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Isolated patterning systems have been repeatedly investigated. However, biological systems rarely
work on their own. This paper presents a theoretical and quantitative analysis of a two-domain
interconnected geometry, or bilayer, coupling two two-species reaction-diffusion systems mimicking
interlayer communication, such as in mammary organoids. Each layer has identical kinetics and
parameters, but differing diffusion coefficients. Critically, we show that despite a linear coupling
between the layers, the model demonstrates nonlinear behaviour; the coupling can lead to pattern
suppression or pattern enhancement. Using the Routh-Hurwitz stability criterion multiple times we
investigate the pattern forming capabilities of the uncoupled system, the weakly coupled system and
the strongly coupled system, using numerical simulations to back up the analysis. We show that
although the dispersion relation of the entire system is a non-trivial octic polynomial the patterning
wave modes in the strongly coupled case can be approximated by a quartic polynomial, whose
features are easier to understand.

I. INTRODUCTION

The formation of complex biological structures, from
tissues to embryos, depends on a wide variety of mor-
phogenetic mechanisms. Various mathematical frame-
works have been developed [1] to explain such au-
tonomous self-organisation, with diffusion-driven insta-
bilities, or Turing mechanisms, being one of the most
widely applied ideas [2].

Although Turing patterns have been suggested to be
behind the patterning of various natural systems, such
as animal coat markings, teeth, hair follicles, feather
placodes, and fingerprints [3–7], the existence of Turing
patterns has only been demonstrated categorically and
mathematically analysed in chemical systems [8].

Most mathematical investigations into pattern forma-
tion use the basic components of two interacting and
diffusing populations in simple geometries [9–11]. How-
ever, biological systems rarely work in isolation. From
simple biological cases of mammary organoids (which
are formed of two layers of interconnected cells [12]) to
complex cases such as neural [13], biochemical [14], or
ecological networks [15], there may exist multiple inter-
connected, communicating layers. Moreover, each layer
may have distinct qualities that differentiate it from the
others, requiring effective integration for the smooth op-
eration of the system.

Here, we focus on investigating the effects of lin-
early coupling two geometric domains similar to [16, 17],
which we refer to as a bilayer. Each layer is a finite one-
dimensional straight line and each layer will have its
own independent system of components that are able

∗ Correspondence email address: leochandru@gmail.com

to generate heterogeneous spatial patterns. We will
demonstrate that linear coupling between the systems
can have nonlinear effects, such as pattern suppression,
or pattern enhancement. Critically, the term bilayer
may have different interpretations in other literature
[18].

Prior research has investigated a variety of layered
coupled systems that generate a wide spectrum of spa-
tiotemporal patterns [16, 17, 19–22]. In a study con-
ducted by Berenstein (2004) [20], the presence of super-
lattice patterns in a bilayer coupled system was experi-
mentally confirmed. The analysis of the bilayer coupled
CDIMA system, considering the effects of illumination,
was also conducted in [21, 22] highlighting how external
effects can influence the system.

In contrast to [16], which focused on a bilayer linearly
coupled system with distinct layers resulting from dif-
ferent parameters, [17] examined a bilayer linearly cou-
pled system with identical layers (i.e., the same kinetics
parameters) and varied interlayer diffusion coefficients.
Although our interests are similar, [17] focused on a
system in which patterns only existed for a small range
of the coupling strength, whereas our system presents
the opposite phenomena, in that patterns exist for all
coupling strengths beyond a critical value.

Konishi (2018) [23] also examined the influence of bi-
layers on linearly coupled patterning systems. However,
their focus was on patterns that had the same wave-
length in each layer, whilst we consider patterns of dif-
ferent wavelengths. In the context of stability analysis,
Catllá (2012) [24] investigated the stability of homo-
geneous steady states within a bilayer linearly coupled
system characterised by identical layers, akin to our own
by the utilisation of the block symmetric structure to
the linear problem. In contrast, we proceed with a one-
dimensional examination of our system and confirm its
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stability by applying the Routh-Hurwitz (RH) stability
criterion.

Numerous physical, or biological systems, such as
the Faraday three-wave experiments [25, 26], bacteria
growth on an agar substrate [27], the bilayer struc-
ture of embryonic skin [5–7], and bulk chemotaxis [18],
have prompted researchers to explore coupled systems
of reaction-diffusion models. Likewise, a bilayer bio-
logical model, like the one depicting the transmission
of brain tumours from one layer of brain tissue to the
other, has generally consisted of two equations, one for
the transmission of tumours in grey matter and one for
the transmission in white matter [28]. However, com-
prehending each distinct layer in a coupled system does
not imply a comprehensive understanding of the entire
system. It is essential to recognise that homogenization
arguments may not always be suitable [29].

In addition to the biological implications, there is a
mathematical justification for considering bilayers. One
way to model 2D Turing patterns is to discretise them
into a grid of points, which looks like a network of in-
terconnected 1D layers. Thus, although we know that
patterns can be supported by the linear coupling pro-
cess, we do not know how this coupling can influence
the patterns.

In this paper we do not consider a specific application.
Instead, we follow a more theoretical approach provid-
ing a proof of existence of nonlinear dynamics driven by
linear coupling. As such, we keep the pattern forming
populations general and call them ‘morphogens’. The
coupling strength, η, refers to the rate at which the mor-
phogens or species populations are transferred between
the different layers. Besides the linear coupling that we
are going to consider, other methods such as dynamic
coupling [19], coupling with delays [30], and nonlinear
coupling [31, 32] have also been investigated.

The researchers in [31] studied a bilayer non-linearly
coupled system and discovered that the pattern be-
comes more apparent as the coupling strengths increase.
Put simply, the only pattern that remains is the one
with the longest wavelength. Also, the authors of [32]
have demonstrated the impact of long wavelength mode
on short wavelength mode in bilayer coupled systems.
They observed that in the case of non-linear coupling,
this influence increases and the intensity ratio of the two
Turing modes changes with the coupling parameter.

In the field of nonlinear research, it has been demon-
strated that two nonlinear oscillators, can exhibit a
quenching phenomenon known as amplitude death,
which signifies the suppression of oscillation [33]. In
addition, it has been demonstrated that Turing-type bi-
furcations can bring about a transition from amplitude
death to oscillation death [34, 35].

Motivated by the aforementioned papers on wave-
lengths and building upon the earlier discourse regard-
ing the biological aspect of tumour growth across layers,

we explore the results of a bilayer linearly coupled sys-
tem with varying interlayer diffusion coefficients provid-
ing considerably different wavelengths for both layers.
This study emphasises the coupling of two distinct lay-
ers and demonstrates that linear coupling can generate
similar behaviours observed in non-linearly coupled sys-
tems. We demonstrate that the patterns can be inhib-
ited by weak coupling and reformed by strong coupling.
Significantly, the wave mode of the combined system is
a weighted combination of both system’s wave modes,
rather than one system dominating the other.

The outline of the manuscript is as follows: Section
II describes the bilayer linearly coupled system, detail-
ing the specific kinetics and parameters employed. Sec-
tion III presents the specifics of the numerical simula-
tions performed. Sections IV to VI examine stability
in detail. Section VII explores the physical insights of
nonlinear behaviour. Section VIII concludes with an
extensive overview and discussion, aiming to elucidate
its dynamic nature. Those familiar with linear stability
analysis for large numbers of populations may concen-
trate on the findings presented in Section VII and the
subsequent discussion in Section VIII.

II. METHODS - TWO SPECIES

Since Turing’s seminal article and the later rediscov-
ery of the short-range activation and long-range inhibi-
tion by Gierer & Meinhardt [36], a progressive wealth
of theory has focused on reaction-diffusion systems as a
model for pattern formation [3].

Fundamentally, we say that a system of reaction-
diffusion equations is able to undergo a Turing insta-
bility if the morphogen populations have a spatially ho-
mogeneous steady state in the absence of population
diffusion, which can be driven unstable when popula-
tion diffusion is included. Generally, the Turing anal-
ysis considers a system of two nonlinearly interacting
morphogen populations in a simply connected spatial
domain of dimension less than or equal to three [37].
Here, we extend this notion to consider multiple inter-
acting systems of the same species.

We consider two one-dimensional spatial domains
characterised by a nondimensional length of x ∈ [0, 130].
On each layer, we define two morphogen populations,
ui and vi, where i = 1, or 2, indicates the morphogen’s
layer. These populations undergo reaction-diffusion dy-
namics in their own layer and are able to transfer be-



3

tween layers, as defined by the system

∂u1
∂t

=
∂2u1
∂x2

+ f(u1, v1) + η(u2 − u1), (1)

∂v1
∂t

= D1
∂2v1
∂x2

+ g(u1, v1) + η(v2 − v1), (2)

∂u2
∂t

= D2
∂2u2
∂x2

+ f(u2, v2) + η(u1 − u2), (3)

∂v2
∂t

= D3
∂2v2
∂x2

+ g(u2, v2) + η(v1 − v2), (4)

where D1, D2 and D3 are the positive nondimension-
alised diffusion coefficients (refer Appendix A) and η is
the coupling strength. η is a positive constant whose
bounds are not restricted by any particular physical
or biological application; rather, we restrict η to the
interval [0, 10] because significant changes in the pat-
terns’ behaviour are noticed within this range. Beyond
this range, the coupling is so strong that the u and
v populations become equal in each layer. Equations
(1)-(4) are supplemented with no-flux boundary condi-
tions and small random perturbations about the homo-
geneous steady states (that we assume exist) as initial
conditions.

For clarity, we use the Schnakenberg kinetics [38] in
their non-dimensional form (refer to Appendix A) given
by

f(u, v) = a− u+ u2v, (5)

g(u, v) = b− u2v, (6)

where, unless otherwise stated, a = 0.05, b = 1.4,
D1 = 50, D2 = 40, and D3 = 800 are taken as the re-
action kinetics parameters and diffusion coefficients for
both layers, ensuring that the same steady states are
available in both layers. Our interests stem from vary-
ing the diffusion coefficients between the layers. Thus,
when uncoupled (η = 0) the morphogens in both lay-
ers can pattern independently and present patterns of
different wavelengths.

We proceed as generally as possible, however, there
comes a point at which the algebra becomes intractable
and we depend on numerical simulation to provide
clarity. Although the outcomes presented in this
study are tailored to our particular case, we offer
the relevant codes at https://github.com/mahaksn/
Linear-Coupling, enabling interested readers to effi-
ciently replicate our algebraic manipulations and simu-
lations with their own systems of interest.

III. NUMERICAL SIMULATIONS

In the context of simulating reaction-diffusion sys-
tems, the implicit-explicit (IMEX) scheme is acknowl-
edged for its enhanced efficiency [39, 40]. This is be-

cause it facilitates unconditional stability in the diffu-
sion term through the implicit scheme, while simultane-
ously supporting the nonlinearity of the reaction term
via the explicit scheme.

Consequently, we adopt the implicit Crank-Nicolson
method (which is numerically stable, even when sub-
jected to the influence of noise [41, 42]) to address the
diffusion term. Further, the Crank-Nicolson method is
recognised for its consistency and unconditional stabil-
ity within the L2 norm, serving as a finite difference
scheme for partial differential equations that converges
in accordance with the Lax Equivalence theorem [43].
In contrast, the explicit Euler method is used to update
the reaction terms [44].

The spatial domain, characterised by a nondimen-
sional length of L = 130, is discretised into nx = 200
equidistant nodes, and numerical simulations are exe-
cuted with a time step not exceeding ∆t = 0.01 (in
nondimensionalised time units). However, convergence
has been tested through simulations using finer spatial
and temporal scales (refer to Appendix B).

In terms of termination condition, we effectively put
a threshold on the time derivative. Namely, if we de-
fine ut

x = (ut1,x, v
t
1,x, u

t
2,x, v

t
2,x) to be the solution state

at the spatially discretised node x and at time t then
the solution is iterated over time, t, until the differ-
ence between two iterations is less than 10−7, namely,
maxx(||ut+1

x − ut
x||) < 10−7, resulting in a stable final

pattern.
To demonstrate the result we are examining, we con-

duct simulations of equations (1)-(4) using kinetics (5)
and (6) while gradually increasing the values of η. Note
that the v population in each layer has the same fre-
quency as the u population in its layer, but is out of
phase with u, so we only visualise the u population in
each layer.

As depicted in Fig. 1, when η is small, the popu-
lations of u in the two layers exhibit distinct pattern-
ing frequencies. By the time η = 0.07, we begin to
observe that the patterns start to influence each other
since there is a noticeable phase shift in u2, although
there is no significant change in u1. As η increases, the
pattern vanishes entirely. Nevertheless, when the cou-
pling strength increases, the pattern resurfaces with a
single frequency across all populations.

Throughout the remainder of this paper, we endeav-
our to comprehend this non-linear phenomenon, which
stems from linear coupling. We examine our linearized
system around the steady states in Sections IV and V.
These sections are designed for a standard Turing pat-
terning system with two layers that have similar kinetics
and parameters. In Section VI, we thoroughly examine
our system’s instability region using numerical evidence,
offering insights into the patterning regime. Section VII
concludes with the identification of the mode values in
the weak coupling and strong coupling regions, which

https://github.com/mahaksn/Linear-Coupling
https://github.com/mahaksn/Linear-Coupling
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(a) (b)

(c) η = 0.17 (d) η = 2 (e) η = 5

Figure 1: Change in the pattern of (a) u1 and (b) u2 as η increases. For smaller η values, 9 wavelengths of u1 are visible,
whilst 2 wavelengths of u2 are visible, which disappear as η increases. For η > 3.77, only 2.5 wavelengths reappear. The
pattern transition of vi is in out-phase to ui. Evolution of patterns of u1 and u2 at (c) η = 0.17, (d) η = 2 and (e) η = 5.

contribute to a better understanding of the nonlinear
effect caused by linear coupling.

IV. LINEAR STABILITY ANALYSIS
WITHOUT INTERLAYER COUPLING

When dealing with systems with multiple layers, di-
rect linear analysis is challenging due to the fact that
the criterion for patterning instability is a polynomial
of high order. Here, we consider the uncoupled systems,
η = 0, thus, we can directly apply well-known Turing
analysis to the two two-species systems separately.

Given the specified conditions, the populations on
each layer reach a state of equilibrium with a steady

state, ui0 = (a+ b, b/(a+ b)2). Perturbing these states,
we consider the evolution of a trajectory of the form

ui = ui0 + ϵi, (7)

where ui = (ui, vi)
T and ϵi represents a small perturba-

tion of the form ϵi = ωi exp(λt), where ωi = (ωui
, ωvi)

T

and 0 < |ωui
| ≪ 1, 0 < |ωvi | ≪ 1. The parameter λ

is a constant that is determined through a consistency
condition. Its sign indicates the stability of the system.

Due to the common nature of the linear analysis in
the two-species case [1] we relegate the details to ap-
pendices C I and C II, where we show that the steady
state is stable in the absence of diffusion when

b− a

a+ b
− (a+ b)2 < 0, (8)
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but unstable in the presence of diffusion when

(a+ b)4 − 2di(a+ 3b)(a+ b) + d2i

(
a− b

a+ b

)2

> 0, (9)

where d1 = D1, and d2 = D3/D2. Note that the pa-
rameter region is known not to be empty for appropriate
ratios of di [45]. Also note that, as a final restriction
for generating a pattern, the domain needs to be ‘large
enough’ to allow the pattern to form, see Section C II
for further details. We will always assume that this is
the case, as we are focusing on the role of the coupling
strength in this problem, rather than the influence of
the geometry.

Critically, the analysis in appendices C I and C II de-
pends on at most quadratic equations. However, in up-
coming sections, we will be investigating quartic and
octic polynomials. To ascertain the stability of a lin-
ear system in such higher degree cases, we will use the
Routh-Hurwitz (RH) stability criterion multiple times.
In summary, the RH criterion allows us to understand
the sign of λ without explicitly calculating it, which
provides a method of investigating whether a pattern-
ing instability is possible in cases where the character-
istic polynomial is of high degree. Although the RH
criterion can be applied to a polynomial of any degree,
we provide a comprehensive explanation of the criterion
in Appendix D for quartic polynomials that will prove
valuable in the subsequent sections. Helpfully, the octic
polynomials will be transformable into quartic polyno-
mials through judicious reparametrisation.

V. LINEAR STABILITY WITH COUPLING,
BUT WITHOUT DIFFUSION

Here, we repeat the linear analysis but include the
coupling between the layers. We note that in the ab-
sence of diffusion, we want the coupled system to have
a stable homogeneous steady state.

When equation (7) is substituted into the system

dui
dt

= f(ui, vi) + η(uj − ui), (10)

dvi
dt

= g(ui, vi) + η(vj − vi), (11)

where ϵi = ωi exp(λt), we get

(λI4 − J0 − ηC)

[
ω1

ω2

]
= 0, (12)

where In is the n× n identity matrix of order n

J0 =

[
J 0
0 J

]
, C =

[
−I2 I2
I2 −I2

]
,

and J is given in Appendix C I, equation (C4). Equa-
tion (12) only has a nontrivial solution is the prefactor
matrix is singular, meaning that its determinant is zero.
The determinant is a quartic function in λ, which also
has a dependence on η and can be expressed as:

y(λ, η, 0) = λ4 +

3∑
n=0

yn0
(η)λn, η > 0, (13)

where

y30 = 4η − 2c1,

y20 = 4η2 − 6ηc1 + c21 + 2c2,

y10 = −4η2c1 + 2η(c21 + 2c2)− 2c1c2,

y00 = 4η2c2 − 2ηc1c2 + c22,

where c1 and c2 are given by equations (C5) and (C6),
respectively.

Since equation (13) is a quartic polynomial we appeal
to the RH criterion. After constructing the Routh array
(as explained in the Appendix D) we find that the real
part of λ is negative if all coefficients y00 - y30 and

yβ0 = 4η2 − 5ηc1 + c21 + c2,
yγ0

= 1
yβ0

[
−2c1(8η

4 − 14η3c1 + η2(7c21 + 8c2)

−η(6c1c2 + c31) + c21c2)
]
.

are positive. Since within the chosen Turing pattern-
ing region c1 < 0 and c2 > 0 then all of the yk0 terms
expressed here are positive (see Appendix E). There-
fore, system (10) and (11) is stable with coupling in the
absence of diffusion.

VI. LINEAR STABILITY WITH DIFFUSION
AND COUPLING

We now find the patterning regime of our system with
diffusion and coupling. Take ϵi = ωi exp(λt) cos(kx),
where k = nπ/L is the wave number with n ∈ Z that
satisfies the no-flux boundary conditions on [0, L]. Sub-
stituting equation (7) into system (1)-(4) yields

(λI4 + Jη)

[
ω1

ω2

]
= 0, (14)

where Jη = k2D−J0−ηC and D = diag(1, D1, D2, D3).
The dispersion relation is given by

y(λ, η, h) = λ4 +

3∑
n=0

yn(h, η)λ
n, h = k2, (15)
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where

y3(h, η) = h(c3 + c4) + 4η − 2c1,

y2(h, η) = h2(c3c4 + c5 + c6) + h(3η(c3 + c4)

− (c1(c5 + c6) + (c8 + c9))

+ (4η2 − 6ηc1 + (c21 + 2c2)),

y1(h, η) = h3(c3c6 + c4c5) + h2(2η(c3c4 + c5 + c6)

− (c1(c5 + c6) + c3c9 + c4c8))

+ h(2η2(c3 + c4)− 2η(c1(c3 + c4)

+ (c8 + c9)) + (c2(c3 + c4) + c1(c8 + c9)))

+ (−4η2c1 + 2η(c21 + 2c2)− 2c1c2),

y0(h, η) =

4∑
l=0

ψl(η)h
l, (16)

ψ4(η) = c5c6,

ψ3(η) = η(c3c6 + c4c5)− (c5c9 + c6c8),

ψ2(η) = η2(c5 + c6 + c7)− η(c1(c5 + c6) + c3c9 + c4c8))

+ (c2(c5 + c6) + c8c9),

ψ1(η) = −2η2(c8 + c9) + η(c2(c3 + c4) + c1(c8 + c9))

− c2(c8 + c9)),

ψ0(η) = 4η2c2 − 2ηc1c2 + c22.

The constants

c3 = 1 +D1,

c4 = D2 +D3,

c5 = D1,

c6 = D2D3,

c7 = D3 +D2D1.

are all positive, given that the diffusion coefficients are
positive constants. Likewise,

c8 = gv +D1fu = c8,1,

c9 = D2gv +D3fu = D2 × c9,2,

where c8,1 and c9,2 are derived in equations (C15)-(C16)
in Appendix C II and are seen to be positive.

A patterning instability occurs when λ has a positive
real part. As explained in Appendix D, there cannot
be a patterning instability unless at least one of the six
RH conditions of equation (15),

RH1 : y3, (17)
RH2 : y2, (18)
RH3 : y1, (19)
RH4 : y0, (20)

RH5 : yβ1 =
y2y3 − y1

y3
, (21)

RH6 : yγ1
=
y1y2y3 − y21 − y23y0

y2y3 − y1
, (22)

becomes negative.

Despite knowing the signs of all the constants in-
volved, finding the exact parametric region of pattern-
ing is difficult because the space where the Turing
patterns occur has six dimensions (D1, D2, D3, a, b, η).
Consequently, in order to demonstrate the desired non-
linear behaviour, we use graphical methods to show the
patterning regions for the given parameters. We deter-
mine the range of k and η within which the RH con-
ditions become negative, thereby identifying the region
in which λ > 0 (corresponding to the roots of the dis-
persion relation (15)) and, thus, a patterning instability
can take place (see Fig. 2).

Figure 2: Sign plot of λ from equation (15). The blue
region shows λ < 0 regions, and the patterning regime, or
λ > 0, is shown by the yellow region.

We confirmed computationally that y0 is the only
component of the RH conditions of (15) (see Appendix
F) which becomes negative for a particular region of
(k, η) that provides the patterning region and informa-
tion on the modes corresponding to the dispersion rela-
tion (Fig. 2). Figure 3 shows that the surfaces of y3, y2,
y1, yβ and yγ never become negative while y0 becomes
negative (blue region) for a particular region of (k, η).

For better clarity and comparison, the sign plot of λ
(Fig. 2) associated with the dispersion relation (15) is
plotted alongside y0(k, η) (Fig. 3(d)) in Fig. 4, which
emphasizes that it is the sign of y0 that provides the
necessary information for patterning. Observe that the
longer wavelength loses its ability to pattern first fol-
lowed by the shorter wavelength as η increases, which
is corroborated in Fig. 5.
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(a) (b) (c)

(d) (e) (f)

Figure 3: Surface plots of the RH conditions (17)-(22). The plots suggest that y0(k, η) is the only surface that becomes
negative.

(a) (b)

Figure 4: Sign plots of (a) λ from dispersion relation (15) and (b) y0 from equation (16), where positive values are yellow
and negative values are blue. The red dotted lines show the partitions highlighted in Table I.

VII. MODES

From the investigation in the last section, we have
found that the sign of λ and therefore the stability of
the homogeneous steady state depends solely on the sign
of y0. Since y0 is a quartic function in h (see equation

(16)) its discriminant is

∆y0(η) = 256ψ3
4ψ

3
0 − 192ψ2

4ψ3ψ1ψ
2
0 − 128ψ2

4ψ
2
2ψ

2
0

+ 144ψ2
4ψ2ψ

2
1ψ0 − 27ψ2

4ψ
4
1 + 144ψ4ψ

2
3ψ2ψ

2
0

− 6ψ4ψ
2
3ψ

2
1ψ0 − 80ψ4ψ3ψ

2
2ψ1ψ0

+ 18ψ4ψ3ψ2ψ
3
1 + 16ψ4ψ

4
2ψ0 − 4ψ4ψ

3
2ψ

2
1

− 27ψ4
3ψ

2
0 + 18ψ3

3ψ2ψ1ψ0 − 4ψ3
3ψ

3
1

− 4ψ2
3ψ

3
2ψ0 + ψ2

3ψ
2
2ψ

2
1 , (23)
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which is a function of η that has the following four real
roots, approximated to two decimal precision,

ηc = {0.17, 0.43, 1.41, 3.77}.

Although these are the critical coupling values that can
produce different bifurcations, it is ultimately a ques-
tion of whether there are any λ with a positive real part
that drives the patterning (see the red lines on Fig. 4).

To investigate these parameter regions, we define Pi

to be an interval delineated by values from ηc. In these
partitioned intervals of η, the nature of the roots of y0
are given in Table I.

Interval of η Number of real
roots of

equation (16)

Number of
complex roots
of equation (16)

P1 = [0, 0.17] 4 0
P2 = (0.17, 0.43] 2 2
P3 = (0.43, 1.41) 0 4
P4 = [1.41, 3.77) 2 2
P5 = [3.77, 10] 4 0

Table I: Nature of the roots of equation (16).

For the given set of parameters and a given η, it is
nevertheless possible to determine the number of roots
with positive real parts by applying the Routh-Hurwitz
criterion to the polynomial y0. Explicitly, the num-
ber of sign changes in the first column of the RH array
(Table III) is equal to the number of roots with pos-
itive real parts. This means that in the partitioned
intervals (P1, P2, P3, P4, P5) presented in Table I there
are (4, 2, 0, 0, 2) positive real k values, which are roots
of equation (16). The number of roots of y0(k) then
matches the number of roots of λ(k), as visualised in
Fig. 5, where we see the λ(k) curve cutting the zero red
dashed line the specified number of times.

For small coupling strengths η ≪ 0.17, the two
layers are effectively decoupled and the wave mode
that appears in the simulations can be derived from
the dispersion relation of the individual layers. For
η ∈ (0.17, 0.43), it is observed that only the shorter
wavelength layer is capable of generating patterns and
the wave mode values can still be determined approxi-
mately using the dispersion relation of this layer.

Figure 5 indicates that there are no positive eigen-
values for η ∈ (0.43, 3.77). However, for η > 3.77, y0
yields two positive real k roots and, thus, a pattern with
a single wavelength is able to appear once again across
the two layers (compare Figures 1, 4 and 5).

To get a handle on the large η features of the disper-
sion relation we investigate the shape of the curve y0
(which we have shown drives the instability) after drop-
ping the higher order terms of y0 (see Fig. 6). Upon
dropping the higher order terms we observe that the
plot of the sign of y0 is altered for small η and does not

reproduce the patterning instability region well. How-
ever, in this parameter region, the two layers can be
treated as approximately independent and are, thus,
tractable. In contrast, the large η region is conserved
across as the higher order terms are dropped (compare
Figures 6(c) and 4(b)). By removing the insignificant
terms from y0, we obtain a solvable quadratic polyno-
mial

yr0(h, η) =

2∑
l=0

ψl(η)h
l, (24)

that approximates the required mode values for large
coupling strengths, corresponding to the dispersion re-
lation.

Consequently, our model demonstrates more intricate
behaviours compared to the one discussed in [17]. More-
over, our findings stand in contrast to those of Li et al.
(2015) [32], which indicate that the short wavelength
mode is more susceptible to nonlinear coupling and ulti-
mately vanishes, resulting in the persistence of only the
long wavelength mode. In contrast, our investigation re-
veals that under conditions of linear coupling, the long
wavelength mode is the first to disappear as the cou-
pling strength is increased. After a brief period with-
out any pattern formation, the long wavelength mode
re-emerges as a single wavelength that is a combination
of the two independent systems. Moreover, by illus-
trating that nonlinear behaviours can appear through
linear coupling we have demonstrated that homogeniza-
tion arguments that seek to reduce the complexity of
coupled layers may not necessarily be sound, without
clear analytic justification [29].

VIII. DISCUSSION AND CONCLUSION

For biological systems to operate efficiently, effective
communication between multiple tissue layers is crucial,
as each layer may have its own unique specifications. As
an illustration, when it comes to the spread of brain tu-
mours, the tumour tends to spread more rapidly across
the grey matter compared to the white matter, high-
lighting the clear differentiation between these layers
[29]. In order to gain a deeper comprehension of the un-
derlying principles behind these processes, we devised a
bilayer coupled system of reaction-diffusion equations.
This system incorporates varying rates of diffusion in
different layers while maintaining a linear diffusion be-
tween them. We employed Schnakenberg kinetics with
a consistent set of parameters for both layers. Although
the model had the same kinetics and was linearly cou-
pled, it displayed nonlinear behaviour (Fig. 1).

At first, we conducted a linear analysis of our system
to examine its behaviour around the steady states. This
analysis was done directly using algebraic conditions
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(a) (b) (c)

(d) (e) (f)

Figure 5: Dispersion curves for η ∈ ηc illustrating the bifurcations occurring due to increasing η values.

through linearization for the separate layers. Critically,
we choose parameter values then enable both layer to
pattern separately, whilst the diffusion coefficients are
selected to ensure two different pattern wavelengths.
Since we needed to examine a quartic polynomial for
both the coupled systems with and without diffusion,
we applied the Routh-Hurwitz stability criterion to aid
with the stability analysis.

Using the discriminant of y0, equation (23), we were
able to partition the range of η providing intervals of
coupling strengths where different patterning dynam-
ics were possible. The patterning modes of the system
with weak coupling can be determined by analysing the
dispersion relation of each layer separately. We approx-
imated our dispersion relation through numerical ex-
perimentation by analysing y0, equation (16), a quartic
polynomial in h (octic in k). We were able to reduce the
quartic polynomial y0 to a lower order (quadratic) poly-
nomial, which could be solved to get the mode values of
the strongly coupled system. Therefore, we conducted
a comprehensive analysis of our model to identify pat-
terns in situations and regions that supported our as-
sertion of nonlinear effects.

Our findings indicate that two primary parameter
regimes contribute to pattern formation in the bilayer:
one characterised by small η and the other by large η.
We expect the two layers to pattern independently in
the small η regime since they are effectively separate,
which means that patterns of various wavelengths can

be sustained. In contrast, under the large η regime,
the spatial patterns remain consistent regardless of dif-
ferences in the kinetic parameters between the two lay-
ers because the populations are effectively homogenised.
This highlights a critical insight that even if we ob-
serve biological systems that have consistent patterns
across multiple systems (e.g., the chemical and mechani-
cal patterning aspects of fingerprint formation [7]), each
patterning system may not be identical. Namely, it is
possible that the coupling drives homogeneity of the
patterns, rather than each system being developed iden-
tically. This mechanism would allow additional robust-
ness to these biological systems as they would not be
required to be made exactly the same during develop-
ment, rather, the coupling of the systems would smooth
out the heterogeneity between the systems.

With regards to the nonlinear phenomena that we
have been considering it is important to question its
generality regarding its existence in parameter space.
Similar nonlinear behaviour (i.e., increasing η causing
a disappearance and then reappearance of patterns) is
observed when a ∈ [0, 0.1] and b ∈ [1.1, 1.95] are se-
lected, ensuring that the initial homogeneous steady
state (u0, v0) satisfies u0 ∈ [1.15, 1.95]. As u0 is ad-
justed from 1.15 to 1.95, the value of D1 must change
from 100 to 50. Subsequently, the values of D2 and
D3 must vary such that ratio D1

D3/D2
shifts from 6.5 to

1.25, with D2 varying between 20 and 150 and D3 rang-
ing from 500 to 3000. Furthermore, the parameter D2
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(a) Removed 4th degree term in y0,
equation (16).

(b) Removed 3rd degree term in y0,
equation (16).

(c) Removed both 4th and 3rd degree
terms in y0, equation (16).

(d) Comparison graph

Figure 6: Graphs (a), (b), and (c) depict the changes in y0 when the 4th degree term, the 3rd degree term, and both 4th

and 3rd degree terms are eliminated, respectively. At the value of η = 10, the comparison graph of y0 with (a), (b), and
(c) is shown in (d). Here, it is noticeable that y0 overlaps with the 4th degree removed, while the 3rd degree removed
overlaps with both removed. Furthermore, it is evident that there is a minimal distinction between them as a whole.

should be smaller than D1.
Thus, although the nonlinear phenomena exist in a

nontrivial parameter space, other phenomena arising
from the coupling are also possible (see Fig. 7). For
example, in Fig. 7(a) the wave length of both layers
collapses to one distribution for practically all η, so pat-
terns always exist. Alternatively, it is also possible for
the coupling to completely eradicate the pattern, as in
Fig. 7(b).

(a) a = 0.05, b = 1.2, D1 = 80,
D2 = 30 and D3 = 600.

(b) a = 0.05, b = 1.9, D1 = 70,
D2 = 50 and D3 = 1600.

Figure 7: Sign plot of λ from equation (15) for the
alternative scenarios other than Fig. 2.

It is imperative to acknowledge that this work serves
as a proof-of-concept and does not aspire to achieve
general applicability. Explicitly, as seen in Fig. 7, our
investigation is only one part of a broader set of possible
outcomes from the nonlinear coupling. Moreover, our
research elucidates the core idea that the linear coupling
of layers does not yield a linear outcome and the result
stands in contrast to those previously discovered [17,
32]. Specifically, the integrated system exhibits a higher
level of complexity than each of the constituent systems.
Future work will explore the limits of complexity that
can arise from a simple connection. For example, we
plan to investigate our system by manipulating the wave
number (k) between both layers.

Appendix A: Non-dimensionalization

Consider two one-dimensional spatial domains with
two morphogen populations on each layer coupled to-
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gether, represented by the system

∂ui
∂t

= Dui

∂2ui
∂x2

+ f(ui, vi) + η(uj − ui), (A1)

∂vi
∂t

= Dvi

∂2vi
∂x2

+ g(ui, vi) + η(vj − vi), (A2)

where Dui
and Dvi are the respective positive diffusion

coefficients with i = 1, or 2, indicating the morphogen’s
layer. Equations (A1) and (A2) are replaced with the
generalised formulation of the Schnakenberg model [38],
characterised as an activator-depleted substrate model

f(u, v) = k1a1 − k2u+ k3u
2v, (A3)

g(u, v) = k4b1 − k3u
2v, (A4)

where the positive constants a1, b1, k1, k2, k3, and k4
are assumed to be the same across the two layers. At
this juncture, we define

u1 = [U1]ū1, v1 = [V1]v̄1, u2 = [U2]ū2, v2 = [V2]v̄2,

x = [L]x̄ and t = [T ]t̄,

where variables with over bars are dimensionless vari-
ables and the bracketed terms are dimensional scales,
which we are free to choose. By substituting the afore-
mentioned variables into equations (A1) and (A2) with
kinetics (A3) and (A4), we obtain

∂ū1
∂t̄

= Du1

[T ]

[L]2
∂2ū1
∂x̄2

+ k1a1
[T ]

[U1]
− k2[T ]ū1

+ k3[U1][V1][T ]ū
2
1v̄1 + η

(
[U2]

[U1]
[T ]ū2 − [T ]ū1

)
,

∂v̄1
∂t̄

= Dv1

[T ]

[L]2
∂2v̄1
∂x̄2

+ k4b1
[T ]

[V1]
− k3[U1]

2[T ]ū21v̄1

+ η

(
[V2]

[V1]
[T ]v̄2 − [T ]v̄1

)
,

∂ū2
∂t̄

= Du2

[T ]

[L]2
∂2ū2
∂x̄2

+ k1a1
[T ]

[U2]
− k2[T ]ū2

+ k3[U2][V2][T ]ū
2
2v̄2 + η

(
[U1]

[U2]
[T ]ū1 − [T ]ū2

)
,

∂v̄2
∂t̄

= Dv2

[T ]

[L]2
∂2v̄2
∂x̄2

+ k4b1
[T ]

[V2]
− k3[U2]

2[T ]ū22v̄2

+ η

(
[V1]

[V2]
[T ]v̄1 − [T ]v̄2

)
.

To simplify the system we choose,

[T ] =
[L]2

Du1

, [U1] = [V1] = β1, [U2] = [V2] = β2,

and combine the remaining parameters in the following
dimensionless groupings

D1 =
Dv1

Du1

, D2 =
Du2

Du1

, D3 =
Dv2

Du1

, γ =
k2[L]

2

Du1

,

β1 = β2 =

√
k2
k3
, a =

k1a1

√
k3
k2

k2
, and b =

k4b1

√
k3
k2

k2
.

Without loss of generality and to simplify the visualisa-
tion of the equations, we eliminate the over bars from
the variables, resulting in a non-dimensional reaction-
diffusion system characterised by a linear coupling of
the general form

∂u1
∂t

=
∂2u1
∂x2

+ γ(f(u1, v1) + η(u2 − u1)), (A5)

∂v1
∂t

= D1
∂2v1
∂x2

+ γ(g(u1, v1) + η(v2 − v1)), (A6)

∂u2
∂t

= D2
∂2u2
∂x2

+ γ(f(u2, v2) + η(u1 − u2)), (A7)

∂v2
∂t

= D3
∂2v2
∂x2

+ γ(g(u2, v2) + η(v1 − v2)), (A8)

where f(ui, vi) and g(ui, vi) are defined as per equations
(5) and (6), respectively. It is important to note that we
have consistently adopted the value γ = 1 throughout
the discussion, as it is essential for η to serve as the
exclusive constant governing the coupling strength.

Appendix B: Numerical scheme convergence

To illustrate the accuracy and convergence of our
numerical codes, we simulate the system four times
for η = 0 (giving each solution curve a name, ei,
i = 0, 1, . . . , 3) with refined time steps and grid nodes,
see Table II.

∆t nx tfinal

e0 0.01 200 2045
e1 0.00825 264 1974
e2 0.0065 328 1902
e3 0.00475 392 1804

Table II: Time step, grid nodes and the corresponding
duration (tfinal) required for the establishment of a stable
pattern for the solution curves ei.

Visually, the numerical scheme provided consistent
behaviour of the system for all refined grid sizes and
time steps, when η = 0. To evidence this we interpo-
late the results onto the same grids and then extract
that absolate maximum differences between them, il-
lustrated in Fig. 8. Clearly, we see that as the space
and time are refined the differences between the curves
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also reduce. In a similar vein, the behaviour is cor-
roborated across a range of values for η, specifically,
(0, 0.17, 0.43, 3.77, 10).

Figure 8: Absolute maximum error differences between the
solution curves ei and ei−1 for i = 1, 2, . . . , 5 provided in
Table II.

Appendix C: Linear stability analysis of the
individual layers

I. without diffusion

We require system equations (A1) and (A2) to be sta-
ble without diffusion and coupling, thus, we substitute
solution (7) into

dui
dt

= f(ui, vi), (C1)

dvi
dt

= g(ui, vi). (C2)

Upon linearising about ωui and ωvi we derive that the
perturbation must satisfy

(λI2 − Ji)ωi = 0, (C3)

where,

Ji =

(
fui

fvi
gui

gvi

)∣∣∣∣
ui0

. (C4)

We note that because the kinetics are the same on both
layers the partial derivatives are independent of i, e.g.
fu1

= fu2
and thus we have J1 = J2 = J. Thus, the

characteristic polynomial of (C3) is given by

s(λ) = λ2 − (fu + gv)λ+ fugv − gufv = 0,

independent of i. In order for system (C1) and (C2)
to be stable, it is necessary to have a negative trace
(c1 = fu + gv < 0) and a positive determinant (c2 =
fugv − gufv > 0) of J [1].

For the Schnakenberg kinetics (5) and (6) with pa-
rameters a > 0 and b > 0, we have

c1 =
b− a

a+ b
− (a+ b)2, (C5)

c2 = (a+ b)2, (C6)

for all a, b. Since c2 > 0 for all a, b > 0 the Turing
parameter region is controlled by the sign of c1, which
can assuredly become negative in the case that b = a.
Thus, there is a parameter region under which system
(A1) and (A2) is stable without diffusion and coupling.

II. with diffusion

The dimensionless system (A1) and (A2) without
coupling but with diffusion is provided by

∂ui
∂t

=
∂2ui
∂x2

+ γf(ui, vi), (C7)

∂vi
∂t

= di
∂2vi
∂x2

+ γg(ui, vi), (C8)

where f and g are given by (5) and (6), d1 = D1,
d2 = D3/D2 and γ = 1. Again, upon linearising by
substituting solution (7) with ϵi = ωi exp(λt) cos(kx),
where k = nπ/L is the wave number with n ∈ Z that
satisfies the no-flux boundary conditions on [0, L], we
get

(λI2 − Jd,i)ωi = 0, (C9)

where Jd,i = k2Di − J, Di = diag(1, di). Based on
the diffusion-driven instability phenomena, our systems
(C7) and (C8) must be unstable for each layer to pattern
separately. Accordingly, we verify our system’s trace
and determinant for instability [1]

trace(Jd,i) = −k2(1 + di) + (fu + gv), (C10)

|Jd,i| = k4di − k2(gv + difu) + (fugv − gufv).
(C11)

As the trace (C10) is always negative, we need |Jd,i| > 0
implying

k2− < k2 < k2+, (C12)

where

k2± =
(gv + difu)±

√
(gv + difu)2 − 4di(fugv − gufv)

2di
.

(C13)
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This requires that the domain be sufficiently large to
enable the emergence of an unstable mode, thus defining
the patterning domain. It follows that for k2+ to be both
real and positive, we arrive at the inequality

gv + difu > 2
√
di(fugv − gufv) > 0, (C14)

and hence the constants

c8,1 = gv +D1fu, (C15)
c9,2 = gv + (D3/D2)fu, (C16)

are positive.

Appendix D: Stability criteria

Our objective is to illustrate the Routh-Hurwitz (RH)
stability criterion by investigating it in detail for quartic
polynomials,

p(λ) = λ4 + α3λ
3 + α2λ

2 + α1λ+ α0.

The RH criterion [46, 47] provides the necessary and
sufficient conditions for a stable linear system. The nec-
essary condition is that all the coefficients of the polyno-
mial must be positive and none of the coefficients must
be zero. The sufficient condition is based on an array,
called the Routh array, constructed from the coefficients
of the characteristic polynomial that requires all the el-
ements of the first column of the Routh array to have
the same sign. Furthermore, the RH criterion informs
us that the number of roots of the characteristic poly-
nomial with positive real parts (indicating an unstable
steady state) is equal to the number of sign changes of
the coefficients in the first column of the array.

The Routh array (Table III) is constructed for p(λ)
as described in [47]. Explicitly, the initial two rows of
the table display the coefficients of the two polynomials,
organised in descending order of degree terms

p1(λ) = λ4 + α2λ
2 + α0,

p2(λ) = α3λ
3 + α1λ,

which contain solely the terms with even degrees and
odd degrees of p(λ). A polynomial, p3(λ), is defined
as the remainder of the division of polynomial p1(λ)
by p2(λ), thus, so that p3(λ) = p1(λ) − q1(λ)p2(λ),
where q1(λ) = λ/α3 represents the quotient. The third
row of Table III contains the coefficients of the re-
mainder p3(λ) = ((α3α2 − α1)/α3)λ

2 + α0. By fol-
lowing the same process, we can define polynomials
pm(λ) = pm−2(λ) − qm(λ)pm−1(λ), which represents
the remainder of the polynomial pm−2(λ) when divided
by pm−1(λ), where qm(λ) =

rm−2

rm−1
λ is the quotient with

rm being the leading coefficient of pm.

The pm(λ) polynomials display a sequence where they
alternate between being even and odd, with each poly-
nomial having a lower order than the previous one. The
Routh array includes the coefficients of these polyno-
mials, excluding any coefficients that are consistently
zero. The coefficients of the polynomials pm can be de-
termined using a straightforward method illustrated in
Table III. To retrieve the νn component of pm, one can
determine the negative determinant of a square matrix
that is formed with the ν1 and νn+1 components taken
from pm−2 and pm−1, respectively, as the first and sec-
ond columns of the matrix, and then dividing the result
by the ν1 component of pm−1, while treating the miss-
ing components as zero. The labels on the left side of
the Routh array indicate the highest power of λ of the
polynomials pm.

ν1 ν2 ν3

p1 : λ4 1 α2 α0

p2 : λ3 α3 α1 0

p3 : λ2

−
∣∣∣∣ 1 α2

α3 α1

∣∣∣∣
α3

= β1

−
∣∣∣∣ 1 α0

α3 0

∣∣∣∣
α3

= α0

−
∣∣∣∣ 1 0
α3 0

∣∣∣∣
a3

= 0

p4 : λ1

−
∣∣∣∣α3 α1

β1 α0

∣∣∣∣
β1

= γ1

−
∣∣∣∣α3 0
β1 0

∣∣∣∣
β1

= 0

−
∣∣∣∣α3 0
β1 0

∣∣∣∣
β1

= 0

p5 : λ0

−
∣∣∣∣β1 α0

γ1 0

∣∣∣∣
γ1

= α0

−
∣∣∣∣β1 0
γ1 0

∣∣∣∣
γ1

= 0

−
∣∣∣∣β1 0
γ1 0

∣∣∣∣
γ1

= 0

Table III: Routh array.

In Table III, after simplifying we have β1 =
(α3α2 − α1)

α3
, and γ1 =

α1α2α3 − α2
1 − α2

3α0

α2α3 − α1
. Thus,

according to the Routh-Hurwitz stability criterion, it
is necessary to confirm that the four coefficients (α3,
α2, α1, and α0) and the two additional elements (β1
and γ1), which result from a particular combination of
the coefficients, are positive in order to ascertain the
stability of the linear system.

Appendix E: Explicit coefficients for the coupled
system without diffusion

In Section V, we derived that equation (13) was a
quartic polynomial in λ. In this section, we provide
the coefficients for each of the terms. Explicitly, for the
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parameters under consideration, the four coefficients

y30 = 4η + 2.34,

y20 = 4η2 + 7.03η + 5.58,

y10 = 4.69η2 + 11.15η + 4.93,

y00 = 8.41η2 + 4.93η + 4.42,

are all positive as η > 0 and the two additional elements

yβ0
= 4η2 + 5.86η + 3.48,

yγ0 =
1

yβ0

(
18.74η4 + 38.42η3 + 61.91η2

+38.39η + 6.76) ,

are also positive with η > 0.

Appendix F: Explicit coefficients for the coupled
system with diffusion

Equations (17) through (22) in Section VI are in-
cluded in this appendix. It contains the explicit coeffi-
cient values as a function of (h, η) for these equations.
You can also find these equations on the GitHub link
mentioned in the Numerical code section.

y3 = 891h+ (4η + 2.34),

y2 = 74890h2 + (2673η + 338.49)h+ (4η2 + 7.03η

+ 5.58),

y1 = 1674000h3 + (149780η − 33497)h2 + (1782η2

+ 676.97η + 1047.20)h+ (4.69η2 + 11.15η + 4.93),

y0 = 1600000h4 + (1674000η − 1455519)h3 + (34850η2

− 33497η + 96758)h2 + (−1410.50η2 + 1047.20η

− 1482.80)h+ (8.41η2 + 4.93η + 4.42),

yβ =
1

y3

[
65052990h3 + (2531423η + 510540)h2

+(12474η2 + 13202η + 4715)h+ (16η3 + 32.80η2

+27.62η + 8.14)] ,

yγ =
1

(y2y3 − y1)

[
1.07e14h6 + (1.26e13η − 1.75e11)h5

+(4.76e11η2 + 8.77e10η − 1.18e10)h4 + (6.13e9η3

+5.74e9η2 + 2.66e9η + 1.49e9)h3 + (24067548η4

+5.81e7η3 + 5.47e7η2 + 3.61e7η + 9.32e6)h2

+(28512η5 + 1.50e5η4 + 2.38e5η3 + 2.39e5η2

+1.22e5η + 2.14e4)h+ (74.97η5 + 197.59η4

+337.65η3 + 298.58η2 + 116.97η + 15.84)
]
.

Since h = k2, k > 0, and η > 0, it follows that y3 > 0,
y2 > 0, and consequently yβ > 0. On the other hand, y1
and yγ (Fig. 3(c) and 3(f)) do not show any discernible
patterns, while y0 (Fig. 3(d)) reveals a distinct region
in (k, η) that displays pattern formation.

NUMERICAL CODE

The necessary equations can be located in the ap-
pendices, while the corresponding code containing these
equations is available on GitHub at https://github.
com/mahaksn/Linear-Coupling.
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