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Star Cluster Population of High Mass Black Hole Mergers in Gravitational Wave Data
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Stellar evolution theories predict a gap in the black hole birth mass spectrum as the result of pair
instability processes in the cores of massive stars. This gap, however, is not seen in the binary black hole
masses inferred from gravitational wave data. One explanation is that black holes form dynamically in
dense star clusters where smaller black holes merge to form more massive black holes, populating the mass
gap. We show that this model predicts a distribution of the effective and precessing spin parameters, y.¢ and
Xp» Within the mass gap that is insensitive to assumptions about black hole natal spins and other
astrophysical parameters. We analyze the distribution of y. as a function of primary mass for the black
hole binaries in the third gravitational wave transient catalog. We infer the presence of a high mass and
isotropically spinning population of black holes that is consistent with hierarchical formation in dense star
clusters and a pair-instability mass gap with a lower edge at 44"¢M . We compute a Bayes factor B > 10*
relative to models that do not allow for a high mass population with a distinct y¢ distribution. Upcoming
data will enable us to tightly constrain the hierarchical formation hypothesis and refine our understanding

of binary black hole formation.
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Introduction—Observations of gravitational waves
(GWs) from binary black hole (BH) mergers provides an
unprecedented window into the astrophysics of massive
stars [1-7]. However, our ability to learn from these
detections is hindered by uncertainties in the theory of
massive binary star evolution and BH formation and the
dependence of model results on initial conditions and
parameters (e.g., [8—11]). One of these uncertainties is
the location (and presence) of a mass gap in the BH birth
mass distribution due to (pulsational) pair instability super-
novae [(P)PISN], estimated to begin in the ~40-70M
range and ending at ~130M [12—-15]. Such a gap is not
seen in the BH mass distribution [6,16]. If such a gap exists,
then the formation of BHs within the mass gap can be
explained by scenarios involving dynamical interactions in
dense star clusters or active galactic nucleus (AGN) disks,
where BHs can grow through hierarchical mergers [17-24].
The detection of this high mass population will shed light
on the origin of binary BH mergers as well as on the
location of the (P)PISN mass gap.

The most precisely measured spin parameter from GW
data is the effective inspiral spin y., a combination of the
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two component spins projected parallel to the orbital
angular momentum [25]. Previous work has shown that
the distribution of y.; can give important insights on the
origin of the detected BH binary population [26-37]. The
distribution of individual BH spins and of the precessing
spin parameter y,, [38] have also been leveraged in attempts
to identify a dynamically-formed population in the data
[32,39-45], and correlations between BH spins and binary
mass ratio [6,28,46-49] and possibly redshift [49,50] have
been inferred from the data. Other studies have examined
possible relationships between BH mass and spin, as would
be expected from a population of hierarchical mergers
[34,37,42,43,47,50,51]; thus far, evidence for any correla-
tion between BH masses and spins has been tentative, with
different studies yielding different conclusions. A clear
detection of the (P)PISN mass gap and a population of
hierarchical mergers remains elusive.

Here, we consider the y.; and y, distributions as a
function of primary BH mass m; to identify signatures of
hierarchically formed BHs in the third gravitational wave
transient catalog (GWTC-3).

Analytical model—We consider the spin parameters y s
and y,, for a dynamically assembled BH merger population,
in which the primary is a second-generation (2G) BH
formed via an earlier merger and the secondary is a first-
generation (1G) BH representing the direct end product of
stellar evolution. The effective inspiral spin is defined
as ye = (mya; cos@, + mya,cos,)/(my +m,) [52,53],
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and the effective precessing spin parameter is y, =
max {a, sin 6, [(3 +4q)/(4+3q)]ga,sin6,}  [54,55],
where ¢ = m,/m; denotes the binary mass ratio, a; and
a, are the dimensionless component spin magnitudes, and
0, and 60, are the angles between each spin vector and the
orbital angular momentum.

For dynamical formation in a dense star cluster, we
expect that (i) spin and orbital angular momenta are
isotropically oriented [56]. For 1G + 2G mergers we also
expect that (ii) a; = @ ~ 0.69, in line with predictions from
numerical-relativity simulations [57], that (iii) a; > a,, as
a significant 1G + 2G merger rate requires that BHs are
formed with small spin, allowing for a higher cluster
retention probability of merger remnants [19,22]; and that
[iv] m; ~ 2m,, based on dynamical selection favoring the
high mass end of the BH mass function for both BH
primary progenitors and for the secondary BH [58].

Given the above considerations, we expect that the most
likely values of the spin parameters for a 1G + 2G mergers
are ye =~ (@/1.5)cos@; and y, ~ asin6, leading to the

mean relation y, = /a* — (1.5y.¢)*. Isotropy then implies
a uniform distribution for y.¢ within [y| < a/1.5 2~ 0.47,

and p()(p) & ()(p/

cumulative distribution functions (CDF)
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For 2G + 2G mergers, the probability density of y.g is
obtained from the convolution of two uniform distributions,
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Since 6, and 6, are independent, the distribution of y,, is
obtained by the product of the distributions for each of the

two angles:
2\
Nyp(Lxp) =1~ —a_g . (4)

We note that similar distributions for y.¢ and the y. vs y,
correlation were obtained by Refs. [59,60].

We now asses the accuracy of the analytical model by
comparing its predictions to the results of globular cluster

models evolved using the fast cluster code ¢cBHBA [61].
Unless specified otherwise, our initial conditions and
numerical modeling are the same as in [22]. In all models
considered here we adopt an initial cluster half-mass
density p, = 10°Mgpc™ and the delayed supernova
mechanism from [62].

We report the results from four population models that
differ by the choice of the initial BH spin distributions and
the maximum mass of 1G BHs, m,. In one model, the
initial BH spins are all set to zero and m, ~ 70M . In the
other three models, we assume that m, ~ 50M and that
the BH spin distribution follows a beta distribution with
shape parameters (a, ) = (2,18), (2,5), and (2,2); these
distributions peak at ~0.06, 0.2, 0.5 and their correspond-
ing median values are ~0.1, 0.26, and 0.5, respectively. All
but the last model (with the highest spins) give differential
merger rates at primary masses above m, consistent with
those measured from LIGO/Virgo data [6]. Above this
mass, the merger rate is dominated by 1G + 2G mergers in
all models [see Supplementary Material (SM) [63] ].

In Fig. 1 we show the CDFs of y. and y, for 1G + 2G
and 2G + 2G mergers, as well as the analytical predictions
based on equations (1)-(4), and the spin parameter dis-
tributions from the cluster Monte Carlo models of [19].
These distributions almost perfectly align with each other
across the entire range of parameter values. We note that
while the differences near the tails of the distributions
increase with initial BH spins, higher spins tend to reduce
the merger rate above m, due to increased BH ejection
from their host clusters, so these models are statistically
disfavored; on the other hand, the small deviations seen in
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FIG. 1. CDF of y.q and y, obtained from our cluster models

and the expected CDFs based on our analytical approximations.
The lines are hard to distinguish because they lie on top of each
other, showing the independence of these distributions on model
assumptions and initial conditions.
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the lower-spin models are unlikely to be discernible from
the data. Thus, if hierarchical mergers are the most common
class of merger above some threshold mass, our models
predict a near-universal spin distribution, simply repre-
sented by equations (1) and (2). In the following, we test
this prediction against GW data.

Bayesian inference—Since the value of y, is less well
measured in GW observations than y.y [4,7], we predomi-
nantly consider hierarchical inference of the effective spin
distribution. For this study, we use the subset of BHs from
GWTC-3 with false alarm rates below 1 yr~!, consistent
with Ref. [6]. This results in a total of 69 binary BHs in our
sample. In parallel with y., we hierarchically fit the
distribution of ¢, m;, and redshift z. We incorporate
selection effects using the set of successfully recovered
binary BH injections provided by the LIGO-Virgo-
KAGRA Collaboration and spanning their first three
observing runs [6,7].

We fit the y ¢ distribution to a mixture model comprising
a Gaussian distribution, representing the bulk of the
population at m; < 7/, and a uniform distribution, repre-
senting 1G + 2G hierarchical mergers at m, 2 /i1, where
is the value of m; at which the transition between the
Gaussian and uniform descriptions of y.; occurs:

N()(eff;ﬂvo-) (ml

v u(Xesmy) = Uers w = 0.47)
eft> W — Y.

Here, N (yeir; p, 6) denotes a normalized Gaussian distri-
bution with mean y and standard deviation ¢ truncated
within [—1,1], and U(ye;w) is a uniform distribution
defined over the range |y.;| <w. We set w = 0.47, as
predicted for hierarchical mergers. We use broad unin-
formative priors; the prior on 7 is uniform between 20 and
100M . For more details on the implementation of the
models and prior assumptions see SM [63].

We consider additional models with increased complex-
ity. Our second model, 7y, (Yefr|m1), is similar to 7y,
but with w now being a parameter that we infer from the
data. The third model is

TN +NU, ()(eff|m1)
_ {N()(efoMﬁ) (my <
(1 =OUetrsw) + N W (Ketrs - 00)  (my > 101),

where the mixing fraction 0 < ¢ < 1. In this latter model,
the potentially asymmetric distribution of y.; above i (if
Uy, 18 nonzero) allows us to assess how well the data support
the theoretical expectation of the symmetry of y. around
zero for m; > im without this being enforced by the model.

If 7 cannot be constrained or its posterior distribution
rails against the limits of the prior, this would imply that a
model with a separate spin distribution population above 7

cannot be statistically distinguished from a Gaussian model
applied across the entire mass range. A well-measured 771, in
turn, implies that there is a distinct mass threshold above
which the population of binary BH mergers has a meas-
urably distinct distribution of y.;. We measure 7 =
44+°M, for the 7, model (hereafter, reported measure-
ments are median and 90% credible interval). The posterior
distributions of 7z and w are shown in Fig. 2. We infer
w = 0.5103 and 0.5 under the 7y ;, and the myr,
models, respectively. While the recovered posteriors on w
are quite broad, they peak close to the expected value
w =~ (.47 for hierarchical mergers. We show in Fig. 2 the

distribution of y as inferred under 7z 7, - Below 7, the

distribution is a narrow Gaussian with mean 4 = 0.057005;

above 7 the distribution is consistent with being symmetric
around zero and favors a large width as expected from a
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FIG. 2. Posteriors of m (upper-left panel) and w (upper-right
panel) obtained under our models. In the middle-left and bottom-
left panels we show the distribution of y. for the s, zry, model,
for both the Gaussian component at m; < /m and the Uniform +
Gaussian component at m; 2 7. We also show the distribution of
Xp Obtained by using equation (8) in the middle-right and bottom-
right panels. Thick lines are median, 10™ and 90™ quantiles, while
light lines are individual draws from the posterior. Analytical
lines are from Egs. (1) and (2).
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hierarchically formed population of mergers. In SM [63]
we show that our inference is unlikely to be affected by
Monte Carlo uncertainty in the population likelihood
estimator.

The precise measurement of 72 implies that these models
are strongly favored over models in which black holes of all
masses share the same spin distribution. More quantita-
tively, we compute the Bayes factors of models zy .,
Zntu,» and zary pnry Telative to a model where the entire
population is represented by a single Gaussian in y; (e.g.,
[6]). We find log,, B = 4.7, 4.5 and 4.2, respectively. These
results indicate strong evidence in favor of the hierarchical
merger model over the Gaussian model above ~45M ©.

Ref. [50] identified a broadening in the distribution of
et With increasing mass and/or redshift. Consistent results
were obtained by Ref. [49] using flexible models that allow
for a nonmonotonic dependence of the mean and variance
of the y.q distribution on primary mass. The behavior we
identify in this work—the transition to a broad y.
distribution above ~45M o—is likely responsible for this
conclusion. To verify this, we consider a fourth model, in
which the fixed Gaussian spin distribution below 7 is
replaced with one whose mean and variance evolve linearly
with primary mass, as in [50]:

N, +th, (et |my)
_ {No(effml(ml),mmn) (my < in)
u()(eff;w)

where u, (m;) = p + éu(m,/10M¢, — 1) and log 6, (m;) =
logo + 6logo(m;/10Mg — 1). Under the 7y, i, model
we infer that mean and variance of effective spins below
are now consistent with no or mild change with mass
(6u = 0.0070%, Sloge = —0.247033). In fact, the data
prefer a reversal of the trend inferred in previous work
[50], with the y.¢ distribution slightly narrowing with mass
below 7. Our interpretation is that the population above 7
may drive the mass- and redshift-dependent broadening
reported in [50].

Finally, we consider a model where we also fit for the
distribution of ,,, which is represented by a mixture of two
Gaussian distributions truncated within [0, 1], one below
and one above 7:

”)(p()(effv)(p|ml)

N()(eff;/’t’ U)N()(p;”p,lv O-p,l) (ml
u()(eff; W)N()(p;ﬂp,w Gp,u) (ml

3

)
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vV A

Under this model, we infer m = 46:?Mo (see SM [63] for
more details). We show the derived distribution of y,, in
Fig. 2. The two distributions above and below 7z can be

nearly separated and the latter is broadly consistent with the
theoretical expectation.

Implications—We compare the predicted distribution of
the effective spin parameters y.q and y, for hierarchical
mergers to that of the population of observed BH binaries,
finding evidence that the spin properties of observed binary
BHs change at ~44M . Above this mass, the y.q distri-
bution is consistent with the hypothesis of a (P)PISN gap in
BH birth masses, which is repopulated by hierarchical
mergers in dense clusters. We infer that a fraction
p(m; > i) = 0.00910), of binary BHs lie in the high-
mass and isotropically spinning subpopulation, with no
appreciable variation across the different models. This can
be interpreted as 1% of binary BH mergers being of
hierarchical origin—as these can also occur below 7, albeit
at a subdominant level—under our models.

Sequential mergers in triples or quadruples [88,89] are
also possible, though the expected low merger rate makes
this less likely [90]. BHs in the (P)PISN mass gap can also
arise from gas accretion and/or hierarchical mergers in
AGN disks [91,92] and stellar mergers in star clusters
[93,94]. These latter scenarios are unlikely to give rise to
the same y.q distributions as hierarchical BH mergers in
clusters [24,95,96] and are therefore disfavored, although
not excluded, by our analysis as a primary formation
mechanism.

Our findings align with previous work showing that the
BH properties change above a certain mass, suggesting
formation in clusters for some fraction of the population
[34,37,42,43,45,51,97]. Refs. [43] and [45] found evidence
for a high-mass population consistent with hierarchical
formation by studying the correlation between the compo-
nent spin distributions and mass. However, the component
spin is not a parameter that is easily inferred from the GW
data, and its distribution lacks robust constraints. Other
parameters, e.g., mass, mass ratio, and merger rate, cannot
be robustly predicted from astrophysical models. We have
used y.g instead, which is both well constrained from the
data and has a distribution that can be predicted from basic
principles. This strengthens our conclusions and enables
very stringent constraints on a hierarchical formation
scenario with future data. Ref. [34] also considered the
Yee distribution and found that the data allow for the
presence of a high-mass population consistent with hier-
archical mergers but do not require it. Here, we showed that
the data do require the presence of such a population.

The hierarchical formation hypothesis for high-mass
BHs makes other predictions that will enable tighter
constraints from future GW observations with a growing
population of BHs. From the cluster population models, we
find that a 1% fraction of hierarchical mergers in the
(P)PISN mass gap implies that ~20% of the BH binaries in
the overall astrophysical population are formed in clusters.
Therefore, a significant fraction of the detected binaries
should present a residual eccentric signature [98—100], of
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which traces are already claimed to exist in the data
[64,101]. If mass-gap BHs form only through hierarchical
mergers in clusters, we should expect ~5% of mass-gap
mergers to be measurably eccentric. Additionally, because
BHs with mass above ~90M, can only be formed from at
least two previous mergers and these are rare, we might
expect a drop or discontinuity in the merger rate (and binary
properties) near this mass.

Software used in this work: astropy [65]; bilby [66];
cBHBA [61]; jax [67]; numpy [68]; numpyro [69,70];
scipy [71].
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