
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/175009/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Li, Zhen, Yang, Weikai, Yuan, Jun, Wu, Jing , Chen, Changjian, Ming, Yao, Yang, Fan, Zhang, Hui and Liu,
Shixia 2024. RuleExplorer: A scalable matrix visualization for understanding tree ensemble classifiers. IEEE

Transactions on Visualization and Computer Graphics 10.1109/TVCG.2024.3514115

Publishers page: http://dx.doi.org/10.1109/TVCG.2024.3514115

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

RuleExplorer: A Scalable Matrix Visualization
for Understanding Tree Ensemble Classifiers

Zhen Li, Weikai Yang, Jun Yuan, Jing Wu, Changjian Chen, Yao Ming, Fan Yang, Hui Zhang, Shixia Liu

Abstract—The high performance of tree ensemble classifiers
benefits from a large set of rules, which, in turn, makes the
models hard to understand. To improve interpretability, existing
methods extract a subset of rules for approximation using model
reduction techniques. However, by focusing on the reduced rule
set, these methods often lose fidelity and ignore anomalous rules
that, despite their infrequency, play crucial roles in real-world
applications. This paper introduces a scalable visual analysis
method to explain tree ensemble classifiers that contain tens
of thousands of rules. The key idea is to address the issue of
losing fidelity by adaptively organizing the rules as a hierarchy
rather than reducing them. To ensure the inclusion of anomalous
rules, we develop an anomaly-biased model reduction method to
prioritize these rules at each hierarchical level. Synergized with
this hierarchical organization of rules, we develop a matrix-based
hierarchical visualization to support exploration at different
levels of detail. Our quantitative experiments and case studies
demonstrate how our method fosters a deeper understanding
of both common and anomalous rules, thereby enhancing inter-
pretability without sacrificing comprehensiveness.

Index Terms—Tree ensemble classifier, model reduction, hier-
archical visualization

I. INTRODUCTION

Tree ensemble classifiers, such as random forests and
boosted trees, are popular machine learning models [28],
[36], [72]. These models make multi-class predictions using
a large number of rules (Fig. 1), often exceeding tens of
thousands [28]. On the one hand, the large set of rules makes
these models powerful and has led them to become winning
solutions for many machine learning competitions [70].
On the other hand, while individual rules are simple and
easily understandable, the overall interpretability of these
models is compromised by the overwhelming number of
rules. Therefore, there is a trade-off between the performance
and interpretability in these tree ensemble classifiers.
Although performance is the main goal in machine learning
competitions, the ability of domain experts to understand
and explain decisions is crucial in high-stakes fields such as
healthcare, law enforcement, and financial forecasting.

Several works have been proposed to enhance the inter-
pretability of tree ensemble classifiers [43], [69]. However, the
scalability issue becomes the main challenge when managing
rule sets that extend to tens of thousands or even more. A
widely adopted strategy to address the scalability issue of
a complex model is model reduction [20], which simplifies
the original model by using fewer rules to provide better
interpretability. However, there are two technical challenges
in using model reduction techniques directly.

First, in order to explain the overall behavior of the original
model with fewer rules, model reduction methods usually fo-

cus on extracting common rules that cover most of the samples
while ignoring less frequent, anomalous ones. However, in
real-world applications, these anomalous rules often expose
potential flaws in the model and thus require further diagnosis
for a complete understanding of the model behavior [34].
For example, a credit card application may be approved based
on seemingly unrelated conditions, such as having a driver’s
license. However, the actual reason is that other applicants
who meet these conditions typically have a good credit history
and a certain income level. Previous research has shown that
anomaly-biased sample selection methods effectively preserve
the overall distribution and highlight anomalous samples for
analysis [62], [65]. As a result, a promising solution is an
anomaly-biased model reduction method that preserves both
common rules and anomalous rules.

Second, simply using model reduction inevitably results in a
loss of fidelity to the original model. This causes discrepancies
between the behavior of the reduced model and that of the
original one. Therefore, only examining the reduced rule set
after model reduction may lead to problems in analyzing the
whole model. For example, an abnormal behavior identified
in the reduced model may be difficult to trace back to rules
in the original model without access to the whole rule set. To
address this problem, it is essential to find an effective way
to examine all the rules of the original model. Hierarchical
visualization has been shown effective in the exploration of
large-scale data [42]. By re-organizing rather than discarding
the rules that are not preserved in model reduction, the issue of
losing fidelity can be effectively mitigated. However, the pre-
built hierarchies commonly used in hierarchical visualization
methods [11], [13], [37], [62], [67] lack the flexibility to
accommodate different user preferences during exploratory
analysis. This flexibility is often needed in real-world applica-
tions. For example, in the credit card approval process, users
frequently examine different subsets of rules by constraining
the values of different attributes (e.g., Income, Years Employed,
etc.) in different ranges. As a result, there is a need to flexibly
build the hierarchy for different analysis needs.

Based on the above analysis, we develop RuleExplorer, a
scalable visual analysis tool designed to support interactive
analysis of rule sets extracted from tree ensemble classifiers.
The scalability to manage tens of thousands of rules is
achieved by combining anomaly-biased model reduction
and hierarchical visualization. Starting from all the rules,
RuleExplorer initially utilizes model reduction to extract
the rules for the first level in the hierarchy. Subsequently,
it dynamically builds the hierarchy in a top-down manner
based on user selections. At every level, a balance between

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

Y
Volatility ≥ 0.1?

N

RevenueGrowth>0.05? Volume ≥ 1k?
Y N

Increase Decrease Stable

Tree1 Tree2 Tree3

Y N

Y N Y N

…

… …

…

…

…

… … …

Tree ensemble
classifier:

Rule set: R1: If Volatility ≥ 0.1 And RevenueGrowth > 0.05 Then Increase
R2: If Volatility ≥ 0.1 And RevenueGrowth > 0.05 Then Decrease
R3: If Volatility < 0.1 And Volume ≥ 1k Then Stable
…

R1 R2 R3

Y N

……

Fig. 1. An illustration of a tree ensemble classifier used to predict stock price
movement with labels “increase”, “decrease”, and “stable.”

representativeness and diversity is maintained by preserving
both common and anomalous rules. Synergized with this
dynamic rule hierarchy organization, a matrix-based hierar-
chical visualization is developed to support the exploration of
rules at different detail levels. In this visualization, rows and
columns correspond to rules and attributes, respectively. The
confidence, coverage, and anomaly scores of each rule are also
displayed. This setup allows users to quickly understand the
common behavior of the model and identify rules that exhibit
abnormal behavior. Finally, users can zoom in to explore
more rules with similar behavior. Users can also examine the
samples associated with certain rules to diagnose potential
flaws in the model. The coordinated analysis between rules and
samples further enhances the understanding of model behavior.

The effectiveness of the anomaly-biased model reduction is
demonstrated through quantitative evaluation. Two case studies
further demonstrate the effectiveness of RuleExplorer in ana-
lyzing the decision-making process of random forest models
and gradient boosted tree models. Note that while we focus on
tree ensemble classifiers, the methods are also applicable to
other models through model surrogate techniques. In summary,
the main contributions of this work are:
• An anomaly-biased model reduction method that pre-

serves both common and anomalous rules.
• A matrix-based and dynamically constructed hierarchical

visualization that supports the exploration of a large-scale
rule set at different detail levels.

• A visual analysis tool that facilitates the understanding,
exploration, and validation of tens of thousands of rules.

II. RELATED WORK

A. Model Surrogate

Our model reduction method relates to a category of expla-
nation methods that utilize surrogate models. These methods
use a simpler and more interpretable model to approximate
and explain complex models [10], [17], [40], [49], [56], [66].

Most model surrogate methods are model-agnostic. These
methods derive a surrogate model from any given machine
learning model by approximating the input-output relationship
of the model. While these methods have good generalizability,
they inevitably neglect the inner decision logic in tree ensem-
ble models, such as node splitting and majority voting. As a
result, these methods cannot precisely reveal how predictions
are made.

For tree ensemble models, the surrogate methods proposed
in [38], [59] leverage the characteristics of tree ensembles for
more accurate approximations. Meinshausen [38] selected rep-
resentative rules from a random forest by solving a quadratic
programming problem with linear inequality constraints. Vi-
dal et al. [59] constructed an equivalent single decision tree
from a given tree ensemble to improve model interpretability.
Although these methods successfully preserve common rules
that well summarize the behavior of the original model, they
inevitably lose fidelity because other rules are discarded, espe-
cially those anomalous rules that are important for revealing
potential flaws in the model. In contrast, our method re-
organizes a tree ensemble into a hierarchy of rules to mitigate
the issues of losing fidelity, and uses anomaly-biased model
reduction to maintain a balance between the common rules
and the anomalous rules at each hierarchical level.

B. Visualization for Model Analysis

The visualization community has developed a number of
methods and systems to visually interpret, analyze, and di-
agnose machine learning models. Initial efforts and their
subsequent variations aim to illustrate a variety of performance
measures such as precision, recall, and between-class confu-
sion [12], [26], [48]. Most recent efforts focus on explaining
the inner workings of a machine learning model based on
architecture exploration and the reasoning of its prediction.

Architecture visualization methods focus on explaining the
inner workings of the model by analyzing specific components
in the model [63], such as neurons and kernels in convolutional
neural networks [5], [35], [57], hidden states in recurrent
neural networks [8], [33], [39], [51], [54], attention heads
in transformers and other attention-based models [19], [53],
or tree structures in decision trees [36], [41], [58]. These
visualizations are designed to help model developers analyze
and diagnose machine learning models. However, for domain
experts who have little knowledge of machine learning, such
as financial analysts or doctors, the complex workflows and
model-architecture-specific designs are of little help for their
understanding and utilizing the models. To support these
domain experts, our work focuses on explaining rules learned
from tree ensemble classifiers, as rules are more understand-
able to them. If offered the right tool, they can make sense of
the learned rules and validate the rules of interest.

C. Rule Visualization

Existing efforts to visualize rules can be categorized
as single-rule-oriented or multiple-rule-oriented. Single-rule-
oriented visualization [9], [27] focuses on visualizing samples
covered by a single rule, while multiple-rule-oriented visual-
ization seeks to visually illustrate interactions and relationships
between multiple rules. Our work aligns with the latter. Com-
mon methods for multiple-rule-oriented visualization include
the node-link diagram and the matrix diagram. Other compact
representations such as treemaps [41], icicle plots [22], and
sunburst diagrams [60] are also used to handle a larger number
of rules. While these methods are effective at presenting an
overview of the rules, they may not always provide the level of

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

Anomaly-biased model reductionRule set Matrix-based hierarchical visualization

Rule hierarchy

If A<0 And B<1
Then Prediction C1

If A<0 And B≥1
Then Prediction C2

If A≥1 And C<1
Then Prediction C3

C1 C2

Matrix visualization

If A<0 And C≥1
Then Prediction C1

…

Attribute1 A2 A3 A4 A5

Attribute1 A2 A3 A4 A5

Model reduction

Select
Dynamic
construction

Anomaly score
calculation

Common rule
Anomalous rule

…

… All rules

Further
analysis

Selected rules
and their
neighbors … …

C3

Fig. 2. RuleExplorer overview: Given a set of rules from a tree ensemble classifier, the anomaly-biased model reduction calculates the anomaly score for
each rule and then extracts the representative rules. Next, the representative rules are fed into the matrix-based hierarchical visualization for exploration and
analysis, where a rule hierarchy is dynamically built based on user selections. The brown color indicates the analysis of the representative rules at the top
level, and the purple color indicates the iterative analysis subsequently.

details necessary for an in-depth analysis of individual rules.
Therefore, we focus on introducing the first two methods.

The node-link diagram [31], [41], [55], [58] naturally repre-
sents the decision tree structure or summarizes multiple rules
by aggregating the same conditional statement. For example,
BaobabView [58] employs a node-link diagram to visualize the
rules of decision trees and further encodes the split points and
data flows in the tree. TreePOD [41] extends this design by
utilizing a treemap to display the distribution of samples cov-
ered by different tree nodes. SuRE [66] summarizes the entire
random forest into a node-link diagram while also retaining
useful logical relationships between different rules. While the
node-link diagrams effectively illustrate relationships between
rules, they struggle to remain clear and manageable when
displaying tens of thousands of rules. The matrix diagram [40],
[43], [68] is a natural graphical representation of a list of
rules. RuleMatrix [40] visualizes a falling rule list using a
matrix diagram with rows as rules, columns as attributes, and
cells as conditions using histogram encoding. DeforestVis [10]
provides attribute-based explanations using simplified decision
trees, allowing users to incrementally generate them to explore
the trade-off between complexity and fidelity. ExplainableMa-
trix [43] also employs a matrix diagram, but distinguishes
itself by using colored rectangles in matrix cells to encode the
conditions for different classes. However, these methods show
all the rules in one view without filtering, and still encounter
the scalability issue in actual scenarios.

To address the scalability issue, we build a matrix-based hi-
erarchical visualization to show representative rules at different
levels to help practitioners understand, explore, and validate
tree ensemble classifiers.

III. DESIGN OF RULEEXPLORER

A. Design Goals

We designed RuleExplorer in collaboration with eight
domain experts (E1 – E8) from banks and quantitative trading
companies. They utilize tree ensemble classifiers for credit
card approval and stock trading. All of them are not co-authors
of this work. We distilled the design requirements based on
discussions with these domain experts and a literature review.
R1. Hierarchically organize large-scale rule sets. In real-
world applications, a tree ensemble classifier often contains

tens of thousands of rules, which makes it impractical to
examine each rule individually. Although model reduction
methods can extract representative rules to explain model
behavior, they inevitably lose fidelity [38], [40], [66]. Domain
experts have expressed the need to explore the entire rule
set for analysis. Therefore, reorganizing rather than reducing
the rules is preferred. A hierarchical reorganization is a
promising solution due to its effectiveness in the analysis of
large-scale data [52]. Moreover, during the reorganization,
both common and anomalous rules should be preserved at
each level to ensure a comprehensive understanding and
diagnosis of potential problems.

R1.1 Preserve common rules to enable the understanding
of the overall model behavior. All the experts emphasized the
importance of examining the common rules learned by the
model to establish trust. As E2 said, once he understood the
common rules used by the model in credit card approval, he
could trust the model predictions. This would relieve his bur-
den of examining each application individually. In addition, E3

expressed concerns that model errors could result in financial
losses. Thus, he would like to open the “black box” model
and understand the overall model behavior from the common
rules before trusting the decisions made by the model.

R1.2 Preserve anomalous rules to enable the diagnosis of
potential model flaws. Anomalous rules indicate abnormal
model behavior deviating from the common ones, which
reflect potential model flaws. E2 stated, “Anomalous rules
usually cover only a small number of samples, which may be
problematic samples and deserve further analysis.” E1 was also
interested in examining anomalous rules, “If a rule approves
applications, but with conditions suggesting low repayment
ability and instability, it is likely flawed.” All the experts be-
lieved that examining these rules helps uncover blind spots in
the model and opens up opportunities for model improvement.
R2. Effectively explore and analyze the rules. The analysis
of a large-scale rule set requires efficiently identifying the
rules of interest and analyzing them in context. This leads to
three major requirements. First, an intuitive and informative
overview of the rule set is essential to help users quickly gain
insights and start their analysis. Second, support for dynamic
hierarchical exploration is necessary to enable detailed naviga-
tion through various levels of detail and facilitate the analysis

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

of different rule subsets. Third, rich interactions should be
provided to allow for an in-depth analysis of rules concerning
their utilized attributes and covered samples. To this end, a
scalable and flexible interactive environment is crucial for
effective exploration and analysis of rules.

R2.1 Present rule sets using an intuitive and informative
visual representation. To effectively visualize a hierarchically
organized rule set, a requirement is to both reveal the hierar-
chical structure and present detailed information on attributes
within the rules. The commonly used node-link-based [64] or
scatterplot-based [62] hierarchical visualizations focus on the
former but require additional interactions to access detailed
information, which is not ideal for analyzing rule sets. For
example, E1 expressed a desire for a quick overview that
allows immediate identification of important rules and at-
tributes. Moreover, simple and intuitive visual representations
are always preferred because they facilitate quicker compre-
hension and reduce cognitive load. All these call for visual
representations that are both intuitive and informative to meet
the needs of domain experts.

R2.2 Cater to different analysis preferences. Users may have
different analysis needs and focus on different subsets of rules
during the exploration. For example, E7 mentioned that in the
overall analysis of stocks, he would pay more attention to the
attributes directly related to price changes, such as moving
average price and price volatility. When he focused on low-
cap stocks, he would like to examine the attributes related to
stock liquidity, such as turnover ratio and market depth. With
the different analysis needs, he zoomed into different subsets
of rules. Compared to a static hierarchy, which organizes the
rules with a pre-defined criterion, a dynamic hierarchy is better
at catering to users’ different preferences [14], [23], [71].

R2.3 Locate rules of interest and relate them to training
samples. When exploring the entire rule set or specific rule
subsets, experts expressed their interest in analyzing rules
based on various properties. E1 was particularly interested
in how the model would handle the borderline cases in the
credit card application. Thus, he wanted to examine the low-
confidence rules that were mostly relevant to these cases. To
facilitate this, we provide a set of interactions, such as sorting
rules by different properties, to help identify the rules of inter-
est. Additionally, domain experts emphasized the importance
of knowing the samples from which a rule was learned. For
example, before making investment decisions based on some
rules, E7 wanted to validate these rules by examining the
training samples that contributed to the learning of these rules.
This highlights the need to relate rules to training samples.

B. System Overview

Guided by the aforementioned design requirements, we
developed RuleExplorer to help domain experts explore and
analyze the large-scale rule sets in tree ensemble classifiers.
As illustrated in Fig. 2, RuleExplorer consists of two modules:
anomaly-biased model reduction and matrix-based hierarchical
visualization. The anomaly-biased model reduction module
first calculates an anomaly score for each rule. Based on the
anomaly scores, it then extracts representative rules through

model reduction for subsequent visualization. The extracted
representative rules not only approximate the behavior of the
input rule set but also preserve anomalous rules. The matrix-
based visualization module visualizes the representative rules
in a matrix and supports users in exploring the rules by
dynamically constructing the rule hierarchy based on user
selections. More specifically, users can select some rules of
interest in the matrix for a more detailed examination. Upon
selection, the selected rules and their neighborhood are input
into model reduction to extract the representative rules at the
next level in the hierarchy. The matrix visualization is updated
accordingly with these new representative rules. Users can
continue to select and analyze these rules in a similar way.

IV. ANOMALY-BIASED MODEL REDUCTION

The developed anomaly-biased model reduction method
aims to enable both a comprehensive explanation of the overall
model behavior and the identification of potential flaws (R1.1,
R1.2). To this end, we first employ logistic regression to
calculate the anomaly scores for all the rules in the model.
Then, we formulate the anomaly-biased model reduction as a
subset selection problem that extracts the rules to approximate
the behavior of the given rule set on their covered samples,
while prioritizing the anomalous rules with high scores.

A. Anomaly Score Calculation

To identify the anomalous rules, we need to calculate an
anomaly score for each rule. This is achieved by converting the
rules into feature representations and then employing logistic
regression for anomaly detection.
Rule representation. In a tree ensemble classifier, each rule
is represented by the conjunction of conditions on attributes
and a corresponding prediction. Inspired by Zhao et al. [69],
we vectorize the condition on each attribute and concatenate
them to obtain the feature representation of a rule. There are
two types of attributes. First, the condition on a categorical
attribute is represented by a vector indicating the distribution
of the categories that a sample can fall into. For example,
assume that there are three categories F1, F2, and F3 for a
categorical attribute F , with 10, 20, and 30 samples in each
category, respectively. Then, a condition F ∈ {F1, F2} can be
represented by [10/(10 + 20 + 30), 20/(10 + 20 + 30), 0] =
[1/6, 2/6, 0]. Second, the condition on a numerical attribute
is represented by a two-dimensional vector indicating the
lower and upper bounds of the value range that satisfies the
condition. To enable a fair comparison between conditions on
different attributes with varying scales and distributions, the
quantile normalization [6] is used to transform all the attribute
distributions to the uniform distribution in the range [0, 1].
Anomaly score calculation. With the feature representations
and the corresponding predictions of the rules, we fit a logistic
regression model. With this model, given a rule rj , we obtain
its probability pj leading to its corresponding prediction.
Accordingly, we calculate its anomaly score as sj = 1 − pj ,
which measures the deviation of rj from the majority of
rules [44]. As anomalous rules exhibit behavior deviating from
the common rules, they have higher anomaly scores.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

Class 1

Class 2

Class 3

Class 4

0 0.5 1 Score

Score for the class
predicted by the given rule set R
Maximum score
for any other class

1.0

0.5

0.7

0.2
Should be greater than ξMargin

Fig. 3. An example illustration of multi-class hinge loss.

B. Model Reduction

Model reduction can be formulated as a subset selection.
Given a rule set R = {rj}mj=1 associated with their anomaly
scores {sj}mj=1 and a set of samples X = {xi}ni=1 belonging
to C ≥ 2 classes, our method extracts a subset of representa-
tive rules R∗ from R by solving the optimization problem:

argmin
{zj}mj=1

1

n

n∑
i=1

L(ŷi, `i)− λ
1

M

m∑
j=1

zjsj ,

s.t. zj ∈ {0, 1},
m∑
j=1

zj ≤M.

(1)

Here, ŷi = [ŷi,c|c = 1, · · · , C] is a vector of prediction
scores of xi by the extracted rule set R∗, where ŷi,c is the
prediction score of xi to be of class c. `i is the prediction
label of xi by the given rule set R. L(ŷi, `i) is the loss function
that measures the prediction difference between the extracted
rule set R∗ and the original rule set R. zj is the indicator
of whether the rule rj belongs to R∗. The first term ensures
the consistency between the predictions of the given rules and
the extracted rules. The second term prioritizes the selection
of anomalous rules by maximizing the anomaly scores of the
extracted rules. λ is a factor to balance the effect of the two
terms. M is the maximum size of the extracted rule subset R∗.

Next, we introduce how to calculate L(ŷi, `i). To encourage
that R∗ and R make consistent predictions, the idea is to
increase ŷi,`i , i.e. , the prediction score of xi to be of class
`i, while decreasing other ŷi,c scores (c 6= `i). Therefore, we
adopt multi-class hinge loss [16]:

L(ŷi, `i) = max(ξ − (ŷi,`i −max
c6=`i

ŷi,c), 0). (2)

For a specific sample xi, as shown in Fig. 3, the multi-class
hinge loss encourages the score for class `i to be greater than
any other class by a margin of at least ξ. This helps improve
the generalization ability of the extracted rules [50]. To reduce
the user burden of parameter adjustments and improve ease of
use, we determine ξ and λ using a grid search. This search
spans values from from 0.1 to 1.0, with a step size of 0.1,
effectively balancing fidelity and anomaly scores. Specifically,
we first set λ to 0 and searched for ξ that achieved the highest
fidelity, then adjusted λ to improve anomaly scores while keep-
ing fidelity loss within 1%. M is set to 80 based on the screen
constraints and suggestions from the experts, as they prefer to
examine as many rules as possible while maintaining visual
clarity for rule analysis. We also conducted a sensitivity anal-
ysis of M in the supplemental materials to justify this choice.

Eq. (1) is an integer linear programming problem, which is
NP-hard and time-consuming to solve. Even advanced com-

Anomalous rule

Lk

Lk+1

Rk (sel)

Rk

Rk and
its neighbors

(sel)

Rk+1

Model
reduction

Selected subset
 at LkRk (sel)

Covered
samples

Common rule
Class 1
Class 2
Class 3

Fig. 4. Dynamic rule hierarchy construction between consecutive levels.

mercial solvers cannot solve it within reasonable time limits
due to the extremely large basis matrix and overwhelming
memory consumption resulting from thousands of rules and
samples. To solve it efficiently, we relax the zj to continuous
variables. The relaxed problem becomes a linear programming
problem and can be solved in polynomial time [30]. Then, we
adopt deterministic rounding to discretize zj and determine
which rules belong to R∗.

V. MATRIX-BASED HIERARCHICAL VISUALIZATION

In this section, we first introduce the dynamic construction
of the rule hierarchy, and then present the design and
implementation of the matrix-based hierarchical visualization
that supports the exploration of rules.

A. Dynamic Hierarchy Construction

Given the large-scale rule set extracted from a tree ensemble
classifier, we need to organize the rules into a hierarchy to
support exploration at different detail levels. A simple way is
to construct a static hierarchy with different numbers of rules
extracted at each level to approximate the original model.
However, such a practice lacks the flexibility to identify rules
according to different analysis requirements. For example,
in a stock price prediction model, most companies are
predicted by the rules considering the historical price trend
and volatility, while low-cap companies are more accurately
predicted by the rules considering stock liquidity. Therefore,
it is desirable to build the rule hierarchy dynamically to better
accommodate users’ preference during exploration (R2.2).

In particular, users start the exploration at the top level L0.
The representative rules R0 are displayed, which are extracted
from all rules to approximate the model predictions on all
samples, while the other rules are hidden. Then, users can
iteratively select rules of interest and zoom into their neighbor-
hood for examination. During this process, the rule hierarchy
is dynamically constructed. As illustrated in Fig. 4, the con-
struction of level Lk+1 from level Lk consists of three steps:
Selecting a rule subset R(sel)

k from Rk and zooming in. More
representative rules should be displayed to illustrate the model
behavior in the neighborhood of the selected rule subset R(sel)

k .
Determining the neighborhood of R(sel)

k is the key in this
process. At the level Lk, the hidden rules are assigned to their
nearest rules in Rk based on the weighted Euclidean distance
between the feature representations of rules. Following the
previous work [69], the weight of each attribute in the feature

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

(b)

return

A
Rules

importance

Gender

Age
15 70

Debt
0 22

Married

YearsEmployed
0 16

PriorDefault

Employed

CreditScore
0

Income
0

Data Attributes

Model: Random Forest

Dataset: Credit Card

Fidelity: 95.38%

Num of rules: 7085

Model

Ethnicity

Info

Rule

(a)

(c)
The rule view displays 80 rules
from L0, covering 518 samples,
including 245 approved samples
and 273 rejected samples, with
an approval rate of 47.30%.

After filtering, there are 105
samples left with an approval
rate of 8.57% (-38.73%).

Married YearsEmployed ≤ 4.5

Employed is No Income ≤ 20.5

Citizen is NOT ByOtherMeans

Gender is Male Debt ≤ 1.6If

Job is NOT 2 Then Rejected

60 46 43 29 15 11 93036 34 30 28 24 22 18

PriorDefault

Job Income
Citiz

en
BankC

usto
mer

Drive
rsL

ice
nse

Gender

Confidence

Coverage

Anomaly S
core

Age
YearsE

mployed

CreditScore

Debt
Ethnicit

y

Employed

Marrie
d

ZipCode

E

(d)

Wrong predictions

D
PriorDefault

Job Income
Citiz

en
BankC

usto
mer

Drive
rsL

ice
nse

Gender

Age
YearsE

mployed

CreditScore

Debt
Ethnicit

y
ZipCode

Employed

Marrie
d

Click

C

F

G

B

Common rules

Anomalous rule

H

Fig. 5. RuleExplorer: (a) attribute view shows the attribute distribution and enables sample filtering; (b) matrix view shows the representative rules at a
certain level of the rule hierarchy; (c) info view shows the overall statistics of the displayed rules and samples; (d) data table lists the samples covered by the
displayed rules.

representation is calculated as the frequency of this attribute
being used in the rules at this level, including representative
and hidden ones. The neighborhood of R(sel)

k consists of the
rules in R(sel)

k and the hidden rules assigned to them.
Extracting Rk+1 using model reduction to approximate the
model predictions on the samples covered by the neighborhood
of R(sel)

k . In order to keep the mental map between Lk and
Lk+1, we ensure that the user-selected rule subset R(sel)

k is
displayed at Lk+1.

B. Visualization Design

As shown in Fig. 5, the main component of RuleExplorer
is the matrix view (Fig. 5(b)), which uses an enhanced
matrix visualization to provide an intuitive and informative
overview of representative rules (R2.1). We adopt the matrix
visualization because of its effectiveness in comparing and
analyzing multiple rules. Moreover, studies have shown that
matrix visualizations outperform node-link diagrams and other
techniques in terms of readability and scalability, particularly
when dealing with large and complex datasets [1]. However,
existing methods focus only on numerical attributes, so we
extend the matrix visualization to accommodate categorical
attributes. As shown in Fig. 6(a), a rule is an If-Then
statement that includes 1) a conjunction of conditions on
attributes (e.g. , Income ≤ 20 AND Years ≤ 4.5 AND
Citizenship is not Other) and 2) a prediction label (e.g. , Re-
jected). In the matrix visualization, each row represents a rule,
and its color hue encodes the prediction label of this rule.
Each column represents an attribute. If an attribute is used
in a condition of this rule, the corresponding cell uses dark-
shaded and light-shaded horizontal areas to indicate the value
ranges that satisfy and dissatisfy the condition, respectively
(Fig. 6(b)). If an attribute is not used, the corresponding

Click

If Income ≤ 20 And Years ≤ 4.5 And Citizenship is not Other

Value range
satisfy the condition

Then Rejected

The histogram of Years
covered by this rule

No credit scoreDefault records

Condition Condition Condition Prediction

43 36 34
… …

rules with the
“Approved” prediciton

rules utilizing this attributes

rules with the
“Rejected” prediciton

(a)

(b)

(c)

(d)

Fig. 6. The design of the matrix visualization. A rule (a) is visualized as a row
(b) in the matrix, which can be expanded (c) to display sample distributions
on different conditions. Additional rows (d) are appended at the bottom of
the matrix to show cumulative statistics for each attribute.

cell is left blank. Such a design facilitates the comparison
between the conditions of different rules. The detailed attribute
distributions of the samples covered by a rule are displayed
when clicking on the corresponding row. For example, in
Fig. 6(c), the overlaid bar charts in each cell show that all the
covered samples have no credit score, while most of them have
default records. This information helps users verify whether a
rule utilizes the appropriate attributes to make its predictions.

We also supplement the matrix with additional rows and
columns that provide auxiliary information for analysis. At
the bottom of the matrix, an additional row features cells that
display the cumulative statistics for each attribute across the
displayed rules. As shown in Fig. 6(d), each cell in this row
shows the number of rules utilizing this attribute, and includes
a bar chart showing the prediction distribution of these
rules. This helps users analyze the correlation of this attribute
with different predictions. On the left of the matrix, a glyph

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

is placed next to each row. The bar length represents
the number of its neighborhood at this level. When zooming in,
the glyphs are also organized as an indented tree to show
the hierarchical structure of the rules (Fig. 8D). On the right
of the matrix, there are three additional columns(Fig. 5H) that
show the confidence, coverage, and anomaly score of each
rule. They represent the accuracy of rule prediction on its
covered samples, the number of its covered samples, and the
degree of its deviation from other rules, respectively.

In addition to the matrix view, RuleExplorer provides three
supporting views: the attribute view (Fig. 5(a)), the info view
(Fig. 5(c)), and the data table (Fig. 5(d)). These views are co-
ordinated with each other to facilitate interactive exploration.

The attribute view shows the attribute distributions of data
samples. To enhance data exploration, we integrate scented
widgets [61], which provide visual cues for easy sample
filtering (R2.3). We chose scented widgets for their intuitive-
ness and ease of use, making them ideal for our users.

The info view presents the overall statistics of the repre-
sentative rules and their covered samples at the current hier-
archical level. This information reduces the analysis burden
on understanding model behavior during exploration (R2.2).
By selecting a rule in the matrix view or applying filtering in
the attribute view, it also presents the details of the selected
rule (Fig. 5G) or the class distribution change of the filtered
samples (Fig. 5F), respectively.

The data table lists the samples covered by the represen-
tative rules, which directly presents the relationships between
rules and training samples (R2.3). The samples can also be
sorted based on their attributes to facilitate analysis.

C. Interactive Exploration and Analysis

We provide a set of interactions to facilitate 1) navigating
through the rule hierarchy; 2) analyzing rules of interest; and
3) analyzing attributes of interest (R2.3).

1) Navigating through the rule hierarchy: After identifying
the rules of interest, users may want to compare them with
their neighborhood for in-depth analysis. This is supported
by a dynamically constructed rule hierarchy, within which we
implement the zoom function for navigating this hierarchy.
Specifically, users can click or brush the glyphs of
some rules. Then, RuleExplorer dynamically extracts their
child rules in their neighborhood. Users can then zoom into
the next level to examine these child rules. In the matrix view,
the newly added rules are placed under their parent rules with
their glyphs indented in comparison to those of their parent
rules. After zooming, the order of attributes may change since
the number of rules utilizing each attribute differs between the
two levels. Some attributes may contribute more to predictions
at this level. We mark the attributes with the top-3 largest
increases in their orders using upward arrows to inform users
for further examination. Moreover, by clicking the “return”
button at the top-left corner of the matrix view, users can
navigate back to the previous level and analyze other rules of
interest at that level.

2) Analyzing rules of interest: At each level of the hier-
archy, users first get an overall understanding of the general

(a) Optimized S1

…Prio
rD

efa
ult

 (A
1)

(b) Optimized S1 and S2 (c) Optimized S1, S2, and S3

…
Groups on A3Groups on A1 Groups on A2

Inc
om

e (
A2

)

Ye
ars

 (A
3)

High income

…Prio
rD

efa
ult

 (A
1)

Inc
om

e (
A2

)

Ye
ars

 (A
3)

…Prio
rD

efa
ult

 (A
1)

Inc
om

e (
A2

)

Ye
ars

 (A
3)

Short years

Approved Rejected

Fig. 7. An illustrative example of matrix reordering showing the formation
of rule groups with (a) optimization on attribute A1; (b) optimization on both
A1 and A2; and (c) optimization on A1, A2 and A3.

model behavior, and then identify and analyze the rules of
interest through interactive exploration. By default, the rules
are sorted in descending order of their coverage to highlight
the common rules. They can also be sorted based on their
confidence or anomaly scores by clicking on the corresponding
column headers. Moreover, to compare rules with similar
conditions, users can click on any attribute header to group the
rules based on the condition on the attribute. For numerical
attributes, the rules are sorted based on the lower and upper
bounds of their value ranges. For categorical attributes, the
rules with the same condition are grouped together. Rules that
do not utilize this attribute are placed at the bottom.

In addition to grouping similar rules based on a single
attribute, it is also desired to simultaneously consider multiple
attributes. For example, compared to grouping rules only
based on PriorDefault (Fig. 7 (a)), grouping rules with similar
conditions on PriorDefault and Income together (Fig. 7 (b))
makes it more readily to discover the pattern that “applicants
with no prior default and high-income tend to be accepted”.
Therefore, to facilitate the discovery of rule patterns, we
develop a matrix reordering algorithm to group rules based
on multiple attributes.

The basic idea is to group rules with consistent predic-
tions and similar conditions together. To achieve that, we
maximize the number of similar conditions on the specific
attributes between adjacent rules. Specifically, given n rules
R = [r1, r2, ..., rn], and m attributes A1, A2, ..., Am; we
maximize S1, S2, ..., Sm, where Sj represents the number of
similar conditions on attribute Aj between adjacent rules:

Sj =

n−1∑
i=1

I(predπ(i) = predπ(i+1)) ∗ simj(rπ(i), rπ(i+1)). (3)

Here, π(i) is the index of the rule in R which is reordered
to row i in the matrix. The first term is an indicator function,
which equals 1 when the predictions of the two rules are con-
sistent, and 0 otherwise. The second term simj(rπ(i), rπ(i+1))
is also an indicator function that determines whether the
two rules have similar conditions on the jth attribute. For
categorical attributes, it is defined as whether the conditions
are the same. For numerical attributes, it is defined as whether
both the left and right endpoints between the two conditions

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

TABLE I
PERFORMANCE COMPARISON BETWEEN OUR METHOD AND THE BASELINE METHODS IN TERMS OF FIDELITY AND AVERAGE ANOMALY SCORE.

Dataset #Classes #Attributes #Samples Model #Rules Ours RuleMatrix HSR Node harvest

Fidelity AS Fidelity AS Fidelity AS Fidelity AS

Credit Card 2 14 690 RF 7,085 0.9538 0.1309 0.9503 0.0880 0.9264 0.0000 0.9300 0.0473
GBT 2,126 0.9249 0.1271 0.9075 0.0735 0.8682 0.0846 0.9017 0.0042

Wine Quality 2 11 1,599 RF 28,116 0.8725 0.1432 0.8665 0.0689 0.7484 0.0000 0.5175 0.1660
GBT 7,474 0.8350 0.0974 0.8065 0.0329 0.7368 0.0000 0.8275 0.0299

Crime 2 127 1,994 RF 12,576 0.9178 0.1999 0.9042 0.0203 0.8910 0.0000 0.8577 0.1602
GBT 4,322 0.9118 0.1152 0.8986 0.0119 0.8368 0.0000 0.8978 0.0489

Abalone 4 8 4,177 RF 23,500 0.8392 0.1247 0.8243 0.0085 0.6695 0.0081 N/A N/A
GBT 11,810 0.8967 0.1263 0.8268 0.1231 0.5715 0.3553 N/A N/A

Obesity 7 16 2,111 RF 19,490 0.8561 0.1732 0.7720 0.0138 0.7277 0.0683 N/A N/A
GBT 30,458 0.9470 0.2309 0.8394 0.0004 0.7233 0.0084 N/A N/A

Dry Bean 7 16 13,611 RF 6,209 0.9738 0.2829 0.9702 0.0032 0.8726 0.0193 N/A N/A
GBT 52,455 0.9151 0.3032 0.9151 0.0946 0.8369 0.2360 N/A N/A

RF: random forest. GBT: gradient boosted tree. AS: average anomaly score. Node harvest cannot handle multi-classification datasets.

differ within a user-specified threshold τ . We set τ = 0.1
by default. This threshold controls whether two numerical
conditions are similar enough to be placed adjacently. A
smaller τ results in stricter matching criteria, while a larger τ
value relaxes the criteria.

Maximizing Sj is equivalent to solving a traveling salesman
problem [2], which will reorder the rules and form rule
groups on the attribute Aj . Fig. 7 shows examples of rule
groups formed on each attribute. However, reordering rules
to optimize all Sj simultaneously is impossible as different
optimization goals may conflict with each other. As experts
are more concerned with patterns on important/preferred at-
tributes, we adopt the idea of the constraint method [18],
which maximizes S1, S2, . . . , Sm in turn. The constraints are
that when maximizing Sj , the reordering of rules in a formed
rule group can only be carried out within the group without
crossing the group boundaries. This ensures minimal changes
to S1, S2, . . . , Sj−1 when maximizing Sj . We use the divide-
and-conquer strategy proposed by Liu et al. [35] to solve this
constrained traveling salesman problem.

3) Analyzing attributes of interest: As the number of
attributes may exceed several hundred, it is impractical to
directly display all attributes. To address this issue, we sort
the attributes based on their importance and organize them into
pages. On the front page, the most frequently used attributes
are presented, which are important to the model prediction.
Users can navigate to subsequent pages for attributes that
are less frequently used according to their analysis needs.
Moreover, users can pin specific attributes to the front page
and adjust their positions by drag-and-drop. This facilitates
the comparison of multiple attributes and understanding of
their collaborative behavior. For example, Fig. 7(c) shows that
by placing attributes Income and Years adjacently, users can
identify patterns such as high income often leading to credit
card approvals despite short working years.

VI. EVALUATION

We first conducted a quantitative experiment to evaluate
the effectiveness of the anomaly-biased model reduction
method. We then presented two case studies to showcase how
RuleExplorer helps domain experts understand the decision
logic of tree ensemble classifiers and improve them.

A. Quantitative Experiment

Datasets. We conducted the quantitative experiment on six
datasets from the UCI Machine Learning Repository [3], as
used in previous works [40], [66], including three binary
classification datasets (Credit Card, Wine Quality, Crime)
and three multiple classification ones (Abalone, Obesity, Dry
Bean). The attribute numbers across these datasets range
from 8 to 127, while the sample numbers range from 690 to
13,611. The diverse characteristics of these datasets enable a
robust evaluation across various tasks and dataset scales.
Baseline methods. We selected three baseline methods, in-
cluding two model surrogate methods, RuleMatrix [40] and
HSR [66], and a state-of-the-art model reduction method, node
harvest [38]. RuleMatrix generates a sequential rule list, while
HSR generates a hierarchical rule set. Different from these
two methods, node harvest directly extracts the rules from the
original model rather than generating new ones. However, it
cannot be used in multi-class classification.
Measures. We evaluated the quality of the methods from
two aspects. First, fidelity measures the ability to preserve the
behavior and predictive accuracy of the original model. It is
defined as the ratio of the samples with the same predictions
produced by the generated rule sets and the original model.
Second, the average anomaly score evaluates the ability to
preserve anomalous rules.
Experiment settings. To demonstrate the generalizability of
our method to different tree ensemble classifiers, we conducted
experiments on random forest models and gradient boosted
tree models. Each dataset was partitioned into a 75% training
set and a 25% test set. We first trained each model on the
training set, resulting in models with rule counts ranging
from 2,126 (LightGBM on credit card dataset) to 52,455
(LightGBM on drybean dataset). This wide range of rule
numbers ensures a thorough evaluation across different levels
of model complexity. Then, we performed model reduction to
approximate the predictions on the training set. All methods
are required to select 80 rules (consistent with Sec. IV) for this
approximation. The fidelity was calculated on the test set, and
the average anomaly score was calculated on the generated rule
set. We ran five trials for each setting to reduce the effect of
randomness.
Results. Our results are summarized in Table I. Our method

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

achieved the highest fidelity across all cases, and also achieved
higher average anomaly scores than the baseline methods
except in two cases. On the Wine Quality dataset, node harvest
obtained a higher average anomaly score for the random
forest model, while on the Abalone dataset, HSR obtained a
higher average anomaly score for the gradient boosted model.
However, the fidelity scores achieved in these two cases are
significantly lower (0.5175 and 0.5715), indicating the corre-
sponding rule sets failed to approximate the behavior of the
original model. In contrast, our method achieved the highest
fidelity and the second-highest average anomaly scores. This
demonstrates that our method can strike a balance between
fidelity and the preservation of anomalous rules.

B. Case Studies
We conducted two case studies to show the usefulness

of RuleExplorer in explaining and diagnosing tree ensemble
classifiers.

1) Credit Card Approval: In this case study, we collabo-
rated with E1 and E2 to illustrate how RuleExplorer improves
the understanding and diagnosis of the model to approve credit
card applications. E1 is a bank account manager with two years
of work experience, who aims to increase credit card approval
rates while minimizing the risk of defaults. E2 is a data
scientist responsible for developing the credit card approval
model and improving its performance. Both E1 and E2 have
participated in the interview for collecting design goals in
Sec. III. During the study, E1 interacted with the system to
explore and identify potential model issues, while E2 helped
explain the underlying causes of these findings from a machine
learning perspective and suggested ways to improve the model.
The study used the Australian Credit Approval dataset [47],
which consists of 690 samples, each representing a credit card
applicant with 16 attributes and a label indicating approval
or rejection. The dataset includes 307 “approved” samples
and 383 “rejected” samples. These samples were randomly
divided into training and test data with a ratio of 75% and 25%,
respectively. To comprehensively evaluate the model, E2 used
Synthetic Data Vault [45] to augment the test data based on its
distribution and labeled the new test samples in collaboration
with E1. The detailed augmentation process can be found in
the supplemental material. After the augmentation, there are
500 samples in the test data. A random forest model with 200
trees and a maximum depth of 10 has been trained on this
dataset with the scikit-learn library [46]. The trained model
includes 7,085 rules and achieves an accuracy of 83.60%.
Overview. Initially, E1 investigated the attributes frequently
used in the extracted rules to see whether the decision-making
process was reasonable. As shown in Fig. 5A, the attributes
that describe income and credit status, such as PriorDefault,
Job, Income, Years Employed, are frequently used and thus
appear in the first few columns. This observation aligns with
his experience, as these attributes are more important in credit
card approval than those less frequently used attributes like
Gender and DriverLicenses. Subsequently, E1 examined the
rules to see how these frequently used attributes influenced
model predictions. He focused on two types of rules: common
rules and anomalous rules.

No prior defaults

Prior defaults

ZipCode

Debt
Age Citiz

en
CreditScore

Income
YearsE

mployed

Ethnicit
y

▼PriorDefault

A

B

C

Low income

Approved Rejected

…

D
Prior
Default

A certain level
of income

Zoom in

Few years employed

Low credit score

Older

Fig. 8. Anayzing the rules that utilize the attribute PriorDefault: rules with
no prior defaults may reject (A) or approve (B) credit card applications, while
those with prior defaults consistently reject applications (C). Zoom in region
C to examine the neighborhood (D).

Analyzing common rules. By default, the rules are sorted in
descending order of their coverage, which facilitates the anal-
ysis of common rules (rules with higher coverage). E1 found
that most of the common rules used the attribute PriorDefault
(Fig. 5B). He wanted to examine how this attribute influenced
the model predictions. To this end, he clicked on the header
of PriorDefault, and the matrix reordering algorithm grouped
the rules based on their predictions and their conditions on
this and subsequent attributes. There are three groups (Fig. 8).
Rules with the condition of no prior defaults but predictions
of “rejected” (Fig. 8A) linked to negative conditions such as
low income, few years employed, or low credit scores. Rules
with the condition of no prior defaults and predictions of
“approved” (Fig. 8B) had additional positive conditions, such
as a certain income level or being older, indicating a lower risk
of default and a more stable status. E1 regarded the behavior
(Fig. 8A and B) as reasonable, since the condition of no prior
defaults cannot directly lead to the approval, and it should be
combined with additional conditions for further consideration.
The third group included rules with the condition of prior
defaults and predictions of “rejected” (Fig. 8C). Since there
are some real-world cases where applicants with prior default
records are still approved, E1 wanted to see whether these were
reflected. He selected the rules in (Fig. 8C) and zoomed into
their neighborhood in the dynamic hierarchy, and found that
all rules in the neighborhood had predictions of “rejected”
(Fig. 8D). Consultation with E2 clarified that a credit card
approval model typically rejects all applicants with prior
default records in realistic scenarios and leaves disputed cases
for manual processing. To summarize, E1 was satisfied with
the behavior of the rules utilizing PriorDefault. Similarly,
E1 analyzed other frequently used attributes, including Job,
Income, Years Employed, and acknowledged their proper be-
havior in making predictions.

E1 continued to examine common rules and noticed a rule
that had significantly lower confidence than the rules with
similar coverage (Fig. 5C). The low confidence indicated that
this rule covered many mispredicted samples. The data table

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

If Age≤40 And Single And Income≤246.5 And Unemployed … Then Approved

A1

B1

C1

Different conditions
in the neighboring rules

If Job#7 And Debt>3.7 And CreditScore≤2.5 And Driver’s License Then Approved

No PriorDefault

A certain level of income

A2

B2 After filtering, there are 115
samples left with an approval
rate of 98.26% (+51.74%).

PriorDefault

InfoData Attributes

Income

…

D2C2

Fig. 9. Analyzing the top-2 rules with the highest anomaly scores: 1) the
analysis of the first rule (A1), its neighbors (B1), and the associated sample
(C1) reveals a labeling error; 2) the analysis of the second rule (A2), its
sample distribution (B2), and information from the attribute and info views
(C2, D2) confirms a spurious association.

enabled him to examine the samples covered by this rule.
He found that these samples shared some negative conditions
(Fig. 5D), including unemployment, missing credit scores, lack
of income, and having prior default records, but were labeled
as “approved” (Fig. 5E). E1 suspected that they should be
rejected given those negative conditions. He then used the at-
tribute view to filter the samples with such negative conditions
and found in the info view that they were mostly labeled as
“rejected.” This indicated that there were inconsistent approval
criteria in the training data. He raised this issue with E2,
and E2 commented that such inconsistency harmed the model
training and led to performance degradation. Therefore, E1

unified the approval criteria in these samples and corrected
their labels to be “rejected.” By retraining the model on the
corrected data, the accuracy increased from 83.60% to 86.20%,
and the prediction confidence increased from 0.7403 to 0.7423.
Analyzing anomalous rules. Reordering rules according to
their anomaly scores facilitates the analysis of anomalous
rules. E1 started his analysis by examining the rule with the
highest anomaly score. As shown in Fig. 9A1, this rule sug-
gests approval for young, single, unemployed applicants with a
medium-to-low income. These conditions were mostly neutral
or negative, which should not lead to approval. He zoomed into
its neighborhood and observed that few conditions were shared
(Fig. 9B1), which also indicated that its behavior differed a lot
from other rules. He then examined its covered samples in the
data table. As shown in Fig. 9C1, it covered only an 18-year-
old applicant with a 10-year work experience (#321), which
was suspicious. E1 confirmed that this applicant should not be
approved and corrected its label to “rejected”.

Subsequently, E1 examined the rule with the second-highest
anomaly score. This rule suggested approval for applicants
with primarily negative or neutral conditions such as some
debt, low credit score, having a driver’s license (Fig. 9A2).
E1 doubted the approval decision for these applicants, and
checked the samples covered by this rule. He found most of
the applicants had no prior default records and a certain level
of income (Fig. 9B2). E1 believed these positive conditions
were the real reason for the approval. By filtering samples

with such positive conditions using the scented widgets in
the attribute view (Fig. 9C2), he found that most of them
(98.26%) are approved (Fig. 9D2). Thus, he suspected the
occurrence of this rule is because of the spurious association
between the irrelevant conditions and the approval decision
in these covered samples (Fig. 9A2). Discussion with E2

suggested adding more diverse samples, especially those that
meet the conditions of this rule but get rejected, to mitigate this
spurious association. E2 then generated more samples using
data augmentation, and E1 validated these samples to ensure
they accurately reflected real-world scenarios.

They analyzed other anomalous rules with the top-20
anomaly scores and found 1 more rule caused by label error
and 15 more rules caused by spurious associations. Similarly,
they corrected the label error and augmented the training
samples. After retraining the model, the accuracy increased
from 86.20% to 88.60%, and the average prediction confidence
increased from 0.7423 to 0.7630. The average anomaly score
of the rules also decreased from 0.0547 to 0.0493.

2) Quantitative Stock Trading: In this case study, we col-
laborated with E3, a junior quantitative stock trader special-
izing in short-term trading in the U.S. stock market. He has
also participated in the interview in Sec. III. His goal was to
identify stocks with rising prices using a stock price prediction
model. The training data consists of 119,416 samples collected
from the U.S. stock market from April 2020 to April 2023, and
the test data consists of 10,062 samples collected from May
2023 to August 2023. Each sample represents the information
of a stock at a specific time point, including two types
of attributes [21]: 158 technical analysis attributes and 99
fundamental attributes. The technical analysis attributes are
derived from historical prices to evaluate and forecast financial
market trends. For example, STD60 measures the variance in
stock prices over the preceding 60 days. The fundamental at-
tributes provide insights into a company’s financial health and
operational performance. For example, revenueGrowth reflects
the company’s revenue growth rate. Based on the stock price
fluctuation over the next seven days, the samples are catego-
rized into three classes: “increase,” “decrease,” and “stable.”
Directly using all attributes to train the model can deteriorate
its generalization ability due to attribute redundancy [29].
Following the common practice, E3 selected attributes with
an information coefficient larger than 0.05 [25], resulting in
140 attributes remaining. He then used these attributes to train
a gradient boosted tree model with LightGBM [32] due to
its superior performance and widespread adoption. The model
was configured with 1000 trees and a maximum depth of 14.
This model includes 81,000 rules but achieves an accuracy
of only 56.26%, with class-specific accuracy of 26.69% for
“increase,” 41.53% for “decrease,” and 66.56% for “stable.”
Overview. Initially, E3 wanted to verify whether the model
utilized appropriate attributes for prediction. He checked the
most frequently used attributes in the matrix view and found
the top-5 important attributes are technical analysis attributes
(Fig. 10(a)). E3 considered it reasonable as technical analysis
attributes offered a more direct reflection of price fluctuations
than fundamental attributes. Reordering rules based on the
most important attribute KLEN, he found that the model tended

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

RESI60

15

STD60

32

STD10

20

BETA5

16

industry

16

KLEN

39

RESI20

19

KLOW

13

A

Stable

Increase Industry=Bank

The first column

B

Related samples

(a) (b)

STD60
STD10

RESI20
KLEN

BETA5

Increase

42 26 22 19 19C

D

STD60

7

KLEN

17

NATR

55

VMA20

9

12 increases and
20 decrease

… …

6 attrib
utes…

6 attrib
utes…F

E
STD60

▲N
AT
R

55

0 5 10 15

Ordering

investm
ents

23

▲N
AT
R

72

0 5 10 15 revenueGrowth

32

Zoom in

H

I

NATR
▲V

MA
20

0 1 2 3 4

Pin

J

Increase Decrease
Stable

G

(c)

K

Fig. 10. Analyzing rules for quantitative stock trading: (a) in the initial model, rules with lower KLEN typically indicate “Stable” (A), except for one outlier
(B); (b) after removing attributes that cause biased predictions, STD60 was found to be crucial for predicting an “Increase” (C, D); (c) after adding more
useful attributes for predicting “Increase”, the importance of STD60 decreased (E), while NATR became the most important attribute (F), which triggered
further analysis (G, H, I).

to predict the stock price as “stable” when KLEN was low.
This is reasonable because stocks with lower KLEN are more
likely to maintain stable prices in the next few days.
Addressing biased predictions. However, there was an ex-
ception: when KLEN was low, one rule made an “increase”
prediction (Fig. 10B). Examining the samples covered by this
rule, E3 found that these samples had small KLEN, medium
RESI20, and medium RESI60, all of which indicated stable
stock prices. However, they also shared the condition of
industry=Bank, which may be the reason for the prediction of
“increase.” E3 explained that the banks associated with these
samples experienced a growth period when the training data
was collected, so the trained model tended to predict them as
“increase.” However, such a pattern did not exist in the test
samples and thus caused a performance drop. To address this
issue, he removed the attribute industry. After retraining the
model, he observed an improvement in accuracy from 56.26%
to 56.52%. Specifically, on the samples with industry=Bank,
the accuracy increased from 48.90% to 51.22%.
Improving model performance in “increase.” As E3’s pri-
mary goal was to find stocks with possibly rising prices
to maximize profits, he focused on analyzing the attributes
associated to the “increase” prediction in the retrained model.
As shown in Fig. 10C, he observed that STD60 was frequently
used for the prediction of “increase”. Reordering rules based
on this attribute, he noticed that the rules with the conditions
of larger STD60 consistently made predictions of “increase”
(Fig. 10D). However, as E3 commented, a larger STD60 just
meant a large fluctuation in stock prices over the past 60 days,
which did not necessarily indicate an increasing stock price. E3

considered STD60 was not a useful attribute for the “increase”
prediction, and suspected the heavy reliance on it accounted
for the low prediction accuracy in this class (26.35%). He
then performed feature engineering by leveraging TA-lib [4],
an open-source tool, to generate more technical analysis at-
tributes. After adding these attributes and retraining the model,

the overall accuracy increased from 56.52% to 58.35%, and
the class accuracy of “increase” increased from 26.35% to
28.24%.

To verify whether the newly added attributes were used
correctly, E3 examined the cumulative statistics for attributes
at the bottom of the matrix view. The usage of STD60
decreased from 26 to 7 (Fig. 10E), while a newly added
attribute, NATR, became the most frequently used (Fig. 10F).
NATR represents asset volatility. A high NATR indicates a
large variation in stock prices. Reordering rules based on
NATR, E3 found that, indeed, high NATR values are associated
with “increase” or “decrease” predictions, while low NATR
values are associated with “stable” predictions (Fig. 10G).
Examining the neighborhood of rules with high NATR, E3

found that revenueGrowth, the growth of the profit rate, was
frequently used together (Fig. 10H). Reodering rules based on
NATR and revenueGrowth revealed a clear pattern that high
revenueGrowth mostly led to an “increase” prediction, while
low revenueGrowth mostly led to a “decrease” prediction. This
observation was consistent with his experience.
Removing redundant attributes. During further exploration,
E3 identified some redundant attributes for prediction. For
example, VMA20, which indicates the average trading volume
in the preceding 20 days, was recognized as an important
attribute (Fig. 10I). However, rules using this attribute made
predictions of “stable” no matter low or high VMA20 values,
which seemed to suggest the value of VMA20 does not
affect the prediction. Pinning VMA20 to the first column and
reordering rules based on it, E3 found that all the rules using
VMA20 also had low NATR values. As low NATR indicates
a small variation in stock prices, E3 believed it was the
actual reason for the predictions of these rules, and VMA20
was redundant. He proposed to remove VMA20. Similarly, he
removed another eight redundant attributes. After retraining
the model, its accuracy was improved to 59.20%.

Finally, E3 employed the final model for simulated trading.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

The trading strategy involved selecting 20 stocks predicted to
be the most likely to increase in each 7-day trading cycle over
a period of 3 months. Backtesting proved that this trading
strategy produced an excess return of 48.7% with a maximum
drawdown of 5.0%. E3 was pleased with this performance and
said the comprehensive understanding of this model made him
more confident in employing the model for real-world trading.

C. Expert Feedback and Discussion

After the case studies, we conducted semi-structured in-
terviews with each of the six experts (E1-E6) introduced in
Sec. III-A. E4-E6 were not involved in the case studies. These
newly involved experts included a fund manager with two
years of experience (E4), a vice president at a commercial
bank branch (E5), and a machine learning researcher with
five years of experience (E6). For E4-E6, we spent the initial
20 minutes introducing RuleExplorer and presenting the case
studies. Each expert then used RuleExplorer for model under-
standing and verification tasks. It took 5-15 minutes for them
to become familiar with the interactions and conduct analysis.
We concluded with a discussion on RuleExplorer’s advantages
and limitations. Each interview lasted 35-60 minutes.

1) Usability: Overall, the experts are quite satisfied with
RuleExplorer.
Learning curve. The experts consider RuleExplorer easy to
use. They like that the matrix view takes a format similar
to a data table and naturally supports table operations, such
as sorting and swapping. This familiar design has enhanced
their analysis efficiency. They also indicate that using RuleEx-
plorer enables them to quickly understand the model, which
has increased their trust in the model and their confidence
in decision-making. Specifically, they expressed satisfaction
with the dynamic hierarchy, which enables them to analyze
different subsets of rules on demand. The experts also value
the ease of finding anomalous rules using RuleExplorer.
As E2 commented, “Different from RuleMatrix [40] and
ExplainableMatrix [43], this tool automatically recommends
some unusual rules, which help me quickly identify potential
issues in the model and make interventions accordingly.” We
believe that conducting a user study to compare RuleExplorer
with these interactive systems would provide deeper insights
into its usability and its effectiveness in facilitating model
understanding. We consider this an important future work.
Scalability. Matrix visualizations often face the scalability
issue due to the limited number of rows and columns that
can be displayed [39], [65]. To tackle this issue, RuleExplorer
1) organizes a large rule set into a hierarchy and dynamically
selects representative rules to display, and 2) sorts attributes by
importance and divides them into pages. These two strategies
are effective because tree ensemble models typically rely on
a smaller set of key attributes for decision making [7], and
users usually focus on a small subset of representative rules
and key attributes for initial analysis. In addition, our tool
can easily be extended to handle other scalability issues. For
example, for attributes with thousands of categories, we can
employ alternative feature transformation methods, such as
Target Encoding [24], which replaces each category with a

single numerical value representing its statistical correlation
to the target variable. For classification tasks involving more
than 10 classes, we can hierarchically organize classes and
dynamically assign colors during user exploration [15].
Extensibility. While RuleExplorer is primarily designed for
tree ensemble classifiers, it can be easily extended for regres-
sion models. To achieve this, users simply need to substitute
the classification-specific loss with a regression-specific loss
during model reduction and employ sequential color schemes
to encode the regression values of each rule. In addition,
E6 also pointed out that RuleExplorer can be used to ex-
plain other models beyond tree ensemble models: “Similar
to RuleMatrix [40], this tool supports the analysis of other
machine learning models using model surrogate techniques.
This greatly extends the applicability of the tool.”

2) Limitations: In addition to the positive feedback, the
experts also point out several limitations that offer directions
for future research.
Online model update. In the current analysis, after the experts
identify problems and make corrections, they need to retrain
the model and load it back into the system. The experts
highlighted that the ability to incrementally update parts of
the model online to examine the result would help improve
the analysis efficiency. Exploring methods for incrementally
updating the model and effectively visualizing the changes
presents an interesting research direction.
What-if analysis. Another interesting direction is the what-
if analysis of rules. E6 suggested allowing examination of
how different rule conditions impact the output. However,
further exploration is needed on how to use what-if analysis
to more accurately guide experts in improving the model. This
research will focus on understanding model rules and making
corresponding modifications. We plan to gather more specific
requirements from experts to guide future research.
Algorithm efficiency. The current efficiency of the model
reduction algorithm is not as high as desired. The running time
ranges from tens of seconds to a few hours, depending on the
model complexity and data size. For example, it takes around 1
minute for the model in the first case study and takes 3-4 hours
in the second case study. However, since model reduction is
performed offline, experts find this time acceptable, as they
are willing to trade off time for scalability in the big data
era. Nevertheless, accelerating this process allows experts to
start their analysis at the earliest opportunity. The bottlenecks
here lie in the grid search for the algorithm parameters and
linear programming in Sec. IV. In the future, we will design
a method for quickly determining algorithm parameters, and
simplify the linear programming by retaining more important
constraints and variables to accelerate problem solving.

VII. CONCLUSION

In this paper, we have presented RuleExplorer, a visual
analysis tool that helps domain experts understand the rules
extracted from tree ensemble models. To address the scalabil-
ity in handling large-scale rule sets, we combine an anomaly-
biased model reduction method with a matrix-based hierarchi-
cal visualization. Organizing rules into a hierarchy achieves

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

scalability without sacrificing fidelity. We also propose a
dynamic way to construct the rule hierarchy to accommodate
different analysis preferences. The anomaly-biased model re-
duction preserves both common and anomalous rules at each
level, and thus enables not only an understanding of the overall
model behavior, but also the identification of potential flaws in
the model. A quantitative evaluation and two case studies are
conducted to demonstrate the effectiveness of RuleExplorer
and its usefulness in real-world applications.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China under grants U21A20469, 61936002, and
in part by Tsinghua-Kuaishou Institute of Future Media Data.
The authors would like to thank Xiting Wang and Duan Li for
their valuable contributions to the discussions, and Yiwei Hou
for her assistance in voicing our video.

REFERENCES

[1] B. Alper, B. Bach, N. Henry Riche, T. Isenberg, and J.-D. Fekete.
Weighted graph comparison techniques for brain connectivity analysis.
In Proceedings of the SIGCHI conference on human factors in computing
systems, pp. 483–492, 2013. doi: 10.1145/2470654.2470724

[2] D. L. Applegate. The traveling salesman problem: a computational
study, vol. 17. Princeton university press, 2006. doi: 10.5555/1374811

[3] A. Asuncion, D. Newman, et al. UCI machine learning repository, 2007.
[4] J. Benediktsson. TA-lib-python, 2001.
[5] A. Bilal, A. Jourabloo, M. Ye, X. Liu, and L. Ren. Do convolutional

neural networks learn class hierarchy? IEEE Transactions on Visualiza-
tion and Computer Graphics, 24(1):152–162, 2018. doi: 10.1109/TVCG
.2017.2744683

[6] B. M. Bolstad, R. A. Irizarry, M. Åstrand, and T. P. Speed. A comparison
of normalization methods for high density oligonucleotide array data
based on variance and bias. Bioinformatics, 19(2):185–193, 2003. doi:
10.1093/bioinformatics/19.2.185

[7] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001. doi:
10.1023/A:1010933404324

[8] D. Cashman, G. Patterson, A. Mosca, N. Watts, S. Robinson, and
R. Chang. RNNbow: Visualizing learning via backpropagation gradients
in rnns. IEEE Computer Graphics and Applications, 38(6):39–50, 2018.
doi: 10.1109/MCG.2018.2878902

[9] A. Chatzimparmpas, R. M. Martins, and A. Kerren. Visruler: Visual
analytics for extracting decision rules from bagged and boosted decision
trees. Information Visualization, 22(2):115–139, 2023. doi: 10.1177/
14738716221142005

[10] A. Chatzimparmpas, R. M. Martins, A. C. Telea, and A. Kerren. Defor-
estvis: Behaviour analysis of machine learning models with surrogate
decision stumps. In Computer Graphics Forum, vol. 43, p. e15004,
2024. doi: 10.1111/cgf.15004

[11] C. Chen, J. Chen, W. Yang, H. Wang, J. Knittel, X. Zhao, S. Koch,
T. Ertl, and S. Liu. Enhancing single-frame supervision for better
temporal action localization. IEEE Transactions on Visualization and
Computer Graphics, 2024. doi: 10.1109/TVCG.2024.3388521

[12] C. Chen, Y. Guo, F. Tian, S. Liu, W. Yang, Z. Wang, J. Wu, H. Su,
H. Pfister, and S. Liu. A unified interactive model evaluation for
classification, object detection, and instance segmentation in computer
vision. IEEE Transactions on Visualization and Computer Graphics,
30(1):76–86, 2024. doi: 10.1109/TVCG.2023.3326588

[13] C. Chen, J. Wu, X. Wang, S. Xiang, S.-H. Zhang, Q. Tang, and
S. Liu. Towards better caption supervision for object detection. IEEE
Transactions on Visualization and Computer Graphics, 28(4):1941–
1954, 2022.

[14] C. Chen, J. Yuan, Y. Lu, Y. Liu, H. Su, S. Yuan, and S. Liu.
OoDAnalyzer: Interactive analysis of out-of-distribution samples. IEEE
Transactions on Visualization and Computer Graphics, 27(7):3335–
3349, 2021. doi: 10.1109/TVCG.2020.2973258

[15] J. Chen, W. Yang, Z. Jia, L. Xiao, and S. Liu. Dynamic color
assignment for hierarchical data. In IEEE Transactions on Visualization
and Computer Graphics, pp. 1–11, 2024. doi: 10.1109/TVCG.2024.
3456386

[16] K. Crammer and Y. Singer. On the algorithmic implementation of
multiclass kernel-based vector machines. Journal of Machine Learning
Research, 2(12):265–292, 2001. doi: 10.5555/944790.944813

[17] M. Craven and J. Shavlik. Extracting tree-structured representations of
trained networks. In Proceedings of the Advances in Neural Information
Processing Systems, pp. 24–30, 1995. doi: 10.5555/2998828.2998832

[18] K. Deb, K. Sindhya, and J. Hakanen. Multi-objective optimization. In
Decision sciences, pp. 161–200. CRC Press, 2016. doi: 10.1007/0-387
-28356-0 10

[19] J. F. DeRose, J. Wang, and M. Berger. Attention flows: Analyzing and
comparing attention mechanisms in language models. IEEE Transac-
tions on Visualization and Computer Graphics, 27(2):1160–1170, 2021.
doi: 10.1109/TVCG.2020.3028976

[20] M. Du, N. Liu, and X. Hu. Techniques for interpretable machine
learning. Communications of the ACM, 63(1):68–77, 2019. doi: 10.
1145/3359786

[21] R. D. Edwards, J. Magee, and W. C. Bassetti. Technical analysis of
stock trends. CRC press, 2018. doi: 10.1201/b14301

[22] J. Eirich, M. Münch, D. Jäckle, M. Sedlmair, J. Bonart, and T. Schreck.
Rfx: a design study for the interactive exploration of a random forest
to enhance testing procedures for electrical engines. In Proceedings of
Computer Graphics Forum, pp. 302–315, 2022. doi: 10.1111/cgf.14452

[23] N. Elmqvist and J.-D. Fekete. Hierarchical aggregation for information
visualization: Overview, techniques, and design guidelines. IEEE Trans-
actions on Visualization and Computer Graphics, 16(3):439–454, 2009.
doi: 10.1109/TVCG.2009.84

[24] A. Géron. Hands-on machine learning with Scikit-Learn, Keras, and
TensorFlow. ” O’Reilly Media, Inc.”, 2022. doi: 10.5555/3378999

[25] T. H. Goodwin. The information ratio. Financial Analysts Journal,
54(4):34–43, 1998. doi: 10.2469/faj.v54.n4.2196

[26] J. Görtler, F. Hohman, D. Moritz, K. Wongsuphasawat, D. Ren, R. Nair,
M. Kirchner, and K. Patel. Neo: Generalizing confusion matrix visu-
alization to hierarchical and multi-output labels. In Proceedings of the
CHI Conference on Human Factors in Computing Systems, pp. 1–13,
2022. doi: 10.1145/3491102.3501823

[27] J. Han and N. Cercone. Ruleviz: a model for visualizing knowledge
discovery process. In Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 244–253,
2000. doi: 10.1145/347090.347139

[28] S. Hara and K. Hayashi. Making tree ensembles interpretable: A
bayesian model selection approach. In Proceedings of the International
Conference on Artificial Intelligence and Statistics, pp. 77–85, 2018.

[29] H. H. Htun, M. Biehl, and N. Petkov. Survey of feature selection and
extraction techniques for stock market prediction. Financial Innovation,
9(1):26, 2023. doi: 10.5555/944790.944813

[30] J. P. Ignizio and T. M. Cavalier. Linear programming. Prentice-Hall,
Inc., 1994.

[31] S. Jia, P. Lin, Z. Li, J. Zhang, and S. Liu. Visualizing surrogate decision
trees of convolutional neural networks. Journal of Visualization, 23:141–
156, 2020. doi: 10.1007/s12650-019-00607-z

[32] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y.
Liu. LightGBM: A highly efficient gradient boosting decision tree. In
Proceedings of the Advances in Neural Information Processing Systems,
pp. 3146–3154, 2017. doi: 10.5555/3294996.3295074

[33] B. C. Kwon, M.-J. Choi, J. T. Kim, E. Choi, Y. B. Kim, S. Kwon,
J. Sun, and J. Choo. RetainVis: Visual analytics with interpretable
and interactive recurrent neural networks on electronic medical records.
IEEE Transactions on Visualization and Computer Graphics, 25(1):299–
309, 2019. doi: 10.1109/TVCG.2018.2865027

[34] D. Leman, A. Feelders, and A. Knobbe. Exceptional model mining. In
ECML PKDD, pp. 1–16, 2008. doi: 10.1007/978-3-540-87481-2 1

[35] M. Liu, J. Shi, Z. Li, C. Li, J. Zhu, and S. Liu. Towards better analysis of
deep convolutional neural networks. IEEE Transactions on Visualization
and Computer Graphics, 23(1):91–100, 2017. doi: 10.1109/TVCG.2016
.2598831

[36] S. Liu, J. Xiao, J. Liu, X. Wang, J. Wu, and J. Zhu. Visual diagnosis
of tree boosting methods. IEEE Transactions on Visualization and
Computer Graphics, 24(1):163–173, 2018. doi: 10.1109/TVCG.2017.
2744378

[37] F. Lyu, C. Chen, J. Zhang, X. Feng, and Z. Tang. Visualization for
supercomputer system: A survey. Journal of Computer-Aided Design
& Computer Graphics, 36(3):321–335, 2024. doi: 10.3724/SP.J.1089.
2024.2023-00791

[38] N. Meinshausen. Node harvest. The Annals of Applied Statistics,
4(4):2049–2072, 2010. doi: 10.1214/10-aoas367

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

[39] Y. Ming, S. Cao, R. Zhang, Z. Li, Y. Chen, Y. Song, and H. Qu.
Understanding hidden memories of recurrent neural networks. In
Proceedings of the IEEE Conference on Visual Analytics Science and
Technology, pp. 13–24, 2017. doi: 10.1109/VAST.2017.8585721

[40] Y. Ming, H. Qu, and E. Bertini. RuleMatrix: Visualizing and under-
standing classifiers with rules. IEEE Transactions on Visualization and
Computer Graphics, 25(1):342–352, 2019. doi: 10.1109/TVCG.2018.
2864812

[41] T. Mühlbacher, L. Linhardt, T. Möller, and H. Piringer. TreePOD:
Sensitivity-aware selection of pareto-optimal decision trees. IEEE
Transactions on Visualization and Computer Graphics, 24(1):174–183,
2018. doi: 10.1109/TVCG.2017.2745158

[42] T. Munzner. Visualization analysis and design. CRC press, 2014. doi:
10.1201/b17511

[43] M. P. Neto and F. V. Paulovich. Explainable matrix-visualization
for global and local interpretability of random forest classification
ensembles. IEEE Transactions on Visualization and Computer Graphics,
27(2):1427–1437, 2021. doi: 10.1109/TVCG.2020.3030354

[44] A. Nurunnabi and G. West. Outlier detection in logistic regression: A
quest for reliable knowledge from predictive modeling and classification.
In Proceedings of the IEEE International Conference on Data Mining
Workshops, pp. 643–652, 2012. doi: 10.1109/ICDMW.2012.107

[45] N. Patki, R. Wedge, and K. Veeramachaneni. The synthetic data vault.
In Proceedings of the IEEE International Conference on Data Science
and Advanced Analytics, pp. 399–410, 2016. doi: 10.1109/DSAA.2016
.49

[46] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Ma-
chine Learning Research, 12:2825–2830, 2011. doi: 10.5555/1953048.
2078195

[47] R. Quinlan. Statlog (Australian Credit Approval). UCI Machine
Learning Repository. doi: 10.24432/C59012

[48] D. Ren, S. Amershi, B. Lee, J. Suh, and J. D. Williams. Squares:
Supporting interactive performance analysis for multiclass classifiers.
IEEE Transactions on Visualization and Computer Graphics, 23(1):61–
70, 2017. doi: 10.1109/TVCG.2016.2598828

[49] M. T. Ribeiro, S. Singh, and C. Guestrin. “why should i trust you?”
explaining the predictions of any classifier. In Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 1135–1144, 2016. doi: 10.1145/2939672.2939778

[50] L. Rosasco, E. De Vito, A. Caponnetto, M. Piana, and A. Verri. Are loss
functions all the same? Neural computation, 16(5):1063–1076, 2004.
doi: 10.1162/089976604773135104

[51] L. Sawatzky, S. Bergner, and F. Popowich. Visualizing rnn states with
predictive semantic encodings. In Proceedings of the IEEE Visualization
Conference, pp. 156–160, 2019. doi: 10.1109/VISUAL.2019.8933744

[52] B. Shneiderman. The eyes have it: a task by data type taxonomy for
information visualizations. In Proceedings of the IEEE Symposium on
Visual Languages, pp. 336–343. Elsevier, 1996. doi: 10.1109/VL.1996.
545307

[53] H. Strobelt, S. Gehrmann, M. Behrisch, A. Perer, H. Pfister, and A. M.
Rush. Seq2Seq-Vis: A visual debugging tool for sequence-to-sequence
models. IEEE Transactions on Visualization and Computer Graphics,
25(1):353–363, 2019. doi: 10.1109/TVCG.2018.2865044

[54] H. Strobelt, S. Gehrmann, H. Pfister, and A. M. Rush. LSTMVis: A
tool for visual analysis of hidden state dynamics in recurrent neural
networks. IEEE Transactions on Visualization and Computer Graphics,
24(1):667–676, 2018. doi: 10.1109/TVCG.2017.2744158

[55] G. K. Tam, V. Kothari, and M. Chen. An analysis of machine-and
human-analytics in classification. IEEE Transactions on Visualization
and Computer Graphics, 23(1):71–80, 2016. doi: 10.1109/TVCG.2016
.2598829

[56] S. Tan, R. Caruana, G. Hooker, and Y. Lou. Distill-and-Compare:
Auditing black-box models using transparent model distillation. In
Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society,
pp. 303–310, 2018. doi: 10.1145/3278721.3278725

[57] F. Y. Tzeng and K. L. Ma. Opening the black box - data driven visu-
alization of neural networks. In Proceedings of the IEEE Visualization
Conference, pp. 383–390, 2005. doi: 10.1109/VISUAL.2005.1532820

[58] S. Van Den Elzen and J. J. Van Wijk. BaobabView: Interactive
construction and analysis of decision trees. In Proceedings of the IEEE
Conference on Visual Analytics Science and Technology, pp. 151–160,
2011. doi: 10.1109/VAST.2011.6102453

[59] T. Vidal and M. Schiffer. Born-again tree ensembles. In Proceedings
of the International Conference on Machine Learning, pp. 9743–9753,
2020. doi: 10.5555/3524938.3525841

[60] Z. J. Wang, C. Zhong, R. Xin, T. Takagi, Z. Chen, D. H. Chau, C. Rudin,
and M. Seltzer. Timbertrek: exploring and curating sparse decision trees
with interactive visualization. In Proceedings of the IEEE Visualization
Conference, pp. 60–64, 2022. doi: 10.1109/VIS54862.2022.00021

[61] W. Willett, J. Heer, and M. Agrawala. Scented widgets: Improving
navigation cues with embedded visualizations. IEEE Transactions on
Visualization and Computer Graphics, 13(6):1129–1136, 2007. doi: 10
.1109/TVCG.2007.70589

[62] S. Xiang, X. Ye, J. Xia, J. Wu, Y. Chen, and S. Liu. Interactive correction
of mislabeled training data. In Proceedings of the IEEE Conference
on Visual Analytics Science and Technology, pp. 57–68, 2019. doi: 10.
1109/VAST47406.2019.8986943

[63] W. Yang, M. Liu, Z. Wang, and S. Liu. Foundation models meet
visualizations: Challenges and opportunities. Computational Visual
Media, 10(3):399–424, 2024. doi: 10.1007/s41095-023-0393-x

[64] W. Yang, X. Wang, J. Lu, W. Dou, and S. Liu. Interactive steering of hi-
erarchical clustering. IEEE Transactions on Visualization and Computer
Graphics, 27(10):3953–3967, 2021. doi: 10.1109/TVCG.2020.2995100

[65] W. Yang, X. Ye, X. Zhang, L. Xiao, J. Xia, Z. Wang, J. Zhu, H. Pfister,
and S. Liu. Diagnosing ensemble few-shot classifiers. IEEE Transactions
on Visualization and Computer Graphics, 28(9):3292–3306, 2022. doi:
10.1109/TVCG.2022.3182488

[66] J. Yuan, B. Barr, K. Overton, and E. Bertini. Visual exploration
of machine learning model behavior with hierarchical surrogate rule
sets. IEEE Transactions on Visualization and Computer Graphics,
30(2):1470–1488, 2024. doi: 10.1109/TVCG.2022.3219232

[67] J. Yuan, M. Liu, F. Tian, and S. Liu. Visual analysis of neural archi-
tecture spaces for summarizing design principles. IEEE Transactions
on Visualization and Computer Graphics, 29(1):288–298, 2023. doi: 10
.1109/TVCG.2022.3209404

[68] J. Yuan, O. Nov, and E. Bertini. An exploration and validation of visual
factors in understanding classification rule sets. In Proceedings of the
IEEE Visualization Conference, pp. 6–10, 2021. doi: 10.1109/VIS49827
.2021.9623303

[69] X. Zhao, Y. Wu, D. L. Lee, and W. Cui. iForest: Interpreting random
forests via visual analytics. IEEE Transactions on Visualization and
Computer Graphics, 25(1):407–416, 2019. doi: 10.1109/TVCG.2018.
2864475

[70] W. Zhou, T. D. Roy, and I. Skrypnyk. The KDD cup 2019 report.
ACM SIGKDD Explorations Newsletter, 22(1):8–17, 2020. doi: 10.1145/
3400051.3400056

[71] Y. Zhou, W. Yang, J. Chen, C. Chen, Z. Shen, X. Luo, L. Yu, and S. Liu.
Cluster-aware grid layout. IEEE Transactions on Visualization and
Computer Graphics, 30(01), 2024. doi: 10.1109/TVCG.2023.3326934

[72] Z.-H. Zhou and J. Feng. Deep forest. National science review, 6(1):74–
86, 2019. doi: 10.1093/nsr/nwy108

Zhen Li is a fourth-year Ph.D. student of Software
School, Tsinghua University. His research interest
is explainable artificial intelligence. He received a
B.S. degree from Tsinghua University and a M.Phil.
degree from Hong Kong University of Science and
Technology.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

Weikai Yang is an assistant professor in Hong Kong
University of Science and Technology (Guangzhou).
His research interests lie in visual analytics, machine
learning, and data quality improvement. He received
a B.S. and a Ph.D from Tsinghua University.

Jun Yuan is currently a Ph.D. student at Tsinghua
University. His research interests are in explainable
artificial intelligence. He received a B.S. degree from
Tsinghua University.

Jing Wu is a lecturer in computer science and
informatics at Cardiff University, UK. Her research
interests are in computer vision and graphics includ-
ing image-based 3D reconstruction, face recognition,
machine learning and visual analytics. She received
BSc and MSc from Nanjing University, and Ph.D.
from the University of York, UK. She serves as a
PC member in CGVC, BMVC, etc.

Changjian Chen is an assistant professor at Hunan
University. He received a Ph.D. from Tsinghua Uni-
versity and a B.S. from University of Science and
Technology of China. His research interests focus
on visual analytics and machine learning, especially
visual analysis methods to improve training data
quality.

Yao Ming is a quantitative researcher at Citadel
Securities. His research focus on visual analyt-
ics, explainable machine learning, and natural lan-
guage processing. He received a Ph.D. in Com-
puter Science from the Hong Kong University
of Science and Technology and a B.S. from Ts-
inghua University. For more details please refer to
https://www.myaooo.com.

Fan Yang is an algorithm engineer at Kuaishou.
His research focuses on video understanding, large
language model, and joint modeling of content and
behavior. He received a M.S. from Tsinghua Univer-
sity and B.S. from Beijing University of Posts and
Telecommunications.

Hui Zhang is an Associate Professor at School of
Software, Tsinghua University, China. She received
her B.Sc. and Ph.D. in Computer Science from
Tsinghua University, in 1997 and 2003, respectively.
Her research interests include computer aided design
and computer graphics.

Shixia Liu is a professor at Tsinghua University. Her
research interests include explainable artificial intel-
ligence, visual analytics for big data. She worked as
a research staff member at IBM China Research Lab
and a lead researcher at Microsoft Research Asia.
She received a B.S. and M.S. from Harbin Institute
of Technology, a Ph.D. from Tsinghua University.
She is a fellow of IEEE and an associate editor-in-
chief of IEEE Trans. Vis. Comput. Graph.

