
Journal Pre-proof

Enhancing performance of machine learning tasks on edge-cloud
infrastructures: A cross-domain internet of things based framework

Osama Almurshed, Ashish Kaushal, Souham Meshoul, Asmail Muftah,
Osama Almoghamis, Ioan Petri, Nitin Auluck, Omer Rana

PII: S0167-739X(24)00660-5
DOI: https://doi.org/10.1016/j.future.2024.107696
Reference: FUTURE 107696

To appear in: Future Generation Computer Systems

Received date : 10 December 2023
Revised date : 20 May 2024
Accepted date : 22 December 2024

Please cite this article as: O. Almurshed, A. Kaushal, S. Meshoul et al., Enhancing performance of
machine learning tasks on edge-cloud infrastructures: A cross-domain internet of things based
framework, Future Generation Computer Systems (2024), doi:
https://doi.org/10.1016/j.future.2024.107696.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2024 Published by Elsevier B.V.

https://doi.org/10.1016/j.future.2024.107696
https://doi.org/10.1016/j.future.2024.107696

Journal Pre-proof

Author Nam
Jo
ur

na
l P

re
-p

ro
of

The following authors have contributed in the paper:
1. Osama Almurshed
2. Ashish Kaushal
3. Souham Meshoul
4. Asmail Muftah
5. Osama Almoghamis
6. Ioan Petri
7. Nitin Auluck
8. Omer Rana

The contribution of each author is as follows:
1. Osama Almurshed:

● Conceptualisation: Led the initial brainstorming and ideation sessions, developed the
core research hypothesis.

● Methodology: Designed the experimental and analytical procedures, optimised the
research protocols.

● Software: Developed, tested, and validated the software tools utilised for data analysis
and simulation.

● Visualisation: Produced graphs, charts, and other visual representations of the research
findings.

● Writing - Original Draft Preparation: Took lead in composing the initial draft, integrated
inputs from co-authors, ensured adherence to journal guidelines.

2. Ashish Kaushal:
● Conceptualisation: Led the initial brainstorming and ideation sessions, developed the

core research hypothesis.
● Validation: Verified the accuracy and reproducibility of the experimental results,

cross-checked data sources.
● Writing - Original Draft Preparation: Took lead in composing the initial draft, with first

author Osama and ensured adherence to journal guidelines.
3. Souham Meshoul:

● Conceptualisation: Led the initial brainstorming and ideation sessions, developed the
core research hypothesis.

● Investigation: Delved deep into ancillary research areas, identified potential gaps and
opportunities.

● Methodology: Designed the experimental and analytical procedures, optimised the
research protocols.

● Supervision: Oversaw the research progression, provided mentorship to team members,
ensured the research's direction aligned with the set objectives.

4. Asmail Muftah:
● Methodology: Provided the ML based Cancer detection benchmark values for executing

the functions on our designed platform.
● Writing: Helped in writing the paper and provided feedback on some general writing

based issues in the paper.

es and their Contribution

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

5. Osama Almoghamis:
● Methodology: Assisted with the testing of framework and integrated them with the

proposed framework.
● Writing: Provided the descriptive details on prepared paper and also fine-tunes the

writing errors.
6. Ioan Petri:

● Investigation: Delved deep into ancillary research areas, identified potential gaps and
opportunities.

● Methodology: Provided the ML based Cancer detection related information/data for
executing the functions on our designed platform.

● Supervision: Oversaw the research progression, provided mentorship to team members,
ensured the research's direction aligned with the set objectives.

● Review & Editing: Provided critical feedback on initial drafts, enhanced the clarity and
coherence of the manuscript.

● Formal Analysis: Conducted rigorous statistical analyses, interpreted the results in line
with the research objectives.

7. Nitin Auluck:
● Supervision: Oversaw the research progression, provided mentorship to team team

members, ensured the research's direction aligned with the set objectives.
● Review & Editing: Provided critical feedback on initial drafts, enhanced the clarity and

coherence of the manuscript.
● Formal Analysis: Conducted rigorous statistical analyses, interpreted the results in line

with the research objectives.
8. Omer Rana:

● Task Administration: Managed timelines, coordinated meetings, ensured adherence to
project milestones.

● Investigation: Delved deep into ancillary research areas, identified potential gaps and
opportunities.

● Supervision: Oversaw the research progression, provided mentorship to team members,
ensured the research's direction aligned with the set objectives.

● Review & Editing: Provided critical feedback on initial drafts, enhanced the clarity and
coherence of the manuscript.

● Resources: Secured essential materials, datasets, and tools for the research.
Coordinated with external personnel when necessary.

Journal Pre-proof

Os

Abst

T
duce
intell
such
mana
dress
Flow
and A
geo-d
place
on Q
IoT-b

Keyw

1. In

T
mati
proa
liver
shift
of da
analy
tial f
uniq
nicat
resou
ited

A
stant
rious
vacy

Click here to view linked References
Jo
ur

na
l P

re
-p

ro
of

Future Generation Computer Systems 00 (2024) 1–18

FCGS

Enhancing Performance of Machine Learning Tasks on Edge-Cloud
Infrastructures: A Cross-Domain Internet of Things based Framework

ama Almursheda,f, Ashish Kaushalb, Souham Meshoulc, Asmail Muftahd, Osama Almoghamise,
Ioan Petria, Nitin Auluckb, Omer Ranaa

aCardiff University, United Kingdom
bIndian Institute of Technology Ropar, India

cPrincess Nourah bint Abdulrahman University, Saudi Arabia
dAzzaytuna University, Libya

eKing Saud University, Saudi Arabia
fPrince Sattam Bin Abdulaziz University, Saudi Arabia

ract

he Internet of Things (IoT) and Edge-Cloud Computing have been trending technologies over the past few years. In this work, we intro-
the Enhanced Optimized-Greedy Nominator Heuristic (EO-GNH), a framework designed to optimize machine learning (ML) and artificial
igence (AI) application placement in edge environments, aiming to improve Quality of Service (QoS). Developed specifically for sectors
as smart agriculture, industry, and healthcare, EO-GNH integrates asynchronous MapReduce and parallel meta-heuristics to effectively
ge AI applications, focusing on execution performance, resource utilization, and infrastructure resilience. The framework carefully ad-
es the distribution challenges of AI applications, especially Service Function Chains (SFCs), in edge-cloud infrastructures. It contains Data
Management, which covers aspects of data storage and data privacy, and also considers factors like regional adaptations, mobile access,
I model refinement. EO-GNH ensures high availability for forecasting, prediction, and training AI models, operating efficiently within a
istributed infrastructure. The proposed strategies within EO-GNH emphasize concurrent multi-node execution, enhancing AI application
ment by improving execution time, dependability, and cost-effectiveness. The efficiency of EO-GNH is demonstrated through its impact
oS in real-time resource management across three application domains, highlighting its adaptability and potential in diverse cross-domain
ased environments.

ords: Artificial Intelligence, Distributed Systems, Edge Computing, Internet of Things, Machine Learning

troduction

he Internet of Things (IoT) is rapidly becoming a transfor-
ve technology in various domains, reshaping how we ap-
ch everything from agricultural practices to healthcare de-
y and industrial operations. This technological paradigm
is primarily driven by the continuous flow and processing
ta through interconnected devices. IoT's ability to gather,
ze, and act upon data in real-time offers immense poten-
or efficiency and innovation. However, this also presents
ue challenge, particularly in ensuring timely data commu-
ion and maintaining privacy, especially in scenarios where
rces such as computation, bandwidth, and energy are lim-

[1].
s shown in Figure 1, cloud computing has offered sub-

ial benefits in managing IoT data, but it also has some se-
limitations, particularly related to latency and data pri-
[2]. Edge computing emerges as a viable alternative, ex-

tending cloud capabilities closer to the data source through de-
vices such as single-board computers or computational acceler-
ators owned by end-users. This approach is particularly advan-
tageous for IoT applications where real-time low-latency data
processing is critical. Integrating edge and cloud models into a
unified ‘hybrid edge-cloud’ structure also presents an efficient
approach. This combined model offers the best of both the
paradigms: speedy processing and augmented computational
power, greatly benefiting IoT applications. The key benefits of
this architecture include reduction in delays, improved depend-
ability, and superior Quality of Service (QoS) [3].

As IoT environments are becoming increasingly complex,
especially with the integration of artificial intelligence (AI) and
machine learning (ML); there is a rising demand for platforms
capable of handling sophisticated applications. AI and ML in-
tegration significantly enhances the capabilities of IoT systems,
especially in optimizing processes using data collected at the

1

Journal Pre-proof

Us
Dev

Figure
form,

netw
plica
tions
tures
these
maki
the a
avoid
IoT e

T
manc
truct
frast
a fun
comp
duce
work
agem
a con
in di
Map
locat
creat
pers
redu
ate n
effici

B
utiliz
benc
GNH
func
prov
ideal
 Jo

ur
na

l P
re

-p
ro

of

Almurshed et al. / Future Generation Computer Systems 00 (2024) 1–18 2

Computational Offloading

Fog
Node2

Fog
Node3

Fog
Node1

Virtual
Machine2

Virtual
Machine1

Cloud
Data-Centre

Fog
Infrastructure

<1ms...

Function1 Function2 Function3 Function4

Function2

er
ice

User
Device

P
la

tf
o

rm

Resource Provisioning

...?

In
fr

as
tr

u
ct

u
re

Function1

Function4
Function3

A
p

p
lic

at
io

n

SFC graph

SFC execution

WAN

LAN

Virtual Machine1 Fog Node1 Fog Node2

Response Time

1. The process of IoT computational offloading across application, plat-
and infrastructure layer

ork's edge. Moreover, in the edge-cloud ecosystem, an ap-
tion consists of smaller components known as virtual func-
, which can be deployed across entire IoT-based infrastruc-
for execution. Deciding the optimal location for executing
virtual functions is also a complex task. This decision-

ng process requires focus on analyzing specific needs of
pplication, efficient use of available infrastructure, and the
ance of congestion points that could slow down the entire
nvironment.
he Greedy Nominator Heuristic (GNH) [4] is a perfor-
e optimization algorithm specifically designed for infras-

ure setups including IoT, fog, and cloud computing in-
ructures. At its core, GNH integrates key components:
ction for assessing similarity with the ideal solution for
aring solutions using a similarity function [5], MapRe-

’s mappers and reducers for data processing, and a master-
er mechanism with controllers and workers for task man-
ent [6]. The similarity function in GNH, inspired by
text-sensitive distance measurement approach, is critical
fferentiating solutions from various optimization methods.
pers in GNH are designated to specific nodes, identified as
ions, responsible for processing workflow functions and
ing decision variables. During a placement query, map-
suggest suitable nodes for deployment. Following this, a
cer assesses these suggestions and picks the most appropri-
odes; a process that continues until the entire workflow is
ently deployed.
oth the mappers and reducers adopt a greedy strategy [7],
ing a euclidean distance-based similarity function as a
hmark for comparing current solutions with an ideal one.

is adaptable and can work with various other similarity
tions, like cosine similarity [8] and fuzzy measures [9],
ided they can effectively gauge the likeness between the
solution and the ones being evaluated. The max-heap also

plays a crucial role in GNH. It is a binary tree format that orga-
nizes results from mappers and the reducer, ensuring the most
significant value always resides at the root. This structure is
particularly beneficial for the quick and efficient retrieval and
removal of stored solutions. Both mappers and reducers nav-
igate through the search space, continually updating the max-
heap with their findings. This approach in GNH allows for
a more effective and streamlined process in selecting optimal
nodes for deployment for complex IoT-based edge and cloud
computing environments. The framework design is structured
around a controller, serving the role of the reducer, and workers
functioning as mappers. These workers are tasked with mon-
itoring the network's performance and the available computa-
tional resources at various sites. The controller then uses this
information to select the most suitable locations for deploy-
ment. This system is implemented using an asynchronous par-
allel programming library in Python (Parsl [10]), designed to
facilitate execution on both high performance and edge com-
puting resources.

GNH has shown its versatility and efficiency in intelligent
IoT applications in varied settings. In smart city scenarios [11],
GNH has proven its capability by autonomously deploying vir-
tual functions across both edge and cloud environments. This
deployment strategy led to more efficient resource utilization,
enhanced execution performance, and a noticeable reduction
in operational costs. Additionally, GNH has been adapted for
use in federated learning (FL) based frameworks, particularly
in rural areas with limited network connectivity [1]. In these
applications, GNH efficiently balanced resource usage and per-
formance across a range of IoT applications. Despite these suc-
cesses, it has been observed that GNH sometimes struggles in
ensuring resource availability, highlighting an area for potential
enhancement. This observation points to the need for ongoing
development and refinement to fully harness GNH's capabilities
in varying IoT environments.

This paper introduces an advanced optimization algorithm,
the Enhanced Optimized Greedy Nominator Heuristic (EO-
GNH), designed to minimize execution time and optimize re-
source usage in IoT applications. EO-GNH is an updated
version of the original GNH algorithm, offering several im-
provements. This framework incorporates asynchronous paral-
lel computing alongside machine learning techniques for bet-
ter heuristic selection. EO-GNH's development involves a
simulation-based evaluation, enabling a thorough analysis of
its performance across diverse IoT environments and potential
failure situations.

While GNH is effective, its efficiency in generating pareto-
optimal solutions is comparatively limited. EO-GNH addresses
this limitation by utilizing asynchronous MapReduce and par-
allel meta-heuristics. It significantly reduces the execution time
of the optimization algorithm and helps in avoiding local op-
tima thus ensuring consistent service availability. EO-GNH en-
hances the jMetalPy framework [12] through the integration of
Parsl [10], a tool that optimizes its functionality for real-time
IoT applications. A key feature of EO-GNH is its capability
to select optimal, non-dominant solutions from the pareto front
approximations produced by its mappers. At the reducer level,

2

Journal Pre-proof

EO-G
aggr
quick
IoT s

E
appli
in te
is to
This
chara
tions
nolo
contr
agem
of Io
vario

T

•

•

•

•

•

•

T
tion
that
cloud
work
emat
Secti
tails
fram
in Se
 Jo

ur
na

l P
re

-p
ro

of

Almurshed et al. / Future Generation Computer Systems 00 (2024) 1–18 3

NH enhances optimization with a greedy approach that
egates objectives as a scalarization method [13], leading to
er, more dynamic results, ideal for complex and real-time
cenarios requiring efficient decision-making.
O-GNH functions within a proposed framework for IoT
cation management, aiming to provide balanced solutions
rms of delay, cost, and risk. The algorithm's core principle
improve one aspect without negatively impacting others.
paper examines whether EO-GNH can adapt to the varied
cteristics and infrastructure needs of different IoT applica-
, a critical question for the evolving landscape of IoT tech-
gy. The investigation forms the central focus of our work,
ibuting significantly to the field of IoT application man-
ent. We validate the efficient and optimized deployment
T applications in edge-cloud infrastructure by leveraging
us ML-based use-cases.
he main highlights of this work are as follows:

Innovative Asynchronous Optimization Model: De-
velopment of EO-GNH as an advanced optimization
algorithm using asynchronous MapReduce and meta-
heuristics for efficient distributed computing.

Integration of Parsl for Dynamic Resource Utiliza-
tion: Implementing Parsl within EO-GNH for adaptive
and scalable resource management, enhancing computa-
tional efficiency.

Superior Performance in Time-Critical Applications:
Demonstrating ability of EO-GNH to outperform tradi-
tional algorithms like dNSGAII in execution time and
success rate, making it suitable for time-sensitive tasks.

Robustness Against Variability in Computational En-
vironments: EO-GNH maintains consistent perfor-
mance across different mapper setups, proving its relia-
bility in various computational contexts.

Effective Balance Between Resource Utilization and
Operational Risk: EO-GNH's framework adeptly bal-
ances resource usage while managing operational risk, a
very crucial factor in real-time optimization problems.

Optimization Across Various ML Applications: We
tested our framework over multiple scenarios, including
cloud computing, edge computing, and IoT; highlighting
its versatility in solving various optimization challenges
across wider range of domains.

he remainder of the paper is organised in this manner. Sec-
2 provides the description of other optimisation approaches
have been developed for ML and AI tasks on edge and

environment. Section 3 delves into the design of frame-
and application use-case considered in this work. A math-

ical description of the problem is provided in Section 4.
on 5, 6, 7, and 8 describes the EO-GNH framework and de-
the experimentation conducted for analyzing the designed
ework. The results and evaluations are depicted in details
ction 9. Section 10 concludes the work and provides the

future scope of work that can further improve the implemented
approach.

2. Optimization Algorithms for AI/ML Applications

In the field of task and function placement algorithms, the
use of informed approaches like heuristics and meta-heuristics
is crucial for optimizing placement strategies [14, 15]. Heuris-
tic methods, customized for specific problems, leverage heuris-
tic functions to develop algorithms that effectively tackle place-
ment challenges. These approaches benefit from insights pro-
vided in the works of Pearl et al. [16] and Almurshed et al. [1].
Meta-heuristics, in contrast, offer problem-independent frame-
works, requiring only that solutions be defined in a format
understandable by the algorithm. This broadens their usabil-
ity across various problem types. The combination of heuris-
tics and meta-heuristics enhances adaptability and effective-
ness. For example, the A* search algorithm uses a genetic al-
gorithm as a heuristic function, an approach explored by Yiu et
al. [17].

In optimization, two key methods are scalarization and non-
dominant solutions, also known as the Pareto method. Scalar-
ization [5] merges multiple objective functions into one. Non-
dominant solutions in contrast, seek outcomes that do not sur-
pass others in every objective. Combining Meta-Heuristic and
Hierarchical Heuristic methods, as described by Yiu et al. [18],
offers a balanced solution, incorporating the benefits of both
scalarization and non-dominant solutions.

Integrating machine learning with heuristic functions can
further enhance results. Machine learning models, acting as
function approximators [19], provide valuable data that can
guide heuristic algorithms. The efficiency of these combined
methods can be increased through Parallel Meta-Heuristics.
This approach, detailed by Alba et al. [20], involves the paral-
lel operation of interconnected components like heuristic func-
tions, function approximation, and various meta-heuristic ele-
ments. Parallel libraries such as Parsl [10], Apache Dask [21]
and Apache Openwhisk [22]. Also, open-source meta-heuristic
libraries like jMetalPy [12], facilitate this efficient planning pro-
cess.

Utilizing parallel algorithms to deploy AI solutions has
proven effective in various applications. A notable example in-
cludes image processing, where Apache OpenWhisk has been
used to enhance processing across the edge-cloud continuum,
as demonstrated in the work by Alabbas et al. [23]. This ap-
proach exemplifies the efficacy of parallel computing in AI-
driven scenarios like edge device applications. Similarly, the
use of Parsl alongside Docker containers has been instrumental
in advancing smart city applications, showcasing the versatility
and power of parallel computing [11].

For applications and platforms dealing with federated learn-
ing at the network edge, Baughman et al. [24], Patros et al. [25]
and Almurshed et al. [1] provide insightful examples. Baugh-
man et al. developed a serverless FL framework optimized for
remote endpoints, employing tournament-based pretraining to
boost model efficacy. Patros et al. [25] applied serverless FL

3

Journal Pre-proof

W

[23
[11
[24
[25
[1]
[26
[27
[28
[29
EO

Table

in ag
ing i
versa
Alm
ral e
learn
effec
ing n
in m

M
mana
temp
al. [2
pabil
nific
plica
deplo

M
cant
plore
fram
hanc
jad e
phas
emer
et al
IoT n
vital
insta
the i
tures
appli
tics,
lel c
for o
holis
ing i
 Jo

ur
na

l P
re

-p
ro

of

Almurshed et al. / Future Generation Computer Systems 00 (2024) 1–18 4

ork
Real-life
Applica-
tion

ML
Based
Task

Self
Opti-
mization

Self
Configu-
ration

Cross-
Domain
Evalua-
tion

Risk
Han-
dling

Meta-
Heuri-
stic
Based

Func-
tion
Chain

Server-
less

Resource
Man-
agement

] ! ! ! !

] ! ! ! ! ! !

] ! ! !

] ! ! ! !

! ! ! ! ! !

] ! ! !

] ! ! !

] ! !

] ! ! ! !

-GNH ! ! ! ! ! ! ! ! ! !

1. Summary of recent works categorized by application use-case, management approach, ML usage, performance objectives, and adaptation characteristics

ricultural settings through their Rural AI initiative, prov-
ts utility in weed detection. Both instances exemplify the
tility and impact of FL in edge computing environments.

urshed et al. [1] explored the application of the GNH in ru-
nvironments, focusing on training and fine-tuning machine
ing models using FL. Their research demonstrates GNH's
tiveness in orchestrating workflows in areas with fluctuat-
etwork conditions, showcasing its enhanced performance

anaging decentralized FL tasks.
oreover, the development of a dynamic platform that
ges infrastructure and adapts to changes is crucial in con-
orary technology landscapes. In this context, Kaushal et
6] proposed an approach characterized by its adaptive ca-
ities in case a network failure occurs. Such a platform sig-
antly enhances the reliability of precision agriculture ap-
tions, while also considering the performance of ML task
yment.
ore in adaptive resiliency, key studies provide signifi-

advancements in this field. Mohammadi et al. [27] ex-
the Social Internet of Things, presenting a fault-tolerant

ework bolstered by fog computing, which markedly en-
es network reliability through advanced algorithms. Am-
t al. [28] tackle dynamic orchestration in IoT devices, em-
izing adaptability and interactivity, particularly pertinent in
gency scenarios and evolving business processes. George
. [29] review the reliability aspect of edge computing in
etworks, highlighting the necessity of resilient designs in
sectors like healthcare. These studies serve as exemplary
nces of adaptive resilient edge-cloud systems, showcasing
ntegration of robustness and flexibility in IoT infrastruc-
. A summary of recent works for optimization of AM/ML
cations is provided in Table 1. The integration of heuris-
meta-heuristics, and machine learning, supported by paral-
omputing techniques, creates a comprehensive framework
ptimizing task and function placement algorithms. This
tic approach utilizes the strengths of each method, result-
n a system that is efficient, adaptable, and effective.

3. System Overview

For an IoT application platform to be adaptive, it must in-
tegrate four essential elements. Firstly, there should be a so-
phisticated scheduling planner for executing applications, sup-
ported by various system algorithms or optimization tools. Sec-
ondly, the platform needs to efficiently handle placement activ-
ities and data flow through a distributed processing system, of-
fering workflow feedback that aids in decision-making analysis.
Thirdly, the platform requires robust monitoring tools to collect
and purify system data, including information on resources like
RAM, CPU, and the status of service functions. Lastly, it is im-
portant for the platform to have an analysis component that can
derive meaningful insights from the collected data. This could
involve using the Integer Linear Programming (ILP) method
for scheduling optimization, with the results from this analysis
phase feeding back into the optimization strategy, enhancing its
effectiveness.

Figure 2. Service function chaining implemented with Parsl. The executors
argument in the function decorator specifies the location that runs the service
function.

In the evolving landscape of IoT, an adaptive system is cru-
cial. By utilizing cutting-edge tools and methodologies, such a
system can adeptly handle scheduling, placement, monitoring,
and data analysis of IoT tasks in the framework. This results in

4

Journal Pre-proof

a pla
IoT
allel
with
in Fi
guag
SFC
such
infra
know
aged
non-
data
fram

E
frast
natio
libra
proc
for s
solut
and i
spac
optim
with
ble s
ment

T
riche
ation
natur
prop
main
truct
for d
cuse
 Jo

ur
na

l P
re

-p
ro

of

Almurshed et al. / Future Generation Computer Systems 00 (2024) 1–18 5

tform capable of responding to the dynamic nature of the
environment. Parsl [10], a notable Python library for par-
programming, executes Service Function Chains (SFCs)

in the infrastructure and generates detailed logs (as shown
gure 2). Its ability to use high-level programming lan-
es for scripting SFCs enables precise depiction of both the
graph and its functional logic. The feedback provided by
tools is vital for accumulating critical knowledge about the
structure (see Figure 3). Parsl employs Python functions,
n as Parsl apps, to act as service functions in SFCs. Man-
by specialized executors, these apps offer asynchronous,

blocking operations, returning AppFutures that enhance
flow and encapsulate service function logic within the Parsl
ework.
ffective scheduling in an IoT system involves analyzing in-

ructure data and previous scheduling outcomes. A combi-
n of heuristics, meta-heuristics, optimization solvers, and
ries can be integrated with ILP models to refine scheduling
esses. Optimization solvers use deterministic algorithms
olving structured mathematical problems to find optimal
ions. On the other hand, meta-heuristics employ stochastic
terative approaches for solving problems with vast search
es or intricate objective function landscapes. In scheduling

ization, solvers are employed to create optimal schedules
in certain constraints, whereas meta-heuristics offer flexi-
olutions for dynamic environments with changing require-
s.

Resource Allocation

Computing Infrastructure

Virtual Functions

SFC
Placement

Process

@app

@app @app@app

Executor Executor

Configuration

Configure Managment

SFC
path

Fog
Node

Fog
Node

Fog
Node

VM
VM

Cloud
Data-Centre

Fog
Infrastructure

Controller

Controller

D
ataF

low
 K

ernel (D
F

K
)

Executor

Process Process Process

R
esource M

onitoring

Figure 3. Pipeline service in a fog-cloud environment with Parsl.

he combination of Parsl with an optimization solver, en-
d by their respective feedback systems, enables the cre-
of a self-adjusting platform well-suited to the dynamic

e of IoT systems. This is illustrated in Figure 4 of our
osed work. This adaptive system is structured around three
components: (1) the deployment of SFC within the infras-

ure, (2) monitoring mechanisms that provide essential data
ecision-making, and (3) a decision-making process that fo-
s on analyzing and optimizing the scheduling plan using an

ILP model.

Input
Information

Controller

Online Optimizer

Infrastructure

Decision-Making

Deployment

Resource Monitor

Monitoring QoS

Report Failure

Abstract
workflow graph

Quality of
Service

requirements

Fog Node

Fog Node

Fog Node

Controller

Fog Infrastructure

Virtual
Machine

Virtual
Machine

Cloud Data-Centre

Figure 4. Controller node supervising the placement process.

The Monitoring component revolves around data collection
and storage, utilizing a suite of tools for effective considera-
tion. This includes Stop Watch and Psutil libraries that are in-
strumental in retrieving information on running processes and
system utilization, as cited in [30, 31] and [32], respectively.
Additionally, Parsl logs [10] play a crucial role in capturing
detailed records of function execution and outcomes, ensuring
comprehensive data storage.

For Decision making, the focus shifts to analyzing the gath-
ered data and formulating future actions. This phase involves
critical data cleaning to maintain data accuracy and integrity.
The ILP model is utilized for transforming utility data, with
optimization strategies such as greedy heuristics [7] and Jmet-
alPy [12] aiding in efficient scheduling decisions. These com-
bined methodologies ensure a robust and strategic approach to
decision-making within the system.

In the Deployment phase, the strategies and actions
planned during the decision-making process are put into action.
Parsl [10] is utilized to execute SFCs within the infrastructure,
facilitating the operational execution of planned tasks. Fur-
thermore, brokers like Apache Kafka [33] and Samba [34] are
employed to manage and streamline data flow between various
components of the system. These brokers are key to ensuring
the smooth execution of actions and maintaining uninterrupted
operational flow across the system.

Together, these three components integrate seamlessly to
form a dynamic and responsive adaptive system. Each com-
ponent, equipped with its specialized tools and processes, con-
tributes to the overall efficiency and effectiveness of the sys-
tem, enabling it to adequately respond to diverse operational
demands and challenges.

4. Problem Formulation

In order to represent our task problem mathematically, we
have defined the optimization problem as a minimization of
three distinct factors: C, R, and O. All the symbols used in the
formulation with their brief descriptions are provided below in
given Table 2.

5

Journal Pre-proof

whe
imiz
mula
ful e
utiliz
objec

Sy
F
D
A
L
i
j
k
T j
x j,

y j,
ok
E
Ri
M
m
rk

5. E

T
the P
heur
locat
work
vario
are t
edge
prop

T
instr
other
of a
 Jo

ur
na

l P
re

-p
ro

of

Almurshed et al. / Future Generation Computer Systems 00 (2024) 1–18 6

C = min
(∑

j∈F

∑

k∈L

T j,k · y j,k · x j,k

)
(1)

R = min
(∑

j∈F

∑

k∈L

Risk j,k · x j,k

)
(2)

O = min
(∑

k∈L

ok

)
(3)

re the objective function C (formula 1) represents the min-
ation of aggregated processing time, and function R (for-
2) denotes the minimum risk associated with the success-

xecution of application A. The minimum number of nodes
ed for execution (inclusive of redundancy) is depicted by
tive function O (formula 3).

mbol Description
The set of all functions in the workflow
Functions dependency pair set
The graph of the workflow, which is A = (F,D)
The set of all locations that execute functions
The sequence of function f i

j in the workflow
The type of the function f i

j
The index of Location lk

,k Processing time for f j in location lk
k Binary variable: function f i

j is executed on location lk
k Binary variable: T j,k contributes to longest path

Binary variable: location lk is used by the application
The set of all placed paths of A

sk j,k Risk of executing f j in location lk
Ri, j The maximum replicas for f i

j (MaxReplicas)
Constant to adjust maximum possible replica
The number of failures per allocations

Table 2. Notations used in the EO-GNH problem formulation

Attribute Name Values

SFC size 5 10 20
location size 100 500 1000
population/swarm size 10 50 100

Table 3. Dataset used to train the decision tree

O-GNH Framework

he EO-GNH optimization algorithm seeks solutions from
areto Front using a combination of MapReduce and meta-
istic techniques. This approach is used to locate optimal
ions for redundant deployments. Within this framework,
ers (known as Mappers) utilize meta-heuristics to explore
us decision variables. The outcomes from these Mappers
hen communicated to the Reducer, typically a controller
/fog node, which is responsible for selecting the most ap-
riate locations for redundant deployment.
hroughout the execution of the SFC graph, Mappers are

umental in providing solutions that are not dominated by
s. When it becomes necessary to decide on the placement

function within the system, the Reducer uses the Mapper's

findings to formulate an effective solution. This process en-
sures a balanced and efficient approach for deploying functions
within the network, leveraging the combined insights of both
Mappers and the Reducer.

5.1. Components of the Framework

The execution of the parallel model operates on an asyn-
chrony basis, where the Reducer starts making placement de-
cisions without waiting for every Mapper to finish their meta-
heuristic cycles. Each Mapper writes its current optimal meta-
heuristic solutions to a file, to which the Reducer has read ac-
cess. As soon as a Mapper arrives at a solution, the Reducer can
use it, irrespective of its quality, to make placement decisions
for individual functions. Parsl [35] is employed to facilitate this
MapReduce computing process.

In computer science, The Oracle is a software tool utilized
for specific answers [36]. Here, It provides insights into the
compatibility of meta-heuristics with various application and
infrastructure setups. It also provides the most suitable meta-
heuristics based on objectives like makespan, cost, and risk.
The query variables include the number of Mappers, the size of
the SFC, the number of locations, the size of the population, and
criteria preferences. The Oracle utilizes decision tree models to
offer an estimated response based on the historical performance
of meta-heuristics. It operates in three phases: (i) inferring de-
cision trees, (ii) employing preference-based sorting, and (iii)
assigning meta-heuristics to Mappers. Figure 5 illustrates The
Oracle's interaction with the MapReduce methodology.

A decision tree is applied to predict the effectiveness of
a meta-heuristic. This tree functions as a unit-wise constant
approximation as mentioned in [37]. Its prediction is an esti-
mated output of the objective function of a meta-heuristic like
NSGAII (Non-Dominated Sorting Genetic Algorithm II). The
model was trained on a dataset obtained from benchmarking a
range of meta-heuristics, evaluated against SFC of varying sizes
and locations, as provided in Table 3. These features, along
with the benchmark results, are used to train the decision tree.
This benchmarking process is executed through a simulation,
taking inputs (features) as mentioned in Table 3 and combining
the outputs with these inputs to form the dataset for the training
phase.

Meta-heuristics refer to a category of heuristic algorithms
designed to tackle a broad spectrum of problem types. In
our approach, we utilize a selection of nature-inspired meta-
heuristic algorithms. Algorithms such as Generalized Dif-
ferential Evolution 3 (GDE3) [38], Hypervolume Estimation
Algorithm (HYPE) [39], Indicator-Based Evolutionary Algo-
rithm (IBEA) [40], Multi-Objective Cellular Genetic Algo-
rithm (MOCell) [41], and Non-dominated Sorting Genetic
Algorithm II (NSGAII) [42] are utilizes Genetic Algorithm
meta-heuristics. In contrast, Multi-Objective Particle Swarm
Optimization with Crowding Distance (OMOPSO) [43] and
Speed-constrained Multi-objective Particle Swarm Optimiza-
tion (SMPSO) [44] uses Particle Swarm Optimisation (PSO) in
their implementation. These algorithms are dynamic during ex-
ecution, yielding multiple sets of solutions, each representing

6

Journal Pre-proof

an a
heur
itera
varie
algor
base
mod
heur

S

Figure
cle. T

S
heur
ing t
work
form
catio
the g
to a
ment
meth
(floa
this,
the m
into

T
rived
to effi
our s
puts
as m
ogy,
fram
as R
heur
the s
comp
cess.
 Jo

ur
na

l P
re

-p
ro

of

Almurshed et al. / Future Generation Computer Systems 00 (2024) 1–18 7

pproximation of the best-discovered Pareto Front. Meta-
istics typically consists of a series of main loops, with each
tion executing a specific step. The nature of these steps
s across different meta-heuristics. For instance, PSO based
ithms simulate a swarm, while Genetic Algorithm (GA)

d ones apply genetic operators. In our designed parallel
el, the Pareto Front discovered at each step of the meta-
istic's process is recorded in a shared file.

Greedy

SMPSO

Function Placement Decsion

Monitoring MonitoringMonitoring

Decision variableDecision variable Decision variable

shared
File

Solutions
Solutions Solutions

OMOPSO NSGA-II

Oracle

FC size

#Resource

Assign
Meta-Heurtistic

Monitoring

Mapper Mapper Mapper

Reducer

Legend

Software
component

Optimization
algorithm

File
systemIndependent

Run

Mappers number

Population size

5. Asynchronous MapReduce performs EO-GNH, initiated by the Ora-
he Oracle ranks meta-heuristic algorithms according to their attributes.

olution Encoding refers to the technique used by meta-
istic algorithms for representing solution data, encompass-
he data's format and structural organization. In our frame-
, as illustrated in Figure 6, solution encoding takes the
of an integer array. Here, each array value denotes a lo-

n ID, while the array indices correlate with functions in
raph. This setup allows for multiple indices to correspond
single function, effectively outlining a redundant place-
strategy for that function. In the context of PSO-based

ods, the solution is initially in the form of a real number
ting type), which inherently is not an integer. To address
we implement discretization techniques, specifically using
athematical floor function, to convert these array elements

integers by eliminating their decimal components.
imsort is an advanced, stable hybrid sorting method de-
from both merge sort and insertion sort. It is designed
ciently handle a diverse range of real-world data types. In

ystem, Timsort is utilized to organize the decision tree out-
according to user-defined objectives and preferences, such
akespan, cost, and risk. Regarding the greedy methodol-
it is integrated into EO-GNH, enhancing the original GNH
ework. In EO-GNH, the greedy heuristic elements, known
educers, process the output files generated by each meta-
istic. The planning stage for deploying the next function in
equence is initiated once the current function's execution is
lete, ensuring a sequential and efficient deployment pro-

Topological
Sorting

Solution
Encoding

Input
SFC

Graph Output

Figure 6. SFC redundant deployments solution encoding. The solution encod-
ing's elements are location IDs, while an array's indices specify the function.

5.2. Workflow of the Framework

The functional architecture of EO-GNH revolves around
the utilization of Oracle and asynchronous MapReduce tech-
niques. Its workflow is segmented into three key stages: (i) en-
gaging with the Oracle, (ii) setting up and triggering the meta-
heuristics, and (iii) running the application while dynamically
adjusting to evolving conditions. Subsequent sections will pro-
vide detailed insights into these critical stages, which are inte-
gral to the methodology's overall execution.

5.2.1. Engagement with Oracle
The Oracle's purpose is to determine the most suitable meta-

heuristics for operating an application, taking into account the
specific characteristics of the existing infrastructure. As shown
in Figure 7, it constructs a query using several key factors.
These include the controller's capabilities, the specific parame-
ters of the algorithm, data related to the location, the structure
of the SFC graph, and the preferences of the user regarding ob-
jectives. The user's preferences also plays a crucial role in how
the results are prioritized and presented.

Decision tree models are employed to project the antici-
pated outcomes of different meta-heuristics, focusing on cru-
cial aspects such as makespan, risk, and cost. Following this,
the meta-heuristics undergoes an assessment and are ordered
according to how well they align with the user's priorities. The
process saturates with the assignment of the top-ranked meta-
heuristics to the mappers at hand.

5.2.2. Engagement with Meta Heuristics
Unlike the Mappers in the original GNH, the EO-GNH ap-

proach involves making decisions for the entire SFC graph, as
depicted in Figure 6. This decision-making strategy is outlined
in Algorithm 1 of our paper. It describes the process of the
Mapper initiating the meta-heuristic (referenced at line 3) and
then moving into the main loop of the algorithm.

Within this loop, there's a continuous update of decision
variables (seen in lines 5-7), leading to simultaneous changes
in the current values of the objectives (outputs from the ob-
jective functions). The Step procedure, as mentioned in line 8,
employs the previous solution along with locations and the SFC
to perform an individual step.

7

Journal Pre-proof

Attre

#ma

#pop

#loc
8

SFC

So
C,

Figure
for th
tions.

Algo
to th

1: c
2:
3:
4:
5:
6:
7:

8:
9:

10:

T
whic
10).
fully
line

T
pend
rithm
the v
tives
best.

I
(i) se
ation
step
perio

6. S

T
lized
proa
their
on R
 Jo

ur
na

l P
re

-p
ro

of

Almurshed et al. / Future Generation Computer Systems 00 (2024) 1–18 8

Decision Trees output Ranked
Meta-Heuristics

Selected
Meta-Heuristics

ibutes

Process
output

Process
input

Legend

D
ec

is
io

n
Tr

ee
s

GDE3: 19.04s, %2, #7.18

HYPE: 19.03s, %2, #7.13

IBEA: 19.03s, %1, #7.06

MOCell: 19.03s, %0, #7.01

NSGAII: 19.03s, %0, #6.94

OMOPSO: 19.03s, %0, #6.90

SMPSO: 19.03s, %0, #6.85

MOCell

IBEA

HYPE

GDE3

SMPSO

OMOPSO

NSGAII

SMPSO

OMOPSO

NSGAII

R
ed

uc
e

to
 M

ap
pe

r's
 n

um
be

r

R
an

ke
d

by
 p

re
fe

re
nc

eppers:
3

ulation:
20

ations:
00

 size:
12

Data flow

P
ro

ce
ss

Data flow

Decision tree

Data acociated to a
meta-heuristic

rt by:
R, O

7. The Oracle ranks and selects meta-heuristics, each has a color. Inputs
e oracle are the number of SFC mappers, population, locations, and func-

rithm 1 The solution is an array where each index refers
e function (f i

j), whereas its content is the location id

lass Mapper
method Map (L; S FC)

solution← initSolution(L; S FC)
while notCompleted do

if IsDecisionVarChanges(L; S FC): then
DecisionVar ← UpdateVar(L; SFC)
solution← updateSolution(solution)

solution← step(L; S FC; solution)
MapperResult ← solution
solution← updateSharedFile(MapperResult)

his approach results in the generation of a new solution,
h is then stored in a file shared with the Reducer (lines 9-
The algorithm concludes once the execution of the SFC is
completed, as indicated when the notCompleted status in

4 switches to False.
he specific operations within the Step method differ de-
ing on the type of meta-heuristic being used. For algo-
s derived from PSO, the sequence includes (i) updating

elocity, (ii) updating the position, (iii) evaluating the objec-
, (iv) updating the global best, and (v) updating the particle

n contrast, for GA-based algorithms, the sequence involves
lection, (ii) crossover, (iii) mutation, (iv) objectives evalu-
, and (v) replacement. In the GA context, the replacement
is crucial as it updates the solution while favoring the su-
r offspring, thereby promoting evolutionary advancement.

ervice Deployment Use-Cases

his section outlines three different IoT applications uti-
for evaluating the performance of proposed EO-GNH ap-

ch. These applications were analyzed with a focus on
workflows, particularly emphasizing the execution times
aspberry Pi 4B devices, thereby demonstrating their vari-

able requirements and practical functionality in real-world sce-
narios.

6.1. Federated Learning (FL) based Rural-AI Application

Data-driven technologies in precision farming offer signif-
icant prospects for enhancing agricultural productivity and re-
sults. A notable example is the application of automated weed
control [45]. By accurately identifying and managing weeds,
this technology can boost farm yields, cut labor costs, and re-
duce pesticide usage, leading to more efficient and sustainable
agricultural practices. Aiming to promote farm independence,
this application utilizes FL, a more secure alternative to tradi-
tional ML methods [46].

Figure 8. Robot performs a random walk in agricultural field, affecting the
connection to a field side unit

However, rural areas are often characterized by their lim-
ited network infrastructure, they also pose distinct challenges
for implementing precision farming technologies [1]. Tradi-
tional machine learning algorithms may struggle in these en-
vironments, potentially compromising network reliability and
service availability. Therefore, a solution that functions effec-
tively within these network constraints is essential for maintain-
ing consistent and successful precision farming operations.

In this setting, robots functioning as edge devices, are de-
signed to improve field coverage and data collection, contribut-
ing to a collective model without the need to exchange raw
data [47]. The movement of these robots is managed using
a truncated random walk method, ensuring field coverage and
task precision. Importantly, the distance of these robots from
computing resources acts as an indicator of network latency in
mobile edge devices, a factor that can influence the quality of
data transmission, as illustrated in Figure 8.

The FL workflow as depicted in Figure 9, is broken down
into distinct functions, each playing a vital role. These func-
tions are outlined as follows:

• Image Pre-processing: This initial step involves modi-
fying the color mode, resizing images, formatting data,
and scaling pixel values to optimally prepare images for
FL models. Subsequently, these processed images, along
with their labels, are stored for future reference.

8

Journal Pre-proof

•

•

•

•

W
at di
cally
as il
ios w
our a
tains
cal m
work
More
time
recor
for M
Valid

6.2.

I
ducti
stand
ticul
ucts.

I
in Fi
on s
sary
prese
 Jo

ur
na

l P
re

-p
ro

of

Almurshed et al. / Future Generation Computer Systems 00 (2024) 1–18 9

Model TuningImage
Pre-processing

Compare
Accuracy

Local Model

Global Model

Aggregate
models

Image
Pre-processing

Validation

Validation

Figure 9. Workflows for FL-based training and inference

Model Tuning: In this phase, the weights of a neural
network are fine-tuned with a new dataset to enhance the
existing model's performance. The refined weights are
then preserved separately for subsequent applications.

Model Aggregation: This process involves the amalga-
mation of parameters (specifically weights) from multi-
ple trained models, often through averaging, to form a
singular, aggregated model.

Validation: Here, the efficacy of the trained machine
learning model is evaluated against new data, utilizing
metrics such as loss and accuracy. These metrics are also
reported alongside the model.

Accuracy Comparison: This function entails compar-
ing the accuracy and loss function across various models
to ascertain the most effective one, resulting in the selec-
tion of the best-performing model.

e utilized FL in this scenario, where the data is generated
fferent timestamps and initially trains a linear model lo-
. We then aggregate the weights to form a global model,
lustrated in Figure 9. To simulate the real-world scenar-
here data becomes available at different time, we tested
pproach using the DeepWeeds dataset [48], which con-
17,509 images of various weed species, to generate lo-
odels. We use a ResNet50 model with a residual net-
architecture of 50 layers for evaluation in this use-case.
over, to provide a practical context, the average execution

s on Raspberry Pi devices for these five functions have been
ded as follows: 0.33s for Image Pre-processing, 178.16s
odel Tuning, 22.33s for Model Aggregation, 37.16s for

ation, and 0.10s for Accuracy Comparison.

Recurrent Neural Network (RNN) based Smart Energy Ap-
plication

n the complex and regulation intensive world of food pro-
on, innovative approaches are essential to meet the high
ards required. Climate-controlled storage systems are par-

arly vital in ensuring the proper preservation of food prod-

oT-based systems for monitoring temperature, as shown
gure 10, are instrumental in providing real-time updates
torage conditions, thus ensuring compliance with neces-
standards and maintaining optimal environments for food
rvation. Another example is a food processing facility that

*

Forecast Temp.
 Recurrent neural networks

(RNN)

Current
Temperature

Approximate
Temperature

No

Wait
Release

Cooling Set-Point

Change
Yes

Block

Temperature
Sensor

Figure 10. Forecasting temperature control via sensors, providing data for pre-
diction and set-point updates

utilizes a smart energy management system to enhance energy
efficiency. In our forecasting model, a preprocessing function
prepares the raw data by scaling and encoding its values. A
series of neural networks process this data, encapsulating each
in distinct functions known as neurons – x1, x2, x3, x4, and
x5. The neuron processes a variety of operational inputs from
past and projected future states such as set points, energy us-
age, capacity, average temperatures, and seasonal data. Then,
we apply a hyperbolic tangent (tanh) function as its activation,
which processes the output of these inputs through matrix oper-
ations, such that the specific parameters of the neuron effec-
tively normalize the results and manage gradients. Neurons
apply specific transformations to extract features necessary for
output predictions. The refined data from these layers is then
fed into predictive functions for forecasting the system's aver-
age temperature and energy consumption. The structure of the
RNN includes an input layer responsible for receiving sequen-
tial data, one or more recurrent layers that capture temporal de-
pendencies over time through hidden states, and an output layer
that generates predictions or forecasts for energy consumption
and temperature levels. Before feeding the data into the RNN, a
data preparation step is typically performed to format, normal-
ize, and split the dataset.

The workflow of a neural network designed for energy effi-
ciency is outlined in the following steps:

• Feature Scaling: This process involves normalizing in-
put data, such as the current settings of the chamber,
power, capacity, and the prevailing season. The data is
reformatted to a standard scale that is compatible with
the RNN, facilitating more accurate model-based predic-
tions.

• Middle-Layer Neurons (X1 to X5): These neurons are
the core of the RNN's middle layer. They assign weights
to the inputs and process them using a hyperbolic tangent
(tanh) activation function. The outputs from the feature
scaling stage are modified here, integrating the weighted
values with the activation function's output.

• Predicting Energy and Temperature: These two cru-
cial functions forecast energy usage and temperature, re-
spectively. Each function comprises an output layer, an
unscaling layer, and a bounding layer. The output layer
sums up the outputs from the X j layers, adjusted by their
weights. This sum is then reverted to its original units

9

Journal Pre-proof

A
sis o
train
prov
cutio
are r
Laye
perat

6.3.

P
canc
in 20
incre
mini
achie
and
resul
How
lenge

Figu

P
(sim
preti
cer.
Imag
195
ous r
cer r
Jo
ur

na
l P

re
-p

ro
of

Almurshed et al. / Future Generation Computer Systems 00 (2024) 1–18 10

(kilowatt-hours for energy and degrees Celsius for tem-
perature) in the unscaling layer.

private fish facility dataset offering a time-series analy-
f temperature and energy, using a six-step sequence per
ing cycle is utilized by the RNN model. Additionally, to
ide an idea of the system's performance, the average exe-
n times on Raspberry Pi devices for these three functions
ecorded as 1.29s for Feature Scaling, 0.44s for the Middle-
r Neurons, and 0.07s and 0.06s for the Energy and Tem-
ure predicting functions, respectively.

Machine Learning based Cancer Diagnostic Application

rostate Cancer (PCa) ranks as the second most common
er in men globally, with about 1.4 million new diagnoses
20. The role of AI in precise disease categorization is
asingly recognized as crucial for effective treatment and
mizing risks. Over the past century, cancer research has
ved significant advancements, particularly in diagnostic
therapeutic techniques for PCa. This advancement has
ted in a substantial accumulation of cancer-related data.
ever, accurately detecting cancer remains a complex chal-
.

re 11. Intelligent decision support system for prostate cancer diagnosis

resently, the application of machine learning methods
ilar to Figure 11) is showing remarkable success in inter-
ng intricate patterns and identifying various types of can-
The ProstateX dataset [49], a component of the Cancer
ing Archive (TCIA) [50], includes prostate MRI scans of

patients. It features expert-annotated, healthy and cancer-
egions of interest within 32x32 pixels, specifically for can-
esearch.

VGG16 model
creation

Pre-processing

Logistic
Regression

Feature extraction
with VGG16

Random Forest

Support Vector
Machine

K-Nearest
Neighbors

Figure 12. Workflow for prostate cancer classification using ML

Figure 12 presents the machine learning training process for
classifying prostate cancer. The steps involved in this workflow
are as follows:

• Data Pre-processing: This stage entails retrieving data
from a designated source and conducting initial cleaning
and structuring of the data.

• Formulating the VGG16 Model: We utilize the tech-
nique of transfer learning by applying VGGNet, a
renowned architecture with 16 layers. The model lever-
ages pre-training on the ImageNet database, which con-
tains an extensive collection of over 10 million natural
images across 1000 different categories.

• Feature Extraction from MRI with VGG16: In this
phase, the processed data is fed through the VGG16
model to extract features. Specifically, the first two
blocks of the VGG model are employed for feature ex-
traction. This process is conducted separately for each
MRI modality before fusing the extracted features.

• Constructing, Training, and Evaluating Machine
Learning Models: This final task involves setting up,
training, and testing various models such as Random For-
est, Logistic Regression, Support Vector Machine, and
K-Nearest Neighbors from the Scikit-learn library on the
Raspberry Pi. The models are trained using the previ-
ously extracted features and labels, and their performance
is assessed using new, unseen data.

The average execution times on Raspberry Pi devices for
these four functions of cancer detection model are recorded as
0.47s for Data Pre-processing, 1.53s for Developing a VGG16
Model, 10.23s for Feature Extraction from MRI with VGG16,
and 2.99s, 28.09s, 39.98s, 7.65s for Constructing, Training, and
Evaluating Machine Learning Models, respectively.

7. Experimentation Details

This section describes the experimental setup, failure
model, and other evaluation factors considered during experi-
mentation in this work. Each subsection below provides de-
scription about specified parameter in more details.

7.1. Evaluation Criteria

During evaluation, we have mainly considered two aspects
in this work: (i) algorithmic execution efficiency (section 8) and
(ii) quality of generated solutions (section 9). Algorithm effi-
ciency is related to algorithm speed, algorithm memory over-
head, and Pareto Front volume. Moreover, quality of the solu-
tion is associated with makespan – defined as the total duration
required to execute a workflow, risk pertains to the likelihood
of completing tasks within the set deadline, and cost interpreted
as the utilization of locations.

10

Journal Pre-proof

Figure
ing th

7.2.

T
appli
dame
prese
algor

7.2.1
T

uatio
node
simu
manc
ware
are n

A
respo
respo
resto
resen
Mea
til th
Time
of M

E
time
the f
mine
ful d
plete
ment
the n
trate
perio

7.2.2
F

utiliz
and f
less
not o
stacl
the p
in de

T
prop
 Jo

ur
na

l P
re

-p
ro

of

Almurshed et al. / Future Generation Computer Systems 00 (2024) 1–18 11

13. The execution of a service function with completion times consider-
e MTTF and MTTR.

Testbed Setup

his section outlines the simulation models and methods
ed to approximate real-world conditions, which are fun-
ntal for assessing the algorithm's performance. It further
nts the wireless and failure models utilized to evaluate the
ithm within a controlled setting.

. Failure Model
his section details the failure model employed in our eval-
n. It specifies the conditions under which each processing
(i.e. fog node) encounters a failure or recovery event. We

late fog node failures to evaluate and validate the perfor-
e of a scheduler using federated learning. Note that soft-
defects caused by faulty service function implementations
ot included in this model.

task failure is considered to occur if a fog node fails to
nd to requests within a set time threshold. The delay in
nse contributes to the overall recovery time required to
re the fog node. The Mean Time To Failure (MTTF) rep-
ts the average operational time of the system, while the

n Time To Recovery (MTTR) indicates the duration un-
e fog node is ready again to process tasks. The Mean
Between two Failures (MTBF) is calculated as the sum

TTF and MTTR.
ach fog node is equipped with a repeating MTBF-clock

r, which schedules the arrival of requests. The timing of
unction request's arrival, as per the MTBF-clock, deter-
s the success or failure of the allocated fog node. Success-
eployment of a function means it commenced and com-
d within the node's MTTF period. Conversely, a deploy-
failure suggests that the function execution coincided with
ode's MTTR period in the MTBF-clock. Figure 13 illus-

s service functions submitted across different MTBF-clock
ds [1].

. Wireless Model
or the robotic weed detection agricultural application, we
ed a simulation that calculates the distance between robots
og nodes. This distance is integral to evaluating the wire-
connection quality. The connection quality is determined
nly by distance but also by factors such as frequency, ob-
es, and signal fading. These elements collectively affect
ath loss and signal-to-noise ratio (SNR), which are critical
termining the effective capacity of the wireless link.
he simulation incorporates a detailed model for signal

agation and fading (values specified in Table 4). Path loss

Parameter Default Values
Frequency 2.4 × 109 Hz
Obstacle Factor 1.0
Bandwidth 106 Hz
Noise Power 10−9 Watts
Data Size 106 bits
Fading Coefficients Rayleigh distribution (scale=1,

size=100)

Table 4. Parameters and their default values for our Wireless Simulation

is calculated using both the free-space path loss (FSPL) for-
mula (Equation 4) and additional loss due to obstacles, which
is a function of distance. The formula for path loss is given by
Equation 5 [51].

FSPL = 20 log10(Distance)+ 20 log10(Frequency)− 20 log10(c)
(4)

In wireless communication, c represents the speed of light in a
vacuum, roughly 3× 108 meters per second, essential for signal
propagation calculations.

Loss dB = FSPL + Additional Loss (5)

Additional Loss = (Adjusted Exponent) ·(log10(Distance)) (6)

The model also considers Rayleigh fading to simulate the
impact of multipath propagation. The adjusted fading coeffi-
cients for path loss are computed as in Equation 7 [51].

Adjusted Fading Coeffs = (Fading coefficients) · (Loss Linear)
(7)

Using these parameters, the simulation applies Shannon’s for-
mula, as shown in Equation 8, to estimate the capacity of the
wireless link [51].

Capacity = Bandwidth · log2(1 + Average(SNR)) (8)

Taking into account the bandwidth of the channel and the aver-
age SNR under fading conditions. The time to send data over
the network is then calculated using Equation 9.

Transmission Time =
Data size
Capacity

(9)

This approach provides a more realistic estimation of the trans-
mission time in a wireless network, considering various envi-
ronmental and technical factors. The updated simulation moves
beyond a simple distance-based quality metric to a more com-
prehensive model that includes path loss, fading, and SNR,
offering a nuanced understanding of wireless network perfor-
mance in different scenarios.

7.3. Performance Comparison

We compare parallel optimization approaches using Zitzler-
Deb-Thiele-1 (ZDT1), a well-known synthetic benchmark
problem [52]. Both algorithms leverage Python-based tools
to enable parallel processing. EO-GNH, in particular, uses
Parsl [10], while dNSGAII is built on Apache Dask [21].
For EO-GNH, the reducer is specifically set up to accumulate

11

Journal Pre-proof

Pare
Pare

T
frast
rator
a sin
RAM
are o
wher

I
ducti
GAI
forw
lectio
thou
sync

O
as a
chro
solut
avail
tenti

8. P

T
Non-
lyzin
and
algor
NSG
a com
prod

8.1.

W
strate
tions
by E
as ill
just t
 Jo

ur
na

l P
re

-p
ro

of

Almurshed et al. / Future Generation Computer Systems 00 (2024) 1–18 12

Figure 14. Algorithm comparison: when solving the ZDT1 problem, the colour is assigned to the time the pareto front was collected

to fronts from the mappers, and we periodically capture the
to Front to monitor how the algorithms progress over time.
he experimental setup involves Google's cloud server in-

ructure, using a Jupyter notebook setup in Google Colabo-
y. The virtual machine deployed for this purpose includes
gle-core Intel(R) Xeon(R) CPU at 2300 MHz with 12 GB

and operates without GPU support. Both Dask and Parsl
ptimized to fully utilize two cores; Dask does this directly,
eas Parsl assigns one executor per core.
n dNSGAII, NSGAII's operators like selection and repro-
on are executed asynchronously. Each step in the dNS-
I process receives outputs from the previous operation and
ards them to the next. For example, the outputs of the se-
n phase are inputted into the reproduction stage. Even

gh dNSGAII operates asynchronously, its iterations are
hronized.
n the other hand, EO-GNH treats each NSGAII instance

n autonomous algorithm. The workers function asyn-
nously, and a master node periodically gathers the latest
ions. EO-GNH is scalable; when more resources become
able, it increases the number of NSGAII instances to po-
ally improve performance results.

erformance Comparison of EO-GNH

his section evaluates EO-GNH against the distributed
dominated Sorting Genetic Algorithm II (dNSGAII), ana-
g their parallel structures, Pareto solution counts over time,
resource usage for Pareto front generation. Notably, both
ithms operate asynchronously. Within EO-GNH, multiple
AII instances function as Mappers and Reducers, enabling
parative analysis of the non-dominated solution quantities

uced by each algorithm.

Results

ithin the first ten seconds of operation, EO-GNH demon-
s its capability to accumulate a greater quantity of solu-
for the controller's use. The Pareto Front approximation

O-GNH also shows considerable improvements in quality,
ustrated in Figure 14. Remarkably, EO-GNH achieves in
wo seconds what dNSGAII accomplishes in ten seconds.

Figure 15. Memory overhead over time for EO-GNH and dNSGAII

Although dNSGAII operates asynchronously, its iteration
process is synchronous. This approach leads to a reduced col-
lection of non-dominant solutions, a fact highlighted in Fig-
ure 14. Additionally, the implementation of NSGAII operations
in dNSGAII often faces delays due to queuing times.

In comparison, EO-GNH runs multiple NSGAII instances
across two separate processes, minimizing the chances of any
process idling while waiting for CPU allocation. This ef-
ficient allocation of computational resources enhances EO-
GNH's overall performance.

The memory overhead associated with these algorithms
over time, as shown in Figure 15, indicates notable differences
in their memory consumption patterns. EO-GNH exhibits an
initial rapid increase in memory use, spiking from 0 to 60MB
in under a second. In contrast, dNSGAII shows a more grad-
ual memory usage, reaching the same 60MB mark in approxi-
mately 2 seconds.

After this initial surge, EO-GNH's memory consumption
fluctuates slightly between 100MB and 110MB, maintaining
this range for the duration of its operation. On the other
hand, dNSGAII displays a steady increase in memory use from
120MB to 140MB after three seconds, sustaining this level for
the rest of the operation.

During a single run, both EO-GNH and dNSGAII appear
to use a consistent amount of memory. However, it is possible
that EO-GNH's memory overhead might rise with the addition
of more NSGAII instances. Conversely, dNSGAII's memory
usage is expected to remain stable unless more computing cores
are added, a scenario Dask is well-equipped to handle.

EO-GNH, with Parsl's flexibility, dynamically utilizes ad-
12

Journal Pre-proof

ditio
GAI
start,
of ex

9. P

I
nario
(1) S
comp
asses
proa
meas
ing d
to m
tion
the q
tive
aimi
the t
deplo

T
time
repre
this d
all pr
end-
these

T
ous c
Map
EO-G

9.1.

I
on th
an ed
Rura
an ag
is as

9.1.1
F

tion
miza
betw
form
erabl
dispe
a slig
152.
refle
The
with
 Jo

ur
na

l P
re

-p
ro

of

Almurshed et al. / Future Generation Computer Systems 00 (2024) 1–18 13

nal resources as they become available. In contrast, dNS-
I is designed to utilize all available resources right from the
leading to a steady memory usage despite the availability
tra resources.

erformance Evaluation of Use-Cases

n assessing the EO-GNH framework across various sce-
s, we focus on the following key performance indicators:
uccess Rate: this metric analyzes the probability of task
letion within a set deadline. It works in parallel with risk
sment (the likelihood of failing to meet the deadline) to

ctively reduce service interruptions. (2) Makespan: this
ures the total duration required to execute a workflow us-
istributed resources. The primary goal of the scheduler is
inimize makespan, thereby achieving the fastest comple-
time. (3) Utilized Location (Cost): this is determined by
uantity of resources employed in a workflow. The objec-
here is to achieve an equilibrium in resource utilization,
ng to reduce network bottlenecks and effectively balance
rade-off between risk and cost associated with redundant
yments.
he deadline is specified based on the estimated execution
of the function and the estimated data transmission time,
senting the expected end-to-end completion time. Missing
eadline is considered a failure, which influences the over-
oject duration, known as the makespan which is the actual

to-end completion time. A higher success rate in meeting
deadlines leads to a shorter makespan [4].
he evaluation of the EO-GNH algorithm considered vari-
onfigurations of EO-GNH Mappers, ranging from a single
per in EO-GNH-1 to a setup comprising four Mappers in

NH-4.

FL based Rural-AI

n order to evaluate the proposed framework, we tested it
ree different applications performing ML or AI tasks on
ge-cloud infrastructure. The first application is a FL based
l-AI application which is performing weed detection using
ricultural robot. The detailed evaluation of this application
follows:

. Model Tuning
igure 16 summarizes the performance of various optimiza-

algorithms, detailing their statistical explanation for a mini-
tion problem. GNH algorithm's execution times are spread
een 134.02s and 310.79s, with its mean and median per-
ance at 159.30s and 154.05s, respectively, and a consid-
e interquartile range (IQR) of 26.87s, suggesting a wider
rsion of values. GDE3 shows a similar pattern but with
htly narrower range, a mean of 157.78s, and a median of

75s. HYPE and IBEA exhibit tighter performance clusters,
cted in their lower IQRs of 24.81s and 23.99s respectively.
MOCell and NSGAII algorithms further tightens the range,
IQRs of 22.99s and 22.32s, indicating a more concentrated

Figure 16. For “Model Tuning ”: Box plot showing execution times for algo-
rithms. Median and mean (blue dot with 95% CI bars) indicated. EO-GNH
series highlights efficiency gains with added mappers.

set of execution times around their mean values, which revolves
around 154s.

OMOPSO and SMPSO maintain this trend of narrow IQRs
at 21.48s and 21.36s respectively, with mean values just above
153s, signifying consistent performance. The EO-GNH se-
ries, iterating from 1 to 4, consistently shows a median per-
formance around 149s and decreasing IQRs, which suggest a
refinement in algorithmic efficiency with each successive ver-
sion. The 95% confidence intervals for these algorithms are
relatively tight, all below 0.77s, indicating precise estimates of
the mean execution times and underscoring the reliability of
these algorithms in solving the considered minimization task.

Figure 17 illustrates the performance disparities among
three heuristic placement algorithms in terms of their execu-
tion time statistics. Random Placement demonstrates the broad-
est range of execution times, from approximately 134.05s to
491.30s, with an average time of 224.98s and a median of
208.16s. This is indicative of a considerable spread in data, as
evidenced by an IQR of 86.61s, the largest among the three al-
gorithms. The Round Robin algorithm shows a slightly less var-
ied range with execution times from around 134.16s to 476.14s,
a mean slightly higher than Random Placement at 225.50s, and
a median of 212.41s, coupled with an IQR of 85.48s, which is
marginally less than that of Random Placement.

The Greedy algorithm, while also having a wider range,
showcases a notably better performance with a minimum and
maximum execution time between 134.04s and 440.46s, a
lower mean of 214.80s, and a median of 199.13s, indicating a
more favorable central tendency compared to the other two al-
gorithms. Its IQR of 76.01s is the smallest, suggesting a tighter
concentration of values. The 95% confidence intervals for these
algorithms are relatively large, all above 2.30s, which points to
less precision in the mean estimation compared to algorithms
with tighter data clustering. Nonetheless, the Greedy algorithm
stands out with slightly more precision in its mean estimation,
as seen in its 95% confidence interval of 2.33s, which is compa-
rably higher but in the context of a lower mean, suggests a more
efficient performance in the minimization problem at hand.

The Table 5 detailing the performance of a rural agriculture

13

Journal Pre-proof

Figure
Greed
(with

Table
-Tunin

settin
prov
rithm
(SR)
algor
impr
perfe
EO-G
make

9.1.2
T

metr
ing e
show
arou
age o
close
indic
imum
53.8

T
mean
ance
havio
tive
expa
whil

T
plays
ing I
 Jo

ur
na

l P
re

-p
ro

of

Almurshed et al. / Future Generation Computer Systems 00 (2024) 1–18 14

17. For “Model Tuning”: Box plot comparing execution times of
y, Random Placement and Round Robin algorithms. Median and mean
95% CI bars) are highlighted. Shows efficiency comparisons.

Algorithm Utilized Locations Makespan SR(%)

Greedy 1.03 213.11 58.00
GNH 4.05 159.90 96.00
EO-GNH-1 4.60 156.19 99.00
EO-GNH-2 4.70 156.31 99.00
EO-GNH-3 4.75 155.07 100.00
EO-GNH-4 4.78 154.69 100.00

5. Performance evaluation of placement algorithms in a Rural Agriculture
g Model

g for model tuning reveals a discernible trend towards im-
ed efficiency with the EO-GNH series. The Greedy algo-
, despite minimal location usage, falls short in success rate
and has the highest makespan. In contrast, the EO-GNH
ithms demonstrate enhanced makespan efficiency and an
essive SR, with EO-GNH-3 and EO-GNH-4 achieving a
ct 100% success rate. This progression suggests that the
NH's advanced iterations successfully optimize for both
span and reliability.

. Models Aggregation
he Figure 18 reflects the tightly clustered performance

ics of several optimization algorithms, each demonstrat-
fficiency in a minimization context. The GNH algorithm
s a moderate range of execution times with a minimum of

nd 49.09s and a maximum of 65.64s, maintaining an aver-
f 53.90s and a median close to 53.14s. The GDE3 follows
ly with a slightly narrower range and a mean of 53.56s,
ating consistent execution times. HYPE extends the max-

slightly more but with a mean that stays competitive at
7s.
he IBEA presents a wider range yet manages to keep its
at 53.77s with a median marginally less, suggesting bal-

d performance. MOCell and NSGAII report similar be-
rs with tight IQRs and means just above 53.50s, indica-

of their stable nature in solving the problem. OMOPSO
nds the range further but still delivers a mean of 53.68s,
e SMPSO maintains this pattern with a mean of 53.72s.
he EO GNH series, with its iterations from 1 to 4, dis-
a consistent median around 53.00s and slightly increas-

QRs, yet it still indicates a refinement in performance with

Figure 18. For “Models Aggregation”: Box plot showing execution times for
algorithms. Median and mean values (blue dot with 95% CI bars) are also
indicated. EO-GNH series highlights efficiency gains with added mappers.

Figure 19. For “Models Aggregation”: Box plot comparing execution times of
Random Placement and Round Robin algorithms. Median and mean (with 95%
CI bars) are highlighted. Shows efficiency comparisons.

each successive version. The 95% confidence intervals for all
algorithms are modest, varying from around 0.36s to 0.38s,
which provides confidence in the stability of the mean execu-
tion times and underscores the algorithms’ effectiveness in con-
sistently achieving near-optimal solutions.

The Figure 19 provides a detailed analysis of the perfor-
mance of three distinct placement algorithms, showcasing var-
ied execution time ranges and central tendencies. The Random
Placement algorithm exhibits a wide range of execution times,
with a minimum of approximately 50.43s and a maximum of
201.10s, resulting in a mean time of 81.08s and a median sig-
nificantly lower at 69.32s. This discrepancy between the mean
and median, coupled with a substantial IQR of 34.62s, points to
a diverse distribution of execution times.

The Round Robin algorithm demonstrates an expanded
range from around 49.08s to 182.78s, with a mean of 84.71s and
a median of 73.21s, higher than Random Placement. The IQR
of 42.92s is the largest among the three, indicating a greater
spread of execution times and a less consistent performance
compared to the other algorithms.

In contrast, the Greedy algorithm presents a notably tighter
performance range with a minimum and maximum between
49.33s and 145.23s. It achieves a mean of 63.18 and a median

14

Journal Pre-proof

of 61
rithm
a mo
95%
is co
Roun
This
form
imiz

Table
- Glob

L
greg
distin
appr
lags
cess,
EO-G
prog
The
rithm
light

9.2.
T

work
uatio
gorit
ment
and
evide
the m
and
SMP
mean
mate
with
grad
is ad

T
rithm
mean
prox
show
SEM
diffe
note
these
 Jo

ur
na

l P
re

-p
ro

of

Almurshed et al. / Future Generation Computer Systems 00 (2024) 1–18 15

.22s, both markedly lower than those of the other two algo-
s. The IQR of 10.43s is significantly smaller, suggesting
re concentrated and consistent set of execution times. The
confidence interval (CI) of 1.35s for the Greedy algorithm
nsiderably smaller than those of Random Placement and
d Robin, which have CIs of 3.01s and 3.26s, respectively.
indicates a higher precision in the Greedy algorithm’s per-
ance, making it a more efficient choice in solving the min-
ation problem at hand.

Algorithm Utilized Locations Makespan SR(%)

Greedy 1.11 62.95 87.00
GNH 4.11 54.35 100.00
EO-GNH-1 4.32 54.18 100.00
EO-GNH-2 4.32 53.53 100.00
EO-GNH-3 4.31 53.64 100.00
EO-GNH-4 4.31 53.91 100.00

6. Performance evaluation of placement algorithms in Rural Agriculture
al Model Aggregation

ooking at the performance metrics for global model ag-
ation in Rural Agriculture (Table 6) underscores a notable
ction between the subsequent algorithms. The Greedy

oach, while exhibiting the lowest utilization of locations,
in makespan performance and does not achieve full suc-
with an 87% rate. Conversely, GNH and all versions of
NH showcase a remarkable 100% success rate, with a

ressively decreasing makespan from GNH to EO-GNH-4.
consistent success rate across the GNH and EO-GNH algo-
s, coupled with their competitive makespan results, high-
their efficacy and reliability in an agricultural application.

ML based Cancer Diagnosis
he second application considered for evaluation in this
is a cancer detection framework using ML. In this eval-

n, the datasets are statistically analyzed with different al-
hms, revealing a pattern of high consistency and measure-

reliability. Algorithms such as GNH, GDE3, HYPE,
IBEA share characteristics of close data clustering, as
nced by their tight IQR and very narrow 95% CI for
ean, with mean values predominantly between 147.8s

148.0s.The algorithms MOCell, NSGAII, OMOPSO, and
SO exhibit a high level of data consistency, though their

values are marginally lower, spanning from approxi-
ly 147.4s to 147.7s. Moreover, the EO-GNH algorithm
different mapper set-ups, numbering from 1 to 4, shows a

ual decline in the mean execution time every time a mapper
ded to the algorithm.
he reliability of replicating the same results in these algo-
s is further validated by the calculated standard error of the
(SEM). Groups GNH, GDE3, and HYPE have SEMs ap-

imately at 0.070s, 0.065s, and 0.062s, respectively, which
cases the accuracy in their mean estimation. The lower
s found in groups such as SMPSO and the EO-GNH with
rent mapper setups, which range from 0.040s to 0.028s, de-
an even greater precision in mean estimation. Collectively,
metrics imply that the data across all the algorithms is

Figure 20. For “ML-based Cancer Diagnosis”: Box plot showing execution
times for algorithms. Median and mean (blue dot with 95% CI bars) are also
indicated in the figure.

Figure 21. For “ML-based Cancer Diagnosis”: Box plot comparing execution
times of Greedy Random Placement and Round Robin algorithms. Median and
mean (with 95% CI bars) are also highlighted. Figure also shows the efficiency
comparisons betwen algorithms.

tightly centred around the mean with very little variation, high-
lighting the overall precision of the outcome.

Figure 21 captures the performance variations of three dis-
tinct placement algorithms. The Random Placement algorithm
exhibits a considerable range in execution times, stretching
from 146.85s to 208.87s, with an average of 161.35s and a
median indicating a central tendency at 157.51s. The spread
of data, as denoted by an IQR of 20.24s, reflects a signifi-
cant diversity in performance. The Round Robin algorithm,
although showing a similar pattern, has a slightly tighter perfor-
mance range with a minimum and maximum between 146.84s
and 196.47s. It achieves a mean of 160.26s and a median of
156.18s, with an IQR of 19.93s, suggesting a marginally more
consistent performance than Random Placement. The Greedy
algorithm, while having a comparable maximum value to Ran-
dom Placement, has a lower mean of 158.31s and a notably
lower median of 149.59s, accompanied by the largest IQR of
21.56s, indicating wider variability in its results. The 95%
confidence intervals are relatively narrow for all, with Random
Placement at 0.47s, Round Robin at 0.45s, and Greedy at 0.50s,
pointing to a high precision in the mean estimates across sam-
ples for these algorithms.

The performance data captured in Table 7 for a 100 Rasp-
berry Pi setup presents that the Greedy algorithm, while mod-

15

Journal Pre-proof

Table
Cance

est i
and
contr
cantl
algor
100%
bette
resen
Pi se
has t
contr
rate
cess
sions
incre
GNH
balan
whic
and t

Table
in Can

9.3.
T

pose
ing s
ment
unifo
indic
surem
of ex
1.09
ity, w
hand
NSG
IQRs
tion
patte
 Jo

ur
na

l P
re

-p
ro

of

Almurshed et al. / Future Generation Computer Systems 00 (2024) 1–18 16

Algorithm Utilized Locations Makespan SR (%)

Greedy 1.97 159.57 42.00
GNH 6.52 148.56 93.00
EO-GNH-1 6.38 147.27 99.00
EO-GNH-2 6.39 147.26 99.00
EO-GNH-3 6.36 147.16 100.00
EO-GNH-4 6.35 147.15 100.00

7. Performance evaluation of placement algorithms for 100 RPi setup in
r Classification

n location usage, shows a considerably higher makespan
a success rate that does not reach half the benchmark. In
ast, the GNH algorithm improves the makespan signifi-
y while nearly reaching high success rate. The EO-GNH
ithms, particularly EO-GNH-3 and EO-GNH-4, achieve a

success rate, affirming their robustness with a marginally
r makespan compared to their predecessors. The data rep-
ted in Table 8 shows the result for the 1000 Raspberry
tup. The Greedy algorithm uses the fewest locations but
he lowest success rate and the highest makespan. In stark
ast, the GNH algorithm significantly improves the success
to 93%, while the EO-GNH series achieves a 100% suc-
rate across its variants. The makespan for EO-GNH ver-
shows a very minor but consistent decrease, suggesting

mental optimizations. These result implies that the EO-
algorithms are highly effective, maintaining an excellent

ce between resource usage and successful classification,
h is critical in medical applications that rely on accurate
imely data processing.

Algorithm Utilized Locations Makespan SR (%)

Greedy 1.94 159.01 37.00
GNH 7.32 147.69 93.00
EO-GNH-1 7.44 147.17 100.00
EO-GNH-2 7.44 147.14 100.00
EO-GNH-3 7.44 147.17 100.00
EO-GNH-4 7.44 147.10 100.00

8. Performance evaluation of placement algorithms for 1000 RPi Setup
cer Classification

RNN based Energy Forecasting
he third application considered for evaluating the pro-

d EO-GNH framework is a RNN-based refrigeration cool-
ystem. The analysis of execution times for various place-
algorithms, as illustrated in Figure 22, shows a notable

rmity in their performance. This is evidenced by patterns
ating tight clustering of data and high precision in mea-
ents. The Greedy algorithm exhibits a broader spectrum

ecution times, indicated by its IQR being approximately
5s and a 95% CI pointing to a moderate level of variabil-

ith average execution times around 3.766s. On the other
, algorithms such as GNH, GDE3, HYPE, IBEA, MOCell,
AII, OMOPSO, and SMPSO demonstrate more narrow
, suggesting a more compact distribution of their execu-
times, with average values generally around 2.00s. This
rn reflects a stable performance across these algorithms,

Figure 22. For “Energy Forecasting”: Box plot showing execution times for
algorithms. Median and mean (blue dot with 95% CI bars) indicated. EO-GNH
series highlights efficiency gains with added mappers.

underscored by their low Standard Error of the Mean (SEM)
values, ranging approximately from 0.015s to 0.020s, indicat-
ing a high precision in their average execution times.

Upon evaluating the EO-GNH algorithm with varying num-
bers of mappers, there is an observed gradual reduction in av-
erage execution time with the inclusion of more mappers, hint-
ing at enhanced efficiency. This trend is depicted across four
different EO-GNH configurations, with mean execution times
slightly declining from EO-GNH-1 to EO-GNH-4. All configu-
rations maintain average times under 2.0s, exhibiting close 95%
CIs and small Standard Error of the Means (SEMs). These find-
ings underscore the algorithm’s consistent ability to attain near-
optimal solutions, emphasizing its effectiveness in addressing
the minimization challenge presented.

Figure 23 reveals that the Random Placement algorithm dis-
plays a broad spectrum of execution times, ranging from 1.84s
to 37.75s, with an average time of around 12.14s and a median
slightly lower at 11.74s. This range, evidenced by an IQR of
8.56s, indicates a wide variability in its performance. In com-
parison, the Round Robin algorithm, while also showing a di-
verse range of execution times, has a slightly better average of
around 11.78s and a median of 11.38s. Its IQR is marginally
narrower at 8.72s, coupled with a 95% CI of 0.38s, suggesting
a more consistent grouping of sample means than the Random
Placement. This indicates towards a more stable yet still varied
performance profile.

Algorithm Utilised Locations Makespan SR(%)

Greedy 3.34 1.37 73.00
GNH 5.10 2.02 98.00
EO-GNH-1 4.53 2.00 100.00
EO-GNH-2 4.48 2.00 100.00
EO-GNH-3 4.44 1.99 100.00
EO-GNH-4 4.42 1.99 100.00

Table 9. Performance comparison of placement algorithms in 100 RPis setup
(Smart Cooling System)

Analysing the performance across two different RPi se-
tups for a Energy Forecasting System, the EO-GNH algorithm

16

Journal Pre-proof

Figure
of Ra
95% C
betwe

Table
setup

demo
Whe
(Tab
achie
arou
perfo
using
make
pand
simil
term
and i
GNH
when
rate.
feren
incre
suite

T
appli
for d
ducti
on ti
meth
whic
but s
strate
alwa
 Jo

ur
na

l P
re

-p
ro

of

Almurshed et al. / Future Generation Computer Systems 00 (2024) 1–18 17

23. For “Energy Forecasting”: Box plot comparing execution times
ndom Placement and Round Robin algorithms. Median and mean (with

I bars) are also highlighted. Figure also shows efficiency comparisons
en algorithms.

Algorithm Utilized Locations Makespan SR(%)

Greedy 3.55 1.48 71.00
GNH 5.27 2.01 99.00
EO-GNH-1 4.26 2.00 100.00
EO-GNH-2 4.24 2.00 100.00
EO-GNH-3 4.24 1.99 100.00
EO-GNH-4 4.23 1.99 100.00

10. Performance comparison of placement algorithms in a 1000 RPis
(Smart Cooling System)

nstrated a consistent trend of efficiency and effectiveness.
n comparing the algorithms in a 100 RPi environment
le 9), we observed that EO-GNH variants (1 through 4)
ved a perfect SR of 100% with a closely packed makespan

nd the 4.5s mark, indicating a high level of reliability and
rmance. On the other hand, the Greedy algorithm, while
fewer locations, lagged behind in SR and had a shorter

span, suggesting less effective resource allocation. Ex-
ing the infrastructure to 1000 RPis (Table 10) showed a
ar pattern. EO-GNH's performance remained stable in
s of success rate, achieving a full score across its variants,
ts makespan slightly improved as well. Interestingly, both
and Greedy showed marginal variations in their makespan
scaled up, with Greedy still trailing slightly in success
These tables suggest that EO-GNH is robust across dif-

t scales, maintaining high success rates without significant
ases in makespan, which is indicative of an algorithm well-
d for scalable systems.
he consistent performance of EO-GNH across the three
cation scenarios describes its potential as a reliable choice
istributed edge-cloud infrastructures. In Table 6, the re-
on in the number of utilized locations has a direct effect
me efficiency. In this specific scenario, the scalarization
od gives priority to cost considerations over the makespan,
h can be seen as a minor overall enhancement for the cost
ignificantly impacted the makespan. Tables 7 to 9 demon-

that merely increasing the number of mappers does not
ys lead to improved performance. This is attributed to the

fact that when a solution has already achieved its optimal state,
further optimization becomes redundant. Therefore, for future
improvements, it is imperative that the framework integrates a
mechanism to ascertain the optimal number of available map-
pers. This strategy is vital to avoid the unnecessary usage of
resources, ensuring that the resources are utilized in the most
efficient manner possible.

10. Conclusion

The paper describes Enhanced Optimized-Greedy Nom-
inator Heuristic (EO-GNH), a sophisticated framework spe-
cially designed for optimizing ML/AI application placement
within edge computing environments. The detailed evalua-
tion across diverse setups – ranging from smart agriculture to
healthcare – has demonstrated EO-GNH's proficiency in im-
proving the Quality of Service (QoS) parameters significantly.
The adaptability of EO-GNH, coupled with its advanced hi-
erarchical meta-heuristic design, is inherently independent of
specific problems and addresses the issue of slow convergence
by concurrently investigating multiple approximations of the
Pareto Front. This capability extends the scope of EO-GNH
way beyond the domain of IoT task allocation/placement. The
approach can be adeptly applied for selecting features and fine-
tuning parameters within the domain of ML and AI.

The EO-GNH framework represents a significant advance-
ment in the field of edge computing and IoT. Its capacity to
adapt to varying scales, maintain high success rates, and im-
prove computational efficiency positions it as a powerful tool
for future developments in designing intelligent systems. We
plan to explore the potential of reinforcement learning, tem-
poral difference learning, and the Markov decision process in
future work. Implementing these methods as optimisation algo-
rithms could significantly enhance the system's adaptability and
performance. In future, we also plan to design safe and secure
methods for sharing computational resources at the edge/fog
layers. This will require the development of a robust mecha-
nism for establishing a trust chain in the infrastructure.

References

[1] O. Almurshed, P. Patros, V. Huang, M. Mayo, M. Ooi, R. Chard,
K. Chard, O. Rana, H. Nagra, M. Baughman, et al., Adaptive edge-cloud
environments for rural ai, in: 2022 IEEE International Conference on Ser-
vices Computing (SCC), IEEE, 2022, pp. 74–83.

[2] F. Computing, the internet of things: Extend the cloud to where the things
are, Cisco White Paper (2015).

[3] L. Bittencourt, R. Immich, R. Sakellariou, N. Fonseca, E. Madeira,
M. Curado, L. Villas, L. DaSilva, C. Lee, O. Rana, The internet of things,
fog and cloud continuum: Integration and challenges, Internet of Things
3 (2018) 134–155.

[4] O. Almurshed, O. Rana, K. Chard, Greedy nominator heuristic: Vir-
tual function placement on fog resources, Concurrency and Computation:
Practice and Experience (2021).

[5] F. Hwang, S.-J. Chen, C.-L. Hwang, Fuzzy multiple attribute decision
making: Methods and applications, Springer Berlin/Heidelberg, 1992.

[6] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large
clusters, Communications of the ACM 51 (1) (2008) 107–113.

[7] T. A. Feo, M. G. Resende, Greedy randomized adaptive search proce-
dures, Journal of global optimization 6 (2) (1995) 109–133.

17

Journal Pre-proof

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
 Jo
ur

na
l P

re
-p

ro
of

Almurshed et al. / Future Generation Computer Systems 00 (2024) 1–18 18

S. Radouche, C. Leghris, Network selection based on cosine similarity
and combination of subjective and objective weighting, in: 2020 Interna-
tional Conference on Intelligent Systems and Computer Vision (ISCV),
IEEE, 2020, pp. 1–7.
J. K. Samriya, N. Kumar, An optimal sla based task scheduling aid of
hybrid fuzzy topsis-pso algorithm in cloud environment, Materials Today:
Proceedings (2020).
Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford, R. Kumar, L. Lacin-
ski, R. Chard, J. M. Wozniak, I. Foster, et al., Parsl: Pervasive parallel
programming in python, in: Proceedings of the 28th International Sym-
posium on High-Performance Parallel and Distributed Computing, 2019,
pp. 25–36.
O. Almurshed, O. Rana, Y. Li, R. Ranjan, D. N. Jha, P. Patel, P. P. Jayara-
man, S. Dustdar, A fault tolerant workflow composition and deployment
automation iot framework in a multi cloud edge environment, IEEE Inter-
net Computing (2021).
A. Benitez-Hidalgo, A. J. Nebro, J. Garcia-Nieto, I. Oregi, J. Del Ser,
jmetalpy: A python framework for multi-objective optimization with
metaheuristics, Swarm and Evolutionary Computation 51 (2019) 100598.
M. Zeleny, Compromise programming, Multiple criteria decision making
(1973).
J. L. Herrera, J. Berrocal, S. Forti, A. Brogi, J. M. Murillo, Continu-
ous qos-aware adaptation of cloud-iot application placements, Computing
105 (9) (2023) 2037–2059.
Á. M. Aparicio-Morales, J. L. Herrera, E. Moguel, J. Berrocal, J. Garcia-
Alonso, J. M. Murillo, Minimizing deployment cost of hybrid applica-
tions, in: 2023 IEEE International Conference on Quantum Computing
and Engineering (QCE), Vol. 2, IEEE, 2023, pp. 191–194.
J. Pearl, Heuristics: intelligent search strategies for computer problem
solving (1984).
Y. F. Yiu, J. Du, R. Mahapatra, Evolutionary heuristic a* search: Heuristic
function optimization via genetic algorithm, in: 2018 IEEE First Interna-
tional Conference on Artificial Intelligence and Knowledge Engineering
(AIKE), IEEE, 2018, pp. 25–32.
Y. F. Yiu, R. Mahapatra, Hierarchical evolutionary heuristic a* search,
in: 2020 IEEE International Conference on Humanized Computing and
Communication with Artificial Intelligence (HCCAI), IEEE, 2020, pp.
33–40.
M. I. Jordan, T. M. Mitchell, Machine learning: Trends, perspectives, and
prospects, Science 349 (6245) (2015) 255–260.
E. Alba, Parallel metaheuristics: a new class of algorithms, John Wiley &
Sons, 2005.
D. D. Team, Dask: Library for dynamic task scheduling (2016).
Apache Software Foundation, Apache OpenWhisk, accessed: 2023-12-
08 (2020).
URL https://openwhisk.apache.org/downloads.html

A. Alabbas, A. Kaushal, O. Almurshed, O. Rana, N. Auluck, C. Perera,
Performance analysis of apache openwhisk across the edge-cloud contin-
uum, in: 2023 IEEE 16th International Conference on Cloud Computing
(CLOUD), IEEE, 2023, pp. 401–407.
M. Baughman, N. Hudson, R. Chard, A. Bauer, I. Foster, K. Chard,
Tournament-based pretraining to accelerate federated learning, in: Pro-
ceedings of the SC’23 Workshops of The International Conference on
High Performance Computing, Network, Storage, and Analysis, 2023,
pp. 109–115.
P. Patros, M. Ooi, V. Huang, M. Mayo, C. Anderson, S. Burroughs,
M. Baughman, O. Almurshed, O. Rana, R. Chard, et al., Rural ai:
Serverless-powered federated learning for remote applications, IEEE In-
ternet Computing 27 (2) (2022) 28–34.
A. Kaushal, O. Almurshed, A. Alabbas, N. Auluck, O. Rana, An
edge-cloud infrastructure for weed detection in precision agriculture, in:
IEEE International Conference on Pervasive Intelligence and Computing,
IEEE, 2023, pp. 0269–0276.
V. Mohammadi, A. M. Rahmani, A. Darwesh, A. Sahafi, Fault toler-
ance in fog-based social internet of things, Knowledge-Based Systems
265 (2023) 110376.
S. Amjad, A. Akhtar, M. Ali, A. Afzal, B. Shafiq, J. Vaidya, S. Shamail,
O. Rana, Orchestration and management of adaptive iot-centric dis-
tributed applications, IEEE Internet of Things Journal (2023).
T. T. George, A. K. Tyagi, Reliable edge computing architectures for
crowdsensing applications, in: 2022 International Conference on Com-

puter Communication and Informatics (ICCCI), IEEE, 2022, pp. 1–6.
[30] G. van Rossum, time - time access and conversions (2023).

URL https://docs.python.org/3/library/time.html

[31] G. van Rossum, timeit.
URL https://docs.python.org/3/library/timeit.html

[32] G. Rodia, psutil.
URL https://github.com/giampaolo/psutil

[33] A. S. Foundation, Apache kafka, Apache Software Foundation (2011).
URL https://kafka.apache.org/

[34] A. Tridgell, T. S. Team, Samba: A file and print server for unix, USENIX
Conference on File and Storage Technologies (1992).
URL https://www.samba.org/

[35] Y. N. Babuji, K. Chard, I. T. Foster, D. S. Katz, M. Wilde, A. Woodard,
J. M. Wozniak, Parsl: Scalable parallel scripting in python., in: IWSG,
2018.

[36] A. M. Turing, Systems of logic based on ordinals, Proceedings of the
London Mathematical Society, Series 2 45 (1939) 161–228.

[37] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay,
Scikit-learn: Machine learning in Python, Journal of Machine Learning
Research 12 (2011) 2825–2830.

[38] S. Kukkonen, J. Lampinen, Gde3: The third evolution step of generalized
differential evolution, in: 2005 IEEE congress on evolutionary computa-
tion, Vol. 1, IEEE, 2005, pp. 443–450.

[39] J. Bader, K. Deb, E. Zitzler, Faster hypervolume-based search using
monte carlo sampling, in: Multiple Criteria Decision Making for Sus-
tainable Energy and Transportation Systems: Proceedings of the 19th In-
ternational Conference on Multiple Criteria Decision Making, Auckland,
New Zealand, 7th-12th January 2008, Springer, 2010, pp. 313–326.

[40] E. Zitzler, S. Künzli, Indicator-based selection in multiobjective search,
in: International conference on parallel problem solving from nature,
Springer, 2004, pp. 832–842.

[41] A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, E. Alba, Mocell: A
cellular genetic algorithm for multiobjective optimization, International
Journal of Intelligent Systems 24 (7) (2009) 726–746.

[42] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multi-
objective genetic algorithm: Nsga-ii, IEEE transactions on evolutionary
computation 6 (2) (2002) 182–197.

[43] M. R. Sierra, C. A. Coello Coello, Improving pso-based multi-objective
optimization using crowding, mutation and ϵ-dominance, in: Interna-
tional conference on evolutionary multi-criterion optimization, Springer,
2005, pp. 505–519.

[44] A. J. Nebro, J. J. Durillo, J. Garcia-Nieto, C. C. Coello, F. Luna, E. Alba,
Smpso: A new pso-based metaheuristic for multi-objective optimization,
in: 2009 IEEE Symposium on computational intelligence in multi-criteria
decision-making (MCDM), IEEE, 2009, pp. 66–73.

[45] F. Balducci, D. Impedovo, G. Pirlo, Machine learning applications on
agricultural datasets for smart farm enhancement, Machines (2018).

[46] Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, H. Yu, Federated learning,
Synthesis Lectures on Artificial Intelligence and Machine Learning 13 (3)
(2019) 1–207.

[47] B. Pang, Y. Song, C. Zhang, R. Yang, Effect of random walk methods on
searching efficiency in swarm robots for area exploration, Applied Intel-
ligence 51 (7) (2021) 5189–5199.

[48] A. Olsen, D. A. Konovalov, B. Philippa, P. Ridd, J. C. Wood, J. Johns,
W. Banks, B. Girgenti, O. Kenny, J. Whinney, et al., Deepweeds: A mul-
ticlass weed species image dataset for deep learning, Scientific reports
9 (1) (2019) 1–12.

[49] R. Cuocolo, A. Stanzione, A. Castaldo, D. R. De Lucia, M. Imbriaco,
Quality control and whole-gland, zonal and lesion annotations for the
prostatex challenge public dataset, European Journal of Radiology 138
(2021) 109647.

[50] G. Litjens, O. Debats, J. Barentsz, N. Karssemeijer, H. Huis-
man, Prostatex challenge data, The Cancer Imaging Archive (2017).
doi:10.7937/K9TCIA.2017.MURS5CL.

[51] A. F. Molisch, Wireless communications, Vol. 34, John Wiley & Sons,
2012.

[52] E. Zitzler, K. Deb, L. Thiele, Comparison of multiobjective evolution-
ary algorithms: Empirical results, Evolutionary computation 8 (2) (2000)
173–195.

18

Journal Pre-proof

Author Biog
Jo
ur

na
l P

re
-p

ro
of

Osama Almurshed is a PhD candidate at Cardiff University's School of Computer Science &
Informatics, United Kingdom and a faculty member in Computer Science at Sattam Bin
Abdulaziz University, Kingdom of Saudi Arabia. His research interests include designing and
optimising intelligent Internet of Things applications and engineering the dependability of
fog-cloud computing environments.

Ashish Kaushal is a PhD scholar at Indian Institute of Technology Ropar, India. He completed
his B.Tech + M.Tech in a 5 year Dual Degree program from National Institute of Technology
Hamirpur, India. He was a Commonwealth Split-Site Scholar 2021 at Cardiff University, U.K. His
research interests include edge-cloud computing, distributed systems, and intelligent IoT
systems.

Souham Meshoul is a Professor at the College of Computer and Information Sciences,
Princess Nourah Bint Abdulrahman University, Kingdom of Saudi Arabia. She also directs the
Master of Science in Data Science Program. Her research spans artificial intelligence and
computational methods.

Asmail Muftah is a faculty member in the Department of Computer Science at Azzaytuna
University and specialises in machine learning, neural symbolic AI, image processing, and
medical imaging analysis. His research primarily focuses on enhancing image analysis through
machine learning and the integration of neural networks and symbolic AI, with a significant focus
on medical applications.

Osama Almoghamis is a lecturer at the Department of Computer Science of King Saud
University, Kingdom of Saudi Arabia. His research interests are IoT security including applied
cryptography, system design, and adaptive protection systems in fog-cloud computing
environments.

Ioan Petri is a Senior Lecturer in Smart Infrastructure Engineering at Cardiff University, United
Kingdom. His research specialises in Artificial Intelligence and Edge Computing with
applications in smart buildings and cities. He focuses on Blockchain and IoT integration, energy
optimization systems, and Quantum Computing for sustainable urban development.

Nitin Auluck received his PhD degree from the University of Cincinnati, USA in 2005. He is an
Associate Professor with the Department of Computer Science & Engineering, Indian Institute of
Technology Ropar, India. He was an Assistant Professor with the Department of Computer
Science, Quincy University, from 2004 to 2010. His research interests include fog computing,
real-time systems, and parallel and distributed systems.

Omer Rana is currently a Professor of Performance Engineering at School of Computer
Science & Informatics, Cardiff University, United Kingdom. His research interests are
edge-cloud platforms, intelligent systems and high performance distributed computing.

raphy

Journal Pre-proof

Author Pho
Jo
ur

na
l P

re
-p

ro
of

1. Osama Almurshed

2. Ashish Kaushal

3. Souham Meshoul

to

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

4. Asmail Muftah

5. Osama Almoghamis

6. Ioan Petri

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

7. Nitin Auluck

8. Omer Rana

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

The main highlights of our EO-GNH framework are as follows:

1. Innovative Asynchronous Optimization Model: We have developed EO-GNH, an
advanced optimization algorithm that leverages asynchronous MapReduce and
meta-heuristics to achieve efficient distributed computing.

2. Integration of Parsl for Dynamic Resource Utilization: Parsl has been integrated
into EO-GNH to facilitate adaptive and scalable resource management, thereby
enhancing computational efficiency.

3. Superior Performance in Time-Critical Applications: EO-GNH has shown to
outperform traditional algorithms, such as dNSGAII, in terms of execution time and
success rate, making it highly suitable for time-sensitive tasks.

4. Robustness Against Variability in Computational Environments: EO-GNH
consistently performs well across different mapper setups, demonstrating its reliability
in a variety of computational environments.

5. Effective Balance Between Resource Utilization and Operational Risk: The
framework of EO-GNH successfully strikes a balance between resource consumption
and operational risk, which is vital in real-time optimization problems.

6. Versatility Across Diverse Application Scenarios: Our framework has been
rigorously tested across multiple scenarios, including cloud computing, edge
computing, and IoT, showcasing its ability to tackle a wide array of optimization
challenges in diverse domains.

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofOsama Almurshed: Conceptualization, Methodology, Software, Investigation, Writing,

Resources
Ashish Kaushal: Data Curation, Conceptualization, Writing, Investigation
Souham Meshoul: Methodology, Investigation
Asmail Muftah: Conceptualization, Data Curation, Editing
Osama Almoghamis: Writing - Review & Editing
Ioan Petri: Writing - Review & Editing, Data Curation
Nitin Auluck: Writing - Review & Editing, Investigation, Supervision
Omer Rana: Writing - Review & Editing, Supervision, Project administration

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Declaration of interests

 The authors declare that they have no known competing financial interests or personal relationships ☒

that could have appeared to influence the work reported in this paper.

 The authors declare the following financial interests/personal relationships which may be considered ☐

as potential competing interests:

