
Proteoglycan Research

ORIGINAL RESEARCH

Comprehensive Investigation of Proteoglycan Gene
Expression in Breast Cancer: Discovery of a Unique
Proteoglycan Gene Signature Linked to the Malignant
Phenotype
Simone Buraschi1 | Gabriel Pascal1 | Federico Liberatore2 | Renato V. Iozzo1

1Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical

College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA | 2School of Computer Science and Informatics, Cardiff University, Cardiff, UK

Correspondence: Simone Buraschi (simone.buraschi@jefferson.edu) | Renato V. Iozzo (renato.iozzo@jefferson.edu)

Received: 23 August 2024 | Revised: 26 November 2024 | Accepted: 6 December 2024

Funding: The original research was supported, in part by National Institutes of Health Grants RO1 CA245311 and RO3 CA270830, grant 3R01CA245311‐04S1.

Keywords: asporin | decorin | podocan | PRELP | proteoglycan gene signature | syndecan‐1

ABSTRACT
Solid tumors present a formidable challenge in oncology, necessitating innovative approaches to improve therapeutic outcomes.

Proteoglycans, multifaceted molecules within the tumor microenvironment, have garnered attention due to their diverse roles

in cancer progression. Their unique ability to interact with specific membrane receptors, growth factors, and cytokines provides

a promising avenue for the development of recombinant proteoglycan‐based therapies that could enhance the precision and

efficacy of cancer treatment. In this study, we performed a comprehensive analysis of the proteoglycan gene landscape in

human breast carcinomas. Leveraging the available wealth of genomic and clinical data regarding gene expression in breast

carcinoma and using a machine learning model, we identified a unique gene expression signature composed of five pro-

teoglycans differentially modulated in the tumor tissue: Syndecan‐1 and asporin (upregulated) and decorin, PRELP and po-

docan (downregulated). Additional query of the breast carcinoma data revealed that serglycin, previously shown to be increased

in breast carcinoma patients and mouse models and to correlate with a poor prognosis, was indeed decreased in the vast

majority of breast cancer patients and its levels inversely correlated with tumor progression and invasion. This proteoglycan

gene signature could provide novel diagnostic capabilities in breast cancer biology and highlights the need for further utilization

of publicly available datasets for the clinical validation of preclinical experimental results.

1 | Introduction

Proteoglycans are a highly heterogeneous class of glycanated
proteins primarily found to be secreted in the extracellular

matrix (ECM) of the connective tissues and in the pericellular
and basement membrane spaces [1–4]. Forty‐three proteogly-
cans have been described so far, of which 33 appear to be
glycanated with one or more glycosaminoglycan (GAG) chain
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covalently linked to their individual protein cores. The GAG
chains are long, linear polysaccharides composed of repeating
disaccharide units such as chondroitin sulfate, dermatan sul-
fate, heparan sulfate, keratan sulfate, or the unsulfated hya-
luronan [5–7]. Proteoglycans play crucial roles in the ECM,
contributing to various biological functions such as structural
support, cell adhesion and migration, tissue osmotic balance,
and regulation of diverse biological processes through inter-
action with growth factors, cytokines, and membrane recep-
tors [8–10]. Moreover, proteolytic fragments of proteoglycan
protein cores affect tumor angiogenesis [11–14] by interacting
with and suppressing the action of vascular receptors [15–17].
Because of their critical roles in regulating cellular behavior
and interactions across ECM molecules and cells, proteogly-
cans have been described as master regulators of cancer pro-
gression, invasion, and metastatic spreading [18]. Changes in
the expression levels of some proteoglycans are associated
with clinical outcomes of various cancers. High expression of
specific proteoglycans often correlates with poor prognosis,
increased metastatic potential, and resistance to therapy.
Therefore, proteoglycans represent potential biomarkers for
cancer diagnosis, prognosis, and therapeutic targeting [5]. In
this study we discovered a novel proteoglycan gene signature
in breast cancer leveraging available data from the Cancer
Genome Atlas (TCGA) and the Genotype‐Tissue Expression
(GTEx) databases.

The main goal of our research was to delineate the overall
impact of 43 proteoglycan gene expression profiles in breast
cancer diagnosis and prognosis, focusing on statistically signif-
icant changes in their mRNA expression levels in the breast
tumor tissue compared with the normal, noncancerous, tissue.
The applicability of our analysis lies in the generation of the
scientific basis for future studies focused on proteoglycan roles
in breast cancer pathophysiology including initiation, progres-
sion, and metastasis.

The utility of this study is two‐fold, such that our analysis of
a large, publicly available data set provides unbiased vali-
dation or criticism of experimentally determined trends of
expression for several proteoglycans, as well as providing
insights into the expression of several proteoglycans in
breast cancer that have previously been unexplored. TCGA
is a cancer genomics program led by the National Cancer
Institute which includes an immense repository of tran-
scriptomic data compiled from several thousand patient
tissue samples collected since 2006. This vast array of
patient data collected over nearly two decades serves as a
unique and ever‐growing public resource to members of the
cancer research community by which we may glean novel
insights into the genomic origins of cancer pathophysiology.
Searching through this robust and unbiased body of data has
provided us with a broader perspective of overarching
trends of expression for many proteoglycans within the
context of breast carcinoma, and illuminated opportunities

for future expansion of investigative focus within the field of
proteoglycan science.

The technological advancements of biomedical analysis tools in
the past two decades have produced exciting new ways for us to
understand these genomic origins and the evolution of machine
learning and artificial intelligence is at the forefront of the
contemporary technological revolution. We have sought to
compound the potential of TCGA's robust body of data with
cutting‐edge machine learning techniques to drive the
advancement of proteoglycan‐based diagnostic knowledge so
that we may continue to advance the field of proteoglycan sci-
ence and provide new directions for future investigation and
ultimately develop innovative proteoglycan centered therapeu-
tic approaches in the future. This analysis aids in prioritizing
proteoglycan candidates for further investigation with a data‐
driven approach to identify promising undiscovered therapeutic
avenues. The integration of the proteoglycan expression pro-
files, their biological functions, and clinical outcomes has the
potential to guide the development of precision therapies that
may enhance the prognosis of solid tumor patients.

2 | Methods

2.1 | Data Set

The data set employed in this study consists of a combined
cohort derived from TCGA, Therapeutically Applicable
Research to Generate Effective Treatments (TARGET), and
Genotype‐Tissue Expression (GTEx) projects, accessible via the
UCSC Xena Project [19], and publicly available at https://
xenabrowser.net/datapages/?cohort=TCGA%20TARGET%
20GTEx. Specifically, this research utilizes the gene expression
RNASeq data, encompassing a total of 19,120 samples and
providing the log‐transformed expression values for 58,581
genes.

2.2 | Preprocessing

The data set is refined based on phenotype information sourced
from the UCSC Xena Project. A filter is implemented, which
keeps only the samples identified with a primary site of “Breast”
and categorized under the sample types “Normal Tissue” or
“Primary Tumor.” Additionally, the analysis is restricted to the
gene expression profiles of proteoglycans. Consequently, the
refined data set encompasses expression data for 43 genes
across 1271 samples. The data set is divided into 179 normal
tissue samples, all sourced from GTEx, and 1092 tumor tissue
samples, all derived from TCGA. Furthermore, the tumor
samples are augmented with clinical data detailing the patho-
logic stage of the tumor tissue samples. Table 1 displays the
distribution of samples across different stages.

TABLE 1 | Number of samples per pathological stage.

NA Stage I Stage II Stage III Stage IV Stage X

12 182 617 248 20 13
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2.3 | Gene Expression Analysis

Here, we present an analysis that involves detailed gene ex-
pression profiling and logistic regression modeling to identify
and validate a gene signature capable of distinguishing between
normal and tumor breast tissues, using advanced statistical
methods and machine learning techniques. This analysis was
developed and performed with initial criteria in place to select
only the most pertinent genes from the data set. Genes were
only considered for downstream analysis if (1) the log2 fold‐
change of the gene in the breast carcinoma group was > 2 or
<−2, and (2) the p value of this comparison was > 0.001.

For each gene, the log2‐fold change is calculated as the logarith-
mically normalized difference between the mean expression values
of cases (TCGA) and controls (GTEx). Following the DESeq. 2
analytical framework [20], p values were derived using a Wald test
[21] applied within a simple linear regression model. Then, these p
values were adjusted to control for multiple testing errors using the
Benjamini–Hochberg procedure [22]. We note that while DESeq. 2
was used as an analytical framework, this package was not used to
perform the analysis. Data retrieved from the UCSD Xena Project is
log‐transformed upon download and reverting these transformed
data to raw counts required DESeq. 2 compatibility, thereby intro-
ducing error and consequently decrease the precision of down-
stream analysis. The code was developed in R (https://www.r-
project.org/). We used theWald test function,waldtest(), provided in
the package lmtest [23]. p values adjustment was carried out
through the function p.adjust(), included in the base package stats,
specifying the parameter method= “BH” in the function call.

Of the 43 proteoglycans evaluated in this analysis, only 11
proteoglycans meet these stringent criteria, namely GPC3, DCN,
PTPRZ1, EPYC, ACAN, PODN, SDC1, TGFBR3, OGN, ASPN,
and PRELP. Notably, ACAN, which is predominantly expressed
in cartilaginous tissues and plays a key role in the structural
integrity of cartilage, also appears in this list. Given its usual
tissue‐specific expression and the focus of this study on breast
cancer, this finding was unexpected. To refine our analysis
further, we applied a mean‐based filter [24] excluding genes
with a mean log‐counts across all samples of 4.45435 or less.
This threshold, considering the data is log‐transformed as
X' = log2(X+1), corresponds to a minimum average gene count
of approximately 85, effectively excluding ACAN from the data
set. After applying this filter, we narrowed the focus of our
study to the following proteoglycans: GPC3, DCN, PODN, SDC1,
TGFBR3, OGN, ASPN, PRELP, which became the subject of
further investigation.

2.4 | Gene Signature for Breast Cancer Detection

The objective of this analysis was to identify a gene signa-
ture for breast cancer that would effectively differentiate

between normal (class 0) and tumor (class 1) tissues. To
achieve this, we implemented a Recursive Feature Elim-
ination (RFE) procedure [25] to isolate the minimal set of
proteoglycans that yields the highest classification accuracy.
This approach involved evaluating all possible combinations
of the eight previously identified proteoglycans. For each
combination, we used a Logistic Regression Model, a binary
classification method that models the probability of an
outcome using predictor variables, producing interpretable
estimates for risk prediction. This model was then fitted for
each combination and the accuracy of each model was
assessed using Leave‐One‐Out Cross‐Validation (LOOCV).
LOOCV is a model evaluation method where each data point
is used once for testing, with the rest used for training. This
maximizes data use and provides an unbiased performance
estimate. The optimal model demonstrated a validation
accuracy of 0.9984 and a training accuracy of 1.0. This
model includes the following five proteoglycans: ASPN,
PODN, SDC1, PRELP, and DCN. The coefficients of these
proteoglycans, which contribute to their discriminative
power in the logistic regression model, are detailed in
Table 2.

The exceptionally high accuracy achieved underscores the
efficacy of these five proteoglycans in distinguishing between
normal and tumor tissues. Consequently, this gene signature
holds promise as a reliable tool for breast cancer detection. The
positive value of the intercepts indicates a bias of the model
towards class 1 (tumor tissue). This bias is anticipated, given the
unbalanced nature of the data set, where class 1 is approxi-
mately six times more prevalent than class 0.

2.5 | Cancer Stage Analysis

Given the promising findings from the previous analysis, it
has been extended to explore the influence of cancer stage
on proteoglycan expression. Unlike the initial analysis
which focused on distinguishing between normal and tumor
tissues, here the cancer stage serves as the dependent vari-
able. Therefore, samples from normal tissues and those
lacking a stage assignment were excluded. Additionally,
owing to the scant number of samples in Stage IV and Stage
X (Table 1), we have arbitrarily pooled these samples into
Stage III group. Despite the success of previous models, the
Ordered Logistic models fitted through the RFE only
achieved an Area Under the Receiver Operating Charac-
teristic curve (AUROC) of 0.5035587 during training, sug-
gesting performance akin to a trivial classifier that assigns
all samples to the most prevalent class. Consequently, this
analysis suggests that there are no significant variations in
the expression of proteoglycans across different tumor
stages and a gene signature for the severity of breast cancer
could not be derived.

TABLE 2 | Coefficients of logistic regression for selected proteoglycans. Negative coefficients indicate downregulation of the corresponding gene

in tumor tissues relative to normal tissues, while positive coefficients indicate upregulation.

Intercept ASPN PODN SDC1 PRELP DCN

121.42 59.27 −49.12 57.50 −22.01 −23.27
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2.6 | Cancer Type Analysis

Given the heterogeneity of breast cancer, tumor type must be a
primary consideration in studies of gene expression and disease
progression. We therefore conducted a stratified analysis of
gene expression profiles, gene signatures, and cancer stage
across the most prevalent breast tumor subtypes. In our data
set, the most represented tumor types were infiltrating duct
carcinoma (774 samples) and lobular carcinoma (201 samples);
the remaining types presented limited sample sizes (with the
largest being 28 and most others fewer than 9), rendering them
unsuitable for robust analysis.

2.6.1 | Infiltrating Duct Carcinoma

The data set includes a total of 953 samples for this subtype.
Applying initial filtering criteria based on log2 fold‐change and
the p‐value thresholds, we retained the following genes: GPC3,
DCN, PODN, SDC1, TGFBR3, OGN, ASPN, and PRELP—which
is identical to the gene set identified when analyzing all tumor
types collectively. This overlap probably is because the in-
filtrating duct carcinoma is the most prevalent type of tumor in
the data set.

For infiltrating duct carcinoma, a refined gene signature com-
prising ASPN, PODN, and DCN was identified, achieving both
validation and training accuracies of 1.0. This result indicates
an optimal separation of tumor and normal tissues, suggesting
these genes may serve as reliable markers for this carcinoma
subtype. Interestingly, this signature is a subset of the broader
data set's signature, suggesting that a minimal yet distinct gene
set can retain high discriminatory power within this subtype.
Regression coefficients for this signature (Table 3) exhibit the
same directional influence (positive or negative) as those from
the full data set signature, highlighting regulatory consistency
across tumor contexts.

Stage analysis, however, reveals that proteoglycan expression
alone does not effectively distinguish between cancer stages for
this subtype; the AUROC for stage classification remains low at
0.502, indicating performance no better than random chance.
This finding suggests that while these genes are effective for
tumor detection, they are limited in capturing the complexity of
tumor progression in infiltrating duct carcinoma.

2.6.2 | Lobular Carcinoma

For lobular carcinoma, the data set contains 380 samples. Fol-
lowing similar filtering criteria, we retained a gene set com-
prising GPC3, EPYC, CHAD, SDC1, TGFBR3, ASPN, PRELP,

and BGN. This set introduces three additional genes—EPYC,
CHAD, and BGN—while excluding DCN, PODN, and OGN.
These differences highlight potential subtype‐specific expres-
sion patterns, reflecting the molecular diversity within breast
cancer and possibly indicating unique pathobiological roles for
these genes in lobular carcinoma.

The gene signature specific to lobular carcinoma includes
GPC3, ASPN, PRELP, SDC1, and EPYC, achieving validation
and training accuracies of 0.982 and 1.0, respectively. This high
performance suggests a robust separation capability between
tumor and normal tissues, supporting the potential utility of
these genes as subtype‐specific biomarkers. Of note, three
genes—ASPN, PRELP, and SDC1—appear in both the lobular
carcinoma and full data set signatures, with consistent regres-
sion coefficient signs (Table 3), reinforcing their importance
across multiple breast cancer contexts (Table 4).

Stage classification for lobular carcinoma achieved an AUROC
of 0.587, which, while superior to that of the full data set and
infiltrating duct carcinoma, remains insufficient as a reliable
stage classifier.

The limited predictive capacity of proteoglycans for stage,
despite high accuracy in tumor detection, confirms that addi-
tional factors or markers beyond proteoglycan expression may
be needed to capture the intricacies of tumor progression in
lobular carcinoma, as well as in infiltrating duct carcinoma.
Further studies incorporating larger data sets and additional
biomarkers could improve stage differentiation for this subtype.

2.7 | Protein Crystal Structure Prediction and
Generation

To provide visual characterization of several proteoglycans
included in our breast carcinoma signature, we utilized previ-
ously published knowledge and state‐of‐the‐art artificial intel-
ligence prediction tools to create crystal structures for the
SLRPs. While the structure of several SLRPs have been previ-
ously determined experimentally, it was necessary to predict the
structures of others, which we accomplished using the Alpha-
Fold Database driven by Google's DeepMind Artificial Intelli-
gence. This tool was created as part of the European Molecular
Biology Laboratory's European Bioinformatics Institute [26, 27].
We were able to generate crystal structures highlighting pri-
mary and secondary structures of our SLRPs of interest using
the computerized crystal structure generation software PyMol
(The PyMOL Molecular Graphics System, Version 1.2r3pre,
Schrödinger LLC).

3 | Results and Discussion

3.1 | Gene Expression Analysis

Using the previously described data from TCGA and GTEx,
facilitated by the UCSB Xena platform, mRNA levels of 11
proteoglycans were found to be differentially expressed by a log2
fold‐change factor > 2 in breast carcinoma when compared with

TABLE 3 | Coefficients of logistic regression for “Infiltrating duct

carcinoma.” Negative coefficients indicate downregulation of the cor-

responding gene in tumor tissues relative to normal tissues, while

positive coefficients indicate upregulation.

Intercept ASPN PODN DCN

148.78 126.15 −120.97 −69.84
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healthy controls. We determined that PTPRZ1, OGN, DCN,
PODN, GPC3, TGFBR3, and PRELP were all significantly
downregulated in breast carcinoma, whereas ASPN, ACAN,
EPYC, and SDC1 were all found to be upregulated (Figure 1).

The 11 proteoglycans identified in our differential expression
analysis were further scrutinized to determine their feasibility
and possible utility as prognostic markers for breast carcinoma.
Through comparison of basal mRNA expression levels of each
of these proteoglycans with their expression levels in breast
carcinoma, we determined that 10 of the identified proteogly-
cans were fit for further evaluation. ACAN was excluded from
downstream analysis on account of its extremely low levels of
expression in both healthy breast tissue, and breast carcinoma,
which cast doubt on both its biological validity and reliability as
a prognostic marker. From the 10 remaining proteoglycans, a
novel machine learning model generated a genetic signature
from a combination of 5 of these which was able to accurately
predict the presence or absence of breast carcinoma. Prediction
of carcinoma, which has a success rate greater than 99%, is
based on the combinatorial upregulation or downregulation of
ASPN, PODN, SDC1, DCN, and PRELP as described in Table 2.
Interestingly, the trends of upregulation and downregulation
associated with each of these respective proteoglycans align
with overarching trends observed when investigating each of
them individually, with upregulation of ASPN and SDC1
(Figure 2A) and downregulation of PODN, PRELP, and DCN
(Figure 2B) helping to predict disease. We must note, however,

that this may not always be the case, and we cannot conclude it
to be the case for other proteoglycans not named in this model.

4 | Machine Learning Model and Differentiation
of Tumor Stages

While the machine learning model that was employed to con-
struct the combinatorial proteoglycan signature of SDC1, ASPN,
DCN, PRELP, and PODN to identify difference between normal
breast tissue and cancerous tissue was able to do so with an
accuracy of over 99%, this model struggled to make distinctions
between samples of breast carcinoma when they were evaluated
on the basis of diagnostic grade of disease. With an AUROC of
0.5035587 during training, the model was unable to differentiate
between stages of disease with much more accuracy than flip-
ping a coin. Therefore, we interrogated the TCGA data set to
explore the possibilities of why the model could be so effective
in preliminary diagnostic determination, but ineffective with a
more granular task. We evaluated breast carcinoma samples
that had been labeled within the TCGA data set as stage I, stage
II, or stage III. We found that there was a significant difference
in mRNA expression of all five proteoglycans used by
the machine learning model compared with normal breast tis-
sue samples.

We further discovered that within the breast carcinoma samples
available through TCGA, the expression of our five proteogly-
cans of interest was not significantly different between stages
of disease for four out of our five candidates. SDC1 and ASPN
mRNA were significantly upregulated in each stage of disease
in samples of breast carcinoma graded as stages I–III, however
no differences were present between different stages of disease
(Figure 3A). While DCN and PRELP mRNA were significantly
downregulated in each stage of breast carcinoma when com-
pared with normal tissue samples, no differences were detected
between stages of disease (Figure 3B). PODN expression was
significantly different between stage I and stage II, and stage II
and stage III breast carcinoma respectively, however, we did not
determine a significant difference in PODN expression between
stage I and stage III within the data set (Figure 3B). This sug-
gests that the model's inability to differentiate disease stages
could be due to the lack of perceptible differences in mRNA
expression of the proteoglycans used. Therefore, it would be
beneficial to return to this model as the TCGA repository of
breast carcinoma samples continues to grow, and the robust-
ness of the data set continues to increase.

5 | Syndecan‐1

Syndecan‐1 (SDC1) with its ~33 kDa protein core, is the first of
its name amongst the syndecan family of four homologous type
I transmembrane proteoglycans. Its structure is characterized

TABLE 4 | Coefficients of logistic regression for lobular carcinoma. Negative coefficients indicate downregulation of the corresponding gene in

tumor tissues relative to normal tissues, while positive coefficients indicate upregulation.

Intercept GPC3 ASPN PRELP SDC1 EPYC

2.56 −3.50 4.76 −3.51 6.84 3.31

FIGURE 1 | Differential expression of proteoglycans in breast car-

cinoma. Gene expression data for 42 proteoglycans was compared

between normal breast tissue samples obtained from GTEx and breast

carcinoma samples obtained from TCGA. Proteoglycans with a log2
fold‐change > 2 and a p< 0.001 are named in the volcano plot, with

downregulated genes shown in blue, upregulated genes shown in red,

and all genes that did not meet our criteria for significance going

unnamed with gray icons. Dashed lines represent intersecting limits of

log2 fold‐change = |2| and p= 0.001.
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by an ectodomain with distal heparan sulfate (HS) chains and
chondroitin sulfate (CS) chains located nearer to the plasma
membrane [28]. It has a hydrophobic transmembrane domain
and a C‐terminal cytoplasmic domain containing two conserved
domains interspersed by a variable region. SDC1 has been
identified as having various roles in cell–cell and cell‐matrix
interactions, and within the context of breast cancer, its com-
plex amalgam of effects have been shown to influence cell
adhesion and migration, tumor growth and progression, tumor
angiogenesis, and prognosis [5, 29, 30].

The ectodomain of SDC1 regulates matrix‐dependent signaling
in breast carcinoma through interaction with αvβ3 integrin,
such that an increased presence of cell‐surface SDC1 is associ-
ated with increased epithelial cell invasion during early
tumorigenesis [31–33]. SDC1 has been implicated in multiple
signaling pathways related to cell adhesion and migration,
including the Wnt/FGF pathway. In multiple breast cancer cell
types, SDC1 knockdown significantly inhibited various gene
products of Wnt and Fibroblast Growth Factor (FGF) signaling,
suggesting that SDC1 may mediate tumor cell migration
through these pathways [34]. The PI3K/Akt pathway has also
been implicated in SDC1 behavior, whereby cleavage of SDC1

was shown to enhance breast carcinoma cell proliferation via
increased SUMOylation of Akt [35]. Acting as a membrane
bound co‐receptor for FGF Receptor, SDC1 activates FGF2
mediated MAPK signaling through induction of MAPK phos-
phorylation, ultimately leading to breast cancer cell prolifera-
tion. Unsurprisingly, SDC1 knockdown inhibits MAPK
signaling [36]. Additionally, SDC1 plays a role in IL6/JAK/
STAT3 signaling, such that SDC1 silencing inhibits IL‐6 sig-
naling, suggesting that overexpression of SDC1 activates this
important pathway for breast cancer cell proliferation and
migration [37].

Despite the ever‐growing arsenal of knowledge regarding the
role of SDC1 in breast cancer, it is not unilaterally agreed upon
whether increased or decreased SDC1 expression indicates a
more positive prognosis. Some studies have shown increased
SDC1 protein expression to be associated with worse patient
outcomes and a more aggressive disease phenotype [38–40].
Others indicate the opposite, stating that decreased SDC1 ex-
pression is associated with poorer outcomes [37, 41]. However,
more recent large scale, bioinformatic analyses of large‐scale
public datasets in triple‐negative breast cancer has given sup-
port for the former assertion that high SDC1 expression is

FIGURE 2 | Differential expression of machine learning identified proteoglycans in breast carcinoma. (A) ASPN and SDC1 were found to be

upregulated in breast carcinoma samples obtained from TCGA compared with normal tissue samples obtained from GTEx. (B) PODN, PRELP, and

DCN were found to be downregulated in breast carcinoma samples obtained from TCGA compared with normal breast tissue samples from GTEx.
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associated with poorer rates of both overall survival and disease‐
free survival [42, 43]. These recent findings are corroborated in
this study, in which we also propose a novel prognostic utility
for SDC1.

6 | Asporin

Asporin, originally purified from human articular cartilage [44],
is a class I SLRP [45, 46] as it is closely related to decorin and
biglycan. In addition of containing the conserved N‐terminal
C‐X3‐C‐X‐C‐X6‐C pattern typical of decorin and biglycan [47],
asporin harbors a unique N‐terminal stretch of aspartic acid
residues thus its eponym [44, 48] (Figure 4). Unlike decorin and
biglycan, asporin contains no consensus glycosaminoglycan
attachment sites (Ser‐Gly) at its amino terminus. However, it is
possible that the polyaspartate region due to its polyanionic
nature would modulate the interaction of asporin with growth
factors and collagen as shown for other SLRPs, with a function
analogous to that of the glycosaminoglycan chains of decorin
and biglycan, the closest family members [44]. Indeed, asporin
competes with decorin in collagen binding and promotes oste-
oblast collagen mineralization [49]. Due to its ubiquitous ex-
pression, asporin has been implicated as an activator of invasion
in schirrhous gastric carcinomas [50], as well as growth and
migration of gastric cancers cells [51, 52]. Moreover, stromal‐
derived asporin is a biomarker associated with prostate cancer
progression [53], bladder cancer where asporin levels correlate

with the degree of malignancy [54]. Prostate tumor allografts in
Aspn−/− mice show a decreased propensity toward pulmonary
metastases [55] suggesting that asporin could promote meta-
static progression. A recent report has convincingly corrobo-
rated these findings by discovering a reciprocal interplay
between asporin and decorin, with asporin acting as a gastric
cancer promoting gene and decorin as a tumor repressor [56].
The proposed mechanism of action involves and asporin/TGFβ
interaction suggesting that preventing this interaction, together
with overexpression of decorin would counteract the gastric
cancer growth and invasion [56]. In line with these results, is
the finding that asporin can repress gastric cancer apoptosis by
activating LEF1‐mediated gene transcription independent of β‐
catenin [57], suggesting that asporin could act as a prognostic
marker in this malignancy [56]. Additional evidence for broad
protumorigenic activity of asporin derives from its ability to
reprogram gastric cancer cells to acquire resistance to oxidative
stress [58], and its interaction with HER2 in promoting thyroid
cancer metastases [59].

The multifaceted roles of asporin are challenging and somewhat
controversial as asporin levels have also been linked to anti-
tumorigenic activity [60, 61]. While asporin acts as an oncogene
in pancreatic, colorectal, gastric, and prostate cancers, and some
types of breast cancer, there are reports that asporin can act
as a tumor suppressor gene in triple‐negative breast cancer [62].
Intriguingly, high asporin expression associates with a
significantly better relapse free survival rate in patients with

FIGURE 3 | Evaluation of differential expression of proteoglycans in breast carcinoma by stage. (A) SDC1 and ASPN mRNA were found to be

upregulated in all stages of breast carcinoma samples obtained from TCGA compared with healthy breast tissue samples. There were, however, no

significant differences in expression of either of these mRNA transcripts between samples graded by stage of disease. (B) DCN, PRELP, and PODN

mRNA were found to be downregulated in all stages of breast carcinoma samples obtained from TCGA compared with healthy breast tissue samples.

When breast carcinoma samples were evaluated by stage of disease, there was no differential expression determined for DCN or PRELP mRNA,

however, we identified differences in PODN expression between stage I and stage II carcinoma and between stage II and stage III carcinoma.

*Significance is defined by p< 0.05. Furthermore, **significance is defined as p< 0.01 and ***significance is defined by p< 0.001.
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low‐grade tumors but is significantly worse in breast cancer
patients with stage 3 tumors [63]. Our results show in an
unbiased way that asporin gene expression correlates with a
pro‐malignant role in breast cancer independently of the stage
of the tumor (Figure 3A). If confirmed at the protein level,
upregulated syndecan‐1 and asporin protein levels could be
therapeutically challenged by proteolysis targeting chimera
(PROTAC) protein degraders [64]. This novel approach in
cancer treatment harnesses the body's natural protein degra-
dation machinery to target specific proteins for destruction. As
heterobifunctional molecules, PROTACs function by recruiting
and binding the protein of interest and E3 ubiquitin ligase, hence
inducing ubiquitylation of the targeted protein and its subsequent
degradation by the ubiquitin–proteasome system [64]. Syndecan‐1
and asporin, as a transmembrane and secreted proteoglycan
respectively, could represent ideal candidates for PROTAC ther-
apy as exposed amino acidic domains could be easily identified as
targets of this innovative therapeutic modality.

7 | Decorin

Decorin is the prototype member of Class I SLRP and is composed
of 12 LRRs and a single glycosaminoglycan chain at the
N‐terminus [65, 66] (Figure 4). Abundantly found in multiple
tissues throughout the body, decorin was named after its unique
ability to interact with and “decorate” collagen fibrils to maintain,
regulate and organize their spacing and structure [67]. This
interplay with collagen is crucial for the tensile strength and
elasticity of tissues, ensuring proper tissue architecture and
homeostasis, and structural integrity of the ECM [68, 69]. The role
of decorin in cancer has been the subject of several studies in the
past 3 decades [70–72], starting with colon carcinoma [73–75], and
then extending to several solid tumors with diverse histogenetic
backgrounds [76–95]. Decorin was subsequently described as an
active modulator of cell behavior and function through its inter-
actions with different growth factors and its role as a pan‐receptor
tyrosine kinase (RTK) inhibitor [96–98]. Indeed, decorin defi-
ciency promotes epithelial‐mesenchymal transition (EMT) and
colon cancer metastasis [75]

Decorin binds to the transforming growth factor β (TGFβ) and
vascular endothelial growth factor (VEGF), sequestering them
from their respective receptors and modulating their bio-
availability in the ECM. This regulation is crucial for main-
taining tissue homeostasis and preventing excessive growth
factor signaling [99–103]. One of the most studied roles of
decorin is its ability to interact with TGFβ [104, 105] and to
block TGFβ/Smad downstream signaling [106, 107], which in
general leads to suppression of fibrosis [78, 108, 109]. Decorin
has also been involved in inhibiting angiogenesis [99, 110–120],
and also in promoting angiogenesis in a mouse model of corneal
injury [100]. Moreover, decorin is involved in regulating
inflammation [121, 122], bone homeostasis [123], bio-
mechanical properties of cartilage [124], mitophagy [111,
125–135], and can signal through modulation of intracellular
Ca2+ [136, 137].

Decorin interactome has expanded significantly with the dis-
covery of several RTKs that specifically bind to decorin with
nanomolar affinity, including the epidermal growth factor
receptor (EGFR), insulin‐like growth factor receptor (IGF‐IR),
and Met receptor (HGFR), as well as the vascular endothelial
growth factor receptors 2 and 3 (VEGFR2, VEGFR3) [138–141].
By binding to these receptors, decorin interferes with their
activation and downstream signaling pathways overall off-
setting their ability to sustain growth of cancer cells and stim-
ulate angiogenesis in the tumor stroma [30].

By interfering with VEGF signaling and disrupt endothelial cell
interactions with ECM components, decorin reduces en-
dothelial cell proliferation, a critical step in angiogenesis [117,
142], and induces autophagy in endothelial cells. Autophagy, a
highly conserved process involving the degradation and re-
cycling of cellular components [143, 144], is tightly regulated by
decorin. The mechanism involves decorin‐mediated inhibition
of Akt/mTOR signaling pathway, leading to activation of
autophagy‐related genes and formation of autophagosomes
[130, 132, 145, 146]. Overall, decorin exemplifies the complexity
of ECM proteins in regulating cellular processes through in-
teractions with RTKs, modulation of autophagy, and influence

FIGURE 4 | Structure of the four SLRPs linked to the breast carcinoma signature. Using PyMol, published knowledge regarding proteoglycan

structure, and the AlphaFold structure predictor driven by Google's DeepMind artificial intelligence tool, we created crystal structures for each of the

four SLRPs included in our machine learning breast carcinoma signature. The primary structure of each SLRP is shown in blue, with secondary

structures delineated by alternate colors: α helices are marked in red and yellow arrows are used to identify β‐pleated sheets.
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on angiogenesis. Its diverse interactions with the ECM, growth
factors, and immune mediators highlight its importance in
normal physiological processes beyond its structural role.

Decorin affects the growth of various tumors [76, 77], and we
further discovered that there is cooperative action of germline
mutations in Dcn−/− and the tumor suppressor p53−/− that leads
to an acceleration of lymphoma tumorigenesis [147]. Adminis-
tration of recombinant decorin to these lymphoma cells derived
from the doubly‐mutant Dcn−/−;p53−/− mice significantly retarded
their growth further, supporting a potential therapeutic role for
decorin in tumor suppression. In an in vivo triple‐negative or-
thotopic breast cancer model, we found that systemic adminis-
tration of recombinant decorin modulated the differential
expression of 374 genes within the stromal compartment of the
tumor xenograft associated with immunomodulatory responses,
cellular adhesion and tumor suppressive gene properties [148]. In
inflammatory breast cancer (IBC) cells overexpression of DCN
markedly decreased migration and invasion, and inhibited tumor
growth and metastasis in IBC xenograft mouse models through
inhibition of the EGFR/ERK signaling pathway and decorin‐
mediated autophagic degradation of E‐cadherin [79]. Moreover,
the inhibition of colon carcinoma growth and migration by dec-
orin also involves modulation of E‐cadherin levels [83]. The
therapeutic benefits of systemic delivery of decorin to different
in vitro and in vivo tumor models dictate the need for a deeper
investigation of its the expression level as they could be associated
with prognosis and survival rate estimate of cancer patients
[149, 150].

However, when examining decorin expression in breast cancer
tissue compared with normal breast tissue, studies have shown
contrasting results depending on the specific subtype of breast
cancer and the stage of the disease [88]. In normal breast tissue,
decorin expression is typically well‐maintained and plays a
crucial role in regulating the ECM and growth factor signaling,
as described earlier [151]. Decreased expression of decorin in
breast cancer has been associated with poorer prognosis,
increased tumor growth, and enhanced metastatic potential.

8 | PRELP

A member of the Class II SLRP genes is PRELP (Proline/
arginine‐Rich End Leucine‐rich repeat Protein), also known as
prolargin, and was originally cloned from human articular
chondrocytes [152] (Figure 4). Its eponym is based on its unique
N‐terminal domain which, in contrast to asporin, harbors sev-
eral basic amino acid residues such as proline, arginine and
leucine [152]. The N‐terminus domain of PRELP binds heparin
and heparan sulfate; as fibroblasts interact with PRELP in an
heparin‐dependent manner, it has been proposed that PRELP
can function as linker also between the ECM and cell surface
proteoglycans [153], acting as an important regulator of cell
adhesion [154]. Indeed the N‐terminus of PRELP is involved
binding to perlecan and collagen [155], potentially functioning
as a basement membrane anchor [156].

An interesting biological role of PRELP is its ability to directly
inhibit all complement pathways by binding C9 and thereby
preventing the formation of the complement membrane attack

complex [157]. Notably, the N‐terminal basic domain of PRELP
functions as a cell specific inhibitor of NF‐κB signaling and
impairs osteoclastogenesis [158]. Specifically, a recombinant
form of the basic N‐terminal region of PRELP reduces osteoclast
number and activity in ovariectomized mice, underlying its role
in skeletal remodeling [158]. Additional functions of PRELP
include its role as a natural TGFβ antagonist and inhibitor of
fibrosis [159], and an interaction with IGF‐IR and low‐affinity
nerve growth factor receptor (p75NTR) which results in growth
inhibition of A549 lung carcinoma cells [160]. A recent report
utilizing Prelp−/− mice has shown that PRELP secreted by
mural cells protects the blood brain barrier by promoting the
integrity of endothelial cells [161].

There are only few reports of PRELP association with various
cancer types, although the majority of independent studies
point to a tumor suppressor role in ovarian cancer [162], oral
squamous cell carcinomas [163] and colon cancer cells [164].
Moreover, there is a positive correlation between PRELP ex-
pression and survival in hepatocellular [165] and pancreatic
carcinoma patients [166]. A variant of PRELP was found to be
uniquely expressed in chronic lymphocytic leukemia cells [167],
suggesting that there might be an organ‐ and tissue‐specific
bioactivity. PRELP is an endogenous inhibitor of bladder cancer
initiation and progression [168], and by regulating cell‐cell
adhesion and EMT inhibits retinoblastoma progression [169].
Loss of PRELP expression in melanomas correlates with tumor
escape and enhanced aggressiveness [170]. There is also evi-
dence that PRELP inhibits colon cancer progression by sup-
pressing EMT and angiogenesis [171]. In contrast to these
studies, PRELP has been shown to promote EMT in colon
cancer and to stimulate growth and invasion of colon cancer
cells [172]. So, much more research needs to be done to clarify
these contrasting results.

9 | Podocan

Podocan is a class V noncanonical SLRP that was originally
identified from sclerotic glomerular lesions in experimental
human immunodeficiency virus‐associated nephropathy [173]
(Figure 4). This SLRP has been implicated in the suppression of
endothelial cell growth, proliferation, and migration, particu-
larly in the kidney, smooth muscle, and adipose tissue. Func-
tional analysis of podocan suggests that his proteoglycan
contains N‐linked oligosaccharides and that it binds to Type I
collagen [174]. It has been shown that suppression of cell
growth and migration by podocan is associated with changes in
p21 and Rho activity [174]. Additionally, inhibition of podocan
expression by MiR‐3180‐5p promotes human bladder smooth
muscle cell proliferation [175]. Unsurprisingly, podocan is
highly expressed in vascular smooth muscle cells after injury,
and it has been shown that podocan‐deficient mice demonstrate
increased arterial lesion formation compared with their wild‐
type counterparts, identifying podocan as a negative regulator
of smooth muscle cell proliferation [176]. Both in vivo and
in vitro, podocan‐deficient mice demonstrate increased smooth
muscle cell proliferation through activation of the Wnt/β‐
catenin pathway [177]. Podocan modulation of smooth muscle
cell proliferation and differentiation has been shown to be a
direct result of podocan interacting with Wnt and enhancing
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Wnt/b‐catenin signaling [178]. Most recently, podocan has been
shown to play a role in post‐injury smooth muscle cell differ-
entiation by binding with TGFβ1 thereby inhibiting its down-
stream signaling pathway [179].

Podocan has been characterized in pathological processes such
as kidney diseases and recently colorectal cancer [180, 181].
Podocan was shown through micro‐array analysis to be a sig-
nificant biomarker for transplant glomerulopathy and have
been previously shown to be significant to processes involving
the glomerular basement membrane [173, 180]. It was also
found to be correlated with diabetic nephropathy, as podocan
mRNA levels negatively correlated with the urinary albumin‐to‐
creatine ratio, a marker for glomerular injury in models of
diabetic nephropathy [182]. In colorectal cancer, podocan has
been identified as having location‐dependent differential ex-
pression with qRT‐PCR revealing decreased podocan mRNA
expression in tumors compared with normal colon tissue in
patient samples of left‐sided colon cancer, but not right‐sided
colon cancer [181]. Podocan has not yet been implicated as a
potential biomarker in any other cancers, and presently, no
studies exist which explore podocan within the context of a
transcriptomic analysis derived from a large‐scale publicly
available data set. This study is the first to identify a potential
role of podocan as a prognostic marker in breast carcinoma.

10 | Serglycin

Serglycin (SRGN), initially discovered as a small chondroitin
sulfate proteoglycan secreted by a rat yolk sac tumor, was
shown to be highly enriched in Ser and Gly amino acids and to
be associated with the cell surface [183]. Subsequent cloning of
its protein core [184] and gene [185] showed a protein
of ~10 kDa with a central region of ~50 amino acids composed
of alternating Ser/Gly residues, hence its eponym [184]
(Figure 5A). A number of subsequent studies have clearly
shown that serglycin is the main carrier of heparin and
is directly involved in packaging proteases in mast cell granules
[186, 187] and regulating the maturation of mast cell granules
[188, 189]. Serglycin is also expressed in embryonic stem
cells [190], uterine decidua [191], neutrophils [192], myeloma
cells [193, 194], and has been proposed to be a potential marker
for acute myeloid leukemia [195]. Indeed, serglycin plays a crit-
ical role in the protein cargo loading of exosomes produced by
multiple myeloma cells [196].

An interesting discovery was the identification of serglycin as a
main product of endothelial cells where it was localized within
intracellular vesicular compartments co‐distributing with tis-
sue plasminogen activator [197]. It was subsequently shown
that serglycin is secreted in polarized human endothelial cells
mainly in the apical region and is associated with chemokine
secretion [198] and directly involved in the inflammatory
response [199]. Indeed, serglycin is a major proteoglycan
secreted by macrophages and is involved in regulating TNF‐α
secretion in response to pro‐inflammatory stimuli [200].
Recently, serglycin has been implicated as a protumorigenic
factor in various solid tumors including: head and neck carci-
noma [201], colorectal cancer [202], hepatocellular carcinoma
[203], lung adenocarcinoma [204], and glioblastomas [205, 206],

including a role as a potential biomarker for glioblastoma pro-
gression [207]. Moreover, serglycin produced by gastric carci-
noma cells promotes secretion of the pro‐inflammatory
interleukin 8 in cancer associated fibroblasts [208].

Regarding the role of serglycin in breast cancer, there are sev-
eral recent scientific reports underlying and corroborating its
role as a pro‐tumorigenic and pro‐metastatic factor [209]. An
elegant study using genetic ablation of Srgn gene in a MMTV‐
PyMT‐driven mouse breast carcinoma model has shown a
complete suppression of lung metastases without affecting the
growth of the primary tumors [210].

Serglycin is also highly expressed by infiltrating immune cells in
breast cancer microenvironment [211], and is involved in
epithelial‐mesenchymal transition (EMT) evoked by TGFβ
[211] as well as promoting a more aggressive phenotype in
breast cancer [212, 213]. Mechanistically, serglycin may protect
breast cancer cells from complement attack thereby supporting
their survival and expansion [212]. Collectively, these data
suggest that serglycin‐dependent mediators may represent
potential drug targets to prevent pulmonary metastases in pa-
tients with breast cancer.

Utilizing the online data exploration tool, Xena, developed by the
University of California Santa Cruz, we analyzed serglycin (SRGN)
mRNA expression in available breast carcinoma data from TCGA
and GTEx. The data available to the public suggests a different
conclusion than the one reported by the majority of experimental
findings concerning serglycin expression on the mRNA level.
These public data revealed that SRGN expression is lower in breast
carcinoma compared with normal tissue. Additionally, SRGN
levels decline as stage of disease progresses. Specific evaluation of
infiltrating ductal carcinoma revealed decreased SRGN expression
as stage of disease advances (Figure 5B–D).

There are at least two scientific reports corroborating our
findings, showing lower levels of serglycin expression in breast
carcinoma vis‐à‐ normal tissue [211, 214]. Using the Tissue
Immune Estimation Resource to explore TCGA breast carci-
noma data showed lower SRGN levels in breast tumor tissue
compared with normal tissue [214]. While this result is in
opposition to the body of in vitro evidence reported elsewhere,
separate analysis of breast cancer subtype data from TCGA and
the OSLO2 study support the finding that SRGN expression is
lower in tumor than normal breast tissue [211]. Furthermore, it
has been shown that trends in SRGN expression vary between
different subtypes of breast cancer based on public data and
even amongst different breast cancer cell lines of variable
aggressiveness studied in vitro [211, 213, 215]. Indeed, qPCR of
SRGN expression in basal‐like subtypes of variable phenotype,
from epithelial to mesenchymal, revealed higher SRGN ex-
pression in mesenchymal subtypes compared with epithelial or
partial epithelial cancer cell lines, however, single cell RNA
sequencing (scRNAseq) of 18 patient samples of variable sub-
types revealed very low SRGN expression specifically in cancer
cells, but much higher expression shown in T‐cells, dendritic
cells, and mast cells [211]. Interestingly, SRGN immunogeni-
cally evokes IL‐8/CXCR2 signaling to promote epithelial mes-
enchymal transition in breast cancer cells of less aggressive
phenotype, to then have more SRGN expression in aggressive
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breast cancer cell‐types [213]. Also interesting is im-
munostaining of aggressive breast tumor sections showing
granular cytoplasmic localization of SRGN, suggesting local-
ization of SRGN into secretory granules [215]. Additionally,
Kaplan–Meyer analysis suggests a differential, time‐based
association of SRGN expression with overall survival, such
that survival is lower in patients with low tumor SRGN ex-
pression up to a time point of about 3500 days, at which point,
survival becomes lower for patients with high SRGN expression
[211, 214]. This scRNAseq data along with the aforementioned
in vitro findings invite questions of whether SRGN is truly
contributing to survival through its effect on cancer cells
themselves, or whether outside‐in signaling in the tumor
microenvironment ought to be a greater focus of its influence
on disease outcomes. While large‐scale datasets offer the sta-
tistical advantage of reducing bias, it is possible that the

heterogeneous nature of bulk sequencing models may muddle
our understanding of SRGN. Additional scRNAseq experi-
mentation focused on SRGN in various breast‐cancer subtypes
may elucidate discrepancies between bioinformatic and in vitro
approaches, since these analyses provide cell‐type‐specific an-
swers that bulk RNA sequencing cannot accommodate. The
variability of these results suggests that further exploration of
the data directed toward disease progression, aggressiveness,
and tumor microenvironment are necessary to reconcile con-
flicting results regarding serglycin in breast cancer. With careful
consideration given to the body of experimental findings sug-
gesting serglycin itself, or serglycin dependent mediators, to be
protumorigenic, no study has thus far evaluated the publicly
available data to validate these findings. The integration of
proteoglycan expression profiles, their biological functions, and
clinical outcomes has the potential to guide the development of

FIGURE 5 | Structure and under expression of SRGN in breast carcinoma malignancy. (A) Crystal structure of serglycin rendered using

AlphaFold and PyMol. Primary structure is shown in blue, while ⍺ helices are shown in red and β‐pleated sheets are shown with yellow arrows. (B)

Breast carcinoma samples obtained from TCGA data demonstrate lower levels of SRGN mRNA expression compared with normal tissue samples

obtained from GTEx. (C) TCGA samples categorized by diagnostic stage of disease demonstrate lower SRGN expression with disease progression. (D)

Specifically within TCGA samples of infiltrating ductal carcinoma, relative SRGN levels decrease with disease progression. *** significance is defined

by p< 0.001.
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precision diagnostic and potentially therapeutic tools that may
enhance the prognosis of not only breast cancer but also of
other solid tumors.

11 | Conclusions

Analyzing publicly available data sets, we discovered a unique
gene expression signature in breast cancer composed of five dif-
ferentially modulated proteoglycans: Syndecan‐1 and asporin
(upregulated) and decorin, PRELP and podocan (downregulated).
Although there are 45–50 proteoglycan encoding genes, our
machine‐learning analysis has revealed that only this small cohort
or proteoglycans is meaningfully regulated in breast cancer.
Notably, four out of five are SLRPs, primarily stromal derived
constituents, with syndecan‐1 being the only cell associated
proteoglycan among the cohort. We should point out that
syndecan‐1 can be shed and its ectodomain is also found in the
stroma [216–221]. We propose the five proteoglycan group as a
new biomarker set for the diagnosis, prognosis and potential
treatment of breast cancer patients.

We also performed a model literature review regarding the five
proteoglycans included in the breast carcinoma gene expression
signature and serglycin, a small chondroitin sulfate proteoglycan
that has also been studied in the context of breast cancer. We
found significant discrepancies when comparing published ex-
perimental results regarding protein and gene expression with
TCGA data. While most sources in the literature have published
experimentally determined findings suggesting that increased
SRGN expression is associated with breast cancer development,
analysis of TCGA data suggests the opposite association. This
striking difference demonstrates the value of public information in
efforts to validate experimentally determined data. Additionally,
these results highlight the need to return to validation analyses in
the future as public data sets like TCGA continue to include new
patient samples and grow the statistical power of the data set. As
these public datasets grow to include single cell, and eventually
even single nucleus sequencing, the opportunity to validate bio-
chemical experimental data will only grow. Great contributions
can be made to our field by comparing published literature to
public data for the rest of the proteoglycans that have not been
assessed in the present study.

Through a therapeutic lens, our study could hold significant
translational significance. For example, a potential approach would
be to target the two upregulated proteoglycans, syndecan‐1 and
asporin, using gene editing technology such as CRIPR/Cas9.
Another would be to target the protein cores using PROTACs,
heterobifunctional molecules harboring two active domains and an
inker that can lead to a removal specific unwanted protein. On the
other hand, systemic delivery of recombinant proteoglycans or
protein cores such as decorin, PRELP or podocan, could pave the
way for proteoglycan‐based therapies that, together with conven-
tional chemotherapy, targeted therapies, or immunotherapy could
enhance treatment efficacy and overcome drug resistance.

The continuously increasing statistical power of public data-
sets should not be overlooked as a tool for cost and time effi-
cient analyses in the future. Especially as great strides are
made in the field of artificial intelligence, and novel analytical

methods like the machine learning model used in this project
become increasingly refined, the proteoglycan research com-
munity is privy to exciting avenues for further investigation.
The opportunity exists within the marriage of data and novel
technology to drive inquiry towards discovering clinically
relevant phenomena and developing innovative therapeutic
options.
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