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Despite good evidence for optimal audio–visual
integration in stationary observers, few studies have
considered the impact of self-movement on this process.
When the head and/or eyes move, the integration of
vision and hearing is complicated, as the sensory
measurements begin in different coordinate frames. To
successfully integrate these signals, they must first be
transformed into the same coordinate frame. We
propose that audio and visual motion cues are
separately transformed using self-movement signals,
before being integrated as body-centered cues to
audio–visual motion. We tested this hypothesis using a
psychophysical audio–visual integration task in which
participants made left/right judgments of audio, visual,
or audio–visual targets during self-generated yaw head
rotations. Estimates of precision and bias from the audio
and visual conditions were used to predict performance
in the audio–visual conditions. We found that
audio–visual performance was predicted well by models
that suggested the transformation of cues into common
coordinates but could not be explained by a model that
did not rely on coordinate transformation before
integration. We also found that precision specifically
was better predicted by a model that accounted for
shared noise arising from signals encoding head
movement. Taken together, our findings suggest that
motion perception in active observers is based on the
integration of partially correlated body-centered signals.

Introduction

Despite good evidence for optimal audio–visual
integration of spatial cues to direction and movement
in stationary observers, few studies have considered

the impact of self-movement on this process. Early
auditory and visual signals are represented in different
spatial coordinate frames, with auditory cues starting
out in head-centered coordinates and visual signals in
eye-centered coordinates. The coordinate frames align
in observers who keep their eyes and head stationary,
which makes the integration of audio–visual spatial
cues relatively straightforward. Observers appear to
use an optimal integration strategy, based on the
maximum likelihood principles original developed
to explain the integration of depth cues both within
and across modalities (Ernst & Banks, 2002; Ernst &
Bülthoff, 2004; Landy, Maloney, Johnston, & Young,
1995). Accordingly, more reliable estimates are given
a higher weighting than less reliable ones, resulting in
a combined percept that is more precise than either
cue alone. The maximum-likelihood principle explains
why the spatial localization of stationary audio–visual
targets is dominated by the visual location when visual
reliability is high, but gradually shifts toward the
auditory location as visual reliability decreases (Alais
& Burr, 2004b; Bolognini, Leor, Passamonti, Stein,
& Làdavas, 2007). It also explains why localization
is more precise for audio–visual targets presented in
isolation compared with auditory or visual stimuli alone
(Alais & Burr, 2004b; Hairston, Laurienti, Mishra,
Burdette, & Wallace, 2003; Wuerger, Meyer, Hofbauer,
Zetzsche, & Schill, 2010). The optimal integration
exhibited by observers is not limited to stationary
targets, with the perceived direction of moving auditory
and visual targets shifting toward the direction of
the more reliable sense (Meyer & Wuerger, 2001;
Soto-Faraco, Lyons, Gazzaniga, Spence, & Kingstone,
2002; Soto-Faraco, Spence, Lloyd, & Kingstone,
2004).
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The integration of audio–visual cues is made more
complicated when the observer moves their head and/or
eyes because self-movement impacts vision and hearing
in different ways. For example, with the head stationary,
moving the eyes across a stationary audio–visual object
results in motion across the retina, but none across
the ears. In this case, the coordinate frames in which
the visual and auditory information reside no longer
coincide. As such, additional computational steps are
required, first to “compensate” for movement of the
eyes, and second to transform both modalities into a
common coordinate frame. Only then is integration
possible (Andersen, Snyder, Li, & Stricanne, 1993;
Burns & Blohm, 2010; Harris, 1994; Landy et al., 1995;
Sober & Sabes, 2003).

Previous research suggests that both auditory and
visual signals can be transformed into eye-, head-,
and/or body-centered coordinate frames, depending
on the task and stimuli used (Cohen & Andersen,
2002; Collins, Heed, & Röder, 2010; Furman & Gur,
2012; Hairston et al., 2003; Kopinska & Harris, 2003;
Wallach, 1987; Wertheim, 1994). During smooth
pursuit eye movements, information from eye-muscle
proprioception and efference copy is integrated with
retinal information to distinguish retinal motion
resulting from self-movement and object movement
(Freeman & Banks, 1998; Furman & Gur, 2012; Sperry,
1950; von Holst & Mittelstaedt, 1950). It is likely that
the compensation for eye movements occurs in the
medial–superior temporal (MST) cortical region, which
receives extraretinal input from proprioception, the
vestibular system, and efference copy and represents
visual signals in both eye- and head-centered reference
frames (Furman & Gur, 2012; Gu, Angelaki, &
DeAngelis, 2008; Newsome, Wurtz, & Komatsu,
1988; Ono & Mustari, 2012). Less attention has been
given to how the auditory system compensates for
head movements, despite evidence that individuals
are able to localize auditory stimuli during head
and eye movements (Genzel, Firzlaff, Wiegrebe, &
MacNeilage, 2016; Goossens & van Opstal, 1999).
It is possible that head-movement compensation
occurs via processes similar to those for eye-movement
compensation, requiring the integration of auditory
spatial information with “extracochlear” signals from
proprioception, the vestibular system, and efference
copy (Freeman, Culling, Akeroyd, & Brimijoin, 2017).
Previous research has demonstrated that such signals
can influence the localization of auditory cues (Lewald,
Karnath, & Ehrenstein, 1999; Lewald & Karnath,
2000), with evidence suggesting that auditory signals are
transformed from head- to body-centered coordinates
(Genzel et al., 2016; Goossens & van Opstal, 1999;
Vliegen, Van Grootel, & Van Opstal, 2004).

Our hypothesis is that audio–visual motion
integration during self-movement is based on the
optimal combination of compensated auditory and

Figure 1. Outline of the proposed framework for integrating
audio–visual cues during self-movement. The framework is
based on the integration of compensated cues. For hearing,
compensation is carried out using head-on-body signals to
transform audio-motion signals from head-centered
coordinates to body-centered coordinates. For vision, both
head-on-body and additional eye-in-head signals are used to
transform visual motion signals from eye-centered coordinates
to body-centered coordinates. These compensated audio and
visual signals are then integrated, resulting in a body-centered
audio–visual estimate of motion.

visual cues, as shown in Figure 1. According to
this hypothesis, auditory and visual cues are first
transformed into a common coordinate frame,
based on self-movement compensation mechanisms
described above, and then are integrated into a coherent
audio–visual percept using optimal integration of the
compensated cues. We make the assumption that the
cues are transformed into a body-centered reference
frame partly because this reference frame remains
stationary during head and eye movements in our
experiments, and also previous literature shows that
both auditory and visual cues are transformed into
this frame (Furman & Gur, 2012; Goossens & van
Opstal, 1999; Kopinska & Harris, 2003; Lewald et
al., 1999). For example, Kopinska and Harris (2003)
demonstrated that both auditory localization and visual
localization were impacted by head-on-body position
but were not affected by eye-in-head or body-in-space
positions, implying that such localization judgments are
based on body-centered coordinates. This is echoed in
gaze-orienting behavior toward sequences of auditory
and visual targets (Goossens & van Opstal, 1999).
Crucially, as Figure 1 shows, the transformed cues
are partially correlated because they share a source
of noise that depends on the precision of the signals
encoding head movement (the body-centered cues may
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be also biased, a point taken up below). To account
for this shared noise, we used a modified version
of the standard optimal cue combination model
proposed by Oruç, Maloney, and Landy (2003). Instead
of including the shared noise as a free parameter,
however, we used a recently developed technique
for measuring the precision of this self-movement
signal, one specifically designed to measure signal
noise when self-movement is self-controlled as in the
current paper (Haynes, Gallagher, Culling, & Freeman,
2024).

We tested the framework sketched in Figure 1 using
a psychophysical audio–visual integration task in
which participants freely rotated their head around
a vertical axis while maintaining their gaze on a
head-stationary fixation point. Although an unusual
fixation strategy, this type of gaze behavior guarantees
that vision must transform retinal image motion into
body-centered coordinates in order to make the correct
spatial judgment, in the same way that hearing must
transform auditory images. Participants were asked
to judge the direction of motion of audio, visual,
and audio–visual targets in interleaved conditions. In
some conditions, we also added external noise to the
stimuli to manipulate the reliability (i.e., precision) of
the cues directly (Bentvelzen, Leung, & Alais, 2009;
Ernst & Banks, 2002; Girshick, Landy, & Simoncelli,
2011). We fit the data with three models: a standard
cue integration model (Ernst & Banks, 2002; Ernst &
Bülthoff, 2004) based on transformed auditory and
visual signals but which does not account for shared
noise between the cues (body-centered integration); a
modified optimal integration model (Oruç et al., 2003),
based on transformed auditory and visual signals,
which also accounts for shared noise (body-centered
integration, adjusted for shared noise); and, finally, an
optimal integration model based on uncompensated
cues, i.e., auditory and visual image motion alone
(image-centered integration). In anticipation of the
results, we found that the data were accounted for well
by models based on transformed auditory and visual
signals but could not be explained by a model based on
uncompensated cues (i.e., auditory and visual image
motion alone).

Methods

Participants

Six participants (three female; mean age, 36.83
± 14.74 years) completed the experiment. Two
participants were naïve to the purposes of the study,
and four participants were the study authors. No
participants reported neurological or psychiatric
conditions. All participants were right handed.

Ethics

The study procedure was approved by the Cardiff
University ethics committee (EC.12.04.03.3123GRA2),
and the study was conducted in accordance with the
tenets of the Declaration of Helsinki. All participants
provided informed consent prior to commencing the
study.

Stimuli and equipment

A photograph of the experimental setup can be seen
Haynes et al. (2024). The experiment took place in a
carpeted, sound-treated room with wall and ceiling
tiles with absorption coefficients of 0.9, resulting in
a reverberation time of ∼60 ms. Auditory stimuli
were presented via a 2.4-meter-diameter ring of 48
speakers (Cambridge Audio Minx, London, UK),
controlled by two 24-channel sound cards (MOTU,
Cambridge, MA), each linked to four six-channel
amplifiers (Auna, London, UK). Sound intensity was
normalized across all speakers with a RadioShack
33-2055 digital meter on the “dB A” setting using
0.2- to 20-kHz noise. Auditory stimuli were spatially
updated at 240 Hz. Visual stimuli were presented via
a NeoPixel strip of 342 RGB LEDs subtending 256°
(Adafruit Industries, New York, NY), controlled by
a Uno microcontroller (Arduino, Monza, Italy). The
LED strip was covered with a 1.2f neutral-density filter
and three layers of diffuser gel at a distance of 35 mm.
Visual stimuli were updated at 40 Hz. The distance
from the participant’s head to the LED/speaker array
was 1.2 meters. Head movements were recorded via
a LIBERTY tracker (Polhemus, Burlington, VT),
sampled at 240 Hz. Changes in head-movement
direction were detected using a smoothed derivative
of head position, which was achieved by convolving
tracker samples with a finite-difference filter (13 samples
long). This meant that head turns were detected 7
frames (∼30 ms) after the turn was made (Figure 2).
Eye movements were recorded via a Pupil Core eye
tracker (Pupil Labs, Berlin, Germany) sampled at
30 Hz (participants 1 and 2, and first four sessions
of participant 4) or 120 Hz (participants 5 and 6,
and remainder of participant 4). The front-facing
camera was used to calibrate eye position using a 3
× 2 array of calibration points, allowing conversion
of normalized units to degrees. Stimulus presentation
and response collection were conducted via custom
MATLAB r2018b scripts (MathWorks, Natick,
MA).

A visual cue was used to indicate the beginning
of each trial. The cue was a diffuse blue LED blob,
spatially windowed by a Gaussian distribution with
σ = 1.05°. This light lasted for 500 ms or until the
participant moved their head (whichever was sooner).
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Figure 2. Example head movement and stimulus position over
time. Vertical lines indicate the start and end of the third head
sweep, during which time the stimulus to be judged was visible.
The purple line indicates a low noise stimulus, and the green
line indicates a high noise stimulus (i.e., jittered).

The fixation point was a diffuse green LED blob
windowed by a Gaussian with σ = 1.05°, increased
to σ = 1.07° by the diffuser, with a peak luminance
of ∼0.042 cd/m2. The fixation point was yoked
to the participant’s head movement, such that the
eyes were always straight forward in the head (i.e.,
the eyes moved with respect to the speaker/LED
ring).

The visual stimulus to be judged was a diffuse
red LED blob windowed by a Gaussian with σ
= 2.25° The auditory stimulus was a white noise
burst spatially windowed by a Gaussian function
with a standard deviation (SD) of 5.25° in power
(σ = 7.5° amplitude). The noise was sampled at
48 kHz, with a peak of 70 dB. In audio–visual
conditions, auditory and visual stimuli were
presented at the same location with the same
speed.

The method of constant stimuli was used to measure
precision and accuracy. Audio and visual stimuli moved
at a proportion of the head speed (movement gain), in
the same or opposite direction as the head. Movement
gains ranged from 0 to ± 0.5 of the proportion of
head speed in seven steps (13 speeds total). Each
speed was presented 30 times. Head movement speeds
were entirely paced by the participants. However, no
fixation or stimuli would appear if the participant’s
head speed fell below a threshold (15°/s), as determined
by a leaky integrator. This integrator made the
amplitude/luminance of the stimulus decrease by 50%

Modality Positional jitter

Visual None
Visual

Audio None
Audio

Audio–visual

None
Visual
Audio

Audio and visual

Table 1. Conditions used in the experiment.

for each frame spent below the threshold speed. The
precision of the stimuli could be modified by adding
positional jitter (Bentvelzen et al., 2009) randomly
drawn from a rectangular distribution that was ±7.5°
wide. The jitter was updated at 5 Hz and was added
to each modality to create low-noise and high-noise
conditions (Figure 2; Table 1).

Procedure

Each trial began with a cue light to indicate that the
participants should position their head looking straight
ahead and aligned with the body. When the participant
was in the correct position, the cue light disappeared,
and the participant was instructed to begin moving
their head. Participants made self-paced back-and-forth
(yaw) head movements while maintaining fixation on
the green fixation light. On the third head sweep, a
stimulus to be judged was presented, which moved in
the same or opposite direction as the head, at a speed
defined by the movement gain selected for that trial. The
stimulus could be audio, visual, or audio–visual and
could be presented at high or low reliabilities (with low
reliability based on the addition of positional jitter).
Thus, all of the conditions defined by Table 1 were
interleaved in any one session. The participant judged
whether the stimulus moved to the left or right using a
key press. When the press was recorded, the next trial
began once the participant’s head was approximately
centered (within ±7.5° of straight ahead). Eight
conditions were tested (Table 1), with all trial types
interleaved. In total, the experiment consisted of 3120
trials per participant (8 conditions × 13 target speeds
× 30 target repetitions), split into approximately 24
10-minute blocks over six to eight sessions on separate
days.

Psychophysical analysis

Analyses were carried out using MATLAB
9.12.0.1884302 (R2022a), Palamedes Toolbox
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Figure 3. Example psychometric function fit from a naïve participant.

(psychometric function fits, model estimations, and
confidence intervals) (Prins & Kingdom, 2018),
R 4.3.2 (R Core Team, 2022), and RStudio 2023.12.0
(RStudio Team, 2019), with packages ez (Lawrence,
2016) and dplyr (Wickham, François, Henry, Müller,
& Vaughan, 2023) for repeated-measures ANOVAs
and post hoc tests. The proportion of “with the
head” responses was calculated for each gain value
in each condition. Psychometric functions based
on cumulative Gaussians were fit to the data using
the PAL_PFML_Fit function from the Palamedes
Toolbox (Prins & Kingdom, 2018). Biases were
estimated at the point of 50% “with the head”
responses. Precision was estimated as the inverse
of the slope of the psychometric function. This
corresponds to the standard deviation of cumulative
Gaussian fit to the data. Accordingly, higher standard
deviations indicate lower precision. Lapse rates were
a free parameter, constrained to a maximum of
0.02 (Prins, 2012). Example psychometric function
fits from a naïve subject in the visual, audio,
and audio–visual no-jitter conditions can be seen
in Figure 3.

Audio–visual condition Predicting conditions

Visual: no positional jitterNo jitter Audio: no positional jitter
Visual: positional jitterVisual jitter Audio: no positional jitter
Visual: no positional jitterAudio jitter Audio: positional jitter
Visual: positional jitterAudio–visual jitter Audio: positional jitter

Table 2. Audio–visual conditions by predicting conditions.

Models

Data in each of the four audio–visual conditions (no
jitter, visual jitter, audio jitter, audio–visual jitter) were
fit with three alternative models based on parameters
obtained in the audio and visual conditions (see Table 2
for how the unimodal prediction conditions were
coupled to appropriate audio–visual conditions). Model
1 was based on optimal integration of body-centered
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cues but ignoring the shared noise defined by the
self-movement signal common to both compensated
cues. Model 2 included this shared noise, and Model
3 was based on more standard optimal integration
from auditory and visual image motion alone (i.e.,
self-movement signals were ignored). The parameters
for these models were fixed, including the shared
noise in Model 2, which was measured in a separate
experiment on the same participants (Supplementary
Appendix A). The only free parameters were those
relating to the initial fitting of the psychometric
functions to the raw data to obtain relevant points
of subjective equality (PSEs) and slope parameters
required to calculate the model predictions. Hence,
there was no need to correct for the number of free
parameters when comparing models because each
had the same. To evaluate which model best predicted
precision and bias on a group level, we calculated
the squared differences of the model predictions
to the observed values. We then compared these
squared differences using repeated-measures ANOVAs,
with Model and Condition as factors. Significant
main effects and/or interactions were followed up
with post hoc Bonferroni-corrected pairwise t-tests
where necessary. We also compared the difference
between each prediction and measured parameter
on an individual level using 95% confidence intervals
(CIs) constructed from 2000 bootstrapped samples.
The CIs that did not contain 0 indicated that the
prediction significantly differed from the actual
parameter on an individual basis. Moreover, in a second
analysis based on the same data using techniques
in Haynes et al. (2024), we also accounted for the
head-movement variability, which potentially affects
the interpretation of the slopes of the psychometric
functions in ways described below. Importantly,
this second analysis tested the models at the level
of the psychometric function, rather than on the
basis of psychometric function parameters from the
single-cue conditions. The root mean square error
(RMSE) of each model fit to the data was calculated,
and the differences in RMSE across Model and
Condition were analyzed using repeated-measures
ANOVAs as above. Thus, this second analysis
provided further converging evidence to support our
conclusions.

Model 1: Body-centered integration
In the body-centered integration (BCI) model, we

used a standard cue integration approach (Ernst &
Banks, 2002; Ernst & Bülthoff, 2004) to predict the
audio–visual bias (Ŝav) based on the weighted sum of
the compensated audio (Ŝa) and visual biases (Ŝv):

Ŝav = waŝa + wv ŝv (1)

Bias was defined as the PSE of the cumulative
Gaussian fit to the psychophysical data, and reliability
as the inverse of its variance. Bias and reliability
therefore correspond to the accuracy and variance
of body-centered cues; that is, audio, visual, or
audio–visual image motion that has been transformed
into body-centered coordinates using an estimate of
head rotation (see Figure 1). The weightings were
based on the reliabilities (rela, relv) of the predicting
conditions listed in Table 2:

rela = 1
σ 2
a

relv = 1
σ 2

v

(2)

wa = rela
rela + relv

wv = relv
rela + relv

(3)

It is important to note that the standard cue
integration approach being referred to here is typically
applied to situations where bias has been introduced
externally via small cue conflicts (Alais & Burr,
2004b; Ernst & Banks, 2002; Landy et al., 1995).
The explicit assumption in those papers is that the
underlying signals themselves (i.e., the “estimators”) are
unbiased, or “internally consistent” (Burge, Girshick,
& Banks, 2010). This is not the case here, as the
compensation process produces body-centered auditory
and visual cues that are not necessarily unbiased; that
is, the PSE describing these “predicting” conditions
is not necessarily at a motion gain of 0 (perfect
compensation). Nevertheless, the predicted precision
for the cue-combined condition remains unchanged (see
Scarfe & Hibbard, 2011). We return to the assumption
of unbiased estimators when developing predictions for
uncompensated image-motion cues (Model 3).

The standard cue integration approach also allowed
us to predict the precision of the audio–visual cue (σ av).
This is based on the variance of the respective auditory
and visual predicting conditions (i.e., the reciprocal of
the reliabilities defined in Equation 2):

σav =
√

σ 2
a σ 2

v

σ 2
a + σ 2

v

(4)

Model 2: Body-centered integration, adjusted for shared
noise

In the BCI model, the audio and visual cues are
transformed into body-centered coordinates using
the same self-movement signal. The transformed
cues are therefore correlated because they share a
common source of noise (σ sm). To account for this,
the BCI model can be modified (BCI+) to include the
correlation (ρ) between these cues (Oruç et al., 2003).
This changes the way the reliabilities of auditory and
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visual cues are calculated:

rela = 1/σ 2
a −

(
ρ
√
1/σ 2

a × 1/σ 2
v

)
relv = 1/σ 2

v − (ρ
√
1/σ 2

a × 1/σ 2
v )

(5)

The augmented reliabilities can then be used to
predict the audio–visual bias using Equations 1 and 3.
The shared noise also changes the prediction for
audio–visual precision, which can be calculated as
follows:

relav = 1/σ 2
a + 1/σ 2

v − 2ρ
√
1/σ 2

a × 1/σ 2
v

1 − ρ2 (6)

σav =
√

1
relav

(7)

One approach to evaluating BCI+ is to fit the
equations to the data by allowing the correlation (ρ) to
be a free parameter. Note, however, that the correlation
is defined as the ratio of the shared noise to the product
of the noise associated with individual cues:

ρ = σ 2
SM√
σ 2
a σ 2

v

(8)

We already know the variance of the individual cues
(σ 2

a and σ 2
v ) from the psychometric functions of the

predicting conditions. To estimate the variance of the
self-movement signal (σ 2

SM) for each of the participants,
we used the technique described by Haynes et al.
(2024), described in Supplementary Appendix A. With
σ 2
SM now known, the goodness-of-fit of BCI+ can be

directly compared to BCI, without having to correct for
differences in the number of free parameters used.

Model 3: Image-centered integration
The above two models are based on auditory

and visual motion that has been transformed into
body-centered coordinates. As a comparison, we
compared their predictions to a model based on
uncompensated cues (i.e., auditory and visual image
motion alone). The image-centered integration (ICI)
model assumes that self-movement signals are ignored.
To do this, note that performance in the auditory and
visual conditions is limited by two sources of noise.
Assuming these are Gaussian, we can use the variance
sum law to isolate the precision of the image signals by
subtracting the variance of the self-movement signal
(σ 2

SM) from the respective auditory and visual predicting
conditions:

σa_Im =
√

σ 2
a − σ 2

SM σv_Im =
√

σ 2
v − σ 2

SM (9)

We then used these to predict audio–visual precision
using the equations defined in the BCI model.

As discussed above, models of cue combination
typically assume that input signals such as auditory
and visual image motion are unbiased, or internally
consistent (Burge et al., 2010). On that basis, the ICI
model predicts no auditory–visual bias or, put another
way, an audio–visual PSE of 0 (i.e., veridical). To
reiterate, the predicted precision for the ICI model is
unaffected by any bias related to the signal inputs (see
Scarfe & Hibbard, 2011).

Across-trial noise analysis

At first sight, manipulating stimulus motion
based on a proportion of ongoing self-movement,
or motion gain, seems to resolve the problem that
head movements vary both within and across trials.
However, as discussed in Haynes et al. (2024), the
judgment made by the participant is based on inputs
coded as motion amplitude rather than motion
gain. Variability in head movements at each level of
stimulus gain also leads to unavoidable across-trial
noise that is not accounted for by fitting a standard
psychometric function. This additional across-trial
noise can thus introduce surprising effects on the
psychometric function, including a steeper slope than
is fit by a standard cumulative Gaussian, and—at high
head-movement variabilities—function asymptotes that
deviate significantly from 0% and 100% that cannot be
accounted for by the constrained lapse rates used in
our standard analysis (Haynes et al., 2024). To address
this issue, we therefore also fit the data with a custom
psychometric analysis that captures this additional
source of noise, and then re-fit the BCI, BCI+, and
ICI models based on the result (see Supplementary
Appendix B for full details). The goodness-of-fit of
each model to the audio–visual condition data was
calculated using RMSE.

Statistics

Non-parametric bootstraps of 2000 samples
were used to estimate standard errors around
each psychometric function parameter using the
PAL_PFML_BootstrapNonParametricMultiple
function from the Palamedes toolbox in MATLAB,
in order to construct CIs that were used to test for
significant differences between empirical psychometric
functions and predicted psychometric functions across
each model in individual subjects. To construct CIs for
the BCI+ and ICI models, bootstrapped psychometric
function parameters were obtained for each of the
three repetitions of the self-movement paradigm
(Supplementary Appendix A). As for the empirical
estimate, the variance sum law was used to extract
the variance of self-motion signal (σ 2

SM) for each
repetition, and the mean was taken as the final measure.
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Due to occasional extremes in sampling during the
bootstrapping procedure, it was sometimes possible
to obtain negative self-movement variances. This
occurred when the bootstrapped sample produced
self-movement precision that was greater than the
precision of the audio and visual cues alone. These
samples were excluded from calculation of the final
bootstrapped self-movement variance parameter. Thus,
it was possible for the final σ 2

SM estimate to be based
on the mean of one, two, or three repetitions. Of the
2000 bootstrapped estimates, this occurred 17.79%,
39.3%, and 39.2% of the time, respectively. Only 3.71%
of the 2000 bootstrapped self-movement estimates were
excluded entirely (i.e., when all three repetitions resulted
in negative self-movement variances).

To analyze which model best predicted the data
on a group level, repeated-measures ANOVAs with
Model and Condition as factors were conducted on
the squared errors from the model predictions and
precision and bias, as well as on the RMSE values
from the across-trial noise analysis. Significant effects
were followed up with post hoc Bonferroni-corrected
t-tests.

Eye and head movement analysis

Eye movements were analyzed to ensure that
participants maintained fixation on the fixation point.
Eye movement analysis followed that of Haynes et al.
(2024). Samples with less than 0.6 confidence (defined
by Pupil Labs software) were excluded, and gaps were
filled using linear interpolation (Halow, Liu, Folmer, &
MacNeilage, 2023). The entire waveform was excluded
from analysis if 50% or fewer samples remained. A
Gaussian filter (σ = 16 Hz frequency domain) was
used to smooth remaining waveforms, and velocity,
acceleration, and jerk were established by taking the
first, second, and third derivatives, respectively. The
initial and final 20 samples of each waveform were
removed. Saccades (and four samples either side) were
removed from the analysis, with saccades detected using
Wyatt’s jerk analysis (jerk threshold = 20,000°/s2).
Mean velocity and speed in the third head sweep were
then calculated. For comparison, we calculated the eye
velocity expected for compensatory vestibulo-ocular
reflex (VOR) using the equation E = –H(1 + R/D)
(Leigh & Zee, 2015), where H is the average head
velocity per condition across participants, R = 0.1 m
(the approximate distance from the eye to the center
of head rotation), and D = 1.2 m (the distance from
participant to speakers/LED ring). Eye movements
could not be recorded from one participant due to
technical problems.

Recorded head movements were smoothed using a
MATLAB lowpass filter with a passband of 8 Hz. The
temporal derivative was taken, and the median velocity

was calculated over 20% to 60% of the third sweep
length because we have previously shown that this
region of interest produces a stable estimate (Haynes
et al., 2024). The distribution of median velocities for
each participant in each condition was then fit with
a Gaussian to extract the mean and variance of head
velocity.

Data availability

Data and analysis codes are available on the Open
Science Framework (https://osf.io/yj27m/).

Results

Psychophysics

Precision
Mean and individual precision for each condition

can be seen in Figure 4. As expected, the addition of
positional jitter decreased the precision of the cues
to which it was applied, with the biggest decrease
in precision occurring when applied to both cues,
as indicated by larger standard deviations. Crucially,
audio–visual precision was similar or better compared
to the most precise audio or visual cue in each
condition, with the most benefit of integration observed
when both visual and audio signals had similar levels
reliability in the audio–visual jitter condition.

Model predictions compared to the audio–visual
conditions can be seen in Figure 5. In general, the
BCI+ model resulted in the closest prediction to the
actual performance obtained for the audio–visual
conditions. ICI predictions were the furthest from
actual performance, suggesting that cue integration
was based on some form of coordinate transform. A
3 × 4 repeated measures ANOVA was conducted on
the squared differences between model predictions and
observed precision (Table 3). A main effect of Model
was found, F(2, 10) = 26.16, p < 0.001, η2

G= 0.05.
Bonferroni-corrected pairwise t-tests revealed that
the BCI+ model was significantly better at predicting
precision compared to the BCI model (average squared
errors: BCI+ = 0.0017, BCI = 0.002, p = 0.001) and to
the ICI model (average squared errors: ICI = 0.003, p
< 0.001). The BCI model was also better at predicting
precision compared to the ICI model (p < 0.001). No
other main effects or interactions were significant; for
Condition, F(3, 15) = 0.83, p = 0.50, and for Model ×
Condition, F(6, 30) = 0.73, p = 0.63. It is also worth
noting that all three models predicted greater precision
than actually observed, an important point taken up in
the Discussion. On an individual level, CIs revealed that
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Figure 4. Mean and individual precision by condition. Audio–visual bars are presented alongside their predicting conditions, with
visual and audio conditions indicated by red and blue, respectively. Note that predicting conditions can appear more than once across
panels (Table 2). Error bars represent ±1 standard error between participants. Lower numerical values indicate smaller standard
deviations and thus greater precision. Participants 5 and 6 were naïve to the hypotheses of the study.

Figure 5. Audio–visual precision and model predictions by condition. Error bars represent ±1 standard error between participants.
Lower numerical values indicate smaller standard deviations and thus greater precision. Participants 5 and 6 were naïve to the
hypotheses of the study.
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Condition ICI BCI BCI+
No jitter 0.0029 ± 0.0026 0.0015 ± 0.0020 0.0010 ± 0.0015
Visual jitter 0.0040 ± 0.0040 0.0031 ± 0.0037 0.0027 ± 0.0035
Audio jitter 0.0024 ± 0.0020 0.0011 ± 0.0013 0.0008 ± 0.0011
Audio–visual jitter 0.0033 ± 0.0036 0.0027 ± 0.0032 0.0024 ± 0.0029

Table 3. Mean ± SD squared errors for precision by condition and model.

Figure 6. The 95% CIs for the difference between predicted and empirical audio–visual precision. The CIs that cross the 0 point indicate
no significant difference between predicted and empirical precision. Participants 5 and 6 were naïve to the hypotheses of the study.

the BCI model predicted precision in 16 of 24 cases,
whereas the ICI model predicted precision in 12 of
24 cases. The BCI+ model again had the best
performance, predicting individual precision in 19 of 24
cases (Figure 6).

Bias
Mean biases for each condition can be seen

in Figure 7. Biases were largest in all visual conditions,
indicating that participants perceived a stationary
visual stimulus to move in the opposite direction of the
head movements (i.e., a Filehne illusion) (Filehne, 1922;
Freeman, 2007; Haarmeier & Thier, 1996; Mack &
Herman, 1973). As expected, audio–visual biases were
in between visual and audio biases.

Model predictions compared to the audio–visual
conditions can be seen in Figure 8. Recall that the ICI

model, by definition, predicts a bias of 0 and so is not
included in the figure. In general, both models predicted
similar biases. A 2 × 4 repeated-measures ANOVA on
the squared differences between model predictions and
observed biases was conducted (Table 4). This analysis
revealed a significant main effect of Model, F(1, 5)
= 7.63, p = 0.04, η2

G = 0.006, with lower squared
errors for the BCI model (mean = 0.022) versus the
BCI+ model (mean = 0.0026). No main effect of
Condition was found, F(3, 15) = 0.47, p = 0.71. A
significant interaction between Model and Condition
was found, F(3, 15) = 3.97, p = 0.03, η2

G = 0.005, with
lower squared errors for the no-jitter and audio-jitter
conditions for the BCI model, and similar squared
errors across both models in the visual and audio–visual
jitter conditions. However, Bonferroni-corrected
pairwise t-tests revealed no significant differences across
any model or condition. On an individual level, both
models predicted biases in 17 of 24 cases (Figure 9).
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Figure 7. Mean and individual biases by audio–visual condition. Audio–visual bars are presented alongside their predicting conditions,
and visual and audio conditions are indicated by red and blue, respectively. Note that predicting conditions can appear more than
once across panels (Table 2). Error bars represent ±1 standard error between participants. Participants 5 and 6 were naïve to the
hypotheses of the study.

There was no consistent pattern in whether models
over- or underestimated biases.

Eye and head movements

As can be seen in Figure 10, head movement
velocities within participants were similar across all
eight conditions of the main task, although speeds
across participants varied. Importantly, eye movements
were much smaller than would have been expected from
the VOR (+ symbols in Figure 10) needed to perfectly
compensate the observed head movements, suggesting
that participants were able to keep their eyes fixed in the
head throughout the experiment.

Across-trial noise analysis

Mean and standard error RMSEs for each model
and audio–visual condition can be seen in Figure 11.

In general, the BCI and BCI+ models were similar
across conditions, but both of these models were
better than the ICI model in all conditions. A 3 × 4
repeated-measures ANOVA with Model and Condition
as factors was conducted on the RMSEs. The main
effect of Model was significant, F(2, 10) = 6.49, p
= 0.02, η2

G = 0.007. Bonferroni-corrected paired
t-tests revealed significant differences between the
BCI+ and ICI models (average RMSE: BCI+ =
0.084, ICI = 0.087, p = 0.03) and the BCI and ICI
models (average RMSE: BCI = 0.083, p = 0.005).
No significant difference was found between the
BCI+ and BCI models. No other main effects or
interactions were significant; for Condition, F(6,
30) = 1.95, p = 0.16, and for Model × Condition,
F(6, 24) = 0.24, p = 0.68, with Greenhouse–Geisser
correction for sphericity. On an individual level,
the BCI+ model was the best-fitting model in
14 of 24 cases, although in general the difference
in RMSE between the BCI and BCI+ models
was small.
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Figure 8. Audio–visual bias and model predictions by condition. Error bars represent ±1 standard error between participants.
Participants 5 and 6 were naïve to the hypotheses of the study.

Condition BCI BCI+
No jitter 0.0017 ± 0.0007 0.0021 ± 0.0010
Visual jitter 0.0021 ± 0.0020 0.0022 ± 0.0019
Audio jitter 0.0030 ± 0.0032 0.0037 ± 0.0039
Audio–visual jitter 0.0021 ± 0.0017 0.0022 ± 0.0017

Table 4. Mean ± SD squared errors for biases by condition and
model.

Although this “across-trial noise” analysis appears to
show less difference between BCI and BCI+ models,
compared to the more standard analysis examined
earlier, it is important to note that these two approaches
differ markedly in how the psychometric function
parameter predictions are assessed. In particular, the
more standard analysis considers predictions based on
precision and bias separately, whereas the “across-trial
noise” analysis shown in Figure 11 groups these
two parameters together. Moreover, conclusions are
drawn about the latter on the basis of the goodness
of fit of model-driven psychometric functions to the
raw psychophysical data, as opposed to comparing
empirical and model bias and precision in the case of
the more standard model. Given that the more standard
analysis showed minimal differences in bias predictions
across models (e.g., Figure 8), we suspect that this is the

reason why we found smaller differences between them
when using the “across-trial noise” analysis.

Overall, both approaches suggest that integration
is based on compensated cues, given the better
performance of the BCI and BCI+ models in
comparison to the ICI model. Moreover, the more
standard approach shows that audio–visual precision is
best accounted for by the BCI+ model, at both a cohort
and an individual level.

Discussion

The integration of sensory signals is made
complicated during self-movement because cues may
be represented in different coordinate frames, and are
subsequently affected differently by head and/or eye
movements. We proposed that integration of audio
and visual signals occurs following the transformation
of these cues into a common coordinate frame.
Participants completed a psychophysical multisensory
integration task while making active yaw head rotations
and fixating on a head-fixed target. Participants
judged whether a visual, auditory, or audio–visual
target, presented at high or low stimulus reliabilities,
moved left or right. We found that performance in the
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Figure 9. The 95% CIs for the difference between predicted and empirical audio–visual precision. Participants 5 and 6 were naïve to
the hypotheses of the study.

audio–visual conditions was well-described by models
based on the combination of compensated audio and
visual signals represented in a common coordinate
frame. A model based on uncompensated image-based
signals could not explain performance in the majority
of audio–visual conditions in most participants. We
also found that taking into account the inevitable
shared noise between compensated cues accounted for
the increase in audio–visual precision better than other
models. Accordingly, our data show that it is likely
that audio and visual cues are first transformed into
common coordinates before these signals are integrated
according to principles of optimal integration.

Previous studies have considered the integration of
moving audio–visual targets in stationary observers
and consistently found evidence for optimal integration
(Alais & Burr, 2004a; Meyer & Wuerger, 2001;
Soto-Faraco et al., 2004; Wuerger et al., 2010). For
example, variability in the estimate of moving object
arrival times is reduced when both audio and visual
cues are present, consistent with maximum likelihood
principles (Wuerger et al., 2010). Similarly, detection
thresholds for motion perception are significantly
improved in the presence of audio–visual stimuli
together, rather than individual modalities alone

(Alais & Burr, 2004a). By contrast, few studies have
considered the impact of self-motion on the process of
integration, although several studies have demonstrated
that self-movement can impact the perception of
auditory and visual stimulus motion more generally.
For example, rotation and translation of the body
and/or head can impact the localization of both
auditory and visual targets (Carriot, Bryan, DiZio, &
Lackner, 2011; Cooper, Carlile, & Alais, 2008; Lackner
& DiZio, 2010; Teramoto, Cui, Sakamoto, & Gyoba,
2014), and stationary stimuli are perceived as moving in
the opposite direction to head and/or eye movements
(Freeman, 2007; Freeman et al., 2017). This latter
so-called Filehne illusion is also present in our current
study, reflected in the biases obtained for audio, visual,
and audio–visual conditions. Curiously, although we
found visual biases similar to those previously reported
for smooth eye pursuit (Filehne, 1922; Furman & Gur,
2012), the auditory biases were much smaller than in an
earlier study from our lab that used similar auditory
stimuli (Freeman et al., 2017). The smaller biases may
have arisen because here we presented the cues to be
judged during a single sweep of the head movement,
instead of continuously as in Freeman et al. (2017). We
note, too, that the Filehne illusion depends on basic
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Figure 10. (Top) Absolute head movement velocities across all six participants in each condition. (Middle) Eye movement speeds for
five of the six participants. (Bottom) Eye movement velocities for five of the six participants. Negative velocities indicate that the eyes
moved in the opposite direction to the head. Bars show means across participants, and error bars represent ±1 standard error
between participants. The plus symbols (+) indicate compensatory VOR. Participants 5 and 6 were naïve to the hypotheses of
the study.

stimulus properties such as spatial frequency (Freeman
& Banks, 1998; Wertheim, 1987), which determine
the size of the image-motion estimate to which the
self-motion signal is compared. Hence, the Filehne
illusions found for the visual and auditory conditions
will also depend on the specific auditory and visual
stimuli used. As such, it is possible that we found a
larger visual versus auditory Filehne illusion in the
present study due to differences in stimulus parameters,
such as the standard deviation of the stimuli. Our
results build upon existing literature, proposing a
mechanism through which self-movement, visual

motion, and auditory motion are integrated to help us
perceive movement.

In our study, participants maintained their gaze on
a head-fixed target while making yaw head movements,
meaning that both the eyes and ears moved with respect
to the external world. Accordingly, to successfully
make directional judgments as in the present task,
observers had to account for this self-movement and
put audio and visual cues into a common reference
frame prior to integration. We suggest that the common
coordinate frame is body centered, given that this
reference frame remains stationary during head and eye
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Figure 11. RMSE for model fits to each audio–visual condition. Error bars represent ±1 standard error between participants.
Participants 5 and 6 were naïve to the hypotheses of the study.

movements, and is parsimonious, given the evidence
both here and in other papers that both auditory and
visual signals can be transformed into this reference
frame (Furman & Gur, 2012; Goossens & van Opstal,
1999; Kopinska & Harris, 2003; Lewald et al., 1999).
Yet it is possible that there is an alternative route to
cue integration. In particular, previous research on
auditory localization has suggested that auditory signals
are first transformed into an eye-centered reference
frame, and then integrated with visual signals before
a transformation to body-centered coordinates at a
later stage (Lee & Groh, 2012; Lewald, Dörrscheidt, &
Ehrenstein, 2000). The present data cannot differentiate
among these alternate transformation routes, given
that eye- and head-centered reference frames coincide
due to the type of head movement employed in the
study. However, it is important to note that, first,
the eye-centered model has been used to explain
the influence of eye gaze on auditory localization
alone, rather than audio–visual cue combination as
explored here, and, second, the eye-centered model is
based on localization of auditory cues in stationary

observers rather than in cases when the head and
eyes move. In addition, as we pointed out in the
Introduction, there is good evidence that localization
and gaze orienting to auditory and visual targets are
driven by body-centered not eye-centered coordinates
(Goossens & van Opstal, 1999; Kopinska & Harris,
2003). Moreover, evidence suggests that numerous
coordinate frames are represented at different neural
levels. For example, auditory and visual motion may
be represented in eye-centered, head-centered, or even
hybrid frames across regions, including the superior and
inferior colliculus, primate ventral intraparietal cortex,
and V1 (Bulkin & Groh, 2006; Furman & Gur, 2012;
Ilg, Schumann, & Thier, 2004; Ilg & Thier, 1996; Lee
& Groh, 2012; Zhang, Heuer, & Britten, 2004). Future
research is therefore necessary to delineate precisely
which coordinate frame transforms are conducted
during multisensory integration and in what order.
Although we propose a body-centered model, many
alternatives are possible, given the diversity of neural
representations and sensory tasks implicating optimal
integration.
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Outstanding questions remain regarding which
sensory signals are used to compensate for
self-movement in our paradigm. It is likely that
self-movement compensation would include cues
from the vestibular system, neck proprioception,
efference copy, and signals from eye muscles
(Dokka, MacNeilage, DeAngelis, & Angelaki, 2015;
Furman & Gur, 2012; Genzel et al., 2016). The
role of the eye muscles and efference copy has been
widely explored in relation to visual localization
during smooth pursuit eye movements (Bogadhi,
Montagnini, & Masson, 2013; Furman & Gur, 2012).
Similarly, visuo-vestibular integration is necessary
to compensate for translational self-movement
(Dokka et al., 2015), whereas proprioceptive and
vestibular signals are required for auditory spatial
updating (Genzel et al., 2016). In our research, we
considered a unified “self-movement” signal as the
source for self-movement compensation, without
distinguishing which inputs formed this signal. As such,
future research should aim to more precisely define
which sensory modalities form this self-movement
signal and under which circumstances they are
combined.

Our results and analysis suggest that precision
in the audio–visual conditions was not completely
optimal. As expected, we observed the greatest increase
in audio–visual precision when both audio and
visual cues had similar reliabilities. However, when
audio and visual reliabilities diverged, audio–visual
precision was close to the “best” unimodal condition.
In general, non-jittered visual signals were more
precise than auditory signals. Accordingly, it may
be difficult to establish whether participants used a
“best cue” strategy rather than an optimal integration
strategy. However, the clearly increased precision in
the audio–visual jittered condition would suggest
that participants did indeed engage in (near) optimal
integration. Given that all trial types were interleaved,
it seems unlikely that participants would switch
between these alternative strategies on a trial-by-trial
basis. Nonetheless, to further assess whether and
how much audio–visual integration deviates from
optimality and to better distinguish between a “best
cue” versus an optimal integration strategy, future
research may be necessary. Such research could
individually tailor audio and visual precision to more
clearly explore the increased precision apparent in
audio–visual conditions or introduce cue conflicts to
examine whether predicted and measured audio and
visual weightings diverge (Rohde, van Dam, & Ernst,
2016).

Finally, the models presented here predicted greater
precision than was actually observed, suggesting an
additional unaccounted source of noise. Although we
emphasized the conversion of signals into a common
reference frame, it is likely that further conversions

are necessary to transform audio and visual signals
into common units. When observing moving objects,
visual cues are dominated by speed (Freeman, Cucu,
& Smith, 2018; Reisbeck & Gegenfurtner, 1999),
while auditory cues are dominated by displacement
(Carlile & Best, 2002; Freeman, Leung, Wufong,
Orchard-Mills, Carlile, & Alais, 2014). Thus, when
combining hearing and vision, auditory and visual
cues must also be transformed into common units
(i.e., displacement to speed, or speed to displacement).
This process likely adds noise (Haynes et al., 2024).
As we predicted audio–visual conditions on the basis
of separate audio and visual conditions, it is possible
that this unit conversion noise is missing from our final
predictions. After all, the need for common units is
only necessary when hearing and vision are directly
compared to each other, which in our experiments
corresponds to the audio–visual conditions, not the
predicting conditions. Furthermore, when the eye
and/or head is moving, an additional unit conversion
is needed between self-movement and image-motion
signals. Vestibular and motor signals are likely to be
encoded in terms of acceleration and speed units
(Angelaki & Cullen, 2008; Cullen, 2019; Freeman et
al., 2018), making the combination of self-movement
and visual motion relatively straightforward. However,
additional conversion is needed to combined speed-
based self-movement cues with displacement-based
auditory cues. Given that our predicting conditions
involved the same self-movement as the combined
audio–visual conditions, we have likely accounted
for the unit conversion noise for each modality
separately. However, it is possible that the shared
noise from these conversions remains unaccounted
for. Accordingly, future experiments and models are
necessary to resolve the unit conversion problem,
over and above the reference frame issue we present
here.

Conclusions

Overall, here we have demonstrated that audio–visual
motion perception during active self-movement is
based on the combination of sensory signals, which
are transformed into a common coordinate frame.
Importantly, our study investigated audio–visual
integration during self-generated, active movements,
expanding our knowledge of multisensory integration
to more naturalistic task constraints. We propose
that the common coordinate frame is body centered;
however, alternatives may be possible based on the
modalities and tasks involved in any given multisensory
scenario. Accordingly, this research opens a new
avenue for future work to investigate integration during
natural, active self-movement.
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