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Abstract 

To control the environmental problems caused by the ever-growing global 

greenhouse gas emissions, reducing carbon emissions from buildings is necessary. 

Although solar energy has been widely used in buildings to reduce carbon emissions, 

its instability poses significant challenges to its utilisation and thus a large number of 

solar irradiance forecasting methods have been developed to anticipate its fluctuations. 

However, these methods are usually not customised for buildings and are not 

developed based on the needs of future building intelligence.  

Consequently, the aim of this research is to develop a solar irradiance nowcasting 

method with high spatial-temporal resolution based on low-cost equipment and user-

friendly programming to achieve reliable nowcasting of Global Horizontal Irradiance 

(GHI), Direct Normal Irradiance (DNI), and Diffuse Horizontal Irradiance (DHI) for 

buildings and their future development. 

In general, this research first applied a clear systematic review methodology to 

identify appropriate forecasting methods for buildings. Secondly, through using low-

cost equipment and user-friendly programming, this research develops a solar 

irradiance nowcasting method with very short-term forecasting horizons and high 

spatial-temporal resolution based on a promising Residual Neural Network (ResNet-

152) model to achieve 10-sec, 1-min, 5-min, and 10-min nowcasting of GHI, DNI and 

GHI. Thirdly, a series of comparative tests are conducted to explore the effect of 

different factors on the nowcasting performance and the results of these comparative 

tests are verified by selected evaluation metrics. Finally, this research discusses the 

current and potential applications of the solar irradiance nowcasting method on 

buildings to demonstrate the practicality this research. 

Based on the results verification and analysis of comparative tests, the developed 

nowcasting method demonstrates evident reliability under the influence of different 

factors, including various time intervals, forecasting horizons, sky conditions, 

forecasting models and datasets.   
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In conclusion, the significance of this research is to innovatively explore a solar 

irradiance nowcasting method from an architectural perspective and achieve reliable 

nowcasting of GHI, DNI and DHI for optimising the operational efficiency and safety, 

occupant comfort and design of buildings. Also, this research establishes an 

interdisciplinary methodology integrating the knowledge of meteorology, imagery, 

computer science and architecture, which can increase interdisciplinary 

communication and cooperation, as well as provide more research directions. 

Ultimately, the specific approaches, tools and outcomes of the research, as well as the 

discussion of the possible applications of solar irradiance nowcasting on buildings, 

provide initial inspiration for future research and the future development of buildings.  
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Chapter One 

1 Introduction 

This chapter offers a thorough introduction to this thesis, beginning with an 

explanation of the research background. Subsequently, the problem statement and the 

importance of the research are presented. Following this, the aim, focus and scope of 

this research are proposed. After that, this chapter identifies research gaps, poses 

research questions, and sets forth research objectives and procedures. Finally, an 

outline of the thesis is provided
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1.1 Research Background  

The ever-growing global greenhouse gas emissions will inevitably lead to a series 

of environmental issues, including the rise of average global temperature, climate 

changes and other catastrophes. The World Meteorological Organization's (WMO) 

provisional statement of Global Climate 2023 mentioned concentrations of the three 

leading greenhouse gases - carbon dioxide, methane, and nitrous oxide - reached 

record highs in 2022 and continued to increase in 2024 [1]. In this case, global mean 

temperature likely made the past ten years, 2015 to 2024, the warmest years on record 

and sea levels reached a new record high in 2023. Thus, reducing carbon emissions 

from living and production is the inevitable choice for controlling greenhouse gas 

emissions. 

1.1.1 Renewable Energy and Solar Energy  

The use of non-renewable energy, particularly fossil fuels such as coal, oil, and 

natural gas, in living and production is undoubtedly the crucial cause of the increase in 

carbon emissions [2]. Unlike non-renewable resources, renewable energy such as 

solar, wind, geothermal, and tidal energy can be continuously replenished from natural 

processes, and the use of them almost does not produce air pollutants. Therefore, 

using renewable energy has become a consensus in human society.  

Presently, the utilisation of renewable energies has become a global tendency with 

rapidly growing awareness of sustainable development [3-5]. Meanwhile, more and 

more international organisations and major players in the world economy have 

dedicated themselves to enacting policies to control carbon emissions that contribute 

to utilising renewable energies. For example, the European Union EU aims to reduce 

greenhouse gas emissions by at least 55% by 2030 by accelerating renewable energy 

utilisation and become a climate-neutral continent by 2050 [1].  

Among the various renewable energies, solar energy undoubtedly plays a crucial 

role because it has the highest energy potential. At first, solar energy is inexhaustible 
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as long as the sun exists. Secondly, solar energy is a clean energy source. It generates 

electricity or heat by converting solar light or thermal energy, a process that does not 

emit pollutants. In addition, solar energy is also the cause of many other energy 

sources [6]. For instance, wind energy is a converted form of solar energy. The uneven 

heating of the earth’s surface due to solar radiation leads to an unbalanced pressure 

distribution in the atmosphere, resulting in the formation of winds. Lastly, solar energy 

is abundant in most regions of the world. Figure 1.1 shows the long-term average of 

daily or yearly Global Horizontal Irradiance (GHI) worldwide. It demonstrates the 

enormous potential of solar energy worldwide. Therefore, solar energy has profound 

value as a renewable, clean and promising energy resource [7]. 

 

Figure 1.1 The Long-Term Average of Daily or Yearly GHI over The World 

(Resource: https://commons.wikimedia.org/wiki/File:SolarGIS-Solar-map-World-map-en.png) 

1.1.2 Solar Irradiance Forecasting and Solar Irradiance Forecasting 

Methods 

Although the potential value of solar energy is undoubted, the utilisation of solar 

energy is often accompanied by a series of challenges due to its instability induced by 

the dynamic nature of sun movement, cloud transitions, water vapour, and air pollution. 

Figure 1.2 (a) presents the variation of GHI over a representative day [8, 9]. From an 

https://commons.wikimedia.org/wiki/File:SolarGIS-Solar-map-World-map-en.png
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overall perspective, the variation of GHI follows the diurnal cycle of the sun's movement. 

GHI starts from zero at sunrise and achieves peak around noon, finally close to zero 

when sunset arrives. In terms of details, the frequent variation of the relative position 

between the sun and clouds brings significant fluctuations of GHI, which brings 

instability to the daily pattern of GHI, as presented in Figure 1.2 (b). Based on the 

above, understanding the patterns of solar energy variation in advance, especially the 

variations in solar irradiance, can significantly help the utilisation of solar energy. Thus, 

a vast number of methods have been explored to achieve reliable solar irradiance 

forecasting. 

 

Figure 1.2 (a)The Variation of GHI over A Representative Day. (b) A Zoomed View for 

11:00-13:00. 

Solar irradiance forecasting methods can be categorised according to different 

characteristics, including technologies, data acquisition way, forecasting horizons, 

forecasting parameters, etc. For example, according to the forecasting horizon, solar 

irradiance forecasting methods can be classified into Day-ahead forecasting methods, 

Intra-day forecasting methods, Intra-hour forecasting methods and Intra-minute 

forecasting methods. Among the abovementioned characteristics, forecasting 

technology is most often used to classify forecasting methods. In this case, a series of 

comprehensive reviews have proposed their classification of solar irradiance 

forecasting methods according to different characteristics [10-12]. Refer to their 

viewpoints, solar irradiance forecasting methods are classified into the following five 

categories in this research: 
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• Numerical Weather Prediction methods (NWPs).  

• Statistical and Learning methods. 

• Top-down forecast methods. 

• Bottom-up forecast methods. 

• Hybrid methods. 

These different solar irradiance forecasting methods were developed according to 

various forecasting purposes and thus can achieve decent performance in their 

designated spatial-temporal resolution. A detailed explanation of these forecasting 

methods will be given in the next chapter.  

1.1.3 Solar Irradiance Nowcasting Methods for Buildings 

Building is the basis of human living and production. However, about 37% of 

carbon emissions and 36% of the world’s total energy consumption are related to 

buildings and related construction, according to the 2021 Global Status Report for 

Buildings and Construction [13]. Therefore, applying renewable energy in buildings is 

undoubtedly a significant task to reduce conventional fossil energy's cost and carbon 

emissions[14]. In this context, solar energy has been widely used in buildings, and thus, 

the value of solar irradiance forecasting for buildings is evident.  

At present, solar irradiance forecasting methods are widely used in large regional 

power grids and infrastructure with solar energy applications for energy conservation, 

energy management, equipment protection, etc. For example, some solar irradiance 

forecasting methods were utilised to avoid damage to the system devices of giant 

electrical grids from sudden changes in unstable solar conditions. In general, extensive 

areas, low frequency and long forecasting horizons are the main characteristics of 

these solar irradiance forecasting methods. However, the abovementioned 

characteristics of solar irradiance forecasting methods are not optimal for specific 

single buildings or groups of buildings. Fortunately, a series of opportunities have 

emerged recently to support the development of new solar irradiance forecasting 

methods for buildings.  
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First of all, the development of building intelligence, such as the concept of “Smart 

Building”, aims to utilise environmental information, connected technologies and 

automated management to enhance buildings’ operational efficiency, safety and 

occupant comfort [15-17]. Specific technologies of building intelligence may include 

efficient energy management systems, automated control strategies, and the 

integration of smart devices and sensors for optimising lighting, temperature control 

and other building functions. In this context, demand for on-site and high-frequency 

environmental data environmental information, especially meteorological data 

(including solar irradiance, temperature, humidity, wind speed, etc.), has increased 

significantly. 

Secondly, the rapid growth of the 5G internet will enormously improve unit data 

propagation speed and data capacity that thus can construct an advanced 

infrastructure for linking solar energy forecasting systems (data collection, analysis and 

prediction) with solar energy application systems (electricity, heating, cooling, lighting). 

In this case, high-speed and high-capacity interactions between solar energy 

forecasting systems and solar energy application systems provide the foundation for 

utilising solar irradiance forecasting on intelligent buildings.  

Most importantly, the recent emergence of solar irradiance nowcasting methods 

contributes to on-site, high-frequency and short to very short-term solar irradiance 

forecasting, which is very appropriate for intelligent buildings. In meteorological terms, 

nowcasting refers to the forecast of the time horizons from the next few seconds up to 

six hours [18]. 

To sum up, the opportunities and benefits of exploring appropriate solar irradiance 

nowcasting to develop building intelligence are apparent. Therefore, this research aims 

to develop a new solar irradiance nowcasting for buildings. 
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1.2 Statement of Problem 

With the development of building intelligence, the link between environmental 

information and buildings is becoming increasingly strong. One of the most important 

environmental information is meteorological data. In recent years, it has become 

common to use the forecasting of meteorological data to predict and optimise the 

building’s performance [19, 20]. Meteorological data in forecasting generally involves 

a series of weather parameters, such as temperature, humidity, wind speed, air 

pressure, and solar irradiance. The difficulty of obtaining the forecasting of various 

weather parameters is very different, as well as the reliability of the forecasting of 

various weather parameters. For buildings, reliable solar irradiance forecasting is 

undoubtedly the most difficult to obtain compared to other weather parameters 

forecasting because of its high instability and a series of specific reasons.  

At first, there are relatively fewer sources for obtaining solar irradiance forecasting 

compared to other weather parameters. In general, the sources of solar irradiance 

forecasting mainly include national or regional meteorological institutions, commercial 

companies, and public meteorological stations because only these agencies can utilise 

sophisticated techniques and afford expensive equipment. In recent years, some have 

started offering online Weather Application Programming Interfaces (APIs) to provide 

weather data services to their customers. However, only a few Weather APIs can 

provide solar irradiance forecasting. Solar irradiance forecasting from the above 

sources is usually unavailable to the public or requires high purchase prices and is 

therefore not favourable to the utilisation of specific single buildings or groups of 

buildings. Thus, exploring appropriate solar irradiance forecasting methods according 

to the needs of buildings is necessary. 

More importantly, the solar irradiance forecasting provided by the abovementioned 

sources is unreliable for buildings because of the spatial-temporal resolution and 

forecasting horizon. In this research, spatial resolution refers to the specificity of the 

forecast areas, and temporal resolution refers to the frequency of the forecast 
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occurrence. Meanwhile, forecasting horizon refers to how far ahead the forecast 

predicts the future. Generally, solar irradiance forecasting methods used in the 

abovementioned sources are usually characterised by low spatial-temporal resolution 

and medium- to long-term forecasting horizons, which is not ideal for buildings. In this 

research, low spatial-temporal resolution means wide-area and low-frequency. For 

example, although some public weather stations can obtain solar irradiance 

forecasting, the distance between weather stations is often several kilometres or more. 

As a result, the reliability of solar irradiance forecasting is reduced due to the different 

locations of a weather station and a specific building. In addition, solar irradiance 

forecasting from the abovementioned sources can only provide low-frequency and 

long- to medium-term forecasting on a day or hour scale rather than short- to very 

short-term nowcasting on a minute or second scale, limiting the future development of 

more sophisticated building systems operation and management. Emerging solar 

irradiance nowcasting methods are characterised by short to very short-term 

forecasting horizons and high spatial-temporal resolution, so it is necessary to study 

these methods for the future development of buildings.  

Apart from spatial-temporal resolution and forecasting horizon, equipment and 

programming are crucial to utilising solar irradiance forecasting in buildings. Generally, 

equipment and programming for solar irradiance forecasting used by national or 

regional meteorological institutions, commercial companies, and public weather 

stations are expensive and not easy to use for the public. However, low-cost equipment 

and user-friendly programming are better suited for widespread building use.  

In addition, the forecasting parameters are also significant. Most solar irradiance 

forecasting methods are mainly focused on forecasting Global Horizontal Irradiance 

(GHI), Direct Normal Irradiance (DNI), Photovoltaic (PV) power, etc. However, Diffuse 

Horizontal Irradiance (DHI), one of three crucial components of solar irradiance, is 

usually ignored. In fact, GHI is the sum of DNI and DHI. In many building simulation or 

system control programs, DNI and DHI need to be used directly, or GHI is converted 
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to DNI and DHI for use. Thus, forecasting GHI, DNI, and DHI is valuable for buildings. 

At last, the possibilities that emerging solar irradiance nowcasting methods bring 

to the future development of buildings have not yet received attention. Hence, 

discussing current or potential applications of solar irradiance nowcasting methods in 

buildings is worthwhile.  
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1.3 Importance of the Research 

Although a large number of solar irradiance forecasting methods have been 

developed in the last decades, these solar irradiance forecasting methods are usually 

not tailored for buildings and are not ideal for the potential needs of intelligent buildings 

for the future. Therefore, the critical purpose of this research is to seize the 

opportunities presented by the recent development of building intelligence, the 5G 

internet and the emerging solar irradiance nowcasting methods with high spatial-

temporal resolution to develop a suitable solar irradiance forecasting method for 

buildings and to discuss its possible applications in the present or future.  

The importance of this research is to explore a solar irradiance nowcasting method 

appropriate for buildings and their future development from an architectural 

perspective and thus achieve reliable nowcasting of GHI, DNI and DHI for optimising 

building performance. As a result, this research will investigate what solar irradiance 

forecasting methods are more appropriate for buildings and then combine knowledge 

of meteorology, imagery, computer science and architecture to develop an 

interdisciplinary research methodology for solar irradiance nowcasting. Then, this 

research will apply the developed solar irradiance nowcasting method to achieve GHI, 

DNI and DHI nowcasting and evaluate the nowcasting reliability. Ultimately, this 

research attempts to discuss the potential value of solar irradiance nowcasting to 

buildings and the development of future buildings, which provides initial inspiration for 

subsequent research.  

In this case, the main concerns of this research will address the following aspects: 

• Exploring an appropriate solar irradiance forecasting method for buildings to 

move away from the limitations of the current sources of solar irradiance 

forecasting. 

• Developing a solar irradiance nowcasting method to meet the potential needs 

of buildings for high spatial-temporal resolution and short to very short-term 

forecasting.  
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• Studying low-cost equipment and user-friendly programming for the developed 

solar irradiance nowcasting method to increase its building practicality.  

• Nowcasting GHI, DNI and DHI to provide the three most critical foundational 

data of solar irradiance for the applications of buildings.  

• Evaluating the nowcasting results to verify the reliability of the developed solar 

irradiance nowcasting method. 

• Discussing possible applications of the developed solar irradiance nowcasting 

methods in buildings, thus stimulating more researchers’ interest. 
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1.4 Research Aim  

This research aims to develop a solar irradiance nowcasting method with high 

spatial-temporal resolution based on low-cost equipment and user-friendly 

programming to achieve reliable GHI, DNI and DHI nowcasting for buildings and their 

future development. 

Specifically, this research will first conduct desktop and field studies to quantify the 

impact of unstable solar irradiance on building performance and review the research 

of solar irradiance forecasting methods; then develop an appropriate and reliable solar 

irradiance nowcasting method for buildings, combining multiple forecasting methods, 

low-cost equipment and user-friendly programming; finally use the proposed solar 

irradiance nowcasting methods to achieve the nowcasting of three critical solar 

irradiance components involving GHI, DNI and DHI and discuss their current and 

potential applications in buildings. 

1.5 Research Focus and Scope  

1.5.1 Research Focus 

This research is centred on developing a solar irradiance nowcasting method for 

buildings. In this case, the major concerns of this research include: 

• The review of solar irradiance forecasting methods.  

• The nowcasting horizon and the spatial-temporal resolution of the solar 

irradiance nowcasting method.  

• Equipment and programming for implementing the solar irradiance nowcasting 

method.  

• The nowcasting of GHI, DNI and DHI and the verification of the nowcasting.  

• The discussion of possible building applications of GHI, DNI and DHI 

nowcasting. 

1.5.2 Area and Generalisation  

Due to the influence of COVID-19 and parenting responsibility, this research has 



Ph.D. Thesis   Lei Chen 

 

Cardiff University                                                      13                                             Welsh School of Architecture 

 

been conducted in Shanghai, China, since 2021. Thus, the research area is Shanghai, 

China. Despite this, this research applies to most regions of the world except for some 

areas with an extreme lack of sunlight because the proposed solar irradiance 

nowcasting method in this research is linked only with solar irradiance. In other words, 

this research is not region-specific but general.  

1.5.3 Nowcasting Horizon and Spatial-Temporal Resolution  

The term 'nowcasting' in this research mainly covers the forecast of the time 

horizons from 10 seconds to 10 minutes, also known as ‘very short-term forecasting’. 

Specifically, this research's nowcasting horizons include 10 seconds, 1 minute, 5 

minutes, and 10 minutes.  

In addition, this research’s spatial resolution of the nowcasting is from 1 metre to 

2 kilometres. The temporal resolutions of the nowcasting, like nowcasting horizons, are 

10 seconds, 1 minute, 5 minutes, and 10 minutes.  

1.5.4 Nowcasting Parameters  

The three most critical foundational solar irradiance data are GHI, DNI, and DHI. 

GHI, DNI and DHI can not only be used directly in building simulation programs but 

can also be used to calculate PV power. Thus, this research only focuses on 

nowcasting GHI, DNI and DHI. 

1.5.5 Building Applications of GHI, DNI and DHI Nowcasting. 

The purpose of this research is to give initial inspiration for subsequent research 

by discussing current and potential applications of GHI, DNI and DHI nowcasting. Thus, 

this research will not present the specific content of applications. 

 



Ph.D. Thesis   Lei Chen 

 

Cardiff University                                                      14                                             Welsh School of Architecture 

 

1.6 Research Gaps  

A series of literature reviews of solar irradiance forecasting methods have 

exhaustively presented various aspects of this field, including data acquisition methods, 

forecasting methods, forecasting parameters, evaluation metrics, etc [3, 10, 21-26]. 

Based on these literature reviews and architectural perspectives, several significant 

research gaps were summarised as follows:  

1. Most literature reviews of solar irradiance forecasting methods tend to focus on the 

forecasting methods themselves. However, very few researchers have reviewed 

solar irradiance forecasting methods suitable for buildings from an architectural 

perspective. Besides, most research tend to lack a clear methodology for literature 

review.  

2. Little research has been done to consider what kind of nowcasting horizons and 

spatial-temporal resolution are appropriate for the building. More importantly, only 

a very few research have explored the potential value of emerging solar irradiance 

nowcasting methods with short- to very short-term forecasting horizons and high 

spatial-temporal resolution for buildings and their future development.  

3. Further, little attention has been paid to what kind of equipment and programming 

for solar irradiance forecasting methods are suitable for the utilisation of buildings. 

In terms of equipment, purchase costs, installation conditions and operating 

difficulty are critical. In the case of programming, ease of learning and use, 

variability, and extensibility are necessary. 

4. At present, most solar irradiance forecasting methods mainly focus on GHI 

forecasting, and a relatively small number of forecasting methods are also 

concerned with DNI forecasting. However, forecasting methods for DHI are very 

rare. In fact, GHI, DNI and DHI are three equally critical parameters of the 

necessary weather files for most building simulation programs. Thus, the 

forecasting of DHI is valuable. 

5. Few studies have comprehensively explored the effects of diverse factors on the 
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reliability of solar irradiance forecasting. These factors include various time 

intervals and horizons of forecasting, different sky conditions, forecasting models, 

and datasets.  

6. Little attention has been paid to the study of evaluation metrics for solar irradiance 

forecasting methods, resulting in the selection of evaluation metrics often chosen 

without a clear reason. In this case, it is valuable to screen and use appropriate and 

diverse evaluation metrics to evaluate solar irradiance forecasting methods from 

various perspectives. 

7. Only a few studies have discussed what current or potential building applications 

of solar irradiance forecasting methods can be used from an architectural 

perspective, especially those solar irradiance nowcasting methods that have 

emerged in recent years. 
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1.7 Research Questions 

Based on the above research gaps, several research questions were proposed: 

1. How can a literature review be conducted based on a clear methodology to 

screen the solar irradiance forecasting methods appropriate for buildings?  

2. How can a solar irradiance nowcasting method appropriate for buildings be 

developed?   

3. How can the results of solar irradiance nowcasting be generated?   

4. How can the reliability of solar irradiance nowcasting be verified?   

5. What current or potential building applications can the proposed solar 

irradiance nowcasting method be applied to?  

In order to answer the above research questions and achieve the research aim, a 

series of research objectives were proposed in the following section.  
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1.8 Research Objectives and Procedures  

1. To conduct a systematic review of current solar irradiance forecasting methods 

and identify the forecasting methods appropriate for buildings according to the 

characteristics of forecasting methods. 

a) Determining a well-defined methodology for literature review.  

b) Conducting a systematic literature review of current solar irradiance 

forecasting methods. 

c) Identifying critical characteristics of solar irradiance forecasting methods 

appropriate for buildings, such as nowcasting horizon, spatial-temporal 

resolution, equipment, programming, etc.  

d) Collating and analysing solar irradiance forecasting methods suitable for 

buildings based on the critical characteristics of forecasting methods.  

2. To develop a solar irradiance nowcasting method with very short-term 

forecasting horizons and high spatial-temporal resolution using low-cost 

equipment and user-friendly programming to achieve the nowcasting of GHI, 

DNI and GHI. 

a) Proposing a methodology for GHI, DNI, and GHI nowcasting with very 

short-term nowcasting horizons and high spatial-temporal resolution. 

b) Establishing a system of low-cost equipment for GHI, DNI, and GHI 

nowcasting. 

c) Selecting user-friendly programming to implement the nowcasting 

procedures of GHI, DNI, and GHI nowcasting. 

3. To apply the proposed irradiance nowcasting method to achieve the 

nowcasting of GHI, DNI, and GHI in a series of comparative tests. 

a) Applying the developed low-cost equipment to obtain ground-based cloud 

images and measurement of GHI and DHI with high spatial resolution 

(2km) and temporal resolution (10-sec, 1-min, 5-min, and 10-min). 

b) Training solar irradiance nowcasting models using cloud images and 
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measurement of GHI and DHI based on the selected user-friendly 

programming.  

c) Designing a series of comparative tests according to various factors, 

including time intervals, nowcasting horizons, sky conditions, forecasting 

models, and datasets.   

d) Using trained solar irradiance models and cloud images to generate 10-

sec, 1-min, 5-min, and 10-min nowcasting of GHI and DHI in different 

comparative tests.  

e) Calculating 10-sec, 1-min, 5-min, and 10-min nowcasting of DNI using the 

nowcasting of GHI and DHI generated from different comparative tests 

based on the mathematical relation equation among GHI, DNI and DHI. 

4. To utilise appropriate evaluation metrics to evaluate the reliability of the GHI, 

DNI, and DHI nowcasting from various perspectives.  

a) Assessing the characteristics and popularity of evaluation metrics, 

including MAE, RMSE, nMAE, nRMSE, skill score (SS), r, etc. 

b) Selecting appropriate evaluation metrics to evaluate the reliability of GHI, 

DNI and DHI nowcasting obtained from different comparative tests.  

5. To discuss current and potential building applications of the proposed solar 

irradiance nowcasting method.  

a) Discussing current building applications of the proposed solar irradiance 

nowcasting method according to current building applications of solar 

irradiance nowcasting methods.  

b) Discussing potential building applications of the proposed solar irradiance 

nowcasting method according to the future trends of building development.  
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1.9 Thesis Outline 

This thesis is organised into six chapters. In Chapter 1, a thorough introduction 

involving the research background, statement of problem, importance of research, 

research aim, research focus and scope, research gaps, research questions, research 

objectives and methods, and thesis outline are presented. Chapter 2 conducts a 

systematic review of current solar irradiance forecasting methods and identifies the 

appropriate forecasting methods for buildings according to the characteristics of 

forecasting methods. Subsequently, a comprehensive research methodology involving 

data collection and processing, nowcasting models, equipment and programming, 

evaluation metrics, and comparative tests of GHI, DNI and DHI nowcasting is 

articulated in Chapter 3. In Chapter 4, the results verification and analysis of GHI, DNI 

and DHI nowcasting in different comparative tests of various factors, including time 

intervals, nowcasting horizons, sky conditions, forecasting models, and datasets, are 

displayed. Chapter 5 articulates the advantages and limitations of this research and 

discusses current and potential building applications of the proposed solar irradiance 

nowcasting method. Finally, the conclusion and possible directions for further work are 

given in Chapter 6.  
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Chapter Two 

2 Literature Review with Systematic Review Methodology 

The purpose of Chapter 2 is to respond to the first research question in Chapter 1 

- “How can a literature review be conducted based on a clear methodology to screen 

the solar irradiance forecasting methods appropriate for buildings?”. Therefore, the 

crucial task of this chapter is to achieve the first research objective - to develop a well-

defined review methodology to review current solar irradiance forecasting methods 

systematically and identify the forecasting methods appropriate for buildings according 

to the characteristics of forecasting methods. 

In specific, this chapter deals with a series of main sections. Firstly, the potential 

of solar energy in different regions of the world is introduced to demonstrated the value 

of this research for most regions of the world. Secondly, a series of background 

information, such as building energy demand, building energy benchmarks, is 

discussed to clarify the link between building and solar irradiance forecasting. Thirdly, 

a brief introduction of diverse solar irradiance forecasting methods is presented. After 

that, current review methodologies of solar irradiance forecasting methods and their 

limitations are demonstrated.  

Subsequently, the developed systematic review methodology for solar irradiance 

forecasting methods and its relationship with research methodology of solar irradiance 

nowcasting are articulated. And then, a systematic review of current solar irradiance 

forecasting methods based on the proposed systematic review methodology is 

conducted to provide a comprehensive review of different forecasting methods and 

their characteristics, including forecasting horizons, spatial-temporal resolution, data 

acquisition ways, forecasting parameters, equipment and programming, etc.  

On this basis, a series of research gaps are identified based on the needs of 

building applications and a further specific review of the emerging solar irradiance 

nowcasting methods is carried out to explore how these methods can address the 
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research gaps. In this case, the aim of this research and the characteristics of solar 

irradiance nowcasting methods needed for this research are demonstrated. Afterwards, 

the specific characteristics of solar irradiance nowcasting methods chosen for this 

research and the reasons for their selection are articulated. Finally, the 

conceptualisation of solar irradiance nowcasting method is discussed to inform the 

development of the research methodology in Chapter 3. 
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2.1 Potential of Solar Energy in Different Regions of The World 

Solar Radiation is a free resource available in more or less quantities anywhere on 

the planet. In the current era of global climate change, the application of solar energy 

offers an opportunity for countries and communities to transform or develop their 

energy infrastructure and step up their low-carbon energy transition. However, what is 

the potential of solar energy in a specific region? This is a question often asked by 

policymakers and businesses alike. In this context, a report - Global Photovoltaic 

Power Potential by Country - has been developed by Solargis under contract to the 

World Bank, which effectively clarifies the potential of solar energy in different regions 

of the world [27].  

In the report, the long-term average of daily or yearly GHI and DNI worldwide are 

respectively shown in Figure 2.1 and Figure 2.2, which demonstrate the theoretical 

potential of solar energy in different regions of the world. The theoretical potential for 

of solar energy merely depends on the long-term distribution of solar resource and thus 

allows for the comparison of the conditions between different regions without 

considering any solar energy system configuration. On the contrary, the report also 

proposes the practical potential of solar energy in different regions of the world based 

on their level of development and technological conditions, as shown in Figure 2.3. 

 

Figure 2.1 The Long-Term Average of Daily or Yearly GHI over The World 

(Resource: Energy Sector Management Assistance Program, Global photovoltaic power potential by 

country, World Bank, (2020).) 
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Figure 2.2 The Long-Term Average of Daily or Yearly DNI over The World 

(Resource: Energy Sector Management Assistance Program, Global photovoltaic power potential by 

country, World Bank, (2020).) 

 

Figure 2.3 The Long-Term Average of Daily or Yearly Practical Solar Power Potential 

over The World 

(Resource: Energy Sector Management Assistance Program, Global photovoltaic power potential by 

country, World Bank, (2020).) 

In summary, around 20% of the global population lives in the regions with excellent 

conditions for solar energy application, where long-term daily PVOUT averages 

exceed 4.5 kWh/kWp. In addition, regions in the favourable mid-range between 3.5 

and 4.5 kWh/kWp account for 71% of the global population. These include five of the 

six most populous countries (China, India, the United States, Indonesia, and Brazil) 

and 100 others (Canada, the rest of Latin America, southern Europe, and African 

countries around the Gulf of Guinea, as well as central and southeast Asia). In the end, 
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regions accounting for 9% of the global population score an average PVOUT below 

3.5 kWh/kWp, dominated by European - except those in southern Europe. However, 

the potential is not dramatically lower compared to the top-performing group. To sum 

up, most regions of the world have solar energy potential.  

According to the above, the main research sites of this research – Cardiff, UK, and 

Shanghai, China – both have good potential for solar energy, which confirms the basic 

value of this study. At the same time, the above report also proves the value of this 

research for most regions of the world. 
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2.2 The Link between Building and Solar Irradiance Forecasting  

As mentioned in section 1.1.3, buildings are a major part of global energy 

consumption, estimated to account for about 36% of total energy use, primarily for 

heating, cooling, lighting, and operating appliances.  

2.2.1 Building Energy Demand 

Building energy demand refers to the total amount of energy required to maintain 

a comfortable indoor environment, equipment power supply and operation. It depends 

on the size, design, construction materials, insulation quality, and the habits of its 

occupants of the building. In specific, energy demand involves the following aspects: 

• Heating Demand. 

a) Space Heating. 

Space Heating is the process of maintaining a comfortable indoor 

temperature in building spaces, especially in colder climates. It involves 

heating the air within the building to make the environment comfortable for 

occupants. 

b) Passive Heating.  

Passive heating refers to the design approach that utilizes the natural 

environment to maintain comfortable indoor temperatures without the use 

of mechanical systems.  

c) Active Heating.  

Active heating involves mechanical or electrical systems to generate and 

distribute heat throughout a building. 

• Cooling Demand. 

a) Space Cooling. 

Space cooling is the process of lowering the indoor temperature of a 

building to maintain a comfortable living or working environment, particularly 

in hot climates. It involves managing the temperature and humidity of the 
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air inside a building to prevent overheating and discomfort. 

b) Passive Cooling. 

Passive cooling refers to techniques and building designs that naturally 

reduce the heat inside a building without the use of mechanical or electrical 

systems. It relies on the environment, building orientation, and materials to 

minimize the need for energy-intensive cooling.  

c) Active Cooling. 

Active cooling involves mechanical systems that use energy to reduce 

indoor temperatures. These systems actively cool the air and are used 

when passive methods are not sufficient to maintain comfort. 

• Electricity Demand. 

a) Lighting. 

This refers to the energy used for illumination within a building. It includes 

all types of lighting systems such as incandescent bulbs, fluorescent lamps, 

LED lights, and other specialized lighting technologies. 

b) Appliances and Equipment. 

This refers to the energy consumption of various devices, appliances, and 

office equipment within a building. It includes everything from kitchen 

appliances (like refrigerators and microwaves) to office equipment 

(computers, printers, and copiers), as well as heating, ventilation, and air 

conditioning (HVAC) systems. 

• Ventilation Demand and Hot Water Demand. 

a) Mechanical ventilation. 

This refers to the use of mechanical systems to circulate and exchange 

indoor air in a building. Unlike natural ventilation, which relies on outdoor air 

and wind to ventilate a space, mechanical ventilation actively moves air in 

and out of buildings to ensure proper air quality, temperature, and humidity 

levels.  
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b) Hot Water Supply. 

Hot Water Supply refers to the process of providing heated water for various 

uses within a building, such as for bathing, cooking, cleaning, and heating. 

In conclusion, each of the abovementioned aspects has different strategies and 

technologies to optimize energy use and reduce overall consumption, which is crucial 

for energy efficiency and sustainability in building management. 

2.2.2 Building Energy Benchmarks 

Building energy benchmarks are reference standards or benchmark values set 

based on the energy performance of buildings. These benchmarks are often based on 

historical data from similar types of buildings or industry standards, and are used to 

assess building energy demand. By comparing the actual energy demand of a building 

to industry benchmarks, it can be determined whether the building is performing 

efficiently or requires improvements in its energy usage. In practice, different countries 

and regions have formulated different building energy benchmarks based on their 

respective energy resources, climatic conditions, levels of economic development and 

environmental protection needs. Below are some widely used building energy 

benchmarks: 

• Building Research Establishment Environmental Assessment Method  

(BREEAM). 

BREEAM is a British environmental performance assessment standard, and 

one of the most widely used green building certification systems globally. 

BREEAM considers not only energy efficiency but also factors like building 

materials, waste management, and overall sustainability. The ratings range 

from Pass to Outstanding, based on a building’s performance in areas like 

energy efficiency and resource management. 

• Leadership in Energy and Environmental Design (LEED). 

LEED is an international certification system developed by the U.S. Green 

Building Council (USGBC) to assess the sustainability and environmental 
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performance of buildings, including energy efficiency. LEED offers various 

levels of certification, from Certified to Gold, Silver, and Platinum, based on the 

building’s performance in energy management, water use, material selection, 

and indoor environmental quality. 

• ISO 50001 Energy Management Systems Standard. 

ISO 50001 is an international standard developed by the International 

Organization for Standardization (ISO) for energy management systems 

(EnMS). 

• ASHRAE 90.1 Standard. 

ASHRAE 90.1 is a building energy standard published by the American Society 

of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), primarily 

focused on commercial buildings. The standard includes energy performance 

requirements for heating, cooling, lighting, ventilation, and air-conditioning 

systems. 

• China’s Green Building Evaluation Standard. 

In China, the energy performance of buildings is often assessed using the 

Green Building Evaluation Standard (GB/T 50378), which focuses on energy 

efficiency, water conservation, and waste management. The evaluation of 

energy performance under this standard includes both the design phase and 

the operational phase of the building. 

To sum up, building energy benchmarks vary widely, and different certification 

systems and standards emphasize different aspects depending on the region or 

country. By using energy benchmarks, buildings can optimize energy use, reduce 

costs, and enhance environmental sustainability. 

2.2.3 The Value of Solar Irradiance Forecasting for Buildings 

To achieve building energy benchmarks, a series of software tools have been 

developed. The most representative tools involve building simulation programs and 

building control programs. 
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• Building Simulation Programs. 

Building simulation programs are primarily used to simulate the energy 

performance of buildings during their design and operational phases. This 

software predicts the energy demand of a building under different climatic 

conditions, using different materials and technological solutions to ensure that 

the design and operation of buildings meet specific energy benchmarks. 

Common building simulation programs include: 

1. EnergyPlus. 

EnergyPlus is a comprehensive and flexible energy simulation tool used to 

model heating, cooling, lighting, ventilating, and other energy flows in 

buildings. 

2. DesignBuilder. 

This is a user-friendly interface for EnergyPlus, offering detailed building 

energy, lighting, and comfort analysis, well-suited for the design and 

optimisation of complete buildings and their systems. 

3. Transient System Simulation Tool (TRNSYS). 

TRNSYS is a flexible, graphically based software environment used to 

simulate the behaviour of transient systems, particularly where heat transfer 

is involved, widely used in building energy simulations. 

4. eQUEST:  

EQUEST is a widely used graphical interface for building energy 

performance simulation. It is suitable for both detailed and simplified energy 

analysis. 

5. Integrated Environmental Solutions Virtual Environment (IES VE). 

This is a suite that offers detailed analysis tools for optimizing the 

sustainable performance of buildings, including energy modeling, thermal 

simulations, and daylight analysis. 
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• Building Control Programs. 

Building control programs are used for real-time monitoring and controlling 

various systems in a building (such as HVAC, lighting systems, etc.), to improve 

operational efficiency of buildings, dynamically adjusting and optimising the 

operation of building systems to reduce unnecessary energy demand. 

Representative building control programs include: 

1. Honeywell Building Management Systems. 

Honeywell offers advanced control systems for managing and optimising 

building operations and energy efficiency. 

2. Johnson Controls Metasy. 

This is a comprehensive, scalable building management system that 

provides extensive monitoring and optimization of building performance. 

3. Siemens Desigo CC. 

Siemens' Desigo CC is an integrated building management platform that 

supports a wide range of automation and control functions. 

4. Matrix Laboratory (MATLAB). 

MATLAB is a high-level programming and numeric computing platform used 

widely across various industries for data analysis, algorithm development, 

and modeling and simulation.  

5. OpenModelica. 

OpenModelica is a comprehensive, open-source modeling and simulation 

environment based on the Modelica modeling language. The primary goal 

of OpenModelica is to create a freely available system modeling platform 

that supports simulation and model-based design of complex systems, 

spanning mechanical, electrical, hydraulic, thermodynamic, robotic, and 

other interconnected physical domains. 

In summary, building simulation software and building control software play crucial 

roles in achieving and maintaining building energy benchmarks, thereby realising 



Ph.D. Thesis   Lei Chen 

 

Cardiff University                                                      31                                             Welsh School of Architecture 

 

overall energy efficiency and sustainable development goals.  

The critical input parameters for building simulation and control programs usually 

include a series of detailed and critical data that are essential for accurately simulating 

the energy performance and other related performance of the building. These data 

commonly include climate and environmental data, the dimensions, layout and 

orientation of buildings, materials and building components, Internal Loads, HVAC 

systems, operation and usage patterns. Among these data, climate and environmental 

data is the most basic and important and thus building simulation and control programs 

usually require high-quality weather files. These weather files commonly include 

diverse weather data, such as temperature, humidity, air pressure, solar irradiance.  

In recent years, the use of weather data for simulating and predicting building 

energy demand has become increasingly common, which helps building managers, 

facility operators, and designers better understand and optimise the energy efficiency 

of buildings. [28] investigates the effects of using weather nowcasting within dynamic 

building simulations, particularly focusing on its influence on predicting indoor 

temperatures for buildings without heating or cooling systems (free float buildings), as 

well as on the prediction of heating loads and energy usage for buildings with heating 

systems. Based on the occupancy behaviour pattern detection and local weather 

forecasting, [29] develops a methodology for integrated building heating and cooling 

control to reduce energy consumption and maintain indoor temperature set-point. [30] 

discusses the importance of accurate solar forecasting in the application of Model 

Predictive Control (MPC) for achieving Net Zero Energy Buildings (NZEBs) and 

communities. [31] discusses the use of Model Predictive Control (MPC) and weather 

forecasting to improve the energy efficiency of Integrated Room Automation (IRA), 

while ensuring occupant comfort. IRA involves the simultaneous control of heating, 

ventilation, and air conditioning (HVAC), as well as shading and lighting in a building 

zone, to ensure that room temperature, CO2 levels, and brightness remain within 

specified comfort ranges.  
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In summary, these studies are representative for understanding how weather 

forecasting can enhance the accuracy and efficiency of building management systems. 

Among various weather data forecasting, solar irradiance forecasting is very critical 

but also very difficult to obtain, mainly for the following reasons: 

• Availability and Coverage 

At first, compared to common data like temperature and humidity, solar 

irradiance is generally harder to access because measuring solar irradiance 

requires specialised instruments such as pyranometers, which may not be 

installed at all weather stations. In addition, solar irradiance is often available 

only at certain research institutions, universities, or specialised meteorological 

stations, limiting its coverage and widespread availability. 

• Accuracy and Resolution 

The accuracy of solar irradiance depends on the maintenance and calibration 

of the instruments, which can lead to lower data quality in resource-poor areas. 

Common weather data such as temperature and precipitation, although also 

requiring proper calibration, are more mature and standardised, typically 

offering higher accuracy. Besides, solar irradiance requires high-frequency 

recording, such as every minute or hour, to accurately reflect changes in 

sunlight conditions. In contrast, other weather data like temperature and 

humidity might also be recorded at a high frequency, but for most applications, 

daily averages or maximum and minimum values are sufficient. 

• Cost 

On the one hand, pyranometers and other solar irradiance measuring devices 

are expensive, including not only the initial purchase cost but also maintenance 

and calibration costs. On the contrary, general meteorological measuring 

equipment is usually cheaper and easier to maintain. Moreover, accessing 

high-quality solar radiation data might require licensing fees, especially when 

the data comes from specialised institutions or is needed at high resolutions. 
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For common weather data like temperature and wind speed, due to their wide 

availability, it is generally possible to obtain them for free or at a low cost from 

common weather stations. 

Based on the above, to utilise building simulation and control programs for 

optimising building energy efficiency, solar irradiance forecasting is critical. In practice, 

the aforementioned building simulation and control programs all support the use of 

solar irradiance forecasting data for effective building performance simulation and 

system control. For example, Johnson Controls Metasy can integrate GHI forecasting 

into the HVAC control system. When predicted GHI are high, the cooling demand in a 

building usually rises. The system can use this information to dynamically adjust the 

operating mode of air conditioning and refrigeration equipment in advance. Thus, this 

research aims to explore an effective solar irradiance forecasting method for buildings.  
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2.3 Introduction of Solar Irradiance Forecasting Methods 

The dynamic nature o movement, cloud transitions, water vapour, and air pollution 

leads to the high instability of solar energy f sun, which brings significant difficulty to its 

application. With the growing demand for renewable energy and the development of 

solar energy technologies, accurate solar irradiance forecasting has become a key way 

for optimising the design and operation of solar energy systems. Thus, a large number 

of solar irradiance forecasting methods have been developed over recent decades. 

In order to quickly establish a preliminary understanding of solar irradiance 

forecasting methods, a series of crucial information must be introduced concisely. The 

information involves the classification of solar irradiance forecasting methods, data 

acquisition ways, forecasting parameters, etc.  

2.3.1 Classification of Solar Irradiance Forecasting Methods 

In the last several decades, a large number of diverse methods have been 

proposed for solar irradiance forecasting, which relates to complex disciplines such as 

mathematics, physics, statistics, etc [32]. Thus, the first step of solar irradiance 

forecasting method research is to explore the approaches of classification. One of the 

earliest and most popular classifications of solar irradiance forecasting methods was 

published in 2013 [33]. According to the author’s discourse, solar irradiance forecasting 

methods were classified into five groups, including regressive methods, artificial 

intelligence, remote sensing network (based on the utilisation of satellite), Numerical 

Weather Prediction (NWP) and local sensing (based on the utilisation of total sky 

imager, Wireless sensor network). Besides this paper, other representative papers, 

which also discussed the classification of solar forecasting methods, were published 

in later years [12, 34]. [10] also proposed a persuasive classification that divided solar 

irradiance forecasting methods into five classes, including time series, regression, 

Numerical Weather Prediction (NWP), machine learning and image-based forecasting. 

In terms of the forecasting horizons, solar power forecasting methods were classified 

into four classes, including long-term, mid-term, short-term and intra-hour forecasting 
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[35]. [36] categorised solar irradiance and photovoltaic power forecasting methods 

using ML and DL algorithms into meso-scale, micro-scale, and building-scale 

forecasting in urban environments from a multi-scale perspective. Based on the above 

research, solar irradiance forecasting methods in this paper are classified into five 

categories:  

• Numerical Weather Prediction methods (NWPs).  

• Statistical and Learning methods. 

• Top-down forecast methods. 

• Bottom-up forecast methods. 

• Hybrid methods. 

As mentioned at the beginning of Chapter 1, different solar irradiance forecasting 

methods were developed according to various forecasting purposes and thus can 

achieve decent performance in their designated spatial-temporal resolution.  

2.3.2 Numerical Weather Prediction (NWP) Methods  

2.3.2.1 The State of The Art of Numerical Weather Prediction (NWP) Methods  

As the earliest applied weather forecast method, Numerical Weather Predictions 

(NWPs) use mathematical models of the atmosphere and oceans to predict the 

weather in the future [10]. This method relies heavily on the computational ability of 

large computers and knowledge of hydromechanics and thermodynamics [37]. Due to 

the giant scale of the atmosphere and ocean, the analysis of NWPs method is mainly 

based on a national or regional level [12]. In this case, NWP models are unable to 

provide an accurate weather forecast for the precise position based on micro-scale 

physics. Modern NWP models may be classified into two main types: global models, 

such as Global Forecast System (GFS), or regional models, including North American 

Mesoscale (NAM), European Centre for Medium-Range Weather Forecasts (ECMWF), 

Weather Research and Forecasting (WRF) [12]. In recent years, a lot of researchers 

have expressed their interest in the WRF model because it is open-source and can be 

configured by the user to a high resolution over a specific region [38]. In general, the 
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strict requirement of highly specialised skills, knowledge, and equipment is not 

conducive to universal research. 

In the paper [39], a comparative study of NAM/GFS/ECMWF was presented to 

introduce the respective features of these representative methods and contrast their 

performance for global solar irradiance forecasting. In recent years, a lot of researchers 

have expressed their interest in the WRF model because it is open-source and can be 

configured by the user to have a high resolution over a specific region [40-42]. The 

representative studies of NWP methods are listed in Table 2.1. 

Table 2.1 NWP methods for solar irradiance forecasting 

2.3.2.2 Data Acquisition of Numerical Weather Prediction Methods (NWP) 

In general, the data for NWP methods comes from the database of public 

meteorological observations, such as the National Oceanic and Atmospheric 

Administration of the USA (NOAA), the Meteorological Office of the UK (Met Office), 

Bureau of Meteorology of AUS (BOM), which can offer comprehensive and complex 

data and environmental information. Recently, an ascendant approach, which utilises 

Application Programming Interface (API) to provide accurate meteorological data, has 

expressed its potential as a data resource for NWP methods. Table 2.2-2.3 shows 

available data types from various APIs.  

 

 

 

 

Article Parameter Forecasting Horizon Data Source Method 

[39] GHI Intra-day Public Meteorological Observations 
NAM/GFS 

/ECMWF 

[40] GHI Intra-day Public Meteorological Observations WRF 

[41] GHI 
Day Ahead/Intra-day 

/Intra-hour 

Public Meteorological Observations 

Public Meteorological Satellites 
WRF-CLDDA 

[42] GHI + DNI Hourly Public Meteorological Systems WRF 

Parameter: Forecasting Parameter, Frequency: Time-interval 

GHI: Global Horizontal Irradiance, DNI: Direct Normal Irradiance, DHI: Diffuse Horizontal Irradiance 
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Table 2.2 Parameters available from APIs 

APIS   Temp   RH   Wind Spd   Wind Dir   Pres   UV 

Weather Bit 2.0 √ √ √ √ √ √ 

Solcast √ √ √ √ √ X 

AccuWeather √ √ √ √ √ √ 

Foreca √ √ X √ √ X 

Dark Sky √ √ √ √ √ √ 

Datapoint √ √ √ X √ √ 

Open Weather Map √ √ √ √ √ √ 

Temp: Temperature, RH: Relative Humidity, Pres: Pressure, UV: UV Index 

 

Table 2.3 Parameters available from APIs 

APIS   Weather   PoP   Cloud   Solar Rad   GHI   DNI   DHI 

Weather Bit 2.0 √ √ √ √ √ √ √ 

Solcast X √ √ √ √ √ √ 

AccuWeather √ √ √ √ √ √ √ 

Foreca √ √ X √ X X X 

Dark Sky √ √ √ X X X X 

Datapoint √ √ X X X X X 

Open Weather Map √ √ √ X X X X 

Weather: Weather Type, Pop: Probability of Precipitation, Cloud: Cloud Coverage, Solar Rad: Estimated Solar 

Irradiance, GHI: Global Horizontal Irradiance, DNI: Direct Normal Irradiance, DHI: Diffuse Horizontal Irradiance 

 

2.3.3 Statistical and Learning Methods 

2.3.3.1 The State of The Art of Statistical and Learning Methods 

Due to the rapid development of computer techniques, Statistical and Learning 

methods of solar irradiance forecasting have been widely applied, which contributes to 

more research publications against other forecasting methods in the last two decades. 

The essence of Statistical and Learning methods is to conduct the collection, analysis, 

and conclusion of historical data based on mathematical methods that eventually 

contribute to the prediction of data performance in the future. Statistical and Learning 

methods for solar irradiance forecasting can be divided into two categories: Model-

driven methods and Data-driven methods.  

Model-driven methods essentially utilise statistical models to determine the 

interdependent quantitative relationship among variables. In this case, a determined 

statistical model can obtain forecast data based on historical data. Model-driven 
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methods tend to require rich statistical experience of researchers and thus it is not very 

user-friendly to the public. Typical Model-driven methods include an autoregressive 

integrated moving average (ARIMA), exponential smoothing (ETS), generalised 

autoregressive conditional heteroskedasticity (GARCH) and so on [10]. In general, 

ARIMA holds the best performance. It has been a common choice for a reference 

method and can be supported by a wide range of software applications.  

In the recent decade, learning methods have gradually been the most popular 

approach in the field of solar irradiance forecasting because of a large number of 

available methods and variants in machine learning (ML), as well as the full range of 

applications it supports, including classification, regression, and clustering. Unlike 

Model-driven methods, which tend to require researchers' mastery of empirical models, 

Data-driven methods rely on the principle of ML and thus emphasise self-learning of 

models from ample data samples, where learning implies classification, regression, 

and prediction. Once the training and testing stages are completed, the “black box” 

models can apply historical data to forecast future data. The most typical learning 

method is undoubtedly an artificial neural network (ANN). A good deal of research 

papers work on basic ANN models, its optimised algorithms, such as BP and LM, and 

its advanced models, such as DRWNN and WNN [43, 44]. The optimization of models 

not only increases the accuracy of forecasting but also expands the forecasting types 

of solar irradiance (from GHI to DNI) and shrinks the forecasting intervals (from monthly, 

daily, hourly to min-ahead) [28]. Besides the ANN method, other popular Data-driven 

methods, including SVM and kNN, were also employed for solar forecasting [45, 46]. 

The typical challenges of these methods are the selection, operation and optimisation 

of statistical models. Table 2.4 lists research papers on various Statistical and Learning 

methods for solar irradiance forecasting. 
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Table 2.4 Statistical and Learning methods for solar irradiance forecasting 

2.3.3.2 Data Acquisition of Statistical and Learning Methods 

In general, Statistical and Learning methods tend to utilise measured data, which 

can be mainly obtained from several channels: public meteorological observation 

stations of public organisations, such as Airports, the Centre for Environmental Data 

Analysis and Met Office in the UK, National Oceanic and Atmospheric Administration 

in the US; laboratory of academic and research institution, such as Welsh School of 

Architecture; privately-owned weather stations. Among these channels, public 

meteorological observation organisations can often offer the most comprehensive and 

long-term meteorological data types, such as temperature, wind direction, wind speed, 

relative humidity, and air pressure. However, it is worth noting that available solar 

irradiance data are very seldom measured, even though various meteorological data 

types can be obtained. 

 

Article Parameter Forecasting Horizon Data Source Method 

Model-Driven Methods 

[47] GHI Monthly 
Public Meteorological 
Observations 

ARMA 

[48] GHI Monthly 
Public Meteorological 
Observations 

GARHA 

[49] GHI Hourly 
Public Meteorological 
Observations 

ETS 

[50] GHI/DHI/DNI Hourly 
Public Meteorological 
Observations 

ARIMA 

Data-Driven Methods 

[51] GHI Monthly 
Public Meteorological 
Observations 

RBF/MLP 

[52] GHI Daily Privately-owned Equipment SOM 

[53] DNI Daily/Hourly Privately-owned Equipment 
MLP/BP 

/LM 

[54] GHI Hourly 
Public Meteorological 
Observations 

BP/LM/RBF 

/ANFIS 

[43] GHI Hourly 
Public Meteorological 
Observations 

DRWNN 

[55] GHI Hourly 
Public Meteorological 
Observations 

SVM 

[56] DNI 5/10/15/20 Mins Privately-owned Equipment kNN 

Parameter: Forecasting Parameter, Frequency: Time-interval 

GHI: Global Horizontal Irradiance, DNI: Direct Normal Irradiance, DHI: Diffuse Horizontal Irradiance 



Ph.D. Thesis   Lei Chen 

 

Cardiff University                                                      40                                             Welsh School of Architecture 

 

2.3.4 Top-down Forecast Methods 

2.3.4.1 The State of Art of Top-down Forecast Methods 

The principle of Top-down forecast methods is to analyse satellite cloud images 

obtained from the atmosphere above. By examining two consecutive images captured 

by the meteorological satellite, cloud motion can be tracked based on a statistical 

algorithm. Finally, cloud motion accompanied by cloud cover information is translated 

into the solar irradiance forecast based on specific mathematic models. Due to the 

particular characteristics of meteorological satellites, satellite images can usually be 

produced with broad coverage, low resolution, and longer intervals for taking images. 

In this case, Top-down forecast method can provide reliable accuracy for solar 

irradiance forecasts in comparative large spatial and temporal horizons only. The 

disadvantages of these methods include unreliable forecasting accuracy for specific 

locations caused by the coarse resolution of satellite cloud images and limited 

forecasting intervals resulting from the photographic period of satellites [10].  

An early approach using the satellite cloud image method for solar irradiance 

forecasting was proposed in 1999 [57]. In [58, 59], the authors presented the better 

forecasting performance of the satellite cloud image method against NWP methods for 

specific forecast horizons. In 2014, a study [60] proposed an optimised satellite cloud 

image method for solar irradiance forecasting, which was based on satellite images 

and ground measurements without other inputs and with low computation costs. The 

typical Top-down forecast methods have been listed in Table 2.5. 

Table 2.5 Top-down methods for solar irradiance forecasting 

Article Parameter Forecasting Horizon Data Source Method 

[59] GHI 6 Hours 
Public Meteorological 
Satellites 

Satellite Cloud Image Analysis 

[60]  GHI 1/2/3 Hours 
Public Meteorological 
Satellites  

Satellite Cloud Image Analysis 

[58] GHI 30 Mins-6 Hours 
Public Meteorological 
Satellites  

Satellite Cloud Image Analysis 

[57] GHI 30 Mins-2 Hours 
Public Meteorological 
Satellites  

Satellite Cloud Image Analysis 

Parameter: Forecasting Parameter, Frequency: Time-interval 

GHI: Global Horizontal Irradiance, DNI: Direct Normal Irradiance, DHI: Diffuse Horizontal Irradiance 
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2.3.4.2 Data Acquisition of Top-down Forecast Methods 

Satellite images, as the uppermost data for Top-down forecast methods, mainly 

come from the database of public meteorological observation organisations, such as 

NASA Earth Observations (NEO), USSG Earth explorer, National Oceanic and 

Atmospheric Administration (NOAA). Different meteorological satellites are used by 

various organisations that contributes to different characteristics of obtained satellite 

images, such as coverage area, image resolution, and photograph intervals. In 

addition, some APIs, such as OpenWeather, can also provide free satellite images. 

Table 2.6 shows different characters of satellite images from various sources.  

Table 2.6 Different characters of satellite images obtained from various sources 

2.3.5 Bottom-up Forecast Methods 

2.3.5.1 The State of Art of Bottom-up Forecast Methods 

The research of Bottom-up forecast methods, which have gradually become 

popular in recent years, has presented promising potential to overcome the limitations 

induced by the low spatial and temporal resolution of NWP and Top-down forecast 

methods [12]. Similar to Top-down forecast method, the key of the TSI method is to 

analyse the advection of clouds through consecutive cloud images observed with 

ground-based all-sky cameras called “sky imager” (TSI) [61]. By combining a series of 

image processing technologies with statistical methods, cloud cover information and 

cloud motion can be extracted from grounded sky images [62]. It can be used to 

generate solar irradiance forecasts at the sky imager location. Although the spatial 

resolution of the TSI method is comparatively limited because of the ability of the 

Satellites Name 
Operation 
Organization 

Parameter Spatial Resolution   Frequency 

METEOSAT Satellite EUMETSAT Satellites Cloud Image 2.5 x 2.5/4.5 Km   30 Mins 

GOES-West Satellite NOAA Satellites Cloud Image 1/4/16 Km   15 Mins 

GOES-East Satellite NOAA Satellites Cloud Image 1/4/16 Km   15 Mins 

GOES-16 Satellite NOAA Satellites Cloud Image 2 Km   15 Mins 

Himawari-8 NOAA Satellites Cloud Image 1 Km   10 Mins 
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camera, it provides advanced cloud information at a lead time of several minutes to 

hours, which contributes to a short-term forecast of solar irradiance. Various 

researchers have explored the typical procedure of the TSI method and its optimisation 

through improving hardware, software and cooperation of multiple sky-imagers. The 

biggest challenges of these methods involve the selection and protection of equipment 

and errors caused by using two-dimensional cloud images to represent actual three-

dimensional features of clouds.  

The paper [63] proposed a typical working procedure for TSI methods. Some other 

authors explored the forecasting performances in various short-term forecast intervals 

(minutes to hours). In addition, some studies expressed their interest in DNI forecasting 

rather than universal GNI forecasting. With the development of technologies, some 

papers also presented some low-cost equipment and optimised software applications 

for TSI methods. In 2015, a method using multiple sky-imagers to analyse three-

dimensional features of clouds contributed to an innovative approach for improving the 

limitation of two-dimensional cloud image analysis based on a single sky imager. Table 

2.7 presents typical Bottom-up forecast methods.   

Table 2.7 Bottom-up methods for solar irradiance forecasting 

2.3.5.2 Data Acquisition of Bottom-up Forecast Methods 

Grounded sky imagery, as the crucial data for Bottom-up forecast method, is 

generally generated by various “Sky Imagers”. The performance of different “Sky 

Article Parameter Forecasting Horizon Data Source Method 

[64] GHI Intra-hour 
Public Met Observations 

+ Grounded Sky Imagers 
Ground Cloud Image Analysis 

[65] GHI Intra-hour 
Public Met Observations 

+ Grounded Sky Imagers 
Ground Cloud Image Analysis 

[66] GHI 30s-15 Mins 
Public Met Observations 

+ Grounded Sky Imagers 
Ground Cloud Image Analysis 

[63] DNI 3-15 Mins 
Public Met Observations 

+ Grounded Sky Imagers 
Ground Cloud Image Analysis 

[61] DNI 5 Mins 
Public Met Observations 

+ Grounded Sky Imagers 
Ground Cloud Image Analysis 

[67] GHI 1/5/10/15 Mins 
Public Met Observations 

+ Grounded Sky Imagers 
Ground Cloud Image Analysis 

Parameter: Forecasting Parameter, Frequency: Time-interval,  Met: Meteorological 

GHI: Global Horizontal Irradiance, DNI: Direct Normal Irradiance, DHI: Diffuse Horizontal Irradiance 
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Imagers” is relevant to various characters, including equipment composition, resolution, 

environmental adaption, size, cost and associated software application. In this case, 

different types of “Sky Imagers”, such as Yankee TSI 880 sky imager, ASI-16 All Sky 

Imager, etc, tend to be invented by various research groups according to their specific 

research purposes. 

2.3.6 Hybrid Methods 

Hybrid methods usually consist of any two or more of the methods described 

previously. In recent years, several Hybrid methods have presented their superior 

performance for forecasting high-quality solar irradiance [68]. By taking advantage of 

the strengths of each methodology, Hybrid methods can increase forecasting accuracy 

efficiently. For instance, by utilising cloud cover information derived from satellite 

images instead of common weather data, such as temperature and humidity, as the 

input of ANNs, research can achieve accurate solar irradiance forecasts in some 

remote areas without meteorological observations [69]. Another reason for developing 

Hybrid methods is to overcome the limitations of each forecasting method in the 

various spatial and temporal horizons. Due to none of the individual methods spanning 

all relevant areas of interest, Hybrid methods, which incorporate the advantages of 

several methods, obviously need to be developed. Table 2.8 shows typical Hybrid 

methods for solar irradiance forecasting.  

Table 2.8 Hybrid methods for solar irradiance forecasting 

 

Article Parameter Forecasting Horizon Data Source Method 

[70] GHI 24 hours Public Met Observations ANN + WRF 

[71] GHI 30/60/90/120 mins 
Public Met Observations  
+ Satellite 

ANN + Satellite Image 

[72] GHI Hourly Public Met Observations ARMA + TDNN 

[68] GHI Hourly  Public Met Observations 
NWP + ANN + ARMA  
+ Time Series 

[69] DNI  5/10 mins 
Public Met Observations  
+ Private Equipment 

ANN + TSI 

Parameter: Forecasting Parameter, Frequency: Time-interval 

GHI: Global Horizontal Irradiance, DNI: Direct Normal Irradiance, DHI: Diffuse Horizontal Irradiance 
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2.3.7 Comparison of Different Solar Irradiance Forecasting Methods 

Table 2.9 lists the various spatial-temporal horizons where different methods can 

achieve good performance. All of them have respective advantages and limitations 

according to the different spatial-temporal horizons. In this case, Hybrid methods can 

integrate the strengths of different methods that thus can perform well in the widest 

spatial and temporal horizon once the suitable combination of different methods is 

utilised. As a result, various Hybrid methods can flexibly meet the needs of different 

application purposes, such as building simulation. 

Table 2.9 Performance of different methods in various forecasting horizons and spatial 

resolutions 

Figure 2.4 Classification of various models based on spatial-temporal resolution. 

In summary, different solar irradiance forecasting methods can achieve decent 

Methods NWP Method Statistical  

Method 

Top-Down 

Method 

Bottom-Up 

Method 

Hybrid Method 

Spatial Horizon 5-20 km 1 m-2 km 1-10 km 1 m-2 km 1 m-20 km 

Temporal  

Horizon 

4-36 hours 1 second 

-1 month 

30 mins 

-6 hours 

5-30 mins 1 second  

-1 month 
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performance in their designated forecasting horizons and spatial-temporal resolution. 

Figure 2.4 demonstrates the current limits of different forecasting methods in various 

forecasting horizons and spatial resolution, as well as the specific forecasting horizons 

and spatial resolution of the conceived solar irradiance nowcasting method (red zone).  

2.3.8 Parameters of Solar Irradiance Forecasting 

Solar radiation is the basis for the utilisation of solar energy. One of the most 

important ways to measure the quantity of solar radiation is solar irradiance, which is 

the radiant flux received by a surface per unit area (W/m2). The ultimate purpose of 

solar irradiance forecasting is to achieve reliable predictions of different types of solar 

irradiance. Typical types of solar irradiance include: 

1. Total Solar Irradiance. It is a measure of the solar power over all wavelengths 

per unit area incident on the Earth's upper atmosphere. 

2. Extraterrestrial Irradiance. Extraterrestrial irradiance is a measure of the power 

of the sun incident outside the earth's atmosphere. It varies throughout the year 

because of the Earth’s elliptical orbit, which results in the Earth-Sun distance 

varying during the year in a predictable way.  

3. Global Horizontal Irradiance (GHI). It is the total irradiance from the sun on a 

horizontal surface on Earth. Most existing research tended to focus on the 

prediction of GHI.  

4. Direct Normal Irradiance (DNI). It is measured at the surface of the Earth at a 

given location with a surface element perpendicular to the Sun. More and more 

research on solar irradiance forecasting has started to explore both GHI and 

DNI in recent years.  

5. Diffuse Horizontal Irradiance (DHI). It is the radiation at the Earth's surface from 

light scattered by atmospheric components, such as molecules and particles. 

Currently, there is very little research that pays attention to the research of DHI 

forecasting.  

In general, the relationship between GHI, DNI and DHI can be expressed as: 
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 𝐺𝐻𝐼 = 𝐷𝐻𝐼 + 𝐷𝑁𝐼 ×  𝑐𝑜𝑠(𝜃)   (2.1) 

Where 𝜃 is the solar zenith angle, which is the angle of the sun relative to a line 

perpendicular to the earth's surface. The solar zenith angle is significantly associated 

with GHI, DNI, and DHI because it is a key parameter used to describe the sun's path 

across the sky. Figure 2.5 demonstrates the relationship between DNI, DHI and θ. 

     

Figure 2.5 The relationship between DNI, DHI and θ. 

Among typical types of solar irradiance, GHI, DNI, and DHI are the three major 

types that most solar irradiance forecasting methods focus on, along with three critical 

weather parameters needed for building applications. Thus, this research pays 

attention to the forecasting of GHI, DNI, and DHI.  
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2.4 Current Reviews of Solar Irradiance Forecasting Methods 

A great number of literature reviews of solar irradiance forecasting methods have 

been published in the last decades. These reviews have efficiently contributed to 

familiarising students and researchers with developing new topics and facilitating the 

utilisation of new and powerful tools. These reviews produce significant contributions 

to the research of solar irradiance forecasting methods, including compilation, 

summary, critiques and synthesis of the available information on the subject.  

2.4.1 Representative Types of Current Review Methodologies 

In general, current reviews can be divided into two representative types according 

to their methodologies – conventional review method and computer review method.  

• Conventional Review Method. 

This method refers to traditional, human-centred approaches to reviewing. In 

this method, a reviewer manually reads through materials or documents to 

assess content quality, accuracy, relevance, and other criteria. It relies heavily 

on human judgment and expertise, making it suitable for subjective analysis 

that requires context understanding, interpretation, or creativity. 

• Computer Review Method. 

In this method, computer technology, typically using machine learning 

algorithms, is employed to execute the classification, filtering and evaluation of 

materials or documents. The advantage of this method is its ability to handle 

large amount of  materials efficiently, without being influenced by personal bias. 

Table 2.10 shows the typical reviews of solar irradiance forecasting methods and 

their review method. 
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Table 2.10 Representative reviews of solar irradiance forecasting methods. 

2.4.2 Limitations of Current Review Methodologies  

Although the benefits of current reviews are undoubted, several main drawbacks 

of their methodologies tend to exist: 

1. Most of the reviews based on conventional methods haven’t proposed well-

defined methodologies of literature review, which define clear searching boundary 

engines, publications, key words, literature type, systematic selection process 

(identification, screening, eligibility, inclusion) and qualificative and quantitative 

analysis for information extraction and insights generation.  

2. Most current reviews based on computer analysis tend to be limited by the 

number and characteristics of searching engines that thus lack comprehensive 

utilisation and comparative analysis of various databases. Most importantly, complex 

applications of computer skills on literature review are not friendly to every researcher.  

3. A lot of crucial characteristics of solar irradiance forecasting methods have not 

been reviewed and analysed, such as the various data acquisition way for various solar 

irradiance forecasting methods. For example, a rising and potential data acquisition 

way - Weather API (Weather Application Programming Interface) - has been applied 

in recent years and thus it is worthing to be systematically reviewed.  

Review Title Journal Review Method  Citations 

[10] History and trends in solar irradiance and PV power 
forecasting: A preliminary assessment and review using text 
mining 

Solar Energy Computer 123 

[73] Machine learning methods for solar irradiance forecasting: A 
review 

Renewable 
Energy 

Convention 414 

[34] Review of photovoltaic power forecasting Solar Energy Convention 432 

[74] On recent advances in PV output power forecast Solar Energy Convention 166 

[23] Direct normal irradiance forecasting and its application to 
concentrated solar thermal output forecasting—A review 

Solar Energy Convention 113 

[12] Review of solar irradiance forecasting methods and a 
proposition for small-scale insular grids 

Renewable & 
Sustainable 
Energy Reviews 

Convention 426 

[33] Solar forecasting methods for renewable energy integration Progress in 
Energy and 
Combustion 
Science 

Convention 624 

[75] Solar energy forecasting and resource assessment Book Convention 295 
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In general, the above three major drawbacks are regarded as the main research 

gaps of current reviews of solar irradiance forecasting methods. Thus, the first 

significant step of this research is to explore an appropriate review method of solar 

irradiance forecasting methods for filling the above research gaps. 
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2.5 Systematic Review Methodology for Solar Irradiance 

Forecasting Methods 

Countless studies on solar irradiance forecasting have been published in the last 

decades; thus, the total number of articles about solar irradiance forecasting methods 

is enormous. For example, Google Scholar merely searches for “solar irradiance 

forecasting” and “PV power forecasting” and returns 8760 and 9350 results for the year 

2019 alone. However, this research focuses on exploring a solar irradiance nowcasting 

method with specific characteristics suitable for buildings and their future development, 

such as forecasting horizons, spatial-temporal resolution, equipment and programming, 

etc. Therefore, a more targeted literature review with a clear review methodology 

needs to be conducted to achieve the research aim.  

Literature review is the most crucial foundation in any field of academic research. 

Apart from the articles that explore approaches and techniques for specific topics, a 

great deal of literature review articles has also been written to summarise abundant 

approaches and techniques. With the growth of literature review articles, mature 

methodologies of literature review are developed progressively. In recent years, more 

and more review methodologies have been developed to conduct literature review 

systematically [10, 76]. In terms of the limitations mentioned in section 2.4.2 and the 

huge number of articles on solar irradiance forecasting methods, this research 

develops a systematic review methodology for solar irradiance forecasting methods 

based on the review methodology proposed in [76]. In general, the process of 

systematic review in this research involves four major procedures: identification, 

screening, eligibility and inclusion. 

2.5.1 Significance of The Systematic Review  

In general, systematic review methodology for the literature review of solar 

irradiance forecasting methods and research methodology of solar irradiance 

nowcasting are both the crucial contributions of this research. There is a strong 
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relationship between systematic review methodology and the research methodology, 

as presented in the Figure 2.6 below: 

 

Figure 2.6 The relationship between systematic review methodology and research 

methodology 

In summary, both systematic review methodology and research methodology are 

the critical research process of this research. The systematic review methodology is 

the foundation of research methodology. Based on the systematic review methodology 

discussed in this chapter, a clear research methodology is developed and presented 

in detail in Chapter 3. 
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2.5.2 Goals of The Systematic Review  

Before starting the systematic review, several major questions are hierarchically 

proposed and the corresponding goals of this literature review are defined in response 

to these questions: 

1. What review methods are easy to use by most people and suitable for 

conducting a systematic review? 

Literature review is undoubtedly the foundation of academic research. It helps new 

researchers to understand the state of the art of specific subjects involving social, 

environmental, and economic background, popular researchers and publications, 

methodologies, data acquisition and processing, equipment and programming, etc. 

Conventionally, researchers conduct literature reviews based on individual experience, 

popular research, relevant references in popular research and other random searching 

of research. In this way, conventional approaches tend to lack a clear methodology of 

literature review and limit the total number of research reviewed. Therefore, 

conventional approaches are no longer suitable for the subjects that have been studied 

for a long time and thus have countless research results, such as solar irradiance 

forecasting methods. In recent years, a series of emerging methods have been 

developed to conduct literature reviews with a clear methodology and process 

countless academic resources using computer science, such as text mining. However, 

the adaptability of various databases to computer-based methods and the in-depth 

requirement of computer skills are two major challenges.  

In this case, a particular review methodology is developed based on the review 

methodology proposed in [76] to conduct a literature review in a systematic way that 

mainly involves four steps: 

1. Identification of review articles based on search strategies and selection of 

databases. 

2. Screening of review articles according to languages, authority and topic 

relevance.  
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3. Eligibility of review articles through full-text articles assessed that excludes 

unnecessary articles with articulated reasons, such as specific spatial and 

temporal horizon of forecasting methods. 

4. Inclusion of review articles that classifies, analyses and summaries the final 

included articles.  

In this case, this systematic review method articulates the boundary of data 

searching, the total amount of articles, the logic of screening and a summary of 

comprehensive analysis that is friendly to most researchers. Thus, the development of 

this systematic review method is the first goal of this literature review. 

2.What are the types of solar irradiance forecasting methods suitable for buildings?  

As mentioned above, solar irradiance forecasting methods can be classified into 

five major types: Numerical Weather Prediction (NWP) Method, Statistical and 

Learning Method, Top-down Forecast Method, Bottom-up Forecast Method, and 

Hybrid Method.  

These methods utilise various forecasting models, data acquisition ways, 

equipment and programming that determine their different spatial and temporal 

resolution of solar irradiance forecasting. In this research, the critical aim is to explore 

a solar irradiance forecasting method appropriate for buildings and their future 

development. Thus, the systematic review focuses on exploring the methods that have 

appropriate characteristics, such as forecasting horizon, spatial-temporal resolution, 

equipment and programming, for matching the requirements of building applications. 

In this case, the second goal of this literature review is to comprehensively review all 

types of solar irradiance forecasting methods and identify suitable methods for 

buildings based on the distinct characteristics of these methods. 

3. What equipment and programming of solar irradiance forecasting methods are 

suitable for building applications?  

Most of the previous review articles pay less attention to the equipment and 

programming that are two actual crucial factors of the research of solar irradiance 
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forecasting methods. For example, emerging researches have started to use weather 

application programming interfaces (APIs) that are offered by various institutions or 

organisations for collecting data in recent years. A series of advantages of APIs, 

including accessibility, laboursaving and timeliness, undoubtedly present their 

potential for data collection. In addition, different features of the equipment of solar 

irradiance forecasting methods, such as accessibility, adaptability, convenience, and 

cost, are also worth to be discussed for further researchers. Thus, the third crucial goal 

of this literature review is to classify, analyse and summarise various equipment and 

programming of current research. 

2.5.3 Search Strategies of The Systematic Review 

• Academic Resources and Search Engines. 

The first step of the literature review is to identify appropriate academic 

resources and corresponding search engines. In this research, diversified 

academic resources are considered for acquiring a broad horizon. In general, 

the types of articles include academic journals, conference papers, Ph.D. thesis 

and books. In the field of solar irradiance forecasting methods, academic 

journals are mainly published by Elsevier, Springer, Taylor & Francis, Sage, 

Wiley and (Multidisciplinary Digital Publishing Institute) MDPI. The Above 

publishers commonly have corresponding search engines, such as 

ScienceDirect, SpringerLink, Taylor & Francis Online, SAGE journals and Wiley 

Online Library. Among these search engines, ScienceDirect covers the largest 

number of high-quality articles. Apart from these search engines, Google 

Scholar, Web of Science, Microsoft Academic and IEEE Xplore are also 

representative search engines. The biggest advantage of Google Scholar is 

that it covers almost all articles. However, its update rate of publications is 

comparatively slow and search results tend to vary in quality. Thus, Google 

Scholar are suitable as a reference for other search engines. Web of Science 

also has a comparative board database and thus its database covers a series 
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of articles from the above publishers. Unlike Google Scholar and Web of 

Science which provides rough and broad search results, Microsoft Academic 

uses its special search algorithm that is contributed to narrowed but more 

accurate search results. Through fast browsing in Google Scholar, abundant 

conference papers related to solar irradiance forecasting methods are covered 

in IEEE Xplore. Taking into account the quantity and quality of articles, literature 

relevance and accessibility of different databases, this research finally 

determines five major search engines involving ScienceDirect, Microsoft 

Academic, IEEE Xplore, Wiley Online Library and Taylor & Francis Online. 

Table 2.11-2.12 shows the relationship between publishers and search engines. 

Table 2.11 The relationship between publishers and search engines 

Publishers 

Search Engines 

Elsevier Taylor & 

Francis 

Sage MDPI 

Google Scholar  Covered Covered Covered Covered 

Science Direct Covered No No No 

Web of Science Covered Covered Covered Covered 

Microsoft Academic  Covered Covered Covered Covered 

Wiley Online Library  No No No No 

IEEE Digital Library  No No No No 

Taylor & Francis Online No Covered No No 

Sage journals No No Covered No 

Springer Link No No No No 

 

Table 2.12 The relationship between publishers and search engines 

Publishers 

Search Engines 

Wiley Springer IEEE IET 

Google Scholar  Covered Covered Covered Covered 

Science Direct No No No No 

Web of Science No Covered Covered Covered 

Microsoft Academic  Covered Covered Covered Covered 

Wiley Online Library  Covered No No No 

IEEE Digital Library  No No Covered Covered 

Taylor & Francis Online No No No No 

Sage journals No No No No 

Springer Link No Covered No No 

• Search Term. 

The search terms were derived from a series of trials on Google Scholar. Firstly, 

“Solar” and “Forecasting” as two crucial key words are used in Google Scholar 
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for searching all relevant topics excluding citations and patents. In this case, 

1,220,000 results were returned if “solar” and “forecasting” were searched 

directly in Google Scholar because of countless research on this subject. In this 

case, a search strategy that searches more accurate keywords in the titles of 

articles is used to narrow the results into a reasonable quantity. The search 

term consists of two groups of keywords.  

1. The first group includes “Solar” or “Photovoltaic” or “PV”.  

2. The second group includes “Forecast” or “Nowcast” or “Predict”. 

Table 2.13 presents the two groups of keywords. 

Table 2.13 The key words used in advanced search  

2.5.4 Execution of The Systematic Review  

The execution of the systematic review is shown in Figure 2.7. The main process 

includes four steps: identification, screening, eligibility and inclusion.  

1. Identification  

In the field of solar irradiance forecasting methods, academic journals are 

mainly published by Elsevier, Springer, Taylor & Francis, Sage, Wiley and MDPI. 

The Above publishers commonly have corresponding search engines, 

including ScienceDirect, SpringerLink, Taylor & Francis Online, SAGE journals, 

Wiley Online Library. Following the above search strategies, various 

combinations of keywords are used to search articles. Thesis articles from 

various databases are merged to remove duplicates that produce initial records.  

2. Screening  

The records identified are screened by their languages, authority, titles and 

abstracts. According to the author’s ability, only English and Chinese articles 

First Key Words Second Key Words 

Solar Forecast 

Photovoltaic Nowcast 

PV Predict 
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are reserved. In addition, articles published before 2004 were excluded due to 

their generally low quality. Besides, some irrelevant themes, such as 

forecasting of solar flares, activities, and particles, are excluded. Finally, the 

articles without peer-review are excluded. However, some specific articles are 

considered according to their comprehensive quality, such as Ph.D. thesis.   

3. Eligibility  

The screened records are assessed for eligibility through full text. Firstly, the 

articles do not focus on the forecasting of GHI, DNI and DHI were excluded. 

Then, the articles with unclear descriptions of research methods were excluded. 

Finally, the articles without appropriate forecasting horizons and spatial-

temporal resolutions according to the needs of buildings were excluded. 

Specifically, the review excluded articles that describe forecasting methods 

with forecasting horizons longer than 6 hours, spatial resolution exceeding 10 

km, and temporal resolution more than 1 hour. Based on the above, the rest of 

the articles are included.  

4. Inclusion 

All the included articles are classified, analysed and summarised according to 

forecasting methods, data acquisition way, equipment and programming and 

evaluation metrics, etc. Also, the statistical analysis for the research quantity 

and performance data of solar irradiance forecasting methods is produced 

based on the articles included.  
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Figure 2.7 Methodology of systematic review 
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2.6 Results and Analysis of The Systematic Review  

Based on the systematic review methodology, 308 articles on solar irradiance 

forecasting methods are included in the crucial literature review list and analysed. In 

general, the included articles mainly involve five types of solar irradiance forecasting 

methods, including NWP methods, Statistic and Learning methods, Top-down forecast 

methods, Bottom-up forecast methods and Hybrid methods. In the following analysis, 

Statistical and Learning methods will be further divided into two types: Data-driven and 

Model-driven. According to the systematic review, the forecasting horizons of all 

included solar irradiance nowcasting methods vary from 1 second to 6 hours. 

2.6.1 Popular Journals and Conferences for Solar Irradiance Forecasting 

Methods 

Figure 2.8 presents the top 10 popular journals and conferences of solar irradiance 

forecasting methods according to the included articles.  

 

Figure 2.8 Top 10 popular journals and conferences of solar irradiance forecasting 

methods 

In general, Solar Energy and Renewable Energy are the most popular journals, 

and both have relatively high impact factors. First of all, the highest number of articles 

published in Solar Energy, which is one of the leading journals in the field of solar 

energy, focusing on solar energy technology, applications, and scientific research 
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related to solar energy, with a very high degree of specialization. Secondly, Renewable 

Energy covers the research on all types of renewable energy sources and it is also an 

important journal in the field of solar energy research. The number of articles published 

in Energy Conversion and Management and Energy is tied for third place. Energy 

Conversion and Management specialises in energy conversion technologies and 

management strategies, while Energy focuses on multiple energy technologies and 

strategies. The number of remaining journals and conferences is relatively small, but 

they are also authoritative. Energies and Applied Energy are the top journals in the 

field of energy, covering a wide range of energy technologies and energy policy 

research. IEEE Access and Expert Systems with Applications focus on applied science 

and engineering technologies, including intelligent management and optimization of 

energy systems. Remote Sensing mainly publishes research on remote sensing 

technology and its application in earth science and environmental monitoring, which is 

equally important for resource assessment and environmental impact analysis in the 

field of energy. Energy Procedia, an open-access journal primarily for energy science 

conferences, covers a range of recent advances in energy management.  

2.6.2 Popular researchers of Solar Irradiance Forecasting Methods 

The top 10 popular researchers of solar irradiance forecasting methods are 

presented according to the included articles, as shown in Figure 2.9. It's worth noting 

that they are not necessarily the first authors of the article. 

 

Figure 2.9 Top 10 popular researchers of solar irradiance forecasting methods 
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2.6.3 The Number of Articles of Solar Irradiance Forecasting Methods 

Figure 2.10 shows the trend in the number of published articles on solar irradiance 

nowcasting methods from 2007 to 2024. The number continually increases each year 

from a shallow level in 2007 (only 1 article) to a peak in 2019 (43 articles), after which 

it begins to decline from 2019 to 2024 gradually. That reflects the growth of research 

interest in this field, which started in 2007 and will become mature and stable in 2019. 

In addition, since the methods used for solar irradiance forecasting are similar to those 

used for PV power forecasting, the focus of solar irradiance forecasting is likely to shift 

from the forecasting of solar irradiance to PV power. 

 

Figure 2.10 The number of published articles on solar forecasting methods from 2007 

to 2024 

2.6.4 The Number of Articles of Different Solar Irradiance Forecasting 

Methods 

Figure 2.11 depicts the total number of articles of different solar irradiance 

forecasting methods. At first, the limited number of articles of Numerical Weather 

Prediction (NWP) methods and Top-Down forecast methods indicates that these 

methods are not ideal for the forecasting from 1 second to 6 hours. The major reason 

is the low spatial-temporal resolution of Numerical Weather Prediction (NWP) methods 
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and Top-Down forecast methods. In contrast, the number of articles of Data-driven 

methods and Hybrid methods is very large, which implies that they are well suited for 

the above forecasting horizons. This is because both Data-driven methods and Hybrid 

methods usually depend on the conditions of datasets, and thus can achieve ideal 

forecasting results as long as the conditions of datasets meet requirements. Moreover, 

although both Model-Driven methods and Data-driven methods are Statistical and 

Learning methods, Model-Driven methods are used less often because they require a 

depth level of understanding of the statistical models. At last, despite Bottom-up 

forecast methods are developed specifically for very short and short-term forecasting, 

the number of articles on them are relatively small due to the late emergence of them. 

Based on the above, Bottom-up forecast methods, Data-driven methods and Hybrid 

methods will be the focus of this research.  

 

Figure 2.11 The total number of articles on different solar forecasting methods 

 Trends in the development of different solar irradiance forecasting methods over 

the past few years are shown in Figure 2.8. According to Figure 2.8, the number of 

articles on Numerical Weather Prediction (NWP) methods and Top-Down forecast 

methods were mainly published between 2013 and 2020 and have been absent in 

recent years. The article number of Bottom-up forecast methods reaches its peak in 

2017 and significantly declines after that time. The explosion of Bottom-up forecast 

methods in 2017 is attributed to the development of total sky imager and image 
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processing techniques. On the other hand, the decline of Bottom-up forecast methods 

might be a result of the development of hybrid methods, as hybrid methods are often 

composed of Bottom-up forecast methods and Data-driven methods. Similar to 

Bottom-up forecast methods, Model-driven methods show a similar downward trend. 

Trends in the number of articles of Data-driven methods and Hybrid methods evidently 

demonstrate they are widely used in this field. However, the article number of Hybrid 

methods has decreased in recent years relative to Data-driven methods, except for 

2024 probably induced by the rapid development of Deep Learning (DL) and computer 

hardware. In general, Figure 2.12 implies that Data-driven and Hybrid methods are the 

future direction of this field. 

 

Figure 2.12 The number of articles of different solar forecasting methods in different 

years 

2.6.5 Data Acquisition Ways of Solar Irradiance Forecasting Methods 

Figure 2.13 describes the number of articles on different data acquisition ways for 

solar irradiance forecasting methods. As mentioned before, data acquisition ways 

mainly involve five types: Public Weather Observation, Privately-owned Equipment, 

Meteorological Satellites, Grounded Sky Imagers and Weather APIs.  
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Figure 2.13 The number of articles of different data acquisition ways 

In general, as the most conventional and stable data acquisition way, public 

weather observation shows obvious advantages in terms of article number. It includes 

several advantages, such as easy access, low cost, high stability, and is therefore 

particularly suitable for studies requiring medium to long-term weather data. In contrast, 

privately-owned equipment is typically used by individual researchers or small 

research organisations for special studies. Thus, its article number is relatively small. 

The cost of privately-owned equipment depends on the device type and configuration. 

Its initial investment may be high, but it can save the cost of data acquisition in the long 

term. The article's number of meteorological satellites is the smallest, which is usually 

induced by its low spatial-temporal resolution and fewer satellite resources. The high 

article number of ground sky imagers demonstrates its popularity in recent years 

because of their late emergence. The crucial advantage of ground sky imagers is high 

spatial-temporal resolution. Thus, they are well suited for collecting on-site and high-

frequency sky image data. The cost of the ground sky imager also depends on the 

device type and configuration and sometime there will be maintenance issues. 

Weather APIs, as another emerging data acquisition, have also become popular 

recently in terms of the number of articles. Although some basic weather data is 

available for free, high-quality and hard-to-obtain data, such as solar irradiance, may 

require payment. In summary, the choice of each method depends on specific 
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application requirements, budgetary constraints and other factors. Thus, researchers 

need to consider the cost, accessibility, accuracy, and spatial-temporal resolution of 

data. Considering that building applications usually require on-site and high-frequency 

data, privately-owned equipment and ground sky imagers will be the focus of this 

research implies the potential of Bottom-up forecast methods, Data-driven methods 

and Hybrid methods for buildings. 

2.6.6 Forecasting Horizons and Temporal Resolutions of Solar Irradiance 

Forecasting Methods 

Figure 2.14 demonstrates the proportion and the number of articles with different 

forecasting horizons.  

 

Figure 2.14 The proportion and number of articles with different forecasting horizons 

In general, forecasting horizons from 1 to 6 hours account for 64% of the total 

articles, with a total number of 195. This indicates that hourly nowcasting is more 

common than minutely nowcasting because of its relative lower difficulty of forecasting 

and wide applications. Specifically, hourly nowcasting has been widely used for daily 

energy management and scheduling, which helps grid operators, energy markets or 

buildings to predict energy demand and supply conditions for the coming hours. In 

contrast, intra-hour nowcasting from 10 to 60 minutes is relatively less. However, intra-

hour nowcasting, especially 1-sec to 10-min nowcasting, has the potential to provide 
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real-time or near-real-time solar irradiance data, which is promising for the more fine-

grained management and regulation of building energy systems in the future. Figure 

2.15 indicates the research on intra-hour nowcasting was mainly published between 

2017 and 2022 and declined in the last year but grew again in 2024. In summary, the 

research of solar irradiance nowcasting methods is still promising.   

 

Figure 2.15 The articles with forecasting horizons from 1 to 60 minutes in different years  

Figure 2.16 displays the proportion and the number of articles with various 

temporal resolutions. It is evident that the temporal resolution of solar irradiance 

nowcasting is mainly distributed under ten minutes and over one hour. Temporal 

resolution directly determines the frequency of solar irradiance nowcasting, and it thus 

impacts the applications scenarios of solar irradiance forecasting. In addition, intra-

hour temporal resolution accounts for 76% which indicates high temporal resolution is 

in high demand in the field of solar irradiance nowcasting.  
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Figure 2.16 The proportion and number of articles with different temporal resolution 

In addition, Figure 2.17 shows that fewer studies have paid attention to multiple 

temporal resolutions, which merely account for 26.8%. In this case, future research is 

necessary to investigate the effects of multiple temporal resolutions on solar irradiance 

forecasting methods. 

 

Figure 2.17 The proportion and number of articles with single interval and multiple 

intervals 

2.6.7 Forecasting Parameters of Solar Irradiance Forecasting Methods 

Figure 2.18 describes the proportion of three critical parameters of solar irradiance 

forecasting in the included articles, including GHI, DNI and DHI. At first, GHI has the 

largest share at 80%. Secondly, DNI accounts for 15%, significantly less than GHI.  At 
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last, DHI has the smallest share at 5%. This distribution of GHI, DNI, and DHI shows 

that GHI is the most common focus of solar irradiance forecasting methods. This is 

because GHI is the sum of the DNI and DHI and can be used directly in solar 

applications. Although DNI and DHI are also crucial for specific applications, they are 

not major forecasting parameters in solar irradiance forecasting, especially DHI. In this 

case, the forecasting of DHI is an evident research gap. 

 

Figure 2.18 The proportion of articles for GHI, DNI and DHI forecasting   

2.6.8 Evaluation Metrics of Solar Irradiance Forecasting Methods 

Evaluation metrics is a significant solution to measure forecasting accuracy. In 

specific, these metrics aim to judge the error between predicted value and actual value. 

Figure 2.19 presents the number of times various evaluation metrics were used. It is 

obvious that the Root Mean Squared Error (RMSE) is used far more often than other 

metrics and the Mean absolute error (MAE) is the second. After RMSE and MAE, the 

Normalized Root Mean Square Error (nRMSE) and the Mean Absolute Percentage 

Error (MAPE) are also very popular. In addition, the Mean Bias Error (MBE), the 

Correlation Coefficient (r) and the Coefficient of Determination (r2) are also relatively 

popular. In addition to the common evaluation metrics, there are some specific 

indicators, such as the Forecast Skill Score (SS), and others specifically designed for 

some studies. The above evaluation metrics can be divided into two categories: 

absolute indicator and relative indicator. Absolute indicators provide specific values 
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that directly reflect the reality of a phenomenon or data and thus are Ideal for 

comparison on the same or similar datasets. Conversely, relative indicators are 

indicators relative to other benchmarks or ratios and are often used to compare and 

assess relationships or trends between data. Thus, they are usually used to compare 

different datasets. A few common evaluation metrics will be explained in detail below.  

 

Figure 2.19 The number of articles on various evaluation metrics 

In the following equations, 𝑝𝑖 represents the nowcasting values, 𝑚𝑖 represents the 

measurements, 𝑚̅  represents the averaged measurements, 𝑚̂  represents the i-th 

value predicted from the regression model. 

• Root Mean Squared Error (RMSE) 

The root mean squared error is a representative absolute indicator. It is 

calculated based on the difference between the predicted value and the true 

value. It can be expressed as: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑝𝑖 − 𝑚𝑖)

𝑁

𝑖=1

2

 (2.2) 

The critical advantage of RMSE is that it is highly sensitive to large prediction 
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errors, making it suitable for situations where the effects of large errors need to 

be emphasised. In addition, the square root keeps it at the same magnitude as 

the original data and thus improves its interpretability. However, the drawbacks 

of RMSE are apparent. First of all, RMSE is susceptible to extreme values, 

which means that if there are some abnormal values leading to large deviations, 

the RMSE will be larger and thus impact the overall judgement of the model. 

Meanwhile, RMSE could only assess the different model performances under 

the same basic dataset. In other words, it is meaningless to compare the 

predicted performance of diverse models based on different datasets because 

the original data is distinct. 

• The Normalised Root Mean Square Error (nRMSE) 

The normalised root mean square error is a relative indicator. The "normalized" 

aspect of NRMSE refers to the scaling of the error based on the range or 

standard deviation of the observed data, which makes the measure 

dimensionless and allows for the comparison between different datasets or 

models with different scales. It can be expressed as: 

 𝑛𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸/ 𝑚̅  (2.3) 

The critical advantage of nRMSE is that it is possible to more accurately 

understand and compare the performance of different models when datasets 

are very different. The purpose of nRMSE is to restrict the deviation result in 

the range of 0 to 1. As a result, the final calculated value is often expressed as 

a percentage, where lower values indicate higher accuracy. Figure 2.20 

evidently indicates that the nRMSE for most studies ranged from 9.29% to 

28.37%. The lowest nRMSE is 0.1%, which means that the accuracy is 

extremely high. However, there are some studies with the lowest nRMSE OF 

56.4%. Nevertheless, it is worth noting the accuracy of the forecasting model 

is influenced by multiple factors and thus the model with the highest precise 

may not suited for all datasets. To sum up, based on the nRMSE of all articles, 
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an nRMSE between 9.49% to 29.43% would be considered as the qualified 

accuracy for this research. 

 

Figure 2.20 The distribution of nRMSE across all articles. 

• The Mean Absolute Error (MAE) 

The mean absolute error is a basic absolute indicator to measure the average 

absolute error between predicted and actual values. It can be expressed as: 

 𝑀𝐴𝐸 =
1

𝑁
∑ |𝑝𝑖 −  𝑚𝑖|

𝑁

𝑖=1
 (2.4) 

The MAE and RMSE are generally similar, but the MAE is less sensitive to 

abnormal values because it does not take into account the direction and 

magnitude of the error squared. To sum up, the choice of MAE or RMSE 

depends on the sensitivity of abnormal values and the size of the error.  

• The Normalised Mean Absolute Error (nMAE). 

Similar to nRMSE, the normalised mean absolute error is a relative indicator.  

It can be expressed as: 

 𝑛𝑀𝐴𝐸 = 𝑀𝐴𝐸/ 𝑚̅ (2.5) 

Figure 2.21 depicts the values of nMAE for all articles. It can be obtained that 

currently, the nMAE value mainly distributes between 6.36% and 28.94%, and 

the average term is 16.53%. The maximum and minimum nMAE are 2.38% and 

46.37% respectively. Thus, the nMAE for this research is ideal as long as it is 

less than 16.53%. 
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Figure 2.21 The distribution of nMAE across all articles. 

• Coefficient of Determination (R2) 

The coefficient of determination is a relative indicator. It is used to measure 

the reliability of the change in the dependent variable. The value of R2 varies 

between 0 and 1. The closer R2 is to 1, the higher the accuracy. In contrast, 

when R2 is closer to 0, the accuracy is worse. It can be expressed as: 

 𝑅2 = 1 − 
∑ (𝑚𝑖 −  𝑚̂)2𝑁

𝑖=1

∑ (𝑚𝑖 − 𝑚̅)2𝑁
𝑖=1

    (2.6) 

Figure 2.22 presents R2 for all included articles. Most articles have R2 between 

0.86 and 0.98, demonstrating that the differences between prediction and 

actual observations are minor, indicating that forecasting can capture the 

trends of data variation accurately.  

 

Figure 2.22 The distribution of R2 across all articles. 

To sum up, during the process of systematic literature review, it was found that 

most studies do not articulate specific reasons for the selection of evaluation metrics 
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and analyse these metrics in detail, so this is a rewarding research gap that needs to 

be addressed. 

2.6.9 Application of Solar Irradiance Forecasting Methods 

Figure 2.23 indicates most studies are concerned about the application of solar 

irradiance forecasting. However, most studies have focused only on PV-related 

applications rather than other possible other applications. Therefore, the potential 

applications of solar irradiance nowcasting are worth being discussed in this research.  

 

Figure 2.23 The proportion of articles proposing applications of solar irradiance 

nowcasting  
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2.7 Research Gaps Summarised from The Systematic Review 

Based on the systematic literature view, the main research gaps are summarised 

as follows:  

1. Very few studies pay attention to nowcasting horizons and spatial-temporal 

resolution appropriate for building applications. The potential value of emerging 

solar irradiance nowcasting methods to buildings and their future development 

has not yet gotten a high profile. 

2. Few studies have articulated the equipment and programming used for solar 

irradiance forecasting methods in conjunction with the needs of buildings.  

3. The nowcasting of DHI has received little attention despite being one of three 

critical parameters of solar irradiance, which is valuable to building simulation 

programs.  

4. The impact of diverse factors, including forecasting horizons, time intervals, sky 

conditions, forecasting models and datasets, on the forecasting performance 

has not been investigated comprehensively.  

5. Little research pays attention to the study and selection of evaluation metrics 

for solar irradiance forecasting methods. 

6. The prospective applications of solar irradiance forecasting methods on 

buildings have not been discussed from an architectural perspective. 
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2.8 Nowcasting Methods with Potential for Building Applications  

After a comprehensive analysis of the results from the systematic literature review, 

it is essential to specifically explore the potential of different solar irradiance nowcasting 

methods for buildings.  

Based on the meteorological term, forecasting with forecasting horizons from 1 

second to 6 hours is defined as nowcasting in this research. As mentioned above, solar 

irradiance forecasting methods can be classified into five types: Numerical Weather 

Prediction (NWPs), Statistical and Learning, Top-down, Bottom-up, and Hybrid. 

Although these methods have very different forecasting horizons and spatial-temporal 

resolutions, portions of each method fulfil the definition of nowcasting.  

Since this research aims to explore solar irradiance nowcasting methods with very 

short-term forecasting horizons and high spatial-temporal resolution potential for 

building applications, an in-depth review of nowcasting methods from the five types is 

necessary.  

• Numerical Weather Prediction methods (NWPs) 

Due to the spatial-temporal resolution of NWP methods always being very low, 

it is rarely used for solar irradiance nowcasting. [77] utilised an improved WRF 

model, which is a common model used in NWP methods, to achieve 1-hour 

nowcasting of GHI. [78] presented several NWP models used for forecasting, 

including ECMWF, NAM, GFS, RAP and used those models to obtain 3-hour 

GHI nowcasting. Table 2.14 summarises the studies of NWP methods for 

nowcasting and evidently demonstrates NWP methods is not used in any intra-

hour nowcasting.  

Table 2.14 NWP methods for solar irradiance nowcasting. 

 

Nowcasting Horizons 

(1sec-10min) 

Nowcasting Horizons 

(10min-60min) 

Nowcasting Horizons 

(1-6hour) 

/ / [77-87] 
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• Statistical and Learning Methods 

Data-driven methods are one of the main types of Statistical and Learning 

methods and are commonly used for solar irradiance nowcasting. First, some 

studies enable solar irradiance nowcasting with innovative machine learning 

models. [88] is a representative Data-driven method which utilised semi-real-

time decision tree ensemble algorithms to achieve reliable 15-sec and 30-sec 

GHI nowcasting by using only historical data of GHI. This method not only has 

a low computational cost but also achieves effective forecasting without the 

need for external information. In addition, the combination of multiple machine 

learning models is also a way to develop effective nowcasting methods. A 

representative Data-driven method proposed in 2024 utilised GHI, DNI, DHI 

and other diverse weather data as model input to train a hybrid deep learning 

model - TLD and ultimately acquired 10-min and 15-min nowcasting of DNI [89]. 

The TLD model integrates topological features captured by Topology Data 

Analysis (TDA) with temporal features captured by LSTM. [90] also developed 

a WPD-CNN-LSTM-MLP model, which combines several types of deep 

learning models to predict GHI for one hour ahead based on the use of GHI 

and different weather data acquired from a weather API. In summary, Data-

driven methods are well suited for solar irradiance nowcasting. However, those 

methods tend to require permanent use of solar irradiance data and diverse 

weather data, which might lead to high purchase and maintenance costs of 

equipment or difficulty of data access. This is not ideal for building applications. 

More studies of Data-driven methods for nowcasting are summarised in Table 

2.15. It is obvious Data-driven methods are more often used for 1 to 6-hour 

nowcasting.  

 

 

 



Ph.D. Thesis   Lei Chen 

 

Cardiff University                                                      77                                             Welsh School of Architecture 

 

Table 2.15 Data-driven methods for solar irradiance nowcasting. 

Although the total number of Model-driven methods is significantly lower than 

Data-driven methods that enable the achieve solar irradiance nowcasting, 

some studies still demonstrate their ability for nowcasting. Based on Markov-

chain mixture (MCM) model, [186] successfully achieved 1 to 5 min nowcasting 

of GHI. The forecasting method proposed in this study is a typical Model-driven 

method. ARIMA, as a representative statistical model for time series 

forecasting, is applied to achieve 15-min, 30-min, 45-min, and 1 to 3-hour 

nowcasting [187]. Table 2.16 summarises the studies of Model-driven methods 

for nowcasting. The number of distributions in different forecasting horizons of 

Model-driven methods is relatively similar. 

Table 2.16 Model-driven methods for solar irradiance nowcasting. 

• Top-down forecast methods  

Similar to NWP methods, Top-down forecast methods is also not ideal for solar 

irradiance nowcasting because of their low spatial-temporal resolutions. Based 

on the visible and near-infrared channels (AGRI) onboard the FengYun-4A (FY-

4A) geostationary satellite, [228] utilised an algorithm to obtain 30 to 180-min 

nowcasting of GHI and DNI. [229] successfully predicted from 15 to 180 

minutes by using satellite images. The articles on Top-down forecast methods 

are summarised in Table 2.17, which intuitively shows only several articles 

have utilised the Top-down forecast methods to obtain intra-hour nowcasting. 

 

Nowcasting Horizons 

(1sec-10min) 

Nowcasting Horizons 

(10min-60min) 

Nowcasting Horizons 

(1-6hour) 

[44, 79, 91-101] [44, 79, 89, 92, 98, 102-113] 
[44, 45, 48, 73, 79, 90, 92, 98, 102, 

105, 108-185] 

Nowcasting Horizons 

(1sec-10min) 

Nowcasting Horizons 

(10min-60min) 

Nowcasting Horizons 

(1-6hour) 

[88, 186, 188-191] [50, 187, 191-199] [49, 124, 187, 192, 194, 197, 200-227] 



Ph.D. Thesis   Lei Chen 

 

Cardiff University                                                      78                                             Welsh School of Architecture 

 

Table 2.17 Top-down forecast methods for solar irradiance nowcasting. 

• Bottom-up forecast methods  

Unlike NWP methods and Top-down forecast methods, Bottom-up forecast 

methods have a significant advantage for solar irradiance nowcasting due to 

their high spatial-temporal resolutions. [242] published in 2013, it is the earliest 

to use Total Sky Imager (TSI) and image processing techniques to predict 3 to 

15-min DNI. The study innovatively predicts 3-hour GHI, DNI and DHI by using 

the conversion between digital image levels and solar irradiances, as well as 

the maximum cross-correlation method [233]. Based on a developed All-Sky 

Imager (ASI) nowcast, [243] proposed a real-time capable nonparametric 

probabilistic quantile nowcasting method which successfully achieve 1 to 20 

min nowcasting of GHI and DNI. Table 2.18 summarises the articles of Top-

down forecast methods for nowcasting, as well as explicitly demonstrates 

Bottom-up forecast methods have a significantly higher number of articles for 

the intra-hour nowcasting, especially from 1 second to 10 minutes.  

Table 2.18 Bottom-up methods for solar irradiance nowcasting. 

• Hybrid methods  

Hybrid methods combine the advantages of different forecasting methods and  

are therefore well suited for solar irradiance nowcasting. Based on weather 

data from NWP forecast models and two designed ANN models, [269] achieves 

10-min nowcasting of DNI. [270] proposed a hybrid method which utilised 

satellite data and a machine learning regression model to conduct hourly GHI 

Nowcasting Horizons 

(1sec-10min) 

Nowcasting Horizons 

(10min-60min) 

Nowcasting Horizons 

(1-6hour) 

/ [228-230] [228-241] 

Nowcasting Horizons 

(1sec-10min) 

Nowcasting Horizons 

(10min-60min) 

Nowcasting Horizons 

(1-6hour) 

[66, 242-253] [66, 242, 250, 254-263] [64, 232, 233, 264-268] 
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nowcasting. The study respectively utilised four groups of cloud images 

captured from four ASIs and different cloud detection methods, including clear 

sky library, Neural Network, Red/Blue ratio and deep learning, to obtain GHI 

nowcasting from 1 to 20 minutes and compared the results of different groups. 

[271] used TSI and two CNN models - AlexNet and ResNet-101 to predict GHI 

from 1 to 15 minutes. [272] used CNN to extract the spatial features of infrared 

cloud images and a prevalent deep learning model - Long Short-Term Memory 

(LSTM) networks to capture the temporal dynamics of solar irradiance data that 

thus effectively predict GHI in 15 minutes. The studies of Hybrid methods are 

summarised in Table 2.19, which shows Hybrid methods are widely used for 1-

sec to 6-hour nowcasting.  

Table 2.19 Hybrid methods for solar irradiance nowcasting. 

Considering the trend towards building intelligence, very short-term forecasting 

horizons and high spatial-temporal resolutions will be the crucial characteristics of solar 

irradiance nowcasting methods appropriate for buildings. According to Figure 2.1 in 

section 2.1.7, the red zone demonstrates the specific forecasting horizons and spatial 

resolution of the conceived solar irradiance nowcasting method.  

Based on the above, Data-driven methods, Bottom-up forecast methods and 

Hybrid methods are potential for solar irradiance nowcasting. In this case, it is 

necessary to investigate the specific techniques and approaches associated with the 

aforementioned methods more thoroughly. 

Nowcasting Horizons 

(1sec-10min) 

Nowcasting Horizons 

(10min-60min) 

Nowcasting Horizons 

(1-6hour) 

[65, 69, 251, 269, 271-287] [251, 271, 282, 283, 285-308] 
[64, 110, 130, 202, 214, 269, 270, 274, 

275, 286, 291, 301, 306, 309-348] 
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2.9 Characteristics of Nowcasting Method Suitable for Buildings 

Based on the above, this section examines the characteristics of Data-driven 

methods, Bottom-up forecast methods and Hybrid methods in terms of their suitability 

for buildings. Since the Hybrid methods tend to consist of Statistical and Learning 

methods, Bottom-up forecast methods, this section provides a targeted study on 

some specific characteristics of Data-driven methods and Bottom-up forecast 

methods. These characteristics involve image processing techniques, low-cost 

equipment, deep learning models and user-friendly programming. 

• Image Processing Techniques of Bottom-up Forecast Methods 

Image processing techniques are the critical characteristic of Bottom-up 

forecast methods. First, cloud images are the crucial data of Bottom-up 

forecast methods and thus the first step is to process captured images. 

Common data processing techniques involve image calibration, image 

masking, exposure adjustment, cloud pixels identification, cloud movement 

vector calculation, etc.  

Some studies will first take image correction techniques to ensure that each 

point in the image correctly reflects its actual position. This step is important 

because the angle of the sky camera, its position, or the distortion of the 

camera lens can lead to image distortion. After that, an essential masking step 

is used to eliminate unnecessary elements in the image, including buildings, 

trees, streets, etc. Thirdly, some techniques are applied to adjust image 

exposure for the following cloud pixel identification. Next, a key step of image 

processing is conducted to extract the red-green-blue (RGB) value of each 

image pixel and use diverse approaches to complete cloud pixel recognition. 

At last, based on the identified cloud pixels in two consecutive images, the 

movement vector is calculated and thus can achieve the motion trajectory of 

the pixel, which is then used to predict the position of the pixel in the next 
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timestep. In addition to the key steps mentioned above, different studies will 

propose unique image processing steps or optimised solutions according to 

actual circumstances. 

[249] was a representative study applying a series of comprehensive image 

processing techniques to achieve 1 to 10-min GHI nowcasting. Another article 

achieved 5-min DNI nowcasting based on very complex image processing 

techniques with a unique Lucas-Kanade optical flow method, which was used 

to track the feature points of cloud images [349]. [263] utilised a novel object 

oriented approach with four spatially distributed ASIs to achieve 15-min 

nowcasting of DNI. [287] developed a hybrid method which used CNN-LSTM 

to learn cloud features and thus obtain 4 to 20-min nowcasting.  

In summary, the choice of image processing techniques is one of the key 

factors affecting this research and it thus needs to be fully considered in the 

development of the methodology. 

• Equipment for Bottom-up Forecast Methods  

Apart from image processing techniques, equipment is also the core of 

Bottom-up Forecast Methods because all this type of methods relies on 

grounded sky cameras. There are very many different forms and 

configurations of grounded sky cameras. Some studies use expensive high-

resolution specialised Total Sky Imager (TSI), but others tend to develop 

special camera systems by innovatively using some low-cost equipment. In 

addition, a grounded sky camera does not have to work alone. Some studies 

have compensated for the limitations of a single camera by using multiple 

cameras together. 

[250] compared several popular grounded sky cameras and utilised two sky 

cameras located in two different sites to achieve 1 to 15-min GHI nowcasting. 

[255] innovatively developed a sun-tracking imaging system which can 

effectively minimise the circumsolar image distortion and thus improve the 

https://www.sciencedirect.com/topics/engineering/imaging-systems
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nowcasting method. Some other studies focused on the exploration of low-

cost ground sky cameras and achieved reliable nowcasting successfully [61, 

64, 274]. Recently, [286] achieved 10-min to 2-hour nowcasting by using a 

public webcam.  

To sum up, low-cost equipment is very promising considering the 

generalisation of solar irradiance nowcasting methods on buildings. 

• Machine Learning Models of Data-driven Methods 

Machine Learning models are the foundation of Data-driven Methods. 

Representative Machine Learning models and some statistical models are 

summarised from the systematic literature review, as shown in Figure 2.20.  

 

Figure 2.24 The number of articles used different forecasting models   

It is evident that basic ANN and CNN models, as well as LSTM are widely 

used for solar irradiance nowcasting. ANN is the most basic form of neural 

network and is suitable for simple or moderately complex classification and 

regression, but it is not good with data that is spatially and temporally 

correlated. The crucial advantage of ANN is simple and flexible. CNN is 

designed to process data with a grid-like structure, such as images. In this 
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case, CNNs are well suited for processing data with strong spatial or temporal 

proximity and thus can achieve higher accuracy in image or video recognition 

tasks. LSTM is a particular type of Recurrent Neural Network (RNN) that 

specialises in processing and predicting time series data. However, the 

training of LSTMs is usually more time-consuming than ANNs and simple 

CNNs. In recent years, these models have also been used in combination to 

develop more advanced models for optimising solar irradiance forecasting 

methods. 

Two ANNs were employed with cloud images to achieve 1 to 5-min 

nowcasting of GHI by [350]. [182] respectively utilised CNN, LSTM, 

ConvLSTM to achieve the nowcasting of GHI. The nowcasting performance 

of LSTM and FFNN is compared by [166]. Recently, [271] developed a hybrid 

method, which used the grounded cloud image and two representative deep 

learning model - AlexNet and ResNet-101, to achieve 1 to 15-min GHI 

nowcasting.  

In summary, the selection of nowcasting model is also the core of this research. 

A combination of model characteristics, such as learning ability, time 

consumption, extensibility, etc, are needed to be considered.  

• Programming for Data-driven Methods 

Programming tools and language are the basics of Machine Learning models. 

However, the selection of programming tools and language is rarely 

articulated in most studies. The diverse toolbox of MATLAB can help 

developers quickly implement complex algorithms, and thus, it has been 

widely used in past decades. However, MATLAB is commercial software that 

requires the purchase of a license to use and thus increases the cost of use. 

In this case, more and more studies use Python to execute Data-driven model 

due to a series of user-friendly features, including open-source, free, abundant 

libraries and extensive community support.  
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MATLAB was applied to execute SVM for hourly GHI nowcasting in 2013 by 

[119]. [343] proposed a multi-timescale ESN (MTS-ESN) model to achieve 

hourly nowcasting of GHI based on Python in 2019. Based on both MATLAB 

and Python, [156] successfully achieved hourly GHI nowcasting using SOM 

and deep learning algorithms.  

On this basis, the selection and application of programming tools and 

languages also needed to be explored in this research. 

In conclusion, the abovementioned characteristics involving image processing 

techniques, machine learning models, equipment and programming will be 

considered in conjunction with the needs of buildings to develop a hybrid methodology 

for this research.  
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2.10  Conceptualisation of Solar Irradiance Nowcasting Method 

The importance of this research is to explore a solar irradiance nowcasting 

method from an architectural perspective and achieve reliable GHI, DNI and DHI 

nowcasting to optimise the operational efficiency and safety, occupant comfort and 

design of buildings. 

Based on the importance of this research and systematic literature review, the 

proposed solar irradiance nowcasting method should have the following 

characteristics: 

• Very Short-term Nowcasting Horizons and High Spatial-Temporal Resolution 

Single building or several buildings need on-site and real-time weather data 

to achieve precise regulation and management of building systems and thus 

optimise the building performance. Therefore, a very short-term nowcasting 

horizon range from several seconds to a few minutes is valuable. In addition, 

high spatial resolution ranging from 1 meter to 2 kilometers and high temporal 

resolution on a minute scale are necessary. 

• Appropriate Image Processing Techniques and Reliable Nowcasting Model 

The balance between the utilisation of image processing techniques and 

machine learning models should be considered carefully to maximise the 

advantages of each and improve the accuracy and efficiency of solar 

irradiance nowcasting. 

• Low-cost Equipment and User-friendly Programming.  

In this research, low-cost equipment and user-friendly programming will be 

prioritised to lower the cost and difficulty of building applications.  

• Nowcasting Capabilities of GHI, DNI and DHI. 

Considering different types of solar systems and applications, the 

methodology of this research should achieve the nowcasting of GHI, DNI and 

DHI.  
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2.11  Chapter Summary 

In summary, this chapter begins with a concise introduction of background 

information including the potential of solar energy in different regions worldwide, 

building energy demand, building energy benchmarks, the link between building and 

solar irradiance forecasting. And then, five representative solar irradiance forecasting 

methods, their data acquisition ways, forecasting horizons and spatial resolution are 

articulated briefly. Moreover, current literature reviews of solar irradiance forecasting 

methods and the limitations of their methodologies are demonstrated. 

In this case, a systematic review methodology for solar irradiance forecasting 

methods is proposed and its relationship with the research methodology of solar 

irradiance nowcasting is articulated. Based on the methodology of systematic review, 

a comprehensive literature review is conducted and a large number of articles are 

reviewed and analysed. 

 After that, a series of research gaps are summarised, leading to the selection of 

promising solar irradiance forecasting methods, including Bottom-up forecast 

methods, Data-driven methods and Hybrid methods and the further investigation of 

their characteristics appropriate for building application. On this basis, a special solar 

irradiance nowcasting method is conceptualised, which informs the development of 

the research methodology of solar irradiance nowcasting in the next chapter. 
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Chapter Three 

3 Research Methodology 

Chapter 3 is dedicated to addressing the second research question proposed in 

Chapter 1 - “How can a solar irradiance nowcasting method appropriate for buildings 

be developed?” In this case, the primary purpose of this chapter is to fulfil the second 

research objective - to develop a solar irradiance nowcasting method with very short-

term forecasting horizons and high spatial-temporal resolution using low-cost 

equipment and user-friendly programming to achieve the nowcasting of GHI, DNI and 

GHI. 

The methodology of this research is developed based on the literature review and 

the exploration of previous research. According to Chapter 2, the literature review 

indicates a number of characteristics of solar irradiance nowcasting methods valuable 

for buildings, including very short-term nowcasting horizons, high spatial-temporal 

resolutions, equipment and programming, forecasting parameters, etc. Along with the 

development of building intelligence, solar irradiance nowcasting methods with the 

above characteristics will be promising in improving the building's operational 

efficiency, safety and occupant comfort. In this case, this research builds on the solar 

irradiance nowcasting methods in the literature review and previous research to 

develop a Hybrid solar irradiance nowcasting method with high spatial-temporal 

resolution for potential building applications. 

This chapter first presents the comprehensive research methodology workflow. 

In general, this research mainly includes three crucial stages, each consisting of 

several steps involving a series of specific approaches. The three crucial stages 

involve data collection and processing, solar irradiance nowcasting, comparative tests 

and verification. Subsequently, the specific research methods and procedures for 

every step in each stage are described in detail. 
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3.1  The Workflow of Research Methodology  

The most crucial purpose of this research is to develop a low-cost and user-

friendly solar irradiance nowcasting method with a high spatial-temporal resolution to 

achieve reliable GHI, DNI and DHI nowcasting for buildings. In this case, the workflow 

of the research methodology is developed in Figure 3.1.  

Figure 3.1 The workflow of research methodology 

In Figure 3.1, the main stages of this research and their specific research contents, 

as well as the corresponding equipment and software are demonstrated.  

The main equipment includes BF5 Sunshine Sensor and Total Sky Imager 

(Raspberry Pi Camera), which are described in detail in Section 3.2.2.  
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The main software tools used in this research are shown on the left side of Figure 

3.1, these tools involve: 

• Raspberry Pi OS 

Raspberry Pi OS is the official operating system for Raspberry Pi computers. 

It is based on Debian Linux and provides a user-friendly interface along with 

a wide range of pre-installed software, making it an ideal platform for hobbyists, 

educators, and developers alike. 

• Ubuntu 20.04 OS 

Ubuntu is a popular, user-friendly Linux distribution (OS) based on Debian. It’s 

known for its ease of use, strong community support, and a wide range of 

applications available through its software repositories. Ubuntu is often 

recommended for people new to Linux due to its simplicity, but it’s also 

powerful enough for developers, IT professionals, and enthusiasts. 

• Python 

Python is a high-level, interpreted programming language that is widely 

recognized for its simplicity, readability, and versatility. It is commonly used in 

diverse fields such as web development, data science, automation and 

artificial intelligence. 

• Pycharm 

PyCharm is a popular Integrated Development Environment (IDE) used for 

programming in Python. Developed by JetBrains, PyCharm is designed to 

provide developers with a feature-rich and efficient environment for writing, 

testing, and debugging Python code. 

• Anaconda 

Anaconda is an open-source distribution of the Python and R programming 

languages, primarily aimed at scientific computing, data science, machine 

learning, and large-scale data processing. It simplifies the installation and 

management of packages, environments, and tools that are commonly used 
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in data science workflows. 

• PyTorch 

PyTorch is an open-source machine learning framework used primarily for 

deep learning applications. Developed by Facebook's AI Research lab (FAIR), 

PyTorch provides a flexible and efficient platform for building, training, and 

deploying machine learning models. 

As shown in the figure, the above software tools are used in different stages of 

this research, their specific application are described in Section 3.4.6. 

According to Figure 3.1, three main stages incorporate data collection and 

processing, solar irradiance nowcasting, comparative tests and verification.  

The first stage - data collection and processing - mainly provides the basis for the 

development of the solar irradiance nowcasting model. Thus, it presents the location 

and devices for data collection, the types of collected data and a series of data 

processing approaches.  

The second stage - solar irradiance nowcasting - is the critical stage which focus 

on the development of the proposed solar irradiance nowcasting model. Therefore, it 

articulates the background, the dataset collation, and the training and testing of the 

nowcasting model. In addition, the nowcasting of GHI and DHI, as well as the 

calculation of DNI, are demonstrated. 

The third stage - comparative tests and verification - concentrates on the 

experiments and verification of the proposed solar irradiance nowcasting model. 

Consequently, a seris of specific setup involving time intervals, nowcasting horizon, 

classification of sky conditions, comparative models and evaluation metrics for 

comparative tests are described. 

In summary, a range of specific approaches involved in each critical step of each 

stage is articulated in Figure 3.1. In addition, Figure 3.1 presents the equipment and 

relavent software tools used in each stage. At last, the different coloured legends at 

the bottom of Figure 3.1 identify the different research contents. 
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3.2 Data Collection and Processing 

This section is mainly concerned with data collection and data processing. First, 

the location and devices for data collection, as well as collected data and datasets, 

are introduced. Then, the major data processing methods involving exposure fusion, 

masking, and data alignment are presented. As shown in Figure 3.1, red symbols 

represent specific devices used for data collection, Green symbols represent data 

types, and Blue symbols represent data processing procedures.  

3.2.1 Location for Data Collection 

All data for solar irradiance nowcasting were collected on the roof of the 

Department of Computer Science and Technology building, Tongji University, 

Shanghai, China (31.3° N, 121.2° E), which has an essentially subtropical monsoon 

climate, characterised by mild weather that is often cloudy, wet, and windy. The 

reason for selecting this location was the absence of tall buildings and trees nearby 

that could cause shade, ensuring a complete capture of the sky and clouds in the 

centre of the image.  

The reason for selecting Shanghai, China, as the location for data collection was 

the impact of the lockdown policy induced by COVID-19 in the UK and the 

responsibility of parenting. However, it is worth noting the data collection activities at 

Tongji University, Shanghai, were also limited due to the administrative policy of 

Tongji University for non-members of the University. In this case, the dates of data 

collection were not completely consecutive. 

3.2.2 Devices for Data Collection 

There are two crucial devices for data collection, including a low-cost Raspberry 

Pi total sky imager and a Delta-T Device BF5 sunshine sensor, as shown in Figure 

3.1. The low-cost Raspberry Pi total sky imager was mounted at a distance of 

approximately 5 meters to the Delta-T Device BF5 sunshine sensor. 
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• Low-cost Raspberry Pi total sky imager 

The low-cost Raspberry Pi total sky imager consisted of a Raspberry Pi 4 

single-board computer equipped with a WAVESHARE OV5647 fisheye lens 

(5 megapixels OV5647 sensor, 180° field of view, 0.87 focal length) and was 

used to capture ground-based cloud images. Each 10-sec, a written Python 

program controlled the Raspberry Pi total sky imager to capture three 

different levels of exposure values and keep other photographic parameters 

consistent, such as ISO, saturation, brightness, contrast, etc. 

Unlike versatile and extremely expensive commercial total sky imager, which 

usually costs at least £20,000, Raspberry Pi total sky imager costs only 

around £150. In this case, the cost of capturing ground-based cloud images 

is significantly reduced, which is more affordable for the application on single 

or several buildings. The cost details of the Raspberry Pi total sky imager 

are shown in Table 3.1. 

Table 3.1 Cost details of Raspberry Pi total sky imager. 

Device 
Names  

Raspberry Pi 4 

Single-Board Computer 

WAVESHARE OV5647 
fisheye lens 

Memory Card Total 

Cost £80 £30 £40 £150 

• Delta-T Device BF5 sunshine sensor 

The Delta-T Device BF5 sunshine sensor is a versatile, multi-purpose, and 

easy-to-use solar radiation sensor that can measure GHI, DHI, and sunshine 

state without the need for routine adjustment or polar alignment. In this 

research, the Delta-T Device BF5 sunshine sensor recorded GHI and DHI 

each 10-sec, synchronised with the frequency of Raspberry Pi total sky 

imager capturing cloud images. 

There are several main reasons for choosing the Delta-T Device BF5 

sunshine sensor in this research. Firstly, the cost of Delta-T Device BF5 

sunshine sensor is relatively lower compared to other similar productions. 
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For example, as the office website of Delta-T Devices described, the BF5 

sunshine sensor is a more affordable alternative to the high-performance 

SPN1 sunshine pyranometer. Secondly, the Delta-T Device BF5 sunshine 

sensor is easier to use because it does not need routine adjustment or polar 

alignment. At last, it can simultaneously measure GHI and DHI with relatively 

high accuracy.  

The equipment cost for solar irradiance nowcasting, which includes the cost of 

Raspberry Pi Total Sky Imager, Delta-T Device BF5 sunshine sensor and other 

accessories, is shown in Table 3.2. In general, the total cost of the equipment used in 

this research is lower compared to other similar studies. More importantly, BF5 

Sunshine Sensor are only needed in the training stage of solar irradiance nowcasting 

model that implies only the purchase and maintenance costs of the Raspberry Pi need 

to be afforded in daily use after the training of the nowcasting model is completed, 

which might merely cost a few hundred GBPs. In summary, this research provides a 

low-cost equipment solution that is very beneficial for daily applications in buildings. 

Table 3.2 Equipment cost for solar irradiance nowcasting. 

Device 
Names  

Raspberry Pi 

Total Sky Imager 

Delta-T Device BF5 
Sunshine- Sensor 

Data Logger 
Other 

Accessories 
Total 

Cost £150 £3,000 £200 £150 £3,500 

 

 

Figure 3.2 Raspberry Pi total sky imager (Left 1 and 2), BF5 sunshine sensor (Right). 
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3.2.3 Collected Data  

Collected data in the stage of solar irradiance nowcasting involves three types: 

ground-based cloud images, GHI and DHI. All data were collected between October 

2020 and January 2021 and between April and September 2021. However, data 

collection had several limitations. Firstly, due to the administrative policy of Tongji 

University for non-members of the University, the dates of data collection were not 

completely consecutive. In addition, solar irradiance nowcasting for rainy days was 

excluded from the scope of this research, and thus, the data on rainy days were not 

collected. At last, those dates which collected low-quality and incomplete data due to 

ambient factors or human factors were also excluded. In this case, a total of 60 days 

of data from April to September were used in this research due to the high quality, 

integrity and diverse sky conditions represented by these data. In addition, these data 

were only recorded from 9:00 am to 5:00 pm each day because of the restrictions on 

the opening hours of the rooftop terrace. In specific, all collected data included 518400 

ground-based cloud images, 172800 GHI values and 172800 DHI values. 

• Ground-based cloud images  

As mentioned above, ground-based cloud images were regularly captured 

by the low-cost Raspberry Pi total sky imager every 10 seconds. The 

resolution of ground-based cloud images was 640 x 480 pixels, and all 

images were colour images with RGB channels. Every 10 seconds, the 

Raspberry Pi total sky imager captured three cloud images with high, 

medium, and low levels of exposure values (and other constant photographic 

parameters. Different levels of exposure values allow the Raspberry Pi Total 

Sky Imager to capture a greater dynamic range than what is possible with a 

single image, where the image intensity is proportional to the exposure time. 

Finally, three cloud images with different exposure values were used to 

synthesise a well-exposed High Dynamic Range (HDR) image.  
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• GHI and DHI 

GHI and DHI were recorded by the Delta-T Device BF5 sunshine sensor 

every 10 seconds with units in watt per square meter (W/m2). The time step 

of recorded GHI and DHI was consistent with the time step of captured 

ground-based cloud images.   

3.2.4 Data Processing  

Data processing in the stage of solar irradiance nowcasting mainly involves two 

processing methods for ground-based cloud images and the data alignment of 

ground-based cloud images, GHI and DHI.  

• High Dynamic Range (HDR) Synthesis: The first step of cloud image 

processing. 

In this research, ground-based cloud images were captured using a 

Raspberry Pi total sky imager. Due to the image sensor of the Raspberry Pi 

Total Sky Imager lacking the ability of the dynamic range of the human eye, 

cloud images taken from the Raspberry Pi Total Sky Imager tend to be over-

exposed in the position of the sun and areas surrounding the sun while 

under-exposed in regions of dark shade. To deal with this challenge, the 

most representative way, according to the literature review in Chapter 2, is 

to capture several cloud images in quick succession with various exposure 

values and then fuse them into one single HDR cloud image. In this case, a 

series of Python programs were applied to capture three cloud images at 

three different levels of exposure values every 10 seconds and fuse them 

together to generate an HDR image which presents well-exposed.  

In this research, the image processing method of this step was named ‘HDR 

Synthesis’ in this research which consists of two specific HDR image 

synthesis methods called the Robertson Method and the Mertens method. 

These two methods were originally presented in two articles [351, 352]. In 
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Python, the Robertson Method and Mertens method were written as 

cv2.createMergeRobertson function and cv2.createMergeMertens function 

in the Open Computer Vision (OpenCV) package and these two functions 

were used to perform HDR Synthesis in this research. In principle, 

cv2.createMergeRobertson function firstly merge exposed image sequence 

into one HDR image, which is of type float32. In order to save or display the 

results, cv2.createMergeMertens function was then applied to map the 32-

bit float HDR data into the range [0..1], which helps convert the data into 8-

bit integers in the range of [0..255]. Based on HDR Synthesis, only the “best” 

parts in the different exposed image sequences were retained, and image 

sequences with multiple exposure values were fused into one single HDR 

image containing more detail, content, and higher quality.  

Figure 3.3 presents a typical HDR Synthesis process. In Figure 3.3, three 

consecutive raw ground-based cloud images with different exposure values 

are fused to generate a well-exposed HDR image. 

 

Figure 3.3 Exposure fusion of ground-based cloud images.  

• Masking: The second step of cloud image processing. 

Once an HDR cloud image is achieved, the next step is to remove 
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unnecessary information included in the image. Due to the features of the 

WAVESHARE OV5647 fisheye lens, a series of unnecessary information 

involving buildings, trees, and terrain usually exists at the edge of the image. 

Thus, a mask is used to eliminate unnecessary information for acquiring the 

pure information of clouds and the sky. 

After Exposure Fusion, a mask was used to cover unnecessary information, 

including buildings, trees, and terrain existing on the edge of the HDR image. 

This image processing step was named ‘Masking’ in this research. The first 

step of Masking was to convert an RGB colour image to a grayscale image 

using cv2.cvtColor function in OpenCV. Then, a proper threshold was 

selected to distinguish the pixels of clouds and the sky from the pixels of 

other elements, such as buildings and trees. This step was based on 

cv2.threshold function. Based on the above two steps, a black mask was 

generated. Finally, the black mask was used to cover the original RGB colour 

image using cv2.bitwise function. The key to the above steps is to select a 

proper threshold to generate an accurate mask that can cover the 

unnecessary information precisely. In this research, several thresholds 

between 0-255 were tested manually in several cloud images, and an 

appropriate threshold was finally determined, which efficiently covered 

unnecessary information. 

Based on the step of Masking, the pure information of clouds and the sky in 

an HDR image can be achieved, as shown in Figure 3.4. 
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Figure 3.4 Masking of a ground-based cloud image. 

• Data alignment.  

Once the processing of cloud images is completed, cloud images and 

corresponding GHI data and DHI data are aligned following a fixed timestep 

H, which is equivalent to the nowcasting horizon. In this research, a past 

sequence of the cloud images is aligned and denoted as X = [X1, …, XT], and 

a recent sequence of the GHI data and DHI data is aligned following the fixed 

timestep H and denoted G= [G1+H, …, GT+H] and F= [F1+H, …, FT+H]. XT denotes 

the cloud image at the T timestep; GT+H is the GHI data at the T+H timestep; 

FT+H is the DHI data at the T+H timestep. In addition, t denotes the time 

interval, which represents the sampling and nowcasting frequency of the 

solar irradiance nowcasting model, and H denotes the length of time into the 

future for which the nowcasting is to be prepared. In this research, H is 

always greater than t or sometimes aligns with H. More detailed definitions 

of H and t are presented in section 3.4.1.  
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3.3 Solar Irradiance Nowcasting  

Solar irradiance nowcasting is the most crucial section of this research, and the 

solar irradiance nowcasting model is the key to this section. Based on the solar 

irradiance nowcasting model, a series of critical steps were conducted to achieve 

reliable GHI, DNI and DHI nowcasting. These steps include dataset collation, the 

training of solar irradiance nowcasting model, the nowcasting of GHI and DHI, and 

the calculation of DNI.  

3.3.1 Convolutional Neural Networks (CNNs) 

As one of the most representative algorithms of Deep Learning (DP), CNN was 

applied to construct the solar nowcasting model in this research. It has been proved 

that CNN has enabled great success in many research fields, such as image 

recognition, speech recognition (Krizhevsky, Sutskever, & Hinton, 2012), natural 

language processing (Ronan & Jason, 2008), etc. 

A typical CNN typically consists of three parts: convolution layers, pooling layers, 

and fully connected layers. In brief, convolution layers are responsible for extracting 

local features in an image. The pooling layers are used to significantly reduce the 

magnitude and dimensionality of data information, which is also called downsampling. 

Fully connected layers are similar to the part of a conventional neural network and 

are used to output the desired results. In general, a CNN contains a series of 

convolution stages, and each stage includes multiple convolution layers and pooling 

layers. Each convolution stage learns about the features of the input image and 

generates a series of outputs called feature maps, which understand the input image 

at a higher level. The essence of each convolution stage is to downsample the feature 

maps generated in the previous convolution stage that thus compress and generalise 

the feature representations. In this case, multiple convolution stages process feature 

maps in sequence and, finally, output feature maps that capture high-level information 

of the input image. Fully connected layers usually appear at the end of a CNN, and 
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multiple fully connected layers might be stacked together. The role of a fully 

connected layer is to take the image features consolidated by previous convolution 

stages as input to establish the mapping relation with output. In this research, the 

input of CNN is cloud images and the output is solar irradiance. Thus, solar irradiance 

can be achieved by analysing cloud images. A more detailed description of each part 

of CNN is presented as follows.  

• Convolution Layer. 

The process of convolution uses a convolution kernel (also called a filter) to 

filter individual small regions of the image to obtain the feature values of 

these regions. The filter is usually a 2-D matrix that is applied on the input 

image pixels or feature maps from the previous convolution stage. The size 

of the filter is also called the receptive field, which means how large a portion 

of the image can be seen at a time. In the process of convolution, the filter 

moves step by step from left to right and top to bottom in sequence. The 

essence of each movement is to use the filter to multiply the input pixels and 

then sum up the result. In general, multiple filters are applied to the same 

input that produces multiple feature maps. These feature maps are stacked 

together as one tensor and pass on to the next convolution stage as input. 

In this research, cloud images with RGB colour are the input of CNN. In 

terms of structure, the number of pixels controls the size of the image and 

RGB channels form the entire image colour. If a right-angle coordinate 

system is established, axis X and Y present the size of a cloud image under 

a horizontal plane and axis Z presents the vertical information about RGB 

channels. In this case, the same filter is applied simultaneously on three 

channels with RGB (Red, Green, Blue) and then synthesises a final feature 

map after convolution. In other words, 2-D filters on three colour channels 

constitute a 3-D filter in the process of convolution of a cloud image.  

The final step of convolution is activation. After the process of convolution, 
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an activation function is introduced to calibrate the convolution results for 

each pixel. The application of activation function is to increase the non-

linearity in the output. Representative activation functions include the ReLu 

function, sigmoid function, tanh function, etc.  

• Pooling Layer. 

Similar to convolution, the pooling process also applies a filter. It essentially 

involves sliding this filter over sequential patches of the image and 

processing pixels caught in the kernel in some kind of way. The process of 

pooling intends to decrease the magnitude and dimensionality of feature 

maps because the feature maps still have too complex pixel information after 

convolution. Pooling helps to extract more informative representations and 

reduce computational costs. Commonly used pooling methods involve max 

pooling and average pooling. Max pooling means the filter simply chooses 

the maximum pixel value in the receptive field to replace the original feature 

value. Average pooling refers to calculating the average value of pixel values 

in the receptive field.  

• Fully Connection Layer. 

Fully connection layer in CNN is used to aggregate information for making a 

global prediction, such as classification or regression. The feature maps 

generated from the previous convolution stages are flattened to a vector. 

Then this vector is fed to a fully connected layer so that it captures complex 

relationships among high-level features. The output of this layer is a one-

dimensional feature vector. In other words, convolution layer and pooling 

layer are responsible for extracting efficient information from cloud images, 

while fully connection layer is used for achieving the prediction. In this 

research, the feature maps of cloud images are extracted by a series of 

convolution stages. In the end, fully connection layer establishes the 

connecting bridge between these feature maps and the nowcasting values 
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of solar irradiance. As a result, the proposed CNN can use cloud images as 

input to output the nowcasting values of solar irradiance.  

3.3.1.1 ResNet-152 Model 

The CNN used in this research is known as Residual Neural Network (ResNet). 

ResNet was introduced by Microsoft Labs in 2015, and it broke a series of records 

when it was first proposed in a paper [353]. The emergence of ResNet is a milestone 

in CNN history because it can train deeper CNN models and thus achieve higher 

accuracy.  

Theoretically, a deeper neural network with more layers has stronger learning 

capabilities. However, the degradation problem gradually emerges as the increase of 

CNN layers significantly affects the accuracy of results. The degradation problem 

refers to the problem of the final accuracy gradually becoming saturated and then 

degrading rapidly as the depth of the network increases. In other words, the accuracy 

of a CNN model decreases when the number of model layers reaches a threshold 

value. Meanwhile, once the network has too many layers, the weight values for 

different neurons tend to be an oversized or undersized condition as an accumulation 

effect along with layers.  

ResNet can overcome the two issues mentioned above by increasing the number 

of layers without limitation while maintaining precision. To solve the degradation 

problem, ResNet integrates a residual learning block that can enhance the layers of 

the neural network via residual learning, which allows backpropagation to be 

effectively carried out even when certain neurons are saturated. This design allows 

ResNet to efficiently train deeper neural networks and thus outperform other CNN 

models. The key to residual learning is the “shortcuts or skip connection” between the 

front and back layers, which helps the backpropagation of gradients during model 

training and thus can train deeper CNN. A typical residual learning block is shown in 

Figure 3.5. In Figure 3.5, x denotes the input, and F(x) denotes the output of the 
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residual learning block before the activation function in the second layer. F(x)=W2σ

(W1x), where W1 and W2 denote the weights of the first and second layers, σ denotes 

the ReLU activation function. The final output of residual learning block is σ (F(x) + x). 

When there is no shortcut (the curved arrow from x to ⨁), the residual learning block 

is a normal 2-layer network. Setting the output of the second layer network before the 

activation function as H(x). For a network without a shortcut, if the optimal output of 

this 2-layer network is the input x, it needs to be optimised as H(x) = x; For a network 

with a shortcut, that is, residual learning block, then it is sufficient to optimise F(x) = 

H(x) - x to zero.   

 

Figure 3.5 A typical residual learning block. 

• Diverse Structures of ResNet. 

There are several classical network structures of ResNet: ResNet-18, ResNet-

34, ResNet-50, ResNet-101, ResNet-152. Among these structures, ResNet-

18 and ResNet-34 are relatively shallow networks, while ResNet-50, ResNet-

101 and ResNet-152 belong to deeper networks. Regardless of the number 

of layers in ResNet, they all have the following common features.  

a) The network contains a total of 5 convolutional groups, each with one or 

more basic convolutional computation processes.  

b) Each convolutional group contains one operation of downsampling to 

halve the size of the feature maps, and downsampling is achieved in two 

ways involving convolution and pooling. 

c) The first convolutional group contains only one convolutional computation 
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operation, and the first convolutional group is the same as the five typical 

ResNet structures mentioned above.  

d) The second to fifth convolutional groups all contain multiple identical 

residual units and these groups are usually called stage1, stage2, stage3 

and stage4, respectively. 

• The Advantages of ResNet-152.  

In general, ResNet-152 has obvious advantages for the crucial task of this 

research - cloud images recognition. These advantages include: 

a) Advanced Feature Learning Capabilities. 

The deep structure of ResNet-152 enables it to learn complex features of 

cloud images, including cloud textures, lighting variation, and colour 

gradients. ResNet-152 can effectively learn and extract useful information 

from these features. 

b) Residual Learning Mechanism. 

The residual learning mechanism employed by ResNet-152 helps maintain 

the flow of information, reducing information loss during training. This 

means that even in a deep network of 152 layers, gradients can be 

effectively propagated, thus maintaining the performance and stability of 

the network. This is especially beneficial for sky image recognition 

because the model needs to capture subtle changes of clouds and the sky 

meticulously. 

c) Effective Transfer Learning. 

Due to the widespread availability of pretrained models of ResNet-152 for 

various image recognition tasks, it can be transferred to specific 

application scenarios easily, such as cloud image recognition. The 

pretrained model can serve as a basis, and through fine-tuning, adapt to 

specific sky image datasets, which helps reduce training time and improve 

recognition accuracy. 
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d) Generalisation Capability. 

ResNet-152 has been proven to have good generalisation capabilities, 

which is particularly important for recognising cloud images under different 

weather conditions. The network can handle images from clear, overcast 

to cloudy, maintaining high accuracy in recognition. 

e) Ability to Handle Imbalanced Data. 

Sky image datasets may exhibit class imbalance, such as having more 

clear cloud images than overcast or cloudy ones. The strong feature 

extraction ability of ResNet-152 helps the model learn robust features from 

less represented categories, thereby improving overall recognition 

performance. 

3.3.1.2 The Selection of ResNet-152 as Nowcasting Model. 

Based on the above, the ResNet-152 is used as the solar irradiance nowcasting 

model for this research due to the following main reasons. First, ResNet-152 is well 

suited to handle image recognition tasks, while this research involves a large number 

of cloud image recognition tasks. In addition, the performance of ResNet-152 is more 

balanced in terms of accuracy, computational time consumption and number of 

parameters compared to other CNNs, as shown in Figure 3.6. Figure 3.6 comes from 

an article published in 2016 [354]. The vertical axis of Figure 3.6 represents the 

accuracy, the horizontal axis represents computational time consumption, and the 

size of the circle represents the number of parameters. Finally, although ResNet-152 

has been widely used in different fields, it has hardly been used to achieve solar 

irradiance nowcasting.  
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Figure 3.6 Comparison among different CNNs.  

(Resource: A. Canziani, A. Paszke, E. Culurciello, An analysis of deep neural network models for 

practical applications, arXiv preprint arXiv:1605.07678, (2016).) 

Figure 3.7 presents the structure of ResNet-152 applied in this research. The 

ResNet-152 model consists of 5 convolutional groups, 50 convolution blocks, 152 

convolution layers, 2 max pooling layers, 2 averaged pooling layers and 1 fully 

connection layer.  
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 Figure 3.7 Structure of the proposed ResNet-152 model. 

3.3.2 Dataset Collation for Solar Irradiance Nowcasting  

Dataset collation is the first step of solar irradiance nowcasting. In general, 

collected data described in section 3.3.13 are divided into two types of datasets: the 

dataset for the training of solar irradiance nowcasting models and the dataset for the 

testing of solar irradiance nowcasting models, as shown in Figure 3.8.  It is worth 

noting that the specific data in these two types of datasets changes depending on the 

different purposes of comparative tests presented in later sections. 
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Figure 3.8 Datasets of the proposed solar irradiance nowcasting method.  

As mentioned above, a total of 60 days of data were used in this research. This 

research adopted an 8:2 ratio to partition the training set and testing set. Therefore, 

the training set consisted of 48 days of data and the testing set consisted of 12 days 

of data. 

• The dataset for the training of solar irradiance nowcasting models. 

The dataset for the training of solar irradiance nowcasting models consists 

of 48 days of data from April to September. These data were daily recorded 

from 9:00 am to 5:00 pm. In specific, it included 138240 ground-based cloud 

images and a corresponding number of GHI and DHI values. In this research, 

48 days of data were redistributed into two subsets on a daily unit using 

cross-validation. These two subsets were respectively used as train set and 

validation set. This research adopted a 3:1 ratio to partition the train set and 

validation set. Thus, the train set, including 36 days of data was used to train 

the nowcasting models and the validation set including 12 days of data, was 

used to adjust model parameters.  

• The dataset for the testing of solar irradiance nowcasting models. 

The dataset for the testing of solar irradiance nowcasting models, also 

known as test set, consisted of 12 days of data from April to September. 

These data were recorded daily at the same time step as the dataset for the 

training of solar irradiance nowcasting models. Total 34560 ground-based 

cloud images and corresponding GHI and DHI values were included in this 
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dataset. Test dataset was used for evaluating the performance of solar 

irradiance nowcasting.  

3.3.3 The Training of Solar Irradiance Nowcasting Model  

In this section, the dataset for the training of solar irradiance nowcasting models 

mentioned above were used to train the solar irradiance nowcasting models. In this 

research, ResNet-152 model was used as solar irradiance nowcasting model. Based 

on the data alignment, both a past sequence of the cloud images X = [X1, …, XT] as 

input and a recent sequence of the GHI data G= [G1+H, …, GT+H] as output was used 

to train a ResNet-152 model for nowcasting GHI. In the meanwhile, the same 

operation was also implemented on a past sequence of the cloud images X = [X1, …, 

XT] and a recent sequence of the DHI data F= [F1+H, …, FT+H] to achieve DHI nowcasting. 

Using various time intervals, nowcasting horizons and other test conditions, a series 

of the ResNet-152 models were trained to obtain the nowcasting of GHI and DHI 

according to the different purposes of comparative tests. Figure 3.9 demonstrates the 

process of the training of solar irradiance nowcasting model.  

 

Figure 3.9 The training of solar irradiance nowcasting models. 

• Optimisation of solar irradiance nowcasting models. 

The training of solar radiation nowcasting models needs to be continuously 

adjusted to achieve the optimal solar radiation nowcasting models. In this 

research, two main means for the optimisation of model training are the 

selection of loss functions and the adjustment of hyperparameters. 
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a) The Selection of Loss Function. 

Loss function is necessary to evaluate the degree of convergence of the 

training of solar irradiance nowcasting model. In deep learning, L1 function 

and L2 function are the most common loss functions. The L1 loss function, 

also known as Least Absolute Deviations (LAD) or Manhattan Loss, 

calculates the sum of the absolute differences between the predicted and 

actual values. The L2 loss function, also known as Mean Squared Error 

(MSE), is one of the most commonly used loss functions in regression 

tasks. It calculates the mean of the squared differences between the 

predicted and actual values. In general, L1 function is used for simple 

models, while L2 function is more commonly used in neural networks, 

especially in CNNs, which are usually used to solve complex problems.  

In this research, the L2 loss function was utilised for the training of the 

ResNet-152 models. The L2 loss function, which minimises the mean of 

the squared differences between the predicted and actual values, 

inherently penalizes larger errors more severely than smaller ones, 

thereby ensuring that the model pays more attention to significant errors 

during training. Unlike other loss functions that might be prone to dramatic 

shifts due to outlier influence, the L2 loss ensures smoother gradient 

descent, which is vital given the deep nature of ResNet-152 that is 

susceptible to fluctuations in gradient updates. Thus, the application of the 

L2 loss function in training the ResNet-152 model can help the model 

preventing overfitting, improving training stability and generalisation. 

b) Hyperparameter Adjustment.  

Optimising hyperparameters is crucial for achieving the best performance 

from deep neural networks. In this research, two key hyperparameters - 

the learning rate and epochs - are tuned manually and systematically.  

Learning Rate: When training deep neural networks like ResNet-152, 
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adjusting the learning rate is crucial for achieving efficient training and 

good model performance. The goal of learning rate adjustment is to control 

the speed at which model weights are updated during training. Optimising 

the learning rate can help the model converge more quickly and enhance 

the final accuracy and stability of the model. 

In this research, the learning rate is adjusted manually through trial and 

error. First, a small range of learning rates are selected, and then gradually 

increased or decreased, observing the training loss and validation 

accuracy of the model to select the optimal learning rate. In general, the 

learning rate is usually set to a small value because an excessively large 

learning rate may cause the model to fail to converge. After a series of trial 

and error, the learning rate of 0.001 are finally determined for training the 

solar irradiance nowcasting model in this research. 

Epochs: When training deep neural networks like ResNet-152, adjusting 

the number of training epochs is an important aspect of optimising model 

performance. Proper adjustment of training epochs not only ensures that 

the model sufficiently learns features from the data but also prevents 

overtraining and wastage of time resources.  

This research starts with a number of training epochs based on past 

experience, and then adjust through repeated trials, adjusting the number 

of epochs based on the results of each training session. Although this 

method is time-consuming, it helps identify the most suitable number of 

epochs for the different solar irradiance nowcasting models precisely.  

In summary, the training of solar radiation nowcasting models is considered 

complete only after the optimal nowcasting models has been obtained through 

repeated optimisation experiments using the validation set mentioned in section 3.3.2. 

On this basis, the next stage of solar radiation nowcasting can be performed. 
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3.3.4 Nowcasting of GHI and DHI 

In this section, the dataset for the testing of solar irradiance nowcasting models 

mentioned in 3.3.2.3 was used to achieve solar irradiance nowcasting of GHI and DHI. 

Once the training of the Resnet-152 nowcasting models was completed, the 

nowcasting of GHI and DNI at the T+H timestep can be achieved by importing the 

ground-based cloud image at the T timestep into the Resnet-152models, as shown in 

Figure 3.10. In terms of the different purposes of comparative tests, a series of GHI 

and DHI nowcasting were achieved. Figure 3.10 demonstrates the process of solar 

irradiance nowcasting. 

 

Figure 3.10 The nowcasting of GHI and DHI. 

3.3.5 Calculation of DNI from Nowcast Values of GHI and DHI 

After the GHI and DNI at the T+H timestep are obtained, the DNI at the T+H 

timestep can be calculated using GHI and DHI according to the expression shown in 

Eq. (X):  

 𝐺𝐻𝐼 = 𝐷𝐻𝐼 + 𝐷𝑁𝐼 ×  𝑐𝑜𝑠(𝜃) 
(3.1) 

Where 𝜃 is the solar zenith angle.  

The solar zenith angle is the angle of the sun relative to a line perpendicular to 

the earth's surface. The solar zenith angle can be calculated based on the expression 

shown in Eq. (X): 
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𝜃 = 𝑐𝑜𝑠−1 (𝑠𝑖𝑛(𝜙) × 𝑠𝑖𝑛(𝛿) + 𝑐𝑜𝑠(𝜙) × 𝑐𝑜𝑠(𝛿) × 𝑐𝑜𝑠(𝐻)) (3.2) 

Where 𝜙 is the geographical latitude of the location; 𝛿 is the current declination 

of the sun; 𝐻 is the hour angle. 

The current declination of the sun is the angle between the equatorial plane and 

the line formed by the sun's position relative to the Earth's centre. It can be calculated 

by the following expression:  

 
𝛿 = 23.45𝑠𝑖𝑛(

360

365
( 𝑛 + 10))         (3.3) 

Where 𝑛 refers to the nth day of the year. 

The hour angle is the measure of time since solar noon. It can be calculated by 

the following expression:  

 𝐻 = 15 × (𝐿𝑜𝑐𝑎𝑙 𝑆𝑜𝑙𝑎𝑟 𝑇𝑖𝑚𝑒 − 12)      (3.4) 

In this research, an ephemeris function developed based on PVLIB, a popular Python 

library for calculating solar zenith, is applied to calculate the solar zenith angle at 

specific timesteps. 

Based on the above, the calculated DNI at the T+H timestep is exactly the 

nowcasting of DNI because is calculated from the nowcasting of GHI and DHI. In this 

case, the nowcasting of three critical solar irradiance parameters - GHI, DNI and DHI 

- is achieved.  
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3.4 Comparative Tests and Verification  

In the stage of solar irradiance nowcasting, five sets of different comparative tests 

were conducted to evaluate its performance. Each set of comparative tests was 

designed with a specific objective. On this basis, the five objectives of the stage of 

solar irradiance nowcasting include:  

• Evaluating the nowcasting performance at various time intervals. 

• Evaluating the nowcasting performance for various nowcasting horizons.  

• Evaluating the nowcasting performance in different sky conditions.  

• Evaluating the nowcasting performance among different models.  

• Evaluating the nowcasting performance based on different datasets.  

To address the five objectives mentioned above, the following five sets of 

comparative tests were specifically conducted: 

• Nowcasting performance at various time intervals. 

• Nowcasting performance for various nowcasting horizons.  

• Nowcasting performance in different sky conditions.  

• Nowcasting performance among different models.  

• Nowcasting performance based on different datasets.  

Before presenting the results of comparative tests, a series of basic settings for 

comparative tests need to be clarified, including time intervals, nowcasting horizons, 

the classification of sky conditions, comparative models and evaluation metrics for 

verification.  

3.4.1 Time Intervals and Nowcasting Horizons  

Time interval refers to the sampling frequency of input data for the training and 

testing of a nowcasting model. The sampling frequency of input data determines the 

nowcasting frequency of the solar irradiance nowcasting model. The nowcasting 

frequency defines the nowcasting temporal resolution of the solar irradiance 

nowcasting model. The nowcasting horizon refers to how far ahead a nowcasting 
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model predicts the future. For a solar irradiance nowcasting model, nowcasting 

horizons are always greater than or equal to time intervals. In this research, the effect 

of 10-sec, 1-min, 5-min, and 10-min time intervals and nowcasting horizons on 

nowcasting performance are explored. The relationship between time interval and 

nowcasting horizon is shown in Figure 3.11.  

 

Figure 3.11 The relationship between time interval and nowcasting horizon. 

In terms of different solar irradiance components, time intervals and 

nowcasting horizons, a total 20 nowcasting models are trained and tested in this 

section. These models are divided into three groups according to 1-min, 5-min and 

10-min nowcasting horizons comparison. In addition, these models are only used for 

nowcasting GHI and DHI rather than DNI, which needs to be calculated from GHI and 

DHI. Table 3.3 presents the basic information of 20 nowcasting models. In Table 3.3, 

“G” of model name represents GHI, “D” of model name represents DHI, “I” of model 

name represents interval, “H” of model name represents horizon, the number in front 

of “I” and “H” represents the time scale in seconds, and “Total Images” represents the 

total number of cloud images used for the training and testing of solar irradiance 

nowcasting models.  

 

 

 



Ph.D. Thesis   Lei Chen 

 

Cardiff University                                                          116                                    Welsh School of Architecture 

 

Table 3.3 20 trained Solar irradiance nowcasting models. 

3.4.2 Classification of Sky Conditions 

In this research, different sky conditions are defined according to the proportion 

of cloud pixels to sky pixels in a cloud image. The sky condition is defined as clear 

when the proportion is less than 25% for most of the time. In contrast, it is defined as 

overcast when the proportion is greater than 75%. When the proportion is between 

25% - 50%, the sky condition is defined as light cloudy. At last, the sky condition is 

defined as heavy cloudy when the proportion is between 50% - 75%. The definitions 

of sky conditions are presented in Table 3.4. 

 

 

Model Name Components Intervals Horizons Total Images 

G-10I-10H GHI 10s 10s 178517 

D-10I-10H DHI 10s  10s  178517 

G-10I-60H GHI 10s 60s (1mins) 178222 

D-10I-60H DHI 10s  60s (1mins) 178222 

G-60I-60H GHI 60s (1mins) 60s (1mins) 29752 

D-60I-60H DHI 60s (1mins) 60s (1mins) 29752 

G-10I-300H GHI 10s 300s (5mins) 176806 

D-10I-300H DHI 10s  300s (5mins) 176806 

G-60I-300H GHI 60s (1mins) 300s (5mins) 29516 

D-60I-300H DHI 60s (1mins) 300s (5mins) 29516 

G-300I-300H GHI 300s (5mins) 300s (5mins) 5950 

D-300I-300H DHI 300s (5mins) 300s (5mins) 5950 

G-10I-600H GHI 10s 600s (10mins) 175036 

D-10I-600H DHI 10s  600s (10mins) 175036 

G-60I-600H GHI 60s (1mins) 600s (10mins) 29221 

D-60I-600H DHI 60s (1mins) 600s (10mins) 29221 

G-300I-600H GHI 300s (5mins) 600s (10mins) 5891 

D-300I-600H DHI 300s (5mins) 600s (10mins) 5891 

G-600I-600H GHI 600s (10mins) 600s (10mins) 3026 

D-600I-600H DHI 600s (10mins) 600s (10mins) 3026 
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Table 3.4 The definition of weather conditions. 

In this case, the recognition of cloud pixels and sky pixels is the basis for the 

classification of sky conditions. In a cloud image, cloud and the sky are often 

significantly different in colour. Clouds typically appear white or grey, while the sky 

often displays hues of blue or presents orange and red during sunrise or sunset. Thus, 

a single pixel can be defined as cloud pixels or sky pixels by setting a colour range 

for the sky and the cloud based on a series of colour thresholds, including hue, 

saturation, and brightness. In this research, these colour thresholds are set manually 

by repeated tests at different times of the day due to the small sample size of the 

testing dates. Based on the set thresholds, this research employs an image 

processing library in Python - Pillow, to identify cloud pixels and sky pixels and 

calculate their proportion. The specific process of pixel recognition is to load an image, 

and convert it to HSV colour (Hue, Saturation, Brightness), and traverse each pixel of 

the cloud image to set thresholds to determine if the pixel belongs to the sky or cloud.  

3.4.3 Comparative Models  

Two comparative models were used in this research: Multilayer Perceptron (MLP) 

and Persistence Model (PM). The former is the simplest and most basic Artificial 

Neural Network (ANN) and simplest forecasting model, and the latter is the simplest 

forecasting model. In this research, MLP is used as a baseline model because it 

represents the simplest machine learning model. In contrast, although PM is the 

simplest forecasting model, its accuracy increases significantly as the nowcasting 

horizons decrease. Thus, PM can achieve extremely high accuracy in very short-term 

forecasting that outperforms most solar irradiance forecasting models. In this case, 

PM is used as a benchmark model because this research focuses on 10-sec, 1-min, 

5-min, and 10-min nowcasting of GHI, DNI and DHI.  

Weather Conditions Clear Sky Light Cloudy Heavy Cloudy Overcast 

Proportion of  

Cloud Pixels  
< 25%  25% - 50% 50% - 75% > 75% 
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• Baseline Model - Multilayer Perceptron (MLP) 

Multilayer Perceptron (MLP) with feed-forward back propagation is usually 

used in solar irradiance estimation and forecasting. An MLP usually includes 

at least three layers of nodes: an input layer, a hidden layer, and an output 

layer. Different layers are fully connected. The basic operation of MLP is that 

the hidden layer receives input data and sends an output signal to the output 

layer. Apart from the input nodes, each node is a neuron that uses a 

nonlinear activation function, usually a sigmoid or ReLU function. In addition, 

A neuron receives signals from other previous neurons or input data 

unidirectionally for a feed-forward MLP configuration.  

In general, MLP is usually used in classification and regression problems. In 

classification problems, the output layer usually has several neurons and 

each neuron corresponds to a category. In this case, the output of the output 

layer is the probability value of each category. In regression problems, the 

output layer has only one neuron, and the output value is the predicted value. 

The training process usually uses loss functions such as L1 and L2 to update 

the weights and thresholds through gradient descent and backpropagation 

algorithms. 

The MLP used in this research only takes ground-based cloud images as 

input to achieve the nowcasting of GHI and DHI. Its structure is shown in 

Figure 3.12. This MLP consists of one input layer, two hidden layers, and 

one output layer and the number of neurons in the four layers are k, m, n 

and o. After experiments, the number of inputs merely has a subtle effect on 

the network effectiveness. In this research, the input layer of MLP is set up 

with 6 inputs that are the solar irradiance in advance of 6 moments, noted k 

= 6. Each hidden layer contains 64 neurons, that is m = n = 64. Since solar 

irradiance nowcasting belongs to the regression problem, the number of 

neurons in the output layer o = 1, which is the final output of solar irradiance. 
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The ReLU functions is used for activations function and L2 function is used 

for the loss function. Figure 3.12 shows the structure of MLP. 

 

Figure 3.12 The structure of MLP. 

• Benchmark Model - Persistence Model (PM) 

The principle of persistence model assumes that the previous value is the 

same as the previous one. In this case, persistence model is very effective 

for very short-term solar irradiance forecasting due to the sky conditions and 

solar irradiance would usually not change dramatically, especially on clear 

or overcast days. However, its accuracy decreases significantly with 

forecasting horizon for the same reasons. Persistence model is given by: 

 𝑋̂𝑡+𝐻 = 𝑋𝑡  (3.5) 

Where X is the solar irradiance, including GHI, DNI and DHI. 𝑿𝒕 denotes the 

solar irradiance at time t and H is the duration of a time interval.  

3.4.4 Evaluation Metrics for Verification 

A series of evaluation metrics are used to compare the nowcasting values of GHI, 

DNI and DHI with their measurements. The measurements of GHI and DHI are 

obtained directly by Delta-T Device BF5 sunshine sensor, and the measurements of 
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DNI are calculated based on the measured GHI and DHI. The nowcasting values of 

GHI and DHI are generated from the proposed solar irradiance nowcasting models 

and the nowcasting values of DNI are calculated from the nowcasting values of GHI 

and DHI.  

In the stage of solar irradiance nowcasting, eight evaluation metrics was used to 

verify the performance of solar irradiance nowcasting from multiple perspectives. 

These evaluation metrics include MAE, nMAE, RMSE, nRMSE, MAPE, r, SS-MAE 

and SS-RMSE. The selection of these evaluation is based on the statistical analysis 

of evaluation metrics presented in literature review. Among these metrics, MAE, 

nMAE, RMSE, nRMSE are the most common metrics used for evaluating solar 

irradiance forecasting, according to the literature review in Chapter 2. MAPE is always 

used to evaluate the prediction accuracy of a forecasting method and is suitable for 

comparisons between different studies because it is an indicator of relative error. In 

contrast, r is less used but suitable for demonstrating the correlation between 

nowcasting and measurement. Lastly, SS-MAE and SS-RMSE are usually the best 

choices for comparing the performance of different models. In this research, a series 

of evaluation metrics that have been widely chosen in literature reviews is mainly 

selected to facilitate direct comparison with most studies. These metrics consist of 

absolute indicators, including MAE and RMSE, and relative indicators, such as nMAE, 

nRMSE, MAPE, r, and SS. In the following equations, 𝑝𝑖 represents the nowcasting 

values, 𝑚𝑖 represents the measurements, 𝑚̅ represents the averaged measurements.   

• The Mean Absolute Error (MAE). 

The mean absolute error (MAE) is the average absolute deviation of the 

predicted values from their measured values, which is the most basic 

evaluation metric for prediction evaluation. MAE can reflect the actual error 

of prediction because the deviations are absolutised. Its equation can be 

expressed as: 



Ph.D. Thesis   Lei Chen 

 

Cardiff University                                                          121                                    Welsh School of Architecture 

 

 𝑀𝐴𝐸 =
1

𝑁
∑ |𝑝𝑖 −  𝑚𝑖|

𝑁

𝑖=1
   (3.6) 

Where N is number of data points, 𝑝𝑖 and 𝑚𝑖 respectively denote the actual 

value and the predicted value of solar irradiance. A larger MAE means a 

larger prediction error. 

• The Normalised Mean Absolute Error (nMAE). 

The normalised mean absolute error (nMAE) is used to facilitate the 

comparison between models with different scales. The averaged measured 

value of solar irradiance is generally used as a reference in the normalisation. 

It can be expressed as: 

 
𝑛𝑀𝐴𝐸 = 𝑀𝐴𝐸/ 𝑚̅ (3.7) 

Where 𝑚̅ is the mean of the actual values of solar irradiance 𝑚. When nMAE 

is closer to 0, the prediction accuracy is higher, while a value closer to 1 

indicates a larger error. 

• The Root Mean Square Error (RMSE). 

The root mean square error (RMSE), as the most widely-used metric for 

evaluating prediction, represents the square root of the differences between 

predicted values and observed values. Thus, RMSE is more sensitive to 

significant prediction error than MAE. It can be expressed as: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑝𝑖 − 𝑚𝑖)

𝑁

𝑖=1

2

 (3.8) 

Where N is number of data points, 𝑝𝑖 and 𝑚𝑖 respectively denote the actual 

value and the predicted value of solar irradiance. A larger RMSE means a 

larger prediction error. 

• The Normalised Root Mean Square Error (nRMSE). 

The normalised root mean square error (nRMSE) is used to facilitate the 

comparison between models with different scales. The averaged measured 
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value of solar irradiance is generally used as a reference in the normalisation. 

It can be expressed as: 

 𝑛𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸/ 𝑚̅  (3.9) 

Where 𝑚̅ is the mean of the actual values of solar irradiance 𝑚. Similar to 

nMAE, the closer the RMSE is to 0, the higher the prediction accuracy, and 

conversely, the closer the RMSE is to 1, the larger the error. 

• The Mean Absolute Percentage Error (MAPE). 

The mean absolute percentage error (MAPE) is one of the most popular 

metrics used to evaluate prediction performance because of its very intuitive 

interpretation in terms of relative error. Unlike MAE and RMSE, MAPE can 

directly compare various models between different datasets. Its equation can 

be expressed as: 

 𝑀𝐴𝑃𝐸 =
100%

𝑁
∑ |

𝑝𝑖 −  𝑚𝑖

𝑚𝑖
|

𝑁

𝑖=1
    (3.10) 

Where N is number of data points, 𝑝𝑖 and 𝑚𝑖 respectively denote the actual 

value and the predicted value of solar irradiance. A larger MAPE means a 

larger prediction error. 

• The Correlation Coefficient (r). 

The correlation coefficient (r) is used to evaluate how strong a relationship is 

between two variables. In this research, it is used to judge the correlation 

between nowcasting values and measurements. It can be expressed as: 

 
𝑟 =

∑ (𝑝𝑖 − 𝑝̅)(𝑚𝑖 − 𝑚̅)𝑁
𝑖=1

√∑ (𝑝𝑖 − 𝑝̅)2𝑁
𝑖=1 √∑ (𝑚𝑖 − 𝑚̅)2𝑁

𝑖=1

 
  (3.11) 

Where N is number of data points, 𝑝𝑖 and 𝑚𝑖 respectively denote the actual 

value and the predicted value of solar irradiance, 𝑝̅  is the mean of the 

predicted values of solar irradiance 𝑝, and 𝑚̅ is the mean of the actual values 

of solar irradiance 𝑚. The larger r denotes stronger correlation between the 
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predicted value and the actual value that means higher prediction accuracy.  

• The Forecast Skill Score (SS). 

The forecast skill score (SS) is used to compare performance between two 

models, and it is given by:  

 𝑆𝑆 =  (1 −
ℇ𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

ℰ𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘
) × 100%   (3.12) 

where ℰ∗ is any evaluation metric that is used to evaluate performance for 

every model. If the “prediction” model performs equally well as the 

comparative model, the skill score will be 0. A higher skill score thus means 

that the “prediction” model outperforms the comparative model. The 

comparative models used in this research are presented in the following 

section.  

3.4.5 Comparative Tests 

3.4.5.1 Comparison of Nowcasting Performance at Various Time Intervals 

The object of this set of comparative tests is to explore the impact of various time 

intervals on the performance of GHI, DNI and DHI nowcasting for a series of fixed 

nowcasting horizons. In this section, these tests were divided into three groups based 

on 1-min, 5-min, and 10-min nowcasting horizons. Thus, these three groups of tests 

were:  

• Nowcasting performance at various time intervals for 1-min nowcasting 

horizon. 

• Nowcasting performance at various time intervals for 5-min nowcasting 

horizon. 

• Nowcasting performance at various time intervals for 10-min nowcasting 

horizon. 

For 1-min nowcasting horizon, GHI, DNI and DHI nowcasting were respectively 

conducted at 10-sec and 1-min time intervals. Consequently, a total of six sub-groups 
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of nowcasting results were achieved. For 5-min nowcasting horizon, GHI, DNI and 

DHI nowcasting were respectively conducted at 10-sec, 1-min and 5-min time 

intervals. Therefore, a total of nine sub-groups of nowcasting results were achieved. 

For 10-min nowcasting horizon, GHI, DNI and DHI  nowcasting were respectively 

conducted at 10-sec, 1-min, 5-min and 10-min time intervals. As a result, a total of 

twelve sub-groups of nowcasting results were achieved. After obtaining the above 

nowcasting results, these nowcasting results were evaluated by six metrics including 

MAE, nMAE, RMSE, nRMSE, MAPE and r. 

3.4.5.2 Comparison of Nowcasting Performance for Various Nowcasting 

Horizons 

This set of comparative tests aims to understand the impact of various nowcasting 

horizons on the performance of GHI, DNI and DHI nowcasting. Due to 10 seconds 

being the smallest time interval achievable in this research, it is used as the sole fixed 

time interval in this set of comparative tests to compare the performance of GHI, DNI 

and DHI nowcasting for 1-min, 5-min, and 10-min nowcasting horizons. Consequently, 

a total of twelve groups of nowcasting results were achieved. As with the comparative 

tests of nowcasting performance at various time intervals, the nowcasting results in 

this set of comparative tests were also evaluated by six metrics, including MAE, nMAE, 

RMSE, nRMSE, MAPE and r. 

3.4.5.3 Comparison of Nowcasting Performance in Different Sky Conditions 

The purpose of this set of comparative tests is to investigate the effect of different 

sky conditions on the performance of GHI, DNI and DHI nowcasting. In this section, 

the crucial variables are sky conditions and thus this set of comparative tests used 

fixed 1-min time interval and 1-min nowcasting horizon.  

Sky conditions were classified into four types, including clear sky, less cloudy, 

heavy cloudy and overcast. A particular Resnet-20 model was developed for the 

classification of sky conditions. For a single cloud image, if the proportion of cloud 
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pixels to the total image pixels is less than 25%, the sky condition represented by this 

image is defined as clear. When this proportion is greater than 25% but less than 50%, 

the sky condition is defined as light cloudy. Similarly, if the proportion of cloud pixels 

to the total image pixels is greater than 50% but less than 75%, the sky condition is 

defined as heavy cloudy. Finally, the sky condition is defined as overcast when this 

proportion is greater than 75%.  

Based on the above, when the number of cloud images representing a specific 

sky condition is the highest among all collected cloud images on a particular date, 

that date is defined as the corresponding sky condition. For instance, if the number of 

cloud images representing overcast is the highest among all collected cloud images 

on a particular date, that date is defined as a overcast day.  

In this section, two groups of comparative tests respectively were implemented:  

• Nowcasting performance of 12 testing days in different sky conditions. 

• Nowcasting performance at several moments under different sky conditions 

of a representative date.  

Firstly, a total of 12 testing days with four types of sky conditions including clear, 

less cloudy, heavy cloudy and overcast were used in this set of comparative tests. 

Among these 12 testing days, the days with each type of sky condition were 3 days. 

In this case, a total of twelve groups of nowcasting results were achieved and 

evaluated to explore the performance of GHI, DNI and DHI nowcasting on days with 

different sky conditions. The evaluation metrics used in this set of comparative tests 

were MAE, nMAE, RMSE, nRMSE, MAPE and r. 

Then, a representative date - June 25, 2021, which respectively presented three 

different sky conditions during morning, noon, and afternoon of the day, was used in 

this section to analyse the performance of GHI, DNI and DHI nowcasting at several 

moments under different sky conditions. Specifically, a detailed analysis was 

conducted for a total of nine specific moments within the aforementioned three 

periods. 
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3.4.5.4 Comparison of Nowcasting Performance among Different Models 

The goal of this set of comparative tests is to compare the GHI, DNI and DHI 

nowcasting performance of the proposed ResNet-152 solar irradiance nowcasting 

model with a baseline model - Multilayer Perceptron (MLP) and a benchmark model 

- Persistence Model (PM). In this section, these tests were conducted with the same 

10-sec time interval and were divided into three groups based on 1-min, 5-min, and 

10-min nowcasting horizons. These three groups of tests were:  

• Nowcasting performance at 1-min time interval for 1-min nowcasting horizon 

among different models. 

• Nowcasting performance at 1-min time interval for 5-min nowcasting horizon 

among different models. 

• Nowcasting performance at 1-min time interval for 10-min nowcasting 

horizon among different models. 

Due to GHI, DNI and DHI nowcasting were respectively achieved by three 

different nowcasting models including ResNet-152, PM and MLP, a total of nine sub-

groups of nowcasting results were achieved in each group mentioned above. Then, 

all nowcasting results were evaluated by eight metrics including MAE, nMAE, RMSE, 

nRMSE, MAPE, r, SS-MAE and SS-RMSE. 

3.4.5.5 Comparison of Nowcasting Performance Based on Different Datasets 

This set of comparative tests aims to understand the influence of different 

datasets on the performance of GHI, DNI and DHI nowcasting. In this section, the 

GHI, DNI and DHI nowcasting was conducted with fixed 1-min time interval and 

various nowcasting horizons. The variables of this section were the total size of the 

datasets and the seasonality of the datasets. In this case, this set of comparative tests 

was divided into two groups, which were: 

• Nowcasting performance between the solar irradiance nowcasting models 

trained with 34 days of data and 48 days of data.  
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• Nowcasting performance based on different seasonal testing dates.  

In the first group of comparative tests, the effect of the total size of datasets on 

the performance of GHI, DNI and DHI nowcasting was explored. In this section, a 

dataset consisting of 48 days of data from April to September and a dataset consisting 

of 34 days of data from April to July were respectively used to achieve GHI, DNI and 

DHI nowcasting. Both these two datasets consisted of days with four types of sky 

conditions, with an equal number of days for each type of sky condition. On this basis, 

8 identical days of data from the two above datasets were selected as testing set. 

Every 2 days within these 8 days had one type of sky condition. In this case, the only 

difference between the solar irradiance nowcasting models trained with 34 days of 

data and 48 days of data was the total number of days in training set. Consequently, 

a total of eighteen sub-groups of nowcasting results were achieved. Then, all 

nowcasting results were evaluated by six metrics including MAE, nMAE, RMSE, 

nRMSE, MAPE and r. 

In the second group of comparative tests, the impact of the seasonality of 

datasets on the performance of GHI, DNI and DHI nowcasting was investigated. 

Using the same training set selected from the dataset consisting of 48 days of data, 

the nowcasting results based on 12 testing dates with various sky conditions from 

April to September and 4 testing dates in December were achieved and compared. 

Consequently, a total of forty-eight sub-groups of nowcasting results were achieved 

and evaluated by the same metrics as the first group. 

3.4.6 Hardware and Software  

The core hardware for data pre-processing, the training and testing of solar 

irradiance nowcasting models and comparative tests are an Intel(R) Core(TM) i9-

10900X CPU@3.70GHz and an NVIDIA GeForce RTX 3090 graphic card.   

In terms of software, the programming of this research is implemented on the 

Raspberry Pi OS and Ubuntu 20.04 OS using Python as the programming language 
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and Pycharm as IDE. Anaconda is used to manage the Python environment and 

PyTorch, as an open-source machine learning framework, is used to execute the 

training and testing of the proposed solar irradiance nowcasting model. In addition, 

the programming for capturing cloud images is implemented on the Raspberry Pi OS 

using Python as the programming language.  

In general, the programming of this research is mainly based on Python because 

it is very user-friendly. First, Python is an open-source language, which means its 

source code is open to all and free to use and distribute. For individuals, students, 

and startups with limited budgets, Python offers a cost-effective alternative. Moreover, 

Python has a huge and continuously growing of libraries covering a wide range of 

areas such as data analytics, machine learning, image processing, etc. For example, 

the NumPy libraries provide mathematical and scientific computing capabilities similar 

to MATLAB, while the Pandas library is an indispensable tool for data analysis. Finally, 

Python has a large global community, which means that the researcher can easily 

find solutions, documentation, and tutorials for common problems and challenges. 

Based on the above, this research applies user-friendly programming which is 

more conducive to its popularity in building applications.  
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3.5 Chapter Summary 

In summary, Chapter 3 elaborately demonstrates the development of a solar 

irradiance nowcasting method involving data collection and processing, solar 

irradiance nowcasting, comparative tests and verification. The developed solar 

irradiance nowcasting method is well suited for building applications based on its 

following critical characteristics.  

• Low-cost Equipment  

The equipment cost of this research is around £3,500, which mainly consists 

of the purchase cost of Raspberry Pi Total Sky Imager and Delta-T Device 

BF5 sunshine sensor. Due to BF5 Sunshine Sensor are not necessary after 

the training stage of solar irradiance nowcasting model completed, only very 

low maintenance cost of Raspberry Pi Total Sky Imager needs to be 

considered in the long-term daily use of buildings.  

• User-friendly Programming 

A great deal of programming work in this research is entirely based on Python 

because of its user-friendly features, which include open-source, free, 

extensive libraries and broad community support. 

• ResNet-152 Nowcasting Model 

By applying ResNet-152 as nowcasting model to learn the relationship 

between cloud images and solar irradiance, this research can utilise 

consecutive cloud images to achieve reliable nowcasting of GHI, DNI and DHI 

with very short-term forecasting horizons and high spatial-temporal resolution, 

which is ideal for buildings and their future development.  
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Chapter Four 

4 Results Verification and Analysis of  

Solar Irradiance Nowcasting  

The goal of Chapter 4 is to answer the third and fourth research questions in 

Chapter 1 - “How can the results of solar irradiance nowcasting be generated?” and 

“How can the reliability of solar irradiance nowcasting be verified?” Therefore, the 

main tasks of this chapter are to achieve the third research objective - to apply the 

proposed irradiance nowcasting method to achieve the nowcasting of GHI, DNI, and 

GHI in a series of comparative tests, as well as the fourth research objective - to utilise 

appropriate evaluation metrics to evaluate the reliability of the GHI, DNI, and DHI 

nowcasting from various perspectives. 

In general, Chapter 4 demonstrates the results of verification and analysis of solar 

irradiance nowcasting. Five groups of comparative tests were conducted to 

investigate the effect of different factors on solar irradiance nowcasting, involving time 

intervals, nowcasting horizons, sky conditions, forecasting models and datasets. First 

of all, the results of comparative tests of nowcasting performance for various time 

intervals were presented. Secondly, the effect of various nowcasting horizons was 

investigated. Thirdly, a series of comparative tests were conducted to explore the 

nowcasting performance under different sky conditions. Fourthly, the performance of 

the proposed solar irradiance nowcasting method is evaluated by comparing the 

proposed nowcasting model with a benchmark model and a baseline model. Fifthly, 

the nowcasting performance of the proposed solar irradiance nowcasting method 

based on different datasets was articulated. In the end, the results of the above five 

groups of comparative tests are summarised at the end of this chapter. 
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4.1 Results Verification and Analysis of Solar Irradiance 

Nowcasting  

To verify the reliability of the proposed solar irradiance nowcasting method, it is 

necessary to explore the performance of solar irradiance nowcasting based on 

different circumstances and its performance relative to other models. Thus, a series 

of comparative tests are implemented. 

4.1.1 Comparison of Nowcasting Performance at Various Time Intervals 

In this section, the nowcasting performance at various time intervals for 1-min, 5-

min and 10-min nowcasting horizons are respectively compared. Since the total 

number of ground-based cloud images in datasets is a certain amount, larger time 

intervals mean lower sampling frequency, which results in fewer images for the 

training and testing of solar irradiance nowcasting models. Thus, various time 

intervals determine that the number of cloud images used for training and testing of 

different nowcasting models are varied. The maximum and minimum number of cloud 

images used for training and testing are 178517 and 3026. Nevertheless, even the 

solar irradiance nowcasting model using the minimum number of cloud images 

achieves a convergence situation in terms of the loss function that indicates the model 

is reliable.  

4.1.1.1 Nowcasting Performance at Various Time Intervals for 1-Min 

Nowcasting Horizon 

Table 4.1 presents the nowcasting performance of GHI, DNI and DHI at various 

time intervals for 1-min nowcasting horizon. In general, the nowcasting of DHI 

apparently performs better than the nowcasting of GHI and DNI with respect to MAE 

and RMSE because the DHI is less sensitive to meteorological changes and sky 

conditions. In contrast, the nowcasting of DNI shows the largest MAE and RMSE due 

to its high sensitivity to meteorological changes and sky conditions, such as the 

relative position of clouds and the sun. For example, the DNI dramatically descends 
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when clouds block the sun for a moment. Specifically, the MAE of GHI and DNI 

nowcasting are close to 60 and the MAE of DHI nowcasting are close to 20. The 

RMSE of GHI and DNI nowcasting are close to 100 and the RMSE of DHI nowcasting 

are lower than 30. Apart from MAE and RMSE, the MAPE of GHI are lower than 15% 

and the MAPE of DHI are lower than 8%. In terms of r, the r of GHI, DNI and DHI 

nowcasting are higher than 0.93. Typically, MAPE less than 30% indicates the 

forecasting models are high quality and r greater than 0.7 indicates a strong 

correlation between the two variables. Thus, the above evaluation metrics 

demonstrate the high reliability of GHI, DNI and DHI nowcasting at various time 

intervals for 1-min nowcasting horizon.  

Table 4.1 Nowcasting performance at various time intervals for 1-min nowcasting 

horizon. 

Comparing the nowcasting at 10-sec time interval with the nowcasting at 1-min 

time interval, the nowcasting at 1-min time interval demonstrates slight advantage 

according to the MAE. The nowcasting at 1-min time interval achieves the lower MAE 

of 58.82 for GHI, 19.17 for DHI, 62.74 for DNI. However, the nowcasting at 10-sec 

time interval achieves the lower RMSE of 97.77 for GHI, and 104.27 for DNI. In terms 

of MAPE and r, the nowcasting at 10-sec time interval performs close to the 

nowcasting at 1-min time interval. Figure 4.1 presents the comparison of MAE and 

RMSE among the nowcasting at 10-sec and 1-min time interval for 1-min nowcasting 

horizon. 

Components Total Images  Intervals MAE nMAE RMSE nRMSE MAPE r 

GHI 

178222 10s 60.48 0.1 97.77 0.17 13.40% 0.949 

29752 1 min 58.82 0.1 98.66 0.17 13.53% 0.9481 

DHI 

178222 10s 20.06 0.07 27.75 0.09 7.64% 0.9769 

29752 1 min 19.17 0.07 27.51 0.09 7.54% 0.9782 

DNI 

/ 10s 63.9 0.18 104.27 0.29 / 0.9353 

/ 1 min 62.74 0.18 106.61 0.3 / 0.9324 



Ph.D. Thesis   Lei Chen 

 

Cardiff University                                                          133                                    Welsh School of Architecture 

 

 

Figure 4.1 The comparison of MAE and RMSE among the nowcasting at 10-sec and 1-

min time intervals for 1-min nowcasting horizon. 

Considering the high variability and higher values of GHI and DNI, the nowcasting 

performance of GHI and DNI is used as the critical factor to judge the nowcasting 

performance at various time intervals. For 1-min nowcasting horizon, the nowcasting 

at 10-sec time interval have very close accuracy to the nowcasting at 1-min time 

interval according to the evaluation metrics presented in Table 4.1. 

4.1.1.2 Nowcasting Performance at Various Time Intervals for 5-Min 

Nowcasting Horizon 

The nowcasting performance of GHI, DNI and DHI at various time intervals for 5-

min nowcasting horizon are presented in Table 4.2. Similar with the nowcasting for 1-

min nowcasting horizon, DHI nowcasting for 5-min nowcasting horizon significantly 

present higher accuracy compared to GHI and DNI nowcasting. In specific, the MAE 

of GHI and DNI nowcasting are close to 100 and the MAE of DHI nowcasting are 

close to 34. The RMSE of GHI and DNI nowcasting are close to 150 and the RMSE 

of DHI nowcasting are close to 50. Besides MAE and RMSE, the MAPE of GHI are 

lower than 26% and the MAPE of DHI are lower than 23%. In addition, most r of GHI, 

DNI and DHI nowcasting are higher than 0.86. Thus, the nowcasting of GHI, DNI and 

DHI at various time intervals for 5-min nowcasting horizon are generally reliable.  
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Table 4.2 Nowcasting performance at various time intervals for 5-min nowcasting 

horizon. 

Comparing the nowcasting at 10-sec, 1-min, 5-min time interval for 5-min 

nowcasting horizon, the nowcasting at 1-min time interval demonstrates obvious 

advantages according to various evaluation metrics. In terms of MAE, the MAE of GHI 

nowcasting at 10-sec and 1-min time interval are lower and close 93 and all MAE of 

DHI nowcasting at 10-sec, 1-min, 5-min time interval are very close to 33. However, 

the MAE of DNI nowcasting at 1-min time interval achieves 97.47 which outperforms 

significantly than the MAE of DNI nowcasting at 10-sec and 5-min time intervals. For 

RMSE, GHI, DNI and DHI nowcasting at 1-min time interval achieves the lowest 

RMSE of 144.36 for GHI, 49.21 for DHI and 147.98 for DNI. Apart from MAE and 

RMSE, the MAPE of GHI nowcasting at 1-min time interval are much lower than 

others and the MAPE of DHI nowcasting at 1-min and 5-min time interval are much 

lower and close. In addition, GHI, DNI and DHI nowcasting at 1-min time interval 

achieves the highest r of 0.8839 for GHI, 0.9231 for DHI, 0.8648 for DNI. Figure 4.2 

shows the comparison of MAE and RMSE among the nowcasting at 10-sec, 1-min, 

5-min time interval for 5-min nowcasting horizon. 

Components Total Images  Intervals MAE nMAE RMSE nRMSE MAPE r 

GHI 

125502 10s 92.37 0.16 147.21 0.25 23.13% 0.8832 

20952 1 min 94.39 0.16 144.36 0.25 13.53% 0.8839 

4224 5 min 100.47 0.17 151.39 0.26 25.70% 0.8733 

DHI 

125502 10s 34.21 0.12 51.36 0.18 23.13% 0.9198 

20952 1 min 33.99 0.12 49.21 0.17 14.53% 0.9231 

4224 5 min 33.3 0.11 49.69 0.17 13.07% 0.9221 

DNI 

/ 10s 106.2 0.3 157.38 0.44 / 0.8598 

/ 1 min 97.47 0.27 147.98 0.42 / 0.8648 

/ 5 min 114.61 0.32 163.56 0.46 / 0.8346 
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Figure 4.2 The comparison of MAE and RMSE among the nowcasting at 10-sec, 1-min, 

5-min time intervals for 5-min nowcasting horizon. 

To sum up, GHI, DNI and DHI nowcasting at 1-min time interval achieves the 

lowest RMSE and the highest r. In the meanwhile, the MAE and the MAPE of GHI, 

DNI and DHI nowcasting at 1-min time interval also present lower values. Thus, GHI, 

DNI and DHI nowcasting at 1-min time interval present the best performance for 5-

min nowcasting horizon.  

4.1.1.3 Nowcasting Performance at Various Time Intervals for 10-Min 

Nowcasting Horizon 

Table 4.3 presents the nowcasting performance of GHI, DNI and DHI at various 

time intervals for 10-min nowcasting horizon. DHI nowcasting for 10-min nowcasting 

horizon are far more accurate than GHI and DNI nowcasting according to MAE and 

RMSE. In specific, most MAE of GHI and DNI nowcasting are lower than 116 and the 

MAE of DHI nowcasting are close to 45. Most RMSE of GHI and DNI nowcasting are 

close to 165 and the RMSE of DHI nowcasting are close to 61. In addition, most 

MAPE of GHI are close to 27% and the MAPE of DHI are lower than 20%. In terms 

of r, most r of GHI, DNI and DHI nowcasting are higher than 0.8. The MAPE and the 

r indicate the nowcasting of GHI, DNI and DHI at various time intervals for 10-min 

nowcasting horizon are generally reliable.  
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Table 4.3 Nowcasting performance at various time intervals for 10-min nowcasting 

horizon. 

Comparing the nowcasting at 10-sec, 1-min, 5-min, 10-min time interval for 10-

min nowcasting horizon, the nowcasting at 1-min time interval performs better than 

others according to MAE. The nowcasting at 1-min time interval achieves the lowest 

MAE of 104.42 for GHI, 42.37 for DHI and 113.98 for DNI. However, the nowcasting 

at 10-sec time interval achieve the lowest RMSE of 156.33 for GHI, 60.71 for DHI and 

almost the lowest RMSE of 164.83 for DNI. In terms of MAPE, the MAPE of GHI 

nowcasting at 10-sec, 1-min, 10-min time interval are lower and the MAPE of the DHI 

nowcasting at 1-min, 5-min time interval are lower. With respect to r, the nowcasting 

at 10-sec time interval achieves highest r for GHI, DNI and DHI. However, most r of 

the nowcasting at various time intervals are very close apart from the r of DNI 

nowcasting at 5-min time interval. Figure 4.3 demonstrates the comparison of MAE 

and RMSE among the nowcasting at 10-sec, 1-min, 5-min, 10-min time interval for 

10-min nowcasting horizon. 

Components Total Images  Intervals MAE nMAE RMSE nRMSE MAPE r 

GHI 

175036 10s 107.85 0.19 156.33 0.27 26.21% 0.8657 

29221 1 min 104.42 0.18 164.71 0.28 27.01% 0.8585 

5891 5 min 114.82 0.2 163.32 0.28 30.09% 0.8503 

3026 10 min 114.52 0.2 161.37 0.28 26.12% 0.8633 

DHI 

175036 10s 44.1 0.15 60.71 0.21 19.05% 0.8867 

29221 1 min 42.37 0.15 61.09 0.21 17.22% 0.8785 

5891 5 min 44.02 0.15 60.83 0.21 17.20% 0.8844 

3026 10 min 45.92 0.16 63.66 0.22 18.37% 0.872 

DNI 

/ 10s 115.78 0.33 164.83 0.46 / 0.8372 

/ 1 min 113.98 0.32 176.24 0.5 / 0.8203 

/ 5 min 130.19 0.37 180.01 0.51 / 0.7976 

/ 10 min 115.28 0.32 164.56 0.46 / 0.8335 
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Figure 4.3 The comparison of MAE and RMSE among the nowcasting at 10-sec, 1-min, 

5-min, 10-min time intervals for 10-min nowcasting horizon. 

In light of the above, the GHI, DNI and DHI nowcasting at 10-sec and 1-min time 

interval present higher accuracy compared to the GHI, DNI and DHI nowcasting at 5-

min and 10-min time intervals for 10-min nowcasting horizon. However, considering 

the time consumption of computer operation, data transmission, system response and 

other factors, the GHI, DNI and DHI nowcasting at 1-min time interval is obviously 

more in line with the requirements of the practical application. In this case, the GHI, 

DNI and DHI nowcasting at 1-min time interval outperform the GHI, DNI and DHI 

nowcasting at other time intervals for 10-min nowcasting horizon. 

In summary, the GHI, DNI and DHI nowcasting at 10-sec and 1-min time interval 

outperform the nowcasting at 5-min and 10-min time interval for various nowcasting 

horizons. However, there is no clear correlation between time intervals and 

nowcasting accuracy. Nevertheless, the nowcasting of GHI, DNI and DHI at 1-min 

time interval achieves the best performance for 1-min, 5-min and 10-min nowcasting 

horizon in terms of evaluation metrics and is optimal for the requirements of the 

practical application.  

4.1.2 Comparison of Nowcasting Performance for Various Nowcasting 

Horizons 

In practice, different application objectives obviously require various nowcasting 

horizons. Therefore, it is worth to investigate the effect of various nowcasting horizons 

on nowcasting performance. In this section, the nowcasting performance at 10-sec, 
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1-min, 5-min and 10-min time intervals for various nowcasting horizons are compared 

to investigate the impact of nowcasting horizons on the nowcasting performance.  

Table 4.4 gives the GHI, DNI and DHI nowcasting performance at 10-sec time 

interval for various nowcasting horizons. In general, DHI nowcasting always achieves 

the highest accuracy in terms of MAE and RMSE, while DNI nowcasting is the 

opposite. Most MAPE of GHI, DNI and DHI nowcasting are lower than 20% and the 

largest MAPE are lower than 27% which indicates the nowcasting is reliable. The r of 

GHI, DNI and DHI nowcasting are higher than 0.83 which demonstrates the high 

agreement between nowcasting and measurement.  

Table 4.4 Nowcasting performance at 10-sec time intervals for various nowcasting 

horizons. 

Comparing the nowcasting performance at 10-sec time interval for 10-sec, 1-

min, 5-min and 10-min nowcasting horizons, it is evident that the nowcasting for 

shorter nowcasting horizon presents higher accuracy in terms of all evaluation metrics 

because the position of the sun, cloud appearance and sky conditions are more stable 

over a shorter horizon. The nowcasting for 10-sec nowcasting horizon achieves the 

lowest MAE of 25.17 for GHI, 14.95 for DHI, 31.18 for DNI and the lowest RMSE of 

38.64 for GHI, 20.17 for DHI, 46.27 for DNI. In contrast, the nowcasting for 10-min 

Components Total Images  Horizons MAE nMAE RMSE nRMSE MAPE r 

GHI 

175036 10s 25.17 0.04 38.64 0.07 5.38% 0.9921 

29221 1 min 60.48 0.1 97.77 0.17 13.40% 0.949 

5891 5 min 92.37 0.16 147.21 0.25 23.13% 0.8832 

3026 10 min 107.85 0.19 156.33 0.27 26.21% 0.8657 

DHI 

175036 10s 14.95 0.05 20.17 0.07 5.71% 0.9888 

29221 1 min 20.06 0.07 27.75 0.09 7.64% 0.9769 

5891 5 min 34.21 0.12 51.36 0.18 12.29% 0.9198 

3026 10 min 44.1 0.15 60.71 0.21 19.05% 0.8867 

DNI 

/ 10s 31.18 0.09 46.27 0.13 / 0.9878 

/ 1 min 63.9 0.18 104.27 0.29 / 0.9353 

/ 5 min 106.2 0.3 157.38 0.44 / 0.8598 

/ 10 min 115.78 0.33 164.83 0.46 / 0.8372 
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nowcasting horizon achieves the highest MAE of 107.85 for GHI, 44.1 for DHI, 115.78 

for DNI and the highest RMSE of 156.33 for GHI, 60.71 for DHI, 164.83 for DNI. The 

MAE and RMSE of GHI nowcasting for 10-min nowcasting horizon are higher than 

GHI nowcasting for 10-sec nowcasting horizon by 328.5% and 304.6%. In addition, 

the MAE and RMSE of the nowcasting for 10-min nowcasting horizon are respectively 

higher than the nowcasting for 10-sec nowcasting horizon by 195.0% and 201% in 

terms of DHI. According to DNI, the MAE and the RMSE of the nowcasting for 10-min 

nowcasting horizon is higher than the nowcasting for 10-sec nowcasting horizon by 

271.3% and 256.2%. The comparison of MAE and RMSE among the nowcasting at 

10-sec time interval for 10-sec, 1-min, 5-min and 10-min nowcasting horizons are 

shown in Figure 4.4. 

 

Figure 4.4 The comparison of MAE and RMSE among the nowcasting at 10-sec time 

interval for 10-sec, 1-min, 5-min and 10-min nowcasting horizon. 

The GHI, DNI and DHI nowcasting performance at 1-min and 5-min time interval 

for various nowcasting horizons are present in Table 4.4. To sum up, the accuracy of 

GHI, DNI and DHI nowcasting decreases as nowcasting horizons increase. The 

nowcasting of GHI, DNI and DHI for 10-sec and 1-min nowcasting horizons achieves 

very high accuracy that as demonstrated in Figure 4.4. However, the nowcasting 

performance of GHI and DNI for 5-min and 10-min nowcasting horizons are less 

sensitive when GHI and DNI dramatically raise or drop that is evidently shown in 

Figure 4.4.  
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4.1.3 Comparison of Nowcasting Performance in Different Sky 

Conditions 

In this section, the effect of different sky conditions on nowcasting performance 

is explored. On the one hand, the nowcasting performance of 12 testing days in 

different sky conditions is investigated. On the other hand, the nowcasting 

performance at several moments under different sky conditions of a representative 

date is analysed.  

4.1.3.1 Nowcasting Performance of 12 Testing Days in Different Sky Conditions 

In this research, 12 testing days are pre-selected according to four types of sky 

conditions including clear, less cloudy, heavy cloudy and overcast. In specific, the 

days with each type of sky condition are 3 days. The four types of sky conditions are 

classified according to the proportion of cloud pixels to sky pixels in an image, which 

is presented in Chapter 3.  

Table 4.5 Nowcasting performance in different sky conditions. 

Table 4.5 presents the nowcasting performance in different sky conditions. In 

general, the MAPE of GHI, DNI and DHI nowcasting are lower than 20% and the r of 

GHI, DNI and DHI nowcasting are higher than 0.85 which indicates the nowcasting 

Components Sky Conditions Interval  Horizon MAE nMAE RMSE nRMSE MAPE r 

GHI 

Clear 

1 min 1 min 

52.53 0.07 91.94 0.13 8.53% 0.9358 

Light Cloudy 52.14 0.08 90.15 0.14 11.32% 0.9484 

Heavy Cloudy 86.46 0.14 133.75 0.22 18.64% 0.9083 

Overcast 44.14 0.13 66.85 0.2 15.62% 0.9541 

DHI 

Clear 

1 min 1 min 

12.23 0.05 16.68 0.07 5.75% 0.9858 

Light Cloudy 16.76 0.05 22.56 0.07 5.25% 0.9806 

Heavy Cloudy 19.61 0.06 25.97 0.08 7.67% 0.9789 

Overcast 28.07 0.1 39.58 0.14 11.48% 0.9667 

DNI 

Clear 

1 min 1 min 

70.68 0.11 109.88 0.17 / 0.8551 

Light Cloudy 59.84 0.16 99.39 0.26 / 0.887 

Heavy Cloudy 93.84 0.27 141.94 0.41 / 0.8544 

Overcast 26.6 0.49 58.01 1.06 / 0.8857 
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has a reliable accuracy. Compared to GHI and DHI nowcasting, the accuracy of DNI 

nowcasting is relatively lower in terms of MAE, RMSE and r.   

Comparing the nowcasting performance in different sky conditions, it is evident 

that GHI and DNI nowcasting on heavy cloudy days always present the lowest 

accuracy according to all evaluation metrics, especially MAE and RMSE. That is 

because the relative position between the sun and cloud usually varies dramatically 

on heavy cloudy days. In contrast, GHI and DNI nowcasting on overcast days 

achieves the best performance because the sun is almost completely covered by 

clouds. GHI and DNI nowcasting performance in clear days and light cloudy days are 

similar because the sun is usually only briefly obscured by fewer or thinner clouds. 

According to MAE and RMSE, DHI nowcasting performance on clear days is the best 

but decreases as cloud increases. In this case, DHI nowcasting accuracy in overcast 

days are the lowest. That is because the increase of clouds leads to a more complex 

distribution of air molecules, cloud droplets, and aerosols in the atmosphere, 

increasing the variability of DHI. Figure 4.5 presents the nowcasting performance of 

4 days in four different sky conditions. The above findings are visualised clearly in 

these figures. For example, it is evident that GHI and DNI measurements on heavy 

cloudy day have very high fluctuations and thus increase the difficulty of GHI and DNI 

nowcasting in Figure 4.6. In case of a dramatic decrease or increase of GHI and DNI, 

the nowcasting models are not sensitive enough. In addition, the decline of DHI 

nowcasting performance with increasing clouds is also demonstrated clearly in Figure 

4.7. In this section, only the nowcasting at 1-min time interval for 1-min nowcasting 

horizon in different sky conditions are presented. Despite this, the nowcasting at 

various time intervals for various nowcasting horizons in different sky conditions also 

achieves a similar conclusion. Relevant Tables are shown in the Appendices.  
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 Figure 4.5 GHI nowcasting performance of 4 days in four different sky conditions 

 

 

Figure 4.6 DHI nowcasting performance of 4 days in four different sky conditions. 
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Figure 4.7 DNI nowcasting performance of 4 days in four different sky conditions. 

4.1.3.2 Nowcasting Performance at Several Moments under Different Sky 

Conditions of A Representative Date 

In this section, the nowcasting of GHI, DNI and DHI at 1-min time interval for 1-

min nowcasting horizon on a representative date are used to demonstrate the 

nowcasting performance under different sky conditions. This representative date is 

June 25, 2021, which presented three different sky conditions at different times of the 

day. Between 9 am to 11 am, the sky condition was mainly clear sky. From 11 am to 

4 pm, the sky condition was mostly cloudy sky and finally changed to overcast sky 

after 4 pm. Figure 4.8 presents the nowcasting of GHI, DNI and DHI for the whole day 

on June 25, 2021 at the top. In addition, the nowcasting performance and 

corresponding cloud images at a series of specific moments in different sky conditions 

are shown at the middle and the bottom of Figure 4.8. Although only the nowcasting 

performance in different sky conditions on June 25, 2021 is presented in this section, 

the nowcasting performance among different sky conditions of other testing dates 
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also achieves a similar conclusion.  

 
Figure 4.8 The performance of GHI nowcasting at 1-min time interval for 1-min 

nowcasting horizons in clear sky, cloudy sky and overcast sky. 

As the middle left and bottom left of Figure 4.9 shows, nowcasting values and 

measured values of GHI both are very stable in clear sky from 9:20 am to 9:35 am 

and the errors between them are very small, usually less than 20 W/m2. However, the 

errors between nowcasting and measurement dramatically raise more than 100 W/m2 

or more at a few moments, such as 9:45 am, when the sun is suddenly obscured by 

clouds or emerges from them (as shown in the third cloud image from the left at the 

bottom of Figure 4.9.  

According to the centre and bottom middle of Figure 4.9, nowcasting values and 
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measured values of GHI both present sharp fluctuations under cloudy sky and the 

errors between them are obvious. Comparing the GHI nowcasting performance under 

heavy cloudy sky from 11:20 am to 11:40 am (as shown in the first two cloud images 

at the bottom middle of Figure 9) with its performance under light cloudy sky from 

11:40 am to 12:00 am (as shown in the last cloud image at the bottom middle of Figure 

15), it is obvious that heavy cloudy sky leads to greater errors because of more 

frequent and dramatic position variations between the sun and clouds. The errors are 

often more than 100 W/m2 or more in heavy cloudy sky but less than 100 W/m2 in light 

cloudy sky. Nevertheless, it is worth noting that the curves of nowcasting and 

measurement present very similar trends, indicating high agreement between 

nowcasting and measurement. 

The middle right and bottom right of Figure 4.9 present the change of sky 

conditions from cloudy sky to overcast sky. Unlike the dramatic variations of the 

nowcasting performance under cloudy sky, nowcasting values and measured values 

of GHI are also very stable under overcast sky from 3:40 pm to 4:30pm and the errors 

between them are very small due to the sun being almost completely blocked (as 

shown in the first and second cloud images from the right at the bottom of Figure 4.9). 

To sum up, very small errors of GHI nowcasting under clear sky and overcast sky 

indicate that solar irradiance nowcasting models perform best in these sky conditions. 

In the meanwhile, although GHI nowcasting under cloudy sky has larger errors than 

GHI nowcasting under clear sky and overcast sky, the high agreement of the curves 

of GHI nowcasting and GHI measurement indicates that the proposed solar irradiance 

nowcasting method is also reliable under cloudy sky.  
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Figure 4.9 The performance of DHI nowcasting at 1-min time interval for 1-min 

nowcasting horizons in clear sky, cloudy sky and overcast sky. 

According to Figure 4.10, the effect of different sky conditions on DHI nowcasting 

and GHI nowcasting are similar, but it is worth noting that the effect of cloudy sky on 

the errors of DHI nowcasting is not very significant. In specific, although the DHI 

nowcasting under cloudy sky shows more fluctuations and larger errors compared to 

the DHI nowcasting under clear and overcast sky, the errors between nowcasting 

values and measured values of DHI are usually less than 50 W/m2 with only very few 

cases greater than 100 W/m2. That is because the actual values of DHI is normally 

small compared to the actual values of GHI and DNI. Apart from that, the variation of 

DHI is less affected by the change of relative position between the sun and clouds. 
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Meanwhile, the curves of DHI nowcasting and DHI measurement evidently present a 

high agreement. In this case, DHI nowcasting always has high accuracy regardless 

of sky conditions. 

 
Figure 4.10 The performance of DNI nowcasting at 1-min time interval for 1-min 

nowcasting horizons in clear sky, cloudy sky and overcast sky. 

Contrary to DHI nowcasting, although the effect of different sky conditions on DNI 

nowcasting is also similar to their effect on GHI and DHI nowcasting, DNI nowcasting 

under cloudy sky always presents more significant fluctuations and greater errors, as 

shown in Figure 4.10. That is because the variation of DNI is highly correlated with 

the relative position of the sun and clouds. Once the sun is suddenly obscured by 

clouds or emerges from them, the DNI sharply drops or rises. The errors of DNI 
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nowcasting are often more than 150 W/m2 or more under cloudy sky. Nevertheless, 

the errors of DNI nowcasting are normally less than 60 W/m2 under clear and overcast 

sky and the curves of DNI nowcasting and DNI measurement also present clear 

agreement. To sum up, the DNI nowcasting under clear and overcast sky has high 

accuracy and apparently outperforms the DNI nowcasting under cloudy sky. Although 

the accuracy of DNI nowcasting under cloudy sky is unable to achieve the level under 

clear and overcast sky, the DNI nowcasting under cloudy sky is still reliable.  

4.1.4 Comparison of Nowcasting Performance among Different Models.  

In this section, the GHI, DNI and DHI nowcasting performance of the proposed 

ResNet-152 solar irradiance nowcasting models are compared with a baseline model 

and a benchmark model, including Multilayer Perceptron (MLP) and Persistence 

Model (PM). As described in the previous section, the nowcasting of GHI, DNI and 

DHI at 1-min time interval usually achieves the best performance. Thus, all 

comparative tests of GHI, DNI and DHI nowcasting in this section are based on 1-min 

time interval.  

Table 4.6 Nowcasting performance at 1-min time interval for 1-min nowcasting horizon 

among different models. 

Table 4.6 presents the nowcasting performance at 1-min time interval for 1-min 

nowcasting horizon among different models. In general, the r of ResNet-152, PM and 

MLP for GHI, DNI and DHI nowcasting are very close and higher than 0.9 which 

Components Model MAE nMAE RMSE nRMSE MAPE r 

GHI 

ResNet-152 58.82 0.1 98.66 0.17 13.53% 0.9481 

PM 46.98 0.08 105.99 0.18 8.89% 0.9407 

MLP 65.59 0.11 111.64 0.19 16.38% 0.9331 

DHI 

ResNet-152 19.17 0.07 27.51 0.09 7.54% 0.9782 

PM 10.5 0.04 19.09 0.07 3.60% 0.9887 

MLP 21.12 0.07 32.09 0.11 8.44% 0.9692 

DNI 

ResNet-152 62.74 0.18 106.61 0.3 / 0.9324 

PM 47.2 0.13 110.74 0.31 / 0.9291 

MLP 68.54 0.19 113.15 0.32 / 0.9253 
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indicates very high agreement between nowcasting and measurement. PM 

demonstrates an absolute advantage for DHI nowcasting according to all evaluation 

metrics and an obvious advantage for GHI and DNI nowcasting according to MAE, 

nMAE, MAPE and r. In contrast, MLP shows the worst performance for GHI, DNI and 

DHI nowcasting in terms of all evaluation metrics. Thus, PM is the best nowcasting 

model at 1-min time interval for 1-min nowcasting horizon, while Resnet-152 is the 

second best. 

Table 4.7 Nowcasting performance at 1-min time interval for 5-min nowcasting horizon 

among different models. 

Table 4.7 presents the nowcasting performance at 1-min time interval for 5-min 

nowcasting horizon among different models. Comparing the nowcasting performance 

for 1-min nowcasting horizon with 5-min nowcasting horizon, the overall r of GHI, DNI 

and DHI nowcasting decreases but is still higher than 0.8. The overall MAPE of GHI, 

DNI and DHI nowcasting increase but is lower than 30%. For GHI nowcasting, 

ResNet-152 significantly outperform PM and MLP according to all evaluation metrics 

besides MAPE. In actual, the MAPE of ResNet-152 and PM are also very close. In 

terms of DHI nowcasting, the nowcasting performance of ResNet-152, PM and MLP 

are very close. For DNI nowcasting, PM demonstrates an advantage according to 

MAE and nMAE, while ResNet-152 shows an advantage according to RMSE, nRMSE 

and r. That indicates the nowcasting of ResNet-152 has larger errors overall, but the 

Components Model MAE nMAE RMSE nRMSE MAPE r 

GHI 

ResNet-152 94.39 0.16 144.36 0.25 23.13% 0.8839 

PM 98.1 0.17 177.81 0.31 21.01% 0.8335 

MLP 108.16 0.19 163.91 0.28 28.12% 0.8487 

DHI 

ResNet-152 33.99 0.12 49.21 0.17 14.53% 0.9231 

PM 31.03 0.11 50.01 0.17 11.32% 0.9225 

MLP 35.35 0.12 51.46 0.18 14.59% 0.9161 

DNI 

ResNet-152 97.47 0.27 147.98 0.42 / 0.8648 

PM 89.4 0.25 174.39 0.49 / 0.8252 

MLP 103.93 0.3 156.29 0.45 / 0.8501 
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nowcasting of PM has the largest errors at some specific moments. In this case, the 

nowcasting performance of ResNet-152 and PM are close. Considering the overall 

nowcasting performance of GHI, DNI and DHI , ResNet-152 is the optimal nowcasting 

model at 1-min time interval for 5-min nowcasting horizon. 

Table 4.8 Nowcasting performance at 1-min time interval for 10-min nowcasting 

horizon among different models. 

Table 4.8 presents the nowcasting performance at 1-min time interval for 10-min 

nowcasting horizon among different models. In general, the overall r of GHI, DNI and 

DHI nowcasting for 10-min nowcasting horizon is lower compared to 5-min 

nowcasting horizon but are still higher than 0.77. The overall MAPE of GHI, DNI and 

DHI nowcasting for 10-min nowcasting horizon are higher compared to 5-min 

nowcasting horizon but are lower than 33%. In terms of GHI nowcasting, it is evident 

that ResNet-152 achieves the best performance according to all evaluation metrics. 

In contrast, DHI nowcasting of PM outperforms ResNet-152 with respect to all 

evaluation metrics besides RMSE. Despite this, ResNet-152, PM and MLP have very 

close accuracy of DHI nowcasting in actual. For DNI nowcasting, the nowcasting 

performance of PM is better according to MAE and nMAE but worse than ResNet-

152 according to RMSE, nRMSE and r. Therefore, like the nowcasting performance 

for 5-min nowcasting horizon, ResNet-152 presents the best performance at 1-min 

time interval for 10-min nowcasting horizon. 

Components Model MAE nMAE RMSE nRMSE MAPE r 

GHI 

ResNet-152 104.42 0.18 164.71 0.28 27.01% 0.8585 

PM 119.52 0.21 200.05 0.35 27.15% 0.7901 

MLP 123.42 0.21 177.5 0.31 32.86% 0.8208 

DHI 

ResNet-152 42.37 0.15 61.09 0.21 17.22% 0.8785 

PM 41.52 0.14 62.52 0.21 15.98% 0.8792 

MLP 43.82 0.15 61.32 0.21 18.74% 0.8788 

DNI 

ResNet-152 113.98 0.32 176.24 0.5 / 0.8203 

PM 108.04 0.31 196.44 0.56 / 0.7796 

MLP 129.49 0.37 180.56 0.51 / 0.7953 
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Apart from the evaluation metrics presented in Table 4.6-4.8. SS-MAE and SS-

RMSE are also effective and straightforward evaluation metrics for the comparison of 

different nowcasting models. The comparison of SS-MAE and SS-RMSE are shown 

in Figure 4.11-4.13. 

 

Figure 4.11 SS-MAE and SS-RMSE of PM and MLP for GHI, DNI and DHI nowcasting at 

1-min time interval for 1-min nowcasting horizon. 

 

Figure 4.12 SS-MAE and SS-RMSE of PM and MLP for GHI, DNI and DHI nowcasting at 

1-min time interval for 5-min nowcasting horizon. 
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Figure 4.13 SS-MAE and SS-RMSE of PM and MLP for GHI, DNI and DHI nowcasting at 

1-min time interval for 10-min nowcasting horizon. 

According to Figure 4.11, SS-MAE(PM) are all negative and SS-MAE(MLP) are 

all positive that indicates the nowcasting performance of MLP ResNet-152 is better 

than MLP but not as good as PM. However, ResNet-152 presents more strengths on 

SS-RMSE because SS-MAE(PM) and SS-MAE(MLP) are almost positive in Figure 

4.12. Due to PM achieves very large SS-MAE(PM) of -25% for GHI, -83% for DHI and 

-33% for DNI. Thus, PM achieves the best performance at 1-min time interval for 1-

min nowcasting horizon but merely outperforms ResNet-152 slightly. However, 

ResNet-152 gradually outperforms PM as the nowcasting horizon increases in terms 

of Figure 4.13. SS-MAE(PM) of DHI and DNI are still negative, but the values are very 

small, indicating very close nowcasting performance between ResNet-152 and PM. 

In the meanwhile, the nowcasting performance of MLP is always the worst. In practical 

applications, PM and MLP require solar data obtained from a permanent set-up and 

expensive solar sensor for solar irradiance nowcasting, while ResNet-152 proposed 

in this research merely requires ground-based cloud images captured by a low-cost 

Raspberry Pi camera. In this case, both the equipment itself and its long-term 

maintenance costs are greatly reduced.  

4.1.5 Comparison of Nowcasting Performance Based on Different 

Datasets. 

In this section, the effect of different datasets on nowcasting performance is 
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evaluated. In previous sections, a total of 60 days of data from April to September are 

used for the training and the testing of solar irradiance nowcasting models. Of these 

60 days, the training set is 48 days, and the testing set is 12 days. In this case, this 

section first respectively uses 48 days of data from April to September, as mentioned 

above, to train a series of solar irradiance nowcasting models. Then, 34 days of data 

from April to July were used to train a series of solar irradiance nowcasting models. 

Finally, 8 identical testing days from April to July are input into two abovementioned 

groups of nowcasting models to compare the nowcasting performance between the 

solar irradiance nowcasting models trained with 34 days of data and 48 days of data. 

In addition, the solar irradiance nowcasting models trained with 48 days of data from 

April to September are used to test the nowcasting performance for 3 days in 

December to investigate the generality of the solar irradiance nowcasting models.  

4.1.5.1 Nowcasting Performance between The Solar Irradiance Nowcasting 

Models Trained with 34 Days of Data and 48 Days of Data 

To investigate the effect of different datasets on nowcasting performance, 34 

days of data from April to July and 48 days of data from April to September are 

respectively used to train two groups of solar irradiance nowcasting models. The 

results of 8 testing days generated from the nowcasting models trained with 34 days 

of data and 48 days of data are evaluated using the evaluation metrics presented 

before, as shown in Table 4.9.  

Table 4.9 Nowcasting performance for 8 testing days between the solar irradiance 

nowcasting models Trained with 34 days of data and 48 days of data. 

Components Datasets Intervals Horizons MAE nMAE RMSE nRMSE MAPE r 

GHI 

48 days 

1 min  1 min 

58.26 0.1 96.98 0.16 12.64% 0.9514 

34 days 57.36 0.09 94.31 0.15 11.49% 0.9532 

DHI 

48 days 19.67 0.07 28.81 0.1 7.42% 0.9723 

34 days 21.73 0.07 30.86 0.1 19.69% 0.9704 

DNI 

48 days 59.79 0.16 102.28 0.28 / 0.932 

34 days 63.16 0.17 99.65 0.27 / 0.9372 
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According to Table 4.9, the nowcasting performance for 8 testing days between 

the solar irradiance nowcasting models trained with 34 days of data and 48 days of 

data are very close. In general, the maximum error of MAE is less than 100 and RMSE 

is less than 150. However, the solar irradiance nowcasting model trained with 48 days 

of data performs slightly better than those trained with 34 days of data for DHI 

nowcasting. Since the 48-day dataset mainly adds the data from August to September 

compared to the 30-day dataset, the above findings indicate adding the extra training 

dataset from different months to solar irradiance nowcasting models does not 

significantly affect the nowcasting accuracy of the original testing dataset. In addition, 

based on the nowcasting model trained with 48 days of data, the nowcasting 

performance for 8 testing days significantly outperforms the nowcasting performance 

for 12 testing days. That might imply the accuracy of a solar irradiance nowcasting 

model based on a larger time span of testing dataset is reduced.  

4.1.5.2 Nowcasting Performance Based on Different Seasonal Testing Dates   

To explore the generality of the solar irradiance nowcasting models trained with 

48 days of data, the results of the 4 testing days in December generated from the 

nowcasting models are compared with the results of the 12 testing days from April to 

September. However, it is worth noting that since the sky is dark after 3:30 pm in 

GHI 

48 days 

1 min  5 min 

89.42 0.15 136.15 0.22 20.49% 0.9 

34 days 92.04 0.15 141.03 0.23 20.34% 0.8931 

DHI 

48 days 35.09 0.12 51.6 0.17 14.57% 0.9067 

34 days 35.51 0.12 52.34 0.17 14.27% 0.9019 

DNI 

48 days 90.78 0.25 136.07 0.37 / 0.8765 

34 days 90.65 0.25 140.7 0.38 / 0.8702 

GHI 

48 days 

1 min  10 min 

99.92 0.16 157.44 0.26 24.55% 0.8725 

34 days 102.27 0.17 150.92 0.25 26.33% 0.8764 

DHI 

48 days 42.07 0.14 61.82 0.21 17.31% 0.8618 

34 days 45.7 0.15 65.88 0.22 20.18% 0.841 

DNI 

48 days 105.13 0.29 166.42 0.45 / 0.8211 

34 days 100.69 0.27 151.53 0.41 / 0.846 
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December, the data from 3:30 pm to 5:30 pm are excluded from the calculation of the 

evaluation metrics of the 4 testing days in December. Thus, the total amount of data 

used to calculate the evaluation metrics of 4 testing days in December and the 12 

testing days from April to September are different. The results of each day are 

evaluated through a series of evaluation metrics, as shown in Table 4.10.  

Table 4.10 GHI Nowcasting performance at 1-min time interval for 1-min nowcasting 

horizon based on the 12 testing dates from April to September. 

In terms of the GHI nowcasting performance based on the 12 testing days from 

April to September, as shown in Table 4.11, the GHI nowcasting in overcast days 

obviously achieves the best performance. In contrast, the GHI nowcasting in heavy 

cloudy days always has higher errors. The nowcasting accuracy in clear days and 

light cloudy days are similar. The above findings are especially reflected in MAE and 

RMSE. The higher errors of the GHI nowcasting in heavy cloud days is mainly caused 

by the sharp and frequent variation of the relative position between the sun and clouds.  

 

 

 

Dates  
Sky 

Conditions 
MAE nMAE RMSE nRMSE MAPE r 

2021-05-22 Clear 43.95 0.06 82.26 0.11 7.06% 0.9463 

2021-06-21 Clear 69.17 0.09 104.65 0.14 10.05% 0.9287 

2021-08-31 Clear 44.47 0.06 87.42 0.13 8.49% 0.938 

2021-05-09 Light Cloudy  32.57 0.05 58.23 0.09 6.88% 0.9742 

2021-05-30 Light Cloudy 58.72 0.08 94.91 0.13 10.91% 0.9305 

2021-08-28 Light Cloudy 72.27 0.12 117.75 0.2 15.85% 0.893 

2021-06-25 Heavy Cloudy 51.57 0.08 84.4 0.13 16.76% 0.9665 

2021-07-01 Heavy Cloudy 117.38 0.17 167.67 0.24 20.49% 0.8265 

2021-08-29 Heavy Cloudy 83.28 0.18 128.64 0.28 24.50% 0.9244 

2021-04-25 Overcast 53.12 0.12 82.38 0.19 12.89% 0.9525 

2021-05-20 Overcast 39.57 0.2 55.74 0.28 21.59% 0.9077 

2021-09-04 Overcast 39.72 0.11 59.27 0.16 12.37% 0.959 
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Table 4.11 GHI Nowcasting performance at 1-min time interval for 1-min nowcasting 

horizon based on the 4 testing dates in December. 

Comparing the GHI nowcasting performance based on the 12 testing days from 

April to September with the GHI nowcasting performance based on the 4 testing days 

in December according to Table 10-15, it is evident that the GHI nowcasting based 

on the 4 testing days in December achieves very high accuracy in different sky 

conditions. The nowcasting performance is close in different sky conditions but slightly 

increases with the increase of clouds according to MAE and RMSE. The GHI 

nowcasting performance in December presents a very different pattern compared to 

the GHI nowcasting performance from April to September. That is because the values 

of GHI in winter are very low and stable, unlike in other seasons.  

Table 4.12 DHI Nowcasting performance at 1-min time interval for 1-min nowcasting 

horizon based on the 12 testing dates from April to September. 

Dates  
Sky 

Conditions 
MAE nMAE RMSE nRMSE MAPE r 

2021-12-04 Clear  59.35 0.15 73.13 0.19 22.55% 0.9021 

2021-12-11 Light Cloudy 44.37 0.13 56.78 0.16 14.24% 0.926 

2021-12-07 Heavy Cloudy 31.67 0.09 40.74 0.12 10.45% 0.9695 

2021-12-08 Overcast 30.19 0.13 38.98 0.17 14.68% 0.9085 

Dates  
Sky 

Conditions 
MAE nMAE RMSE nRMSE MAPE r 

2021-05-22 Clear 9.41 0.04 12.47 0.06 4.42% 0.9763 

2021-06-21 Clear 14.53 0.05 20.33 0.07 4.76% 0.9841 

2021-08-31 Clear 12.75 0.08 16.3 0.1 8.06% 0.9703 

2021-05-09 Light Cloudy 13.62 0.04 17.12 0.05 4.74% 0.987 

2021-05-30 Light Cloudy 14.24 0.05 18.58 0.06 4.73% 0.9745 

2021-08-28 Light Cloudy 21.69 0.06 28.46 0.08 5.52% 0.9792 

2021-06-25 Heavy Cloudy 14.97 0.05 20.59 0.06 5.49% 0.9856 

2021-07-01 Heavy Cloudy 24.52 0.06 31.93 0.08 6.08% 0.9628 

2021-08-29 Heavy Cloudy 20.06 0.08 25.65 0.1 12.22% 0.9846 

2021-04-25 Overcast 29.18 0.08 39.95 0.12 7.76% 0.9839 

2021-05-20 Overcast 36.89 0.19 48.91 0.25 21.37% 0.934 

2021-09-04 Overcast 18.15 0.06 26.68 0.08 5.30% 0.9869 
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According to Table 4.13, the DHI nowcasting always keeps a high accuracy but 

the nowcasting accuracy gradually decreases as clouds increase in the sky. In this 

case, the DHI nowcasting achieves the best performance in clear days and the worst 

in overcast days.  

Table 4.13 DHI Nowcasting performance at 1-min time interval for 1-min nowcasting 

horizon based on the 4 testing dates in December. 

In terms of Table 4.14, the DHI nowcasting based on the 4 testing days in 

December has very good performance regardless of different sky conditions. Contrary 

to the GHI nowcasting, the DHI nowcasting slightly decreases as the cloud increases, 

according to all evaluation metrics. In general, since the values of DHI are smaller in 

winter compared to other seasons, the errors of DHI nowcasting thus are also smaller.  

Table 4.14 DNI Nowcasting performance at 1-min time interval for 1-min nowcasting 

horizon based on the 12 testing dates from April to September. 

Dates  
Sky 

Conditions 
MAE nMAE RMSE nRMSE MAPE r 

2021-12-04 Clear  12.42 0.07 16.08 0.1 8.65% 0.8109 

2021-12-11 Light Cloudy 18.34 0.08 22.88 0.1 7.90% 0.9255 

2021-12-07 Heavy Cloudy 24.14 0.1 27.66 0.11 9.81% 0.9671 

2021-12-08 Overcast 24.27 0.11 29.39 0.13 10.97% 0.9812 

Dates  
Sky 

Conditions 
MAE nMAE RMSE nRMSE MAPE r 

2021-05-22 Clear 60.51 0.09 95.43 0.14 / 0.8205 

2021-06-21 Clear 86.73 0.16 125.54 0.24 / 0.8622 

2021-08-31 Clear 64.79 0.09 106.54 0.15 / 0.791 

2021-05-09 Light Cloudy 38.33 0.09 68.51 0.16 / 0.9124 

2021-05-30 Light Cloudy 65.48 0.14 101.7 0.22 / 0.8551 

2021-08-28 Light Cloudy 91.03 0.3 134.39 0.44 / 0.7406 

2021-06-25 Heavy Cloudy 50.17 0.13 82.97 0.21 / 0.9454 

2021-07-01 Heavy Cloudy 130.36 0.38 175.41 0.51 / 0.7581 

2021-08-29 Heavy Cloudy 85.67 0.35 139.04 0.56 / 0.8892 

2021-04-25 Overcast 41.45 0.39 76.58 0.12 / 0.9093 

2021-05-20 Overcast 5.31 1.31 16.49 0.05 / 0.099 

2021-09-04 Overcast 33.03 0.63 62.91 0.19 / 0.8199 
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As presented in Table 4.15, the DNI nowcasting achieves the highest accuracy 

in overcast days because the values of DNI are very low and stable in this sky 

condition. In general, the conclusions of the DNI nowcasting are similar to GHI 

nowcasting. 

Table 4.15 DNI Nowcasting performance at 1-min time interval for 1-min nowcasting 

horizon based on the 4 testing dates in December. 

Unlike the very high accuracy of the GHI and DHI nowcasting, the DNI nowcasting 

in winter presents obvious errors in terms of MAE and RMSE. The nowcasting 

performance increases with the increase of clouds, according to MAE and RMSE. 

However, the nMAE, the nRMSE and the r of the DNI nowcasting even show 

abnormal. The reasons for this circumstance involve the adaptability of solar 

irradiance nowcasting models, larger solar zenith angle, very low DNI in winter, etc. 

In specific, the nowcast value of DHI is calculated from the nowcast values of GHI 

and DHI according to equation 2.1 in section 2.3.8. Since the solar irradiance 

nowcasting model used in this set of tests is trained using 48 days of data in the 

summer, while the input of this set of tests is the data from 4 testing dates in the winter, 

the nowcasting model may not be adaptable enough. In this case, the nowcasting of 

GHI and DHI both shows obvious errors, especially GHI, as shown in Figure 4.14-

4.15. In addition, due to the solar zenith angle 𝜃 in winter is larger, the value of 𝑐𝑜𝑠(𝜃) 

becomes smaller, resulting in larger nowcast values of DNI. In contrast, the measured 

values of DNI in winter are generally very low. Therefore, the errors between the 

nowcast values and measured values become larger. With the accumulation of the 

above errors, the difference between the nowcast values and measured values of DNI 

gradually increase, as shown in Figure 4.16. In this case, the reliability of the DNI 

Dates  
Sky 

Conditions 
MAE nMAE RMSE nRMSE MAPE r 

2021-12-04 Clear  109.88 0.26 143.93 0.34 / 0.6082 

2021-12-11 Light Cloudy 104.26 0.49 130.17 0.62 / 0.8532 

2021-12-07 Heavy Cloudy 99.91 0.48 119.09 0.57 / 0.9017 

2021-11-08 Overcast 75.48 5.53 103.76 0.76 / 0.9472 
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nowcasting needs to be further investigated.  

To sum up, the solar irradiance nowcasting models based on 48 days of data 

from April to September present good performance for the GHI, DNI and DHI 

nowcasting from April to September and the GHI, DHI nowcasting in December. 

However, the performance of these nowcasting models on the DNI nowcasting in 

December is uncertain.  

 

Figure 4.14 GHI Nowcasting performance at 1-min time interval for 1-min nowcasting 

horizon based on the 4 testing dates in December. 
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Figure 4.15 DHI Nowcasting performance at 1-min time interval for 1-min nowcasting 

horizon based on the 4 testing dates in December. 

 

Figure 4.16 DNI Nowcasting performance at 1-min time interval for 1-min nowcasting 

horizon based on the 4 testing dates in December. 
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4.2 Chapter Summary 

This chapter presents the results of verification and analysis of solar irradiance 

nowcasting. Based on the nowcasting objectives, a series of comparative tests are 

implemented to evaluate the effect of various factors on the nowcasting performance 

of GHI, DNI and DHI. These factors include time intervals, nowcasting horizons, sky 

conditions, benchmark models, and datasets. The main findings are summarised as 

follows:  

• The effect of various time intervals on nowcasting performance. 

In general, the correlation between time intervals and corresponding 

nowcasting accuracy is unclear. However, it is worth noting that nowcasting 

at shorter time intervals has a higher probability of achieving better 

performance for various nowcasting horizons compared to nowcasting at 

longer time intervals, especially for GHI and DNI nowcasting. Moreover, 

although the nowcasting performance at 10-sec and 1-min time intervals are 

very close, the nowcasting performance at 1-min time interval presents more 

advantages according to evaluation metrics. Based on the above, the 

nowcasting of GHI, DNI and DHI at 1-min time interval consistently achieves 

the best performance for various nowcasting horizons. Among the 

nowcasting of GHI, DNI and DHI, the nowcasting of DHI achieves very high 

accuracy, which performs much better than the nowcasting of GHI and DNI. 

Compared to the nowcasting of DNI, the nowcasting of GHI performs slightly 

better. 

• The effect of various nowcasting horizons on nowcasting performance. 

Unlike time intervals, the effect of various nowcasting horizons on 

nowcasting performance is very evident. Nowcasting accuracy of GHI, DNI 

and DHI improves significantly with the shortening of nowcasting horizons. 

Differences in the nowcasting performance of GHI, DNI, and DHI are similar 
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to those described above. 

• The effect of different sky conditions on nowcasting performance. 

For the days with different sky conditions, it is evident that the GHI and DNI 

nowcasting performance are the worst on heavy cloudy days. In contrast, 

the GHI and DNI nowcasting can achieve the highest accuracy on overcast 

days. The nowcasting accuracy of GHI and DNI are similar on clear days 

and light cloudy days. Unlike GHI and DNI, the nowcasting performance of 

DHI presents a clear pattern. The accuracy of DHI nowcasting decreases 

with the increase of clouds. Thus, the DHI nowcasting consistently achieves 

the best accuracy on clear days and the worst on overcast days. 

For a representative date with different sky conditions at several moments, 

GHI and DNI nowcasting accuracy are the lowest under cloudy sky and the 

highest under clear sky and overcast sky. However, DNI nowcasting shows 

more dramatic errors than GHI nowcasting. Contrary to DNI, DHI nowcasting 

always keep high accuracy no matter what sky conditions. In summary, the 

proposed solar irradiance nowcasting method performs well for the 

nowcasting of GHI and DNI under clear and overcast sky and the 

nowcasting of DHI under all sky conditions. Although the nowcasting of GHI 

and DNI under cloudy sky sometimes show relatively large errors, they are 

still reliable due to the high agreement between nowcasting and 

measurement. 

• The influence of different models on nowcasting performance. 

As the representative benchmark model, PM presents significant 

advantages for shorter nowcasting horizons compared to ResNet-152 and 

MLP. However, the nowcasting performance of ResNet-152 is gradually 

beyond PM as nowcasting horizons are increased. In this research, ResNet-

152 achieves better nowcasting performance for 5-min and 10-min 

nowcasting horizons. Compared to PM and ResNet-152, the nowcasting 
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performance of MLP is always unsatisfactory. In addition, unlike PM and 

MLP, ResNet-152 merely relies on low-cost equipment to achieves solar 

irradiance nowcasting and thus is more appropriate for practical applications.  

• The influence of different datasets on nowcasting performance. 

The comparison between solar irradiance nowcasting models trained with 

34 days of data and 48 days of data demonstrates the nowcasting accuracy 

of the original testing dataset is less affected by the addition of extra training 

datasets from different months in the solar irradiance nowcasting models. 

Besides, the larger time span of the testing dataset might decrease the 

accuracy of a solar irradiance nowcasting model.  

In addition, the nowcasting results of 4 testing days in December generated 

from the solar irradiance nowcasting models trained with 48 days of data 

from April to September indicate the nowcasting models are very suitable 

for GHI and DHI nowcasting, but the ability of these models for DNI 

nowcasting is less than ideal.  

To sum up, the performance of the developed solar irradiance nowcasting method 

demonstrates evident reliability under the influence of diverse factors.  
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Chapter Five 

5 Discussion 

The purpose of Chapter 5 is to initiate an expansive discussion on the results 

from the nowcasting of solar irradiance and answer the last research question in 

Chapter 1 - “What current or potential building applications can the proposed solar 

irradiance nowcasting method be applied to?”. In this case, the main task of this 

chapter is to interpret the results of solar irradiance nowcasting and complete the fifth 

research objective - to discuss current and potential building applications of the 

proposed solar irradiance nowcasting method.  

This chapter begins with an interpretation of the results of this research. Firstly, 

comparative tests of solar irradiance nowcasting in this research are introduced briefly. 

Secondly, the major findings of this research, the reasons for the findings and the 

potential effects of the findings are demonstrated. Thirdly, the comparison of 

nowcasting performance between the proposed method and contemporary state-of-

the-art methods is presented. After that, the limitations of this research are articulated. 

At last, the implications of this research and a series of current and potential 

applications of solar irradiance nowcasting are discussed to envision the value of this 

research for buildings in the future and provide initial sights for subsequent research. 
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5.1 Interpretation of the Results 

The results verification and analysis of solar irradiance nowcasting presented in 

Chapter 4 respond to one of the crucial research questions posed in Chapter 1: How 

can the reliability of solar irradiance nowcasting be verified? Fundamentally, verifying 

the reliability of solar irradiance nowcasting in this research is based on two main 

aspects: the evaluation of the impact of different factors on solar irradiance 

nowcasting, including time intervals, nowcasting horizons, sky conditions, forecasting 

models and datasets, and the evaluation metrics for evaluating the nowcasting 

accuracy. Unlike evaluation metrics, which are only used for verifying the results of 

solar irradiance nowcasting, different effective factors are directly linked to the 

nowcasting results. Consequently, a series of comparative tests were performed to 

generate different nowcasting results.  

Based on the above, a brief introduction to comparative tests is presented first in 

this section. Subsequently, the findings of this research, the reasons for the findings 

and the potential effects of the findings are articulated. It is also worth reminding that 

Chapter 4 presents only a portion of this research's results because of the thesis's 

length limitations, and more results will be presented in the appendix. 

5.1.1 Brief Introduction to Comparative Tests  

This research explored the effects of different factors on the reliability of solar 

irradiance nowcasting through a series of comparative tests. Some of these factors 

are common, such as forecasting horizons, sky conditions, and forecasting models, 

but others, including datasets and time intervals, are rarely explored. Overall, the 

comparative tests include the following five: 

• Comparison of Nowcasting Performance at Various Time Intervals. 

This test was designed to explore the impact of various time intervals on the 

nowcasting of GHI, DNI and DHI, and thus, the only variable for this test was 

the time interval. The nowcasting performance of GHI, DNI and DHI at 10-sec, 
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1-min, 5-min and 10-min time intervals for 1-min, 5-min ，  and 10-min 

nowcasting horizons were respectively compared, which totally involved 27 

sets of solar irradiance nowcasting.  

• Comparison of Nowcasting Performance for Various Nowcasting Horizons. 

The objective of this test was to investigate the effect of various nowcasting 

horizons on the nowcasting of GHI, DNI and DHI. Therefore, the only variable 

for this test was the nowcasting horizon. The nowcasting performance of GHI, 

DNI and DHI for 1-min, 5-min and 10-min nowcasting horizons at fixed 1-min 

time interval were compared. A total of 12 sets of solar irradiance nowcasting 

were conducted in this test.  

• Comparison of Nowcasting Performance in Different Sky Conditions.  

This test used only sky conditions as variables to study the influence of 

different sky conditions on the nowcasting of GHI, DNI and DHI. Firstly, the 

nowcasting performance of GHI, DNI and DHI under four kinds of sky 

conditions, including clear, less cloudy, heavy cloudy and overcast, in 12 days 

were compared, which involved a total of 36 sets of solar irradiance 

nowcasting. Then, 3 sets of solar irradiance nowcasting were used to 

articulate the nowcasting performance of GHI, DNI and DHI at several 

moments under different sky conditions on a representative date.  

• Comparison of Nowcasting Performance among Different Models. 

The goal of this test was to compare the GHI, DNI and DHI nowcasting 

performance of three models for 1-min, 5-min and 10-min nowcasting horizons 

at fixed 1-min time interval. These three models included the proposed 

ResNet-152 solar irradiance nowcasting model, a baseline model - Multilayer 

Perceptron (MLP), and a benchmark model - Persistence Model (PM). In this 

test, a total of 7 sets of solar irradiance nowcasting were involved. 
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• Comparison of Nowcasting Performance Based on Different Datasets. 

This test aimed to study the impact of different datasets on the nowcasting 

performance of GHI, DNI and DHI. Consequently, the total size and 

seasonality of the datasets were used as variables. This test first compared 

the performance of two solar irradiance nowcasting models trained with 34 

days of data and 48 days of data, involving 18 sets of solar irradiance 

nowcasting. Then, the nowcasting performance based on different seasonal 

testing dates was compared, involving 48 sets of solar irradiance nowcasting. 

5.1.2 Major Findings of the Research 

The major findings of this research, the reasons for the findings and the 

significance of the findings are presented in the following: 

Firstly, the critical finding on the effect of various time intervals on nowcasting 

performance is that the nowcasting of GHI, DNI and DHI at 1-min time interval 

achieves the best performance, regardless of the nowcasting horizons. One potential 

reason is that the nowcasting models at 10-sec time interval is overfitted, and 5-min 

and 10-min time intervals are underfitted. This finding implies that 1-min time interval 

may be the optimal temporal resolution for solar irradiance nowcasting. In fact, 1-min 

time interval is more appropriate than 10-sec time interval for practical applications 

considering the time consumption of computer operation, data transmission, system 

response and other factors. However, solar irradiance nowcasting at 1-min time 

interval is still high-frequency, requiring a certain amount of device computing power 

and stability. Nevertheless, high-frequency solar irradiance nowcasting is valuable for 

buildings and their future development. For instance, grid operators or energy 

companies can utilise high-frequency solar forecasts nowcasting to activate fast-

responding energy storage systems or backup generation systems, ensuring grid 

reliability and efficiency when a "ramp event" occurs. "Ramp event" refers to an event 

in which there is a rapid change in solar power generation. 
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Secondly, the effect of various nowcasting horizons on nowcasting performance 

demonstrates a clear trend. As the nowcasting horizons increase, the nowcasting of 

GHI, DNI and DHI decrease significantly. The crucial reason for this is that clouds are 

more likely to vary dramatically over a longer horizon. Despite this, the nowcasting of 

GHI, DNI and DHI for 10-sec, 1-min, 5-min and 10-min nowcasting horizons achieves 

reliable accuracy, especially 10-sec and 1-min. Therefore, the proposed solar 

irradiance nowcasting method demonstrates its robust ability to achieve very short-

term nowcasting of GHI, DNI and DHI. Similarly mentioned above, the 1-min 

nowcasting horizon of solar irradiance nowcasting is very suitable for responding to 

"ramp events". In addition, solar irradiance nowcasting for 5-min and 10-min 

nowcasting horizons are potentially valuable for building comfort adjustment, such as 

shading control, thermal and lighting control, etc. 

Thirdly, the effect of different sky conditions on nowcasting performance varies 

significantly. In general, the nowcasting of GHI and DNI achieves high accuracy under 

clear, light cloudy and overcast sky conditions. However, the nowcasting of GHI and 

DNI exhibits large errors under heavy cloudy sky conditions. That is because GHI and 

DNI, especially DNI, are sensitive to the changes in the relative position between the 

sun and clouds. Unlike GHI and DNI, the nowcasting of DHI always achieves very 

high accuracy regardless of sky conditions because the values of DHI usually are 

minor, and DHI are less affected by the changes in the relative position between the 

sun and clouds. Based on the above, the key finding of the effect of different sky 

conditions on nowcasting performance is the proposed solar irradiance nowcasting 

method performs well for the nowcasting of GHI, DNI and DHI under most of sky 

conditions. Although the performance of the proposed solar irradiance nowcasting 

method for DNI nowcasting is not stable enough under heavy cloudy sky conditions, 

it can still successfully predict the overall trend of the DNI. Consequently, the 

proposed solar irradiance nowcasting method can be adapted under different sky 

conditions, which meets the needs of the building's daily applications. 
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Fourthly, the crucial finding of the influence of different models on nowcasting 

performance is the proposed solar irradiance nowcasting model, ResNet-152, 

performs better than the baseline model - Multilayer Perceptron (MLP) and the 

benchmark model - Persistence Model (PM) for 5-min and 10-min nowcasting 

horizons. Although PM achieves the best nowcasting performance for 1-min 

nowcasting horizon, utilising PM requires much higher equipment costs and complex 

practical operations. That is because the utilisation of PM generally requires 

continuous solar irradiance or other weather parameters, such as temperature and 

humidity, as input of PM. The acquisition of these continuous data requires the long-

term use of expensive and complex solar pyranometers or weather stations. Unlike 

PM, although a solar pyranometer is also needed at the beginning to collect solar 

irradiance as training data, ResNet-152 only requires a very low-cost and user-friendly 

Raspberry Pi camera to collect continuous cloud images as the input in later daily use, 

which is ideal for popularisation in buildings. 

Finally, the comparative tests of nowcasting performance based on different 

datasets lead to two main findings. In the first place, based on 8 identical testing days, 

there is no significant difference in the performance of solar irradiance nowcasting 

models trained with 34 days of data from April to July and 48 days of data from April 

to September, which may be due to the lack of drastic changes in the sun and clouds 

from the end of spring to the beginning of fall. However, it is worth noting adding the 

same amount of winter data to the training set of the above models may result in 

decreases in nowcasting accuracy, as the position of the sun and the state of the 

clouds will be very different in winter compared to the period from April to September. 

In addition, while the solar irradiance nowcasting models trained with 48 days of data 

perform well for the GHI and DHI nowcasting of 4 testing days in December, they do 

not achieve ideal performance for the DNI nowcasting, especially compared to the 

DNI nowcasting of 12 testing days from April to September. The reason for the above 

finding may be the drastic changes in DNI due to the sun's lower position and 
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increased heavy cloudy sky conditions in winter. Based on the above, the impact of 

the expansion of training set on nowcasting accuracy needs to be further explored. 

Still, the effect of the seasonality of testing set on nowcasting accuracy is evident. 

Thus, using the same month’s data to train and test the solar irradiance nowcasting 

models could theoretically result in optimal accuracy. However, considering the total 

number of nowcasting models to be trained, using the data from the same season 

with similar sun positions and the state of clouds to train and test solar irradiance 

nowcasting models might be a more practical way to obtain the ideal nowcasting 

accuracy. In summary, the construction of seasonal nowcasting models might be 

more conducive to enhancing the building applicability of the proposed solar 

irradiance nowcasting method. 

5.1.3 Comparison with Contemporary State-of-the-Art Methods 

In this section, the nowcasting performance of the developed solar irradiance 

nowcasting method has been compared with state-of-the-art methods, and the results 

are presented as follow. In general, NWP methods and Top-down forecast methods 

are significantly less suitable for buildings than the proposed method according to 

spatial-temporal resolution. In addition, Statistic and Learning methods are also rarely 

used for the nowcasting with nowcasting horizons less than 30 minutes because it 

usually lacks minute-scale weather data sources, which provide GHI, temperature, 

humidity, etc., as model input. In this case, the proposed method is mainly compared 

with Bottom-up forecast methods and Hybrid methods.  

• Comparison with Bottom-up Forecast Methods 

[250] is a representative Bottom-up forecast method published in 2021, which 

utilised very complex image processing techniques. Due to the difference in 

the definition of cloudy sky conditions between this research and [250], the 

optimal and worst solutions of [250] under cloudy sky condition is chosen for 

comparison. In terms of MAE and RMSE, the 1-min GHI nowcasting 
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performance of proposed method demonstrates significantly lower errors 

under most sky conditions including cloudy and overcast sky conditions 

compared to [250]. Due to the nowcasting under cloudy and overcast sky 

conditions tends to be the most difficult, the reliability of proposed method is 

apparent. However, it is worth noting that MAE and RMSE are absolute 

indicators, so this difference may be induced by different datasets.  

Table 5.1 Comparison of 1-min GHI nowcasting performance with article [250]. 

• Comparison with Hybrid Methods 

[307] published in 2022 proposed a hybrid method which integrates Bottom-

up methods with Data-driven methods. First of all, the definitions of the sky 

conditions in this research and [307] are similar. Light cloudy, heavy cloudy 

and overcast in this research respectively corresponds to thin cloud, thick 

cloud and blocking cloud [307]. ABC corresponding to the Since both this 

research and [307] used MAPE as evaluation metric, it is straightforward to 

compare their nowcasting performance under different weather conditions. 

According to MAPE, the proposed method outperforms evidently than the 

method used in [307]. Therefore, the reliability of this research is comparable 

to that of complex hybrid methods.  

Table 5.2 Comparison of GHI nowcasting performance with article [307]. 

 

Sky Conditions MAE MAE ([250]) RMSE RMSE ([250]) 

Clear (1-min) 52.53 27 91.94 30 

Cloudy (1-min) 52.14 62 90.15 110 

Cloudy (1-min) 86.46 100 133.75 167 

Overcast (1-min) 44.14 127 66.85 177 

Sky Conditions MAPE MAPE ([307])  

Light Cloudy (Thin Cloud) 52.14 62 

Heavy Cloudy (Thick Cloud) 86.46 100 

Overcast (Blocking Cloud) 44.14 127 
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Another hybrid method developed by [283] is also compared with this research. 

In terms of MAE and RMSE, there are comparatively large gaps in 5-min GHI 

nowcasting performance between this research and [283]. As mentioned 

above, however, these evaluation metrics are absolute indicators and, 

therefore, may not accurately reflect the difference between these two studies. 

In this case, r, as a relative indicator, is more appropriate to respond to their 

difference. In general, the r of these two studies is close. In addition, the r of 

this research is close to 0.9, which implies the proposed method can 

accurately predict the trends of GHI. Thus, the proposed method remains 

generally reliable. 

Table 5.3 Comparison of 5-min GHI nowcasting performance with article [283]. 

In general, the r of these two studies is close. In addition, the r of this research 

is close to 0.9, which implies the proposed method can accurately predict the trends 

of GHI. Thus, the proposed method remains generally reliable. 

To sum up, the proposed method can achieve similar or better nowcasting 

performance compared to Bottom-up forecast methods. Additionally, although some 

advanced Hybrid methods show better performance than the proposed method in 

terms of absolute indicators. Their difference is not obvious according to relative 

indicator. Consequently, the developed solar irradiance nowcasting is generally 

reliable. 

Method MAE RMSE r 

Proposed Method 94.39 144.36 0.8839 

ASI1 Model ([283]) 29.1 64.4 0.94 

ASI2 Model ([283]) 29.2 63.4 0.94 

ASI3 Model ([283]) 36.2 68.0 0.93 

ASI4 Model ([283]) 35.5 66.2 0.94 

ASI5 Model ([283]) 37.5 65.9 0.94 
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5.2 Limitations of the Research 

Apart from the contributions of this research, the limitations of this research need 

to be articulated. To sum up, the limitations of this research mainly involve: 

• Amount of Data and Diversity of Datasets. 

Although a total of about 12 months of cloud images and solar irradiance data 

were collected in Cardiff and Shanghai during the research period, only 60 

days of data collected in Shanghai were used in this research, taking into 

account a range of factors such as the quality, integrity and diverse sky 

conditions represented by these data. In this case, more high-quality, 

integrated data with more diverse characteristics, such as territoriality, 

seasonality and sky conditions, need to be collected to expand the volume 

and characteristics of datasets. In addition, more combinations of datasets 

with larger amounts of data and more diverse characteristics need to be tested 

to verify the generalisability of the proposed solar irradiance nowcasting 

method. Consequently, this research has been limited by the amount of data 

and the diversity of datasets.  

• Image Processing Techniques. 

To ensure that the proposed solar irradiance nowcasting method achieves 

reliable accuracy and reduced the time consumption of computation, this 

research relies heavily on the machine learning of cloud image by the 

nowcasting model. Thus, only two technologies, including High Dynamic 

Range (HDR) Synthesis and Masking are used for image processing. 

However, more image processing techniques related to distortion calibration 

of images, image binarization, colour threshold adjustment, pixel recognition 

of the sky and clouds, etc, can be used to optimise the processing of cloud 

images to obtain more ideal input for the proposed solar irradiance nowcasting 

model. In this case, it is necessary to find the right balance between the 
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degree of image processing and the time consumption of computation in the 

future. Thus, this research has been limited by image processing techniques. 

Nevertheless, a more advanced image processing technique has been 

developed and published in a journal article by the author but not presented 

in this research since the integration of that image processing approach and 

the proposed method in this research will take time to explore.   

• Training Time. 

Due to the large number of high-resolution cloud images that need to be 

processed, a significant amount of training time is needed by the proposed solar 

irradiance nowcasting model. In this research, the training time for a single 

nowcasting model was several hours or even a couple of days. Moreover, the 

time consumption of model training in different comparative tests for various 

purposes, including parameter adjustment, model optimisation, various model 

comparisons, etc, will increase exponentially. In this case, this research has 

been limited by the training time.  

• Nowcasting Model. 

Although the proposed solar irradiance nowcasting model can provide reliable 

nowcasting of GHI, DNI and DHI, there is still much room for its optimisation. 

First, the accuracy of the nowcasting model is impacted by a series of model 

parameters, such as the number of hidden layers, activation functions, the 

number of nodes in each layer, learning rate, weights, the number of iterations, 

etc. In general, these parameters are usually set to default values. However, 

it is necessary to find their optimal values for optimising the performance of 

the nowcasting model. Secondly, a series of various architectures of ResNet 

are available, such as ResNet-18, ResNet-50, ResNet-1202, etc. Various 

architectures of ResNet imply different nowcasting accuracy, computational 

ability and training time. Thus, it is worth conducting more comparative tests 

to explore the optimal architecture according to different specific purposes. 
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Thirdly, the training and optimization of the nowcasting model need to collect 

data from the same location over a long period of time that is not conducive to 

locations or buildings where data is difficult to obtain. In this case, additional 

data processing approaches need to be explored and integrated with the 

nowcasting model to generalise beyond the model training location in data-

scarce conditions. To sum up, more exploration of model parameters, 

architectures of ResNet and data processing approaches is needed to 

optimise the nowcasting model.  

• Stability of Equipment Operation.  

The stability of the equipment operation affects the continuity and quality of 

data collection. Due to the epidemic control of COVID-19 and the 

administrative policy of Tongji University, the Raspberry Pi camera used in 

this research must be reinstalled daily and thus is not equipped with fixed rain 

protection, which adds a significant amount of additional movement and 

installation labour, affecting the efficiency and quality of data collection. Thus, 

this research has been limited by the stability of the equipment operation. 

• Design of Comparative Tests. 

There is still a lot of room for improving the design of comparative tests in this 

research. Firstly, a larger number of diverse datasets and more varied 

nowcasting horizons need to be used to test the effect of time intervals on 

solar irradiance nowcasting and find an optimal time interval. In addition, more 

comparative tests for longer nowcasting horizons need to be conducted to 

explore the maximum nowcasting horizon of the proposed solar irradiance 

nowcasting. Moreover, data from more days under different sky conditions 

need to be used to validate the accuracy of the nowcasting model further. 

Besides, the proposed solar irradiance forecasting model needs to be 

compared with other advanced forecasting models to verify its strength. 

Additionally, more datasets of different magnitudes and different seasons 



Ph.D. Thesis   Lei Chen 

 

Cardiff University                                                          176                                    Welsh School of Architecture 

 

need to be used to explore the influence of dataset selection on nowcasting 

performance. In the end, the impact of the setup parameters or different 

architectures of the nowcasting model could be investigated through more 

comparative tests. 

• Research for Practical Building Applications. 

The main concern of this research is to develop a solar irradiance nowcasting 

method to provide reliable GHI, DNI and DHI, which are very unpredictable 

critical weather data for building applications. As a result, although the study 

of the practical building applications of the proposed solar irradiance 

nowcasting method is already underway, it is not presented in this research. 
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5.3 Current and Potential Applications of Solar Irradiance 

Nowcasting Method in Buildings  

This research has developed a solar irradiance nowcasting method to achieve 

the nowcasting of GHI, DNI and DHI for buildings. Based on a series of comparative 

tests, the nowcasting GHI, DNI and DHI at various time intervals (10-sec, 1-min, 5-

min and 10-min) for different nowcasting horizons (10-sec, 1-min, 5-min and 10-min) 

have been proven to be reliable. These very short-term GHI, DNI and DHI nowcasting 

with high spatial-temporal resolution will be valuable weather data for buildings and 

their future development. Specifically, the nowcasting of GHI, DNI and DHI can be 

applied to diverse aspects of buildings, such as energy management, energy system 

protection, lighting and shading system regulation, intelligent building facade control, 

etc, to optimise the operational efficiency and safety of building systems, occupant 

comfort and the design of building. Based on the above, several current and potential 

applications are discussed to articulate the value and perspective of the developed 

solar irradiance nowcasting method for buildings that will provide initial sights for 

subsequent research.  

5.3.1 Current Applications of Solar Irradiance Nowcasting Method in 

Buildings 

This section presents current applications of solar irradiance nowcasting method 

in buildings, mainly involving energy management and energy system protection. 

• Energy Management.  

Reliable solar irradiance nowcasting is significant for building energy 

management. Nowadays, a single large commercial or industrial building, an 

individual small intelligent building or a cluster of buildings, such as a campus, 

forms an individual micro-gird in fact. In this case, the integrated Energy 

Management System (EMS) of buildings can utilise solar irradiance 

nowcasting to optimise energy rationing between the solar panels of micro-
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girds and the grid. In specific, EMS can reduce the amount of electricity 

purchased from the grid and rely on the electricity generated by solar panels 

to meet most of the building’s needs. This not only reduces energy costs but 

also reduces the impact on the environment. In addition, solar irradiance 

nowcasting can be used to ensure the stability of micro-girds equipped with 

PV panels. A Battery Energy Storage System (BESS) can be charged with 

solar energy when the amount of energy generation in a building exceeds its 

demand. It can be discharged at moments when the building load is at its peak 

or when energy system issues happen. In this case, BESS can be used in 

conjunction with solar irradiance nowcasting to maintain the stability of micro-

girds by discharging energy during the fluctuations of solar energy. A series 

of studies have demonstrated current applications of solar irradiance 

nowcasting for energy management, involving operational planning, electricity 

market transaction, peak load matching, load following, etc [355-361]. 

According to the survey responses in [362], the majority of respondents 

believe very short-term solar irradiance forecasting can enable an increase in 

PV penetration in a microgrid. The 1-min, 5-min and 10-min nowcasting of 

GHI, DNI and DHI acquired in this research are all very suitable for this type 

of application. 

• Energy System Protection.  

Rapid transitions of clouds create a great deal of dramatic fluctuations in very 

short-term PV power variations that cause “Ramp Events”. These "ramp 

events" can damage grid transient stability, leading to voltage flickers or even 

blackouts, which increase wear and tear on generation and transmission 

equipment, shortening equipment life and increasing maintenance costs. For 

example, for those girds equipped with fixed PV panels, although “Ramp 

Events” do not directly cause physical damage to PV panels, they can affect 

certain equipment in the system, such as inverter. An inverter is a device that 
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converts direct current (DC) generated by photovoltaic (PV) panels into 

alternating current (AC). During “Ramp Events”, inverters need to rapidly 

respond to drastic changes in power output. This can lead to frequent 

adjustments in output, increasing the operational burden and wear on the 

inverter. In addition, “Ramp Events” also lead to negative impact to PV panels 

equipped with trackers. When “Ramp Events” happen, frequent adjustments 

of the tracking system to cope with rapidly changing solar radiation conditions 

may increase the wear and tear of mechanical parts and the probability of 

failure, thus affecting the long-term reliability of the system and increasing 

maintenance costs. Moreover, although auto-tracking PV panels can adjust 

its orientation to maximise sunlight reception, under the influence of rapidly 

changing cloud cover during “Ramp Events”, the system may not be able to 

respond quickly enough to adjust to the optimal angle in time and accurately, 

resulting in energy loss. According to the above, the benefits of solar 

irradiance nowcasting for the grids and PV panels are obvious. Using solar 

irradiance nowcasting, solar systems can take measures in advance to adjust 

system operation, power production and distribution to protect the equipment 

of solar systems. In conclusion, utilising solar irradiance nowcasting to protect 

solar systems is valuable and thus some studies related to spinning reserve 

and ramp rates control have been executed [363, 364]. The 1-min nowcasting 

of GHI, DNI and DHI are the optimal choice for this type of application because 

of the high-frequency variations of solar irradiance.  

5.3.2 Potential Applications of Solar Irradiance Nowcasting Method in 

Buildings 

Potential applications of solar irradiance nowcasting method in buildings, 

including lighting and shading system regulation, pre-conditioned HVAC systems, and 

intelligent building surface design, are demonstrated in this section. 
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• Lighting and Shading System Regulation.  

Solar irradiance nowcasting is also very valuable for lighting and shading 

system regulation. Firstly, solar irradiance nowcasting can be integrated into 

intelligent lighting systems, enabling the system to automatically adjust the 

brightness and colour temperature of indoor lighting based on predicted 

changes in solar irradiance. For example, when strong solar irradiance is 

predicted, the system can automatically dim indoor lights to reduce energy 

consumption and maintain a comfortable visual environment. Secondly, 

buildings can be assembled with smart shading systems, such as automatic 

blinds, smart glass or motorised curtains. These devices can be linked to a 

centralised control system that automatically adjusts to solar irradiance 

nowcasting. Specifically, when solar irradiance nowcasting indicates imminent 

high-intensity solar irradiance, a smart shading system can automatically 

regulate shading devices to block sunlight, reducing indoor temperature rise 

and air-conditioning load. At moments of low solar irradiance, smart shading 

devices can adjust to allow more natural light in, increasing heat utilisation and 

reducing lighting requirements. In conjunction with this research, the 1-min 

and 5-min nowcasting of DNI and DHI are ideal for the sensitive regulation of 

lighting and shading systems. 

• Pre-conditioned HVAC Systems.  

Heating, Ventilation, and Air Conditioning (HVAC) systems in buildings often 

include thermostats and automated control units that receive and analyse 

solar irradiance data. In this case, HVAC systems can utilise solar irradiance 

nowcasting to adjust the operating modes in advance. For instance, before 

the indoor temperature is predicted to rise due to the increase in solar 

irradiance, an HVAC system can lower the indoor temperature to prevent 

sudden increases in temperature that could cause discomfort. Conversely, if 

a decrease in solar irradiance is predicted, the system can slightly raise the 
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indoor temperature to maintain comfort without overly relying on heating 

equipment. In addition, the ventilation system can be pre-adjusted in response 

to expected changes in indoor temperature and air quality based on solar 

irradiance nowcasting. For example, if enhanced solar irradiance is predicted, 

the ventilation system can automatically open windows or vents to increase 

the flow of fresh air in advance, preventing excessive indoor temperatures and 

adjusting air quality. Due to the changes in thermal and air environments 

taking longer to occur, the 10-min nowcasting of GHI and DNI achieved in this 

research is more likely to be used for the abovementioned applications in 

some special scenarios, such as greenhouses, rooms with solar chimneys or 

extensive glass coverage, etc, where risk of overheating exists.  

• Intelligent Building Surface Design.  

Solar irradiance nowcasting can also be used in conjunction with intelligent 

interactive systems for buildings and environments to affect the design of 

intelligent building surfaces. The 10-min nowcasting of GHI, DNI and DHI 

obtained in this research has potential to be used for this application 

considering the response time of building operations.   

To sum up, the above building applications of solar irradiance nowcasting can 

more accurately control the energy consumption, operation cost and indoor 

environment of buildings, optimising operational efficiency and safety of building 

systems as well as enhancing the comfort of the living or working environment. 

Although only some of the above applications are used actually and many building-

related software have not yet well supported the utilisation of high-resolution solar 

irradiance, other potential applications will, in turn, drive the development of building-

related software and building intelligence in the future. Most importantly, it is worth 

noting that when these applications do not operate separately but together, a whole 

intelligent building system will be formed, where the solar irradiance nowcasting will 

demonstrate its maximum application value. 
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5.3.3 Case Study on The Application of Solar Radiation Nowcasting in 

Buildings 

Since this research focuses on a very narrow subject, the nowcasting of solar 

irradiance data, the relationship between solar irradiance nowcasting and buildings 

has hardly been discussed specifically at current research. However, it is not difficult 

to find the value of this research from many studies.  

[365] explores short-term forecasting photovoltaic solar power for home energy 

management systems. In this article, the significance of DNI for architecture and 

energy management, particularly in Concentrated Photovoltaic (CPV) systems, is 

extensively discussed. In addition, this article developed a short-term photovoltaic 

solar power forecasting method based on an ANN and GHI is one of the four key 

variables used to train the forecasting model. In this study, historical GHI obtained 

from the database of Honda Smart Home (HSH) US is be used as input of the 

forecasting model after a series of pre-processing steps, finally achieving a 15-minute 

solar power forecasting. Based on the above, it is evident that accurate minute-scale 

nowcasting of GHI are more suitable for the forecasting model than historical data, 

because the timestamp of historical GHI and predicted solar power do not match, 

while the timestamps of predicted GHI can be kept consistent.  

In [366], an effective energy management approach is designed to systematically 

regulate energy usage in residential areas, aiming to reduce the peak to reduce 

electricity costs and pressure, optimise the scheduling of smart appliances and 

electric vehicles, lower electricity costs, and enhance user comfort. According to the 

article, the prediction of solar irradiance is the foundation for accurate power 

generation estimation, which plays a key role in microgrids and home energy 

management systems (HEMS).  

In summary, although the primary focus of the above studies is not on solar 

irradiance nowcasting, the role of solar irradiance nowcasting is critical to them. To 
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more intuitively illustrate the impact the application of solar irradiance nowcasting on 

buildings, a practical case is demonstrated below. 

[28] explores the relationship between weather forecasting, specifically 

nowcasting, and building performance. In specific, the article discusses how accurate 

weather nowcasting, especially the nowcasting of solar irradiance, can impact the 

precision of dynamic building simulations. These simulations can predict indoor 

temperature variations and heating loads, which are essential for maintaining energy 

efficiency and comfort in buildings. Three buildings from BESTEST case studies are 

used to conduct dynamic building energy simulations base on simulation engine 

EnergyPlus. The findings of this study suggest that weather nowcasting (including 

solar irradiance nowcasting) can lead to accurate building performance simulations, 

especially in buildings without significant south-facing glazing. For buildings with large 

south-facing windows, however, the variance in solar irradiance nowcasting can lead 

to discrepancies, indicating the need for further improvement of solar irradiance 

nowcasting techniques for these specific scenarios. Some relevant results of building 

simulation of this study are displayed in Figure 5.1-5.5. Based on the above, the 

application of solar irradiance nowcasting has an evident impact on buildings that 

proves the value of this research.  

 

Figure 5.1 A single zone building with large glazing - Case 640/940/900FF defined within 

ANSI/ASHRAE Standard 140-2014  

(Resource: H. Du, C.F. Bandera, L. Chen, Nowcasting methods for optimising building performance, 

(2019).) 
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Figure 5.2 Global radiation forecast vs observation 

(Resource: H. Du, C.F. Bandera, L. Chen, Nowcasting methods for optimising building performance, 

(2019).) 

 

Figure 5.3 Indoor temperature prediction on building with south facing glazing 

(Resource: H. Du, C.F. Bandera, L. Chen, Nowcasting methods for optimising building performance, 

(2019).) 
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Figure 5.4 Indoor temperature prediction on building with north facing glazing 

(Resource: H. Du, C.F. Bandera, L. Chen, Nowcasting methods for optimising building performance, 

(2019).) 

 

Figure 5.5 Heating load for building with north facing glazing  

(Resource: H. Du, C.F. Bandera, L. Chen, Nowcasting methods for optimising building performance, 

(2019).) 
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5.4 Implications of The Research  

Based on the discussion above, this research carries profound implications for 

both academic community and practical applications. It not only addresses existing 

gaps in the field of solar irradiance forecasting but also suggests consequential impact 

on society and economy. This section explores these implications in detail, 

highlighting how they contribute to advancing knowledge and promoting potential 

social and economic development.  

5.4.1 Academic Implication - Systematic Literature Review. 

The critical value of the systematic literature review in this research is that it 

provides a well-defined review methodology that includes a series of benefits.  

• Comprehensiveness and Objectivity. 

The developed systematic review methodology requires a thorough search of 

all potentially relevant literature to minimise the risk of missing important 

studies. In this case, the comprehensiveness and objectivity of research are 

increased through explicit criteria for selecting and assessing literature. 

• Reproducibility.  

The developed systematic review methodology clearly defines the 

approaches and processes of different steps, involving identification, 

screening, eligibility, inclusion and analysis. This well-defined approaches and 

processes ensure the transparency and reproducibility of the research. 

• Evidence Synthesis.  

The developed systematic review methodology help synthesise the results of 

numerous studies, providing stronger evidence to support or refute a 

hypothesis. Thus, it is particularly suited for evaluating and comparing results 

across different studies. 

• Identifying Research Gaps. 

Based on the developed systematic review methodology, the research gaps 
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are identified more objectively and efficiently, guiding future research 

directions. 

• Knowledge Updating. 

As new research continually emerges, the developed systematic review 

methodology is conductive to regularly update the review, providing the latest 

research trends and findings. 

• Decision Support.  

The high-quality evidence provided by systematic literature reviews can help 

policymakers and practitioners make evidence-based decisions. 

In summary, a systematic literature review is a comprehensive research method 

that systematically collects, assesses, and synthesises all relevant research findings 

to answer a specific research question. Currently, systematic literature reviews are 

widely used in fields such as medicine, social sciences, and environmental science, 

and are considered one of the highest levels of evidence sources. Based on 

references to other systematic literature reviews, the systematic review methodology 

developed in this research can help relevant researchers, practitioners and the public 

quickly and comprehensively understand the field of solar irradiance forecasting. In 

addition, the well-defined review methodology not only address the limitations of 

current literature review, but also provides a methodological paradigm of literature 

review for researcher, especially individual researcher. 

5.4.2 Academic Implication - Solar Irradiance Nowcasting Method. 

The crucial contribution of the proposed solar irradiance nowcasting method lies 

in the integration of diverse approaches and techniques across different stages of 

solar irradiance forecasting. Based on the proposed nowcasting method, the 

nowcasting of three critical solar irradiance components - GHI, DHI and DNI - with 

high spatial-temporal resolution are achieved, which is the most significant 

contribution of this research to the field of solar irradiance forecasting. That is because 
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there are small amounts of studies can achieve minute-scale nowcasting with very 

high spatial-temporal resolution (1 metre to 2 kilometres, 10 seconds to 10 minutes), 

and even less of them simultaneously predict three critical solar irradiance 

components - GHI, DHI and DNI, especially DNI.  

Similar to common studies, this research also makes considerable efforts in the 

development and optimisation of solar irradiance nowcasting models - ResNet-152, 

which mainly involves the following aspects: 

• Model Selection. 

The selection of ResNet-152 is critical to the development of solar irradiance 

nowcasting models. Although ResNet-152 performs better than most CNNs 

according to accuracy, computational time consumption and number of 

parameters and has been extensively applied in different fields, it has also 

hardly been used in research on solar radiation forecasting. Besides, ResNet-

152 has obvious advantages for the crucial task of this study - cloud images 

recognition, as demonstrated in section 3.3.1.1. Therefore, it is very valuable 

to explore the application of ResNet-152 in the field of solar irradiance 

nowcasting. 

• Data Preprocessing. 

As a typical data-driven model, data preprocessing is also a crucial part to the 

development of ResNet-152. In this research, the data preprocessing method 

is adjusted according to the capabilities of ResNet-152. Relying on the 

powerful image recognition capabilities of ResNet-152, this research simplifies 

the conventional flow of data preprocessing. In this research, only two crucial 

image preprocessing techniques, HDR Synthesis and Masking, are used, 

which efficiently reduces the time consumption required for model training and 

testing, making it more conducive to practical applications.  

• Model Optimisation. 

The utilisation of L2 functions and the adjustment of hyperparameters are the 
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main means for the optimisation of ResNet-152 in this research. For deep 

neural networks such as ResNet-152, the L2 function has obvious advantages 

in preventing overfitting and optimising the training stability and generalisation 

ability of the network. In this research, the selection of L2 function efficiently 

helps the ResNet-152 converge faster to a lower error rate. In addition, a 

series of key hyperparameters, such as learning rate, epochs, are manually 

and constantly adjusted to compare the nowcasting performance of ResNet-

152. In this case, the effect of hyperparameters is evaluated and the optimal 

configuration for ResNet-152 is finally selected in iterative processes.  

• Evaluation Methods. 

Diverse verification metrics and designs of tests are also important to the 

optimisation of ResNet-152. By applying various verification metrics, the 

nowcasting performance of the ResNet-152 in different circumstances, 

including time intervals, nowcasting horizons, sky conditions, benchmark 

models, and datasets, are compared from various perspectives.   

In summary, the contributions of this research to the development and 

optimisation of solar irradiance nowcasting models encompass everything from 

proposing the use of the ResNet-152, simplifying data preprocessing to tuning model, 

and then implementing and evaluating the model. 

However, unlike common studies that focus on the development or optimisation 

of forecasting models, this research constructs a systematic research methodology 

that not only focuses on the forecasting models, but also involves the processing and 

optimisation of model input data, the selection of low-cost equipment and user-friendly 

programming, as well as diverse comparative tests and validation methods. These 

efforts are beneficial for subsequent researchers to follow and increase the 

applicability of the proposed nowcasting method. Additionally, the collection of solar 

irradiance data with high spatial-temporal resolution, the settings and parameters for 

model training are also significant contributions of this research, especially for data-
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driven methods that have become increasingly popular in recent years due to the 

development of artificial intelligence. In general, the contribution of this research is 

more in the collection of specific solar irradiance data and application of diverse 

forecasting approaches and techniques than in the development of forecasting model. 

5.4.3 Practical Implication - Low-cost Equipment and User-friendly 

Programming. 

According to the Table 3.1-3.2 in section 3.2.2, the nowcasting method proposed 

in this research only requires the temporary use of a BF5 Sunshine Sensor worth 

£3,200 at an early stage. Thus, it can be rented at a low cost instead of being 

purchased. In long-term practical use, the method merely requires equipment worth 

around £300, including a Raspberry Pi computer, a mobile phone tripods and other 

accessories. Therefore, the practical application of the proposed nowcasting method 

is very low-cost. In contrast, representative equipment, such as a SPN1 Sunshine 

Pyranometer, usually costs around £7,000. The huge difference in cost between the 

above devices is self-evident, which is usually determined by the following reasons. 

• Material Costs. 

Expensive devices use higher-quality materials that are more durable and 

stable.   

• Research and Development Investment. 

Expensive devices are often based on substantial research and development 

investments, both in terms of time and money. These investments need to be 

recovered through the selling price of the product. 

• Technology, Accuracy and Functions. 

Expensive devices use advanced technologies, such as more sophisticated 

sensors and processors, to improve measurement accuracy and provide more 

functions. These technologies are more expensive. For example, SPN1 

Sunshine Pyranometer can directly achieve the measurements of GHI, DHI 
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and DNI, While BF5 Sunshine Sensor can merely measure GHI and DHI.  

• Production Scale. 

Currently, the measurements of solar irradiance are only required by a few 

professional institutions and companies, which determines the expensive 

devices is produced in smaller quantities. In this case, its production costs are 

usually higher because economies of scale cannot be achieved. 

• Market Positioning. 

The manufacturers of expensive devices position their products in the high-

end market, mainly targeting professional institutions and companies and offer 

additional features or services, which results in higher pricing. 

Based on the above reasons, the prices of these expensive devices are unlikely 

to decrease in the short term. In this case, the value of the low-cost equipment 

developed in this research is obvious. In addition to the low-cost equipment, the 

programming of this research is based on Python, which have many significant 

benefits for the ordinary researchers and public. 

• Lowering Entry Barriers. 

Python is a high-level programming language with simple, readable syntax, 

making it ideal for beginners. In addition, Python has an extensive range of 

learning resources, tutorials, and community support, making it easy for self-

learners. 

• Promoting Technology Accessibility.  

As an open-source programming language, Python is free to use and can be 

modified and distributed by anyone. This makes it accessible to people from 

all over the world, promoting the widespread use and innovation of technology. 

• Encouraging Community Collaboration and Innovation. 

Python allows developers and users to contribute to the codebase, constantly 

improving projects. Community members help each other increase 

productivity by sharing code and tools.  
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• Enhancing Interdisciplinary Collaboration. 

Python is widely used in various disciplines and industries, such as 

environmental science, healthcare, architecture, and finance. Its simple 

syntax and powerful libraries make it easier for experts from different fields 

and regions to collaborate, promoting knowledge sharing and technology 

development worldwide. 

• Reducing Development Costs. 

Python are typically free and has a vast array of third-party libraries and tools 

(e.g., NumPy, Pandas, TensorFlow), which users can directly utilise to 

implement various functionalities. Compared to expensive proprietary 

software, open-source programming significantly lowers development and 

deployment costs.  

• Supporting Sustainable Development and Environmental Protection. 

Python encourages code reuse and sharing, avoiding unnecessary resource 

waste and repetitive work, which has a positive impact on environmental and 

resource conservation. 

• Increasing Technological Self-Sufficiency. 

Python allows users to tailor solutions according to their needs, without relying 

on commercial software vendors' services and pricing strategies. This is 

important for researchers, individuals, and small businesses. 

In summary, this research combines low-cost equipment with user-friendly 

programming to replace expensive equipment, providing the public and ordinary 

researchers with convenient, efficient, and low-cost means to apply solar irradiance 

nowcasting on the buildings where they work and live every day. 

5.4.4 Potential Social and Economic Impacts. 

Based on the academic and practical implications discussed above, the potential 

social and economic Impacts of the proposed solar irradiance nowcasting method is 
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discussed below. 

• Potential Social Impacts. 

c) Improving Occupant Comfort. 

More precise indoor environmental control can create a more comfortable 

environment for occupants by adjusting indoor temperature and lighting in 

advance according to the nowcasting of solar irradiance. This 

improvement in comfort can have a positive impact on social well-being by 

increasing employee productivity and occupant quality of life. 

d) Reducing Carbon Footprint. 

By using solar irradiance nowcasting, buildings can optimise energy use 

to reduce carbon emissions, thereby mitigating the urban heat island effect 

and improving air quality. This is significant for improving public health and 

promoting environmental sustainability, which is conducive to creating a 

more liveable urban environment. 

e) Supporting the Sustainable Development Goals (SDGs). 

The use of solar irradiance nowcasting in building energy systems can 

make important contributions to several specific SDGs.  

Goal 7: Affordable and Clean Energy. 

Solar irradiance nowcasting can further promote the development of solar 

energy systems in buildings, thereby raising public awareness of clean 

energy, reducing their cost of using clean energy, and finally facilitating the 

popularisation of clean energy.  

Goal 11: Sustainable Cities and Communities. 

Solar irradiance nowcasting can help buildings optimise the energy 

management, reducing the need for HVAC systems, lowering energy 

consumption. This promotes the development of more environmentally-

friendly and energy-saving construction of cities and communities.  

Goal 13: Climate Action. 
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Solar irradiance nowcasting can enable buildings to use solar energy more 

efficiently, thereby reducing greenhouse gas emissions. This directly 

supports the goal of combating climate change and promotes global 

climate action. 

•  Potential Economic Impacts. 

a) Cost Savings. 

By using solar irradiance nowcasting to precisely control the energy use, 

unnecessary electricity, heat consumption and equipment operation in 

buildings can be reduced, directly lowering operating costs. In addition, 

energy conservation and emission reduction can also reduce investment 

in facility maintenance and potential fines or taxes due to increasingly rigor 

environmental regulations. 

b) Improving Energy Efficiency. 

Using solar irradiance nowcasting and energy management system, 

buildings can achieve higher energy efficiency, which means maximising 

resource use, reducing energy consumption, and lessening dependence 

on traditional energy sources, supporting energy diversification strategies.  

c) Long-term Financial Benefits. 

The use of solar irradiance nowcasting can bring significant long-term 

financial benefits for buildings. 

Benefit 1: Long-term Cost Savings. 

As mentioned above, solar irradiance nowcasting can promote buildings 

improving energy efficiency, reducing the use of traditional energy, 

extending equipment life. In this case, the cost of energy use, system 

operation and equipment maintenance can be effectively reduced, 

especially in the long term. 

Benefit 2: Return on investment (ROI). 

Base on solar irradiance nowcasting, solar energy system optimisation in 
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buildings can provide a high ROI for buildings in the long term. As the 

application of solar radiation nowcasting in buildings becomes 

increasingly widespread, its application cost will gradually decrease, while 

energy efficiency will constantly improve. In this case, investors can 

recover the investment costs more quickly, thereby achieving long-term 

financial benefits.  

Benefit 3: Industry Development and Job Opportunities. 

Applying solar irradiance nowcasting to optimise solar energy system 

optimisation in buildings can also facilities the development of advanced 

technologies and job creation in related fields, positively impacting 

economic restructuring and the growth of emerging industries. 

In conclusion, solar irradiance nowcasting has far-reaching impacts on both 

society and economy. It can improve the comfort of the living and working 

environment, support sustainable development goals, while improving energy 

efficiency and long-term financial benefits. 
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5.5 Chapter Summary 

In summary, this chapter first provides an in-depth interpretation for the results of 

solar irradiance nowcasting. At the beginning, five groups of comparative tests are 

briefly reintroduced. Then, the major findings of this research, the reasons for the 

findings and the potential effects of the findings are articulated to deliver a 

comprehensive understanding of the research results. In the end, the results of the 

proposed method are compared with those of contemporary state-of-the-art methods 

to demonstrate the reliability of the proposed method. 

Based on the interpretation of research results, a series of limitations of the 

research is presented, involving an amount of data and diversity of datasets, image 

processing techniques, training time, nowcasting model, stability of equipment 

operation, design of comparative tests, and research for practical building 

applications. The elaboration of research limitations will provide future research. 

Most importantly, current and potential building applications of solar irradiance 

nowcasting and the Implications of the research are discussed at the end of this 

chapter to emphasise the value and prospective of this research for building 

operational efficiency and safety, occupant comfort and design.  
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Chapter Six 

6 Conclusion  

The above chapters thoroughly describe the literature review, research 

methodology, results verification and analysis, discussion of this research. Thus, the 

purpose of this chapter is to conclude this research. 

An overview of the research is first presented to reiterate the background, 

importance, aim, questions of the research and demonstrates the relationship 

between research questions and chapters. Then, the major findings of the research 

are articulated again. After that, the main contributions of the research are 

demonstrated. Ultimately, all research activities, contributions, limitations, future 

works, and the significance of the research are concluded at the end of this chapter.  
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6.1 Overview of the Research 

Solar energy, as one of the most promising renewable energies, has been widely 

used in recent decades to reduce carbon emissions in human living and production, 

which is the cause of the growth of global greenhouse gases. Although solar energy 

is abundant and widespread, its instability - caused by a series of factors such as the 

movement of the sun, changing cloud cover, water vapour, and air pollution - presents 

significant challenges in its effective utilisation. Therefore, anticipating fluctuations in 

solar energy, especially the changing pattern of solar irradiance, can contribute to the 

effectiveness of solar applications. In this case, a large number of solar irradiance 

forecasting methods have been developed to achieve reliable solar irradiance 

forecasting.  

Buildings, which are fundamental to human living and production, consume 

substantial energy while generating a vast amount of carbon emissions. 

Consequently, employing solar irradiance forecasting methods to enhance the 

efficient utilisation of solar energy in buildings holds significant importance. However, 

most solar irradiance forecasting methods are usually not customised for buildings 

and do not meet the needs of future building intelligence. Fortunately, a range of 

emerging opportunities, including the recent development of building intelligence, the 

5G internet, and the emerging solar irradiance nowcasting methods with high spatial-

temporal resolution, bring the possibility to the development of solar forecasting 

methods suitable for buildings.  

The importance of this research is to explore the solar irradiance nowcasting 

methods appropriate for buildings from an architectural perspective. In this context, 

this research mainly includes three significant tasks. At first, this research needs to 

explore what solar irradiance forecasting methods are more applicable and reliable to 

buildings. Then, this research needs to develop an interdisciplinary research 

methodology for solar irradiance nowcasting by integrating knowledge of meteorology, 
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imagery, computer science, and architecture. Finally, this research needs to discuss 

the potential value of solar irradiance nowcasting to buildings and the development of 

future buildings that provide initial inspiration for subsequent research.  

Based on the above, the aim of this research is to develop a solar irradiance 

nowcasting method with high spatial-temporal resolution based on low-cost 

equipment and user-friendly programming to achieve reliable nowcasting of GHI, DNI 

and DHI for buildings and discuss its current and potential applications in buildings.  

In response to a series of research gaps, five critical research questions were 

proposed and answered by the main research activities of this research.  

1. How can a literature review be conducted based on a clear methodology to 

screen the solar irradiance forecasting methods appropriate for buildings?  

This research question was answered in Chapter 2 - Literature Review.   

In Chapter 2, this research applied a clear methodology of systematic review 

to identify the solar irradiance forecasting methods appropriate for buildings 

according to a series of different characteristics, including forecasting horizons, 

spatial-temporal resolution, data acquisition ways, forecasting parameters, 

equipment and programming, etc. 

2. How can a solar irradiance nowcasting method appropriate for buildings be 

developed?   

This research question was answered in Chapter 3 - Research Methodology.   

In Chapter 3, this research developed a solar irradiance nowcasting method 

with very short-term forecasting horizons and high spatial-temporal resolution 

to achieve the nowcasting of GHI, DNI and GHI appropriate for buildings by 

utilising low-cost equipment, user-friendly programming and a promising 

Residual Neural Network (ResNet-152) model. 

A clear workflow of research methodology with three main stages, including 

data collection and processing, solar irradiance nowcasting, comparative tests 

and verification, was demonstrated in Chapter 3. Specifically, the first stage of 
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the research methodology showed the collection approaches of consecutive 

cloud images, GHI and DHI, and the procedures of data processing involving 

image processing and data alignment. Then, the second stage of the research 

methodology demonstrated the procedures of solar irradiance nowcasting, 

including dataset collation, the training of the ResNet-152 nowcasting model, 

the nowcasting of GHI and DHI, the calculation of DNI from the nowcasting of 

GHI and DHI. Finally, the third stage of the research methodology described 

a series of comparative tests aimed at exploring the effect of different factors, 

including time interval, nowcasting horizons, sky conditions, forecasting 

models and datasets, on the performance of the developed solar irradiance 

nowcasting method and the setup of these comparative tests.  

3. How can the results of solar irradiance nowcasting be generated?   

This research question was initially answered in Chapter 3 - Methodology and 

mainly responded Chapter 4 - Results Verification and Analysis of Solar 

Irradiance Nowcasting.     

At the end of Chapter 3, the setup of a series of comparative tests is 

demonstrated. These setups involve the selection of time intervals and 

forecasting horizons, the classification of sky conditions, comparative models 

and the selection of evaluation metrics. Based on the developed methodology 

of solar irradiance nowcasting and the above test setups, a series of 

comparative tests were specifically executed in Chapter 4, which generated 

the nowcasting results of GHI, DNI, and DHI. 

4. How can the reliability of solar irradiance nowcasting be verified?   

This research question was initially responded to in Chapter 3 - Methodology 

and mainly answered in Chapter 4 - Results Verification and Analysis of Solar 

Irradiance Nowcasting.   

At the end of Chapter 3, this research first assessed the characteristics and 

popularity of different evaluation metrics, such as MAE, RMSE, MAE, nRMSE, 
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etc, according to the literature review in Chapter 2. Then, several appropriate 

evaluation metrics were selected to evaluate the reliability of solar irradiance 

nowcasting from various perspectives. Based on the abovementioned 

comparative tests and selected evaluation metrics, Chapter 4 specifically 

demonstrated the reliability of solar irradiance nowcasting under the influence 

of different factors.   

5. What current or potential building applications can the proposed solar 

irradiance nowcasting method be applied to?  

This research question was answered in Chapter 5 - Discussion.  

In Chapter 5, this research discussed current applications of the proposed 

solar irradiance nowcasting method in buildings based on current building 

applications of solar irradiance nowcasting methods and potential applications 

of the proposed solar irradiance nowcasting method in buildings based on the 

future trends in building development.  
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6.2 Summary of Major Findings  

In this research, a series of comparative tests were conducted to explore the 

effect of different factors, including time interval, nowcasting horizons, sky conditions, 

forecasting models and datasets, on the performance of the developed solar 

irradiance nowcasting method that verified its reliability. According to section 5.1.2, 

the major findings from the above comparative tests and their significance are 

summarised as follows: 

• The effect of various time intervals on nowcasting performance. 

The crucial finding of this set of comparative tests is that 1-min time interval is 

likely to be the optimal temporal resolution for solar irradiance nowcasting 

because the nowcasting of GHI, DNI and DHI at 1-min time interval always 

achieves the best performance no matter what the nowcasting horizon is. In 

practice, 1-min time interval is ideal considering the time consumption of 

computer operation, data transmission, system response and other factors, 

but requiring a certain amount of device computing power and stability. 

Nevertheless, solar irradiance nowcasting at 1-min time interval is still 

valuable for buildings and their future development, as it meets more accurate 

requirements of building operation and control.  

• The effect of various nowcasting horizons on nowcasting performance. 

The main finding of this set of comparative tests is that the nowcasting 

performance is negatively correlated with nowcasting horizon. The GHI, DNI 

and DHI nowcasting for 10-sec, 1-min, 5-min and 10-min nowcasting horizons 

demonstrated reliable accuracy, especially 10-sec and 1-min. In practice, 

solar irradiance nowcasting for 1-min nowcasting horizon and solar irradiance 

nowcasting for 5-min and 10-min nowcasting horizons can respectively meet 

the requirements of different building applications.  
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• The effect of different sky conditions on nowcasting performance. 

The critical finding of this set of comparative tests is that the nowcasting of 

GHI and DNI performs well under clear, light, cloudy and overcast sky 

conditions, and the nowcasting of DHI performs well regardless of any sky 

conditions. In other words, heavy cloudy is the only sky condition that has an 

impact on the performance of the proposed solar irradiance nowcasting 

method, especially for DNI nowcasting. Despite this, the overall trend of the 

DNI can still be successfully predicted even under heavy cloudy sky conditions. 

Thus, the proposed solar irradiance nowcasting method is reliable under 

different sky conditions, which is beneficial for building applications. 

• The influence of different models on nowcasting performance. 

The key finding of this set of comparative tests is that the proposed solar 

irradiance nowcasting model, ResNet-152, always achieves the best 

performance compared to the baseline model - Multilayer Perceptron (MLP) 

and the benchmark model - Persistence Model (PM), apart from performing 

worse than PM 1-min nowcasting horizon. Nevertheless, ResNet-152 is better 

than PM in practical applications of buildings because the utilisation of 

ResNet-152 can greatly reduce the cost of equipment and maintenance and 

the difficulty of the equipment operation. Based on the above, the proposed 

solar irradiance nowcasting model is very appropriate for buildings.  

• The influence of different datasets on nowcasting performance. 

Two major findings are obtained in this set of comparative tests. First, the 

influence of the expansion of training set on nowcasting accuracy is still 

uncertain because the performance of solar irradiance nowcasting models 

trained with 34 days of data from April to July and 48 days of data from April 

to September is close for 8 identical testing days. Thus, the effect of the data 

range of training set on the nowcasting accuracy still needs further research. 

In contrast, the influence of the seasonality of testing set on nowcasting 
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accuracy is obvious because the DNI nowcasting of 4 testing days in 

December performs apparently worse than the DNI nowcasting of 12 testing 

days from April to September based on the solar irradiance nowcasting 

models trained with 48 days of data. Therefore, constructing seasonal 

nowcasting models might be more beneficial to the application of the proposed 

solar irradiance nowcasting method on buildings.   

To sum up, the reliability of the developed solar irradiance nowcasting method is 

evident according to the above findings.  
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6.3 Contributions of the Research  

The aim of this research is to develop an appropriate solar irradiance nowcasting 

method to achieve reliable GHI, DNI and DHI nowcasting for buildings and their future 

development. In this case, a series of research activities were carried out, involving 

the systematic literature review of solar irradiance forecasting methods, the study of 

the forecasting horizons and spatial-temporal resolutions, the exploration of 

nowcasting models, the investigation of low-cost equipment and user-friendly 

programming, the nowcasting of GHI, DNI and DHI, the results verification and 

analysis of GHI, DNI and DHI nowcasting, the discussion of current and potential 

nowcasting applications on buildings. Based on the above research activities, the 

main contributions of the research are summarised as follows: 

• Systematic Review from An Architectural Perspective. 

At first, this research conducts a systematic literature review of solar irradiance 

forecasting methods over the past 20 years and then specifically reviews and 

analyses emerging solar irradiance nowcasting methods from an architectural 

perspective. In contrast to other literature reviews of solar irradiance 

forecasting methods, this review is based on a methodology of systematic 

review, contributing to a comprehensive and in-depth investigation of the 

state-of-the-art solar irradiance forecasting methods. More importantly, this 

review starts with a consideration of the nowcasting horizons and spatial-

temporal resolution suitable for buildings to review current solar irradiance 

nowcasting methods applicable to buildings and their future development, 

which is the most critical difference from other literature reviews. In summary, 

this review fills the research gap in current literature reviews of solar irradiance 

forecasting methods, as current literature reviews often lack a clear review 

methodology and do not provide a targeted review from an architectural 

perspective.  
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• Development of A Solar Irradiance Nowcasting Method. 

In addition, the critical contribution of this research is the development of a 

solar irradiance nowcasting method with high spatial-temporal resolution by 

using a promising deep residual network model - ResNet-152, low-cost 

equipment and user-friendly programming to achieve the reliable nowcasting 

of GHI, DNI and DHI for buildings and their future development.  

First of all, the developed solar irradiance nowcasting method achieves a very 

short-term nowcasting horizon, high spatial resolution (2 km) and high 

temporal resolution (10 seconds, 1 minute, 5 minutes and 10 minutes), which 

are appropriate for the applications of buildings. This fills the research gap in 

the study of the nowcasting horizon and spatial-temporal resolution suitable 

for buildings.  

Secondly, the proposed solar irradiance nowcasting method applies a 

promising deep residual network model - ResNet-152 as the nowcasting 

model, which is well suited for complex image recognition and categorisation 

tasks and has rarely been used in the field of solar irradiance forecasting.  

Thirdly, low-cost equipment and user-friendly programming are utilised in the 

proposed solar irradiance nowcasting method, which contributes to 

popularising the nowcasting method for the daily applications of buildings. In 

practical operation, the time consumption of this nowcasting method, from 

capturing a cloud image to generating a nowcasting value of solar irradiance, 

is less than 20 seconds, which is evidently faster than most studies in the 

same field. Less time consumption of solar irradiance nowcasting means more 

possible applications of buildings can be developed. In a word, the utilisation 

of low-cost equipment and user-friendly programming effectively reduces the 

cost, complexity, and time consumption of building applications. Also, the 

organisation and installation of a range of equipment are articulated, and a lot 

of programming work for each research step is ready to be open-sourced in 
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the future. These efforts will both provide a valuable foundation for subsequent 

researchers.  

At last, unlike most studies that focus on the forecasting of GHI or DNI, the 

proposed solar irradiance nowcasting method achieves the nowcasting of 

three critical components of solar irradiance, including GHI, DNI, and DHI, that 

fills the gap in the studies of DHI forecasting. 

• Comparative Tests of the Effect of Different Factors on Solar Irradiance 

Nowcasting.  

Moreover, this research articulates the effect of different factors involving time 

interval, nowcasting horizons, sky conditions, forecasting models and 

datasets on solar irradiance nowcasting using a series of comparative tests 

that are seldom completed by others.  

At first, the results of the comparative tests of nowcasting performance at 

various time intervals indicate that 1-min time interval is likely to be the optimal 

time interval for solar irradiance nowcasting based on accuracy and building 

practicality. The effect of time intervals has hardly been studied by others, and 

thus, the findings in this group of comparative tests are valuable and fill the 

research gap in the study of the effect of time intervals on solar irradiance 

nowcasting.  

Secondly, the negative correlation between nowcasting horizon and 

nowcasting performance is demonstrated based on the results of comparative 

tests of nowcasting performance for various nowcasting, as well as the 

proposed solar irradiance nowcasting method in very short-term nowcasting 

can achieve a comparable performance compared with most advanced 

studies.  

Thirdly, comparative tests of nowcasting performance under different sky 

conditions are conducted to explore both the effect of sky conditions at 

different dates and at different moments on a representative date on solar 
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irradiance nowcasting. The results show that the accuracy of the proposed 

solar irradiance nowcasting method under clear, light cloudy and overcast sky 

conditions is higher than many studies, but like most studies, the nowcasting 

accuracy of DNI under heavy cloudy sky conditions is not ideal enough. In 

other word, heavy cloudy is the only sky condition negatively affect the 

nowcasting accuracy, especially for DNI nowcasting. Despite this, the 

performance of the proposed solar irradiance nowcasting method is reliable 

in most sky conditions that demonstrates its practicality for buildings. 

Fourthly, the comparative tests of nowcasting performance among different 

models compare the proposed nowcasting model - ResNet-152 with a 

benchmark model - PM and a baseline model – MLP, which are commonly 

used for comparison in many studies. Although the nowcasting accuracy of 

PM is extremely high in very short-term nowcasting horizons, the nowcasting 

accuracy of ResNet-152 achieves the close level for 1-min nowcasting horizon 

and even better for 5-min and 10-min nowcasting horizons. Compared to MLP, 

the superiority of ResNet-152 for solar irradiance nowcasting is very clear. 

Thus, the proposed nowcasting model - ResNet-152, is verified better than a 

benchmark model - PM and a baseline model - MLP, according to accuracy 

and building practicality that demonstrates the promise of ResNet-152 as a 

nowcasting model. 

Finally, this research innovatively explores the effect of the data range of 

training set and the influence of the seasonality of testing set on nowcasting 

accuracy that achieve opposite findings, which gives insight into the dataset 

selection for solar irradiance nowcasting. 

• Verification of The Nowcasting Results based on Various Evaluation Metrics. 

Furthermore, this research investigates the characteristics and popularity of 

evaluation metrics, including MAE, RMSE, nMAE, nRMSE, skill score (SS), r, 

etc. and selects appropriate evaluation metrics to evaluate the nowcasting 
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performance from various perspectives. That fills the research gap in the study 

of evaluation metrics for solar irradiance forecasting methods. 

Based on the comparative tests and verification, the performance of the 

developed solar irradiance nowcasting method is proven to be reliable under 

the impact of different factors. In contrast to some Bottom-up forecast 

methods, those applying complex image processing techniques, the 

developed solar irradiance nowcasting method demonstrates similar or higher 

accuracy. In addition, although the developed solar irradiance nowcasting 

method presents a relatively low accuracy in terms of absolute indicators 

compared to some advanced Hybrid methods, their difference is not 

significant according to relative indicators. Thus, the overall reliability of the 

developed solar irradiance nowcasting is evident.  

• Discussion of Current and Potential Building Applications of Solar Irradiance 

Nowcasting Method. 

Finally, this research discusses the current and potential applications of solar 

irradiance nowcasting method in current or future buildings, which fills the 

research gap in the discussion about application of solar irradiance 

nowcasting method on buildings and provides a foundation and future 

research directions for the application of the nowcasting method on buildings.  
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6.4 Future Works 

Based on all research activities, research findings and limitations of the research, 

a range of promising future works is listed as follows: 

• Optimisation of Image Processing Techniques 

Optimising image processing techniques is one major direction for future 

research. At first, the preprocessing procedures of the image can be improved. 

For instance, the application of thresholding techniques to meticulously 

recognize image pixels, followed by the simplification of the recognised image 

data through grayscale conversion and binarization may significantly enhance 

the processing efficiency of nowcasting models. Furthermore, the utilization of 

advanced deep learning models for the preliminary classification of images 

allows these categorised groups of images to serve as training data for 

different nowcasting models, which can potentially enhance the accuracy and 

relevance of the models. Diverse image processing techniques can be used 

individually or in combination to solve specific image processing tasks. 

• Optimisation of Nowcasting Model  

The optimisation of nowcasting model is pivotal for future research. Firstly, the 

performance of nowcasting model can be improved by adjusting the model 

training parameters, such as learning rate, batch size, epochs, loss function, 

etc. For example, the learning rate of nowcasting model can be strategically 

adjusted to prevent overfitting or underfitting. More importantly, different deep 

learning models, such as CNN, RNN, LSTM, can be applied in combination to 

optimise performance of nowcasting model. For instance, a Hybrid method 

using ResNet and LSTM is well suited for processing those tasks that require 

an understanding of both spatial and temporal dynamics, such as the machine 

learning of consecutive cloud images or cloud movement videos. Thus, the 

Hybrid method can potentially improve the nowcasting performance.  
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• Exploration of Nowcasting Impact Factors  

In addition to the optimisation of nowcasting method, more exploration of 

nowcasting impact factors is essential to future research because they are 

related to the generalisation of nowcasting method. First, the impact of more 

diverse datasets from various locations, months, and seasons needs to be 

studied. Moreover, the nowcasting performance for longer forecasting 

horizons, such as 15 to 20 minutes. Furthermore, more popular deep learning 

models, including LSTM, SVM, ANN, etc. can be compared with the 

developed nowcasting model to explore the influence of models on 

nowcasting accuracy. 

• Improvements in Hardware and Software  

Improvements in hardware and software are also needed in future research. 

In terms of hardware, the proposed nowcasting method heavily relies on the 

low-cost ground-based sky camera and thus faces system maintenance 

issues induced by environmental effects on the camera, including rain, frosting, 

insects, etc. With respect to software, some building simulation programs are 

not compatible with very high temporal resolution nowcasting (such as 1 

minute) and therefore need to be improved. 

• Optimisation of Building Performance 

Utilising the developed solar irradiance nowcasting method to optimise 

building performance involving operational efficiency, safety and occupant 

comfort is the ultimate goal of future research. At first, future research can 

apply 1 to 5-minute nowcasting to optimise building energy management and 

protect solar systems because very short-term nowcasting horizons can help 

buildings respond effectively to “Ramp Events”. In addition, with the 

development of integrated smart building systems in the future, 5 to 30-minute 

nowcasting can be combined with the control of HVAC, lighting and shading 

systems to adjust the thermal and visual comfort in buildings.  
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6.5 Conclusion 

This research begins with concerns about the concern of environmental problems, 

global greenhouse gas emissions and building carbon emissions and goes on to the 

development of a solar irradiance nowcasting method appropriate for buildings and 

their future development.  

The main research activities started with a systematic literature review of solar 

irradiance forecasting methods, which comprehensively reviewed the current state of 

research and identified the forecasting methods appropriate for buildings according 

to the characteristics of these methods. Then, based on the study of previous 

research, a solar irradiance nowcasting method with high spatial-temporal resolution 

based on low-cost equipment and user-friendly programming was developed to 

achieve reliable nowcasting of GHI, DNI and DHI. After that, a series of comparative 

experiments were conducted to explore the impact of different factors, including time 

intervals, forecasting horizons, sky conditions, forecasting models and datasets, on 

nowcasting performance and a range of evaluation metrics were used to verify the 

reliability of the nowcasting. Finally, the current and potential applications of solar 

irradiance nowcasting method in buildings were discussed to demonstrate the 

profound value of this research.  

Based on the above, the main contributions of this research include the 

systematic review of solar irradiance forecasting methods from an architectural 

perspective, the development of a solar irradiance nowcasting method, the 

comparative tests of the effect of different factors on solar irradiance nowcasting, the 

verification of the nowcasting results based on various evaluation metrics and the 

discussion of current and potential building applications of the nowcasting method. 

The main limitations of this research relate to the amount of data and diversity of 

datasets, image processing techniques, training time, nowcasting model, stability of 

equipment operation, design of comparative tests, and research for practical building 
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applications. In this case, the promising future works mainly involve optimisation of 

image processing techniques, optimisation of nowcasting model, exploration of 

nowcasting impact factors, improvements in hardware and software, and optimisation 

of building performance. 

In conclusion, the significance of this research is to innovatively explore a solar 

irradiance nowcasting method from an architectural perspective and achieve reliable 

nowcasting of GHI, DNI and DHI, which are foundations for applying solar irradiance 

nowcasting to optimise the operational efficiency and safety, occupant comfort and 

design of buildings. In addition, the development of solar irradiance nowcasting 

method establishes an interdisciplinary research methodology integrating the 

knowledge of meteorology, imagery, computer science and architecture, which can 

increase interdisciplinary communication and cooperation, as well as provide more 

research directions. Furthermore, the specific approaches, tools and outcomes of the 

research, as well as the discussion of the possible applications of solar irradiance 

nowcasting on buildings, provide initial inspiration for future research and the future 

development of buildings. Ultimately, from a broader perspective, this research is not 

only of significance to the academic community and practical applications, but also 

has profound social and economic impacts, including improving the comfort of the 

living and working environment, supporting sustainable development goals, 

enhancing energy efficiency and long-term financial benefits. 
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Appendix A: Other Nowcasting Results 
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Nowcasting Performance at 10-sec time intervals for 10-sec nowcasting horizon 
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Nowcasting Performance at 1-min time intervals for 1-min nowcasting horizon 
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Nowcasting Performance at 5-min time intervals for 5-min nowcasting horizon 
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Appendix B: Data and Data Collection Process  

All collected data of the research are shared on GitHub: 

https://github.com/ChenL61/Collected-Data-of-Solar-Irradiance-Nowcasting-Research.git 

The instruction of data collection process is presented below. 

• The Collection of Cloud Images  

1. Installing WAVESHARE OV5647 fisheye lens on a Raspberry Pi. 

2. Connecting the Raspberry Pi to the 10000mAh power bank. 

3. Connecting the Raspberry Pi to Wi-Fi and logging into Raspberry Pi OS. 

4. Ensuring the system time of Raspberry Pi is correctly synchronized (Due 

to the system time stops when Raspberry Pi is turn off. While the program 

relies on the correct time to take photos, and incorrect synchronization 

can prevent the program from taking photos.) 

5. Running the data collection program written in python on the Raspberry 

Pi desktop. 

6. Fixing the Raspberry Pi camera on a tripod. 

7. Placing the tripod on the site for data collection.  

8. Collecting cloud images according to the time required. 

9. Using network transmission transferring the collected cloud images from 

Raspberry Pi. 

• The Collection of GHI and DHI 

1. Connecting the BF5 Sunshine Sensor with a datalogger.  

2. Turning on the BF5 Sunshine Sensor. 

3. Fixing the Raspberry Pi camera on a tripod and placing the tripod on the 

site for data collection.  

4. Placing the BF5 Sunshine Sensor within 5 meters of the Raspberry Pi. 

5. Collecting GHI and DHI according to the time required. 

6. Connecting the datalogger to a computer and collecting GHI and DHI data. 

https://github.com/ChenL61/Collected-Data-of-Solar-Irradiance-Nowcasting-Research.git
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Raspberry Pi Camera 

 

 

BF5 Sunshine Sensor 
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Appendix C: Programming Work 

• Data Collection 

1.1  Pi_takeimage 

 

from time import sleep 

import time 

from picamera import PiCamera 

import datetime 

import os 

 

    pi take the images 

 

    Args: 

        LR_or_HR: type 

        interval: interval time 

        count: number of images 

        save_path:  destination data 

        exposures:  exposure 

        log:  log of the images 

    Returns:  

 

 

save_path = "/home/pi/Desktop/" 

camera = PiCamera() 

count = 0 

exposures = [100, 450, 700] 

LR_or_HR = "LR" 

resolutions = [(1600, 1200)] if LR_or_HR == "HR" else [(640, 480)] 

archives = ['/HR'] 

interval = 10  # Unit: second 

log = save_path+'/' + LR_or_HR + 'log.txt' 

 

def takeImagesWithTime(iso_values,st_time, save_path): 

 global count, save_path 

 for exposure in exposures: 

  # Set ISO to the desired value 

  camera.iso = iso_values 

  # Wait for the automatic gain control to settle 

  sleep(1) 

  # Now fix the values 

  camera.saturation = 0 

  camera.sharpness = 0 

  camera.brightness = 50 

  camera.contrast = 0 
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  camera.shutter_speed = exposure 

  camera.exposure_mode = 'off' 

  g = camera.awb_gains 

  camera.awb_mode = 'off' 

  camera.awb_gains = g 

   

  img_time = st_time.strftime("(%Y-%m-%d %H-%M-%S)") 

  for i, resolu in enumerate(resolutions): 

   camera.resolution = resolu 

   path =  + archives[i] 

   # Finally, take several photos with the fixed settings 

   camera.capture('%s/id%d_iso%d_expo%d_%s.jpg' %(path, count, 

iso_values, exposure, img_time)) # image 名称 

 count += 1 

 

def main(): 

 iso = 100 

 signal = False 

 record = False 

 print("hello! Begin getting data") 

  

 Time = datetime.datetime.now() 

 Time = time.strftime('%Y%m%d') 

 save_path += Time 

 if os.path.exists(save_path)==False: 

  os.mkdir(save_path) 

  for i in range(len(archives)): 

   os.mkdir(save_path + archives[i]) 

  print("create DIR path") 

 f = open(log, 'a+')  # logs 

 while True: 

  time_now = datetime.datetime.now() 

  # print('\rTime: %s' %(time_now.strftime('%Y/%m/%d %H:%M:%S')), end='', 

flush=True) 

  if time_now.hour == 8 and time_now.minute == 59 and time_now.second == 

58: 

   record = True 

   print('\nStart Record') 

   break 

 

 while record: 

  time_now = datetime.datetime.now() 

  if time_now.hour == 17 and time_now.minute == 30: 

   record = False 

  if(time_now.second % interval == 0): 

   signal = True 

 



Ph.D. Thesis   Lei Chen 

 

Cardiff University                                                          252                                    Welsh School of Architecture 

 

  if signal: 

   #S = time.time() 

   takeImagesWithTime(iso, time_now) 

   f.write('%s\n' %(time_now.strftime('%Y/%m/%d %H:%M:%S'))) 

   signal = False 

   #E = time.time() 

   #print(E - S) 

 f.flush() 

 f.close() 

 camera.close() 

 print('Today is Done, have a rest.') 

 

 

if __name__ == '__main__': 

 main() 

 

 

1.2  Pi_main 

 

import os 

import re 

import time 

import shutil 

import datetime 

import subprocess 

import psutil 

import urllib 

import threading 

import paramiko 

 

from bs4 import BeautifulSoup 

from urllib.parse import urlparse 

from time import sleep 

import logging 

from pi_upload_config import * 

 

time = time.strftime('%Y%m%d', time.localtime(time.time())) 

download_path = os.path.join(download_path, time) 

print(download_path) 

 

import time 

 

 

class PIload: 

    def __init__(self, host, port, username, password): 

        self.host = host 

        self.port = port 
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        self.username = username 

        self.password = password 

        self.transport = None 

        self.client = None 

        self.init_logger() 

         

 

    def init_logger(self): 

        self.logger = logging.getLogger('efuseload') 

        self.logger.setLevel('INFO') 

        console = logging.StreamHandler() 

        console.setLevel("INFO") 

        formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s 

- %(message)s") 

        console.setFormatter(formatter) 

        self.logger.addHandler(console) 

        handler = 

logging.FileHandler("/home/pi/Desktop/log/{}.txt".format(time.strftime('%Y%m%d', 

time.localtime(time.time())))) 

        handler.setLevel('INFO') 

        handler.setFormatter(formatter) 

        self.logger.addHandler(handler) 

 

    def create_sftp_client(self): 

        try: 

            self.transport = paramiko.Transport((self.host, self.port)) 

            self.transport.connect(username=self.username, password=self.password) 

            self.client = paramiko.SFTPClient.from_transport(self.transport) 

            self.logger.info("create_sftp_client PASS") 

        except Exception as e: 

            self.logger.error(e) 

            raise Exception(e) 

 

    def stop_sftp_client(self): 

        try: 

            self.transport.close() 

        except Exception as e: 

            self.logger.error(e) 

            raise Exception(e) 

 

    def remove_file(self,file_path): 

        files = os.listdir(file_path) 

        for file in files: 

            remove_file_path = os.join(file_path, file) 

            os.remove(remove_file_path) 

 

    def execute_efuse(self):  # execute  
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        for i in range(1): 

            try: 

                self.upload() #local_upload_path 

                break 

            except Exception as  ex : 

                if i >= 0 : 

                    raise Exception(ex) 

                else: 

                    self.logger.info("Update ftp fail times:{}".format(i+1)) 

                pass 

        self.trans_file() 

        self.logger.info("Update efuse PASS") 

 

    def kill(self,proc_pid): 

        parent_proc = psutil.Process(proc_pid) 

        for child_proc in parent_proc.children(recursive=True): 

            child_proc.kill() 

        parent_proc.kill() 

 

 

    def generate_url(self,command = 'generate_url.sh'): 

        """ execute commands and judge result of returns 

            Args: 

            command: generate rul  

            retest_allowed: false or true 

        """ 

        url = '' 

        bflag = False 

 

        try: 

            wpath = os.path.split(os.path.abspath(__file__))[0] 

            cmd = "{}/{} ".format(wpath,command) 

            proc = subprocess.Popen(args=[cmd], 

                                shell=True, 

                                stdout=subprocess.PIPE, 

                                stderr=subprocess.STDOUT, 

                                bufsize=1) 

         

            while proc.poll() is None: 

                for line in iter(proc.stdout.readline, b''): 

                    line = line.decode('UTF-8') 

                    self.logger.info("generate_url:{}".format(line)) 

                    if line.find("https://artifactory-cn.nevint.com:443/artifactory/firmware-all-

local/adc/fuse/") >= 0: 

                        bflag = True 

                        self.kill(proc.pid) 

                        url_message = line.split('"')   
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                        url = url_message[3]          

                        self.logger.info("url message is: {}".format(line)) 

                        break      

            self.logger.info("generate url is {}".format(url)) 

 

        except subprocess.CalledProcessError as e: 

            self.logger.error(e) 

            raise Exception(e) 

 

        if bflag: 

            self.logger.info("{} success".format(cmd)) 

            return url 

        else: 

            self.logger.info("{} fail".format(cmd)) 

            raise Exception("generate_url fail") 

            return ' ' 

 

        try: 

            is_existence = False 

            self.logger.info(host) 

            self.logger.info(port) 

            self.logger.info("sftp connect pass") 

 

             # private = paramiko.RSAKey.from_private_key_file('/Users/root/.ssh/id_rsa') 

            # tran.connect(username="root", pkey=private) 

            self.logger.info("sftp from_transport pass") 

             

            #while not is_existence: 

            #    is_existence = True if "request" in self.client.listdir(communicate_path) else 

False 

            #    if not is_existence: 

            #        self.logger.info("upload pause") 

             

            self.logger.info("start upload") 

 

            is_existence = True if "running" in self.client.listdir(base_remote_path) else 

False 

            self.logger.info(self.client.listdir(base_remote_path)) 

            self.logger.info(is_existence) 

 

            if not is_existence: 

                self.client.mkdir(remote_path) 

 

            files = os.listdir(download_path) 

            for file in files: 

                local_path = os.path.join(download_path, file) 

                remote_upload_path = os.path.join(remote_path, file) 
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                self.logger.info(local_path) 

                self.logger.info(remote_upload_path) 

                self.client.put(local_path, remote_upload_path) 

                self.logger.info("sftp put pass") 

 

        except Exception as e: 

            self.stop_sftp_client() 

            self.logger.error(e) 

            raise Exception(e) 

 

 

    def renameftpdone(self): 

        try: 

            is_existence = False 

            newfilepath = "" 

            newfilepath = base_remote_path +"done_"+ 

datetime.datetime.now().strftime('%Y%m%d%H%M%S') 

 

            is_existence = True if "running" in self.client.listdir(base_remote_path) else 

False 

            self.logger.info(self.client.listdir(base_remote_path)) 

 

            if is_existence: 

                self.logger.info(newfilepath) 

                self.client.rename(remote_path,newfilepath) 

        except Exception as e: 

            self.logger.error(e) 

            raise Exception(e) 

        self.logger.info("Renameftpdone PASS") 

 

 

    def callbackfunc(self,blocknum, blocksize, totalsize): 

 

         

        percent = 100.0 * blocknum * blocksize / totalsize 

        if percent > 100: 

            percent = 100 

        print("%.2f%%" % percent) 

 

 

    def trans_file(self): 

        filename_list = os.listdir(download_path) 

        for file in filename_list: 

            used_name = os.path.join(download_path, file) 

            new_name = os.path.join(local_save_path, file) 

            self.logger.info("{} ==> {}".format(used_name, new_name)) 

            shutil.move(used_name, new_name) 
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def main(): 

    start_time = time.time() 

    fuse_obj = PIload(host, port, sftp_username, sftp_password) 

    fuse_obj.create_sftp_client() 

 

    j = 1 

    for i in range(efusenumber): 

        fuse_obj.execute_efuse() 

        if j == perfusenumber or i == efusenumber -1 : 

            fuse_obj.renameftpdone() 

            j = 0 

        j = j + 1 

     

    end_time = time.time() 

    print("cost time is {}".format(end_time - start_time)) 

    fuse_obj.delete_files() 

    fuse_obj.stop_sftp_client() 

    #end_time = time.time() 

    #print("cost time is {}".format(end_time - start_time)) 

 

 

if __name__ == '__main__': 

main() 
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• Data Processing 

1. Masking  

 

import numpy as np 

import cv2 

 

 

def make_mask(src_picture, th_num): 

    image = cv2.imread(src_picture) 

    gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 

    (T, mask_image) = cv2.threshold(gray_image, th_num, 255, 

cv2.THRESH_BINARY) 

    cv2.imshow("mask", mask_image) 

    cv2.waitKey(0) 

    cv2.imwrite("generated_template.jpg", mask_image) 

    return mask_image 

 

def mask_process(template, src_picture): 

    src_picture = cv2.imread(src_picture) 

    masked = cv2.bitwise_and(src_picture, src_picture, mask=template) 

    cv2.imshow("ans", masked) 

    cv2.imwrite("after_process.jpg", masked) 

    cv2.waitKey(0) 

     

def mask_dataset(template, img): 

    cv2_img = cv2.imread(img) 

    masked = cv2.bitwise_and(cv2_img, cv2_img, mask=template) 

    return Image.fromarray(cv2.cvtColor(masked, cv2.COLOR_BGR2RGB)) 

 

def main(): 

    source_picture = "LR.jpg" 

    threshold_number = 140 

    template = make_mask(source_picture, threshold_number) 

    mask_process(template, source_picture) 

     

     

if __name__ == '__main__': 

main() 
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2. HDR 

 

# encoding:utf8 

import threading 

 

import cv2 

import numpy as np 

import os 

from natsort import ns, natsorted 

 

index = 0 

resolution = ['LR', 'HR'] 

date = '20210520' 

 

#win 

dir_path = r"D:\solar\solar" 

 

root_path = os.path.join(dir_path, date) 

save_path = root_path 

print(save_path) 

 

 

 

def robertson(img_fn, imgs_path, save_path, count): 

 

 

    # img_fn = ['1tl.jpeg', '2tr.jpeg', '3bl.jpeg', '4br.jpeg'] 

    img_list = [cv2.imread(os.path.join(imgs_path, fn)) for fn in img_fn] 

    expo = [100, 450, 700] 

    exposure_times = np.array([1 / i for i in expo], dtype=np.float32) 

    # exposure_times = np.array([15.0, 2.5, 0.25, 0.0333], dtype=np.float32) 

    merge_robertson = cv2.createMergeRobertson() 

    hdr_robertson = merge_robertson.process(img_list, times=exposure_times.copy()) 

    tonemap2 = cv2.createTonemapDrago(gamma=1.3) 

    tonemap2.process(hdr_robertson.copy()) 

 

    merge_mertens = cv2.createMergeMertens() 

    res_mertens = merge_mertens.process(img_list) 

 

    # Convert datatype to 8-bit and save 

     

 

    res_mertens_8bit = np.clip(res_mertens * 255, 0, 255).astype('uint8') 

 

    cv2.imwrite(os.path.join(save_path , "%d.jpg" % count), res_mertens_8bit) 

    pass 
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""" 

Read the images in the files and do the HDR 

input image format: id0_iso100_expo450_(2020-12-25 09-00-00).jpg 

output image format: <n>.jpg 

""" 

if __name__ == '__main__': 

    # combine every 3 images 

    for day in date: 

        total = 0 

        dst_path = save_path + resolution[index] + '-HDR/' 

        dst_path = os.path.join(save_path, resolution[index]+'-HDR') 

        os.mkdir(dst_path) 

        img_path = root_path + resolution[index] + '/' 

        img_path = os.path.join(root_path, resolution[index]) 

        imgs = os.listdir(img_path) 

               #  id0_iso100_expo450_(2020-12-21 09-00-00).jpg 

        # for img in imgs: 

        #     if img[-19:-17] == "12": 

        #         imgs.remove(img) 

        imgs = natsorted(imgs) 

        img_num = len(imgs) 

        #print(imgs) 

        for j in range(0, img_num, 3): 

            thread = threading.Thread(target=robertson, args=(imgs[j:min(j + 3, img_num)], 

img_path, dst_path, total)) 

            thread.run() 

            total += 1 

        print("%s ,count is %d" % (day, total)) 
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• Solar Irradiance Nowcasting 

1. Config 

import argparse 

 

 

def parsers(): 

    # Parameter setting 

    parser = argparse.ArgumentParser("irradiance prediction") 

 

    # Whether to add mask 

    parser.add_argument('--mask', type=int, default=0, help='add mask ?') 

 

    # Calculate the mean and standard deviation of the original training set 

    parser.add_argument('--cal_mean_std_path', type=str, 

default='/home/sda4/data/0min-300s-regular/DNI/LR/train', 

                        help='path for calculating mean and standard deviation') 

 

    # The original data set is divided into training, verification and test sets 

    parser.add_argument('--source_train_path', type=str, 

default='/home/sda4/data/0min-300s-regular/DNI/LR/train', 

                        help='path of original training set') 

    parser.add_argument('--source_test_path', type=str, default='/home/sda4/data/0min-

300s-regular/DNI/LR/test', 

                        help='path of original test set') 

    parser.add_argument('--target_train_path', type=str, default='data/train', help='target 

path of train dataset') 

    parser.add_argument('--target_val_path', type=str, default='data/val', help='target 

path of validation dataset') 

    parser.add_argument('--target_test_path', type=str, default='data/test', help='target 

path of test dataset') 

 

    # Set the path of training set, verification set and test set 

    parser.add_argument('--train_path', type=str, default='data/train', help='path of train 

dataset') 

    parser.add_argument('--val_path', type=str, default='data/val', help='path of 

validation dataset') 

    parser.add_argument('--test_path', type=str, default='data/test', help='path of test 

dataset') 

 

    # Set the tag types of training and testing (GHI, DHI, DNI) 

    parser.add_argument('--data_type', type=str, default='ghi', help='data type') 

 

    # Name of the model 

    parser.add_argument('--model_name', type=str, default='ResNet152', help='model 

name that will be used') 
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    # Model and result saving path 

    parser.add_argument('--save_path', type=str, default='result', help="the save path of 

result") 

 

    # Model loading path 

    parser.add_argument('--load_model', type=str, 

default='result/ResNet152_model_86.pt', help='the load model path') 

 

    # Training settings 

    parser.add_argument('--epoch', type=int, default=100, help='train epoches') 

    parser.add_argument('--batch_size', type=int, default=16, help='batch size') 

    parser.add_argument('--num_workers', type=int, default=0, help='number of cpus to 

train') 

 

    # Optimizer settings 

    parser.add_argument('--lr', type=float, default=0.001, help='learning rate of model') 

    parser.add_argument('--momentum', type=float, default=0.90, help='momentum of 

learning') 

    parser.add_argument('--weight_decay', type=float, default=0.01, help='regularization 

parameter') 

 

    args = parser.parse_args() 

    return args 

 

 

2. Cal_mean_std 

 

import os 

import numpy as np 

import torch 

import time 

from torchvision import transforms 

from PIL import Image 

from config import parsers 

import gc 

import cv2 

 

''' 

Add a mask to an image 

''' 

def mask(img, mask_image): 

    cv2_img = cv2.imread(img) 

    masked = cv2.bitwise_and(cv2_img, cv2_img, mask=mask_image) 

    return Image.fromarray(cv2.cvtColor(masked, cv2.COLOR_BGR2RGB)) 

 

 



Ph.D. Thesis   Lei Chen 

 

Cardiff University                                                          263                                    Welsh School of Architecture 

 

if __name__ == '__main__': 

    opt = parsers() 

    train_path = opt.cal_mean_std_path 

    add_mask = opt.mask 

    image_mask = cv2.imread("LR.jpg") 

    gray_image = cv2.cvtColor(image_mask, cv2.COLOR_BGR2GRAY) 

    (T, mask_image) = cv2.threshold(gray_image, 140, 255, cv2.THRESH_BINARY) 

 

    imgs = [os.path.join(train_path, i) for i in os.listdir(train_path)] 

    # Crop the center of the picture to 480 * 480 

    trans = transforms.Compose([ 

        transforms.CenterCrop(480), 

        transforms.ToTensor() 

    ]) 

    img_num = float(len(imgs)) 

    mean_tmp = np.array([0.0, 0.0, 0.0]) 

    std_tmp = np.array([0.0, 0.0, 0.0]) 

    cal_num = 0.0 

    data = [] 

 

    # Take 2000 pictures as the unit, calculate mean and std respectively, 

    # and finally take the average value 

    for i in range(len(imgs)): 

        if add_mask == 0: 

            tmp = trans(Image.open(imgs[i])).numpy() 

        else: 

            tmp = trans(mask(imgs[i], mask_image)).numpy() 

        mean_tmp[0] = mean_tmp[0] + np.mean(tmp[0, :, :]) 

        mean_tmp[1] = mean_tmp[1] + np.mean(tmp[1, :, :]) 

        mean_tmp[2] = mean_tmp[2] + np.mean(tmp[2, :, :]) 

        if ((i + 1) % 2000 == 0) or ((i + 1) == len(imgs)): 

            cal_num = cal_num + 1.0 

            data.append(tmp) 

            data = np.array(data) 

            std_tmp[0] = std_tmp[0] + np.std(data[:, 0, :, :]) 

            std_tmp[1] = std_tmp[1] + np.std(data[:, 1, :, :]) 

            std_tmp[2] = std_tmp[2] + np.std(data[:, 2, :, :]) 

            del data 

            gc.collect() 

            data = [] 

        else: 

            data.append(tmp) 

 

    mean_tmp = mean_tmp / img_num 

    std_tmp = std_tmp / cal_num 

    # Output calculation results of mean and standard deviation 

    print('mean:') 
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    print(mean_tmp) 

    print('std:') 

    print(std_tmp) 

 

 

3. Split Dataset 

 

import numpy as np 

import os 

from shutil import copy 

import random 

from config import parsers 

 

''' 

The original training set is divided into training set and verification set by 8:2 

    source_path: the path of the original data set 

''' 

def split_file_list(source_path): 

    imgs = [os.path.join(source_path, i) for i in os.listdir(source_path)] 

    random.shuffle(imgs) 

    img_num = len(imgs) 

    return imgs[:int(img_num * 0.8)], imgs[int(img_num * 0.8):] 

 

 

if __name__ == '__main__': 

    opt = parsers() 

    # The dataset is divided into training set, verification set and test set 

 

    # The training set and the verification set are divided from the original training set, 

    # and the test set is the original test set。 

    file_path = opt.source_train_path 

    test_path = opt.source_test_path 

    train_path = opt.target_train_path 

    val_path = opt.target_val_path 

    test_target_path = opt.target_test_path 

    train_files, val_files = split_file_list(file_path) 

    test_files = [os.path.join(test_path, i) for i in os.listdir(test_path)] 

    for i in range(len(train_files)): 

        copy(train_files[i], train_path) 

    for i in range(len(val_files)): 

        copy(val_files[i], val_path) 

    for i in range(len(test_files)): 

        copy(test_files[i], test_target_path) 

 

    print('Data set partition completed!') 
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4. Dataset 

 

import numpy as np 

import os 

import cv2 

import torch 

from torch.utils.data import Dataset 

from torchvision import transforms 

from PIL import Image 

 

 

class MyDataSet(Dataset): 

    """ 

    Data processing and loading of training sets and validation sets 

 

        img_path: data set path 

        train: true is the training set, false is the verification set 

        target_label: labels requiring training and prediction (GHI, DHI, DNI) 

        add_mask: whether to add a mask to the picture (0 is not added, 1 is added) 

    """ 

 

    def __init__(self, img_path, train=True, transform=None, target_label='ghi', 

add_mask=0): 

        self.label = target_label 

        self.add_mask = add_mask 

        self.file_path = img_path 

        self.imgs = [os.path.join(self.file_path, i) for i in os.listdir(self.file_path)] 

        self.img_num = len(self.imgs) 

 

        self.image_mask = cv2.imread("LR.jpg") 

        self.gray_image = cv2.cvtColor(self.image_mask, cv2.COLOR_BGR2GRAY) 

        (T, self.mask_image) = cv2.threshold(self.gray_image, 140, 255, 

cv2.THRESH_BINARY) 

 

        # Standardize data sets 

        self.normalize = transforms.Normalize( 

            mean=[0.4922, 0.5424, 0.5440], 

            std=[0.2952, 0.3117, 0.3254] 

        ) 

        if train: 

            self.trans = transforms.Compose([ 

                transforms.CenterCrop(480), 

                transforms.RandomHorizontalFlip(), 

                transforms.ToTensor(), 

                self.normalize 

            ]) 

        else: 
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            self.trans = transforms.Compose([ 

                transforms.CenterCrop(480), 

                transforms.ToTensor(), 

                self.normalize 

            ]) 

 

        self.date_list = [] 

        for i in range(self.img_num): 

            date = "" 

            date_arr = (self.imgs[i].split('/')[-1].split('-')[1:6]) 

            n = len(date_arr) 

            for j in range(n): 

                date += date_arr[j] 

                if (j == 0 or j == 1): 

                    date += "-" 

                if (j == 2 or j == 3): 

                    date += ":" 

                self.date_list.append(date) 

 

 

    def mask(self, img, mask_image): 

        # Function to add mask 

        cv2_img = cv2.imread(img) 

        masked = cv2.bitwise_and(cv2_img, cv2_img, mask=mask_image) 

        return Image.fromarray(cv2.cvtColor(masked, cv2.COLOR_BGR2RGB)) 

 

 

    def __getitem__(self, index): 

        if self.add_mask == 0: 

            data_tmp = self.trans(Image.open(self.imgs[index])) 

        else: 

            data_tmp = self.trans(self.mask(self.imgs[index], self.mask_image)) 

 

        target_tmp = None 

        # Process tags that need to be predicted 

        if self.label == 'ghi': 

            target_tmp = float(self.imgs[index].split('/')[-1].split('-')[6]) / 1000.0 

            target_tmp = torch.tensor(target_tmp) 

        elif self.label == 'dhi': 

            target_tmp = float(self.imgs[index].split('/')[-1].split('-')[7]) / 600.0 

            target_tmp = torch.tensor(target_tmp) 

        elif self.label == 'dni': 

            target_tmp = float(self.imgs[index].split('/')[-1].split('-')[8]) / 800.0 

            target_tmp = torch.tensor(target_tmp) 

 

        date_tmp = self.date_list[index] 
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        return data_tmp, target_tmp, date_tmp 

 

    def __len__(self): 

        return self.img_num 

 

 

class MyDataSetTest(Dataset): 

    """ 

    Data processing and loading of test set 

 

        img_path: data set path 

        target_label: labels requiring prediction (GHI, DHI, DNI) 

        add_mask: whether to add a mask to the picture (0 is not added, 1 is added) 

    """ 

 

    def __init__(self, img_path, transform=None, target_label='ghi', add_mask=0): 

        self.label = target_label 

        self.file_path = img_path 

        self.add_mask = add_mask 

        self.imgs = [os.path.join(self.file_path, i) for i in os.listdir(self.file_path)] 

        #self.imgs = sorted(self.imgs, key=lambda x: int(x.split('/')[-1].split('-

')[0].split('\\')[1])) 

        self.imgs = sorted(self.imgs, key=lambda x: int(x.split('/')[-1].split('-')[0])) 

        self.img_num = len(self.imgs) 

 

        self.image_mask = cv2.imread("LR.jpg") 

        self.gray_image = cv2.cvtColor(self.image_mask, cv2.COLOR_BGR2GRAY) 

        (T, self.mask_image) = cv2.threshold(self.gray_image, 140, 255, 

cv2.THRESH_BINARY) 

 

 

        # Standardize data sets 

        self.normalize = transforms.Normalize( 

            mean=[0.4922, 0.5424, 0.5440], 

            std=[0.2952, 0.3117, 0.3254] 

        ) 

        self.trans = transforms.Compose([ 

            transforms.CenterCrop(480), 

            transforms.ToTensor(), 

            self.normalize 

        ]) 

 

 

        self.date_list = [] 

        for i in range(self.img_num): 

            date = "" 

            date_arr = (self.imgs[i].split('/')[-1].split('-')[1:6]) 
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            n = len(date_arr) 

            for j in range(n): 

                date += date_arr[j] 

                if (j == 0 or j == 1): 

                    date += "-" 

                if (j == 2 or j == 3): 

                    date += ":" 

            self.date_list.append(date) 

 

 

    def mask(self, img, mask_image): 

        # Function to add mask 

        cv2_img = cv2.imread(img) 

        masked = cv2.bitwise_and(cv2_img, cv2_img, mask=mask_image) 

        return Image.fromarray(cv2.cvtColor(masked, cv2.COLOR_BGR2RGB)) 

 

 

    def __getitem__(self, index): 

        if self.add_mask == 0: 

            data_tmp = self.trans(Image.open(self.imgs[index])) 

        else: 

            data_tmp = self.trans(self.mask(self.imgs[index], self.mask_image)) 

        target_tmp = None 

        # Process tags that need to be predicted 

        if self.label == 'ghi': 

            target_tmp = float(self.imgs[index].split('/')[-1].split('-')[6]) / 1000.0 

            target_tmp = torch.tensor(target_tmp) 

        elif self.label == 'dhi': 

            target_tmp = float(self.imgs[index].split('/')[-1].split('-')[7]) / 600.0 

            target_tmp = torch.tensor(target_tmp) 

        elif self.label == 'dni': 

            target_tmp = float(self.imgs[index].split('/')[-1].split('-')[8]) / 800.0 

            target_tmp = torch.tensor(target_tmp) 

 

        date_tmp = self.date_list[index] 

 

        return data_tmp, target_tmp, date_tmp 

 

    def __len__(self): 

        return self.img_num 
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5. ResNet-50 

 

from torch import nn 

import torchvision 

 

 

# Model architecture of resnet50 

class ResNet50(nn.Module): 

    def __init__(self): 

        super(ResNet50, self).__init__() 

        self.resnet50 = torchvision.models.resnet50(pretrained=True) 

        self.fc3 = nn.Linear(1000, 1) 

 

    def forward(self, x): 

        x = self.resnet50(x) 

        x = self.fc3(x) 

        return x 

 

 

6. ResNet-152 

 

from torch import nn 

import torchvision 

 

 

# Model architecture of resnet152 

class ResNet152(nn.Module): 

    def __init__(self): 

        super(ResNet152, self).__init__() 

        self.resnet152 = torchvision.models.resnet152(pretrained=True) 

        self.fc3 = nn.Linear(1000, 1) 

 

    def forward(self, x): 

        x = self.resnet152(x) 

        x = self.fc3(x) 

        return x 

 

 

7. Model Training 

 

import torch 

from torch import nn 

import time 

from dataset import MyDataSet 

from torch.utils.data import DataLoader 

import numpy as np 

from config import parsers 
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from ResNet50 import ResNet50 

from ResNet152 import ResNet152 

 

 

""" 

Function for model training 

 

    net: Model used 

    train_loader: Training set 

    val_loader: Validation set 

    num_epochs: Training rounds 

    lr: learning rate 

    device: Equipment used in the training (CPU or GPU) 

    save_file: File to store training information 

    net_name: Model name used 

    momentum: Momentum value 

    weight_decay: Parameters for weight decay 

    save_file_path: Path to save training results 

""" 

def train_model(net, train_loader, val_loader, num_epochs, lr, device, save_file, 

net_name, 

                momentum, weight_decay, save_file_path): 

    net.to(device) 

    optimizer = torch.optim.SGD(net.parameters(), lr=lr, momentum=momentum, 

weight_decay=weight_decay) 

    # Learning rate decay 

    milestones = [15, 50, 80] 

    torch.optim.lr_scheduler.MultiStepLR(optimizer=optimizer, milestones=milestones, 

gamma=0.1, last_epoch=-1) 

    best_loss = 1e8 

 

    # Using mean square error loss 

    loss = nn.MSELoss() 

    for epoch in range(num_epochs): 

        time_start = time.time() 

        train_loss = 0.0 

        all_num = 0.0 

        net.train() 

        for i, (X, y, date) in enumerate(train_loader): 

            optimizer.zero_grad() 

            X, y = X.to(device), y.to(device) 

            y = y.reshape(-1, 1) 

            y_hat = net(X) 

            l = loss(y_hat, y) 

            l.backward() 

            optimizer.step() 

            with torch.no_grad(): 
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                train_loss = train_loss + l * X.shape[0] 

                all_num = all_num + X.shape[0] 

        train_loss = train_loss / all_num 

        epoch_time = time.time() - time_start 

 

        # Use the validation set to evaluate the training result 

        mae_loss, mbe_loss, mse_loss, rmse_loss, mape_loss, corr_loss = 

evaluate_valloss(net, val_loader, device=device) 

 

        # Store the best performing model parameters in the validation set 

        if best_loss > mae_loss: 

            best_loss = mae_loss 

            model_name = save_file_path + '/' + net_name + "_model_{}".format(epoch + 1) 

+ ".pt" 

            torch.save(net.state_dict(), model_name) 

        print("epoch: {} train loss: {} epoch_time: {} MAE: {} MBE: {} MSE: {} RMSE: {} 

MAPE: {} Corr: {}".format( 

            epoch+1, train_loss, epoch_time, mae_loss[0], mbe_loss[0], mse_loss[0], 

rmse_loss[0], mape_loss[0], corr_loss 

        )) 

        save_file.write("epoch: {} train loss: {} epoch_time: {} MAE: {} MBE: {} MSE: {} 

RMSE: {} MAPE: {} Corr: {}\n".format( 

            epoch+1, train_loss, epoch_time, mae_loss[0], mbe_loss[0], mse_loss[0], 

rmse_loss[0], mape_loss[0], corr_loss 

        )) 

 

 

 

""" 

    The tag value predicted by the model is compared with the real value  

    to calculate each evaluation index 

 

        net: Model used 

        data_iter: Data sets to be evaluated 

        device: Equipment used in the evaluation (CPU or GPU) 

""" 

def evaluate_valloss(net, data_iter, device=None): 

    if isinstance(net, nn.Module): 

        net.eval()  # Set to evaluation mode 

        if not device: 

            device = next(iter(net.parameters())).device 

    net.eval() 

    mse_loss = 0.0 

    mae_loss = 0.0 

    mbe_loss = 0.0 

    mape_loss = 0.0 

    all_num = 0.0 
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    predict = None 

    target_all = None 

    with torch.no_grad(): 

        for X, y, date in data_iter: 

            X = X.to(device) 

            y = y.to(device) 

            y = y.reshape(-1, 1) 

            all_num = all_num + y.numel() 

            y_hat = net(X) 

            if predict is None: 

                predict = y_hat 

                target_all = y 

            else: 

                predict = torch.cat((predict, y_hat)) 

                target_all = torch.cat((target_all, y)) 

            y = y.cpu().numpy() 

            y_hat = y_hat.cpu().numpy() 

            y = y 

            y_hat = y_hat 

            mae_loss = mae_loss + sum(abs(y-y_hat)) 

            mbe_loss = mbe_loss + sum(y-y_hat) 

            mse_loss = mse_loss + sum((y - y_hat)**2) 

            mape_loss = mape_loss + sum(abs((y - y_hat) / y)) 

    mae_loss = mae_loss / all_num 

    mbe_loss = mbe_loss / all_num 

    mse_loss = mse_loss / all_num 

    rmse_loss = np.sqrt(mse_loss) 

    mape_loss = (mape_loss / all_num) * 100.0 

    mean_p = predict.mean() 

    mean_g = target_all.mean() 

    sigma_p = predict.std() 

    sigma_g = target_all.std() 

    correlation = ((predict - mean_p) * (target_all - mean_g)).mean(axis=0) / (sigma_p * 

sigma_g) 

    index = (sigma_g != 0) 

    correlation = (correlation[index]).mean() 

    return mae_loss, mbe_loss, mse_loss, rmse_loss, mape_loss, correlation 

 

 

if __name__ == "__main__": 

    torch.cuda.set_device(0) 

    opt = parsers() 

    # Parameter setting 

    train_info_file = opt.save_path + '/' + 'train_info.txt' 

    file_to_write = open(train_info_file, 'a') 

 

    # Training with GPU 
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    device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 

    time_pre = time.time() 

 

    # Data acquisition and data division 

    train_dataset = MyDataSet(img_path=opt.train_path, train=True, 

target_label=opt.data_type, add_mask=opt.mask) 

    val_dataset = MyDataSet(img_path=opt.val_path, train=False, 

target_label=opt.data_type, add_mask=opt.mask) 

    train_loader = DataLoader(train_dataset, batch_size=opt.batch_size, shuffle=True, 

num_workers=opt.num_workers) 

    val_loader = DataLoader(val_dataset, batch_size=opt.batch_size, shuffle=False, 

num_workers=opt.num_workers) 

 

    net = None 

    # Select model architecture 

    if opt.model_name == 'ResNet152': 

        net = ResNet152() 

    elif opt.model_name == 'ResNet50': 

        net = ResNet50() 

 

    # Start training 

    train_model(net=net, train_loader=train_loader, val_loader=val_loader, 

num_epochs=opt.epoch, lr=opt.lr, device=device, 

                save_file=file_to_write, net_name=opt.model_name, 

momentum=opt.momentum, weight_decay=opt.weight_decay, 

                save_file_path=opt.save_path) 

    file_to_write.close() 

    time_all = time.time() - time_pre 

    print("Run time is {}".format(time_all)) 

 

 

8. GHI and DHI Nowcasting 

 

import torch 

from config import parsers 

from ResNet152 import ResNet152 

from ResNet50 import ResNet50 

from torch.utils.data import DataLoader 

from dataset import MyDataSetTest 

import numpy as np 

from torch import nn 

import pandas as pd 

import os 

os.environ["CUDA_VISIBLE_DEVICES"] = "1" 

 

""" 

Function to load the model 
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    model_path: Path of model storage 

    model_name: Model name used 

    device: Equipment used in the prediction (CPU or GPU) 

""" 

def load_model(model_path, model_name, device): 

    if model_name == "ResNet50": 

        net = ResNet50() 

    elif model_name == "ResNet152": 

        net = ResNet152() 

 

    net.load_state_dict(torch.load(model_path)) 

    net = net.to(device) 

    net.eval() 

    return net 

 

 

# Convert timestamp to date type 

def dateparse(timestamp): 

    time = pd.datetime.strptime(timestamp, "%Y-%m-%d %H:%M:%S") 

    return time 

 

 

""" 

Use the model to predict the label of the test set  

and compare it with the real value to calculate various indicators 

 

        net: Loaded model 

        data_iter: the test set 

        label_type: Label type to be predicted (GHI, DHI, DNI) 

        save_path: Save path of predicted results and indicators 

        device: Equipment used in the evaluation (CPU or GPU) 

""" 

def evaluate_valloss(net, data_iter, label_type, save_path, device=None): 

    if isinstance(net, nn.Module): 

        net.eval()  # Set to evaluation mode 

        if not device: 

            device = next(iter(net.parameters())).device 

    net.eval() 

    mse_loss = 0.0 

    mae_loss = 0.0 

    mbe_loss = 0.0 

    mape_loss = 0.0 

    all_num = 0.0 

    df_result = pd.DataFrame() 

    date_list = [] 

    predict = None 
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    target_all = None 

    with torch.no_grad(): 

        for X, y, date in data_iter: 

            X = X.to(device) 

            y = y.to(device) 

            if label_type == 'ghi': 

                y = y.reshape(-1, 1) * 1000.0 

                all_num = all_num + y.numel() 

                y_hat = net(X) * 1000.0 

            elif label_type == 'dhi': 

                y = y.reshape(-1, 1) * 600.0 

                all_num = all_num + y.numel() 

                y_hat = net(X) * 600.0 

            elif label_type == 'dni': 

                y = y.reshape(-1, 1) * 800.0 

                all_num = all_num + y.numel() 

                y_hat = net(X) * 800.0 

            if predict is None: 

                predict = y_hat 

                target_all = y 

            else: 

                predict = torch.cat((predict, y_hat)) 

                target_all = torch.cat((target_all, y)) 

            date_tmp = list(date) 

            date_list = date_list + date_tmp 

            y = y.cpu().numpy() 

            y_hat = y_hat.cpu().numpy() 

            y = y 

            y_hat = y_hat 

            mae_loss = mae_loss + sum(abs(y-y_hat)) 

            mbe_loss = mbe_loss + sum(y-y_hat) 

            mse_loss = mse_loss + sum((y - y_hat)**2) 

            mape_loss = mape_loss + sum(abs((y - y_hat) / y)) 

    mae_loss = mae_loss / all_num 

    mbe_loss = mbe_loss / all_num 

    mse_loss = mse_loss / all_num 

    rmse_loss = np.sqrt(mse_loss) 

    mape_loss = (mape_loss / all_num) * 100.0 

    mean_p = predict.mean() 

    mean_g = target_all.mean() 

    sigma_p = predict.std() 

    sigma_g = target_all.std() 

    correlation = ((predict - mean_p) * (target_all - mean_g)).mean(axis=0) / (sigma_p * 

sigma_g) 

    index = (sigma_g != 0) 

    correlation = (correlation[index]).mean() 

    predict = predict.cpu().numpy().reshape(-1, ) 
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    target_all = target_all.cpu().numpy().reshape(-1, ) 

    df_result['Time'] = date_list 

    df_result['Time'] = df_result['Time'].map(dateparse) 

    if label_type == 'ghi': 

        df_result['ghi_target'] = target_all 

        df_result['ghi_predict'] = predict 

        save_result = save_path + '/' + 'ghi_result.csv' 

        df_result.to_csv(save_result, index=None) 

    elif label_type == 'dhi': 

        df_result['dhi_target'] = target_all 

        df_result['dhi_predict'] = predict 

        save_result = save_path + '/' + 'dhi_result.csv' 

        df_result.to_csv(save_result, index=None) 

    elif label_type == 'dni': 

        df_result['dni_target'] = target_all 

        df_result['dni_predict'] = predict 

        save_result = save_path + '/' + 'dni_result.csv' 

        df_result.to_csv(save_result, index=None) 

 

    return mae_loss, mbe_loss, mse_loss, rmse_loss, mape_loss, correlation 

 

 

if __name__ == "__main__": 

    opt = parsers() 

    # Parameter setting 

    batch_size = opt.batch_size 

    eval_epochs = opt.epoch 

    eval_path = opt.test_path 

    model_name = opt.model_name 

    model_path = opt.load_model 

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 

    #device = torch.device("cpu") 

 

    # Load the test dataset 

    test_dataset = MyDataSetTest(img_path=eval_path, target_label=opt.data_type, 

add_mask=opt.mask) 

    test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, 

num_workers=opt.num_workers) 

 

    # Load the model and use it for prediction and indicator calculation 

    net = load_model(model_path=model_path, model_name=model_name, 

device=device) 

    mae_loss, mbe_loss, mse_loss, rmse_loss, mape_loss, correlation = 

evaluate_valloss(net=net, 

                                                                                       data_iter=test_loader, 

                                                                                       label_type=opt.data_type, 

                                                                                       save_path=opt.save_path, 
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                                                                                       device=device) 

    test_info_file = opt.save_path + '/' + 'test_info.txt' 

    # Save indicator information 

    file_to_write = open(test_info_file, 'a') 

    print("MAE: {} MBE: {} MSE: {} RMSE: {} MAPE: {} Corr: {}".format( 

        mae_loss[0], mbe_loss[0], mse_loss[0], rmse_loss[0], mape_loss[0], correlation 

    )) 

    file_to_write.write("MAE: {} MBE: {} MSE: {} RMSE: {} MAPE: {} Corr: {}\n".format( 

        mae_loss[0], mbe_loss[0], mse_loss[0], rmse_loss[0], mape_loss[0], correlation 

    )) 

    file_to_write.close() 

 

 

9. DNI Calculation 

 

import time 

import os 

import pandas as pd 

import numpy as np 

import pytz 

 

import math 

 

 

dir_path=r"D:\solar\solar\class_res\60I-300H152" 

 

def dateparse(timestamp): 

    return pd.datetime.strptime(timestamp, '%Y-%m-%d %H:%M:%S') 

 

def read_csv(file): 

    # os.chdir(path) 

    # filename_list = os.listdir(path) 

    data = pd.read_csv(file, encoding = 'gbk', date_parser=dateparse) # Read the 

corresponding column from the CSV file 

    data.columns = ['TIME', 'measured value', 'predicted value'] 

    return data 

 

 

def ephemeris(time, latitude, longitude, pressure=101325, temperature=12): 

    """ 

    Python-native solar position calculator. 

    The accuracy of this code is not guaranteed. 

    Consider using the built-in spa_c code or the PyEphem library. 

 

    Parameters 

    ---------- 

    time : pandas.DatetimeIndex 
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        Must be localized or UTC will be assumed. 

    latitude : float 

        Latitude in decimal degrees. Positive north of equator, negative 

        to south. 

    longitude : float 

        Longitude in decimal degrees. Positive east of prime meridian, 

        negative to west. 

    pressure : float or Series, default 101325 

        Ambient pressure (Pascals) 

    temperature : float or Series, default 12 

        Ambient temperature (C) 

 

    Returns 

    ------- 

 

    DataFrame with the following columns: 

 

        * apparent_elevation : apparent sun elevation accounting for 

          atmospheric refraction. 

        * elevation : actual elevation (not accounting for refraction) 

          of the sun in decimal degrees, 0 = on horizon. 

          The complement of the zenith angle. 

        * azimuth : Azimuth of the sun in decimal degrees East of North. 

          This is the complement of the apparent zenith angle. 

        * apparent_zenith : apparent sun zenith accounting for atmospheric 

          refraction. 

        * zenith : Solar zenith angle 

        * solar_time : Solar time in decimal hours (solar noon is 12.00). 

 

    References 

    ----------- 

 

    .. [1] Grover Hughes' class and related class materials on Engineering 

       Astronomy at Sandia National Laboratories, 1985. 

 

    See also 

    -------- 

    pyephem, spa_c, spa_python 

 

    """ 

 

    # Added by Rob Andrews (@Calama-Consulting), Calama Consulting, 2014 

    # Edited by Will Holmgren (@wholmgren), University of Arizona, 2014 

 

    # Most comments in this function are from PVLIB_MATLAB or from 

    # pvlib-python's attempt to understand and fix problems with the 

    # algorithm. The comments are *not* based on the reference material. 
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    # This helps a little bit: 

    # http://www.cv.nrao.edu/~rfisher/Ephemerides/times.html 

 

    # the inversion of longitude is due to the fact that this code was 

    # originally written for the convention that positive longitude were for 

    # locations west of the prime meridian. However, the correct convention (as 

    # of 2009) is to use negative longitudes for locations west of the prime 

    # meridian. Therefore, the user should input longitude values under the 

    # correct convention (e.g. Albuquerque is at -106 longitude), but it needs 

    # to be inverted for use in the code. 

 

    Latitude = latitude 

    Longitude = -1 * longitude 

 

    Abber = 20 / 3600. 

    LatR = np.radians(Latitude) 

 

    # the SPA algorithm needs time to be expressed in terms of 

    # decimal UTC hours of the day of the year. 

 

    # if localized, convert to UTC. otherwise, assume UTC. 

    try: 

        time_utc = time.tz_convert('UTC') 

    except TypeError: 

        time_utc = time 

 

    # strip out the day of the year and calculate the decimal hour 

    DayOfYear = time_utc.dayofyear 

    DecHours = (time_utc.hour + time_utc.minute/60. + time_utc.second/3600. + 

                time_utc.microsecond/3600.e6) 

 

    # np.array needed for pandas > 0.20 

    UnivDate = np.array(DayOfYear) 

    UnivHr = np.array(DecHours) 

 

    Yr = np.array(time_utc.year) - 1900 

    YrBegin = 365 * Yr + np.floor((Yr - 1) / 4.) - 0.5 

 

    Ezero = YrBegin + UnivDate 

    T = Ezero / 36525. 

 

    # Calculate Greenwich Mean Sidereal Time (GMST) 

    GMST0 = 6 / 24. + 38 / 1440. + ( 

        45.836 + 8640184.542 * T + 0.0929 * T ** 2) / 86400. 

    GMST0 = 360 * (GMST0 - np.floor(GMST0)) 

    GMSTi = np.mod(GMST0 + 360 * (1.0027379093 * UnivHr / 24.), 360) 
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    # Local apparent sidereal time 

    LocAST = np.mod((360 + GMSTi - Longitude), 360) 

 

    EpochDate = Ezero + UnivHr / 24. 

    T1 = EpochDate / 36525. 

 

    ObliquityR = np.radians( 

        23.452294 - 0.0130125 * T1 - 1.64e-06 * T1 ** 2 + 5.03e-07 * T1 ** 3) 

    MlPerigee = 281.22083 + 4.70684e-05 * EpochDate + 0.000453 * T1 ** 2 + ( 

        3e-06 * T1 ** 3) 

    MeanAnom = np.mod((358.47583 + 0.985600267 * EpochDate - 0.00015 * 

                       T1 ** 2 - 3e-06 * T1 ** 3), 360) 

    Eccen = 0.01675104 - 4.18e-05 * T1 - 1.26e-07 * T1 ** 2 

    EccenAnom = MeanAnom 

    E = 0 

 

    while np.max(abs(EccenAnom - E)) > 0.0001: 

        E = EccenAnom 

        EccenAnom = MeanAnom + np.degrees(Eccen)*np.sin(np.radians(E)) 

 

    TrueAnom = ( 

        2 * np.mod(np.degrees(np.arctan2(((1 + Eccen) / (1 - Eccen)) ** 0.5 * 

                   np.tan(np.radians(EccenAnom) / 2.), 1)), 360)) 

    EcLon = np.mod(MlPerigee + TrueAnom, 360) - Abber 

    EcLonR = np.radians(EcLon) 

    DecR = np.arcsin(np.sin(ObliquityR)*np.sin(EcLonR)) 

 

    RtAscen = np.degrees(np.arctan2(np.cos(ObliquityR)*np.sin(EcLonR), 

                                    np.cos(EcLonR))) 

 

    HrAngle = LocAST - RtAscen 

    HrAngleR = np.radians(HrAngle) 

    HrAngle = HrAngle - (360 * (abs(HrAngle) > 180)) 

 

    SunAz = np.degrees(np.arctan2(-np.sin(HrAngleR), 

                                  np.cos(LatR)*np.tan(DecR) - 

                                  np.sin(LatR)*np.cos(HrAngleR))) 

    SunAz[SunAz < 0] += 360 

 

    SunEl = np.degrees(np.arcsin( 

        np.cos(LatR) * np.cos(DecR) * np.cos(HrAngleR) + 

        np.sin(LatR) * np.sin(DecR))) 

 

    SolarTime = (180 + HrAngle) / 15. 

 

    # Calculate refraction correction 

    Elevation = SunEl 
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    TanEl = pd.Series(np.tan(np.radians(Elevation)), index=time_utc) 

    Refract = pd.Series(0, index=time_utc) 

 

    Refract[(Elevation > 5) & (Elevation <= 85)] = ( 

        58.1/TanEl - 0.07/(TanEl**3) + 8.6e-05/(TanEl**5)) 

 

    Refract[(Elevation > -0.575) & (Elevation <= 5)] = ( 

        Elevation * 

        (-518.2 + Elevation*(103.4 + Elevation*(-12.79 + Elevation*0.711))) + 

        1735) 

 

    Refract[(Elevation > -1) & (Elevation <= -0.575)] = -20.774 / TanEl 

 

    Refract *= (283/(273. + temperature)) * (pressure/101325.) / 3600. 

 

    ApparentSunEl = SunEl + Refract 

 

    # make output DataFrame 

    DFOut = pd.DataFrame(index=time_utc) 

    DFOut['apparent_elevation'] = ApparentSunEl 

    DFOut['elevation'] = SunEl 

    DFOut['azimuth'] = SunAz 

    DFOut['apparent_zenith'] = 90 - ApparentSunEl 

    DFOut['zenith'] = 90 - SunEl 

    DFOut['solar_time'] = SolarTime 

    DFOut.index = time 

    return DFOut 

 

def calculate_dni(time, ghi, dhi): 

    ghi_data = pd.DataFrame() 

    dhi_data = pd.DataFrame() 

 

 

    ghi_data['TIME']= pd.to_datetime(time) 

    ghi_data['measured value'] = ghi 

    dhi_data['measured value'] = dhi 

 

    timezone = pytz.timezone('Asia/Shanghai') 

 

 

    t1=pd.DatetimeIndex(ghi_data['TIME'], tz = timezone) 

 

    latitude = 31.29  

    longitude = 121.2085 

    #time = '2021-07-01 17:29:30' 

     

    apparent_elevation = ephemeris(t1, latitude, longitude, pressure=101325.0, 
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temperature=16.0) 

 

    print(apparent_elevation) 

     

    degree = (90 - np.array(apparent_elevation['apparent_elevation'])) * np.pi/180 #转化

为弧度 

 

 

    dni_m = np.true_divide(np.array(ghi_data['measured value'] - dhi_data['measured 

value']), np.cos(degree)) 

    dni_m = np.around(dni_m, decimals = 2) 

    print(dni_m) 

     

    return dni_m 

 

 

def calculate_dni_from_twofile(path, save_flag=False, measure_flag=False):  # 从分别

的 ghi_file.csv 和 dhi_file.csv 生成 dhi_file.csv 

    os.chdir(path) 

    filename_list = os.listdir(path) 

    ghi_file = '' 

    dhi_file = '' 

    for file in filename_list: 

        if file.find('ghi') >= 0: 

            ghi_file = file 

        elif file.find('dhi') >= 0: 

            dhi_file = file 

    print("{}, {}".format(ghi_file, dhi_file)) 

    # name = csv_to_xls(os.path.join(path, file)) 

    ghi_data = read_csv(ghi_file) 

    dhi_data = read_csv(dhi_file) 

     

    dni_m = calculate_dni(ghi_data['TIME'], ghi_data['measured value'], 

dhi_data['measured value']) 

     

    dni_p  = calculate_dni(ghi_data['TIME'], ghi_data['predicted value'], 

dhi_data['predicted value']) 

     

     

    result = pd.DataFrame() 

    result['Time'] = ghi_data['TIME'] 

    result['dni_target'] = dni_m 

    result['dni_predict'] = dni_p 

    if save_flag == True: 

        file_name = ghi_file.replace('ghi', 'dni') 

        #如果想要保存 dni 文件 去掉下一行注释 
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        result.to_csv(file_name, index=0) 

     

    if measure_flag==False: 

        return ghi_data['TIME'], ghi_data['predicted value'], dhi_data['predicted value'], 

result['dni_predict'] 

    else: 

        return ghi_data['TIME'], ghi_data['measured value'], dhi_data['measured value'], 

result['dni_target'] 

 

 

def calculate_dni_from_onefile(file_path, save_flag=False):   

    GHI = 'total_Avg'  

    DHI = 'diffuse_Avg' 

    TIME = 'TMSTAMP' 

     

    data = pd.read_csv(file_path, encoding = 'gbk', usecols = [TIME, GHI, 

DHI],parse_dates=[TIME], date_parser=dateparse, header = 1 

  

    ghi_data = pd.DataFrame() 

    dhi_data = pd.DataFrame() 

     

    ghi_data['TIME']= pd.to_datetime(data[TIME]) 

    ghi_data['measured value'] = data[GHI] 

    dhi_data['measured value'] = data[DHI] 

     

    print(ghi_data['TIME']) 

    dni_m = calculate_dni(data[TIME], data[GHI], data[DHI]) 

     

    result = pd.DataFrame() 

    result['Time'] = ghi_data['TIME'] 

     

    result['dhi_measure'] = ghi_data['measured value'] 

    result['dhi_measure'] = dhi_data['measured value'] 

    result['dni_measure'] = dni_m 

     

    if save_flag == True: 

        file_name = "dni.csv" 

 

        result.to_csv(file_name, index=0) 

         

    return ghi_data['TIME'], ghi_data['measured value'], dhi_data['measured value'], 

result['dni_measure'] 

 

 

def main(): 

    os.chdir(dir_path) 

    calculate_dni_from_twofile(dir_path, True) 
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    # dir_path = r"D:/solar/solar/20211018/20211018.csv" 

    # calculate_dni_from_onefile(dir_path, True) 

 

 

if __name__ == "__main__": 

    main() 
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• Verification 

import datetime 

 

import re 

import pandas as pd 

import numpy as np 

import csv 

import os 

from sklearn.metrics import mean_squared_error, mean_absolute_error 

from soupsieve import select 

 

# dir_path = r"D:\PythonWorks\solar_project\Result_8-12" ## win format 

dir_path = "/Users/cirtus/Desktop/solar/test/solar/data/" ## 300-300 

dir_path = r"D:\solar\solar\class_res" ## 300-300 

 

 

def dateparse(timestamp): 

    #   07/21/21 下午 06 时 34 分 00 

    # print(type(timestamp)) 

    if timestamp.find('-') >= 0: 

        time = pd.datetime.strptime(timestamp, "%Y-%m-%d %H:%M:%S") 

    else: 

        time = pd.datetime.strptime(timestamp, '%Y/%m/%d %H:%M') 

    return time 

 

 

def nRMSE(y, y_hat): 

    return np.sqrt(mean_squared_error(y, y_hat)) / np.mean(y) 

 

 

def RMSE(y, y_hat): 

    return np.sqrt(mean_squared_error(y, y_hat)) 

 

 

def nMAE(y, y_hat): 

    return mean_absolute_error(y, y_hat) / np.mean(y) 

 

 

def MAE(y, y_hat): 

    return mean_absolute_error(y, y_hat) 

 

 

def MBE(y, y_hat): 

    return np.mean((y_hat - y)) 
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def MAPE(y, y_hat): 

    return np.mean(np.abs(y_hat - y) / y) * 100 

 

 

def R(y, y_hat): 

    mean_p = y_hat.mean() 

    mean_g = y.mean() 

    sigma_p = y_hat.std() 

    sigma_g = y.std() 

    correlation = ((y_hat - mean_p) * (y - mean_g)).mean(axis=0) / (sigma_p * sigma_g) 

 

    return correlation 

 

# SS-MAE SS-RMSE 

def SS_MAE(y, y_hat, p): 

    p_mae = MAE(y, p) 

    f_mae = MAE(y, y_hat) 

    print("SSMAE :{} {}".format(p_mae, f_mae)) 

    ss_mae = 1 - (f_mae / p_mae) 

    return ss_mae * 100 

 

def SS_RMSE(y, y_hat, p): 

    p_rmse = RMSE(y, p) 

    f_rmse = RMSE(y, y_hat) 

    ss_rmse = 1 - (f_rmse / p_rmse) 

    return ss_rmse * 100 

 

def indicators(y, y_hat): 

    mae = MAE(y, y_hat) 

    nmae = nMAE(y, y_hat) 

    rmse = RMSE(y, y_hat) 

    nrmse = nRMSE(y, y_hat) 

    r = R(y, y_hat) 

    mape = MAPE(y, y_hat) 

    mbe = MBE(y, y_hat) 

    return mae, nmae, rmse, nrmse, r, mape, mbe 

 

 

def main(): 

    os.chdir(dir_path) 

 

    dirlist = os.listdir(dir_path) 

    # print(dirlist) 

 

    for dir in dirlist: 

        file_path = os.path.join(dir_path, dir) 
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        filename_list = os.listdir(file_path) 

        # os.chdir(file_path) 

        print(file_path) 

 

        select_file = [] 

        for file in filename_list: 

            if file.find("ghi") >= 0 and file.find("result") >= 0: 

                select_file.append(file) 

 

        for file in filename_list: 

            if file.find("dhi") >= 0 and file.find("result") >= 0: 

                select_file.append(file) 

 

        for file in filename_list: 

            if file.find("dni") >= 0 and file.find("result") >= 0: 

                select_file.append(file) 

 

        # print(select_file) 

        # exit() 

 

        for file in select_file: 

            if file.find("ghi") >= 0 or file.find("dhi") >= 0 or file.find("dni") >= 0:  # 

                file_tag = dir + ' ' + file 

                file = os.path.join(file_path, file) 

                # if file.find("dni") >=0: 

                # head = ["Time", "Measurement", "Nowcasting", "WeightForecst"] 

                print("file \n") 

                print(file) 

                head = ["Time", "Measurement", "Nowcasting"] 

                f = pd.read_csv(file, header=0) 

                f.columns = head 

                print("f \n") 

                print(f) 

 

                # idx = 0 

                # for ind, date in enumerate(f["Time"]): 

                #     if datetime.datetime.strptime(date, "%Y-%m-%d %H:%M:%S").month > 

9: 

                #         idx = ind 

                #         break 

 

                f['Time'] = f['Time'].map(dateparse) 

                f["month"] = f["Time"].map(lambda x: x.month) 

                f["day"] = f["Time"].map(lambda x: x.day) 

                # print(f["month"].month) 

 

                # criteria = (f["Time"].month< 8760) & (df.index%2 == 0) 
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                # criteria = ((f["month"] == 5 ) & (f["day"] == 30)) 

                # criteria = ((f["month"] == 5 ) & (f["day"] == 22)) | ((f["month"] == 6 ) & 

(f["day"] == 21)) 

                # criteria = ((f["month"] == 5 ) & (f["day"] == 9)) | ((f["month"] == 5 ) & (f["day"] 

== 30)) | ((f["month"] == 6 ) & (f["day"] == 25)) | ((f["month"] == 7 ) & (f["day"] == 1)) 

                # criteria = ((f["month"] == 4 ) & (f["day"] == 25)) | ((f["month"] == 5 ) & 

(f["day"] == 20)) 

                # f = f[criteria] 

                print(dir) 

                number = re.findall("\d+",dir)  

                print(number) 

                late = int(number[1]) // int(number[0]) 

                print(late) 

                 

                y = f['Measurement'].to_numpy() 

                # y_hat = f['WeightForecst'].to_numpy() 

                y_hat = f['Nowcasting'].to_numpy() 

                p = f['Measurement'].shift(late).to_numpy() 

                # p = f['Nowcasting'].shift(1).to_numpy() 

                # y_hat = p 

 

                # y = np.where(y, y, 1) 

                # y_hat = np.where(y_hat, y_hat, 1) 

                y_hat = np.where(y_hat >= 0, y_hat, 0) 

                print("three") 

                ## late 

                 

 

 

                mae, nmae, rmse, nrmse, r, mape, mbe = indicators(y[late:], y_hat[late:]) 

                # mae, nmae, rmse, nrmse, r, mape, mbe = indicators(y[late:], p[late:])   

 

                 

                ss_mae = SS_MAE(y[late:], y_hat[late:], p[late:]) 

                ss_rmse = SS_RMSE(y[late:], y_hat[late:], p[late:]) 

                print("MAE: {}\n" 

                      "nMAE: {}\n" 

                      "RMSE: {}\n" 

                      "nRMSE: {}\n" 

                      "R: {}\n" 

                      "MAPE: {} %\n" 

                      "MBE: {} \n" 

                      "SS_MAE: {} %\n" 

                      "SS_RMSE: {} %".format(mae, nmae, rmse, nrmse, r, mape, mbe, 

ss_mae, ss_rmse)) 

 

                mae = round(mae, 2) 
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                nmae = round(nmae, 2) 

                rmse = round(rmse, 2) 

                nrmse = round(nrmse, 2) 

                r = round(r, 4) 

                mape = round(mape, 2) 

                mape = str(mape) + "%" 

                mbe = round(mbe, 2) 

                ss_mae = str(round(ss_mae, 2)) + "%" 

                ss_rmse = str(round(ss_rmse, 2)) + "%" 

 

                # file_name = "3_another_result.csv" 

                file_name = "result.csv" 

                file_name = os.path.join(dir_path, file_name) 

 

                if os.path.isfile(file_name) == True: 

                    with open(file_name, 'a+', encoding="utf-8", newline='') as csvfile: 

                        writer = csv.writer(csvfile) 

                        writer.writerow([file_tag, mae, nmae, rmse, nrmse, r, mape, mbe, 

ss_mae, ss_rmse]) 

                        csvfile.close() 

 

                else: 

                    field_order = ["file_name", "MAE", "nMAE", "RMSE", "nRMSE", "R", 

"MAPE", "MBE", "SS-MAE", "SS-RMSE"] 

                    with open(file_name, 'w', encoding="utf-8", newline='') as csvfile: 

                        writer = csv.writer(csvfile) 

                        writer.writerow(field_order) 

                        writer.writerow([file_tag, mae, nmae, rmse, nrmse, r, mape, mbe, 

ss_mae, ss_rmse]) 

                        csvfile.close() 

 

 

if __name__ == '__main__': 

    main() 


