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We study the calorimetric properties and structural relaxation of glassy films using a distin-
guishable particle lattice model (DPLM). We determine the glass transition temperature versus film
thickness from the heat capacity during heating as well as from the local relaxation time. The results
based on both approaches are in good agreement with the experimentally observed Keddie-Cory-
Jones relation. The thus demonstrated interplay between calorimetric properties and structural
relaxation is further corroborated by successfully reconstructing the simulated heat capacity during
heat and cooling from the local relaxation times. Our results suggest DPLM as a useful lattice
model for studying glassy films.

I. INTRODUCTION

Glass transition remains puzzling despite intensive and
extensive researches [1–5]. Interesting phenomena have
been discovered over the past few decades in the study
of confined systems such as glassy films [6–17]. Spatial
confinement was found to bear a significant impact on
the vitrification process of liquid films. For example, the
glass transition temperature, one of the main character-
istics of glass transition, was measured lower for thinner
polystyrene films [6]. The transition temperature for a
film of thickness h, denoted by Tg,h, empirically follows
the Keddie-Cory-Jones relation,

Tg,h

Tg,∞
= 1−

(
A

h

)δ

, (1)

where Tg,∞ is the transition temperature of a bulk mate-
rial while A and δ are fitting parameters. It has been
suggested that there is a decoupling between molecu-
lar mobility and reduction of transition temperature for
glasses upon confinement [18]. Questions as regards the
physical mechanism underlying the reduction of transi-
tion temperature are yet to be answered [15, 16].

In addition, spatially resolved measurements reveal
that films do not vitrify uniformly. The regions deeper
into the bulk vitrify at a much higher temperature than
those near the free surface. The local transition tempera-
ture at depth z (measured from the free surface), denoted
by Tg(z), displays a gradient that can span hundreds of
nanometers [19]. Simulations [20] show that the overall
transition temperature Tg,h for a film is not an arithmetic
average over the local transition temperature Tg(z). The
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exact relation between Tg(z) and Tg,h remains to be clar-
ified [20, 21].

In the present work, we employ a distinguishable parti-
cle lattice model (DPLM) to study the glassy properties
of films. The DPLM captures the random energy land-
scape of glassy systems via particle distinguishability.
It has successfully reproduced a wide set of experimen-
tally observed glassy phenomena, including Kovacs para-
dox [22] and effect [23], broad distribution of thermody-
namic and kinetic fragilities [24], large heat capacity over-
shoot for fragile glasses [25], two-level systems [26], dy-
namical facilitation as seen in diffusion coefficient power
laws [27], Kauzmann’s paradox [28] and, more recently,
the existence of a surface mobile layer [29].

The purpose here is multifold. In the first place, we
reproduce the Keddie-Cory-Jones relation, Eq. (1), for
DPLM films. We determine Tg,h by studying the en-
ergy relaxation of our films through calorimetric mea-
surements, which are in general analogous to thermal
expansivity measurements in experiments. The specific
heat capacity, Ch(T ), was computed and an overshoot
during heating was observed, which was then used to
determine Tg,h following the common protocol [25, 30].
The as-obtained Tg,h is well described by Eq. (1) with
A ≈ 1.31 and δ ≈ 1.35, and also matches experimental
results on polystyrene (PS) films.

Further, we analyse the depth resolved relaxation dy-
namics of DPLM films and show that the depth-resolved
α-relaxation time, denoted by τα(z) at depth z, can be
used to estimate the heat capacity of the films. Specifi-
cally, we first use τα(z) to determine the local transition
temperature Tg(z). We then show that, aided by the
functional form of the heat capacity for bulk materials,
written as C∞(T/Tg,∞), the heat capacity for a film can
be approximated as the arithmetic average of the heat ca-
pacities for its constituting layers, each evaluated using
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C∞(T/Tg(z)), namely,

Ch(T ) ≈
1

h

∫ h

0

dz C∞

(
T

Tg(z)

)
, (2)

which agrees reasonably well with the direst simulations.

Finally, we have evaluated Tg,h from the overall α-
relaxation time for a film τα,h. The resulting Tg,h again
follows Eq. (1) but with slightly different values of A and
δ. These results demonstrate a close interplay between
non-equilibrium thermal properties and the relaxation of
glassy films.

The rest of the paper is organised as follows. We first
briefly introduce the model in Sec. II. Then we report the
calorimetric measurements in Sec. III A, followed by the
relaxation dynamics in Sec. III B. In Sec. III C we show
that Ch(T ) can be related to C∞(T ) via τα(z).
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Figure 1. Energy evolution of representative samples during a
heating and cooling cycle. Inset: schematic of the film lattice.

II. DPLM FILM

The DPLM film studied here has already been de-
scribed in Ref. [29]. It consists of N distinguishable par-
ticles, each of its own type, living on a square lattice with
thickness h and length L (inset of Fig. 1). A lattice site
is either empty or singly occupied by a particle. The ab-
sence of a particle is called a void. Periodic boundary
condition is applied along the direction of L while open
boundary condition along the direction of z. The film
confined to 1 ≤ z ≤ h is supported on a substrate on one
termination (designated z = h) and has a free surface on
the other termination (z = 1). The energy of the film is

given by

E =
∑
<i,j>

Vsisjninj + ϵtop
∑

i:zi=1

ni + ϵbot
∑

i:zi=h

ni . (3)

Here si labels the type of the particle at site i, Vsisj

gives the interaction energy between the particle at site
i and the particle at an adjacent site j, ni is the particle
occupation at site i so that ni = 1 if site i is occupied by
a particle or ni = 0 if the site is occupied by a void, and
zi is the z-coordinate (i.e. depth) of site i. The last two
sums in Eq. (3) are included to account for the interfacial
excess energy. Throughout the paper we use ϵtop = 1.124
and ϵbot = −0.5 for the particles at the vacuum and
substrate interfaces, respectively. The interaction energy
Vsisj is sampled from the a priori distribution,

g(V ) = G0/ (V1 − V0) + (1−G0)δ(V − V1), (4)

where V0 = −0.5, V1 = 0.5 and G0 = 0.7 are parameters
chosen for the study. As shown previously [24], these
parameters correspond to a moderately strong glass.

The dynamics of the particles are purely dissipative
after the Metropolis algorithm. A particle can hop to an
adjacent empty site with the acceptance rate

w = w0 exp [−∆EΘ(∆E)/kBT ] , (5)

where ∆E is the energy change due to the hop, Θ(x) = 1
if x > 0 or Θ(x) = 0 otherwise, w0 = 106 is the at-
tempt frequency and kB is the Boltzmann constant. We
work with units kB = 1 throughout. Detailed balance is
guaranteed by the algorithm.

III. RESULTS AND DISCUSSIONS

A. Calorimetric measurements

The calorimetric measurements are performed accord-
ing to standard heat bath protocols. A sample is first
prepared in thermodynamic equilibrium at bath temper-
ature T = 0.28. It is then cooled down from T = 0.28
at rate Qc = 10−4. Once reaching T = 0.10, the sample
is heated back at the same rate. Fig. 1 displays the en-
ergy per particle E/N against T for two representative
films with h = 5 and h = 15, respectively. A hysteresis
is observed between the heating and cooling process due
to the falling out of thermodynamic equilibrium, similar
to observations on bulk samples [25, 32]. The hysteresis
is less pronounced for the thinner film, indicating a lower
glass transition temperature Tg,h.

The heat capacity per particle of the film is calculated
as Ch = 1

N dE/dT . The results are shown in Fig. 2.
The heat capacity by the heating process, for films re-
gardless of their thicknesses, shows an main overshoot,
in agreement with experimental measurements [32] and
previous bulk DPLM simulations [25]. Besides that, the
peak of the overshoot shifts towards lower temperatures
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Figure 2. Symbols: specific heat capacity Ch from (a) heating and (b) cooling simulations at rateQc = 10−4. Lines: theoretically
estimated specific heat capacity of films as an average over the contributions from individual layers using Eq. (2) and the local
relaxation time.
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Figure 3. Glass transition temperature Tg,h against film thick-
ness ha0 with a0 = 0.81 nm and Tg,∞ = 0.198. The exper-
imental data for polystyrene films is taken from Ref. [31].
Inset: heat capacity during cooling and heating for a film of
thickness h = 45.

for thinner films. The magnitude of Ch on the higher-
temperature side of the peak also decreases with de-
creasing film thicknesses. Note that the peak from the
h = 5 film shifts to a much lower T . This is because
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Figure 4. The α-relaxation time of a h = 30 film at different
depth z versus the inverse temperature 1/T , and the arrows
indicate the location of local Tg(z).

the whole film now admits drastic surface enhanced dy-
namics, as will be further illustrated by depth-resolved
measurements below. Those observations are consis-
tent with differential-scanning-calorimetry (DSC) mea-
surements on nanospheres [33] and thin films [34].
The glass transition temperature Tg,h is determined
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τα(z) (purple triangle), and from the method shown in the
inset of Fig. 3 (red circle) [30].

from the heating curve Ch(T ) using the method described
in Ref. [30], see inset in Fig 3. In Fig. 3, the as determined
Tg,h is exhibited against film thickness h after rescaling
by a lattice constant a0 = 0.81 nm. Alongside is also
displayed a fit to Eq. (1) and an experimental curve from
extensive results on PS films [31]. This value of a0 has
been chosen to best match our DPLM results to the ex-
perimental results of PS films. Tg,∞ is determined from
the heat capacity of a bulk sample with periodic bound-
ary conditions in all directions.

It is noteworthy that for the Ch curves during heat-
ing, thinner films begin to devitrify at much lower values

of T in comparison to thicker films. For example, for
h = 10, Ch has already increased significantly beyond 0
at T ≃ 0.14, well below Tg,h ≃ 0.19. This observation
is consistent with the experimental findings reported in
both bulk and film- polymer glasses [33, 35–38].

B. Glass transitions inferred from relaxation times

We employ the overlap function adopted in, e.g.
Ref. [22] to study the structural relaxation of films. The
overlap function gives the probability that a particle has
no net movement after a time duration of t. We study
both the overall overlap function for the whole film, de-
fined by

q(t) = ⟨[1−Θ(ri(t)− ri(0))]⟩, (6)

and the depth-resolved overlap function, defined by

qz(t) = ⟨[1−Θ(ri(t)− ri(0))]⟩z. (7)

Here ri(t) is the position of particle i at instant t. We
average q(t) over all particles and qz(t) over particles at
depth z at time t = 0. The overall α-relaxation time τα,h
and depth-resolved α-relaxation time τα(z) are defined by
q (τα,h) = qz (τα(z)) = 1/e, with e being the Euler con-
stant. Fig. 4 plots τα(z) for a film with h = 30, demon-
strating an acceleration of the structural relaxation near
the free surface, similar to previous layer-resolved mea-
surements [7, 9]. We then obtain Tg(z) as the tempera-
ture satisfying Deborah’s condition [32],

dτα(z)

dT
|T=Tg(z) =

1

Qc
. (8)

The local transition points Tg(z) hence obtained are in-
dicated in Fig. 4. Clearly, Tg(z) depends on the cooling
rate Qc and our full results are displayed in Fig. 5, where
it is seen that the layers near the free surface (i.e. z < 5)
have substantially lower Tg(z). For z > 6, Tg(z) displays
small spatial variation, showing that the substrate has
little impact on the dynamics of the inner layers. We
have extrapolated τα(z) for layers with Tg(z) < 0.18, the
lowest temperature that can be simulated.
In Fig. 6, we compare Tg,h obtained from calorimetric

measurements (solid circles) and that from relaxation dy-
namics (triangles) and an agreement is achieved for the
general trend. The purple triangles represent an arith-

metic average of Tg(z), i.e. h
−1

∫ h

0
dz Tg(z). Such agree-

ment implies a close relation between the local structural
relaxation and the calorimetric properties.

C. Layer contributions to film heat capacity

Finally, we show that the specific heat capacity Ch(T )
for a film can be reconstructed using its local relaxation
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time τα(z). In the first place, we show that the spe-
cific heat capacity for a bulk sample is approximately a
function of the reduced temperature T/Tg,∞ for a narrow
range of cooling rates, i.e. C∞(T/Tg,∞) is roughly inde-
pendent of cooling rate. This is demonstrated in Fig. 7.
Further we propose that Ch(T ) can be approximated as
an average over the layer heat capacity, approximated
by C∞(T/Tg(z)). This statement is described in Eq. (2).
The reconstructed heat capacity is shown as solid lines in
Fig. 2. The results compare well with the direct calori-
metric simulations (c.f. symbols in Fig. 2). All main
features, including the magnitudes, are reproduced. In
particular, the overshoot along the heating path occurs
at lower temperatures with smaller magnitude for thinner
films.

Our reconstruction relies on the approximation that
C∞ only depends on the reduced temperature. This is
accurate only for a narrow range of cooling rates. Yet,
the results are in reasonable agreement with directly sim-
ulated results.

IV. CONCLUSIONS

In conclusion, we have studied the interplay between
the calorimetric properties and relaxation dynamics in
DPLM films. The phenomenological Keddie-Cory-Jones
relation between the glass transition temperature Tg,h

and film thickness for polystyrene thin films is well repro-
duced. We determine Tg,h by the heat capacity curves as
well as the α-relaxation time and the results agree nicely.
This relates the non-equilibrium calorimetric properties

of a film to their local structural relaxation time. Fur-
thermore, we reconstructed the heat capacity of films
with the aid of layer-resolved relaxation times.
To the best of our knowledge, the heat capacity curves

of films have never been reproduced by a lattice model
before. This affirms DPLM as a useful model for study-
ing glassy systems. In this work, we have chosen model
parameters appropriate for PS films. As a highly tunable
model, the DPLM is expected to mimic the behaviors of
a variety of glasses. The fragility can be controlled via
parameters like G0 [24]. The void density neighboring
the free surface can be readily tuned by adjusting ϵtop
in Eq. (3), resulting in different strengths of surface en-
hancement. Similarly, a repulsive or attractive substrate
can be modeled by tuning ϵbot. To date, thin-film phe-
nomena such as a long-range ( 200-300 nm) gradient of
glass transition temperature [19] or modulus [39], and
surface enhanced dynamics penetrating into the films as
deep as micrometers [40] have not been fully understood
and they can be studied by our model in the future.
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