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 Abstract—The high penetration of distributed generators 

(DGs) has exacerbated voltage violations in active 

distribution networks (ADNs). The sensitivity, as the law 

between nodal power injection and state variation, can be 

used to develop DG strategies efficiently. However, due to 

the nonlinearity, the accurate description and efficient 

application of ADN sensitivity have become an important 

challenge in the establishment of DG control strategy. In 

this paper, an adaptive voltage control strategy for DGs is 

developed based on ADN sensitivity. First, the 

measurement-strategy mapping matrix is established to 

describe the complex time-varying sensitivity. The 

sensitivity between nodal voltage and reactive power is 

described as discrete matrix elements, which are generated 

based on real-time measurements. Then, an adaptive 

voltage control model of DGs is built based on the 

measurement-strategy mapping matrix, in which the lifted 

linear decision rule (LLDR) is introduced to continue the 

discrete matrix elements as a couple of constraints. 

Efficient formulation of DG strategies is realized in a 

data-driven manner based on the ADN sensitivity. Finally, 

the effectiveness of the proposed strategy is validated using 

the modified IEEE 33-node system, practical 53-node 

system, and IEEE 123-node system. The proposed strategy 

can effectively cope with voltage problems while enhancing 

the adaptability to variations in practical operation. 

Index Terms—active distribution network (ADN), distributed 

generator (DG), voltage control, measurement-strategy mapping 

matrix. 

NOMENCLATURE 

Set  

Ωn Set of nodes in ADN 

Ωb Set of branches in ADN 

Ξ𝑖  Lifting decision space of node 𝑖 
Indices  
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𝑖, 𝑗, 𝑘 Indices of node, from 1 to 𝑁n 

𝑖𝑗 Indices of branch 

𝑠 Indices of expected reactive power variations, 

from 1 to 𝑁s 
𝑡 Indices of time, from 1 to 𝑁t 

𝑓 Indices of training object of the Koopman-based 

model, from 1 to 𝑁f 

𝑛 Indices of the lift dimensions in the Koopman 

-based model, from 1 to 𝑁k 

Variable  

𝜑𝑖,𝑗,𝑠
𝑡  The sensitivity of voltage at node 𝑗  to the 𝑠 th 

reactive power variation at node 𝑖 at period 𝑡 

𝜁𝑖𝑗,𝑘,𝑠
𝑡 , 𝜂𝑖𝑗,𝑘,𝑠

𝑡  The sensitivity of active/reactive power on 

branch 𝑖𝑗 to the 𝑠th reactive power variation at 

node 𝑘 at period 𝑡 

∆𝑄𝑖
𝑡 Variation of reactive power at node 𝑖 at period 𝑡 

∆�̂�𝑖,𝑗
𝑡+1 Estimated voltage variation at node 𝑗 caused by 

power variations of node 𝑖 at period 𝑡 + 1 

∆�̂�𝑘,𝑖𝑗
𝑡+1, 

∆�̂�𝑘,𝑖𝑗
𝑡+1 

Estimated active/reactive power variation of 

branch 𝑖𝑗 caused by power variations of node 𝑘 at 

period 𝑡 + 1 

∆�̂�𝑗
𝑡+1 Total estimated voltage variation of node 𝑗  at 

period 𝑡 + 1 

∆�̂�𝑖𝑗
𝑡+1, 

∆�̂�𝑖𝑗
𝑡+1 

Total estimated active/reactive power variation of 

branch 𝑖𝑗 at period 𝑡 + 1 

�̂�𝑗
𝑡 Estimated voltage at node 𝑗 at period 𝑡 

�̂�𝑖𝑗
𝑡 , �̂�𝑖𝑗

𝑡  Estimated active/reactive power of branch 𝑖𝑗 at 

period 𝑡 

�̃�𝑗
𝑡 , �̃�𝑗

𝑡 The historical nodal voltage and nodal reactive 

power injection of ADN 

𝜉𝑖,𝑠
𝑡+1 The 𝑠th decision variable for the node 𝑖 associ-

ated with the power deviation at period 𝑡 + 1 

∆𝑄𝑖,𝑠 The 𝑠 th expected reactive power variations at 

node 𝑖 

𝑃𝑖,DG
𝑡+1 , 𝑄𝑖,DG

𝑡+1  Active/reactive power injection by DG at node 𝑖 
in period 𝑡 + 1 

Parameter 

𝑁n Total number of nodes in ADN 

𝑁s Total number of expected power variations 

𝑁k Total number of lift dimensions in the Koopman 

operator 

𝑁f, 𝑁l Total number of training/testing objects 

𝑁t Total periods of the time horizon 

𝑉thr
max, 𝑉thr

min Upper/lower limit of the desired voltage range 
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𝑉min, 𝑉max Upper/lower limit of the statutory voltage range 

𝑆𝑖,DG Capacity limit of DG at node 𝑖 

𝑄𝑖
max, 𝑄𝑖

min Upper/lower limit of reactive power provided by 

DG at node 𝑖 
Matrix  

𝜱𝑡 The voltage measurement-reactive power strat-

egy mapping matrix at period 𝑡 

𝜱𝑖
𝑡 The discrete sensitivity of the reactive power 

variation of node 𝑖  to the voltage variation of 

each node at period 𝑡 

𝜱𝑖,𝑗
𝑡

 The discrete sensitivity of the reactive power 

variation at node 𝑖  on the voltage at node 𝑗  at 

period 𝑡 

𝑴 The weight matrix in the Koopman operator 

𝒙, 𝒚 Input/output of the Koopman operator 

𝒙𝒍 Lifted dimension input of the Koopman operator 

𝑿, 𝒀 The training set of the Koopman operator 

𝒄 The base vector of the Koopman operator 

𝜹𝑖,ℎ The ℎ th extreme point of the lifting decision 

space of node 𝑖 

𝝃𝑖
𝑡+1 The decision vector for the node 𝑖 associated with 

the power deviation at period 𝑡 + 1 

I. INTRODUCTION 

HE extensive integration of distributed generators (DGs) 

[1] gives rise to massive operational challenges in distri-

bution networks [2]. Particularly, owing to the considerable 

inherent uncertainties [3], the high penetration of DGs [4] can 

potentially lead to severe voltage deviations in active distribu-

tion networks (ADNs) [5]. 

Various regulation devices have been implemented to en-

hance the voltage performance of ADNs [6]. Discrete regula-

tion devices, such as on-load tap changers (OLTCs) and ca-

pacitor banks (CBs), predominantly function on longer time-

scales [7]. However, these devices encounter significant limi-

tations due to their slow response times and limited action 

frequency [8], making them less effective in addressing fre-

quent voltage fluctuations [9]. In contrast, the regulation of 

reactive power supply via DG inverter control offers a prom-

ising solution for achieving rapid voltage responses in ADNs 

[10]. DG inverters are typically designed with surplus capacity, 

which can be strategically utilized to regulate voltage levels 

within the ADN effectively [11]. 

Based on the network parameters of ADN, the physi-

cal-model-based method holds the promise of averting or mit-

igating overvoltage issues [12]. A reliability-constrained volt-

age control method was presented in [13] for DG inverters 

operating under uncertain conditions, which can reduce energy 

losses. In [14], a stochastic bilevel optimization model was 

proposed based on the ADN parameters to provide energy and 

grid services with DGs. In [15], a thermal battery equivalent 

model was established with precise ADN parameters to provide 

a voltage regulation service. The authors in [16] presented a 

multi-objective optimization model that could coordinate elec-

tric vehicle charging in ADN with DGs, aiming to address the 

interests of different stakeholders. A decentralized control 

strategy was presented in [17] that can significantly enhance the 

fairness in curtailing active power among inverters. A local 

voltage regulation method was proposed in [18], which utilized 

very short-term DG forecasts to circumvent imminent voltage 

violations. However, it may be difficult to obtain accurate ADN 

parameters in a complex operational environment, which limits 

the practical application of the physical-model-based method. 

The data-driven-based method can realize the optimal oper-

ation of ADN based on the real-time measurement data or the 

historical data, without requiring an accurate mechanism model. 

A projection-embedded multi-agent deep reinforcement 

learning method was proposed in [19] to achieve a decentral-

ized optimal for DGs to realize ADN voltage control. The 

authors in [20] proposed a data-driven-based distributed coop-

erative energy management system without an accurate 

mechanism model. A machine learning-assisted distributed 

algorithm was proposed in [21] to accelerate the solution of the 

Volt/Var control strategy. 

As a quantitative representation of the control law of ADN, 

the sensitivity implies nodal connection relationship and line 

parameters, which can support a data-driven-based strategy 

formulation. The sensitivity of ADN has a clear physical con-

cept that shows the relation of active or reactive power varia-

tion in voltage or current amplitude [23]. Considering the 

complex nonlinear characteristics of ADN, the precise sensi-

tivity can be represented by a set of complex coupling 

high-dimensional equations to formulate DG control strategies 

effectively [24]. 

In terms of the acquisition methods, the sensitivity of ADN 

can be obtained through perturbation methods, model deriva-

tion, and data-driven approaches. The highest degree of accu-

racy in sensitivity acquisition can be achieved by applying 

power perturbations directly to the operational ADN system 

[25]. However, the implementation of the perturbation method 

may be constrained due to the potential disturbances introduced 

to the normal operation of the ADN. When the network pa-

rameters are accurately known, the sensitivity can be derived 

through the formulation of the physical model of the ADN [26]. 

Nonetheless, this approach may be limited by the precision of 

the available network parameters. With the increasing digital-

ization of distribution networks, a vast amount of real-time 

operational data has become accessible to distribution network 

operators [27]. This data abundance enables the extraction of 

crucial insights in a data-driven manner, including the analysis 

of system state variations [28]. By leveraging historical data of 

the ADN, it is possible to obtain sensitivity accurately, while 

avoiding the dependency on precise network parameters and 

the disturbances to the ADN operations. 

In the application of ADN sensitivity, directly utilizing the 

high-dimensional nonlinear sensitivity poses significant chal-

lenges [29]. Through conducting a numerical linearization 

around the operating point, the linear sensitivity can be estab-

lished for strategy formulation [30]. In [31], a local control 

function of photovoltaic (PV) inverters was established for 

real-time voltage regulation, in which the sensitivity of ADN is 

used as an alternative to power flow constraints. A robust da-

ta-driven sensitivity estimation approach was proposed in [32], 
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which has a high statistical efficiency to mitigate the impacts of 

unknown measurement noise. A fair nodal pricing method for 

distribution networks was proposed in [33], which can en-

courage demand-side users to participate in voltage regulation 

in ADN. Aiming at the coordination of multiple devices, a 

distributed voltage control strategy of ADNs was proposed in 

[34] with global sensitivities. However, due to the strong 

non-linear characteristics of the sensitivity, the utilization of 

linear regression may be inaccurate. Meanwhile, the voltage of 

ADN is deeply coupled with multi-node reactive power strate-

gies, which makes the sensitivity-based strategy determination 

face difficulties, as shown in Fig. 1. 

To realize a high-precision description and efficient appli-

cation of ADN sensitivity, an adaptive voltage control strategy 

for DGs is proposed with the measurement-strategy mapping 

matrix. The main contributions are summarized as follows. 

 
Fig. 1.  The adaptive voltage control strategy for DGs 

1) A voltage measurement-reactive power strategy mapping 

matrix of ADN is established to describe the complex 

time-varying sensitivity relationship, as shown in the left side 

of Fig. 1. Considering the significant nonlinearity of ADN 

sensitivity, the different dimensions of the mapping matrix are 

used to describe the effect of the power variations on different 

nodes and the magnitudes of power variations on the nodal 

voltage. The voltage-reactive power sensitivity of ADN can be 

described with the mapping matrix according to complex op-

eration environment flexibly. 

2) An adaptive voltage control model is established with the 

measurement-strategy mapping matrix, considering the cou-

pling affected by the reactive power outputs from multiple DGs, 

as shown in the upper right part of Fig.1. To integrate the dis-

crete mapping matrix into the voltage control model, the lifted 

linear decision rule (LLDR) is introduced to continue the ma-

trix elements as a couple of constraints. Efficient real-time 

formulation of voltage control strategies for DGs can be 

achieved based on the sensitivity of ADN. 

The remainder of this paper is organized as follows. In Sec-

tion II, the measurement-strategy mapping matrix is established 

according to the real-time voltage measurement of ADN. In 

Section III, an adaptive voltage control model for DGs is built 

with the continuous measurement-strategy mapping matrix. 

The case studies using the modified IEEE 33-node distribution 

system, 53-node practical distribution system, and IEEE 

123-node distribution system are presented in Section IV. Fi-

nally, conclusions are stated in Section V. 

II. DATA-DRIVEN MEASUREMENT-STRATEGY MAPPING 

MATRIX GENERATION 

The voltage-reactive power sensitivity of ADN serves as a 

quantitative depiction of the impact of nodal reactive power 

variations on nodal voltage. In this section, a mapping matrix is 

established to realize an accurate description of the sensitivity 

between nodal voltage and nodal reactive power injection. 

A. Measurement-strategy mapping matrix 

The sensitivity exhibits high dimensional and nonlinear 

characteristics, which cannot be accurately described by a 

single linear function. In this paper, a three-dimensional 

measurement-strategy mapping matrix 𝜱[𝑁n]×[𝑁n]×[𝑁s]
𝑡  is es-

tablished to describe the sensitivity between nodal power vari-

ations and voltage variations, as shown in (1). 

𝜱𝑖
𝑡 =

[
 
 
 
 
 
 
𝜱𝑖,1
𝑡

𝜱𝑖,2
𝑡

⋮
𝜱𝑖,𝑗
𝑡

⋮
𝜱𝑖,𝑁n
𝑡

]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝜑𝑖,1,1
𝑡

𝜑𝑖,2,1
𝑡

⋮
𝜑𝑖,𝑗,1
𝑡

⋮
𝜑𝑖,𝑁n,1
𝑡

⋯ 𝜑𝑖,1,𝑠
𝑡 ⋯

⋯ 𝜑𝑖,2,𝑠
𝑡 ⋯

 
⋯
 

⋮
𝜑𝑖,𝑗,𝑠
𝑡

⋮

 
⋯
 

⋯ 𝜑𝑖,𝑁n,𝑠
𝑡 ⋯

𝜑𝑖,1,𝑁s
𝑡

𝜑𝑖,2,𝑁s
𝑡

⋮
𝜑𝑖,𝑗,𝑁s
𝑡

⋮
𝜑𝑖,𝑁n,𝑁s
𝑡

]
 
 
 
 
 
 

 

∀𝑖 ∈ {1,2,⋯ ,𝑁n}   

(1) 

where 𝜱𝑖
𝑡 represents the sensitivity of the reactive power vari-

ation of node 𝑖 to the voltage variation of each node at period 𝑡. 

𝜑𝑖,𝑗,𝑠
𝑡  denotes the sensitivity of node 𝑗 with a reactive power 

variation ∆𝑄𝑖,𝑠 at node 𝑖 in period 𝑡, which can be described as 

follows. 

𝜑𝑖,𝑗,𝑠
𝑡 = lim

∆𝑄𝑖,𝑠→0
∆𝑉𝑗

𝑡/∆𝑄𝑖,𝑠 , 𝑠 = 1, . . . , 𝑁s (2) 

By selecting different power variations ∆𝑄𝑖,𝑠 as the sampling 

points, the voltage measurement-reactive power strategy map-

ping matrix describes the nonlinear sensitivity relationship on a 

point-by-point basis. The high dimensional characteristics of 

voltage-power sensitivity can be described more accurately. 

Remark 1: The sensitivity between active power and nodal 

voltage can also be constructed as the matrix form in (1). Con-

sidering the demand for renewable energy consumption, the 

active power of DGs is assumed cannot be reduced in this paper. 

The influence of the variations of active power strategy is not 

discussed in the following discussion. 

Remark 2: The variation in the nodal reactive power strategy 

will also cause the variations in the line’s active/reactive power 

in addition to nodal voltage. Considering the effect of the re-

active power variations at different nodes on the line power, the 

line measurement-reactive power strategy mapping matrix can 

be described as Eq. (3): 

𝜱𝑖
𝑡,𝜌
=

[
 
 
 
 
 
 
 𝜱𝑖,1

𝑡,𝜌

𝜱𝑖,2
𝑡,𝜌

⋮

𝜱𝑖,𝑙
𝑡,𝜌

⋮

𝜱𝑖,𝑁𝑙

𝑡,𝜌
]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 𝜑𝑖,1,1

𝑡,𝜌

𝜑𝑖,2,1
𝑡,𝜌

⋮

𝜑𝑖,𝑙,1
𝑡,𝜌

⋮

𝜑𝑖,𝑁𝑙,1
𝑡,𝜌

⋯ 𝜑𝑖,1,𝑠
𝑡,𝜌

⋯

⋯ 𝜑𝑖,2,𝑠
𝑡,𝜌

⋯
 
⋯
 

⋮

𝜑𝑖,𝑙,𝑠
𝑡,𝜌

⋮

 
⋯
 

⋯ 𝜑𝑖,𝑁𝑙,𝑠
𝑡,𝜌

⋯

𝜑𝑖,1,𝑁s
𝑡,𝜌

𝜑𝑖,2,𝑁s
𝑡,𝜌

⋮

𝜑𝑖,𝑙,𝑁s
𝑡,𝜌

⋮

𝜑𝑖,𝑁𝑙,𝑁s
𝑡,𝜌

]
 
 
 
 
 
 
 

 

∀𝑖 ∈ {1,2,⋯ ,𝑁n}, 𝜌 ∈ {PL, QL} 

(3) 
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where 𝜑𝑖,𝑙,𝑠
𝑡,𝜌

 represents the sensitivity of reactive power injec-

tion at node 𝑖 on the active/reactive power variations at line 𝑙. 
The sensitivity between branch current and nodal reactive 

power injection can also be constructed as the matrix form in 

(1). Since the branch current can be expressed as (4), only three 

ADN sensitivities of voltage, branch active power, and reactive 

power are necessary to determine DG control strategies. 

𝐼𝑖𝑗
𝑡 = √(𝑃𝑖𝑗

𝑡 )
2
+ (𝑄𝑖𝑗

𝑡 )
2
𝑉𝑖
𝑡⁄   (4) 

In the following analysis, only the voltage-reactive power 

sensitivity is examined. Other sensitivities can be obtained and 

applied using similar methods which will not be elaborated 

upon. 

Remark 3: The establishment of the measurement-strategy 

mapping matrix only needs the data of the critical nodes in 

ADN. In terms of voltage measurements, the voltage of the 

critical nodes is required, such as the measurement of the 

grid-connected nodes of DGs, the nodes with key loads, and 

some nodes with two more branches. In terms of the reactive 

power strategy, only the strategy of the node with controllable 

resources is necessary. 

B. Koopman-based mapping matrix generation 

Considering the complex operation environment, the accu-

rate generation of the voltage measurement-reactive power 

strategy mapping matrix is realized based on the Koopman 

operator in this sub-section.  

The Koopman operator, as an effective data analysis tool, 

can extract the hidden logic in the data of ADN. In this paper, 

the Koopman operator is trained to extract the voltage-reactive 

power sensitivity of various scenarios day ahead and construct 

the mapping matrix during the intra-day operation based on the 

real-time measurements. 

Koopman operator is proposed for a discrete and nonlinear 

dynamical system described by (5), aiming to form an evolu-

tion on a smooth manifold [35]. 

𝒚 = 𝑓(𝒙)  (5) 

The Koopman operator is defined as a linear operator 𝑲, 

which can map the nonlinear function 𝑓(∙) to a new function 

(𝑲𝑤)(∙), as shown in (6). 

(𝑲𝑓)(𝒙) = 𝑓(𝑔(𝒙))  
(6) 

𝑲𝜌𝑑(𝒙) = 𝜇𝑑 ∙ 𝜌𝑑(𝒙), 𝑑 = 1,2,⋯ ,∞  

where the 𝜌𝑑(∙) and 𝜇𝑑  are the Koopman eigenfunctions and 

eigenvalues respectively. 𝑓(∙) is defined as the scalar-valued 

observable functions. 

Assuming that 𝑁d dimensional expansion terms are consid-

ered, the nonlinear relationship between 𝒙 and 𝒚 can be ex-

pressed as a linear form approximately, which is shown as 

follows. 

𝒚 ≈ ∑ 𝑚𝑑
𝑁d
𝑑=1 𝜌𝑑(𝒙)  (7) 

According to (7), there is a weight coefficients matrix 𝑴 that 

satisfies the linear mapping relationship approximately, in 

which 𝜌(∙) is replaced by 𝒙𝑙 as shown in (8).  

𝒚 = 𝑴𝒙𝑙 = 𝑴[
𝒙

𝝌(𝒙)]  (8) 

where 𝝌(𝒙) is the approximation to the Koopman eigenfunc-

tions, which is represented by the lift-dimension function of the 

input vector. When 𝑁k dimensions are required to be lifted in 

the practical operation, the basic mathematical structure of 

𝝌(𝒙) can be described as (9). 

𝝌(𝒙) = [𝜒1(𝒙) ⋯ 𝜒𝑛(𝒙) ⋯ 𝜒𝑁k(𝒙)]
T
  

(9) 
𝜒𝑘(𝒙) = √∑ (𝑥𝑘 − 𝑐𝑘𝑚)

2𝑁m
𝑚=1 ∙ log√∑ (𝑥𝑘 − 𝑐𝑘𝑚)

2𝑁m
𝑚=1

  

∀𝑘 ∈ {1,2, . . . , 𝑁k} 

where 𝒄𝒌 ∈ ℝ𝑁m×1 is the base vector of the 𝑘th lifted dimen-

sion, which can be chosen randomly from the interval of the 

variable range. 𝑁m denotes the dimension of 𝒙, as well as the 

total number of the input feature. 

To portray the nonlinear sensitivity, nodal voltage at period 𝑡 
and nodal reactive power variation at period 𝑡 + 1 are taken as 

the inputs 𝒙, while the voltage variation of each node at period 

𝑡 + 1 is taken as the outputs 𝒚. 

In the day-ahead stage, a training set is built based on the 

historical operational data of ADN, as shown in (10). Each 

training object includes the input vector and the output vector. 

{
𝑿 = [𝒙(1) 𝒙(2) ⋯ 𝒙(𝑁f)]

𝒀 = [𝒚(1) 𝒚(2) ⋯ 𝒚(𝑁f)]
  

(10) 

𝒙 = [�̃�1
𝑡 ⋯ �̃�𝑁n

𝑡 ∆�̃�1
𝑡+1 ⋯ ∆�̃�𝑁n

𝑡+1]T 

𝒚 = [∆�̃�1
𝑡+1 ⋯ ∆�̃�𝑗

𝑡+1 ⋯ ∆�̃�𝑁n
𝑡+1]T 

∆�̃�𝑗
𝑡+1 = �̃�𝑗

𝑡+1 − �̃�𝑗
𝑡 , ∀𝑗 ∈ {1,⋯ ,𝑁n} 

∆�̃�𝑗
𝑡+1 = �̃�𝑗

𝑡+1 − �̃�𝑗
𝑡 , ∀𝑗 ∈ {1,⋯ ,𝑁n} 

where �̃�𝑗
𝑡 and �̃�𝑗

𝑡 denote the historical data of ADN. 

Based on the historical data, the weight coefficients matrix 

𝑴  in (8) can be determined by the least square estimation 

method day ahead, storing the potential laws between voltage 

measurement and reactive power variations. The least-square 

estimation can be described as (11). 

𝑴 = 𝒀𝑿𝐋
T[𝑿𝐋𝑿𝐋

T]
†
 

(11) 
𝑿𝐋 = [

𝒙(1)

𝝌(𝒙(1))
⋯

𝒙(𝑓)

𝝌(𝒙(𝑓))
⋯

𝒙(𝑁f)

𝝌(𝒙(𝑁f))
] 

where [∙]† denotes Moore-Penrose inverse matrix operation. 

During the intra-day operation, the trained Koopman oper-

ator is used to update the measurement-strategy mapping ma-

trix based on real-time measurements. 

First, the ADN voltage measurements 𝑽𝑡  of critical nodes 

and the expected reactive power variations ∆�̂�𝑖
𝑡+1 of the nodes 

with controllable resources are formed as an input vector 𝒙𝑖,𝑠
𝑡 , 

which can be described as (12). 

𝒙𝑖,𝑠
𝑡 = [𝑽𝑡 ∆�̂�𝑖

𝑡+1]T, ∀𝑖 ∈ {1,⋯ ,𝑁n} 

(12) 𝑽𝑡 = [𝑉1
𝑡 ⋯ 𝑉𝑁n

𝑡 ]
T
 

∆�̂�𝑖
𝑡+1 = [0 ⋯ ∆𝑄𝑖,𝑠 ⋯ 0]T, ∀𝑖 ∈ {1,⋯ ,𝑁n} 

Then, the elements 𝜑𝑖,𝑗,𝑠
𝑡  in the voltage measurement 

-reactive power strategy mapping matrix can be obtained based 

on the trained Koopman operator, as shown in (13). 
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𝜑𝑖,𝑗,𝑠
𝑡 = 𝑦𝑖,𝑗,𝑠

𝑡 /∆𝑄𝑖,𝑠 

(13) [𝑦𝑖,1,𝑠
𝑡 ⋯ 𝑦𝑖,𝑗,𝑠

𝑡 ⋯ 𝑦𝑖,𝑁n,𝑠
𝑡 ]T = 𝑴[

𝒙𝑖,𝑠
𝑡

𝝌(𝒙𝑖,𝑠
𝑡 )
] 

∀𝑖, 𝑗 ∈ {1,⋯ ,𝑁n}, ∀𝑠 ∈ {1,⋯ ,𝑁s} 

It is worth noting that the data quality of historical data af-

fects the accuracy of the Koopman operator, which in turn 

affects the accurate estimation of the measure-strategy mapping 

matrix. The adverse effect of bad data and measurement errors 

in historical data can be eliminated by data preprocessing. The 

processed data can support the accurate portrayal of complex 

sensitivity relationships. 

In the practical operation of ADN, the advanced metering 

infrastructure (AMI) [36] may obtain a 15-minute average 

value of the measurement. In this case, the average value can be 

used as training data to train the Koopman operator. With the 

integration of the supervisory control and data acquisition 

(SCADA) [37] and the distribution-level phasor measurement 

unit (D-PMU) [38], minute-level or even second-level syn-

chronized measurements can be utilized to train the Koopman 

operator. 

In summary, the voltage measurement-reactive power 

strategy mapping matrix can be generated in a data-driven 

manner during intra-day operation. Relying on the real-time 

voltage measurement and expected power variations, a 

high-precision description of nonlinear sensitivity will be re-

alized under a complex ADN environment. 

III. ADAPTIVE VOLTAGE CONTROL WITH CONTINUOUS 

MEASUREMENT-STRATEGY MAPPING MATRIX 

In the practical operation of ADN, the nodal voltage varia-

tion is coupling affected by the multiple DG reactive power 

outputs, forming a complex optimization problem. In this sec-

tion, an adaptive voltage control model is established based on 

the measurement-strategy mapping matrix. Efficient control 

strategy formulation can be achieved with the application of 

ADN sensitivity. 

A. LLDR-based continuation of the measurement-strategy 

mapping matrix 

The measurement-strategy mapping matrix gives an accurate 

description of the complex sensitivity between nodes. However, 

due to the elements in the matrix are discrete, it is difficult to be 

integrated into the adaptive voltage control model. Moreover, 

nodal voltage variation is affected by the coupling of reactive 

power output from multiple DGs, which makes it difficult to 

determine the respective optimal strategy of each DG based on 

a single sensitivity. Thus, the lifted linear decision rule is ap-

plied in this section to realize the continuation of the discrete 

measurement-strategy mapping matrix. A couple of continuous 

constraints will be obtained, in which the matrix elements are 

used as the segmentation points. 

Taking the voltage-reactive power sensitivity between nodes 

𝑖 and 𝑗 as an example, the segmented linearized sensitivity can 

be described as follows. 

∆𝑄𝑖
𝑡+1 = 𝛼𝑖,𝑗,𝑠∆𝑄𝑖,𝑠 + 𝛼𝑖,𝑗,𝑠+1∆𝑄𝑖,𝑠+1, if ∆𝑄𝑖

𝑡+1 ∈ [∆𝑄𝑖,𝑠, ∆𝑄𝑖,𝑠+1] (14) 

∆�̂�𝑖,𝑗
𝑡+1 = 𝛼𝑖,𝑗,𝑠𝜑𝑖,𝑗,𝑠

𝑡 ∆𝑄𝑖,𝑠 + 𝛼𝑖,𝑗,𝑠+1𝜑𝑖,𝑗,𝑠+1
𝑡 ∆𝑄𝑖,𝑠+1 

𝛼𝑖,𝑗,𝑠 + 𝛼𝑖,𝑗,𝑠+1 = 1, ∀𝑖, 𝑗 ∈ {1,⋯ ,𝑁n}, 𝑠 ∈ {1,⋯ ,𝑁s} 

where, 𝛼𝑖,𝑗,𝑠 is the auxiliary variable. 

Due to the non-linear threshold in (14), an auxiliary variable 

𝜉𝑖,𝑠
𝑡+1 is introduced to describe the specific location of current 

power variation in the range [∆𝑄𝑖,𝑠, ∆𝑄𝑖,𝑠+1] . The value of 

auxiliary variables can be expressed by the following mathe-

matical formula. 

𝜉𝑖,𝑠
𝑡+1 = {

min{∆𝑄𝑖
𝑡+1, ∆𝑄𝑖,𝑠+1} , 𝑠 = 1

max{min{∆𝑄𝑖
𝑡+1, ∆𝑄𝑖,𝑠+1} − ∆𝑄𝑖,𝑠, 0} , 𝑠 = 2,… , 𝑁s − 2

max{∆𝑄𝑖
𝑡+1 − ∆𝑄𝑖,𝑠, 0}, 𝑠 = 𝑁𝑠 − 1

 (15) 

The value of 𝜉𝑖,𝑠
𝑡+1 within different ranges is shown in Fig. 2, 

where the horizontal axis indicates the values of the original 

variable and the vertical axis indicates the values of the auxil-

iary variable. The auxiliary variable 𝜉𝑖,𝑠
𝑡+1  takes linearly in-

creasing in the range [∆𝑄𝑖,𝑠, ∆𝑄𝑖,𝑠+1] and takes a constant value 

as 0 or the length of the range ∆𝑄𝑖,𝑠+1 − ∆𝑄𝑖,𝑠 outside. 

  , 
 +1

  ,2
 +1

  ,1
 +1

  , s 1
 +1

   ,    , +1   ,1    ,2    ,3    , s

   ,2

   ,1

   , +1    ,  

Original
variable
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Fig. 2.  The auxiliary variable for node 𝑖 

Therefore, the nodal power variation can be expressed as 

follows. 

∆𝑄𝑖
𝑡+1＝∑ 𝜉𝑖,𝑠

𝑡+1𝑁s−1
𝑠=1   (16) 

Let 𝝃𝑖
𝑡+1 denote the vector for node 𝑖 of the auxiliary varia-

ble [𝜉𝑖,1
𝑡+1, … , 𝜉𝑖,𝑁s−1

𝑡+1 ]T , whose feasible domain Ξ𝑖  is 

non-convex. 𝝃𝑖
𝑡+1 can be uniquely determined by the extreme 

point of Ξ𝑖 , as shown in (17).  

{
𝝃𝑖
𝑡+1 = ∑ 𝜆𝑖,ℎ

𝑡+1𝜹𝑖,ℎ
𝑁s−1
ℎ=0

∑ 𝜆𝑖,ℎ
𝑡+1𝑁s−1

ℎ=0 = 1, 𝜆𝑖,0
𝑡+1, 𝜆𝑖,1

𝑡+1, … , 𝜆𝑖,𝑁s−1
𝑡+1 ≥ 0

  (17) 

where, 𝜹𝑖,ℎ denotes the ℎth extreme point of Ξ𝑖 , which can be 

calculated by the expected reactive power variations ∆𝑄𝑖,𝑠 in 

the measurement-strategy mapping matrix. The extreme point 

of Ξ𝑖  is defined as (18). 

{
  
 

  
 𝜹𝑖,0 = [∆𝑄𝑖,1, 0, … ,0]

T

𝜹𝑖,1 = [∆𝑄𝑖,2, 0, … ,0]
T

𝜹𝑖,2 = [∆𝑄𝑖,2, ∆𝑄𝑖,3 − ∆𝑄𝑖,2, … ,0]
T

⋮

𝜹𝑖,𝑁s−1 = [∆𝑄𝑖,2, … , ∆𝑄𝑖,𝑁s − ∆𝑄𝑖,𝑁s−1]
T

   (18) 

To simplify the expression, Eq. (17) can be further expressed 

in matrix form as shown in (19). 

[
1 … 1
𝜹𝑖,0 … 𝜹𝑖,𝑁s−1

] [𝜆𝑖,0
𝑡+1 … 𝜆𝑖,𝑁s−1

𝑡+1 ]
T
= [

1
𝝃𝑖
𝑡+1]  (19) 
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𝜆𝑖,0
𝑡+1, 𝜆𝑖,1

𝑡+1, … , 𝜆𝑖,𝑁s−1
𝑡+1 ≥ 0 

Since 𝜆𝑖,ℎ
𝑡+1 is non-negative, the Eq. (19) can be transformed 

into the following constraints, that is the continuous mapping 

matrix constraints for the nodal voltage to the reactive power. 

[
1 … 1
𝜹𝑖,0 … 𝜹𝑖,𝑁s−1

]
−1

[
1
𝝃𝑖
𝑡+1] ≥ 0  (20) 

In summary, based on the lifted linear decision rule, the 

discrete elements of the measurement-strategy mapping matrix 

are expressed as a couple of continuous constraints. The volt-

age-reactive power sensitivity constrained between two seg-

ment points is determined by linear interpolation. The contin-

uous measurement-strategy mapping matrix will be used to 

establish the voltage control model of ADN. 

B. Adaptive voltage control model with continuous mapping 

matrix 

To efficiently determine the control strategies for DGs, an 

adaptive voltage control model is constructed with the contin-

uous measurement-strategy mapping matrix. 

The voltage deviations over the technical limits jeopardize 

the electricity supply. Especially, the extreme situation of 

voltage deviation may lead to the load cutting of ADN. Thus, 

the object function is selected to minimize the extent of voltage 

deviation from the desired range [𝑉thr
min, 𝑉thr

max], as formulated in 

Eq. (21). 

min 𝑓V = ∑ |�̂�𝑗
𝑡+1 − 1|𝑗∈Ωn , �̂�𝑗

𝑡+1 ≥ 𝑉thr
max||�̂�𝑗

𝑡+1 ≤ 𝑉thr
min  (21) 

where �̂�𝑗
𝑡+1 is the estimation of the voltage variation on node 𝑗. 

Considering the nodal voltage variation is coupling affected 

by DG outputs on multiple nodes, the estimated voltage varia-

tion of node 𝑗 can be further described as follows: 

∆�̂�𝑗
𝑡+1 = ∑ ∆�̂�𝑖,𝑗

𝑡+1𝑁n
𝑖=1 , ∀𝑗 ∈ {1,2,⋯ ,𝑁n}  (22) 

where the voltage variation ∆�̂�𝑖,𝑗
𝑡+1  at node 𝑗  caused by the 

reactive power variation ∆𝑄𝑖
𝑡+1 at node 𝑖 can be calculated as 

the following equation. 

∆�̂�𝑖,𝑗
𝑡+1 = ∆𝑄𝑖,1𝜑𝑖,𝑗,1

𝑡 + ∑ 𝜉𝑖,𝑠
𝑡+1 ∆𝑄𝑖,𝑠+1𝜑𝑖,𝑗,𝑠+1

𝑡 −∆𝑄𝑖,𝑠𝜑𝑖,𝑗,𝑠
𝑡

∆𝑄𝑖,𝑠+1−∆𝑄𝑖,𝑠

𝑁s−1
𝑠=1

  

∀𝑖, 𝑗 ∈ {1,2,⋯ ,𝑁n}  
(23) 

Meanwhile, to ensure the security operation of ADN, the 

security constraints should be further integrated into the adap-

tive voltage control model, as shown as follows. 

𝑉min ≤ �̂�𝑗
𝑡+1 ≤ 𝑉max   

(24) 
�̂�𝑗
𝑡+1 = 𝑉𝑗

𝑡 + ∆�̂�𝑗
𝑡+1 

where 𝑉𝑗
𝑡 is the real-time voltage measurement. 

Given the limitations of DG operation, the operation con-

straints of DG also need to be integrated into the adaptive 

voltage control model, which is shown as follows. 

𝑄𝑖
min ≤ 𝑄𝑖,DG

𝑡+1 ≤ 𝑄𝑖
max   

(25) 𝑄𝑖,DG
𝑡+1 ≤ √(𝑆𝑖,DG)

2
− (𝑃𝑖,DG

𝑡+1)
2  

𝑄𝑖,DG
𝑡+1＝𝑄𝑖,DG

𝑡 + ∆𝑄𝑖
𝑡+1, ∀𝑖 ∈ {1,2,⋯ ,𝑁g} 

Based on the above analysis, the adaptive voltage control 

model can be expressed in the following form. 

min 𝑓V = ∑ |�̂�𝑗
𝑡+1 − 1|𝑗∈Ωn , �̂�𝑗

𝑡+1 ≥ 𝑉thr
max||�̂�𝑗

𝑡+1 ≤ 𝑉thr
min   

(26) 
s. t.   (16), (18), (20), (22), (23), (24), (25)  

As for the nonlinear threshold function in (21), the auxiliary 

variable 𝜗𝑗
𝑡+1  is introduced to express the extent of voltage 

deviation and some equivalent constraints are added as follows. 

min 𝑓V = ∑ 𝜗𝑗
𝑡+1

𝑗∈Ωn   

(27) 
𝜗𝑗
𝑡+1 ≥ �̂�𝑗

𝑡+1 − 𝑉thr
max 

𝜗𝑗
𝑡+1 ≤ −�̂�𝑗

𝑡+1 + 𝑉thr
min 

𝜗𝑗
𝑡+1 ≥ 0 

Thus, after the linearization relaxation, the original model is 

converted into a linear programming (LP) model, as shown in 

(28), which can be solved by commercial solvers, such as 

GUROBI and CPLEX. 

min 𝑓V = ∑ 𝜗𝑗
𝑡+1

𝑗∈Ωn   
(28) 

s. t.   (16), (18), (20), (22), (23), (24), (25), (27) 

Remark 4: The other control objectives can also be taken 

into account in the adaptive control model. As an example, the 

economic operation object can be introduced to minimize the 

total active power losses, as shown in (29). 

min 𝑓L = ∑ 𝑟𝑖𝑗𝐼𝑖𝑗,𝑡
2

𝑖𝑗∈Ωb   (29) 

However, accurate ADN parameters may be not available in 

the practical operation. Meanwhile, the voltage 𝑉𝑖,𝑡 is typically 

around 1.0 p.u. in normal operation. Thus, Eq. (29) can be 

approximately converted to Eq. (30). 

min 𝑓L = ∑ ((�̂�𝑖𝑗
𝑡+1)

2
+ (�̂�𝑖𝑗

𝑡+1)
2
)𝑖𝑗∈Ωb
  (30) 

At the same time, the constraints related to the active and 

reactive power of the branch should be further appended, as 

shown in (31). 

∆�̂�𝑘,𝑖𝑗
𝑡+1 = ∆𝑄𝑘,1𝜁𝑖𝑗,𝑘,1

𝑡 +∑ 𝜉𝑘,𝑠
𝑡+1 ∆𝑄𝑘,𝑠+1𝜁𝑖𝑗,𝑘,𝑠+1

𝑡 −∆𝑄𝑘,𝑠𝜁𝑖𝑗,𝑘,𝑠
𝑡

∆𝑄𝑘,𝑠+1−∆𝑄𝑘,𝑠

𝑁s−1
𝑠=1

  

∀𝑘 ∈ Ωn, ∀𝑖𝑗 ∈ Ωb  

(31) 

∆�̂�𝑘,𝑖𝑗
𝑡+1 = ∆𝑄𝑘,1𝜂𝑖𝑗,𝑘,1

𝑡 + ∑ 𝜉𝑘,𝑠
𝑡+1 ∆𝑄𝑘,𝑠+1𝜂𝑖𝑗,𝑘,𝑠+1

𝑡 −∆𝑄𝑘,𝑠𝜂𝑖𝑗,𝑘,𝑠
𝑡

∆𝑄𝑘,𝑠+1−∆𝑄𝑘,𝑠

𝑁s−1
𝑠=1

  

∀𝑘 ∈ Ωn, ∀𝑖𝑗 ∈ Ωb 

∆�̂�𝑖𝑗
𝑡+1 = ∑ ∆�̂�𝑘,𝑖𝑗

𝑡+1𝑁n
𝑘=1 , ∀𝑖𝑗 ∈ Ωb  

∆�̂�𝑖𝑗
𝑡+1 = ∑ ∆�̂�𝑘,𝑖𝑗

𝑡+1𝑁n
𝑘=1 , ∀𝑖𝑗 ∈ Ωb  

�̂�𝑖𝑗
𝑡+1 = 𝑃𝑖𝑗

𝑡 + ∆�̂�𝑖𝑗
𝑡+1 

�̂�𝑖𝑗
𝑡+1 = 𝑄𝑖𝑗

𝑡 + ∆�̂�𝑖𝑗
𝑡+1 

Thus, an adaptive voltage control model is established based 

on the continuous measurement-strategy mapping matrix. By 

flexibly adjusting the reactive power of multiple DGs, voltage 

fluctuations in ADN can be effectively suppressed in a complex 

operation environment.  
The proposed method is essentially a centralized da-

ta-driven-based control method, which can also be extended to 

a decentralized framework. By forming a local model based on 

the mapping matrix in each ADN area, the decentralized 
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framework can reduce the computation burden effectively. 

C. Implementation of the adaptive voltage control strategy 

The practical implementation of the proposed method can be 

divided into the day-ahead stage and the intra-day operation 

stage, as shown in Fig. 3. 

No

Yes

Day-ahead
stage

Build the training set using historical data

 Build and train the Koopman opeartor

Set Nt = 24h, t = 0, Δt = 1min

Acquire the measurement data of the critical nodes

Update the measurement-strategy mapping matrix
with the trained Koopman opeartor

Realize the continuation of mapping matrix

based on the LLDR method

Build the adaptive voltage control model 

and generate the control strategy of DGs

Intra-day 
opeartion

Start

t ＞ Nt？

t = t + Δt 

End
 

Fig. 3.  Schematic of the proposed adaptive voltage control strategy 

1) In the day-ahead stage, a Koopman operator is built in the 

distribution management system (DMS) of ADN, which is 

trained by the historical operational data. The trained Koopman 

operator can realize an accurate generation of the nonlinear 

sensitivity of ADN. 

2) During the intra-day operation, the measurement-strategy 

mapping matrix of ADN is first generated based on the re-

al-time measurement of the critical nodes. For the continuous 

connection of discrete matrix elements, the lifted linear deci-

sion rule is utilized to construct the linear measure-

ment-strategy mapping constraints. Then, an adaptive voltage 

control model is established in each control interval, which can 

determine the control strategies for DGs. By regulating the 

reactive outputs of DGs in real-time operation, the proposed 

method can address the voltage violations of ADN effectively. 

Note that: the control interval in the proposed method is 

flexible, which only needs to be longer than the strategy for-

mulation time. Typically, strategies can be generated in sec-

onds based on the proposed method. Thus, the control window 

and measurement sampling rate can be minimized to a few 

seconds. 

Remark 5: Communication is required in the proposed 

method, while communication delays will affect the meas-

urement uploading and the strategy release. However, the delay 

of communication generally does not exceed 1 second [39], 

while the control strategy of DGs in the proposed method is 

updated every 1 minute. Thus, the affection of communication 

delay is relatively limited in the practical application of the 

proposed method. 

IV. CASE STUDIES AND ANALYSIS 

In this section, the effectiveness of the proposed adaptive 

voltage control strategy for DGs is verified using the modified 

IEEE 33-node distribution system, 53-node practical distribu-

tion system, and IEEE 123-node distribution system. The nu-

merical experiments were conducted on a computer with an 

Intel(R) Core(TM) i7-9750H CPU processor running at 2.60 

GHz and 16 GB of RAM. 

A. Modified IEEE 33-node system 

The modified IEEE 33-node distribution system includes a 

substation and 32 branches, of which the rated voltage level is 

12.66 kV. The structure of the test system is shown in Fig. 4. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

26 27 28 29 30 31 32 3323 24 25

19 20 21 22
Node with WT integration

Node with PV integration

 
Fig. 4.  Structure of the modified IEEE 33-node system 

The total active power and reactive power demands of ADN 

are 3715 kW and 2300 kvar. To consider the impact of DGs, 7 

PV units with 200 kVA capacity each and 5 WT units with 300 

kVA capacity are integrated into the test system. The real-time 

fluctuation curves of DG generation, including PVs and WTs, 

and load operation are shown in Fig. 5 to Fig. 7. The upper and 

lower limits of the statutory voltage range are set as 1.10 p.u. 

and 0.90 p.u. 
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Fig. 5.  The fluctuation curves of the load 
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Fig. 6.  The fluctuation curves of PV 
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Fig. 7.  The fluctuation curves of WT 

1) Accuracy analysis of the generated mapping matrix 

To realize an accurate description of the nonlinear sensitivity, 

the measurement-strategy mapping matrix is generated based 
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on the Koopman operator. Taking the voltage-reactive power 

sensitivity of ADN as an example, nonlinear complex sensi-

tivity be described based on the mapping matrix in a segmented 

linearized manner. 

From the perspective of the relationship at a single node, the 

mapping matrix can accurately depict the nonlinear sensitivity 

between nodal voltage and the nodal reactive power. The ef-

fects of different scenarios are illustrated in Fig. 8. Compared to 

the linear relationship derived at the operating point, the esti-

mated mapping matrix demonstrates higher accuracy in de-

scribing this complex relationship. Additionally, when com-

pared to the most accurate sensitivity obtained through the 

perturbation method, the proposed method offers similar ac-

curacy in a segmented linearized manner while avoiding dis-

turbances to the ADN. 

1.25

1.26

1.27

1.28

1.29
Estimated value
Accruate value
Linear value

-180 -144 -108 -72 -36 0 36 72 108 144 180

Nodal reactive power variation (kvar)

V
o

lt
a

g
e
-p

o
w

e
r

 r
el

a
ti

o
n

sh
ip

(
p

.u
./

k
v

a
r
)

1
0

-5
-1

0.0

0.2

0.4

0.6

0.8

1.0

P
re

d
ic

tio
n

 e
r
ro

r

(
p

.u
./k

v
a

r
)

1
0

-7

Error between linear/accruate value

Error between estimated/accruate value

 

Fig. 8.  The comparison of the accuracy between different scenarios 

Regarding adaptability to complex ADN environments, the 

Koopman operator demonstrates robust generalization capa-

bilities. The distribution of the prediction error, depicted in Fig. 

9, shows that the estimation error between the predicted and 

actual values remains predominantly below 1%. This high level 

of accuracy can adapt to the varying states of ADN.  
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Fig. 9.  The distribution of the prediction error 

To quantitatively evaluate the performance of the trained 

Koopman operator, the mean absolute error (MAE) is used as 

the numerical evaluation index, defined as Eq. (32): 

MAE =
1

𝑁l×𝑁n
∑ ∑ |�̂�𝑛,𝑖 − 𝑦𝑛,𝑖|

𝑁n
𝑖=1

𝑁l
𝑛=1   (32) 

where �̂�𝑛,𝑖 and 𝑦𝑛,𝑖 are the predicted value and the true value of 

the sensitivity, respectively. 𝑁l is the total number of test ob-

jects. 𝑁n is the total number of nodes in ADN. 

The MAE index represents the average absolute value of the 

prediction error, which is 8.20 × 10−6 on the test set, demon-

strating that the predicted sensitivity is very close to the real 

value. Consequently, an accurate depiction of the sensitivity 

mapping relationship between voltage measurements and re-

active power strategy is achievable within the complex opera-

tional environment of the ADN. 

2) Effectiveness analysis of voltage control strategy 

To verify the effectiveness and advancement of the proposed 

adaptive voltage control strategy, the voltage control object 𝑓V 

is first taken as an example to be analyzed, and five scenarios 

are adopted in this paper.  

Scenario I: There is no control strategy conducted on DG 

units, where the initial operational state of the ADN can be 

obtained. 

Scenario II: The strategies of DGs are determined based on 

the continuous measurement-strategy mapping matrix of the 

voltage and reactive power with the proposed voltage control 

method. 

Scenario III: The control strategies of DGs are determined 

based on the linear sensitivity relationship obtained at the op-

erating point based on existing methods. 

Scenario IV: The real-time centralized model-based method 

is used to optimize the DG strategy, which can achieve a the-

oretically optimal control effect for the ADN. 

Scenario V: The iterative data-driven method in [40] is used 

to determine the DG control strategy. 

The voltage deviation index (VDI) is involved to intuitively 

reflect the optimization effect of the proposed method, which 

can be described by Eq. (33). 

VDI = ∑ ∑ |(𝑉𝑗
𝑡)
2
− 1|𝑗∈Ωn

𝑁t
𝑡=1   (33) 

The optimization results for the five scenarios are listed in 

Table I. 
TABLE I 

OPTIMIZATION RESULTS OF THE FIVE SCENARIOS 

Scenario 
Maximum 

voltage (p.u.) 

Minimum 

voltage (p.u.) 

VDI 

(p.u.) 

I 1.0588 0.9227 1449.58 

II 1.0151 0.9695 276.37 

III 1.0151 0.9695 284.15 

IV 1.0162 0.9695 269.32 

V 1.0153 0.9695 321.95 

The comparison of Scenarios I and II is used to validate the 

effectiveness of the proposed method. In Scenario I, the 

high-penetration DG units lead to frequent voltage fluctuation 

and voltage deviation. The voltage distribution of the system in 

Scenario I is shown in Fig. 10. 
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Fig. 10.  Voltage profiles in Scenario I 

Fig. 11 shows the voltage distribution of the system in Sce-

nario II. Using the continuous voltage measurement-reactive 

power strategy mapping matrix, the adaptive voltage control 

model is built during the intra-day operation. By updating re-

active power control strategies in real-time according to ADN 

measurements, the voltage control strategies can be determined 
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adaptively. Taking the DG at node 17 as an example, the reac-

tive power is flexibly adjusted according to the fluctuation in 

the complex operational environment of ADN, as shown in Fig. 

12. Compared with the initial operation state in Scenario I, the 

voltage deviation of ADN is significantly alleviated. 
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Fig. 11.  Voltage profiles in Scenario II 
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Fig. 12.  Reactive power of DGs at node 17 in Scenario II 

It is worth noting that accurate sensitivity can be obtained 

based on the perturbation method. However, due to the cou-

pling of nodal voltages of ADN with the output of multiple 

DGs, accurate sensitivity cannot be directly used to obtain 

control strategies for DGs. Therefore, some studies have pro-

posed to realize the superposition calculation by inscribing the 

sensitivity relationship among nodes in a linear form, as in 

Scenario III. Due to the linear relationship ignores the 

non-linear characteristics of the inter-node effects, Scenario III 

is less effective in voltage optimization, as shown in Fig. 13. In 

contrast, an accurate portrayal of ADN sensitivity is realized 

based on the continuous mapping matrix in Scenario II, which 

can support a more effective formulation of DG strategies. The 

impact on the mapping accuracy of sensitivity can be obtained 

by comparing the control effect of Scenarios II and III. 
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Fig. 13.  Voltage profiles in Scenario III 

The comparison of Scenarios II and IV is used to verify the 

indistinctive gap between the proposed method and the theo-

retical optimization result. Fig. 14 shows the voltage distribu-

tion of the system in Scenario IV. The centralized model-based 

method constructs a global optimization model with accurate 

network parameters of ADN. Through making real-time deci-

sions on the control strategy of DGs, a global optimal voltage 

control effect can be obtained. However, this may not be 

available in reality due to the communication constraints. Thus, 

the real-time centralized model-based method can only yield a 

theoretically optimal control effect. In comparison, the pro-

posed method in Scenario II obtains a similar control effect 

based on the concealed logic between nodes of ADN. The 

formulation of the control strategy for DGs is achieved with the 

sensitivity of ADN in a data-driven manner. 
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Fig. 14.  Voltage profiles in Scenario IV 

The comparison of Scenarios II and V is used to demonstrate 

the advantages of the proposed method. The data-driven 

method in Scenario V can respond to system state changes 

based on the measurement data, which can improve the opera-

tional performance in complex environments. The voltage 

distribution of the system in Scenario V is shown in Fig. 15.  
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Fig. 15.  Voltage profiles in Scenario V 

However, the interactive iteration is used to realize an oper-

ation control of DGs. Taking the strategy determination process 

at 19: 00, the data-driven method in Scenario V uses 29 itera-

tions to converge at a stable solution, as shown in Fig. 16, 

which may cause sustained perturbations on ADN during the 

control process. Compared with iterative data-driven methods, 

the proposed method does not require an iterative process, 

which can achieve real-time strategy optimization, avoiding the 

impact on ADN's normal operation effectively. 
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Fig. 16.  Iterations of DG strategy in Scenario V 

3) Adaptability to multiple control objectives 

The economic operation object can also be considered in the 

proposed method with the sensitivity of ADN. In this 

sub-section, a numerical analysis is presented for minimizing 

both voltage deviation and network losses. The objective 

function can be formulated as follows. 
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min 𝑓 = 𝜔1𝑓L + 𝜔2𝑓V  (34) 

where, 𝜔1 and 𝜔2 are the weight coefficients associated with 

power loss and voltage deviation. 

The network loss of ADN is used to analysis the control 

performance, which can be calculated as shown in Eq. (35). 

PLoss = ∑ ∑ (𝐼𝑖𝑗
𝑡 )

2
𝑟𝑖𝑗𝑖𝑗∈Ωb

𝑁t
𝑡=1   (35) 

where, 𝑟𝑖𝑗  is the resistance of branch 𝑖𝑗. 

The scenario settings are the same as those in Section 

IV.A.2). The optimization results under the combined control 

object for the five scenarios are listed in Table II. 

TABLE II 

OPTIMIZATION RESULTS OF THE FIVE SCENARIOS 

Scenario 
Maximum 

voltage (p.u.) 
Minimum 

voltage (p.u.) 
VDI 
(p.u.) 

PLoss 
(kWh) 

Total loss 
(VDI+PL) 

I 1.0588 0.9227 1449.58 1002.61 2452.19 

II 1.0465 0.9645 604.77 758.80 1363.58 

III 1.0556 0.9575 785.28 641.42 1426.71 

IV 1.0452 0.9625 614.54 747.61 1362.15 

V 1.0148 0.9694 329.67 1318.00 1647.67 
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Fig. 17.  The comparison of operational cost under five scenarios 

Fig. 17 shows the comparison of operational costs under five 

scenarios. Because of the lack of control, the network loss in 

Scenario I is large. In contrast, Scenario II uses the measure-

ment-strategy mapping matrix to accurately depict the sensi-

tivity of ADN. The flexible adjustment of the DG control 

strategy is realized, effectively reducing the network loss while 

obtaining a similar effect to the theoretical optimal control 

method in Scenario IV. In Scenario III, the linear approxima-

tion ignores the high dimensional error of the sensitivity, re-

sulting in a decrease in the control effect. In contrast, better 

voltage control effects are realized in Scenario III, but not as 

effective in reducing network losses. 

4) Influence of the segments in measurement-strategy matrix 

The number of linear segments, that is the number of ex-

pected reactive power changes ∆𝑄𝑖,𝑠, is an important parameter 

in the measurement-strategy mapping matrix. The increasing 

number of segments will increase the size of the optimization 

model, resulting in a slower solution speed. To quantitatively 

analyze the effect of the number of segment points, different 𝑁s 
values are set in this paper to compare the optimal control effect 

and the solving time of Scenario II. The optimization results are 

shown in Table III. 

The visual representation of the segments' influence is shown 

in Fig. 18. The increase in the number of segment points results 

in an increase in the number of variables introduced for the 

continuation of the measurement-strategy mapping matrix. 

This will increase the computational burden prominently. 

Therefore, the solution time of the adaptive voltage control 

model becomes gradually longer.  

TABLE III 

INFLUENCE OF THE NUMBER OF LINEAR SEGMENTS 

Value 
Maximum 

voltage (p.u.) 

Minimum 

voltage (p.u.) 

VDI 

(p.u.) 

Solution time 

(s) 

𝑁s = 11 1.0151 0.9695 276.37 3.01 

𝑁s = 21 1.0151 0.9695 276.38 6.36 

𝑁s = 31 1.0151 0.9695 276.37 14.18 

𝑁s = 41 1.0151 0.9695 276.41 22.51 

𝑁s = 51 1.0151 0.9695 276.36 31.04 
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Fig. 18.  The influence of the segments in the measurement-strategy matrix 

5) Influence of the key measurements on measurement- 

strategy mapping matrix 

When ADN is partially monitored, the measurement map-

ping matrix can be constructed based on the measurements 

from the critical node. The control effect and computation time 

under the partially monitored scenario are analyzed in this 

sub-section, as shown in Table IV. In the test system, nodes 2, 3, 

6, 12, 13, 16, 17, 18, 21, 22, 25, 30, 31, 32, and 33 are set as the 

critical node equipped with measurements, while the other 

nodes have no measurement devices. 

TABLE IV 

COMPARISON OF CONTROL EFFECT UNDER KEY MEASUREMENTS 

Scenario 
Maximum 

voltage (p.u.) 
Minimum 

voltage (p.u.) 
VDI 
(p.u.) 

Solution time 
(s) 

II. Fully 

monitored 
1.0151 0.9695 276.3708 3.01 

II. Partially 
monitored 

1.0151 0.9695 299.0251 1.97 

It can be seen from the data that there is a significant de-

crease in the computation time when only key measurements 

are utilized in the establishment of the mapping matrix, while 

the control effect remains almost the same. 

B. Practical application 

To further illustrate the adaptability in practical power grids 

of the proposed adaptive voltage control strategy for DGs, a test 

case from a practical system in Guangzhou of China is further 

adopted. The structure of the system is shown in Fig. 19. 

The system consists of 52 lines, with a rated voltage level of 

10 kV, and the total active power and reactive power demands 

are 8790 kW and 1786 kvar, respectively. To simulate the 

impact on ADN caused by high penetration of DGs, 19 PV 

units and 5 WT units are integrated into the test system. The 

locations and capacities of DGs are shown in Table V. The 
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penetration rate of DG reaches almost 120%. The scenario 

settings are similar to those in Section IV.A, which are not 

illustrated here. 
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Fig. 19.  Structure of HXF23 53-node practical distribution system 

The optimization results for the five scenarios are listed in 

Table VI. Similar to the conclusions in Section IV-A, the pro-

posed proposed adaptive voltage control strategy can effec-

tively mitigate voltage violations. The voltage profiles of the 

whole system in Scenarios I, II, III, IV, and V, are shown in Fig. 

20 to Fig. 24. 
TABLE V 

BASIC INSTALLATION PARAMETERS OF DGS 

Location Type Capacity (kVA) 

6, 9, 16, 46, 53 WT 300 

7, 14, 15, 17, 40, 43,47, 50, 51, 52 PV 200 

20, 21, 22, 26, 27,28, 29, 31, 32 PV 360 

TABLE VI 

OPTIMIZATION RESULTS OF THE FIVE SCENARIOS 

Scenario 
Maximum 

voltage (p.u.) 

Minimum 

voltage (p.u.) 

VDI 

(p.u.) 

I 1.0562 0.9201 2466.27 

II 1.0248 0.9760 207.50 

III 1.0248 0.9589 930.19 

IV 1.0248 0.9760 191.05 

V 1.0145 0.9760 275.36 
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Fig. 20.  Voltage profiles in Scenario I 
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Fig. 21.  Voltage profiles in Scenario II 
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Fig. 22.  Voltage profiles in Scenario III 
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Fig. 23.  Voltage profiles in Scenario IV 
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Fig. 24.  Voltage profiles in Scenario V 

C. Scalability validation 

The modified IEEE 123-node system is adopted to verify the 

scalability of the proposed method on a large-scale ADN, as 

shown in Fig. 25. The rated voltage level is 4.16 kV. The total 

active and reactive power loads on the system are 3490 kW and 

1920 kvar. 
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Fig. 25.  Structure of the modified IEEE 123-node system 

To simulate the impact of high penetration of DGs, 21 PV 

units with 400 kVA capacity each and 8 WT units with 600 

kVA capacity are integrated into the test system. The scenario 

settings are the same as those in Section IV.A. The optimization 

results for the five scenarios are listed in Table VII. The voltage 

profiles of the whole system in Scenarios I, II, III, IV, and V, 

are shown in Fig. 26 to Fig. 30. 
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TABLE VII 

OPTIMIZATION RESULTS OF THE FIVE SCENARIOS 

Scenario 
Maximum 

voltage (p.u.) 
Minimum 

voltage (p.u.) 
VDI 
(p.u.) 

I 1.0970 0.9004 8993.48 

II 1.0082 0.9893 544.77 

III 1.0066 0.9858 1298.20 

IV 1.0082 0.9891 492.61 

V 1.0149 0.9943 594.82 
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Fig. 26.  Voltage profiles in Scenario I 
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Fig. 27.  Voltage profiles in Scenario II 
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Fig. 28.  Voltage profiles in Scenario III 
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Fig. 29.  Voltage profiles in Scenario IV 
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Fig. 30.  Voltage profiles in Scenario V 

Similarly, by the coordination of multiple DGs, the voltage 

fluctuations can be effectively mitigated based on the proposed 

method, which takes about 15 seconds for the solution of the 

adaptive voltage control model. As can be seen in Table VII, 

the proposed method has a similar voltage control performance 

compared with the theoretically optimal effect in Scenario IV. 

Meanwhile, compared with the linear sensitivity-based control 

method in Scenario III, the proposed method can greatly im-

prove the control effect by improving the accuracy of sensitiv-

ity description. Compared to Scenario V, the proposed method 

can provide better control performance avoiding perturbing the 

normal operation of ADN. 

To analyze the relationship between the computation com-

plexity and the size of ADN, the proposed IEEE 33-node sys-

tem, HXF23 53-node system, and IEEE 123-node system are 

taken as examples. The numerical result is shown in Table VIII. 

It can be seen from the data that the computational complexity 

rises as the system size increases. Meanwhile, the computation 

time shows an approximate linear growth trend with the num-

ber of nodes in ADN. However, the calculations can all be done 

in seconds in the above systems. 

TABLE VIII 

COMPUTATION TIME UNDER DIFFERENT ADN SIZES 

Test system Number of nodes Computation time (s) 

IEEE33 33 3.01 

HXF23 53 7.58 

IEEE123 123 15.24 

In summary, the proposed strategy can realize an efficient 

operation of ADN based on the high-precision sensitivity. A 

flexible control strategy can be determined according to the 

complex operation environment adaptively. 

V. CONCLUSIONS 

To effectively mitigate voltage violations in the complex 

environment, a sensitivity-based voltage control strategy for 

DGs is proposed with a measurement-strategy mapping matrix. 

First, the Koopman operator is trained to generate the meas-

urement-strategy mapping matrix. The test results show that the 

Koopman operator can extract the hidden logic in the data of 

ADN effectively. Meanwhile, the complex time-varying rela-

tionship between nodal voltage and the power strategy can be 

characterized accurately by the three-dimensional mapping 

matrix. Then, the mapping matrix is continued based on the 

lifted linear decision rule, which can be integrated into the 

optimization model. As shown in the numerical analysis, an 

efficient formulation of DG control strategies can be realized 

considering multi-node voltage to reactive power coupling. 

Compared with the linear sensitivity-based method, the control 

effect of the proposed method is better, which is similar to that 

of the centralized method. Enhanced control performance can 

be achieved through the adaptive application of sensitivity. 

Several notable issues warrant further research. In consider-

ation of the impact of communication, how to ensure effec-

tiveness in the case of communication failure is one of the 

problems that needs to be solved. In addition, considering the 

different scenarios in the practical operational environment, the 

event handler-based mechanism may need to be further intro-

duced to adaptively select the objective function. 
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