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Abstract—As the utilization of power electronic-based compo-

nents in power systems continues to grow, a comprehensive un-

derstanding of their dynamics becomes increasingly important 

for system design, control and protection analysis. To meet prac-

tical needs, the high-fidelity but time-consuming electromagnetic 

transient (EMT) simulations are often required. To improve the 

performance of these simulations, a highly efficient splitting 

state-space method with numerical error control is proposed that 

reduces the computation workload. The method employs a gener-

ic decoupling principle to split the state-space equations of the 

converter-integrated power system and introduces the exponen-

tial splitting formulas of multiple orders accuracy to solve and 

then compose the splitting state-space equations. The decoupling 

principle is designed based on separation of time-varying por-

tions of the state matrix, which is realized by locating the smallest 

subcircuit topology that is switch state-dependent, through au-

tomatic switch grouping and switch adjacent state variables 

(SASV) identification. A family of exponential splitting schemes 

is employed to accelerate the demanding matrix exponential cal-

culation. The splitting state-space method undergoes comprehen-

sive testing across various cases, including a distribution network 

with DC load, an LLC resonant converter, a large-scale wind 

farm, and an MMC circuit. The accuracy of the proposed method 

is thoroughly evaluated, and its efficiency is validated. 

 
Index Terms—Electromagnetic transient, exponential integra-

tor, power converter, splitting method. 

I. INTRODUCTION 

HE power systems are becoming increasingly complex 

due to renewable generation penetration and hybrid ac/dc 

network interconnections, which lead to widespread utilization 

of power electronic-based converters [1]. This complexity has 

a profound impact on the system dynamic performance, and 

raises the need for accurate time-domain simulation of power 

system transients [2]. Electromagnetic transient (EMT) simu-
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lation programs, which adopt the detailed modeling approach, 

can provide high-fidelity simulation results at the circuit level. 

Previously, these programs were mainly used to track the fast 

EMT phenomenon that is naturally confined to local area, but 

growing demands from practical studies in longer timespan 

and larger scale were seen more recently. For example, diverse 

coupling forms among power electronic converters and tradi-

tional electrical equipment are observed to trigger wide-band 

oscillations [3]. Cross-region interactions are formed between 

energy plants and load center networks through long distance 

DC transmission systems [4]. These demands pose new chal-

lenges to EMT simulation programs. The ever-increasing ad-

vancement of high-switching-frequency (HSF) converters has 

notably resulted in semiconductor valve switching frequencies 

reaching hundreds of kilohertz [5], requiring small enough 

time-steps to capture the switching dynamics. This require-

ment also arises from the small-time constants associated with 

the component dynamics and device transients with nonlinear 

characteristics. The increasing number of converters in the 

power system and the stringent simulation requirements im-

pose higher demands on the execution time and computing 

resources required for these simulations. 

Various techniques aimed at improving the efficiency of de-

tail-modeled power converter simulations have been devel-

oped in earlier studies. Circuit-based decoupling, as one com-

mon idea, has been adopted by methods like multirate analysis 

and parallel computations to accelerate the simulations [6], [7]. 

Circuit decoupling is conventionally achieved by transmission 

line propagation delay, while the compensation method can be 

used to decouple at arbitrary locations where line delays are 

not available [8]. The state-space nodal method (SSN) is also 

able to avoid line delay usage by interfacing nodal analysis 

equations with grouped state-space equations, where the 

grouping splits switching events and reduces the computation 

burden related to varying topology matrix calculations [9]. A 

circuit partitioning method was presented in [10] that applied 

an explicit formula to selected energy storage elements for 

power electronic circuit division and used multirate methods 

to improve efficiency. In [11], a region folding method decou-

pled the identical structural power electronic blocks to pre-

calculate their inverse matrices. Further investigations are 

needed for efficient decoupling methods that can be applied to 

generic power converter topologies. 

One merit of the decoupling methods is that they alleviate 

the explosion of the involved switch on/off state combination 
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numbers by appropriate switch separation into subsystems. 

Apart from this, constant admittance matrix or state matrix 

methods to approximate the switching state/model have also 

drawn attention. A buck converter was modeled using a 

piecewise-linear approximation in [12], which separated the 

nonlinear switch property into several subsections and ob-

tained a constant admittance matrix. The associated discrete 

circuit models were developed to maintain constant admit-

tance with different passive element representations during 

on/off states [13], and have been used for boost/buck inverters, 

three-level voltage source converter (VSC), etc., especially in 

real-time applications [14], [15]. The insulated gate bipolar 

transistor (IGBT) and its parallel diode were modeled as a 

voltage-current source pair in [16], and one time-step latency 

was introduced to achieve an invariant coefficient matrix. Var-

ious modeling techniques for modular multilevel converters 

(MMCs) are presented in [17]. 

In contrast to the circuit-based decoupling and constant ma-

trix approaches, this paper proposes a splitting state-space 

method with numerical error control scheme. The foundation 

of the method is a decoupling principle applicable for general 

converter topology, which extracts the time-varying part of the 

state-space equations of the converter-integrated power sys-

tems and generalizes the matrix structure of this part, hence 

splitting the state-space equations. Consequently, the method 

mitigates the computational burden associated with switch 

operations. On this basis, the method employs the exponential 

splitting formulas to adaptively execute the numerical integra-

tion of time-varying and constant parts separately. Last but not 

least, the method provides flexible options for solutions of 

each accuracy order, and uses a numerical error control 

scheme to guide this setting, which helps in balancing the 

trade-off between simulation accuracy and efficiency, enhanc-

ing the overall performance. 

The remainder of the paper is organized as follows. Section 

II introduces the splitting state-space method and its numerical 

error control scheme. Section III demonstrates the decoupling 

principle with typical converter topologies. Section IV pre-

sents several case studies to examine the performance of the 

proposed method. Conclusions are drawn in Section V. 

II. SPLITTING STATE-SPACE METHOD 

The ordinary differential equations (ODEs) describing con-

verter-integrated power systems are time-varying due to the 

switch operations, and the numerical integration of the ODEs 

can be computationally intensive. The splitting state-space 

method proposed in this section is aimed to address this chal-

lenge. For the post-switching update of the state-space equa-

tions, this method first identifies the pattern of elements in the 

state matrix and splits the equations into time-varying and 

constant parts. Then, by incorporating the exponential splitting 

formulas of multiple orders accuracy, the solutions to the split-

ting state-space equations and their composition are derived to 

approximate the solution of the full state-space equations. The 

integration in each time-step is accordingly divided into sever-

al stages, and the computation of the exponential of the entire 

time-varying state matrix is avoided. The method also consid-

ers the accuracy loss induced by the splitting state-space 

method and provides error control scheme. 

A. Exponential Splitting Formulas 

An 𝑁-dimensional linear system has the state-space form 

𝒙̇ = 𝑨𝒙 + 𝑩𝒖, 𝒙(0) = 𝐱0, (1) 

where 𝒙 and 𝒖 denote the vector of state variables and input 

variables, 𝑨 and 𝑩 are the state and input matrices that repre-

sent the coefficients of the system, and 𝐱0 is the initial value 

of 𝒙. For easier presentation, a convenient technique from [18] 

is used to transform this non-autonomous system form into an 

augmented and autonomous form 

𝒙̇ = 𝑨̃𝒙, (2) 

where the effect of the forcing term 𝒖  is wrapped into the 

augmented state vector 𝒙, which contains the original 𝒙 and 

auxiliary state variables 𝒙u. This technique can be exemplified 

by transforming a simple system with constant input c, 𝒙̇ =

𝑨𝒙 + 𝒃c, by defining 𝑨̃ = [
𝑨 𝒃
𝟎 0

] , 𝒙 = [
𝒙
𝒙u
], and 𝒙(0) = [

𝐱0
c
]. 

The equivalence of (1) and (2) can be easily demonstrated and 

such a transformation is available for different input signal 

forms. The state transition rule for system (2) is explicitly ex-

pressed with the matrix 𝑨̃ exponential function as 

𝒙(𝑡) = 𝐞𝑡𝑨̃𝒙(0). (3) 

In the following presentation, we use (3) as the fundamental 

equation describing the system dynamics, and the tilde super-

script is dropped for concise notation. This formulation is gen-

eral, as the forcing term is included in the auxiliary state vari-

ables. 

Numerical integration with the exponential integrators [19] 

involves the computationally intensive matrix exponential 

function with a time complexity of O(𝑁3), which becomes the 

efficiency bottleneck in the converter-integrated power sys-

tems EMT simulations. The exponential splitting formulas can 

treat these matrix operations more easily [20]. The method 

consists of three steps, which are decoupling, integration and 

combination. In the first step, the system is decoupled and the 

state matrix 𝑨 is split into two matrices 𝑨 = 𝐀1 + 𝑨2 . It is 

noted that this paper uses italic symbol to denote time-varying 

vectors and matrices, to better distinguish those data structs 

that vary with switch states from those that do not. Then, the 

exponential of 𝑨 is approximated with splitting formulas as 

product of matrix exponentials formed by 𝐀1 and 𝑨2. Among 

them, the first-order accurate Trotter formula is [21] 

𝐞h(𝐀1+𝑨2) = 𝐞h𝐀1𝐞h𝑨2 + O(h2), (4) 

where h is integration time-step. The approximation error of 

(4) is second-order of h by comparing their Taylor expansions 

𝐞h(𝐀1+𝑨2) − 𝐞h𝐀1𝐞h𝑨2

= (𝐈 + h(𝐀1 + 𝑨2) + h
2(𝐀1 + 𝑨2)

2 2⁄ + O(h3)) −

(𝐈 + h𝐀1 + h
2𝐀1

2 2⁄ + O(h3))(𝐈 + h𝑨2 + h
2𝑨2

2 2⁄ + O(h3))

= h2(𝑨2𝐀1 − 𝐀1𝑨2) 2⁄ + O(h3).

(5) 

For higher-order approximations, a recursive way to con-

struct exponential product formula is given in [22]. By sym-

metrizing (4) and eliminating even-order correction terms, the 

approximation is promoted to second-order accurate [23] 

𝐞h(𝐀1+𝑨2) = 𝐞
h
2
𝑨2𝐞hA1𝐞

h
2
𝑨2 + O(h3). (6) 



The splitting exponentials product is of a simpler type than 

its original counterpart, as the exponential of the constant part 

𝐀1 is calculated only once, while the time-variant part 𝑨2 is 

sparser than the original state matrix, and its exponential can 

be calculated efficiently with sparse methods. 

The state-space equation of a converter-integrated power 

system can be rewritten in the block matrix form 

[
𝒙̇1
𝒙̇2
] = [

𝐀11 𝐀12
𝐀21 𝑨22

] [
𝒙1
𝒙2
] , (7) 

where 𝒙2 denotes the state variables of converter switch adja-

cent components, therefore, the state equations of 𝒙2 contain 

switch state-dependent terms, and 𝒙1 represents the other state 

variables. Since the topology of the switch-independent sub-

circuit remains constant, the submatrices 𝐀12, 𝐀21 and 𝐀11 are 

constant. The submatrix 𝑨22 is time-variant and made up of 

𝑁C subdivisions corresponding to 𝑁C converters, as shown in 

Fig. 1, the time-varying elements in 𝑨22  are located in the 

diagonal blocks 𝒈𝑖 associated with the 𝑖th converters. This is 

due to converters are separated by components such as filters 

and lines, and there is no direct connection in between. There-

fore, the time-varying elements can be managed for each indi-

vidual converter. In addition, the structure helps to streamline 

the decoupling procedure. 

The state matrix splitting of such system is detailed in Fig. 1. 

The state matrix 𝑨 can be split into a constant splitting matrix 

𝐀1, and a block-wise variant splitting matrix 𝑨2 that depends 

on the switch states 𝒔 at time 𝑡, it is noted as 𝑨2(𝒔(𝑡)) in this 

subsection. Mapping the splitting of the state matrix to real 

circuits, integrations of subcircuits represented by 𝐀1  obtain 

the system transients without power conversion through con-

verters, on the other hand, integrations of subcircuits repre-

sented by 𝑨2(𝒔(𝑡)) complement this part of power conversion. 

Using the exponential splitting formulas, the exponential of 

𝐀1  is determined in the beginning of the simulation and re-

mains constant, while the exponential of the counterpart 

𝑨2(𝒔(𝑡))  is approximated in practical calculations once the 

switch states change, where the approximation is designed 

match the accuracy order of the exponential splitting formula. 

Given that the aim of the splitting state-space method is to 

reduce the computation effort, the Taylor series expansion is 

adopted in this paper to approximate the exponential of 

𝑨2(𝒔(𝑡)) because it is efficient to implement. 

With the approximation of the exponential product of split-

ting matrices, the proposed method splits the integration pro-

cedure into several sub-steps. Trotter formula (4) splits each 

integration step into two sub-steps. 

{
𝒙𝑛
′ = 𝒇1(h𝑨2(𝒔(𝑡𝑛)))𝒙𝑛

𝒙𝑛+1 = 𝐞
h𝐀1𝒙𝑛

′ , (8) 

where 𝒙𝑛
′  is the vector of intermediate state variables in 

[𝑡𝑛, 𝑡𝑛+1], and 𝒇𝑘(h𝑨2(𝒔(𝑡𝑛))) denotes the summation of the 

first 𝑘 + 1 terms of a Taylor series of exponential function. 

𝒇𝑘(h𝑨2(𝒔(𝑡𝑛))) = ∑
1

𝑖!

𝑘

𝑖=0
(h𝑨2(𝒔(𝑡𝑛)))

𝑖 . (9) 

Other schemes for splitting integration exist, e.g., with the 

Trotter formula and the constant subsystem integrated first 

rather than its counterpart in (8). These two schemes have  
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Fig. 1 Splitting state matrix for the converter-integrated power systems. 

opposite second-order correction terms. Furthermore, using 

the higher-order accurate exponential splitting formula (6), the 

integration is split into three sub-steps shown in (10), in which 

the switch-dependent subsystem is integrated in the first and 

third sub-steps for a halved time-step size, and the constant 

subsystem is integrated for a full time-step in between 

{
 
 

 
 𝒙𝑛

′ = 𝒇2 (
h

2
𝑨2(𝒔(𝑡𝑛))) 𝒙𝑛

𝒙𝑛
′′ = 𝐞h𝐀1𝒙𝑛

′

𝒙𝑛+1 = 𝒇2 (
h

2
𝑨2(𝒔(𝑡𝑛))) 𝒙𝑛

′′,

(10) 

where 𝒙𝑛
′′ is also a vector of intermediate state variables. 

The implementation of the formula (10) is drawn in detail, 

as shown in Fig. 2, the matrix 𝑨 is presented in the blocked 

form as in (7), so that the constructure of the matrix 𝐀1 and 

𝑨2(𝒔(𝑡)) is convenient given. In the sub-steps  and , the 

switch-dependent subsystem is integrated, updating only the 

subset of state variables 𝒙2, and the exponentials of the sub-

matrix 𝑨22. Therefore, the method reduces the computational 

workload, and has potential for simulating massive switch 

operations. 

B. Accuracy Control of Splitting State-Space Method 

To determine the applicability of the splitting state-space 

method for EMT simulations, it is necessary to evaluate its 

induced error analytically. By deriving and analyzing the ma-

trix of local error of the presented exponential splitting scheme, 

some key information can be obtained before running EMT 

simulations. Feasible simulation time-step size and the expo-

nential splitting formulas can be assessed. For this reason, a 

criterion for the evaluation is proposed in this subsection. The 

global error can be approximately controlled by the local error, 
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Fig. 2 Splitting exponential integration procedure 



and the reliability of error approximations can be augmented 

through the step-size adjustment based on local error control 

[24]. To estimate the local error, it is reminded that the domi-

nant error term 𝑬2 of the first-order exponential splitting for-

mula (4) has been established in (5) as 

𝑬2 = h2(𝑨2𝐀1 − 𝐀1𝑨2) 2⁄ . (11) 

Similarly, the dominant error matrix of second-order expo-

nential splitting is denoted as 𝑬3, and the 𝑚-order error matrix 

as 𝑬𝑚 . Then, the local error introduced by the exponential 

splitting formula is represented with 𝑬𝑚. In addition, the local 

error introduced by the approximate of the time-varying ma-

trix exponential 𝒇𝑘(h𝑨2(𝒔(𝑡𝑛))) is represented with 𝑬t, Tak-

ing the Trotter formula and the first two terms of a Taylor se-

ries of exponential function as an example, 𝑬t is 

𝑬t = 𝐞h𝐀1𝒇1(𝐞
h𝑨2) − 𝐞h𝐀1𝐞h𝑨2 = h2𝑨2

2/2 + 0(h3). (12) 

The splitting error matrix 𝑬s is defined as 

𝑬s = 𝑬𝑚 + 𝑬t. (13) 

Since the matrix norm is guaranteed to be compatible with 

the vector norm, the error estimation can be regarded as the 

measure of the matrices in (13). The logarithmic norm is in-

troduced as the tool for matrix measure [25] 

𝜇(𝑨) = lim
h→0+

‖𝑰 + h𝑨‖ − 1

h
, (14) 

where ‖∙‖ denotes the vector norm in ℝ𝑛 and the correspond-

ing induced matrix norm in ℝ𝑛×𝑛, and 𝑰 is the identity matrix. 

Within the time-step [𝑡𝑛, 𝑡𝑛+1], the 𝑚-order splitting error 

𝑆𝑚 is denoted as 𝜇(𝑬s𝒙𝑛). 

𝜇(𝑬s𝒙𝑛) ≤ 𝜇(𝑬𝑚𝒙𝑛) + 𝜇(𝑬t𝒙𝑛) (15) 

It can be assumed that (𝑨) ≈ 𝜇(𝑨1) = 𝑎  and 𝜇(𝑨2) =
𝑏(𝑠(𝑡)), where 𝑎 is a constant parameter and 𝑏(𝑠(𝑡)) is vary-

ing with the switch state [26]. 

Since 𝑏(𝑠(𝑡)) is time-variant as the matrices in (15) change 

with the switch states, an exhaustive set of switch states seems 

necessary for the computation. Fortunately, the identification 

of the upper bound of 𝑆𝑚 could simplify the analytical process. 

The upper bound of 𝑆𝑚  is analyzed based on the binary re-

sistances switch model, where the associated switch elements 

exhibit considerable magnitude due to the resistance in the off-

state when all converter switches are turned off, and the esti-

mated splitting error with the off-state switches has the maxi-

mum value 𝑆𝑚 among all switch states. Since the upper bound 

of the splitting error is analyzed based on the binary resistanc-

es switch model, where the associated switch elements exhibit 

considerable magnitude due to the resistance in the off-state 

when all converter switches are turned off, and the estimated 

splitting error with the off-state switches has the maximum 

value 𝑆E among all switch states. The logarithmic norm of 𝑨2 

with the off-state switches is defined as b0. and given that the 

components corresponding to the SASVs typically possess 

relatively large inertia, it can be assumed that b0/𝑎 ≪ 1. 

Substituting (11) and (12) into equation (15), the first-order 

splitting error 𝑆1 is 

𝑆1 ≈ h
2𝑎𝑏0. (16) 

The second-order splitting error can be derived from (10) 

and (15). Then, a threshold 𝑡E is introduced to make sure the 

𝑚-order splitting error 𝑆𝑚 is small. to estimate the local error, 

and is bounded by the threshold 𝑡E. 

𝑆𝑚 < 𝑡E. (17) 

The calculation of 𝑆𝑚  can be efficiently performed on a 

range of simulation time-step h and the order of exponential 

splitting formulas. Following the ascertainment of 𝑆𝑚 , the 

optimization of simulation settings, based on the local error 

control of (17), can be executed before the simulation starts. 

Once the exponential splitting formula is selected, a range of 

simulation time-step can be estimated. Alternatively, when a 

specific size of the time-step is required, the error control tells 

the applicability of the splitting state-space method for specif-

ic cases. 

III. DECOUPLING PRINCIPLE FOR POWER CONVERTERS 

For converter-integrated power systems, the dimension of 

state matrix and the number of its possible variants due to the 

switch state-dependent nature are seeing an increase, and it is 

resource-expensive to always reformulate the whole matrix. 

One of the advantages of the state-space method is that all the 

time-varying state matrix elements lie in the corresponding 

rows and column vectors of certain switch-adjacent compo-

nents. This recognition of the time-varying elements is the 

primary motivation for applying the splitting state-space 

method. To this end, a decoupling principle that automatically 

extract these time-varying matrix portions from the power 

converter circuits is set forth in this section. This principle 

serves as the guide for the first step of the splitting state-space 

method. Furthermore, the decoupling principle is applicable to 

general converter topologies. 

A. Automated State Matrix Decoupling Procedures 

Firstly, the decoupling principle is elaborated using a half-

bridge converter circuit as an example, as shown in Fig. 3. 

Source side DC circuit is connected to the converter through 

the nodes n1 and n2, source side AC circuit is connected to the 

converter through the nodes n3 and n0. The IGBTs g1, g2 and 

their anti-parallel diodes d1, d2 share nodes from switch nodes 

set 𝐍s = {n1, n2, n3}. The state variables are the inductor cur-

rent 𝐼L and the capacitor voltages 𝑈C1 and 𝑈C2. 
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Fig. 3 Half-bridge converter circuit for demonstrating the decoupling princi-

ple: (a) half-bridge circuit, (b) subcircuit of the time-varying splitting matrix, 

(c) subcircuit of the constant splitting matrix. 



To realize the decoupling, power electronic switches are 

first grouped based on their corresponding converters. Switch-

es that share nodes from the same 𝐍S are designated into one 

group. Since different converters are inherently decoupled 

from each other, this facilitates the dependent procedures 

across groups and possesses potential parallelism. The state 

variables of capacitors and inductors that are connected to all 

𝐍S sets, referred to as switch adjacent state variables (SASV) 

in this paper, are then readily determined. In the case of Fig. 3, 

the state equations of the SASV are dependent on the turn 

on/off state functions 𝑆1 and 𝑆2 of the switch pairs g1/d1 and 

g2/d2, where 𝑆1 and 𝑆2  have values 1/0 for the turn on/off 

states. In this circuit, 𝐼L and 𝑈C1, 𝑈C2 are identified as SASV. 

In essence, only the coefficients of SASV in the state equa-

tions change along with the switch operations inside the con-

verters. The half-bridge converter circuit can be decoupled 

into two subcircuits, which describe the switch-dependent and 

constant equations respectively. The corresponding state equa-

tions of the switch-dependent and independent subcircuits are 

given in (18) and (19), where 𝐀C1, 𝐀C2, 𝐀L and 𝐀n are coeffi-

cient matrices, 𝐚C1 , 𝐚C2  and 𝐚L  are coefficient vectors, 𝒙1  is 

the vector of state variables represent the circuits outside the 

converter. The inductor L  has the series resistor R , and the 

pivot element −R/L corresponding to 𝐼L  in (18) is constant, 

because when the inductors corresponding to the SASVs have 

series resistors or when the capacitors have parallel resistors, 

the diagonal elements corresponding to the SASVs are con-

stants, correlating with the respective resistance values. It is 

still maintained in (18) to ensure consistency of the method. 

Since the circuit is not included in the switch-dependent sub-

circuit, the derivative of 𝒙1 in (18) is zero. 

[
 
 
 
 
𝒙̇1
𝑈̇C1
𝑈̇C2
𝐼L̇ ]
 
 
 
 

= [

𝟎 𝟎 𝟎 𝟎
𝟎 0 0 −𝑆1/C1
𝟎 0 0 −𝑆2/C2
𝟎 𝑆1/L 𝑆2/L −R/L

] [

𝒙1
𝑈C1
𝑈C2
𝐼L

] , (18) 

[
 
 
 
 
𝒙̇1
𝑈̇C1
𝑈̇C2
𝐼L̇ ]
 
 
 
 

= [

𝐀n 𝐚C1 𝐚C2 𝐚L
𝐀C1 0 0 0
𝐀C2 0 0 0
𝐀L 0 0 0

] [

𝒙1
𝑈C1
𝑈C2
𝐼L

] . (19) 

To explain this method from the perspective of physical cir-

cuits, the subcircuits described by the splitting state equations 

are presented in Fig. 3(b) and (c). To form the constant part 

subcircuit, the current injections into SASV capacitors from 

the converter switch branches are set to zero, thus these 

branches are replaced by open circuits, while other branches 

remain unchanged. The voltages of switch-adjacent terminal 

of SASV inductors are set to zero, therefore the shared nodes 

of the converter switches and SASV inductors are grounded, 

while other nodes remain unchanged. The formulation of time-

varying part subcircuits is complementary to the constant part 

subcircuits. Comparing the circuits in Fig. 3, the capacitors C1 

and C2  are charged and the inductor L  is discharged in the 

constant part subcircuit. The power conversions among those 

energy storage elements represented by SASV are carried out 

in the switch-dependent subcircuit, where C1 and/or C2 charg-

es L through the switch pairs. 

Based on the above analysis, the procedure of the decou-

pling principle for the splitting state-space method is summa-

rized in Fig. 4. First the system dimension and power electron-

ic switch number are estimated to evaluate the necessity of 

splitting the state-space matrix. For systems containing multi-

ple power electronic switches, all switches are then classified 

into 𝑁C switch groups in a topology scan, and the switch group 

node sets 𝐍s are formed. For each switch group, the SASV are 

identified which are capacitor voltages and inductor currents 

connected to 𝐍s  nodes. The branches and nodes can be re-

placed with open and short circuits, respectively, to obtain the 

decoupled subcircuits. Notably, when the inductors corre-

sponding to the SASVs have series resistors or when the ca-

pacitors have parallel resistors, the corresponding resistors are 

included within the subcircuit of the time-varying splitting 

matrix. Last but not least, the splitting state matrices corre-

sponding to the switch-dependent subcircuits are formulated. 

These decoupled subcircuits are much smaller than the origi-

nal circuits, enabling computationally efficient state-space 

matrix derivation and easy integration into the numerical pro-

cedure of the splitting state-space method. 

B. Demonstration on Typical Converter Topologies 

The presented decoupling principle is general and not lim-

ited to any particular convert topology. This section will sup-

plement two examples of decoupling typical converter topolo-

gies, including a Cuk converter and an MMC circuit, but not 

with very detailed explanation. 
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Fig. 4 Flowchart of the decoupling procedure. 



A Cuk converter case is shown in Fig. 5. The IGBT g and 

the diode d share the common nodes from the switch nodes set 

𝐍s = {n0, n1, n2}. SASV of this switch group are the capacitor 

C1 voltage and inductor L1 and L2 currents. Following the pre-

sented procedure, decoupled subcircuits are derived as in Fig. 

5(b) and (c). 

For the MMC converter as depicted in Fig. 6 (a), the power 

electronic switches including the IGBTs g1 and g2 and anti-

parallel diodes d1 and d2 inside the Sub-Modules (SMs) from 

the upper arm are categorized as one group, and those from 

the lower arm are categorized as another group. For symmetry 

of the two arms, only the decoupling of the upper arm is pre-

sented here. Firstly, the SASVs are SM capacitor voltages and 

the upper arm inductor L1 current. The capacitor current in  
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Fig. 5 Cuk converter: (a) circuit diagram, (b) subcircuit of the time-varying 

splitting matrix, (c) subcircuit of the constant splitting matrix. 
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Fig. 6 MMC converter with half-bridge submodules: (a) circuit diagram, (b) 

subcircuit of the time-varying splitting matrix, (c) subcircuit of the constant 

splitting matrix. 

each SM is zero or equals to the L1 current depending on if the 

SM capacitor is bypassed. The L1 voltage totally depends on 

the number of inserted SMs. The decoupled subcircuits are 

drawn in Fig. 6(b) and (c). 

It is noted that for MMC there exists more specialized re-

duced-order equivalent model in the nodal analysis-based pro-

grams [27]. It is rooted in static circuit principle and derived 

by analysis of specific topology, not applicable to state-space 

models. The presentation here does not intend to compete with 

these specialized models, but to show the action of the decou-

pling principle on high-power converter systems containing 

series/parallel modules, with MMC as an example. Quantita-

tive tests on MMC are included in section IV.D. The proposed 

method is developed with dynamic system theory and differ-

ential equation model, and is general-purpose for convert to-

pologies. The readers are invited to test on other converters of 

interest. 

The merit of the presented decoupling procedure is three-

fold. First, it is differential equation theory-based with rigor-

ous error quantification, in contrast to circuit-based approach-

es that are empirical. Secondly, the decoupling principle has 

clear physical interpretation from the viewpoint of decoupled 

subsystem equivalent circuits, which match different power 

conversion stages. It is a more sophisticated dynamical repre-

sentation of the physical process than previous approaches that 

commonly assumes some interface variables of inertia compo-

nents remaining constant during fixed periods. Last but not 

least, an algorithmic procedure is available and programmed 

for automatic decoupling without user effort and intervention. 

IV. CASE STUDY 

In this section, the splitting state-space method and the de-

coupling principle are applied to a distribution network with 

DC load, a 500 kHz LLC resonant converter circuit, a type-4 

wind turbine generator-based wind farm, and an MMC circuit 

to verify the accuracy and efficiency by comparing simulation 

waveforms with EMTP® [28]. 

A. IEEE-13 Node System with DC Load 

The IEEE-13 node system with DC load in Fig. 7 is first 

tested with the splitting state-space method. The diode bridge 

is modeled with ideal diode model with 0.7 V ignition voltage. 

The number of state variables of the system is 74. The simula-

tion lasts for 5 s with a time-step of 10 𝜇s. EMTP results with 

a smaller 5 𝜇s time-step is taken as the benchmark. The state 

matrix is split between the phase-A inductor L1 and DC load 

capacitor C1 . Fig. 8 presents the inductor L1  current wave-

forms, which are obtained by the accurate matrix exponential 

integrator (Exp) scheme, the splitting matrix exponential inte-

grator (sExp) scheme, and EMTP, respectively. 

Three splitting schemes are tested: 

1. the first-order Trotter formula that integrates the con-

stant part first (sExp-1st-12); 

2. the first-order Trotter formula that integrates the 

switch-dependent variant part first (sExp-1st-21); 

3. the second-order Strang formula (sExp-2nd). 

The sExp-2nd scheme gives the best accuracy, followed by  
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Fig. 7 IEEE-13 Node system with DC load. 
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Fig. 8 Comparison of waveforms of the inductor current and the absolute 

errors. 

the sExp-1st-12 scheme. Both are more accurate than EMTP 

with the same time-step. The sExp-1st-21 scheme has larger 

absolute errors. It is noted that the sExp-1st-12 and sExp-1st-21 

schemes share the same second-order absolute error and the 

corresponding estimated splitting error is 0.31%, however the 

third-order absolute errors are 0.34% and 0.28% respectively. 

In other words, the low-order error is not dominant in this case. 

The relatively large absolute error of the sExp-1st-12 scheme is 

due to the miscalculation of switch operations. The estimated 

splitting error of the sExp-2nd is 0.08%. 

B. LLC Resonant Converter 

An LLC resonant converter circuit is shown in Fig. 9. The 

fault resistor is 0.05 mΩ, and the transformer ratio is 1:0.0625. 

Other parameters are set as in [29].The IGBTs are modeled as 

controlled switches with binary resistances. The time-step is 4 

𝑛s by evaluating the decoupling error of (17) with a 0.1% 

threshold. The benchmark waveform is obtained by EMTP 

with a 1 𝑛s time-step. The simulation lasts for 0.1 s. The di-

mension of the state equation is 8, which includes the states of 

the seven inductors and capacitors, respectively, along with 

the augmented source states, as derived from (2). 

Simulation waveforms of the output voltage across the load 

R1, the inductor current of L2, the current of the LLC tank and 

their absolute errors against the benchmark are presented in 

Fig. 10, where the sExp-1st-12 scheme is abbreviated as sExp-

1st. It is shown that the proposed splitting state-space method 

has good agreements with the benchmark result. The Exp 

scheme yields the highest accurate results at the same time-

step, and it is more accurate than EMTP. The waveforms of 

absolute errors of the LLC resonant converter reveal that the 

sExp scheme guarantees enough accuracy under the simula-

tion time-step that meets the splitting error requirement of (17). 

The sExp schemes using the first- and second-order accu-

rate approximations are tested under 4 𝑛s and 10 𝑛s time-steps 

to demonstrate the usage of the inequality (17). The values of 

splitting errors with sExp-1st and sExp-2nd schemes are listed 

in Table I. The splitting errors in the table are the maximum 

ratios considering all switch-dependent variant splitting matri-

ces 𝑨2. The simulation time-step of 4 𝑛s with a second-order 
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Fig. 9 LLC resonant converter circuit diagram. 
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Fig. 10 LLC resonant converter waveforms and absolute errors: (a) R1 voltage, (b) L2 current, (c) Lr current, (d)-(f) absolute errors of (a)-(c). 



TABLE I 

𝑆E FOR SPLITTING SCHEMES UNDER DIFFERENT TIME-STEP 

Time-step (𝑛s) 
Splitting error 

sExp-1st sExp-2nd 

0.5 8.05e−4 9.81e−6 

4 7.75e−3 7.55e−4 

10 1.94e−2 4.74e−3 

accurate splitting scheme satisfies the threshold of 0.1% , 

while the first-order accurate splitting scheme requires a 

smaller time-step of 0.5 𝑛s. The LLC resonant converter is 

usually limited by its volume and the energy storage compo-

nents are relatively small. Therefore, the measure of the state 

matrix is dependent on these small time constants. The results 

demonstrate that a splitting scheme with higher-order accuracy 

allows a larger time-step size under the same error require-

ment. In this case, the consumed time associated with numeri-

cal integration of the Exp scheme is 56.51 s and the consumed 

time of sExp-1st scheme is 19.52 s. The speedup of the sExp 

scheme is 2.89. 

C. Wind Farm with Detailed Modeling WTG Unit 

A wind farm with type-4 wind turbine generator (WTG) 

units is tested to further verify the efficiency of the proposed 

method and compare the accuracy of splitting schemes. As 

shown in Fig. 11, an extensible number of detailed modeled 

wind turbine generators are connected to a collector network 

through linear step-up transformers [30], each of the convert-

ers contains 12 IGBT and anti-parallel diode pairs, modeled 

with binary resistances. The control system of the WTG con-

verter consists of the stator voltage orientation control for the 

machine side converter and DC voltage and reactive power 

control for the grid side converter. The collector network in-

cludes four feeders modeled by PI-section lines. For the wind 

farm comprising 50 WTG units, the state equation dimension 

of the system is 2135, and the dimension of scenarios featur-

ing varying numbers of WTG units scales proportionally to 

this configuration. The network is subjected to a 3-phase-to-

ground fault at 𝑡 =1 s, which is cleared after 5 cycles. The 

wind speed is set as 12 m/s, and it changes to 10 m/s at 𝑡 =2 s. 
The simulations time-step is 5 𝜇s , and the benchmark is 

EMTP results with 1 𝜇s time-step. 

The simulation results of a 10 WTG units wind farm test are 

presented first. Fig. 12(a) and (b) show the active power and 

voltage on the DC side of the back-to-back converter in each  
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Fig. 11 Diagram of the wind power plant. 
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Fig. 12 Waveforms of each WTG unit: (a) active power of each WTG unit, (b) 

voltage on the DC side of the back-to-back converter. 

WTG unit. The ten WTG units of the wind farm are numbered 

from right to left and from top to bottom, as labeled in Fig. 11. 

The waveforms of the WTG units can be categorized into 

three groups, as shown in Fig. 12, based on their relative loca-

tion to the fault: the active powers of WTG units 1, 2 and 8 to 

10 decrease by approximately 8% during the fault and their 

DC bus voltage increase to 1.10 p.u., the active powers of 

WTG units 3, 6 and 7 decrease by 67% and their DC bus volt-

ages increase to 1.42 p.u., while the active powers of WTG 

units 4 and 5 decrease by 95%, and DC bus voltages increase 

to 1.54 p.u.. Protection system is disabled in this test to ob-

serve the natural response of the units. 

Next, the numerical errors are compared in detail to assess 

the accuracy of the presented splitting exponential formulas. 

The sExp-1st-12, sExp-1st-21, sExp-2nd and Exp schemes are 

all tested against the benchmark. The absolute error waveform 

of the output filter currents of the grid-side converter and their 

zoom-in view are plotted in Fig. 13. The blue and orange lines 

represent the results of the first-order exponential splitting 

formulas with different integration orders in the multiple steps 

integration respectively. It is observed that the error of the 

sExp-1st-12 scheme is slightly lower than the sExp-1st-21 

scheme for the majority of the simulation interval. 

The red line represents the results of the second-order accu-

rate scheme sExp-2nd, which shows better accuracy than the 

blue and orange lines, and almost coincides with the black 

solid line of the Exp scheme without splitting. The reason is 

that the Exp scheme possesses second-order accuracy due to 

the usage of linear interpolation for switching events, while 

the sExp-2nd scheme has the same order accuracy, and the dif-

ferences between the third-order error terms are very small. 

The execution time of each simulator is shown in Fig. 14. 

The efficiency of the splitting state-space method is assessed 

with a series of wind farm tests of an expanding scale, by add-

ing additional WTG units to the feeder line ends separated by  
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Fig. 13 Error comparisons of first WTG unit: (a) errors of output currents of 

filter in the back-to-back converter, (b) zoom-in plot of (a). 
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Fig. 14 Consumed time for each scheme. 

equidistant PI section lines, as shown in Fig. 11. The CPU 

times of different scale cases are compared with EMTP on a 

single core. Switching events interpolations are activated in all 

exponential integration schemes, and the simultaneous switch-

ing option is enabled in EMTP simulations. 

Since the integration order does not affect the simulation 

time, we do not distinguish here the sExp-1st-12 and sExp-1st-

21 schemes denoted as sExp-1st in Fig. 14. The consumed time 

of the tested schemes are listed in TABLE II, and due to the 

lengthy consumed time for the Exp scheme at 50 WTG units, 

no further comparisons will be made with it. This scheme 

drawn in the red solid line achieves more than 2x speedup 

compared to EMTP drawn in the green dot-dash line, when 

simulating the wind farm with 20 WTG units. If the scale of 

the wind farm is expanded to 50 WTG units, the sExp-1st 

scheme has a more than 3x speedup compared to the EMTP. It 

is noted that the execution time of the scheme grows quasi-

linearly with the simulation scale. The sExp-2nd scheme drawn 

in the purple solid line gains near 2x speedup against the 

EMTP for 50 WTG units. The Exp scheme drawn in the blue 

solid line, which is the original exponential integrator without 

splitting state-space method and compute all time-varying 

state matrix exponentials, is less efficient than EMTP, and 26x  

TABLE II 
PERFORMANCE OF THE WIND FARM CASE 

Number of 

the WTGs 

Consumed time (s) 

EMTP Exp sExp-1st sExp-2nd 

2 71.09 253.89 134.39 137.77 

4 250.90 645.52 209.31 289.18 

6 463.83 1382.67 287.25 434.33 

8 712.19 1616.20 374.81 605.54 

10 1066.14 4027.35 561.11 775.82 

20 3654.12 17075.68 768.97 1981.21 

30 8255.27 38619.33 1489.33 4026.82 

50 24138.12 / 4607.38 15151.93 

and 10x slower than the sExp-1st and sExp-2nd schemes re-

spectively. The exponential integration schemes are imple-

mented in MATLAB and have efficiency disadvantages of the 

scripting language. 

D. Modular Multilevel Converter 

As another efficiency test of the exponential splitting meth-

od, the MMC circuit shown in Fig. 6 with an extensible num-

ber of SM each arm, starting from 4 until 200, are studied. The 

system parameters are given in TABLE III. For 200 SMs in 

each arm, the number of the state variable of the circuit is 404. 

The simulation lasts for 0.1 second with a time-step of 20 𝜇s. 
The sExp-1st-12 scheme is adopted in the test and referred to 

as sExp. The sExp scheme is validated with a benchmark re-

sult of EMTP with a smaller time-step of 5 𝜇s. 
Detailed comparisons of the 5-level MMC simulation re-

sults are given in Fig. 15. The upper and lower arm inductor 

currents are denoted as 𝑖upper and 𝑖lower for each scheme. The 

simultaneous switching function is turned on for the solution 

in EMTP, with the maximum iteration number set to be 4. 

From the enlarged views, it can be seen that the accuracy of 

the sExp scheme is slightly inferior to EMTP and Exp 

schemes, and they are all consistent with the benchmark. 

TABLE III 

PARAMETERS OF THE 5-LEVEL MMC CASE 

System Parameters Values 

AC and 

DC system 

AC system RMS voltage 400 kV 

Fundamental frequency 50 Hz 

AC system R/L ratio 10 

DC pole-to-pole voltage 640 kV 

Transformer voltage ratio 400/320 

Transformer rated power 1000 MVA 

Transformer reactance 0.18 p.u. 

Transformer resistance 0.001 p.u. 

MMC 

Capacitor energy in each SM 40 kJ/MVA 

Number of SMs per arm 4 - 200 

MMC arm inductance 0.15 p.u. 
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Fig. 15 Waveforms of the currents of the upper and lower arm inductors. 

TABLE IV 

PERFORMANCE OF THE MMC CASE FOR 0.1 SECOND SIMULATION 

Voltage Levels 5 11 21 51 101 201 

Speedup 1.06 1.30 1.37 2.55 6.18 16.63 

The speedups of the sExp scheme are listed in TABLE IV. 

The speedups are computed by comparing with the Exp 

scheme. For the 5-level MMC case, the sExp and Exp 

schemes have similar execution time. As the number of volt-

age levels in the MMC circuit increases, the speedups of the 

sExp scheme over the Exp scheme gradually increases. At 201 

levels, the speedup ratio reaches 16.63. 

V. CONCLUSION 

This paper has presented a splitting state-space method with 

a decoupling principle for converter-integrated power systems 

electromagnetic transient simulations. The splitting state-space 

method is established with different order exponential splitting 

formulas applied to the time-variant state-space matrices of 

power converter EMT models, which separate each integration 

step into multiple stages, and avoid recurring computation of 

the matrix exponential functions. Furthermore, a criterion to 

estimate the induced splitting error is given to suggest appro-

priate time-step size for splitting method simulations. A gener-

ic decoupling principle is then introduced and demonstrated 

on common converter topologies. By collecting the time-

variant parts of the state matrix and coordinating the various 

order accuracy approximations of the splitting state-space 

method, the computational burden brought by high frequency 

switching transients of converter-integrated power systems is 

effectively suppressed, by avoiding repeated matrix exponen-

tial calculations. 

An IEEE-13 node system with DC load, an LLC resonant 

converter case, a large-scale wind farm case and an MMC case 

have verified that the proposed method provides adjustable 

order accurate results, and gains speedups against the tradi-

tional methods, especially for power system integrated with 

many power converters, such as studies involving the detailed 

modeled wind farms. Works in exploiting the parallelism in 

the proposed splitting state-space method for converter-

integrated system simulations and acceleration via GPU com-

puting to further improve efficiency is under development. 
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