = 𝐻 𝑐𝑖 + 1

2𝐻 𝑥𝑖 + 1
2𝐻 𝑦𝑖, and the problem of

deciding whether the items of 𝐼 can be cut from a single 𝐻 × 𝐿 stock
now involves determining an arrangement of the items such that the
inter-item wastage is less than 𝐻 𝐿 − 𝐴(𝐼), where 𝐴(𝐼) = ∑

𝑖∈𝐼 𝐴(𝑖).
Note that, because the trapezoidal items can be up-rotated, adjacent

projections can always be nested in the manner described previously.
This is due to the theorem of Lewis et al. (2011), which we reproduce
here.

Theorem 1 (Lewis et al., 2011). When minimising wastage between succes-
sive trapezoids in a defined sequence, we only need to decide whether each
trapezoid should be left-rotated.

Proof. Consider a set of trapezoidal items arranged in a particular
sequence from left to right, together with a specification, for each
trapezoid, of which projection should be on the left. If the orientations
are such that the inter-item wastage for this particular arrangement is
minimised, then the adjacent projections will be aligned so that they
nest. (That is, ‘‘⟋’’ angles will be adjacent to other ‘‘⟋’’ angles and ‘‘⟍’’
will be adjacent to other ‘‘⟍’’ angles). Now suppose the contrary, and
that two adjacent trapezoids in this arrangement do not nest. If we take
all trapezoids to the right of this join and perform an up-rotation, this
join will be nested, decreasing the wastage, and leaving the remaining
joins in the sequence unchanged. Hence, the original orientation did
not give the minimal wastage. □

R. Lewis and L. Bonnet

w

t
d
w
r

{
𝑆

t
s
d
e
s
b
(
p

o
w

r
r
p
o
i

a

e

3

h
O
a
t

Computers & Industrial Engineering 200 (2025) 110838
This nesting property implies that, w.l.o.g., the area of inter-item
astage between any two adjacent projections 𝑥, 𝑦 can be calculated

as 1
2𝐻(‖𝑥 − 𝑦‖). Since 𝐻 is a constant, this can be further simplified

o ‖𝑥 − 𝑦‖. The task of arranging the items of 𝐼 therefore involves
etermining an ordering of the 𝑛 items and, for each item 𝑖, deciding
hether the projection 𝑥𝑖 or 𝑦𝑖 should occur on the left. This can be

estated as follows.

Definition 1 (The Pair Sequencing Problem (PSP) of Lewis & Holborn,
2017). Given a set of items 𝐼 = {𝑖1,… , 𝑖𝑛}, let 𝑃 be the multiset of
unordered pairs containing their projection lengths, 𝑃 = {{𝑥𝑖, 𝑦𝑖} ∶
𝑖 ∈ 𝐼}, and let 𝑆 be an ordering of the elements of 𝑃 in which each
element is expressed as an ordered pair. The PSP involves identifying
the solution 𝑆 that minimises the cost function:

 (𝑆) =
(

|𝑆|−1
∑

𝑗=1
𝑓 (𝐫 𝐡𝐬(𝑗), 𝐥𝐡𝐬(𝑗 + 1))

)

+ 𝑓 (𝐫 𝐡𝐬(|𝑆|), 𝐥𝐡𝐬(1)) (3)

where 𝐥𝐡𝐬(𝑗) and 𝐫 𝐡𝐬(𝑗) give the values of the left- and right-hand sides
of the 𝑗th ordered pair in 𝑆, and where 𝑓 (𝑥, 𝑦) = ‖𝑥 − 𝑦‖ gives the
difference between the two values 𝑥 and 𝑦.

To account for the triangles of wastage occurring on the left and
right of the stock, it is sufficient to add a single dummy element
{0, 0} to 𝑃 in the above definition. An optimal solution 𝑆 for this
PSP corresponds to an arrangement of the set 𝐼 of trapezoidal items
that minimises inter-item wastage. If this wastage is less than 𝐻 𝐿 −
𝐴(𝐼), then the single-stock (decision) problem is answered in the af-
firmative (i.e., all items of 𝐼 can be cut from a single 𝐻 × 𝐿 stock).
As an example, the set of items in Fig. 2 gives the problem 𝑃 =
{3, 4}, {2, 0}, {2, 4}, {3, 4}} ∪ {{0, 0}}, which features an optimal solution
= ⟨(0, 0), (4, 3), (3, 4), (4, 2), (2, 0)⟩ of cost  (𝑆) = 4, as illustrated in

Fig. 2(a).
Recall from Section 1 that, in the described industrial bar cutting

process, cuts are made using a blade that moves vertically downward
hrough the stock. If all cuts on a stock are to be made on the
ame plane, then it is clear that each item can be considered a two-
imensional trapezoid. Moreover, if, on this plane, the stock material
xhibits a vertical line of reflectional symmetry or 180◦ rotational
ymmetry, then, where necessary, the stock can be rotated by 180◦

etween successive cuts to allow adjacent projections to be nested.
This symmetry exists, for example, in all of the stock materials and
lanes shown in Fig. 1(c), except for the asymmetric L-shaped bar at the

bottom left.) Such an action is equivalent to performing an up-rotation
f an item. Consequently, a solution to the PSP will give an optimal
ay of cutting items from the bar/stock.

The PSP, in effect, allows items to be both left-rotated and up-
otated. However, certain industrial applications may not allow left
otations; for example, if the stock is a bar magnet, or a pipe with a
rescribed direction of flow. In these cases, a more restricted version
f the PSP is required in which, for each item 𝑖 ∈ 𝐼 , the projection 𝑥𝑖
s always kept on the left. This gives a second problem definition.

Definition 2 (The Ordered Pair Sequencing Problem (OPSP)). Given a set
of items 𝐼 = {𝑖1,… , 𝑖𝑛}, let 𝑃 be the multiset of ordered pairs containing
their projection lengths, 𝑃 = {(𝑥𝑖, 𝑦𝑖) ∶ 𝑖 ∈ 𝐼}, and let 𝑆 be an ordering
of the elements of 𝑃 . The OPSP involves identifying the solution 𝑆 that
minimises the same cost function as Definition 1.

Fig. 2, for example, gives the OPSP instance 𝑃 = {(3, 4), (2, 0), (2, 4),
(3, 4)} ∪ {(0, 0)}. This features the optimal solution 𝑆 = ⟨(0, 0), (2, 4), (3, 4),
(3, 4), (2, 0)⟩ that has  (𝑆) = 6, as shown in Fig. 2(b). An adaptation of
the Euler-Splice method for the OPSP will be described in Section 3.2.
4
Algorithm 1: Euler-Splice method for the PSP.
input : A problem instance 𝑃 .
output : A single optimal solution.

1 Let 𝐺 = (𝑉 , 𝐸) be the weighted multigraph constructed
according to Definition 3. Set 𝐿 as an empty list.

2 foreach 𝑖 ∈ {1,… , |𝑉 |} do
3 if deg(𝑣𝑖) is odd then append 𝑣𝑖 to 𝐿.
4 foreach 𝑖 ∈ {1, 3, 5,… , |𝐿| − 1} do
5 Let 𝑢 = 𝐿[𝑖] and 𝑣 = 𝐿[𝑖 + 1].
6 Add a dummy edge {𝑢, 𝑣} to 𝐺 and set

𝑤(𝑢, 𝑣) = 𝑓 (𝑤(𝑢), 𝑤(𝑣))
7 Let 𝐶1, 𝐶2,… , 𝐶𝑙 be the connected (Eulerian) components of 𝐺.
8 foreach 𝑖 ∈ {1,… , 𝑙} do
9 Use Hierholzer’s algorithm to generate an Eulerian circuit

𝑆𝑖 from 𝐶𝑖.
10 Delete any dummy edges from 𝑆𝑖 and then replace each

vertex 𝑣 in 𝑆𝑖 with its corresponding weight 𝑤(𝑣).
11 if 𝑙 ≥ 2 then 𝑆1 = Splice({𝑆1,… , 𝑆𝑙})
12 return 𝑆1

3.1. Improving Euler-Splice

A pseudocode description of our improved Euler-Splice algorithm for
the PSP is given in Algorithm 1. A worked example is also shown in
Fig. 3(a). At the start of the algorithm, a graph 𝐺 is first constructed
ccording to the following definition.

Definition 3. Let 𝐺 = (𝑉 , 𝐸) be an edge-weighted multigraph with
edge set 𝐸 = 𝑃 . Consequently, the vertex set 𝑉 has one vertex for each
different value occurring in 𝑃 . In this graph, let the weight 𝑤(𝑣) of a
vertex 𝑣 ∈ 𝑉 correspond to its numerical value in 𝑃 ; hence, deg(𝑣) gives
the number of occurrences of the value 𝑤(𝑣) in 𝑃 . For convenience, also
assume that vertices are labelled such that 𝑤(𝑣1) < 𝑤(𝑣2) < ⋯ < 𝑤(𝑣

|𝑉 |

).
Finally, set the weight of each edge 𝑤(𝑢, 𝑣) = 0.

In Lines 2–6 of Algorithm 1, a set of ‘‘dummy edges’’ is added to 𝐺 to
make the degrees of all vertices even. By definition, this makes 𝐺 a (pos-
sibly disconnected) Eulerian graph. Each of the added dummy edges
{𝑣𝑖, 𝑣𝑗} will also feature a (positive) weight 𝑤(𝑣𝑖, 𝑣𝑗) = 𝑓 (𝑤(𝑣𝑖), 𝑤(𝑣𝑗))
that will contribute to the overall cost of the final solution. The purpose
of these steps is to therefore identify an appropriate set of dummy edges
whose total cost is minimal. (See Theorem 2.)

On completion of these steps, the graph 𝐺 (including the dummy
dges) will comprise 𝑙 ≥ 1 Eulerian components 𝐶1, 𝐶2,… , 𝐶𝑙. As shown

in the remaining steps of Algorithm 1, each component 𝐶𝑖 is now
converted back to a corresponding subsolution 𝑆𝑖 by (a) writing out
a sequence of edges corresponding to an Eulerian circuit of 𝐶𝑖, (b)
removing the dummy edges from this sequence, and (c) replacing each
vertex in the sequence with its corresponding weight. (See Steps 2 and
 of Fig. 3(a) for an example.) Note that the cost of each subsolution

𝑆𝑖 equals the total weight of the dummy edges present in 𝐶𝑖.
In cases where 𝑙 = 1, the optimal solution to problem 𝑃 will now

ave been found and the algorithm can terminate (see Theorem 3).
therwise, the various subsolutions must be spliced together to form
 single optimal solution. To describe this splicing process, consider
he case where we have a pair of subsolutions 𝑆𝑖 = ⟨(𝑥𝑖 … 𝑦𝑖)⟩ and
𝑆𝑗 = ⟨(𝑥𝑗 … 𝑦𝑗)⟩ whose outer values are as indicated. If we now splice
these subsolutions by appending one to the other, the result is a new
subsolution ⟨(𝑥𝑖,… , 𝑦𝑖)(𝑥𝑗 … 𝑦𝑗)⟩ that incurs an additional cost of:

𝑓 (𝑦𝑖, 𝑥𝑗) + 𝑓 (𝑦𝑗 , 𝑥𝑖) − 𝑓 (𝑦𝑖, 𝑥𝑖) − 𝑓 (𝑦𝑗 , 𝑥𝑗). (4)

Note also that the costs of individual subsolutions do not change
under cyclic shifts and inversions. For example, the subsolution 𝑆 =
𝑖

R. Lewis and L. Bonnet

i
c

|

a
i
a
⟨

𝑆
i
E

H

v
t
v
l
t
s
c
b

Computers & Industrial Engineering 200 (2025) 110838
Fig. 3. Example applications of the Euler-Splice algorithm for the PSP (left) and OPSP (right). In Steps 1 and 2, the values inside the grey vertices correspond to the vertex weights
𝑤(𝑣). The weights of the dummy edges and dummy arcs (dashed lines and arrows) are also indicated.
c

a

p
r
v

⟨(2, 1), (1, 3), (3, 1)⟩ (with a cost of one), is equivalent to both ⟨(1, 3), (3, 1),
(2, 1)⟩ (due to a single left shift) and ⟨(1, 3), (3, 1), (1, 2)⟩ (due to an
inversion). Consequently, two subsolutions 𝑆𝑖 and 𝑆𝑗 can be spliced
together in 2 × |𝑆𝑖|× |𝑆𝑗 | different ways. This gives rise to the following
definition.

Definition 4. Let 𝑆𝑖 and 𝑆𝑗 be two subsolutions. A minimum cost splice
s the operation of splicing 𝑆𝑖 and 𝑆𝑗 such that the minimum additional
ost, denoted by 𝜌(𝑆𝑖, 𝑆𝑗), is incurred.

The value for 𝜌(𝑆𝑖, 𝑆𝑗) is calculated by simply checking all 2 × |𝑆𝑖|×
𝑆𝑗 | possible splicing options and taking the smallest value for Eq. (4)
mong these. Splicing these subsolutions then involves rotating and
nverting 𝑆𝑖 and 𝑆𝑗 appropriately, before appending one to the other. As
n example, consider the subsolutions 𝑆𝑖 = ⟨(2, 1), (1, 3), (3, 1)⟩ and 𝑆𝑗 =
(5, 4), (4, 5)⟩. Here, the minimum cost splice is achieved by left-shifting
𝑖 by two positions, left-shifting 𝑆𝑗 by one position, and then append-

ng to form the new subsolution ⟨(3, 1), (2, 1), (1, 3), (4, 5), (5, 4)⟩. Using
q. (4), this splice brings the (minimal) additional cost of 𝜌(𝑆𝑖, 𝑆𝑗) =

𝑓 (3, 4) + 𝑓 (4, 3) − 𝑓 (3, 3) − 𝑓 (4, 4) = 1 + 1 − 0 − 0 = 2.
In the (unproven) version of Euler-Splice proposed by Lewis and

olborn (2017), the 𝑙 subsolutions are spliced into a single (optimal)
solution using an (𝑛3)-time process. At each iteration of this process a
alue 𝜌(𝑆𝑖, 𝑆𝑗) is calculated for each pair of subsolutions 𝑆𝑖, 𝑆𝑗 , which
akes (𝑛2) time. The splice corresponding to the minimal observed
alue for 𝜌(𝑆𝑖, 𝑆𝑗) is then performed, reducing the number of subso-
utions by one, and the algorithm then repeats. In the worst case,
his process starts with 𝑙 = 𝑛 different subsolutions, resulting in 𝑛
eparate applications of this (𝑛2) process, resulting in the noted cubic
omplexity. Here, we propose the more efficient Splice method given
y Algorithm 2. As shown, this operates by first forming a minimum

spanning tree 𝑇 in which each vertex 𝑣𝑖 represents a subsolution 𝑆𝑖,
and the weight of each edge {𝑣𝑖, 𝑣𝑗} in 𝑇 is 𝜌(𝑆𝑖, 𝑆𝑗). The tree 𝑇 now
describes how the various subsolutions should be spliced together to
form a single solution. Moreover, under the cost function 𝑓 (𝑥, 𝑦) =
‖𝑥− 𝑦‖, this solution will be optimal, and the additional costs incurred
by performing the splices will equal the total of the edge weights in 𝑇
(see Theorem 4).

We now consider the overall complexity of this modified Euler-
Splice algorithm for a given problem instance 𝑃 containing 𝑛 elements.
 r

5
Algorithm 2: Splice (quadratic-time method)
input : A set of sub-solutions {𝑆1, 𝑆2,… , 𝑆𝑙}.
output : A single solution.

1 Let 𝐺 = (𝑉 , 𝐸) be a complete, undirected edge-weighted graph
with vertex set 𝑉 = {𝑣1,… , 𝑣𝑙} and edge weights
𝑤(𝑣𝑖, 𝑣𝑗) = 𝜌(𝑆𝑖, 𝑆𝑗), and let 𝑇 = (𝑉 , 𝐸𝑇) be a minimum
spanning tree on 𝐺.

2 while the number of vertices in 𝑇 is greater than one do
3 Let 𝑣𝑖 be a leaf vertex in 𝑇 and let 𝑣𝑗 be its (only)

neighbour.
4 Splice 𝑆𝑖 into 𝑆𝑗 (incurring an additional cost of 𝜌(𝑆𝑖, 𝑆𝑗))

and remove 𝑣𝑖 from 𝑇 .
5 return 𝑆𝑗

First, the construction of the weighted multigraph (Definition 3) takes
(|𝑉 | lg |𝑉 |) time because vertices are ordered by weight. In the worst
ase, all vertices will feature a degree of one, making this operation
(𝑛 lg 𝑛). Adding the dummy edges is then carried out in (𝑛) time.
The actions of identifying the Eulerian components (via Hierholzer’s
lgorithm) and converting each 𝐶𝑖 to a corresponding solution 𝑆𝑖

are also linear in complexity. When splicing the subsolutions using
Algorithm 2, the construction of the complete edge-weighted graph is
an (𝑛2) process, while the calculation of 𝑇 takes (𝑙2) time (which
is also (𝑛2) in the worst case). Finally, the splicing on Line 4 of Splice
can be performed in constant time providing linked lists (or similar) are
used. The overall worst-case complexity of this version of Euler-Splice
is therefore (𝑛2).

3.2. Euler-Splice adaptation for the OPSP

To adapt Euler-Splice to solve the OPSP (Definition 2) in (𝑛2)
time, three modifications are necessary. First, Definition 3 should be
modified so that an arc-weighted directed multigraph 𝐺 = (𝑉 , 𝐴) is
roduced for which 𝐴 = 𝑃 . All other characteristics of the graph
emain the same. Second, the matching process used to make the
ertex degrees of 𝐺 even (Lines 2–6 of Algorithm 1) should now be
eplaced by Algorithm 3. This new (𝑛) process adds dummy arcs to

R. Lewis and L. Bonnet

(
c
f
C
p

N


a
p

e
s

e
r

f

d
e
(
p
d
r
n
p
M
t
t
t
t

w
i

t

i
e

u

L

b
t

Computers & Industrial Engineering 200 (2025) 110838
Algorithm 3: Matching Procedure for the OPSP (replaces
Lines 2–6 of Algorithm 1)

input : Directed graph 𝐺 = (𝑉 , 𝐴).
output : Updated version of 𝐺 that is Eulerian.

1 Set 𝐿in and 𝐿out as empty lists.
2 foreach 𝑖 ∈ {1,… , |𝑉 |} do
3 𝑑 = deg+(𝑣𝑖) − deg−(𝑣𝑖)
4 if 𝑑 < 0 then foreach 𝑗 ∈ {1,… ,−𝑑} do append 𝑣𝑖 to 𝐿in
5 else if 𝑑 > 0 then foreach 𝑗 ∈ {1,… , 𝑑} do append 𝑣𝑖 to

𝐿out

6 foreach 𝑖 ∈ {1,… , |𝐿in|} do
7 Let 𝑢 = 𝐿out[𝑖] and let 𝑣 = 𝐿in[𝑖]
8 Add a dummy arc (𝑢, 𝑣) to 𝐺 and set 𝑤(𝑢, 𝑣) = 𝑓 (𝑤(𝑢), 𝑤(𝑣))

𝐺 so that the in-degree and out-degree of each vertex are made equal
i.e., deg+(𝑣) = deg−(𝑣) ∀𝑣 ∈ 𝑉), ensuring that the resultant directed
omponents 𝐶1, 𝐶2,… , 𝐶𝑙 are Eulerian. Finally, when calculating values
or 𝜌(𝑆𝑖, 𝑆𝑗) (Algorithm 2, Line 1), inversions should not be considered.
onsequently, only |𝑆𝑖| × |𝑆𝑗 | splicing options are evaluated for each
air of subsolutions 𝑆𝑖, 𝑆𝑗 .

A worked example of this modified algorithm is shown in Fig. 3(b).
ote that an alternative way of solving the OPSP is to use the noted
(𝑛2) algorithm of Gilmore and Gomory (1964), setting the functions

in Eq. (1) as 𝑔1(𝑧) = 𝑔2(𝑧) = 1.

3.3. Proof of correctness

In this section, we prove the correctness of our (𝑛2) Euler-Splice
lgorithm for both the PSP and the OPSP. As we have seen, the first
art of the algorithm involves generating the graph 𝐺 = (𝑉 , 𝐸) from

Definition 3 and then, if necessary, adding a minimum-weight set of
dummy edges/arcs between pairs of odd-degree vertices to make 𝐺
Eulerian. A suitable approach for generating this set is to use the blos-
som algorithm to produce a minimum-cost perfect matching between
the odd-degree vertices.1 Here, however, the particular structure of 𝐺
allows the set of dummy edges/arcs to be determined using the less
xpensive linear time processes given in Algorithms 1 and 3 as we now
how.

Theorem 2. In Euler-Splice, the sum of the weights of the dummy edges
added to 𝐺 is minimal for the PSP. This is also true for the sum of the
weights of the dummy arcs added to 𝐺 with the OPSP.

Proof. Consider the PSP first. Given the graph 𝐺 = (𝑉 , 𝐸) from
Definition 3, let 𝐺′ = (𝑉 ′, 𝐸′) be a complete edge-weighted graph
comprising the odd-degree vertices of 𝐺 and edge weights 𝑓 (𝑤(𝑢), 𝑤(𝑣))
for each 𝑢, 𝑣 ∈ 𝑉 ′. Note that, according to the handshaking lemma,
|𝑉 ′

| will be even. Now imagine that each vertex 𝑣 ∈ 𝑉 ′ is placed
on the number line at position 𝑤(𝑣). Since this is a straight line, a
minimum-cost perfect matching can be determined by simply matching
each successive pair of vertices on this line from left to right. It can be
seen that the set of weighted edges that are added to 𝐺 in Lines 2–6
of Algorithm 1 is equivalent to this matching. These additional edges
nsure that the degrees of all vertices are even, making 𝐺 Eulerian, as
equired.

For the OPSP, given the directed graph 𝐺 = (𝑉 , 𝐴), let 𝐺′ = (𝑉 ′, 𝐴′)
be an arc-weighted graph for which the vertex set is partitioned into
a set of black vertices and a set of red vertices. Specifically, for each

1 Several variants of the blossom algorithm are noted in the literature,
eaturing complexities such as (|𝐸||𝑉 |

2), (|𝑉 |

3), and (|𝐸||𝑉 | lg |𝑉 |). A
survey on this matter is presented by Duan and Pettie (2014).
6
𝑣 ∈ 𝑉 , if deg−(𝑣) > deg+(𝑣) then deg−(𝑣) − deg+(𝑣) black copies of 𝑣 (with
weight 𝑤(𝑣)) are added to 𝑉 ′; else, if deg+(𝑣) > deg−(𝑣) then deg+(𝑣) −
eg−(𝑣) red copies of 𝑣 (with weight 𝑤(𝑣)) are added to 𝑉 ′. Finally, for
ach pair of vertices 𝑢, 𝑣 ∈ 𝑉 ′ such that 𝑢 is red and 𝑣 is black, an arc
𝑢, 𝑣) of weight 𝑓 (𝑤(𝑢), 𝑤(𝑣)) is added to 𝐴′. Similar reasoning to the
revious case can now be applied. Due to the handshaking lemma for
irected graphs, the number of black vertices will equal the number of
ed vertices, making |𝑉 ′

| even. We also place the vertices of 𝑉 ′ onto the
umber line at the positions given by their weights. A minimum-cost
erfect matching can now be determined using the following process.
oving from left to right, if an unmatched red vertex 𝑢 is encountered,

hen this is matched to the nearest black vertex 𝑣 to the right of 𝑢 using
he arc (𝑢, 𝑣). Similarly, if an unmatched black vertex 𝑣 is encountered,
hen this is matched to the nearest red vertex 𝑢 to the right of 𝑣 using
he arc (𝑢, 𝑣). The set of weighted arcs that are added to 𝐺 in Algorithm

3 is equivalent to this matching and, as required, the in-degree of each
vertex in 𝐺 will now equal its out-degree, making 𝐺 Eulerian. □

At Line 11 of Euler-Splice, each subsolution 𝑆1,… , 𝑆𝑙 maps, re-
spectively, to the Eulerian component 𝐶1,… , 𝐶𝑙 in 𝐺. The cost of
each subsolution 𝑆𝑖 is also equal to the sum of the weights of the
dummy edges (arcs) present in 𝐶𝑖. The total cost of the 𝑙 subsolutions,
∑𝑙

𝑖=1  (𝑆𝑖), is therefore equal to the sum of the weights of all dummy
edges (arcs) in 𝐺, implying that the former is also minimal.

Theorem 3. For both the PSP and OPSP, if, at Line 11 of Euler-Splice,
just 𝑙 = 1 subsolution has been produced, then this is a full optimal solution.
Furthermore, the cost of this solution will be zero if and only if no dummy
edges were added to 𝐺 in the preceding steps.

Proof. Consider the PSP. If 𝑙 = 1 then 𝐶1 = 𝐺; hence 𝐺 is a connected
Eulerian graph. According to Definition 3, all edges in this graph have
a weight of zero, except for the dummy edges. Since the sum of the

eights of these dummy edges is minimal, the cost of the solution 𝑆1
s also minimal.

If the above is true and, in addition, no dummy edges were added
o 𝐺, then the sum of the edge weights in 𝐶1 will be zero. Conversely,

consider the (full) solution 𝑆1 that has a cost of zero. W.l.o.g, this can be
written as a sequence of ordered pairs 𝑆1 = ⟨(𝑥1, 𝑦1), (𝑥2, 𝑦2),… , (𝑥𝑛, 𝑦𝑛)⟩
n which 𝑦𝑖 = 𝑥𝑖+1 ∀𝑖 ∈ {1,… , 𝑛 − 1}, and 𝑦𝑛 = 𝑥1. Seen as a series of
dges, this gives an Eulerian circuit.

For the OPSP we apply the same arguments and simply replace the
term ‘‘edge’’ with ‘‘arc’’ in the above. □

At Line 11 of Euler-Splice, in cases where 𝑙 ≥ 2 subsolutions have
been formed, it is necessary to merge these into a single, full solution
sing the Splice method (Algorithm 2). As shown, this algorithm starts

with the production of a new complete, undirected, edge-weighted
graph 𝐺 = (𝑉 , 𝐸) in which each vertex 𝑣𝑖 ∈ 𝑉 corresponds to the
subsolution 𝑆𝑖, and edge weights 𝑤(𝑣𝑖, 𝑣𝑗) = 𝜌(𝑆𝑖, 𝑆𝑗). By definition,
a minimum spanning tree 𝑇 = (𝑉 , 𝐸𝑇) is a spanning subgraph of 𝐺
whose edge-weight sum is minimal among all such subgraphs (Cormen
et al., 2009). Consequently, it is sufficient to show that, by executing
ines 2–4 of Algorithm 2, the act of splicing a (leaf) subsolution 𝑆𝑖 into

its neighbour 𝑆𝑗 will not change the values of the minimum cost splices
etween any remaining pairs of subsolutions (including 𝑆𝑗). If this is
he case, then 𝑇 specifies a way of splicing the subsolutions 𝑆1,… , 𝑆𝑙

into a single solution whose cost
𝑙

∑

𝑖=1
 (𝑆𝑖) +

∑

{𝑣𝑖 ,𝑣𝑗}∈𝐸𝑇

𝑤(𝑣𝑖, 𝑣𝑗) (5)

is minimal.

Theorem 4. Given the set of subsolutions {𝑆1,… , 𝑆𝑙} produced at Line 11
of Euler-Splice and using 𝑓 (𝑥, 𝑦) = ‖𝑥 − 𝑦‖, the Splice method (Algorithm
2) gives a single optimal solution for both the PSP and OPSP.

R. Lewis and L. Bonnet

a
T
⟨

i
t

s
t

i
i
t

Computers & Industrial Engineering 200 (2025) 110838
Fig. 4. The four possible ways of merging subsolutions of the OPSP using Euler-Splice.
[
p
w

[
a

l

b
c
g
d
t

(

t

Proof. Consider the OPSP first. Note that ∀{𝑣𝑖, 𝑣𝑗} ∈ 𝐸𝑇 , 𝑤(𝑣𝑖, 𝑣𝑗) ≥ 0,
as to be otherwise would imply that the cost of the matching from the
previous step was not minimal. W.l.o.g., now assume that 𝑇 features
the edges {𝑣1, 𝑣2} and {𝑣1, 𝑣3}, and that 𝑣2 is a leaf vertex. This implies
that 𝜌(𝑆1, 𝑆2) ≤ 𝜌(𝑆2, 𝑆3) and that 𝜌(𝑆1, 𝑆3) ≤ 𝜌(𝑆2, 𝑆3). According to
the behaviour of Splice, we will now combine 𝑆1 and 𝑆2 to form the
subsolution 𝑆{1,2}, incurring an additional cost of 𝜌(𝑆1, 𝑆2). It is now
sufficient to show that

𝜌(𝑆1, 𝑆3) = 𝜌(𝑆{1,2}, 𝑆3) (6)

in all cases.
Consider first the act of splicing 𝑆1 and 𝑆2. For convenience, assume

that these subsolutions are already appropriately left-rotated, allowing
 minimum cost splice to be performed by appending one to the other.
hese subsolutions can be written as 𝑆1 = ⟨(𝑥1 … 𝑦1)⟩ and 𝑆2 =
(𝑥2 … 𝑦2)⟩, with

𝜌(𝑆1, 𝑆2) = 𝑓 (𝑦1, 𝑥2) + 𝑓 (𝑦2, 𝑥1) − 𝑓 (𝑥1, 𝑦1) − 𝑓 (𝑥2, 𝑦2). (7)

Splicing 𝑆1 and 𝑆2 therefore leads to the solution 𝑆{1,2} = ⟨(𝑥1,… , 𝑦1),
(𝑥2,… , 𝑦2)⟩.

Now consider the minimal cost splice for 𝑆1 and 𝑆3. If this involves
nserting 𝑆3 between two internal elements of 𝑆1—specifically, not be-
ween 𝑦1) and (𝑥1—then it is obvious that Eq. (6) holds. Consequently,

we now only need to consider the situation where the minimal cost
plice for 𝑆1 and 𝑆3 is achieved by inserting 𝑆3 between 𝑦1) and (𝑥1. If
his is the case, then it is necessary that

𝜌(𝑆1, 𝑆3) = 𝜌(𝑆{1,2}, 𝑆3) = min(𝑓 (𝑦1, 𝑥3) + 𝑓 (𝑦3, 𝑥2) − 𝑓 (𝑦1, 𝑥2)
− 𝑓 (𝑥3, 𝑦3), 𝑓 (𝑦2, 𝑥3) + 𝑓 (𝑦3, 𝑥1) − 𝑓 (𝑦2, 𝑥1) − 𝑓 (𝑥3, 𝑦3)). (8)

To complete the proof, we now need to consider the characteristics
of the chosen function 𝑓 (𝑥, 𝑦) = ‖𝑥 − 𝑦‖. Let 𝑆𝑖 = ⟨(𝑥𝑖 … 𝑦𝑖)⟩ and 𝑆𝑗 =
⟨(𝑥𝑗 … 𝑦𝑗)⟩ be two subsolutions, written as specified above. Because 𝑓
s commutative, we can assume that 𝑥𝑖 ≤ 𝑦𝑖. Similarly, because Eq. (7)
s commutative, we can assume 𝑥𝑖 ≤ min(𝑥𝑗 , 𝑦𝑗). In splicing 𝑆𝑖 and 𝑆𝑗
o form 𝑆{𝑖,𝑗} = ⟨(𝑥𝑖,… , 𝑦𝑖), (𝑥𝑗 ,… , 𝑦𝑗)⟩ there are now four possibilities

to consider.

(i) 𝑥𝑖 ≤ 𝑦𝑖 ≤ 𝑥𝑗 ≤ 𝑦𝑗 . Here, Eq. (7) simplifies to 2 ⋅𝑓 (𝑦𝑖, 𝑥𝑗). If 𝑦𝑖 ≠ 𝑥𝑗
this equates to a positive value, else it gives zero.

(ii) 𝑥𝑖 ≤ 𝑦𝑖 ≤ 𝑦𝑗 < 𝑥𝑗 . Similarly, in this case Eq. (7) simplifies to
2 ⋅ 𝑓 (𝑦𝑖, 𝑦𝑗) giving a positive value if 𝑦𝑖 ≠ 𝑦𝑗 and zero otherwise.

(iii) 𝑥𝑖 ≤ 𝑥𝑗 < 𝑦𝑖 ≤ 𝑦𝑗 . Here, Eq. (7) equates to zero, since 𝑓 (𝑥𝑖, 𝑦𝑖) +
𝑓 (𝑥𝑗 , 𝑦𝑗) = 𝑓 (𝑥𝑖, 𝑦𝑗) + 𝑓 (𝑥𝑗 , 𝑦𝑖).

(iv) 𝑥𝑖 ≤ 𝑥𝑗 ≤ 𝑦𝑗 < 𝑦𝑖. Similarly, in this case Eq. (7) equates to zero,
since 𝑓 (𝑥𝑖, 𝑦𝑖) + 𝑓 (𝑥𝑗 , 𝑦𝑗) = 𝑓 (𝑥𝑖, 𝑦𝑗) + 𝑓 (𝑥𝑗 , 𝑦𝑖).

(The remaining two possibilities, namely 𝑥𝑖 ≤ 𝑦𝑗 < 𝑦𝑖 ≤ 𝑥𝑗 and
𝑥𝑖 ≤ 𝑦𝑗 < 𝑥𝑗 < 𝑦𝑖, cannot occur as they equate to negative values.)
These four possibilities can be combined into two cases:
7
Case 1: If the real intervals defined by [𝑥𝑖, 𝑦𝑖] and [𝑥𝑗 , 𝑦𝑗] do not
intersect, then 𝜌(𝑆𝑖, 𝑆𝑗) = 2 ⋅ 𝑑 (

[𝑥𝑖, 𝑦𝑖], [𝑥𝑗 , 𝑦𝑗]
)

, where

𝑑
(

[𝑥𝑖, 𝑦𝑖], [𝑥𝑗 , 𝑦𝑗]
)

= min(‖𝑥𝑖−𝑥𝑗‖, ‖𝑥𝑖−𝑦𝑗‖, ‖𝑦𝑖−𝑥𝑗‖, ‖𝑦𝑖−𝑦𝑗‖) (9)

gives the distance between the two closest endpoints belonging
to the different intervals. In this case, 𝜌(𝑆𝑖, 𝑆𝑗) > 0.

Case 2: Otherwise, the intervals [𝑥𝑖, 𝑦𝑖] and [𝑥𝑗 , 𝑦𝑗] intersect (or are
adjacent), giving 𝜌(𝑆𝑖, 𝑆𝑗) = 0.

Now consider the splicing of the three subsolutions 𝑆1, 𝑆2, 𝑆3, as
mentioned earlier. Splicing 𝑆1 and 𝑆2 produces the subsolution 𝑆{1,2} =
⟨(𝑥1,… , 𝑦1), (𝑥2,… , 𝑦2)⟩ and, in effect, replaces the intervals [𝑥1, 𝑦1] and
𝑥2, 𝑦2] with the intervals [𝑥1, 𝑦2] and [𝑥2, 𝑦1]. Four options are now
ossible, which are illustrated in Fig. 4(a)–(d). For Fig. 4(a) and (b),
e have

𝜌(𝑆{1,2}, 𝑆3) = min(2 ⋅ 𝑑([𝑥1, 𝑦2], [𝑥3, 𝑦3]), 2 ⋅ 𝑑([𝑥2, 𝑦1], [𝑥3, 𝑦3])) = 𝜌(𝑆1, 𝑆3)

(10)

as required. In Fig. 4(c) and (d), meanwhile, we see that [𝑥1, 𝑦1] and
𝑥3, 𝑦3] intersect, giving 𝜌(𝑆1, 𝑆3) = 0. By inspection, it can be seen that
t least one of the intersections [𝑥1, 𝑦2] and [𝑥2, 𝑦1] also intersects with

[𝑥3, 𝑦3]. Hence 𝜌(𝑆{1,2}, 𝑆3) = 𝜌(𝑆1, 𝑆3) = 0.
Finally, for the PSP, observe that for Case 2 above, the allowance of

eft-rotations will result in negative values for 𝜌(𝑆𝑖, 𝑆𝑗); however, these
negative values cannot occur during execution of the overall Euler-
Splice method because they would imply that the matching used in
previous steps was not minimal. As a result, instances of Case 2 cannot
occur with the PSP. All other details remain the same. □

4. A generalised approach

The previous section gave an exact (𝑛2) algorithm for the PSP
and OPSP under the function 𝑓 (𝑥, 𝑦) = ‖𝑥 − 𝑦‖. Other functions can
also be encountered in bar nesting problems, however. One example is
illustrated in Fig. 5 where, unlike earlier, the trapezoidal items cannot
e up-rotated. In industrial applications, this situation occurs when the
ross sections of the stocks have no symmetry (such as the L-shaped
irder shown in Fig. 1(c)), or when different sides of the stocks have
ifferent properties (such as non-slip surfaces on timber decking). In
his particular case, it is now necessary to use the function 𝑓 (𝑥, 𝑦) =
‖𝑥 + 𝑦‖, where negative values are used for projections occurring on
the top of an item, and positive values are used for those at the bottom
as shown in Fig. 5).

As we saw earlier, the use of the function 𝑓 (𝑥, 𝑦) = ‖𝑥 − 𝑦‖ allows
he PSP to be formulated using the graph from Definition 3, where

each vertex can be seen as occurring on a number line, and each edge
weight corresponds to the Euclidean distance between its endpoints.
Under other functions, such as ‖𝑥 + 𝑦‖, this is not the case so a more
general formulation and solution method is required.

R. Lewis and L. Bonnet Computers & Industrial Engineering 200 (2025) 110838
Fig. 5. A small trapezoid packing problem instance involving four items. Part (a) shows an optimal arrangement when only left rotations are permitted; Part (b) shows the
optimum solution when no rotations are permitted.
Fig. 6. Demonstration of the Match-Splice method for (a) the GPSP, and (b) and GOPSP, using the problem instance from Fig. 5 (with 𝑓 (𝑥, 𝑦) = ‖𝑥 + 𝑦‖).
Definition 5. The Generalised Pair Sequencing Problem (GPSP) is
equivalent to the PSP (Definition 1), except that 𝑓 (𝑥, 𝑦) is now an
arbitrary function. Similarly, the Generalised Ordered Pair Sequencing
Problem (GOPSP) is equivalent to the OPSP (Definition 2) under an
arbitrary function 𝑓 (𝑥, 𝑦).

Given a problem instance 𝑃 = {{𝑥1, 𝑦1},… , {𝑥𝑛, 𝑦𝑛}}, the GPSP
can be modelled by a complete, edge-weighted graph 𝐺 = (𝑉 , 𝐸).
This is done by considering each of the 2𝑛 elements in 𝑃 as a vertex,
adding edge weights of −∞ between vertices belonging to the same pair
{𝑥𝑖, 𝑦𝑖} ∈ 𝑃 , and edge weights of 𝑓 (𝑥, 𝑦) between all remaining pairs.
A minimum-cost Hamiltonian cycle in this graph then corresponds to
a minimum-cost solution to the GPSP.2 Clearly, the task of identifying
such a cycle is equivalent to the TSP and, under arbitrary functions,
will be  -hard. That said, several functions encountered in industrial
bar nesting problems lead to polynomially solvable special cases of the
TSP. In this section, we will refer to such functions as ‘‘admissible’’ and
present several examples.

4.1. An exact solution method and admissible functions

Recall that, in Lines 7–10 of Euler-Splice, each connected component
𝐶1 … , 𝐶𝑙 is transformed into a corresponding subsolution 𝑆1 … , 𝑆𝑙 such
that the total cost of the subsolutions ∑𝑙

𝑖=1  (𝑆𝑖) is minimal. The same
set of connected components can be formed following the steps of the
Match-Splice method given in Algorithm 4. As shown, this involves
constructing a complete graph with 2𝑛 vertices in which edge weights
are defined by an admissible function 𝑓 (𝑥, 𝑦). A minimum-cost perfect
matching 𝑀 is then determined in this graph, and these edges are
combined with the set 𝐸1 to form 𝐶1 … , 𝐶𝑙. These are then spliced
into a single solution as before. Worked examples of this algorithm are
given in Fig. 6. Note that, in this case, the blossom algorithm is used
for determining the matching 𝑀 ; consequently, the overall complexity
of Match-Splice is dominated by the complexity of the chosen blossom
variant (see Section 3.3) and is therefore higher than (𝑛2).

The question to now ask is ‘‘which functions are admissible?’’ That
is, which functions allow the Splice method (Algorithm 2) to produce
a single solution that guarantees the satisfaction of Eq. (5), therefore
giving an optimal solution? Theorem 4 previously demonstrated the
admissibility of ‖𝑥− 𝑦‖. However, note that the function itself was not
considered in the proof until Eq. (8). To prove a function’s admissibility
it is therefore sufficient to simply demonstrate the truth of Eq. (8) with
respect to this function.

2 The same statements can be made for the GOPSP. In this case, we simply
use arcs instead of edges in the appropriate manner.
8
Algorithm 4: Match-Splice method for the GPSP.
input : A problem instance 𝑃 and admissible function 𝑓 (𝑥, 𝑦).
output : A single optimal solution.

1 Let 𝑉 = ∅, 𝐸1 = ∅ and 𝐸2 = ∅.
2 foreach {𝑥𝑖, 𝑦𝑖} ∈ 𝑃 do
3 Add vertices 𝑣2𝑖−1 and 𝑣2𝑖 to 𝑉 , and set their weights

𝑤(𝑣2𝑖−1) = 𝑥𝑖 and 𝑤(𝑣2𝑖) = 𝑦𝑖.
4 Add the edge {𝑣2𝑖−1, 𝑣2𝑖} to 𝐸1, and set its weight

𝑤(𝑣2𝑖−1, 𝑣2𝑖) = 𝑓 (𝑥𝑖, 𝑦𝑖).
5 foreach pair of vertices 𝑢, 𝑣 ∈ 𝑉 ∶ {𝑢, 𝑣} ∉ 𝐸1 do
6 Add the edge {𝑢, 𝑣} to 𝐸2 and set its weight

𝑤(𝑢, 𝑣) = 𝑓 (𝑤(𝑢), 𝑤(𝑣)).
7 Use the blossom algorithm to produce a minimum-cost perfect

matching 𝑀 on the graph (𝑉 , 𝐸1 ∪ 𝐸2).
8 Let 𝐶1,… , 𝐶𝑙 be the connected components (cycles) of the

multigraph 𝐺 = (𝑉 , 𝐸1 ⊎ 𝑀). Now apply Lines 8–12 of
Euler-Splice (Algorithm 1), using 𝑀 as the set of dummy
edges.

Table 1 lists several admissible functions with descriptions of how
they are directly relevant in bar nesting problems. The first three
examples in the table are proven in this paper. The remaining three
are conjectured, though we have strong empirical evidence of their
admissibility: first, we have executed Match-Splice with these func-
tions on large numbers of problem instances and have always found
Eq. (5) to be satisfied; second, we have made considerable use of
the Python script listed in Appendix B to test the admissibility of
these functions. This Python script is also useful for quickly identifying
inadmissible functions. Examples of the latter include min(𝑥, 𝑦) (even
though max(𝑥, 𝑦) is admissible), 𝑥×𝑦, the Kronecker delta function and,
naturally, when 𝑓 (𝑥, 𝑦) maps to randomly selected values. Note that
only the first function in Table 1 can be expressed in the form given
by Eqs. (1) and (2). The method of Gilmore and Gomory (1964) is
therefore unsuitable for the remaining cases.

5. Empirical analysis

In this section, we provide information on the performance of
our algorithms using differing problem instances and functions. Here,
algorithms were implemented in C++ and executed on Windows 10
machines with 3.5 GHz quad-core CPUs and 8 GB RAM. For Match-
Splice, the highly-regarded implementation of Kolmogorov (2009) was

R. Lewis and L. Bonnet Computers & Industrial Engineering 200 (2025) 110838
Table 1
Admissible functions with illustrated examples. Problem instances defined by these functions are solved by the Match-Splice method.
used for the blossom algorithm. Problem instances, meanwhile, were
generated by randomly selecting values for each 𝑥𝑖 and 𝑦𝑖 (𝑖 ∈ {1,… , 𝑛})
from a user-defined integer range. Our C++ code, problem instance
generator, a full listing of results, and a Python implementation of these
algorithms are available online (Lewis, 2024).

Fig. 7 demonstrates the time requirements of our (𝑛2) Euler-Splice
method. In general, the algorithm proves to be very fast, with problems
of up to 𝑛 = 20 000 elements being solved in less than 0.1 s. Execution
times also fall slightly when problem instances are generated using
smaller integer ranges. This is because, in these cases, minimum span-
ning trees with fewer vertices tend to be formed during the execution of
the Splice algorithm; hence this part of the algorithm completes more
quickly. Euler-Splice is also marginally faster with the OPSP, because
fewer options need to be considered for the calculation of each 𝜌(𝑆𝑖, 𝑆𝑗).

Fig. 8 shows results from similar experiments with Match-Splice
under three admissible functions. For experimental purposes, the third
function used here considers two projections to be on the same plane
(therefore applying ‖𝑥 − 𝑦‖) only when 𝑥 and 𝑦 are either both odd
or both even; otherwise ‖𝑥 + 𝑦‖ is used. Compared to Euler-Splice, the
runtimes of this algorithm are longer and are also influenced by the
chosen function and integer ranges. In all of these trials, we found that
less than 10% of the execution time was used by the splicing part of
the algorithm, indicating that the blossom algorithm is by far the most
costly part of the overall procedure.

Fig. 9 shows the execution times of Match-Splice when using the
function that solves the minimum score separation problem. As before,
we see that run times increase for larger problem instances; however,
we also see that run times are short when 𝛿 is relatively small or
large. In these cases, the blossom algorithm completes quickly, usually

determining a zero-cost matching for the former and a positive-cost

9
matching for the latter. On the other hand, intermediate values of 𝛿 lead
to matching problems that take the blossom algorithm much longer to
solve.

Finally, results from our last set of experiments are shown in Fig. 10.
Here, we use the arbitrary inadmissible function 𝑓 (𝑥, 𝑦) = ‖𝑥 × 𝑦‖
(mod 101) to compare Match-Splice to a well-known (|𝐸| lg |𝐸|) greedy
heuristic for the TSP.3 As noted, the use of an inadmissible function
here means that Eq. (5) is not always satisfied and, as a result, Match-
Splice is only approximative. It also means that the splicing part of the
algorithm now has the higher complexity of (𝑛3), as was described in
Section 3.1. The results indicate that, while the run times are longer
for Match-Splice, particularly for large problem instances, the costs of
its solutions are markedly lower. Match-Splice may therefore offer a
promising, albeit rather expensive, heuristic for the GPSP and OGPSP
under inadmissible functions.

6. Conclusions

In this paper, we have presented polynomial-time methods that
solve several single-stock bar nesting problems arising in industry. Be-
cause these represent special cases of the TSP, as a byproduct we have
also identified new members in the set of TSP cases that are polynomi-
ally solvable. (Other members of this set are surveyed by Burkard et al.,
1998.) For multi-stock variants of these problems, our methods could

3 This heuristic operates by considering each edge of the graph in ascending
weight order and adding edges to the solution so that no vertex in the solution
has a degree of more than two, and so the solution only contains a cycle once
the 𝑛th edge is added. As a variant of Kruskal’s algorithm, its complexity is

(|𝐸| lg |𝐸|) (Cormen et al., 2009; Khemani, 2008).

R. Lewis and L. Bonnet

c
a
m

g

Computers & Industrial Engineering 200 (2025) 110838
Fig. 7. Mean run times of the Euler-Splice algorithm for the PSP (left) and OPSP (right) for differing problem sizes and integer ranges. Shaded areas indicate one standard deviation
on either side of the mean. Values for each 𝑛 and range are calculated across fifty randomly generated problem instances.
Fig. 8. Mean run times of the Match-Splice algorithm for the GPSP using problem instances of ranges [−10, 10] (left) and [−1000, 1000] (right) under different admissible functions.
Remaining details are the same as Fig. 7.
Fig. 9. Mean run times of the Match-Splice algorithm for the GPSP using problem instances of ranges [0, 10] (left) and [0, 1000] (right) with 𝑓 (𝑥, 𝑦) = 𝛿 − 𝑥 − 𝑦 if 𝑥 + 𝑦 <
𝛿 and 0 otherwise, and varying values for 𝛿. Remaining details are the same as Fig. 7.
e

a

s
i

be used as sub-procedures in a wider algorithmic framework, which
ould include techniques such as constructive heuristics, local search,
nd/or column generation. In such frameworks, our exact algorithms
ay need to be executed many times; however, they will also be able

to halt early in many cases because the employed matching process
ives a lower bound on inter-item wastage. Consequently, if this lower

bound exceeds the permitted wastage, then it is known the items of
concern cannot be cut from a single stock.

As mentioned in the introduction, this paper has focussed on ap-
plications where the aim is to cut a predefined set of items from a
minimal number of stocks. In industrial settings, it is common for each
item 𝑖 to be associated with a given demand 𝑑 ∈ N, specifying that
𝑖 t

10
𝑑𝑖 copies of item 𝑖 are required. Alternative problem formulations also
xist in which the number of stocks is limited, and the objective is to

identify the best subset of items that can be cut from these stocks so that
demands are not exceeded. Wäscher et al. (2007) calls this formulation
a ‘‘fixed-dimension output-maximisation problem’’ and surveys several
lgorithms that could be combined with our suggested methods for this

multi-stock variant.
Our exchanges with TopSolid have indicated that it is rare to see

more than around 15 or 20 items per stock. This suggests that the
caling-up features of our algorithms are unlikely to be problematic in
ndustrial settings. That said, it would be interesting in future work
o see whether the matching problems for the admissible functions

R. Lewis and L. Bonnet

t
C

c
i

T
F

Computers & Industrial Engineering 200 (2025) 110838
Fig. 10. Here, bars compare the costs of solutions produced by Match-Splice and the greedy TSP heuristic for instances of the GPSP (left) and GOPSP (right) using an inadmissible
function. Lines show the corresponding run times of the algorithms, as with previous figures.
G

1

1
1
1
1

1

listed in Table 1 can be solved by less expensive processes, as we have
achieved with the function ‖𝑥 − 𝑦‖ in Algorithms 1 and 3.

CRediT authorship contribution statement

Rhyd Lewis: Writing – review & editing, Writing – original draft,
Visualization, Validation, Software, Resources, Project administration,
Methodology, Investigation, Formal analysis, Data curation, Concep-
ualization. Louis Bonnet: Writing – review & editing, Visualization,
onceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

Appendix A. Additional proofs

Theorem 5. The function 𝑓 (𝑥, 𝑦) = max(𝑥, 𝑦) is admissible.

Proof. The initial steps of this proof are identical to those of Theorem 4.
hey diverge at the point where the four possibilities are considered.
or 𝑓 (𝑥, 𝑦) = max(𝑥, 𝑦), these are as follows.

(i) 𝑥𝑖 ≤ 𝑦𝑖 ≤ 𝑥𝑗 ≤ 𝑦𝑗 . Here, evaluating each occurrence of 𝑓
in Eq. (7) gives 𝑦𝑗 + 𝑥𝑗 − 𝑦𝑖 − 𝑦𝑗 = 𝑥𝑗 − 𝑦𝑖.

(ii) 𝑥𝑖 ≤ 𝑦𝑖 ≤ 𝑦𝑗 < 𝑥𝑗 . Similarly, in this case applying Eq. (7) gives
𝑦𝑗 + 𝑥𝑗 − 𝑦𝑖 − 𝑥𝑗 = 𝑦𝑗 − 𝑦𝑖.

(iii) 𝑥𝑖 ≤ 𝑥𝑗 < 𝑦𝑖 ≤ 𝑦𝑗 . Here, Eq. (7) equates to zero, because the
evaluation of each occurrence of 𝑓 leads to 𝑦𝑗 + 𝑦𝑖 − 𝑦𝑖 − 𝑦𝑗 = 0.

(iv) 𝑥𝑖 ≤ 𝑥𝑗 ≤ 𝑦𝑗 < 𝑦𝑖. Similarly, in this case, we get 𝑦𝑗+𝑦𝑖−𝑦𝑖−𝑦𝑗 = 0.

As before, the remaining two possibilities cannot occur as they would
equate to negative values. These four possibilities can now be combined
into two cases:

Case 1: If the intervals [𝑥𝑖, 𝑦𝑖] and [𝑥𝑗 , 𝑦𝑗] do not intersect, then
𝜌(𝑆𝑖, 𝑆𝑗) = 𝑑

(

[𝑥𝑖, 𝑦𝑖], [𝑥𝑗 , 𝑦𝑗]
)

> 0.
Case 2: Otherwise, [𝑥𝑖, 𝑦𝑖] and [𝑥𝑗 , 𝑦𝑗] intersect (or are adjacent), giv-

ing 𝜌(𝑆𝑖, 𝑆𝑗) = 0.
The reminding steps of the proof are identical to Theorem 4, except
that Eq. (10) is replaced by

𝜌(𝑆{1,2}, 𝑆3) = min(𝑑([𝑥1, 𝑦2], [𝑥3, 𝑦3]), 𝑑([𝑥2, 𝑦1], [𝑥3, 𝑦3])) = 𝜌(𝑆1, 𝑆3). □

(11)

Theorem 6. The function 𝑓 (𝑥, 𝑦) = ‖𝑥‖ + ‖𝑦‖ is admissible.
11
Proof. By definition, ‖𝑥‖ and ‖𝑦‖ are nonnegative so, for any values
𝑥𝑖, 𝑦𝑖, 𝑥𝑗 , 𝑦𝑗 , we get:

𝑓 (𝑥𝑖, 𝑦𝑗) + 𝑓 (𝑥𝑗 , 𝑦𝑖) − 𝑓 (𝑥𝑖 + 𝑦𝑖) − 𝑓 (𝑥𝑗 , 𝑦𝑗)
= 𝑥𝑖 + 𝑦𝑗 + 𝑥𝑗 + 𝑦𝑖 − 𝑥𝑖 − 𝑦𝑖 − 𝑥𝑗 − 𝑦𝑗

= 0. (12)

Hence, in all cases, 𝜌(𝑆{1,2}, 𝑆3) = 𝜌(𝑆1, 𝑆3) = 0. □

Appendix B. Empirical verification of function admissibility

The following Python program uses a series of random trials to
test whether a particular function 𝑓 (𝑥, 𝑦) is admissible. The function
is specified at Line 4 and values for other parameters are given at
Line 12. On execution, if Line 31 is reached, this gives evidence that
𝑓 is admissible; otherwise, an example is printed that proves that 𝑓
is inadmissible. The use of the matching 𝑀 at Line 24 ensures that
𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝑥3, and 𝑦3 have been assigned values that are permitted to
occur in applications of Splice.

The implementation of getMatching() shown here concerns the
OPSP. For the GPSP, additional edges between each pair of 𝑥 values

and each pair of 𝑦 values are required.

1 import random, sys, networkx as nx
2
3 def f(x,y):
4 return abs(x-y)
5
6 def getMatching():
7 G = nx.Graph()
8 G.add_weighted_edges_from([(" x1 " , " y1 " ,f(

x1,y1)), (" x2 " , " y2 " ,f(x2,y2)), (" x3 "
, " y3 " ,f(x3,y3)), (" y1 " , " x2 " ,f(y1,x2)
), (" y1 " , " x3 " ,f(y1,x3)), (" y2 " , " x1 " ,
f(y2,x1)), (" y2 " , " x3 " ,f(y2,x3)), ("
y3 " , " x1 " ,f(y3,x1)), (" y3 " , " x2 " ,f(y3,
x2))])

9 M = nx.min_weight_matching(G,
maxcardinality=True, weight= " weight "
)

0 return sorted([sorted(list(edge)) for
edge in M])

1
2 LB, UB, numTrials , cnt = -10, 10, 5000, 0
3 for i in range(numTrials):
4 #Randomly select values for the

variables in the given range and
find the min-cost perfect matching M
of the associated graph

5 x1, x2, x3, y1, y2, y3 = [random.randint
(LB,UB) for i in range(6)]

R. Lewis and L. Bonnet

1
1

1
1

2

2

2

2

2

2

2

2
2

2
3
3

Computers & Industrial Engineering 200 (2025) 110838
6 M = getMatching()
7 #Calculate the cost of each splice and

store them in the dictionary rho
8 rho = dict()
9 rho[" S1 " , " S2 "] = f(y1,x2)+f(y2,x1)-f(x1,

y1)-f(x2,y2)
0 rho[" S1 " , " S3 "] = f(y1,x3)+f(y3,x1)-f(x1,

y1)-f(x3,y3)
1 rho[" S2 " , " S3 "] = f(y2,x3)+f(y3,x2)-f(x2,

y2)-f(x3,y3)
2 rho[" S12 " , " S3 "] = min(f(y1,x3)+f(y3,x2)-

f(y1,x2)-f(x3,y3), f(y2,x3)+f(y3,x1)
-f(y2,x1)-f(x3,y3))

3 #Check to see if the conditions for the
Splice algorithm are met

4 if M == [[" x1 " , " y1 "],[" x2 " , " y2 "],[" x3 " , "
y3 "]] and max(rho[" S1 " , " S2 "],rho[" S1
" , " S3 "]) <= rho[" S2 " , " S3 "]:

5 if rho[" S1 " , " S3 "] != rho[" S12 " , " S3 "]
or min(rho.values()) < 0:

6 print(" S1=(" ,x1, " ... " ,y1, "); S2=(" ,
x2, " ... " ,y2, "); S3=(" ,x3, " ... " ,
y3, "). ")

7 print(" rho= " ,rho)
8 sys.exit(" Conditions not satisfied

by function f at trial " + str(
cnt))

9 else:
0 cnt += 1
1 print(" Run completed successfully. " ,cnt, "

trials passed. ")

Data availability

All source code and data are available online at https://doi.org/10.
5281/zenodo.11657149.

References

Becker, K. (2010). Twin-constrained Hamiltonian paths on threshold graphs—an approach
to the minimum score separation problem (Ph.D. thesis), London School of Economics.

Borges, Y., Schouerya, R., & Miyazawa, F. (2024). Mathematical models and exact
algorithms for the colored bin packing problem. Computers & Operations Research,
164, Article 106527.
12
Burkard, E., Deineko, V., van Dal, R., van der Veen, J., & Woeginger, G. (1998). Well-
solvable special cases of the traveling salesman problem: A survey. SIAM Review,
40(3), 496–546.

Coffman, E., Csirik, J., Galambos, G., Martello, S., & Vigo, D. (2013). Bin packing
approximation algorithms: survey and classification (pp. 455–531). New York, NY:
Springer, ISBN: 978-1-4419-7997-1, http://dx.doi.org/10.1007/978-1-4419-7997-
1_35.

Cormen, T., Leiserson, C., Rivest, R., & Stein, C. (2009). Introduction to algorithms (3rd
ed.). The MIT Press, ISBN 0262033844 9780262033848.

Duan, R., & Pettie, S. (2014). Linear-time approximation for maximum weight matching.
Journal of the ACM, 6(1), 1–23.

Falkenauer, E. (1998). Genetic algorithms and grouping problems. John Wiley and Sons,
ISBN: 9780471971504.

Garey, M., & Johnson, D. (1979). Computers and intractability—a guide to
NP-completeness. San Francisco: W. H. Freeman and Co., ISBN: 978-0716710455.

Garey, M., & Johnson, D. (1981). Approximation algorithms for bin packing problems:
a survey (pp. 147–172). Vienna: Springer Vienna, ISBN: 978-3-7091-2748-3, http:
//dx.doi.org/10.1007/978-3-7091-2748-3_8.

Garraffa, M., Vancroonenburg, W., Salassa, F., Vanden Berghe, G., & Wauters, T. (2016).
The one-dimensional cutting stock problem with sequence dependent cut losses.
International Transactions in Operational Research, 23(1), 5–24.

Gilmore, P., & Gomory, R. (1964). Sequencing a one state-variable machine: A solvable
case of the traveling salesman problem. Operations Research, 12(5), 655–679.

Goulimis, C. (2004). Minimum score separation—an open combinatorial problem
associated with the cutting stock problem. Journal of the Operational Research
Society, 55, 1367–1368.

Hawa, A., Lewis, R., & Thompson, J. (2022). Exact and approximate methods for
the score-constrained packing problem. European Journal of Operational Research,
302(3), 847–859.

Jansen, C. (1999). An approximation scheme for bin packing with conflicts. Journal of
Combinatorial Optimization, 3(4), 363–377.

Khemani, D. (2008). A first course in artificial intelligence. McGraw Hill India, ISBN:
978-1259029981.

Kolmogorov, V. (2009). Blossom V: A new implementation of a minimum cost perfect
matching algorithm. Mathematical Programming Computation, 1(1), 43–67.

Lewis, R. (2021). Guide to graph colouring: algorithms and applications. Springer Cham,
ISBN: 978-3-030-81056-6.

Lewis, R. (2024). Code and data. URL.
Lewis, R., & Holborn, P. (2017). How to pack trapezoids: Exact and evolutionary

algorithms. IEEE Transactions on Evolutionary Computation, 21, 463–476.
Lewis, R., Song, X., Dowsland, K., & Thompson, J. (2011). An investigation into two

bin packing problems with ordering and orientation implications. European Journal
of Operational Research, 213, 52–65.

Shachnai, H., & Tamir, T. (2001). Polynomial time approximation schemes for
class-constrained packing problems. Journal of Scheduling, 4(6), 313–338.

Wäscher, G., Haußner, H., & Schumann, H. (2007). An improved typology of cutting
and packing problems. European Journal of Operational Research, 183, 1109–1130.

https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
https://doi.org/10.5281/zenodo.11657149
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb1
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb1
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb1
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb2
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb2
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb2
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb2
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb2
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb3
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb3
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb3
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb3
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb3
http://dx.doi.org/10.1007/978-1-4419-7997-1_35
http://dx.doi.org/10.1007/978-1-4419-7997-1_35
http://dx.doi.org/10.1007/978-1-4419-7997-1_35
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb5
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb5
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb5
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb6
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb6
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb6
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb7
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb7
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb7
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb8
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb8
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb8
http://dx.doi.org/10.1007/978-3-7091-2748-3_8
http://dx.doi.org/10.1007/978-3-7091-2748-3_8
http://dx.doi.org/10.1007/978-3-7091-2748-3_8
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb10
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb10
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb10
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb10
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb10
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb11
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb11
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb11
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb12
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb12
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb12
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb12
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb12
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb13
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb13
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb13
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb13
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb13
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb14
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb14
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb14
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb15
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb15
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb15
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb16
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb16
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb16
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb17
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb17
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb17
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb19
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb19
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb19
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb20
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb20
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb20
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb20
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb20
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb21
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb21
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb21
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb22
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb22
http://refhub.elsevier.com/S0360-8352(24)00960-4/sb22

	Exact algorithms in bar nesting: How to cut general items from linear stocks so that wastage is minimised
	Introduction
	Literature Review and Contributions
	Contributions and Paper Plan

	Euler-Splice and Bar Nesting
	Improving Euler-Splice
	Euler-Splice adaptation for the OPSP
	Proof of Correctness

	A Generalised Approach
	An Exact Solution Method and Admissible Functions

	Empirical Analysis
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Additional Proofs
	Appendix A. Additional Proofs
	Empirical Verification of Function Admissibility
	Appendix B. Empirical Verification of Function Admissibility
	Data availability
	Appendix . Data availability
	References

