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Summary

Electromagnetic source imaging (ESI) techniques based on electroencephalography (EEG)
and magnetoencephalography (MEG) are used to better understand the function of the human
brain and neurological conditions through monitoring electrical activity. ESI methods depend
on models of the head encoding realistic and personalised anatomy and electrical conductivity
characteristics. The anatomy can be extracted reliably from standard imaging techniques such
as magnetic resonance imaging (MRI). However, extracting the individual conductivity of
head tissues poses a unique challenge. This has been partially addressed by the development
of parametric electrical impedance tomography (pEIT) and EEG/MEG-based calibrations,
which aim to estimate these conductivities. Unfortunately, these techniques suffer from a
heavy computational cost due to high-dimensional systems of equations needing to be solved.
This thesis explores the application of a dimensionality reduction technique called reduced
order modelling (ROM) to this problem, with the objective of accurate estimation of the
conductivity of tissues in the head. For pEIT, the main results obtained were a substantial
increase in speed and therefore practical accuracy while simultaneously unlocking, for the
first time, the new ability to estimate the conductivity of deeper head tissues. An ROM-based
calibration method utilising EEG data is also developed in this thesis, where the tuned
conductivities of head tissues directly result in a large improvement in source localisation
accuracy. The new frameworks developed in this work could have a far reaching impact in
the field of EEG, providing new capabilities for researchers and clinicians.
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Chapter 1

General Introduction

1.1 General Overview and Motivation

The complexity of the human brain cannot be overstated. The unique and intricate composi-
tion and configuration of the brain generates the conditions necessary for all human thought,
including consciousness, emotion, perception and reasoning. However, the exact chemical
states and particular biological formations that allow these phenomena to exist are the subject
of great scientific debate. Explaining these phenomena, and the mechanisms behind them, is
the principle aim of the highly active field of cognitive neuroscience. In brains with certain
neurological and psychiatric conditions, for which the underlying mechanisms stray from
normal functioning, the additional characterisation of the pathology, diagnosis and treatment
of these conditions is the domain of the tightly coupled fields of neurology, psychiatry and
clinical neuroscience [113, 146]. All of these fields then share a similar line of inquiry, and
fundamental to the progression of any scientific discipline is the concept of measurement.
As such, knowing which metric to measure, and the most appropriate ways of measuring it,
are essential considerations. In all of the aforementioned fields, the metrics to be measured
overlap significantly, and therefore, so do the measurement devices.

A significant group of the technologies used in the neurosciences fall under the cate-
gory of medical imaging and broadly speaking are divided into anatomical and functional
imaging. These include magnetic resonance imaging (MRI), functional magnetic resonance
imaging (fMRI), computerised tomography (CT), electrical impedance tomography (EIT),
electroencephalography (EEG), magnetoencephalography (MEG) and positron emission
tomography (PET) [98, 92, 86]. A relationship exists between most of these techniques, with
each having distinct strengths and weaknesses and/or measuring different metrics. In many
cases, imaging techniques can be used in conjunction with one another to achieve better
results. For example, MRI and CT images compliment each other due to being sensitive to
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different biological tissues in the human head [13]. These images can be co-registered to
obtain a highly accurate picture of the head. A detailed picture like this can then be used in
EEG, EIT or MEG, which require anatomical information for optimal performance [185, 60].

In functional imaging, one metric of particular interest is the electrical potential generated
from active regions of the brain. This is measured by EEG and one use of these potential
readings is to localise the source of the electrical activity [150]. EEG has the major advantages
over other functional techniques of having high temporal resolution and being relatively
cheap and mobile [86]. Localising sources over time can help us understand the operational
relationship between different sections of the brain. EEG source localisation is, however,
highly sensitive to anatomical accuracy and assumed electrical properties of the biological
tissues [49, 184]. EIT is a technique that allows the characterisation of these electrical
properties and is therefore highly complementary to EEG. This particular modality of EIT is
known as parametric EIT (pEIT). Unfortunately, pEIT is not standard practice in the field
mainly due to the associated computational expense.

Both EEG and pEIT are ill-posed inverse problems. An inverse problem (IP) constitutes
estimating a quantity or quantities that can explain measurements taken, and typically consist
of multiple forward problems (FPs). A FP simulates measurements using specific values for
the quantity being estimated and other fixed parameters. The IP involves tuning the quantity
until the FP simulated measurements are close to the real measurements. The ill-posedness
comes from the fact that there are multiple values of the tunable quantity that produce similar
simulated measurements in the FP. For EEG and pEIT, the FPs are computationally intensive,
requiring a large system of equations to be solved, thus making the IPs also expensive. In the
case of pEIT, the quantity to estimate is the conductivity of each tissue in a model. For EEG,
the quantity to estimate is the location, magnitude and orientation of a source of electrical
activity, where the fixed parameters can be the conductivities estimated by pEIT. In the
abscence of pEIT, standard literature values are often used, which are known to lead to
inaccuracies in the EEG-IP [116, 187]. Therefore, the main issue concerning EEG is the
prohibitive cost of pEIT, which limits the personalisation of conductivities required for its
accuracy.

1.2 Contributions

This thesis presents two major contributions to the field. The first is the application of a
technique called reduced order modelling (ROM) to the pEIT-FP. This method is a form
of dimensionality reduction and maps changes in the conductivity in the FP formulation to
changes in the FP solution. This mapping can then be used for real-time generation of FPs



1.3 Thesis Structure 3

for any conductivity set, after a training phase which is much less computationally intensive
than the previous method. Additionally, this speed up has now made it feasible to estimate
all tissues in the head, instead of only a small subset, which was standard before.

Secondly, the newly trained ROM-pEIT-FP can now be utilised in the EEG-FP through the
adjoint nature of the two problems to create real-time EEG-FPs for any conductivity set. This
results in a powerful new framework, that compartmentalises the computationally intensive
steps, allowing changes in the conductivity to be quickly mapped to changes in the EEG-FP
solution. This separation allows the EEG-IP to estimate conductivities simultaneously with
the current source. This additional degree of freedom, coupled with a large increase in speed,
has the potential to unlock new levels of accuracy for EEG source localisation.

1.3 Thesis Structure

Chapter 2 continues this thesis with an introduction to the biological setting and neurophysi-
ology responsible for generating electrical brain activity. A brief summary of the techniques
used to localise this activity is provided before specific motivation for the use of each tech-
nique is given. High-density EEG is then looked at in more detail, with an overview of the
basic apparatus used and an example of some signal processing of typical EEG data. The
concept of forward problems (FPs) and inverse problems (IPs) is also covered in this section,
which follows with a review of the need for accurate head models in EEG. Specifically,
the effect of poor characterisation of the electrical conductivity field in the head models is
explored. Finally, the use of parametric EIT (pEIT) is suggested as an antidote for head
models with randomly assigned conductivities.

In Chapter 3, the mathematical foundations behind both the EEG and pEIT are laid out.
Starting with Maxwell’s equations for electromagnetism, the formulations are derived and
one subsequent numerical implementation, highlighting the computational expense incurred
in both methods by the FP. Additionally, the mathematical relationship between pEIT and
EEG is described by the use of adjoint methods. Crucially, the dependence of the FPs on the
conductivity of each head tissue is made clear.

Chapter 4 offers a solution to the computational expense in the pEIT-FP with the use
of ROM to generate real-time FPs for any conductivity set. The application of ROM to
pEIT (ROM-pEIT) is then tested with a realistic head model and a comparison between the
full-order numerical solution in the pEIT-FP is then compared to the ROM-pEIT-FP to verify
the appropriateness of this proposed solution.

Then, in Chapter 5, the ROM-pEIT framework is developed, including its incorporation
with the IP. This new method is then utilised in a number of typical use cases where the
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inverse performance is monitored. A clear comparison is then drawn between the use of the
ROM-pEIT framework and the previous state-of-the-art technique with respect to overall
speed and accuracy of reconstructed conductivities. This comparison is made with real and
synthetic pEIT data. Examples of the new experiments that can be conceptualised thanks to
the speed-up provided by ROM-pEIT are presented. Chapters 4 and 5 have been adapted from
the submitted work: Matthew R. Walker, Mariano Fernández-Corazza, Sergei Turovets and
Leandro Beltrachini, Electrical Impedance Tomography Meets Reduced Order Modelling: a
Framework for Faster and More Reliable Conductivity Estimations [189].

The implementation of ROM-pEIT in EEG is then shown with the aid of the adjoint
method described in Chapter 3. The generation of fast leadfield matrices for any conductivity
set is then demonstrated and its accuracy compared to the full-order solutions verified. Taking
advantage of this speed-up, a new optimisation technique is presented for the simultaneous
reconstruction of electrical activity and tissue conductivity in realistic head models. The exact
benefits to EEG are then presented. Finally, fusing the techniques of pEIT and the presented
EEG-based conductivity estimation is shown to improve the estimation even further. The
work in this Chapter has been prepared for publication as: Matthew R. Walker and Leandro
Beltrachini, Fast Simultaneous Conductivity Estimation and Source Localisation in EEG
using Reduced Order Modelling.

The final chapter summarises the major contributions of the thesis to the field and then
concludes with the possible directions for new research. The future work proposed covers
both the technical improvements in the framework, and the new directions of the field as a
whole.



Chapter 2

Biophysical Electrical Phenomena and
Measurement

2.1 Overview

To provide the necessary background for the remainder of this thesis, Chapters 2 and 3 detail
the motivation, theory and mathematical background for the techniques of electroencephalog-
raphy (EEG) and parametric electrical impedance tomography (pEIT). This chapter begins
by describing the basic physiology of the brain and the neurons that make it, highlighting the
generators of current in the brain. The motivation for localising brain current generators is
given. An overview of EEG in various modalities and its role in neurological disorder assess-
ment is then provided. Further, a light-touch primer of the basic principles for non-invasive
high-resolution EEG with basic data pre-processing and source localisation is given. Finally,
this chapter explores the construction of head models that limit the accuracy of EEG and
the technique of pEIT that aids this construction. The use of pEIT to improve head model
construction will provide the motivation for the following chapters.

2.2 Electricity in the brain

The brain and central nervous system are primarily formed of glial cells and neurons. The glial
cells have been described as the supporting cells for the neurons and the ratio between the two
and absolute number is still an open research question [182]. Recent studies have suggested
the number of neurons in the brain is approximately 86 billion [17]. Each neuron has
connections called synapses, where two neurons meet and communicate via the transmission
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Fig. 2.1 Structure of a neuron. Adapted from an image by Quasar Jarosz on Wikimedia
Commons under the Creative Commons Attribution-Share Alike 3.0 Unported license.

of chemicals. The number of synapses in the brain totals approximately 5×1014 [150]. This
vast network of interconnecting neurons gives rise to the complex functionality of the brain.

A neuron is comprised of a cell body (soma), nucleus, axon, dendrites, axon terminals
and synapses. Fig. 2.1 labels these different parts. At rest, a neuron holds a charge across the
membrane of the cell where the inside is approximately -70 mV respective to the outside.
This charge is held using an electrochemical gradient, where potassium and sodium ions
have different concentrations inside and outside the cell. In this state, potassium has a higher
concentration (140 mmol) inside the cell than outside (5 mmol), and sodium has the opposite
arrangement (20 mmol inside and 140 mmol outside).

When a large enough potential (over a certain threshold) arrives at the neuron membrane,
it causes sodium and potassium channels in the membrane to open and hence the permeability
to increase. The sodium channels open faster, allowing the cell to be flooded with sodium
ions in the direction of the gradient. This causes a depolarisation that gives the inside of the
cell a 30 mV charge. The slower opening potassium channels then allow the potassium to
travel out of the cell along their gradient, causing a hyperpolarisation of the cell membrane
to -90 mV. Sodium and potassium pumps in the membrane then work to regenerate the
electrochemical gradients back to -70 mV. This whole cycle takes about two milliseconds.
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Fig. 2.2 Cortical slice displaying the postcentral and precentral gyrus, central sulcus and first
three Brodmann areas. Image adapted from Geyer et al. (2011) under a Frontiers Media SA
license agreement [74].

When travelling along an axon the depolarisation and repolarisation cycle is called an
action potential (AP). The intracellular current created by the depolarisation and repolarisa-
tion generates two current dipoles with opposite polarities that sum to make an approximate
quadrapole [86]. If an AP crosses a synapse - via the release of neurotransmitters from an
axon terminal - it elicits a postsynaptic potential (PSP) in a dendrite of the neighbouring
neuron. A neurotransmitter is a chemical that binds to receptors in the membrane of neuron
causing it to open ion channels. A neurotransmitter can either be inhibitory or excitatory,
causing inhibitory or excitatory postsynaptic potentials (I/EPSPs), respectively. PSPs travel
along the dendrites towards the soma and if they reach the threshold potential when combined,
an AP will instantiate in the axon. Although a PSP is roughly ten times small than an AP
(10 mV to 100 mV, respectively), they are graded along the dendrite, creating an electrical
dipole to form and causing a current to leak out of the cell. This can produce a measurable
electrical potential as far as the scalp. Even though a PSP is smaller, concerted PSPs from
many neurons are thought to produce signals at the scalp, not APs. This is due to the longer
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durations of PSPs (up to 100 ms) and also due a dipolar source diminishing much more slowly
than a quadrupolar source [86]. The propagation of changes in electrochemical imbalances
across membranes along and between neurons are also referred to as electrical impulses. The
impulses between connected neurons is the means of communication within the brain [86].

Fig. 2.1 displays a myelinated neuron, that has a myelin sheath around the axon. This
myelin sheath is able to increase the speed with which the AP can propagate along the axon.
It can achieve this by allowing the depolarisation to jump between gaps in the myelin sheath
called nodes of Ranvier. This myelination is characteristic of most neurons in the white
matter of the human brain. Conversely, the grey matter is formed mostly from unmeylinated
neurons. The grey and white matter can be seen quite clearly in Fig. 2.2.

The cytoarchitecture (a term denoting the arrangement, shape, size and relative propor-
tions of cells) can be further divided into regions in the grey matter. One of the most famous
parcellations of this cytoarchitecture was published by Korbinian Brodmann in the early
twentieth century, suggesting 43 distinguishable areas in human brains [74]. Although now
considered outdated, it was widely accepted and is still used as a reference when referring to
activity in specific areas of functionality in the cerebral cortex (grey matter). Fig. 2.2 displays
a slice of the cortex across the central sulcus and the adjacent precentral and postcentral
gyrus. The Brodmann areas 1, 2 and 3(a,b) are also labelled where 3b is on the anterior wall
of the postcentral gyrus.

One popular angle of research has considered the description of networks within the
brain to explain its inner workings [37]. This approach considers the use of graph theory to
model the networks in question where the nodes in these models are generally formed using
anatomically defined regions in the brain, such as Brodmann areas [37]. Substantial research
efforts have branched from this concept, with the common goal of trying to characterise
and identify the hyper-parameters of importance in complex networks such as those in the
brain. Also of fundamental interest has been observing the difference in these networks
between healthy and diseased brains. Linking connectivity and structural differences with
pathological disease is an active pursuit in the field. In this vain, focus has been put on the
differences in functional connectivity in neurological disorders, such as epilepsy [37]. In
order to assess the connectivity, it is useful to measure the electrical activity in the brain and
more specifically find its origin. This task is far from trivial and we present an overview of
the methods to tackle this problem in the next section.

2.2.1 Electromagnetic Source Imaging

Electromagnetic Source Imaging (ESI) aims to localise the electrical activity in the brain.
Two prominent techniques in the field are the source localisation modalities of electroen-
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cephalography (EEG) and magnetoencephalography (MEG). These methods have a key
advantage over other methods such as functional magnetic resonance imaging (fMRI), which
is a high temporal resolution of the order of milliseconds [42]. As a result, these techniques
are well positioned for connectivity analyses and brain mapping [201].

In MEG, magnetic fields near the surface of the head are traditionally measured using
superconducting quantum interference devices (SQUIDs). The position of the sensors and
the field strength are then used to reconstruct the source of electromagnetic activity within
the brain. MEG has some advantages over its electrical counterpart EEG. For example, it
has been suggested that MEG is less sensitive to perturbations in the the conductivity of the
compact and spongiform skull [185]. However, MEG with SQUIDs (similarly to fMRI) is
associated with significant setup and equipment costs, requiring magnetically shielded rooms
(MSRs) which are expensive to build and does not allow for any movement of the participant.
This has been somewhat alleviated by recent developments in the use of optically pumped
magnometers (OPMs), however, this technology is still relatively new [100, 29].

For EEG, the electrical potential is measured on or in the head using electrodes. Similarly
to MEG, the electrode positions and measurements can be used to reconstruct activity in
the brain. Due to the physical contact required to obtain a potential measurement, there are
many modalities and corresponding applications for EEG. These modalities can be both
invasive and non-invasive, and, in comparison to MEG, are mobile, relatively cheap and do
not require MSRs. In healthy brains, EEG has been widely adopted for connectivity analyses
[156, 87, 69]. Conversely, in diseased brains, EEG has been utilised to diagnose and aid
treatment of neurological conditions [86].

ESI in Epilepsy and Neurological Disease

EEG is an essential tool for pre-operative assessment in drug-resistant epilepsy patients.
This course of treatment requires the identification of areas in the brain called epileptogenic
zones (EZs), which is the area in the cortex of the brain required to be removed for complete
seizure freedom. The EZ is estimated by determining the contributing sites of the seizure
onset zone (cortex portion where seizures originate) and the irritative zone (cortex portion
where interictal epileptic activity originates). The post surgical outcome is dependent on
the accuracy of the identification of the EZ [82]. Historically, this identification has been
achieved with highly invasive versions of EEG such as electrocorticography (ECoG) and
stereo-EEG/intracranial-EEG (SEEG/iEEG) where either an array of electrodes is placed
directly onto the scalp or a pair of electrodes are placed deep within the brain, respectively
[202]. This can be far from ideal, given that these invasive electrodes need to remain in
position for days at a time to monitor ictal and interictal activity, which can lead to major
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Fig. 2.3 Schematic of a 21 electrode EEG setup with the International 10-20 system standard.
The electrodes are labelled based on their position on the head where 𝐹 is frontal, 𝐹𝑝 is
pre-frontal, 𝐶 is central, 𝑇 is temporal, 𝑃 is parietal, and 𝑂 is occipital. Also labelled are the
elcetrode 𝐴1 and 𝐴2 which are placed at the preauricular points (just before the ear canal).
Also shown is an EEG recording from the open dataset collected by Shoeb (2010) [160]. The
data was visualised using the open source software LightWAVE [121].

complications [82, 95]. This has motivated the use of non-invasive EEG, which is gaining
traction as head models become more refined and as high-resolution EEG improves in
accuracy [174]. These methods have been subsequently validated in a growing number of
studies [45, 147, 199, 16]. Furthermore, recently it has been shown that combined analysis
of EEG and MEG data can significantly improve source reconstruction in the context of
epilepsy over invasive SEEG [15].

In addition to its role in preoperative epilepsy assessment, EEG has been used to study
a myriad of other neurological disorders, including attention deficit hyperactive disorder
(ADHD) and bipolar disorder (BD) [105, 54]. In both schizophrenia [71] and Parkinsons
disease [168] well-characterised neurological responses to stimuli called somatosensory
event potentials (SEPs) have been studied in diseased and healthy brains. Assessing these
functional differences can lead to insights into the pathology of these diseases. Furthermore,
EEG can be used in stroke detection through the breakdown of functional connectivity,
assessment of brain activity in coma patients as well as for determining brain death [86].



2.3 Electroencephalography 11

2.3 Electroencephalography

High-resolution EEG is an essential clinical and research tool for understanding brain function
and the assessment of neurological disease. From here on, any mention of EEG will be
referring to non-invasive high-resolution scalp EEG.

2.3.1 Apparatus

EEG is traditionally performed using a cap with electrodes placed directly on the head.
Depending on the type of electrodes, some work is then required to apply the electrodes to
the scalp of the participant/patient who is to be measured. Each electrode, attached to a wire,
then feeds back an electric potential to a differential amplifier. Each amplifier is connected to
a common reference electrode and a measurement electrode. This means that the electrical
potential measured on an electrode is the potential difference between that electrode and the
common reference.

Fig. 2.3 shows a schematic of electrodes placed on the head in the International 10-20
system standard with an example EEG recording. The electrodes are positioned on imaginary
lines seen in the figure, where the straight lines are formed using anatomical landmarks.
These landmarks are the nasion, inion and preauricular points (labelled 𝐴1 and 𝐴2), which
are above the nose, at the back of the head and just before each ear canal, respectively. At the
vertex of the head, where the two straight lines cross, the electrode is labelled 𝐶𝑧. This is
often chosen as the reference electrode. Other electrodes are named after which position of
the head they are placed over. These labels are 𝐹, 𝐹𝑝, 𝐶, 𝑇 , 𝑃 and 𝑂 which correspond to
the frontal, pre-frontal, central, temporal, parietal and occipital areas of the head respectively.
The International 10-10 system standard also exists with 81 electrodes and a similar labelling
convention. Geodesic layouts (which are spaced differently and cover much more of the
head and face) can have 64, 128 or 256 electrodes with additional reference electrodes. The
BioSemi company, that produces commercial EEG caps, distribute their own layout as well
as the popular 10-10 and 10-20 layouts. These are called "ABC" layouts and are named after
the labelling convention used. In this layout the electrodes are spaced equiradially and come
in nets (at the time of writing) with 16, 32, 64, 128, 160 and 256 electrodes. A 10-5 system
has also been proposed, with a total of 345 electrodes [126].

2.3.2 Source Localisation

EEG signals can be interpreted in many ways. However, as stated in the previous sections,
we are interested in analysing it in such a way that allows us to localise the source of an
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Fig. 2.4 Example SEP data where the stimulus is applied at 0 𝑚𝑠 and the vertical red line
highlights to high amplitudes at 20 𝑚𝑠 typical of the P20/N20 component. This figure has
been adapted from Schrader et al. (2021) under the CC-BY 4.0 Attribution license [158].

electrical current inside the brain. This section will provide a brief primer on multichannel
EEG data preprocessing and analysis with the goal of source localisation. Also included is a
motivating example that will be useful for chapter 6.

With sampling frequencies at approximately 1 kHz, up to 256 channels, and recording
sessions lasting at least several minutes, a significant amount of data can be generated.
Ideally, for source localisation, one set of potentials is required. Therefore, there is a need to
reduced the readings taken into a single set. This preprocessing step is shown in the context
of somatosensory evoked potentials.

Somatosensory Evoked Potentials

As an illustrative example of EEG source localisation, this Section will provide a brief
background on somatosensory evoked potentials (SEPs) and how the data is processed.
Evoked potentials are electrical potentials created by small, localised areas of current that
occur in the brain due to a response to stimuli. A specific class of these evoked potentials are
SEPs, where the current sources for some parts of the potential signal are thought to occur in
the somatosensory cortex, located in the postcentral gyrus (see Fig. 2.2). SEPs are generated

https://creativecommons.org/licenses/by/4.0/
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through stimuli to the body, hence the name somato- which is derived from the Greek work
𝑠𝑜𝑚𝑎 meaning body. One stimulus that generates SEP readings is median nerve stimulation
(MNS), where the median nerve in the arm is stimulated using electrodes injecting current,
to the point at which the current injected causes the thumb to twitch. The SEP generated can
be split into multiple peaks and troughs that are named components. These components are
thought to be the result of specific dipoles or combinations of dipoles [36] and are named
depending on when they occur and what polarity they hold on a specific electrode. The SEP
component P20/N20 caused by MNS is to indicate that there is approximately a 20 ms delay
between the stimulus and the potential peak being measured, where the P or N stands for
the polarity of the potential (positive or negative respectively) on each electrode [86]. The
P20/N20 component is thought to originate in the somatosensory cortex whereas earlier ones
(e.g., P2/N2) may originate from other areas such as the brain stem [36]. The polarity of
course depends on the position of the reference electrode in use. Due to its high signal-to-
noise ratios and ease of stimulation, SEPs are often used as test beds for new methods and
sensitivity analysis in source localisation [16, 198, 184].

In addition to SEP responses from MNS, SEP measurements can also be made using
tibial nerve stimulation or tactile stimulation [171, 36, 73]. Moreover, other classes of evoked
potentials have been the topic of study, such as laser evoked potentials [31, 167, 72], auditory
evoked potentials [76] and visual evoked potentials [89].

The response in the brain to a stimulus is of the order of milliseconds, meaning that in
a single recording session, the stimulus can be applied thousands of times [36, 184]. The
continuous data is then split into epochs, which are small sections of the data centred around
the time of stimulation. The time spanned in each epoch contains a pre-stimulation interval
(of the order of 100 ms) and the duration of the target response seen in the potential. The
signal is then baseline corrected, by subtracting the average absolute power in the signal in
the pre-stimulus interval before being passed through a frequency band filter. The signals
in each epoch are then averaged for each channel, providing a single set of potentials for
each channel. An example of the resulting signal at this stage is shown in Fig. 2.4 for SEP
data with a clear response in the potential at 20 ms where the P20/N20 component is. This
example cuts off at just over 70 ms but the SEP response carries on past this time point. For
example, one peak is called the P140/N140 component, which is known as a long-latency
SEP component that can be stimulated with MNS or tactile stimulation [73, 168].

Signal-to-Noise Ratio

An important consideration in EEG is the amount of noise in the data. This is useful not
only to understand how trustworthy the data might be, but also to determine a suitable
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level of noise to add to synthetic data. Noise can be characterised with value called the
Signal-to-Noise Ratio (SNR) which is calculated as follows

𝑆𝑁𝑅 =
𝑃𝑠

𝑃𝑛
, (2.1)

where 𝑃𝑠 is the power of the signal and 𝑃𝑛 is the power of the noise. For each channel, the
power at the peak of the signal is assigned to 𝑃𝑠 and the average power during a pre-stimulus
interval is calculated for 𝑃𝑛. The length of the pre-stimulus interval is at the data analysts
discretion, however, is typically of the order of 100 ms. SNR can also be given in decibels
(dB) and this can be found from the linear SNR value with the following relation

𝑆𝑁𝑅𝑑𝐵 = 20𝑙𝑜𝑔10(𝑆𝑁𝑅). (2.2)

In one of the earliest multichannel studies by Buchner et al. (1994), a range of 6.8 to
31.2 SNR values was found [36]. Similarly, values of 11.3, 7.5 (linear) and 26.4 dB were
found for a SEP dataset by Aydin et al. (2014) [16], Vorwerk et al. (2019) [184] and Lew et
al. (2009) [108, 198], respectively. In studies using synthetic data, values ranging from 40
db to 0 db have been utilised to simulate noise (where 0 db indicates a signal with the same
power as the noise) [108, 120].

Forward and Inverse Problems

In Section 2.2, an electric dipole was described as being generated in the dendrites of a neuron
during a PSP. An electric dipole consists of two point charges with some small separation
between them, giving rise to a dipole moment, which has a direction and magnitude. When
the separation tends to zero with the same moment, this limit is called a point dipole, which
has been shown to be an adequate representation of current generators in the brain [51].
Furthermore, a point dipole has been shown to be a reasonable model specifically for current
sources eliciting SEP responses [9, 85]. These dipoles can be modelled (although with some
difficulty - see chapter 3) and the potential at each electrode simulated computationally.
These simulations are called forward problems (FPs) in EEG. To construct the FP, the dipole
is placed in a volume conductor with the approximate geometric features and conductivity
of the human head (see next section). Maxwell’s equations are then used to calculate the
potential within and/or at the surface of the model and on the electrodes.

For distributed source models, a collection of dipoles in the brain is commonly referred
to as a source space. The position of the dipoles in a source space is typically chosen to
be in the centre of the grey matter. This central plane through the grey matter is calculated
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Fig. 2.5 Anatomical features in the head, where many of the significant layers in the scalp
and skull are labelled. The small black arrows are sources of current (dipoles) located in the
grey matter with an orientation normal to the half way plane drawn between the pia matter
and the white matter (the layer below the dipoles). Adapted from Gomez et al. (2018) under
the Creative Commons Attribution 4.0 International License [78].

as half way between the white matter and the pia matter (see Fig. 2.5). The orientation of
the dipole moment is usually set as normal to the plane, meaning there can be a range of
orientations. These orientations are referred to as tangential or radial with respect to the head,
imagining it as roughly spherical with the centre of the head being the centre of the sphere.
A characteristic difference between EEG and MEG is that MEG is insensitive to radially
directed dipoles [4, 36]. Once a source space is constructed, the forward solution for each
dipole can be calculated and stored.

We can then compare each forward solution with real, measured potentials from the EEG
data (e.g. the potential on each channel at 140 ms in Fig. 2.4). Finding the lowest error
between the measured data and the forward solutions and selecting the corresponding dipole
as the current generator is known as the inverse problem (IP). This is explored in more detail
in the following chapter.

2.3.3 Head modelling

ESI methods rely on computational models of the head that include anatomical structure and
physical properties such as the electrical conductivity field [117]. Clearly, the structure is at
least to some extent an individualised characteristic. However, recent work by McCann et
al. (2020) has shown that the electrical conductivity field also varies significantly between
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individuals [116]. Therefore, there remains an open research question: to what degree does
this structural and conductive variability between individuals affect the accuracy of ESI?

Anatomical Structure of the Head

The human head is comprised of many tissues, each with different proportions and electrical
properties. Certain assumptions about these tissues are often made when creating a computa-
tional representation of the head. Traditionally, one of the significant simplifications has been
to model the head as a simple sphere with multiple tissue layers (often three: scalp, skull and
brain) represented as shells within the sphere. This has the advantage of not requiring any
special knowledge of the subject, which can be costly to obtain. Additionally, exact analytical
solutions to the EEG-FP for spherical head models exist [50]. However, it can be shown
that realistic head models outperform spherical ones in EEG source localisation in terms
of accuracy [176]. Furthermore, subject specific models result in an even greater accuracy
in ESI forward and inverse problems over generic atlas models [183]. Standard imaging
techniques can be used to obtain this subject specific anatomy such as Magnetic Resonance
Imaging (MRI) or Computerised Tomography (CT). The scans from these methods allow
many of the tissues to be segmented individually [166, 13]. CT scans provide clear images of
the skull, whereas, using MRI, different weightings (T1 and T2) can be applied to highlight a
range of soft tissues and even some microstructural information when considering diffusion
weighted imaging [98]. Voxel-based segmentation of these tissues using the images is then
offloaded to software, for which many tools exist [152, 91]. Naturally, the detail that can be
achieved from segmentation is a function of the resolution (number of voxels) of the images
being processed, the sensitivity of the imaging technique to specific tissues, any noise that
exists in the data and of course the segmentation technique itself. Consequently, identifying
each known tissue of the head for use in models quickly becomes intractable with each tissue
lying on a scale of difficulty.

To answer the above question, we must therefore consider the feasibility of obtaining
each tissue and which reasonable assumptions can be made about the models while carefully
assessing the impact of such assumptions. For example, even in realistic models, it is common
for the scalp to be modelled as a single homogeneous layer. In reality, the scalp consists of
the skin, connective tissue, loose connective tissue, blood vessels, muscle, fat, aponeurosis
and periosteum (see Fig. 2.5) [58]. Some work has addressed this assumption, showing that
the omission of blood vessels in the brain can impact EEG source localisation by as much as
15 mm [68].

In a similar way, the composition of the skull changes between regions as a result
of fatty spongiform bone (also referred to as diploe or marrow) that is contained within
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the hard bone skull plates. It has been shown that the electrical conductivity of a skull
sample varies significantly depending on the ratio of spongiform bone to compact hard
bone [41]. Inclusion of information about the spongiform bone then is crucial to EEG source
localisation [115, 49, 143]. Furthermore, it has been shown that boundaries between these
bone plates (known as sutures) also greatly influences the conductivity [41]. Sutures contain
varying amount of connective tissue and are therefore more conductive than the compact
bone either side. Omitting sutures from head models has been demonstrated to increase the
error in EEG [115]. Additionally, each suture fuses at a different age, further motivating the
use of individual head models being utilised.

Below the skull it is sensible to separate the remaining tissues into a highly conductive
cerebrospinal fluid (CSF) compartment, a gray matter compartment and a white matter
compartment owing to demonstrations in improvements of source localisation for both EEG
and MEG [123]. The layer of tissue immediately subcranial is known as the dura. It is not
often considered in head models due to difficulty in its segmentation from standard imaging
techniques, however it has been shown to impact accuracy of source localisation in EEG
when considered [142].

Another important consideration is the modelling of the electrodes in EEG and particularly
the position of the electrodes. For high-density EEG with a net of electrodes placed on the
scalp, it can be shown that the error induced by modelling the position of the electrodes
incorrectly is significant, especially when considering deeper brain sources [190, 48].

Electrical Conductivity Field

After refining the head model to capture the most important tissues, our attention then turns to
assigning the physical property of electrical conductivity to each. A common practice in the
field is to use population averages gleamed from the literature to inform this choice. However,
recent work has shown that the conductivity of specific tissues varies significantly between
individuals [116]. Therefore, using population averages could be a misguided assumption
and these conductivities should likely be subject specific. We then return to our original
question and explore the degree to which these individual conductivity changes effect ESI
accuracy.

The compact bone of the skull has a much lower conductivity than the other tissues of the
head which causes it to act as an shield to electrical brain activity [116]. This has lead to the
early observation that misspecification of this conductivity can lead to large errors for source
localisation and even early recommendations that the sutures should be modelled [131].

For source reconstruction of one well characterised SEP in the primary somatosensory
cortex (P20), it has been show that uncertainties in the scalp and skull conductivities can lead
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to localisation errors of the order of centimeters [184, 9]. Furthermore, that same study found
uncertainties in the grey and white matter in the brain significantly influenced the strength
and orientation of the reconstructed source. A more recent global analysis of the source
space produced similar findings, and additionally found that the strength of the influence
from each tissue was dependent on the location of the source [187].

The conductivity of a tissue can also be modelled as anisotropic, meaning the conductivity
of the tissue in one direction is different than another. For head tissues, the directions are
often defined as radial and tangential to the centre of the head. When the anisotropy of white
matter (extracted from diffusion weighted MRI data) is included in head models, it has been
shown to influence the potential fields measured on the scalp in EEG [88, 193]. Furthermore,
when considered as a single compartment (i.e. without spongiform bone), modelling the
skull as anisotropic has also be shown to be influential [193].

The need for individualised electrical conductivities for modelling in EEG is evident. One
method for estimating these conductivities is parametric (or bounded) electrical impedance
tomography (pEIT). This technique is non-invasive, relatively affordable, and crucially uses
most of the same hardware utilised by EEG, giving it the potential to be widely accessi-
ble [169].

2.4 Parametric Electrical Impedance Tomography

Electrical Impedance Tomography (EIT) is a method for reconstructing the electrical con-
ductivity field within an object. This technique requires a set electrodes to be placed on the
surface of the object of interest. While a subset of the electrodes are responsible for injecting
and extracting current, the complementary subset are used to measure the electrical potential
on the surface. The measurements from the latter set of electrodes are then used to infer the
conductivity distribution within the object by simulating the current travelling through the
object. This requires a computational model of the object and a discretisation scheme applied
to the model for the conductivity to be reconstructed on to. The number of conductivities to
solve and the number of electrodes to measure from determines how ill-posed the method is.
The level of ill-posedness can split EIT into two camps; parametric EIT (pEIT) and imaging
EIT. Parametric EIT (also known as bounded EIT) aims to reconstruct the conductivity of
predefined compartments, therefore requiring only a handful of conductivities to be resolved,
making it less ill-posed. However, imaging EIT requires the conductivity to be reconstructed
at each discretised point in the model, making it much more ill-posed depending on the
discretisation.
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Fig. 2.6 Computational model of the head used in pEIT and EEG. Electrodes are red circles
on the surface of the scalp on the left and the various tissue compartments are shown in
different colours on the right.

Both modalities consist of a FP and a IP. The FP involves the simulation of the current
through the model, which encodes a conductivity distribution, geometry of the domain, and
electrode setup. The IP then tunes the conductivity distribution in the FP until its solution is
closest to the real measurements.

The imaging EIT modality is forced to use coarse discretisations to reduce the number of
conductivities to find, and produces low resolution images of the conductivity inside an object.
Additionally, many stabilisation techniques are used to converge to a solution. For example,
Principle Component Analysis (PCA) with basis constraints have been used to provide
prior information of the conductivity distribution [177]. Other stabilisation methods include
Tikhonov regularisation [178], Bayesian methods [99] and total variation [34]. Applied to the
human body, imaging EIT has been adopted widely for applications such as lesion detection
and stroke detection in the brain, as well as being used as an ESI technique [12, 1]. The
open-source software EIDORS has been developed for EIT image reconstruction [3] with
these uses in mind.

When applied to the human body, parametric EIT is a relatively affordable and non-
invasive method for estimating the conductivities of tissue compartments in a human
head [92]. Using an array of electrodes placed on the scalp, a small current is injected
and extracted from a subset and the electrical potential is measured on the complementary
set. This technique seeks to estimate the conductivities of head tissues (e.g., scalp, skull, etc.)
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Fig. 2.7 Current flow between two electrodes through a coronal cross section of a head
model, calculated using Line Integral Convolution. Red indicates large current flow and blue
indicates small current flow.

by simulating forward solutions for sets of parameters and tuning the set to best match the
electrical potential measurements taken. This allows one to characterise an individualised
conductivity field in the head. An example of the fine discretisation used in parametric EIT
models can be seen in Fig. 2.6. Notice the high resolution that allows the anatomical structure
to be represented in detail. As mentioned previously, this structure can be obtained from
standard imaging techniques.

For the problem discussed in the previous section, pEIT therefore provides a useful tool
towards creating more individualised head models for ESI methods. Parametric EIT has
already been used to effectively estimate skull, scalp, CSF and brain conductivities in highly
realistic models [66, 63] as well as CSF for simple head models [67]. Tissue anisotropy has
also been considered and estimated [60].

However, the computational complexity of the EIT-FP makes the technique prohibitive in
some cases, especially for highly realistic and finely discretised models. To understand this,
we now describe the mathematical formulation of the pEIT problem.
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2.5 Chapter Summary

This chapter has introduced the problem that motivates the work in this thesis, starting from
the reasons behind studying the electricity in the brain and ending at the limitations in the
techniques designed to study it. The main points of this chapter can be summarised as
follows:

• Postsynaptic potentials in the dendrites of neurons are thought to be the primary
contributors of potential measured on the scalp. These current generators can be
modelled as an electrical dipole and are vital for studying the function and dysfunction
of the brain.

• Reconstructing the position and orientation of the current sources is called source
localisation and the methods of EEG and MEG have this capability. High-resolution
EEG in particular is a non-invasive and relatively affordable technique that involves
electrodes placed on the scalp that measure the electrical potential, which is used for
reconstructing sources of current.

• Of special interest to the research community are a class of evoked potentials called
somatosensory evoked potentials. These occur due to current sources in the somatosen-
sory cortex in the brain when a stimulus is applied to the body. These responses are
well defined, easily reproducible and have generally high signal-to-noise ratios.

• EEG relies heavily on computational head models that should reflect the anatomy and
conductivity of an individuals head. Conductivities not only vary between individuals
in most tissue in the head but have been shown to have a great influence on source
reconstruction in EEG.

• Parametric EIT can estimate the conductivities of an individual and has been successful
in extracting the conductivities of the scalp and skull. This utilises most of the same
equipment as EEG with minor modifications and uses an injection/extraction of a
small amount of current from two more electrodes. However, the computational cost
associated with this technique prevents it from wide spread adoption and limits its
ability to estimate deeper tissues.





Chapter 3

Mathematical Formulation of pEIT and
EEG

3.1 Overview

Chapter 1 outlined the motivation for using EEG to examine electrical activity in the brain.
Also highlighted were the challenges related to obtaining the highly realistic head models
that are essential for accurate ESI methods such as EEG. Parametric EIT was then introduced
as a useful tool to aid the construction of these realistic models through characterising the
electrical conductivity field. However, the computational burden of pEIT was noted as a
significant disadvantage of the technique. In this chapter, the mathematical formulations of
pEIT and EEG are derived to emphasise the sources of the computational complexity, to
further understand how they may be addressed.

3.2 Forward Problems

3.2.1 Boundary Value Problems and Bioelectromagnetism

In Chapter 2, we saw that both pEIT and EEG are split into FPs and IPs. For both methods,
we require a mathematical description of the FP to understand and simulate the propagation
of current through a head model. The derivations for both of these mathematical formulations
are very similar given that each problem is governed by the same fundamental laws of
electromagnetism. Therefore, before rigorously treating each problem separately, we consider
the generation of two simple boundary value problems in a biological setting that form the
foundations of the pEIT-FP and the EEG-FP and highlight the difference between each.
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In the pEIT-FP and EEG-FP, we are interested in calculating the electric potential 𝑢 for a
given point 𝒓 in a three dimensional medium with a conductivity 𝜎, as a result of a given
injection of current with current density 𝑱. Specifically, we are interested in the potential at
points which have been identified as electrodes. To create a formulation for these potentials,
we can utilise the fundamental laws of electromagnetism known as Maxwell’s equations.
These equations can first be simplified however by making a quasi-static approximation,
meaning that the equations are not dependent on time. This approximation is justified, given
that the frequencies seen in bioelectric phenomena, and of that used in pEIT, are generally
below 100 Hz. With frequencies this low, it can be shown that the time dependent derivatives
in Maxwell’s equations are small compared to the other terms [94]. Therefore, after removing
the time dependent derivatives, we are left with the quasi-static Maxwell’s equations:

∇×𝑬 = 0, (3.1a)

∇×𝑩 = 𝜇𝑱, (3.1b)

∇ · 𝑩 = 0, (3.1c)

∇ ·𝑫 = 𝜌 (3.1d)

where,

𝑫 = 𝜀𝑬, (3.2a)

𝑱 = 𝜎𝑬, (3.2b)

and 𝑱 is the current density in 𝐴/𝑚2 where 𝐴 is Amps (and eq. (3.2b) is Ohm’s Law), 𝑬
is the electric field in 𝑉/𝑚 where 𝑉 is Volts, 𝑩 is the magnetic field in Teslas (𝑇), 𝑫 is the
electric displacement in 𝐶/𝑚2 where 𝐶 is Coulomb, 𝜇 is the magnetic permeability (here the
permeability of free space), 𝜀 is the electric permeability and 𝜎 is the conductivity. From
3.1a we note that 𝑬 can be expressed as the gradient of a scalar potential, given that the curl
of a gradient of a scalar is zero. Therefore, with a scalar potential 𝑢,

𝑬 = −∇𝑢. (3.3)

Now, in the case of EEG, our goal is to find the potential as a result of a source of current in
the brain. Therefore, we must add an external current source, called the primary current or
impressed current to eq. (3.2b), which becomes

𝑱 = 𝑱𝑝 +𝜎𝑬, (3.4)
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where 𝑱𝑝 is the primary current density. Then, taking the divergence of eq. (3.1b) and then
using eq. (3.3) and eq. (3.4), we obtain

∇ ·∇×𝑩 = ∇ · 𝑱,
0 = ∇ · 𝑱𝑝 +∇ ·𝜎𝑬

−∇ ·𝜎(−∇𝑢) = ∇ · 𝑱𝑝

∇ · (𝜎∇𝑢) = ∇ · 𝑱𝑝

(3.5)

which is a form of the Poisson equation. For a homogeneous, infinite and unbounded medium,
and a dipolar current source, there is an analytical solution to eq. (3.5) [151, 197], given as

𝑢(𝒓) = 𝑱𝑝 · 𝑹
4𝜋𝜎𝑹3 , (3.6)

where 𝑅 = |𝒓 − 𝒓0 | and 𝒓0 is the the position of the current dipole.
Since we are aiming to model the head, we would like to find the potential within a

bounded domain Ω (e.g., a sphere), that has a surface 𝜕Ω where we can place electrodes. In
this case, we must impose homogeneous Neumann boundary conditions on 𝜕Ω that specifies
that no current is leaving the domain. Together with eq. (3.5), the following boundary value
problem is formulated

∇ · (𝜎(𝒓)∇𝑢(𝒓) = ∇ · 𝑱𝑝 (𝒓) in Ω, (3.7a)

𝜎(𝒓) 𝜕𝑢(𝒓)
𝜕n̂

= ⟨𝜎(𝒓)∇𝑢(𝒓), n̂⟩ = 0 on 𝜕Ω, (3.7b)

where n̂ is a unit vector normal to 𝜕Ω. This constitutes the basic formulation of the EEG-FP.
A very similar derivation can be found for the pEIT-FP. In this case, there is no external
current source in the interior of the domain, meaning that 𝑱𝑝 in eq. (3.5) can be set to zero
to obtain ∇ · (𝜎∇𝑢) = 0. However, the Neumann boundary conditions need to be adapted to
include the normal component (w.r.t 𝜕Ω) of the current density 𝑱(𝒓) reflecting the injection
of current through two or more points on the boundary. Therefore, in the pEIT case, the
boundary value problem becomes

∇ · (𝜎(𝒓)∇𝑢(𝒓) = 0 in Ω, (3.8a)

𝜎(𝒓) 𝜕𝑢(𝒓)
𝜕n̂

= ⟨𝜎(𝒓)∇𝑢(𝒓), n̂⟩ = 𝑱(𝒓) on 𝜕Ω. (3.8b)

Analytical solutions exist for both of these boundary value problems when considering a
spherical domain, with multiple layers (i.e., concentric shells) and/or isotropic conductiv-
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ities [56, 50, 25, 52, 66]. However, these solutions are complex and sometimes computa-
tionally expensive. Additionally, for more complex shapes, that reflect the anatomy of the
head, neither problem has analytical solutions. In this scenario, the domain is not smooth
enough to obtain a sufficiently differentiable solution and therefore a classical solution does
not exist [59]. Therefore, we must employ numerical methods to find a solution. One popular
approach is the use of finite element (FE) methods to search for a solution. Here, we adopt the
FE method due to its flexibility to handle arbitrary compartments in the domain (e.g., tissue
compartments in the head), although boundary element method (BEM) could also be em-
ployed. This requires deriving a variational formulation (also called a weak formulation) for
the problem following the recipe for the Galerkin Finite Element Method. In the next section,
we show the derivation of the variational formulation and FE discretisation for eqs. (3.8). In
the following sections, we adapt eqs. (3.7) and eqs. (3.8) to reflect more complex modelling
assumptions before deriving their variational formulations and corresponding discretisations.

3.2.2 Parametric EIT-FP Formulation

Variational Formulation

To construct a variational formulation we must first restrict our search for the solution to eqs.
(3.8) to an appropriate Hilbert space 𝐻1(Ω) defined by

𝐻1(Ω) = {𝜓 : Ω ↦→ R|𝜓,∇𝜓 ∈ 𝐿2(Ω)}, (3.9)

where the square-integrable functions 𝜓 are part of the Lebesgue Space 𝐿2 and R is the set
of real numbers. The Galerkin method for constructing variational formulations requires
that eq. (3.8)a must be multiplied by an appropriate test function 𝑣 ∈ 𝐻1(Ω) before being
integrated over the domain. This results in∫

Ω

𝑣∇ · (𝜎(𝒓)∇𝑢(𝒓)𝑑Ω =

∫
Ω

𝜎𝑣 ·Δ𝑢𝑑Ω = 0. (3.10)

Before continuing, we need to recall the important result of Green’s Formula, which can be
derived from the divergence theorem (see Johnson (2009) p.26 [97]), that states∫

Ω

∇𝑣 · ∇𝑢𝑑Ω =

∫
𝜕Ω

𝑣∇𝑢 ·n𝑑 (𝜕Ω) −
∫
Ω

𝑣 ·Δ𝑢𝑑Ω. (3.11)
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Then, multiplying by 𝜎 obtains∫
Ω

𝜎∇𝑣 · ∇𝑢𝑑Ω =

∫
𝜕Ω

𝜎𝑣∇𝑢 ·n𝑑 (𝜕Ω) −
∫
Ω

𝜎𝑣 ·Δ𝑢𝑑Ω. (3.12)

Now, applying eq. (3.10) to eq. (3.12), we can straightforwardly obtain the variational
formulation of eq. (3.8), which can now be stated as [60]: Find 𝑢 ∈ 𝐻1(Ω) such that
∀𝑣 ∈ 𝐻1(Ω) ∫

Ω

𝜎∇𝑢 · ∇𝑣𝑑Ω =

∫
𝜕Ω

𝑣 𝜎∇𝑢 ·n︸  ︷︷  ︸
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

𝑑 (𝜕Ω) (3.13)

where the left-hand side is known as a symmetric positive definite bilinear form 𝐵 :𝐻1×𝐻1 →
C defined as

𝐵(𝑢, 𝑣) =
∫
Ω

𝜎∇𝑢 · ∇𝑣𝑑Ω. (3.14)

On the boundary, we have 𝐿 point-like electrodes. In a traditional pEIT set up, two or more
of these electrodes will have a non-zero current applied to them which injects or extracts
current from the domain. Due to the point like nature, the current density at electrode 𝑙 can
be described in terms of the total current 𝐼𝑙 for that electrode and a Dirac Delta function 𝛿𝒓𝑙
at the position of the electrode (i.e., 𝑱(𝒓) = 𝑰𝛿𝒓𝑙 ). The problem can then also be described as
described as [84]:

𝐵(𝑢, 𝑣) =
𝐿∑︁
𝑙=1

𝐼𝑙𝛿𝒓𝑙 . (3.15)

An example of these point current injections can be seen in Fig. 3.1 for a spherical model,
with one injection of current 𝐼 and one sink of current −𝐼. The figure displays the current
density for each point in the sphere.

Galerkin Finite Element discretisation

To solve the variational formulation numerically and hence find an approximate solution
to 𝑢, the domain is discretised. Here, we adopt the finite element (FE) method due to its
flexibility to handle arbitrary compartments in the domain (e.g., tissue compartments in the
head), although boundary element methods have also been employed for similar problems.

This discretisation of the domain in the FE scheme creates an FE mesh. The elements of
the mesh can be any tessellating shape, however, we use tetrahedrons here. The points where
elements meet are called nodes. An example of this discretisation is shown in Fig. 3.1 where
the model is divided into many tetrahedrons.
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  Fig. 3.1 Left) The current density (in 𝐴/𝑚2) within a sphere from one injection electrode
and one sink electrode placed at the boundary. Right) The FEM discretisation on a cross
section of a spherical model with concentric shells where the colours correspond to different
layers: blue is scalp, orange is skull, yellow is CSF and purple is the brain.

Firstly, a finite-dimensional subspace of the Hilbert Space 𝑉ℎ ⊂ 𝐻1(Ω) must be defined
with a basis of linear peicewise continuous functions

𝑉ℎ = 𝑠𝑝𝑎𝑛{𝜓0,𝜓1, ...,𝜓𝑛}, (3.16)

where 𝑛 denotes number of nodes in the FE mesh and the subscript ℎ denotes the resolution
of the space (i.e., ℎ = maxℎ𝑖 where ℎ𝑖 = 𝑛𝑖 −𝑛𝑖+1, following the FE literature [97]). In this
form of Galerkin method, the space where the solution and test functions lie is equivalent.
The finite approximation of 𝑢 in this space is 𝑢ℎ and consists of a linear combination of the
basis functions in 𝑉ℎ, expressed as

𝑢ℎ =

𝑛∑︁
𝑖=1
𝛼𝑖𝜓𝑖, (3.17)

where 𝜶 = {𝛼1, ..., 𝛼𝑛}𝑇 is a coefficient vector to be found. Setting 𝑣 = 𝜓𝑖 results in a system
of equations to solve that can be written as

𝑲𝜶𝑇 = 𝒃, (3.18)

where the matrix 𝑲 ∈ R𝑛×𝑛 is known as the stiffness matrix and 𝒃 ∈ R𝑛 is the right-hand-side
vector. For a fine mesh, 𝑛 is large leading to many equations needed to be solved and therefore
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the above system is computationally expensive. Due to the piecewise linear basis functions
𝜓𝑖 only taking the value 1 at a single node, then searching for the coefficients is effectively
the same as searching for the solution. Therefore, to simplify notation later on, the coefficient
vector 𝜶 will be referred to simply as 𝒖𝑛. Therefore, eq. (3.18) can be rewritten as

𝑲 (𝝈)𝒖𝑛 (𝝈) = 𝒃, (3.19)

where the entries to 𝑲 (𝝈) are

𝐾𝑖 𝑗 =

∫
Ω

⟨𝜎∇𝜓𝑖,∇𝜓 𝑗 ⟩𝑑Ω, (3.20)

and depend on the conductivity values of each compartment 𝝈 = {𝜎1,𝜎2, ...,𝜎𝑃}, where 𝑃
is the number of tissue compartments. In practice, to find these entries, we first calculate
eq. (3.20) for each individual tetrahedron element 𝐸 by integrating only over that element,
resulting in a symmetric element stiffness matrix 𝐾𝐸 ∈ R4×4 for each tetrahedron. For each
tetrahedron, the contributions from each element stiffness matrix are summed to find the
entries to the global stiffness matrix.

Once 𝑲 (𝝈) has been constructed, the system in eq. (3.19) can be resolved with a range
of fast iterative solvers [59].

Example in a Spherical Head Model

As an illustrative example, we consider a simple spherical model with multiple layers and
an outer radius of 10 cm. The layers represent (from outer to inner) the scalp, skull, CSF
and brain. In this example, one electrode is chosen to inject a current of 0.25× 10−3 𝐴

and another is chosen to extract a current of −0.25×10−3 𝐴. Using the formulation in the
previous section, we can calculate the potential in the sphere using FE methods provided the
sphere is transformed into a mesh (in our case a tetrahedral mesh). We discretise our sphere
with 84,314 nodes, resulting in 485,216 tetrahedral elements. We consider two scenarios.
The first is where all layers have a conductivity of 0.3 𝑆/𝑚 resulting in a single homogeneous
sphere. A cross-section of the sphere with the current density and electric potential in this
case are plotted in Fig. 3.1 and Fig. 3.2 respectively. In the second scenario, the layers
have different conductivities that are more representative of the head tissues. From outer
to inner layers, the conductivities are 0.43, 0.01, 1.79 and 0.33 𝑆/𝑚. The current density
and potential are plotted on the cross section of a sphere in Fig. 3.3. Notice how the current
largely passes through the scalp layer with relatively high conductivity and how the skull
layer “shields" the inner layers from current, resulting in lower potentials in those layers
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Fig. 3.2 Electric potential throughout a cross-section of homogeneous spherical head model
with a conductivity of 0.3 𝑆/𝑚 as a result of an injection current of 0.25× 10−3 𝐴 and
extraction current of −0.25×10−3 𝐴 from two electrodes. The potential is calculated using
FEM and measured in volts.

  Fig. 3.3 Left) The current density (in 𝐴/𝑚2) in a spherical head model with multiple layers of
different conductivities due to a current injection of 0.25×10−3 𝐴. Right) The corresponding
potential induced by the current shown to the left, measured in Volts.

compared to the homogeneous case. This represents a fundamental challenge in both the
pEIT and EEG methods. The skull acts as an insulating layer to electrical activity, thus
making conductivity changes in this layer, highly influential on the potential solution.
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Complete Electrode Model

So far, we have considered point electrodes on the surface of the sphere. This form of
representation is known as the point electrode model (PEM). In reality, electrodes are
typically small discs with a finite area that are placed on the scalp [86]. While the PEM has
been shown to be a justifiable assumption for electrodes with a small area [84], in real EIT
studies it has been shown that the PEM does not match the measured data to the precision
of the measurement devices [102, 162]. With this motivation, the complete electrode model
(CEM) was developed to explain the real data. This model incorporates the area and effective
contact impedance between each electrode and the scalp into the EIT formulation.

Additionally, modelling the electrodes has a theoretical advantage. For any solution 𝑢
to the variational formulation, we wish to prove its existence and uniqueness. In the PEM,
existence and uniqueness cannot be proven in the Hilbert space used for FE methods (𝐻1),
but rather, a different solution space is required to prove these properties [84]. This is a
result of the potentials not being well defined due to being unbounded linear functionals
(Dirac Delta functions) [75, 84]. On the other hand, potentials on the electrodes in the CEM
are well defined under certain conditions and therefore existence and uniqueness can be
proven [162]. An example of the poorly defined potential in the PEM with respect to a well
defined potential in the CEM can be seen in Fig. 3.4.

The pEIT-FP considering the CEM will be explored in detail in this section, following
closely the work of Somersalo et al. (1992) and Vauhkonen et al. (1999) [162, 179].

The 𝐿 electrodes 𝑒𝑙 , 𝑙 = 1, ..., 𝐿 are placed on 𝜕Ω and each have an associated current 𝐼𝑙
flowing across the whole electrode and an effective contact impedance 𝑧𝑙 . The electrodes are
modelled with a non-negligable area, a finite contact impedance and a potential solution𝑈𝑙 .
Consequently, the boundary conditions of the problem are no longer just Neumann and are
now mixed, although the formulation of the interior of the domain remains the same. This
new formulation is as follows:

∇ · (𝜎(𝒓)∇𝑢(𝒓)) = 0 in Ω, (3.21a)

𝜎(𝒓) 𝜕𝑢(𝒓)
𝜕n̂

= ⟨𝜎(𝒓)∇𝑢(𝒓), n̂⟩ = 0 on 𝜕Ω\∪𝐿𝑙=1 𝑒𝑙 , (3.21b)

𝑢 + 𝑧𝑙𝜎(𝒓)
𝜕𝑢(𝒓)
𝜕n̂

=𝑈𝑙 for 𝑙 = 1, ..., 𝐿, (3.21c)∫
𝑒𝑙

𝜎(𝒓) 𝜕𝑢(𝒓)
𝜕n̂

𝑑 (𝜕Ω) = 𝐼𝑙 on 𝑒𝑙 , (3.21d)

The new boundary conditions stated by eqs. (3.21b) and (3.21d) describe that current can
only leave or enter the scalp on the parts labelled as the electrodes 𝑒𝑙 and is zero on all
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Fig. 3.4 Partial cross-section of a homogeneous sphere of conductivity 0.3 𝑆/𝑚 coloured
with the electric potential resulting from a current injection of 0.25×10−3 𝐴 considering the
left) CEM and right) PEM.

other parts of the scalp 𝜕Ω\∪𝐿
𝑙=1 𝑒𝑙 . Additionally, eq. (3.21c) represents the influence of the

effective contact impedance on the electrode voltage. In the same way as before, we search
for a solution (𝑢,𝑈) to eqs. (3.21), but now must expand the space to include the solution on
the electrodes𝑈. A suitable space is the direct sum of 𝐻1 and the set of complex numbers
C𝐿 ,

𝐻 = 𝐻1(Ω) ⊕C𝐿 . (3.22)

This space also contains the test functions in the domain and on the electrodes (𝑣,𝑉). To
derive the bilinear form, we follow the same derivation for the PEM up to eq. (3.13) and
at this stage, substitute in the new boundary conditions, namely eqs. (3.21b) and (3.21c).
Rearranging eq. (3.21c) gives

𝜎(𝒓) 𝜕𝑢(𝒓)
𝜕n̂

=
1
𝑧𝑙
(𝑈𝑙 −𝑢),

and combining with eq. (3.21b) gives

𝜎(𝒓) 𝜕𝑢(𝒓)
𝜕n̂

=

𝐿∑︁
𝑙=1

1
𝑧𝑙
(𝑈𝑙 −𝑢).
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Substituting into eq. (3.13) then provides∫
Ω

𝜎∇𝑢 · ∇𝑣𝑑Ω =

∫
𝜕Ω

𝑣

𝐿∑︁
𝑙=1

1
𝑧𝑙
(𝑈𝑙 −𝑢)𝑑 (𝜕Ω)

which rearranges to ∫
Ω

𝜎∇𝑢 · ∇𝑣𝑑Ω+
𝐿∑︁
𝑙=1

1
𝑧𝑙

∫
𝑒𝑙

(𝑢−𝑈𝑙)𝑣𝑑 (𝜕Ω) = 0. (3.23)

Simultaneously, we can combine eqs. (3.21b), (3.21c) and (3.21d), followed by multiplying
by the test function for the electrode 𝑉𝑙 in the following way

𝐿∑︁
𝑙=1

∫
𝑒𝑙

1
𝑧𝑙
(𝑈𝑙 −𝑢)𝑑 (𝜕Ω) = 𝐼𝑙

𝐿∑︁
𝑙=1

1
𝑧𝑙
(
∫
𝑒𝑙

(𝑢−𝑈𝑙)𝑑 (𝜕Ω)) + 𝐼𝑙 = 0

𝐿∑︁
𝑙=1

1
𝑧𝑙
(
∫
𝑒𝑙

(𝑢−𝑈𝑙)𝑑 (𝜕Ω) + 𝑧𝑙 𝐼𝑙) = 0

𝐿∑︁
𝑙=1

1
𝑧𝑙
𝑉𝑙 (

∫
𝑒𝑙

(𝑢−𝑈𝑙)𝑑 (𝜕Ω) + 𝑧𝑙 𝐼𝑙) = 0.

(3.24)

Finally, subtracting eq. (3.24) from eq. (3.23)∫
Ω

𝜎∇𝑢 · ∇𝑣𝑑Ω+
𝐿∑︁
𝑙=1

1
𝑧𝑙

∫
𝑒𝑙

(𝑢−𝑈𝑙)𝑣𝑑 (𝜕Ω) −
𝐿∑︁
𝑙=1

1
𝑧𝑙
𝑉𝑙 (

∫
𝑒𝑙

(𝑢−𝑈𝑙)𝑑 (𝜕Ω) + 𝑧𝑙 𝐼𝑙) = 0∫
Ω

𝜎∇𝑢 · ∇𝑣𝑑Ω+
𝐿∑︁
𝑙=1

1
𝑧𝑙

∫
𝑒𝑙

(𝑢−𝑈𝑙)𝑣−𝑉𝑙 (𝑢−𝑈𝑙)𝑑 (𝜕Ω) −
𝐿∑︁
𝑙=1
𝑉𝑙 𝐼𝑙 = 0,

to obtain the problem: Find (𝑢,𝑈) ∈ 𝐻 such that ∀(𝑣,𝑉) ∈ 𝐻

𝐵((𝑢,𝑈), (𝑣,𝑉)) =
𝐿∑︁
𝑙=1

𝐼𝑙𝑉𝑙 , (3.25)
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where 𝐵((𝑢,𝑈), (𝑣,𝑉)) is the bilinear form 𝐵 : 𝐻 ×𝐻→ C

𝐵((𝑢,𝑈), (𝑣,𝑉)) =
∫
Ω

𝜎∇𝑢 · ∇𝑣𝑑Ω+
𝐿∑︁
𝑙=1

1
𝑧𝑙

∫
𝑒𝑙

(𝑢−𝑈𝑙) (𝑣−𝑉𝑙)𝑑 (𝜕Ω). (3.26)

For a detailed proof the reader is directed to Somersalo et al. (1992) [162]. As mentioned
before, to maintain existence and uniqueness in the solution, a few conditions need to be met.
Firstly, we must adapt the space. The problem can be seen using the Lax-Milgram Theorem,
where the 𝐵((𝑢,𝑈), (𝑣,𝑉)) does not satisfy all conditions (see [162]). Qualitatively, there
are multiple entries to the form 𝐵((𝑢,𝑈), (𝑣,𝑉)) that map to the same value in C, and thus,
the solutions are not unique. This can be solved by introducing a quotient space which
“collapses" the space to remove the duplicate mappings. The quotient space is written as

¤𝐻 = 𝐻/C. (3.27)

Secondly, to guarantee existence and uniqueness of the solution (𝑢,𝑈) we must also add
the properties of conservation of charge and determine a reference condition for the electric
potentials on the electrodes. The conservation of charge law can be held by ensuring the net
current flowing across all electrodes is zero. Mathematically, this is expressed as

𝐿∑︁
𝑙=1

𝐼𝑙 = 0. (3.28)

The reference can simply be set as an average common reference where the net potential on
all electrodes is also zero. This can be written as

𝐿∑︁
𝑙=1
𝑈𝑙 = 0. (3.29)

Note, an equally valid approach for obtaining a unique solution could also be choosing one
electrode to which all other electrodes are referenced (i.e. 𝑈𝑟𝑒 𝑓 = 0 or 𝑼 = [𝑈1 −𝑈𝑟𝑒 𝑓 ,𝑈2 −
𝑈𝑟𝑒 𝑓 , ...,𝑈𝐿−1 −𝑈𝑟𝑒 𝑓 ]). In practice, for pEIT and EEG, this is the most common referencing
strategy and the chosen electrode is usually assigned to dedicated referenced electrode
positioned at the vertex of the head. This will be a point of discussion in Chapter 5.
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To discretise the CEM formulation, we must approximate the solution on the electrodes
in terms of weighted basis functions in a similar way as before. This is expressed as

𝑈ℎ =

𝐿∑︁
𝑙=1
𝜂𝑙𝝓𝑙 , (3.30)

where 𝜼 = 𝜂1, ..., 𝜂𝐿 is a coefficient vector to be found and the basis vectors are 𝜙1 =

{1,0, ...,0}𝑇 ∈ R𝐿 and 𝜙2 = {0,1,0, ...,0}𝑇 ∈ R𝐿 , etc. Note: these basis vectors do not
necessarily satisfy condition (3.29) [179]; however, this can be achieved by simply referenc-
ing each potential to the mean or a reference electrode. Setting 𝑉 = 𝜙𝑖 results in a system of
equations to solve that can be written as

𝑨(𝜶,𝜼)𝑇 = 𝒃, (3.31)

where 𝑨 is the stiffness matrix and 𝒃 is the right-hand-side vector. Similarly to the solution
on the nodes, we simplify the notation by referring to the coefficient vectors (𝜶,𝜼) as 𝒖. In
this way, the system can also be expressed as

𝑨(𝝈)𝒖(𝝈) = 𝒃, (3.32)

where,

𝑨(𝝈) =
[
𝑲 (𝝈) −𝑩
−𝑩𝑇 𝑪

]
, 𝒖(𝝈) =

[
𝒖𝑛 (𝝈)
𝑼(𝝈)

]
, 𝒃 =

[
0
𝑰

]
, (3.33)

𝒖𝑛 (𝝈) ∈ R𝑛 is the solution vector on the 𝑛 nodes of the volumetric FE mesh, 𝑼(𝝈) ∈ R𝐿 is
the potential solution on the electrodes and 𝑰 ∈ R𝐿 is the vector of injection currents on the
electrodes. The matrices 𝑩 ∈ R𝑛×𝐿 and 𝑪 ∈ R𝐿×𝐿 encode information about the electrodes on
the surface of the domain and do not depend on the conductivity. The entries of the matrices
𝑲, 𝑩 and the diagonal matrix 𝑪 are given by [180]

𝐾𝑖 𝑗 =

∫
Ω

⟨𝜎∇𝜓𝑖,∇𝜓 𝑗 ⟩𝑑Ω+
𝐿∑︁
𝑙=1

1
𝑧𝑙

∫
𝑒𝑙

𝜓𝑖𝜓 𝑗𝑑 (𝜕Ω), (3.34a)

𝐵𝑖𝑙 =
1
𝑧𝑙

∫
𝑒𝑙

𝜓𝑖𝑑 (𝜕Ω), (3.34b)

𝐶𝑙𝑙 =
1
𝑧𝑙

∫
𝑒𝑙

𝑑 (𝜕Ω) = |𝑒𝑙 |
𝑧𝑙

, (3.34c)

where 𝑒𝑙 represents the 𝑙th electrode, |𝑒𝑙 | its area, 𝑧𝑙 its contact impedance, Ω is the domain
(i.e., the head) with boundary 𝜕Ω, and 𝜓𝑖 is a basis function on the nodes 𝑖 = 1,2, ..., 𝑛.
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Fig. 3.5 FE mesh of a 4-layered spherical head model (with outer radius 10cm) considering
the CEM with electrodes modelled as red circles, with a radius of 2.2cm.

A useful property of the matrix 𝑲 (𝝈) is that, in the case of homogeneous conductivities,
it can be linearly decomposed into several constituent stiffness matrices 𝑲𝑝 ∈ R𝑛×𝑛, each rep-
resenting a different compartment 𝑝 in the head model and independent of 𝝈. Consequently,
the matrix 𝑨(𝝈) can be split into 𝑝 matrices 𝑨𝑝 ∈ R(𝑛+𝐿)×(𝑛+𝐿) , i.e.,

𝑨(𝝈) = 𝑨0 +
𝑃∑︁
𝑝=1

𝜎𝑝𝑨𝑝, (3.35)

where 𝑨0 is a 𝝈-independent matrix encoding the information from matrices 𝑩 and 𝑪 and
the second term in eq. (3.34a).

Revisiting our spherical head model example, we implement the CEM on the same
tetrahedral mesh as before, while assigning triangles on the mesh surface to specific electrodes.
This can be seen in Fig. 3.5, where the triangles coloured red are the electrodes. Each
electrode is modelled with an effective contact impedance of 5 Ω𝑚2 and area of 0.0015 𝑚2.
The current density resulting from injecting a current of 0.25× 10−3 𝐴 into an electrode
modelled on a homogeneous sphere and inhomogeneous sphere are shown in Fig. 3.6.

We build the stiffness matrix using volume and area coordinates which are detailed in
Appendix A.1.
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  Fig. 3.6 Current density (in 𝐴/𝑚2) from a current injection of 0.25× 10−3 𝐴 using the
CEM for left) a homogeneous spherical model and right) a spherical model with multiple
conductivity jumps.

3.2.3 EEG Formulation

The principle difference between pEIT and EEG FP formulations arises from the source of
the electrical activity. In pEIT, the current source is two or more electrodes, whereas, in
EEG, the current source is the electrical activity in the brain. Most commonly, that electrical
activity is mathematically modelled as a point dipolar source, although research has been
performed on the use of multipolar sources such as and quadrapoles [186, 25].

Similarly to pEIT, a difficulty occurs with the treatment of the singularity potential caused
by the point source. Unfortunately, when deriving the variational formulation in preparation
for numerical solutions, one quickly runs into trouble due to the integration terms on the
current source. Consequently the solution suffers from a loss of existence and uniqueness in
the finite element space. This difficulty arises from the integration of the function ∇𝛿(𝒙),
which is not well defined. We dealt with this issue of singularity in pEIT by implementing
the CEM, removing the point-like source of current. However, for a source in the brain, we
require a different strategy to maintain existence and uniqueness.

Numerous ways of tackling this singularity problem have been developed, implemented
and compared by accuracy and speed of convergence with modern iterative solvers [194, 107].
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Source modelling

One approach, called the partial integration approach, multiplies eq. (3.7a) by a test function
and integrates, following the formula for the variational formulation. Both sides are then
integrated by parts where the boundary conditions are used to cancel terms. Here, the
derivative is absorbed by the test function instead of the Dirac delta function and dipole is
approximated on the FE mesh nodes [107, 137].

Another approach is to exchange the dipole for a local distribution of electric monopoles
with the same collective moment as the dipole. This is called St. Venant’s approach. The
vertices of the node in which the source is located and the surrounding nodes are used as the
positions of the monopoles [194]. This approach is popular due to its computational speed
and is still utilised widely in the field [184, 187].

One other approach is known as Whitney’s method. This technique replaces the source
term with one that has higher regularity, meaning it is more differentiable, utilising lowest-
order Raviart-Thomas basis functions [136, 135, 133, 137].

Another method that handles the singularity by reformulating the EEG-FP entirely is
called the subtraction approach. This method splits up the potential and conductivity into
a singularity part and correction part. The idea is to solve the FP analytically as if it were
an unbounded homogeneous volume conductor with a given conductivity and then use FE
methods to solve for a correction potential with correction conductivities [154, 14, 165, 197].
The subtraction approach has benefited from many different implementations, each with
varying accuracies and computational costs. These include the projected [194], projected
gradient [26], full [57] and analytical [24] subtraction approaches.

It is beyond the scope of this thesis to compare the relative strengths and weaknesses
of each source modelling approach mentioned, however, significant work on this can be
found in the literature [118, 20, 107, 137]. In chapter 6, we utilised the analytical subtraction
approach, due to the existence and uniqueness in the solution, and the generally higher levels
of accuracy over other approaches [27].

The subtraction approach

To implement the subtraction approach with the CEM, we follow the work of Beltrachini
(2024) [27].

The subtraction approach is founded on the idea that the domain Ω can be split into two
complementary subsets. The first is a non-empty set Ω∞ ⊂ Ω surrounding the dipole with a
conductivity 𝜎∞ and the second is the complementary set Ω𝑐 ⊂ Ω with conductivity 𝜎𝑐. This
allows the potential to also be split into a singularity potential 𝑢∞ and a correction potential
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𝑢𝑐. Similarly, the potentials on the electrodes can now be decomposed into their singularity
𝑈∞ and correction 𝑈𝑐 counterparts. The conductivities and potentials have the following
relations

𝜎 = 𝜎∞ +𝜎𝑐, (3.36a)

𝑢 = 𝑢∞ +𝑢𝑐, (3.36b)

𝑈 =𝑈∞ +𝑈𝑐, (3.36c)

where 𝑢∞ is the potential in an unbounded homogeneous isotropic volume conductor. Substi-
tuting eq. (3.36) into eq. (3.7) produces

∇ · ((𝜎∞ +𝜎𝑐)∇(𝑢 +𝑢𝑐)) = ∇ · 𝒋 𝑝

∇ · (𝜎∇(𝑢∞ +𝑢𝑐)) +∇ · ((𝜎∞ +𝜎𝑐)∇(𝑢 +𝑢𝑐)) = ∇ · 𝒋 𝑝

∇ · (𝜎∇𝑢𝑐) +∇ · ((𝜎∞ +𝜎𝑐)∇𝑢∞) = ∇ · 𝒋 𝑝

∇ · (𝜎∇𝑢𝑐) +∇ · (𝜎∞∇𝑢∞) +∇ · (𝜎𝑐∇𝑢∞) = ∇ · 𝒋 𝑝

∇ · (𝜎∇𝑢𝑐) +∇ · (𝜎∞∇𝑢∞) −∇ · 𝒋 𝑝 = −∇ · (𝜎𝑐∇𝑢∞).

Then, utilising the solution to Poisson’s equation in an unbounded homogeneous conductor,
𝜎∞∇𝑢∞ = 𝒋 𝑝 [197], and applying a similar treatment to the boundary conditions produces
the following formulation

∇ · (𝜎∇𝑢𝑐) = −∇ · (𝜎𝑐∇𝑢∞) in Ω, (3.37a)

𝜎
𝜕𝑢𝑐

𝜕n
= −𝜎𝜕𝑢

∞

𝜕n
on 𝜕Ω\∪𝐿𝑙=1 𝑒𝑙 , (3.37b)

𝑢𝑐 + 𝑧𝑙𝜎
𝜕𝑢𝑐

𝜕n
−𝑈𝑐

𝑙 =𝑈
∞
𝑙 −𝑢∞− 𝑧𝑙𝜎

𝜕𝑢∞

𝜕n
for 𝑙 = 1, ..., 𝐿, (3.37c)∫

𝑒𝑙

𝜎
𝜕𝑢𝑐

𝜕n
𝑑 (𝜕Ω) = −

∫
𝑒𝑙

𝜎
𝜕𝑢∞

𝜕n
𝑑 (𝜕Ω) on 𝑒𝑙 . (3.37d)

where𝑈∞ = 𝐴−1
𝑙

∫
𝑒𝑙
𝑢∞𝑑 (𝜕Ω),𝑈𝑐 = 𝐴−1

𝑙

∫
𝑒𝑙
𝑢𝑐𝑑 (𝜕Ω) on 𝑒𝑙 and 𝑢∞ is given in eq. (3.6) in the

case of a dipolar source. As with pEIT, the domain is not sufficiently smooth enough for
us to obtain an appropriately differentiable solution, meaning a variational formulation of
3.37 is also needed. Our variation formulation is stated as: Find (𝑢𝑐,𝑈𝑐) ∈ 𝐻 ∀(𝑣,𝑉) such
that [27]

𝐵((𝑢𝑐,𝑈𝑐), (𝑣,𝑉)) = 𝑙 (𝑣,𝑉), (3.38)
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where 𝐵((𝑢𝑐,𝑈𝑐), (𝑣,𝑉)) is the same as defined in eq. (3.26) and,

𝑙 ((𝑣,𝑉)) =−
∫
Ω

𝜎𝑐∇𝑢∞ · ∇𝑣𝑑Ω−
∫
𝜕Ω

𝜎∞∇𝑢∞ · ∇𝑣𝑑 (𝜕Ω) (3.39)

−
𝐿∑︁
𝑙=1

1
𝑧𝑙

∫
𝑒𝑙

(𝑢∞−𝑈∞
𝑙 ) (𝑣−𝑉𝑙)𝑑 (𝜕Ω). (3.40)

For the detailed derivation of eq. (3.40), we direct the reader to Beltrachini (2024) [27].
When discretised utilising the same basis functions used for the pEIT problem, this leads to
the system of equations

𝑨(𝝈)𝒖𝑐 (𝝈) = 𝒃𝐸𝐸𝐺 (𝝈), (3.41)

where 𝑨(𝝈) is the same as in eq. (3.33),

𝒖𝑐 (𝝈) =
[
𝒖𝑐𝑛 (𝝈)
𝑼𝑐 (𝝈)

]
, 𝒃𝐸𝐸𝐺 (𝝈) =

[
𝒃(𝝈)

0

]
, (3.42)

𝒖𝑐𝑛 (𝝈) ∈ R𝑛 is correction potential at each node in the FE mesh, 𝑼𝑐 (𝝈) ∈ R𝐿 is the correction
potential at the 𝐿 electrodes, 0 is a vector of 𝐿 zeros and 𝒃(𝝈) is the conductivity-dependent
source vector. 𝒃(𝝈) is formed by the inputs [27]

𝒃𝑖 (𝝈) =−
1

4𝜋𝜎∞

∫
T𝑘

⟨𝝈𝑐∇𝑔(𝒓),∇𝜓𝑖⟩𝑑𝒓 −
1

4𝜋

∫
𝑇𝑘

𝜓𝑖 ⟨∇𝑔(𝒓), 𝒏⟩𝑑𝒓 (3.43)

−
𝐿∑︁
𝑙=1

1
𝑧𝑙

∫
𝑒𝑙

𝜓𝑖 (𝑢∞(𝒓) −𝑈∞
𝑙 )𝑑 (𝜕Ω) for 𝑖 = 1, ..., 𝑛, (3.44)

where 𝑔(𝒓) is 𝒒 · 𝑹𝑅−3. The difficulty now becomes integrating the non-linear terms in-
troduced by the singularity potential. Three approaches have been implemented to tackle
this. The projected subtraction approach is so-called because it projects the infinity potential
onto the finite element space, leading to an inherent approximation error [197]. The full
subtraction approach utilises quadrature schemes to solve the integrals, which has been
verified for varying orders of quadrature [57]. The analytical subtraction approach uses
Gauss theorems to transform the integrals down to 1 dimension where analytical solutions
can be found [24]. For details on the theory and implementation of these methods, the reader
is directed to the corresponding publications by Dreshler et al. (2009) [57] and Beltrachini
(2019) [24], respectively.

To calculate 𝒃𝑖 (𝝈), we use the analytical subtraction method for the first two terms in
eq. (3.40) and then the full subtraction method for the final term. We chose a combination
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of the analytical and full subtraction approaches given the low relative errors achieved by
both [57, 24]. To achieve these low errors however, it is worth noting that the mesh resolution
must be high (of the order of 500k nodes or more) [107]. We respect both of these constraints
with our EEG simulations in Chapter 6.

3.3 Dual Problem

3.3.1 Leadfield and Transfer Matrices

The previous chapter mentioned a source space containing the dipoles of interest, defined
within the grey matter. Before solving the IP for EEG, the FP considering each dipole as
its source must be solved, to find the potential at each electrode. Typically, a source space
can contain thousands of dipoles and the potential at the electrodes for each is stored in an
𝐿×𝑚 matrix called the leadfield matrix, which we denote as 𝑳 𝒇 . Given that each FP consists
of solving a large system of equations (eq. (3.41)) with dimensions equal to the number of
nodes in the FE mesh, generating the leadfield matrix is extremely computationally intensive
task. Therefore, generating an individual leadfield matrix with personalised geometry and
conductivities is prohibitive, leading to localisation errors in the IP.

One trick for alleviating this problem has been the utilisation of a transfer matrix 𝑻. This
matrix encodes the relationship of the source site to the electrodes, allowing the potential at
each electrode for a source to be calculated with simple (and fast) matrix multiplications [107,
196, 191, 135]. For the complete electrode model, the transfer matrix is related to the stiffness
matrix by

𝑲𝑻𝑇 = 𝑩, (3.45)

where 𝑲 and 𝑩 are the same as in eq. (3.33). The leadfield matrix can then be found
using [135]

𝑳 𝒇 = (𝑻𝑩−𝑪)−1𝑻𝒃, (3.46)

where 𝒃 is the same as in eq. (3.42) Now, computing the transfer matrix requires only 𝐿×1
linear systems (eq. (3.45)) to solve, instead of the 𝑚 linear systems needed to calculate
the leadfield from the FPs. This results in a substantial reduction in computational cost
to calculate the leadfield matrix, although for a high number of electrodes in use is still a
substantial task.

To the best of our knowledge, the transfer matrix approach has only been developed for
the PEM with the subtraction approach, and only one implementation in the CEM, which
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considered Whitney basis functions in the source vector [135]. However, for the reasons
mentioned, we wish to use the subtraction approach with a theoretically rigorous treatment.

3.3.2 Adjoint Method

Recently, a mathematically rigorous approach has been presented that links the pEIT-FP and
the EEG-FP by describing the pEIT-FP as the adjoint problem for the EEG-FP considering
the CEM. This has the same effect as the transfer matrix approach of reducing the systems
to solve from many EEG-FPs (the number of sources) to the few pEIT-FPs (the number of
electrodes minus one). Crucially, this method maintains existence and uniqueness of the
solution.

For many problems in the physical sciences, partial differential equations are solved
numerically over a domain (e.g. similar to the EEG-FP) in the interest of finding only a
specific output rather than the entire solution itself. Often, these problems have adjoint
or dual problems, that are connected in some way to the output of interest. Intuitively,
the solution to the adjoint problem can be thought of as the sensitivity of the output to
perturbations in the source of the original problem (the primal problem) [75]. For a detailed
description on adjoint methods the reader is directed to Giles and Süli (2002). In this section
we follow the work of Beltrachini (2024) [27] to show that pEIT is the adjoint problem
to EEG, and furthermore, how the ROM-pEIT can enable new capabilities for EEG as a
technique.

When evaluating the EEG-FP, we are only interested in the electrical potential on the
electrodes and specifically the differences between electrodes and a reference electrode. The
entire solution 𝑢𝑐 is in fact of little use. Suppose that we can describe a linear functional
𝑚(𝑢𝑐,𝑼𝑐), that contains only the correction potential on the electrodes. Then, we can
reformulate eq. (3.38) for source 𝑗 into our primal problem (P): Find (𝐽 ( 𝑗)𝑝 , (𝑢𝑐,𝑼𝑐) ( 𝑗)) ∈
R× ¤𝐻 such that

𝐽
( 𝑗)
𝑝 = 𝑚((𝑢𝑐,𝑼𝑐) ( 𝑗)) + 𝑙 ( 𝑗) (𝑣,𝑽) −𝐵((𝑢𝑐,𝑼𝑐) ( 𝑗) , (𝑣,𝑽)) ∀(𝑣,𝑽) ∈ 𝐻 for 𝑗 = 1, ..., 𝑁𝑠,

(3.47)

where 𝑁𝑠 is the number of sources and

𝑚(𝑢𝑐,𝑼𝑐) ( 𝑗) =𝑈𝑐
𝑙 −𝑈

𝑐
𝑘 for 𝑙 = 1, ..., 𝐿−1, 𝑙 ≠ 𝑘 , (3.48)

and𝑈𝑐
𝑘

is the correction potential on the 𝑘th electrode, which is the reference electrode. This
can obviously be prohibitive given 𝑁𝑠 can be in the region of 30,000 for a refined source
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space. However, by introducing the dual problem of the EEG-FP, we are able to reduce
the number of problems to solve from 𝑁𝑠 down to 𝐿 − 1, realising a significant saving in
computational cost. Firstly, it is important to note that eq. (3.48) can also be described more
generally as the following

𝑚(𝑢𝑐,𝑼𝑐) ( 𝑗) =
𝐿∑︁
𝑖=1

𝐼
(𝑙)
𝑖
𝑈
𝑐(𝑙)
𝑖

for 𝑙 = 1, ..., 𝐿−1, 𝑙 ≠ 𝑘 , (3.49)

where 𝐼 (𝑙)
𝑖

is a weight on the𝑈𝑐(𝑙)
𝑖

(being 1 at 𝑙 and -1 at 𝑘 for the special case of eq. (3.48)).
The dual problem (D) for the EEG-FP can be stated as: Find (𝐽𝑑 , (𝑧,𝒁)) ∈ R× ¤𝐻 such
that [75]

𝐽
( 𝑗)
𝑑

=𝑚(𝑤,𝑾) (𝑙) + 𝑙 ( 𝑗) (𝑧,𝒁) −𝐵((𝑤,𝑾), (𝑧,𝒁) (𝑙)) ∀(𝑤,𝑾) ∈ 𝐻, for 𝑙 = 1, ..., 𝐿−1, (3.50)

where
𝐵((𝑤,𝑾), (𝑧,𝒁) (𝑙)) = 𝑚(𝑤,𝑾) (𝑙) , (3.51)

and therefore

𝐵((𝑤,𝑾), (𝑧,𝒁) (𝑙)) =
𝐿∑︁
𝑖=1

𝐼
(𝑙)
𝑖
𝑊
𝑐(𝑙)
𝑖

for 𝑙 = 1, ..., 𝐿−1, 𝑙 ≠ 𝑘 . (3.52)

Now, recalling from Somersalo et al. (1997) that the pEIT-FP considering the CEM is
equivalent to eq. (3.52), if we chose 𝑚(𝑤,𝑾) =∑𝐿

𝑖=1 𝐼𝑖𝑊𝑖, and where the injection currents
are 1 and -1 on the 𝑙th and 𝑘th electrode for 𝑙 = 1, ..., 𝐿−1. From the Primal-Dual Equivalence
Theorem it can be shown that 𝐽𝑝 = 𝐽𝑑( [75], Theorem 2.5) when (𝑧,𝒁) and (𝑢𝑐,𝑼𝑐) are unique
solutions, given that 𝐽𝑝 = 𝑚(𝑢𝑐,𝑼𝑐) and 𝐽𝑑 = 𝑙 (𝑧,𝒁). Therefore, we find that solving (D)
requires solving 𝐿−1 pEIT-FPs. This is a dramatic reduction in computational complexity
from problem (P).

3.4 Inverse Problems

3.4.1 Parametric EIT-IP

Parametric EIT is an ill-posed inverse problem (IP) that results in estimates of the electrical
conductivities of tissue compartments. To solve the IP, multiple pEIT forward problems
(FPs) need to be solved. As seen in the previous section, the FP solution consists of the
simulated signals from the measurement electrodes and these are dependent on the head
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Fig. 3.7 Flow chart of the traditional implementation of the inverse problem for pEIT. Here,
𝜖 refers to a stopping threshold, 𝝈0 is the initial conductivity guess and �̂� is the estimated
conductivity value. Note that each loop requires at least a full calculation of the forward
problem.

model geometry and conductivities. A set of tissue conductivities are used to construct
an FP before its solution is compared to a set of real measurements taken. The set of
conductivities is then tuned utilising an error metric to find the set of conductivities that
produce an FP solution that most closely matches the real signals. More specifically, this is
done by iteratively minimising the squared error between the measurements 𝒚 ∈ R𝐿 and the
conductivity-dependent simulated signals 𝑼 ∈ R𝐿 on 𝐿 electrodes. Mathematically, this is
generally expressed as

�̂� = argmin
𝝈

{(𝒚−𝑼(𝝈))𝑇 (𝒚−𝑼(𝝈))}, (3.53)

where �̂� are the estimated conductivities [60]. This results in an optimisation process that
requires the calculation of one or more FPs at each iteration and then updating 𝝈 based
on the error and the optimisation technique used (Fig. 3.7). The number of FPs required
at each iteration and the number of iterations needed for convergence on a solution are
dependent on the optimisation technique used and the complexity of the solution space. For
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realistic 6-compartment head models, considering all compartments and the interior-point
optimisation technique this can be of the order of thousands.

The computational load of the IP clearly rises significantly if the FP becomes compu-
tationally intense. With the number of FPs required to solve, this can quickly make the
IP intractable. This is particularly the case for refined realistic head models, where the FP
becomes computationally intensive (taking many minutes to solve on a single PC). Work-
ing within this constraint, researchers are currently forced to consider only a subset of the
compartments in the model (often the skull or scalp). Since the conductivity of all tissues
appear to vary, ideally, we would like to consider all of the tissue compartments. With this
motivation, the following sections examine, in detail, the pEIT-FP and its implementation.

3.4.2 EEG-IP

In EEG, the inverse problem consists of reconstructing the current source(s) responsible for
the potential measured on the electrodes. In distributed source models, source amplitudes
stored in a matrix 𝑺 are estimated for each dipole in the source space, resulting in a distribution
of sources that contribute to a signal. Many algorithms have been formulated to solve for this
distribution, most of which are based on minimum norm estimations (MNE) with varying
constraints or regularisation [150, 164]. The minimum norm approach exhaustively searches
the leadfield matrix for the highest inverse least-squares solution with the measurement
potentials.

One popular approach is the low resolution electromagnetic tomography algorithm
(LORETA), which uses a weighted minimum norm approach with a Laplacian operator,
producing a spatially smooth solution [128]. In chapter 5 we use the standardised LORETA
(sLORETA) algorithm, which is formulated as follows [129]: If the measured potentials are
stored in the vector 𝒚 ∈ R𝐿 , finding the corresponding source amplitudes requires solving the
problem

min( | |𝒚− 𝑳 𝒇 𝑺− 𝑐1| |22 +𝜆 | |𝑺 | |
2
2) (3.54)

where 𝑐 is the potential at the reference electrode, 1 ∈ R𝐿 is a vector of ones and 𝜆 is a
Tikhonov regularisation parameter. This regularisation achieves a zero-error localisation in a
noise-less scenario with the solution

�̂� = 𝑳 𝒇
𝑇𝑯[𝑯𝑳 𝒇 𝑳 𝒇

𝑇𝑯 +𝜆𝑯]†𝒚, (3.55)



46 Mathematical Formulation of pEIT and EEG

where �̂� are the estimated source amplitudes (usually sparse), † is the Moore-Penrose
pseudoinverse,

𝑯 = 𝑰− 1
𝐿
, (3.56)

and 𝑰 ∈ R𝐿×𝐿 is the identity matrix. The matrix 𝑯 ∈ R𝐿×𝐿 is an operator that re-references
the potentials in the leadfield matrix to the average common reference (AR).

With noise-free measurement data, sLORETA can localise sources exactly, meaning a
zero localisation error, and far better localisation error than other similar methods even in
noisy data [129]. Additionally, in the presence of structured biological noise and measurement
noise, sLORETA has no bias in the localisation [130]. These properties make sLORETA an
attractive option for source localisation and we will use it for the EEG inverse problem in
later chapters.

3.5 Chapter Summary and Problem Statement

In this chapter, the mathematical foundations of the pEIT and EEG forward and inverse
problems have been outlined. Firstly, it was shown that the IP for pEIT requires multiple
successive FPs to converge on a vector of conductivities 𝜎 for each tissue compartment
in a head model. Then it was shown that FP solutions require a large linear system of
equations to be solved, with the same dimensions as the nodes in the FE mesh of the head
model. Combined with the number of FPs needing to be solved, this makes pEIT highly
computationally expensive.

In a similar way, the EEG IP was described as requiring as many FPs as the number of
sources in a source space, which can be of the order of thousands. Although the use of a
transfer matrix can reduce this computational burden, this still requires as many FPs to be
solved as the number of electrodes minus one. Given the system to solve is the same size as
pEIT, the same problem occurs and computational cost of generating a leadfield matrix to
use in the IP for EEG is substantial.

For both pEIT and EEG, the FP is dependent on the head model, specifically its geometry
and conductivity field. When combined with the knowledge from the previous chapter
regarding the importance of individual head models in ESI and the impact of its variation
amongst the population, the difficulty with performing personalised pEIT and EEG IPs is
clear.

The key contribution of this thesis is the application of a dimensionality reduction
technique called reduced order modelling (ROM) to both of these techniques. After a training
phase this technique allows the solution of the pEIT and EEG forward problems in real-time
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for any set of tissue conductivities in a head model. The following chapter will detail a
new framework, incorporating ROM into pEIT and EEG, with subsequent experimental
validation.





Chapter 4

Reduced Order Modelling for parametric
Electrical Impedance Tomography: a new
framework

4.1 Overview and Commentary

In Chapter 2, we introduced the method of pEIT and its value in characterising head tissues.
In Chapter 3, we outlined the mathematical foundations of both the FP and IP, highlighting
the computational complexity that makes the technique prohibitive in the case of refined
head models. With this motivation in mind, we apply a method for reducing this complexity
in the current chapter, utilising a technique called reduced order modelling (ROM). The
mathematical basis for this method is detailed before the error between the FP solution with
ROM and the original FP solution is assessed. This chapter focuses on the suitability of
ROM for the pEIT-FP, while the following chapter explores the use of the ROM-pEIT-FP in
the IP, by evaluating its performance in real and synthetic data.

This chapter has been adapted and extended from a publication provisionally accepted by
the Journal of Neural Engineering: Matthew R. Walker, Mariano Fernández-Corazza, Sergei
Turovets and Leandro Beltrachini, Electrical Impedance Tomography Meets Reduced Order
Modelling: a Framework for Faster and More Reliable Conductivity Estimations. Leandro
Beltrachini contributed to the conceptualisation and programming of the work in this chapter.
All other work is that of the author of this thesis. Further details, beyond those included in
the publication, have been added to this chapter.
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4.2 Introduction

Considering the CEM and an FE implementation, the dimensions of the system to solve for
the pEIT-FP (eq. (3.32)) is the number of nodes in the FE mesh plus the number of electrodes
modelled on the scalp. Clearly, the more refined the mesh, the larger the number of nodes
and therefore the larger the system to solve. Finding a solution this system typically involves
the use of an iterative solver such as the preconjugate gradient (PCG) method with precondi-
tioners [59]. While PCGs with lumped diagonal preconditioners have been implemented on
graphics processor units (GPUs) in order to highly parallelise this workload [90], the most
common implementation is with lower and upper (LU) preconditioners on single threaded
processors - central processor units (CPUs) - which can take several minutes to complete.

Given that the pEIT-IP requires multiple conductivity-dependent FPs to be calculated,
the computational effort required to solve the IP can be prohibitive in the case of highly
refined head models. Furthermore, with little or no a priori knowledge about the difference
in conductivity between individuals, the FPs must be computed for any point in a parameter
space 𝒫. To give an idea of the scale of the problem, we consider a brief example. Under
current implementations with a gradient-assisted optimisation [63], the IP typically consists
of 75 or more FPs (see following chapter) for a 3-parameter search (i.e., where 𝒫 is 3
dimensional) before convergence. For a refined head model with an FE discretisation with
800k nodes and 133 electrodes, the FP with its gradient calculations take approximately 1500
seconds on a standard PC (Intel Core i5 CPU). This totals to an IP of the order of 30 hours
for a single electrode pair.

In the next two chapters, we propose and implement the use of reduced order modelling
(ROM) to significantly decrease the dimensionality of the pEIT-FP and therefore minimise
its computational load when being solved. Crucially, this solution can be found for any point
in 𝒫, allowing the IP to be solved utilising this reduced pEIT-FP instead of the full-order
pEIT-FP. This current chapter focuses on the theoretical background and construction of
the reduced model of the pEIT-FP. Importantly, this technique is verified by assessing the
accuracy of the reduced model solutions by comparison with the full-order solutions across a
wide parameter space.

4.3 Introduction to Reduced Order Modelling

ROM is a mathematically rigorous technique to efficiently build a low-dimensional model
mapping changes in a set of conductivities to changes in the solution of eq. (3.32) [139]. This
model is constructed in an offline phase using a relatively small number of 𝑁 << (𝑛+ 𝐿)
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Fig. 4.1 Illustration of an example reduced manifold construction when moving from three
snapshots (left) to four snapshots (right). Notice that the reduced manifold resembles the
solution manifold more closely after the fourth snapshot is added. Also displayed is the
relative error bound across parameter space demonstrating how a new snapshot is chosen.

strategically selected solutions of eq. (3.32) with specific conductivities, which are then used
in the ‘online’ phase to find rapid solutions for any set of conductivities.

Taking advantage of the affine decomposition (see eq. (3.35)), massively reduced versions
of the 𝑨𝑝 and 𝑨0 matrices and vector 𝒃 can be formed. These are formed by building a
reduced basis space with a dimensionality of 𝑁 and projecting 𝑨𝑝, 𝑨0 and 𝒃 onto the space,
obtaining the 𝑁-dimensional 𝑨𝑝

𝑁
, 𝑨0

𝑁 and 𝒃𝑁 . These matrices can be stored, allowing the
assembly of a reduced system in the online phase at any point in the 𝑃-dimensional parameter
space 𝒫 ∈ R𝑃 (i.e., for any set of conductivities) by simple multiplication and addition.
This new system, containing only a handful of simultaneous equations, can be solved in
real-time, resulting in a reduced-basis solution 𝒖𝑁 ∈ R𝑁 . This vector is transformed back into
an 𝑛-dimensional solution 𝒖𝑎 ∈ R𝑛+𝐿 that approximates the solution of the high-dimensional
system 𝒖. Put another way, the solutions 𝒖 in 𝑉ℎ for each point in parameter space make up
a solution manifold. This manifold is approximated by the reduced manifold made of the
approximate solutions 𝒖𝑎. An example of these manifolds in a single dimensional parameter
space is given in Fig. 4.1. Before describing the process of projecting the reduced matrices,
we turn to constructing our reduced basis space and defining its matrix representation.
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The reduced basis space is built using a number of full-order solutions, called snapshots,
which are selected strategically across 𝒫. Judiciously choosing the points with which to
build the reduced model is done by employing a greedy algorithm. A distinguishing feature
of ROM is the presence of a rigorous upper bound Δ(𝝈) on the error of the approximate
solutions, which guides the greedy algorithm in the snapshot selection, acting as a proxy
for the error [139]. This bound on the error can be calculated almost instantly for any given
point in 𝒫 and can therefore efficiently explore the space to guide the next snapshot point.
During each iteration of the greedy algorithm, the bound is calculated for a finite sample
set Ξ ⊂ 𝒫 and a snapshot is calculated using the conductivity set that minimises it. Ξ is
chosen to represent the entire P-dimensional space 𝒫. An example of the bound being
used to select the position of a snapshot is shown in Fig. 4.1. Utilising the bound to select
the snapshots presents two advantages. Firstly, it allows an extremely quick assessment of
the maximum error attainable at a fine discretisation of 𝒫. Secondly, it can be used as a
stopping criterion for certifying the maximum error in 𝒖𝑎 [139]. The relationship between
the 𝑎 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑖 relative error [RE(𝝈)] for a given point in 𝒫 and the 𝑎 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑖 relative
error bound [Δ𝑅𝐸 (𝝈)] is [139]

RE(𝝈) ≜
| |𝒖(𝝈) −𝒖𝑎 (𝝈) | |𝐿2

| |𝒖𝑎 (𝝈) | |𝐿2

≤ Δ(𝝈)
| |𝒖𝑁 (𝝈) | |𝐿2

≜ Δ𝑅𝐸 (𝝈). (4.1)

The reduced model takes the form of a reduced-basis space, built using the snapshots
calculated by the greedy algorithm. To obtain the reduced system, the full-order stiffness
matrices are projected on the space during the offline phase. This reduced-basis space is
represented by the matrix V ∈ R(𝑛+𝐿)×𝑁 . To construct the orthonormal basis, V we perform
a Gram-Schmidt orthonormalisation on a snapshot, before adding it to the orthonormal
basis iteratively. We begin by selecting a random parameter vector 𝝈1 ∈ Ξ and computing
the full-order solution 𝒖(𝝈1). The first basis vector for the orthonormal space is simply
the first snapshot, which is a full-order solution (i.e., 𝜻1(𝝈1) = 𝒖(𝝈1)). Thereafter, the
orthonormalised solutions 𝜻 𝑗 (𝝈) for the 𝑗 th snapshot are concatenated,

V = [𝒖(𝝈1), 𝜻2(𝝈2), ..., 𝜻𝑁 (𝝈𝑁 )], (4.2)

such that {𝝈1,𝝈2, ...,𝝈𝑁 } ⊂ Ξ. Also known as the transformation matrix, V relates the
projected stiffness matrix 𝑨𝑁 (𝝈) ∈ R𝑁×𝑁 and projected independent vector 𝒃𝑁 (𝝈) ∈ R𝑁

with the full-order versions through the expressions [139]

𝑨𝑁 (𝝈) = V𝑇 𝑨(𝝈)V, 𝒃𝑁 = V𝑇 𝒃, (4.3)
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where, substituting in eq. (3.35), 𝑨𝑁 (𝝈) becomes

𝑨𝑁 (𝝈) = V𝑇 𝑨0V︸  ︷︷  ︸
𝑨0
𝑁

+
𝑃∑︁
𝑝=1

𝜎𝑝V
𝑇 𝑨𝑝V︸   ︷︷   ︸
𝑨𝑝

𝑁

. (4.4)

This results in the reduced system to solve

𝑨𝑁 (𝝈)𝒖𝑁 (𝝈) = b𝑁 , (4.5)

where 𝒖𝑎 (𝝈) = V𝒖𝑁 (𝝈). It is clear from eq. (4.3) that, as 𝑁 << (𝑛+ 𝐿), the dimensions of
the resulting system are massively reduced, requiring significantly fewer operations to solve.
Ultimately, this means that a FP can be calculated at any point in 𝒫 almost instantly. Fig. 4.2
shows a flowchart of the greedy algorithm, demonstrating the construction of V.

4.3.1 Notation

For clarity of exposition, we define some commonly used terms in this thesis chapter. The
term full-order or high-fidelity refers to high-dimensional vectors, matrices or systems, that
arise from the discretisation of the FP. These are not given any special notation unless clarity
is needed, in which case they are marked with an ℎ (e.g., the FE space 𝑉ℎ or stability factor
interpolation point 𝛽ℎ [see following section]). The low-dimensional vectors, matrices and
systems generated as a result of ROM, are noted with an 𝑁 to indicate their dimension is that
of the number of snapshots taken in the greedy algorithm (e.g., the solution to the reduced
system 𝒖𝑁 ). The term reduced model is used to refer to the collection of matrices and vectors
used to generate reduced solutions (i.e., V, 𝑨𝑝

𝑁
, 𝑨0

𝑁 and 𝒃𝑁 ).

4.3.2 The Error Bound

This section addresses the basic construction and implementation of the error bound Δ(𝝈)
seen in eq. (4.1). This 𝝈-dependent parameter is calculated (in this work) for 6000 points
in 𝒫, which forms the sample train Ξ, in each iteration of the greedy algorithm. To ensure
the efficiency of its calculation, a familiar computational splitting schema and interpolation
method are employed, also covered here.

Error Bound Derivation

For pEIT with CEM, deriving the bound requires some special treatment, deviating from that
presented in Quarteroni et al. (2016). This difference arises from the fact that the stiffness
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Fig. 4.2 Greedy algorithm used in the offline training phase for ROM where 𝜖 is some
stopping threshold.

matrix 𝑨(𝝈) in our case is rank deficient, meaning its rank 𝑟 is smaller than its smallest
dimension (with the number of linearly independent columns or rows). This difference
ultimately effects the calculation of the stability factor.

The bound is derived by first defining the error and the residual of the reduced solution
projected onto the full-order space. The error 𝒆(𝝈) is defined as 𝑢(𝝈) −V𝑢𝑁 (𝝈) and related
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to the residual by [eq. (3.74) in Quarteroni et al. (2016)]

𝑨(𝝈)𝒆(𝝈) = 𝒓 (𝝈) = 𝒃− 𝑨(𝝈)V𝒖𝑁 (𝝈). (4.6)

To isolate the error term this relation can be rearranged. For the full rank solution, this
equation is multiplied by the inverse of 𝑨(𝝈). However, due to the low rank we instead use
the Moore-Penrose psuedoinverse denoted as 𝑨(𝝈)† [77], obtaining

𝒆𝑙𝑠 (𝝈) = 𝑨(𝝈)†𝒓 (𝝈), (4.7)

where 𝒆𝑙𝑠 (𝝈) is the least squares solution of the system. Using the singular value decom-
position (SVD) we can decompose 𝑨(𝝈)† into 𝑽 (𝝈)𝚺(𝝈)†𝑼(𝝈)

𝑇 [p. 117 in Quarteroni et
al. (2016)], where 𝑽 (𝝈) and 𝑼(𝝈) are the right and left orthogonal vectors associated with
matrix 𝑨(𝝈) and 𝚺(𝝈)† is a diagonal matrix containing the inverse of the singular values
of the matrix, i.e. 𝚺(𝝈) = 𝑑𝑖𝑎𝑔(𝜅1, ..., 𝜅𝑟 ,0, ...,0) and 𝚺(𝝈)† = 𝑑𝑖𝑎𝑔( 1

𝜅1
, ..., 1

𝜅𝑟
,0, ...,0). It is

important to note here that performing SVD on a rank deficient matrix results in 𝑟 singular
values (𝜅1, ..., 𝜅𝑟) followed by one or more (e.g. (𝑛+ 𝐿) − 𝑟 in this case) zero values. Taking
the 𝐿2 norm of each side of equation (4.7) and using the properties of the norm [see eq.
(1.16) in Quarteroni et al. (2007) [140]] results in

| |𝒆𝑙𝑠 (𝝈) | |2 ≤ ||𝚺(𝝈)† | |2 | |𝒓 (𝝈) | |2. (4.8)

Given that, for any matrix, the 𝐿2 norm is equal to the largest singular value of a matrix
[eq. (6.2) in Quarteroni et al. (2016)], the term | |𝚺(𝝈)† | |2 becomes 𝜅𝑚𝑎𝑥 (𝚺(𝝈)†) which as
can we see from its definition will be 1/𝜅𝑟 leading us to 𝜅−1

𝑚𝑖𝑛
(𝑨(𝝈)) where the minimum

singular value is the smallest nonzero singular value. This results in the error bound

| |𝒆𝑙𝑠 (𝝈) | |2 ≤
||𝒓 (𝝈) | |2
𝜅𝑚𝑖𝑛 (𝑨(𝝈))

= Δ(𝝈). (4.9)

where 𝜅𝑚𝑖𝑛 (𝑨(𝝈)) is called the stability factor 𝛽ℎ (𝝈). Given that our test and solution spaces
are the same and 𝑨(𝝈) is symmetric, finding the smallest singular value is equivalent to
finding the smallest eigenvalue and therefore 𝜅𝑚𝑖𝑛 (𝑨(𝝈)) can be expressed as the generalised
eigenvalue problem [139]

𝛽ℎ (𝝈) = 𝜆𝑚𝑖𝑛 (X−1/2
ℎ

𝑨(𝝈)X−1/2
ℎ

), (4.10)

where Xℎ ∈ R(𝑛+𝐿)×(𝑛+𝐿) is the matrix representation of the norm. The norm we use in this
work is the 𝐿2 norm, whose matrix representation is an identity matrix 𝑰 (𝑛+𝐿)×(𝑛+𝐿) . We
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solved this generalised eigenvalue problem using the BLEIGIFP MATLAB toolbox [141].
Crucially, the smallest non-zero eigenvalue was then selected from the results as the stability
factor. However, selecting the smallest non-zero eigenvalue was not trivial. Limitations in
computer precision leading to numerical errors meant the zero valued eigenvalues in fact had
very small non-zero values. We chose the smallest eigenvalue that was part of a cluster of
eigenvalues of similar values. In every case, this was the second to last eigenvalue. In future,
a more automatic way of selecting the smallest non-zero eigenvalue could be developed.

Stability Factor Interpolant

In order to evaluate the bound, quick evaluations for the residual and the stability factor for
any point in parameter space must be found. Calculating the stability factor of the full-order
system 𝛽ℎ (𝝈) consists of solving a generalised eigenvalue problem involving the full-order
stiffness matrix 𝑨(𝝈). Although the matrix is sparse (see Appendix A.2), it is still large in
our case (containing millions of non-zero entries), and resulting in the calculation of 𝛽ℎ (𝝈)
becoming quite intensive and is therefore unaffordable in a real-time setting. To circumvent
this, we use radial basis functions Φ(𝑟) = 𝑒−𝑟2

to form an interpolant 𝛽𝐼 (𝝈) of the stability
factor that can be calculated extremely quickly in an online phase, expressed as

log(𝛽𝐼 (𝝈)) = 𝜔0 +𝝎𝑇𝝈 +
𝑛𝐼∑︁
𝑗=1
𝛾 𝑗Φ( |𝝈−𝝈 𝑗 |) (4.11)

where 𝑛𝐼 are the number of interpolation points and 𝜔0, 𝝎 = {𝜔1, ...,𝜔𝑃} and 𝛾 𝑗 are inter-
polation weights. Setting the interpolation points to be the high-fidelity solutions to 𝛽 (i.e.,
log(𝛽𝐼 (𝝈 𝑗 )) = log(𝛽ℎ (𝝈 𝑗 )) for 𝑗 = 1, .., 𝑛𝐼), then given the additional conditions,

∑𝑛𝐼
𝑗=1 𝛾 𝑗 = 0

and
∑𝑛𝐼
𝑗=1 𝛾 𝑗𝝈𝑝 = 0 for 𝑝 = 1, .., 𝑃, the weights can be found by solving the following system

of linear equations ©«
M P𝑇 1𝑇

P 0 0
1 0 0

ª®®¬
©«
𝜸

𝝎

𝜔0

ª®®¬ =
©«
𝜷

0
0

ª®®¬ , (4.12)

where 1 ∈ R𝑛𝐼 is a vector of ones, 𝜸 = {𝛾1, ..., 𝛾𝑛𝐼 }, 𝜷 = {log(𝛽ℎ (𝝈1)), ..., log(𝛽ℎ (𝝈𝑛𝐼 ))}
and (M)𝑖 𝑗 = Φ( |𝝈𝑖 −𝝈 𝑗 |) and (P)𝑝 𝑗 = 𝝈 𝑗

𝑝 for 𝑖, 𝑗 = 1, ..., 𝑛𝐼 , 𝑝 = 1, ..., 𝑃. In an offline phase
(outside of the greedy algorithm), 𝛽ℎ (𝝈) for 𝑛𝐼 points in 𝒫 is calculated using eq. (4.10)
and the interpolation weights are found with eq. (4.12). Then, in an online phase (within the
greedy algorithm), 𝛽𝐼 (𝝈) can be found in real-time for any point in 𝒫.
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Computational Splitting of the Residual

It can be seen from eq. (4.6) that the residual depends matrix multiplications involving the
full stiffness matrix 𝑨(𝝈). These matrix multiplications also benefit from being split for a
significant speed-up, allowing the real-time calculation of the residual at any point in 𝒫. The
square of the 𝐿2 norm of the residual can be expanded to

| |𝒓 (𝝈) | |22 =𝐶 −2
𝑃∑︁
𝑝=1

𝜎𝑝𝒖𝑵 (𝝈)𝑇 𝒅𝑝

+
𝑃∑︁

𝑝1,𝑝2=1
𝜎𝑝1𝜎𝑝2𝒖𝑵 (𝝈)𝑇E𝑝1,𝑝2𝒖𝑵 (𝝈),

(4.13)

where

𝐶 = 𝒃𝑇 𝒃, (4.14a)

𝒅𝑝 = V
𝑇 𝑨𝑝

𝑇 𝒃, (4.14b)

E𝑝1,𝑝2 = V
𝑇 𝑨𝑝1

𝑇 𝑨𝑝2V. (4.14c)

Fig. 4.2 shows that in the greedy algorithm, the new matrix V𝑁 is constructed (second square)
before the bound is calculated for a fine sample train (third square). Between these two
processes, the eqs. (4.14) are solved, due to their independence from conductivity parameters.
These values can then be stored and readily used in eq. (4.13). Practically, this results in an
evaluation of the bound at each point in the entire sample train Ξ requiring only a handful of
seconds on a single CPU core.

Proper Orthogonal Decomposition

Use of a greedy algorithm is not strictly necessary for the construction of a reduced basis
space. The matrix V can also be generated using proper orthogonal decomposition (POD).
This method uses SVD to construct a reduced basis space from a selection of pre-computed
snapshots. Here, the snapshots form the matrix S = [𝒖(𝝈1), ...,𝒖(𝝈𝑁 )]. SVD is then
performed on S and the first 𝑁𝑃𝑂𝐷 ≤ 𝑁 left singular vectors are chosen as V.

This approach is more commonly known as a principle component analysis (PCA), which
has been applied previously to imaging EIT [177]. Although simpler to implement, we chose
not to use POD to construct the reduced basis space due to the intelligent sampling brought
by the greedy algorithm. For POD, the selection of snapshots points in parameter space is
not guided in anyway, relying on uniform or random sampling strategies. Using the greedy
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algorithm, the parameter space is sampled very finely to first estimate the best point to select
a new snapshot before repeating the process and iteratively adding snapshots. This results
in the minimum number of snapshots (where a large system of equations needs be solved)
being calculated for a predetermined threshold for error in the reduced solution.

4.4 Implementation and Verification

4.4.1 Set-up

We used a realistic head model discretised with 5M tetrahedral elements and 800k nodes. The
model was based on the Colin27 atlas [13] and processed as in previous publications [115].
A cross section is shown in Fig. 4.3a depicting different tissue compartments, i.e., scalp,
compact skull bone, spongiform bone, cerebrospinal fluid (CSF), grey matter (GM) and
white matter (WM). The conductivities chosen for the synthetic measurements were uniform
random samples within the interquartile ranges described in Table 4.1 for each of the tissues.
The minimum, lower and upper quartiles and maximum values (excluding outliers) were
chosen from the work carried out by McCann et al. (2019) [116]. A reduced model for each
electrode pair used was trained for conductivity parameters within these ranges.

4.4.2 Technical Implementation

For each conductivity sample, the FP was solved for each of the 132 pairs of electrodes, where
the injection and extraction electrode had 20 𝜇𝐴 and −20 𝜇𝐴 current applied, respectively.
All pairs are composed of a unique injection electrode and a sink electrode that is common
for all pairs placed on the scalp above the Sagittal suture (position Cz). This choice of
electrode pairs allows the flexibility to simulate any electrode pair through a simple linear
combination of the solutions of the trained pairs. Electrodes were positioned according to
the ABC-128 standard layout (as used in BioSemi products) with the addition of fiducial

Scalp Compact Spongiform CSF GM WM
bone bone

Min. (S/m) 0.136 0.0008 0.001 1.388 0.060 0.065
LQ (S/m) 0.303 0.002 0.013 1.450 0.268 0.092
UQ (S/m) 0.444 0.009 0.043 1.794 0.508 0.177

Max. (S/m) 0.620 0.0131 0.088 1.794 0.739 0.228
Table 4.1 Ranges of conductivities used for training. Minimum, lower quartile (LQ), upper
quartile (UQ), and maximum (excluding outliers) reported by McCann et al. (2019).
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Fig. 4.3 a) Cross section of the FE mesh with compartments coloured separately. b) Elec-
trodes (red circles) modelled on the surface of the scalp. c-f) Selection of the first basis
vectors (𝜻2, 𝜻4, 𝜻7 and 𝜻11, respectively) for the transformation matrix V made for an elec-
trode pair plotted on the FE mesh. The colour indicates the value of the projected basis vector
at each node that represents the additional information being encoded.

electrodes placed in the nasion, inion and left and right preauricular points and an electrode
at the vertex (Cz), resulting in 133 sensors. This layout is partially displayed in Fig. 4.3b.
An average common reference (AR) was applied to the potentials on the electrodes. The
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133 electrodes were modelled as 1 𝑐𝑚 diameter circles on the surface of the scalp with an
effective contact impedance of 5 Ω𝑚2.

The systems of equations were solved with the Preconditioned Conjugate Gradient (PCG)
solver with incomplete LU preconditioners [59]. They were solved with a tolerance of 10−10

and a maximum number of iterations of 6000. The FE method was implemented using
first-order linear basis functions on the mesh nodes as used by Vauhkonen et al. (1999) [179].
Analytical expressions of the element matrices needed in eqs. (3.34a)-(3.34c) were utilised
to avoid errors due to numerical quadrature [24].

The ROM method was trained using the same model, injection patterns and range of
conductivities as above. We chose to train ROM for up to 100 snapshots to demonstrate the
reduction in error in the FPs and IPs. However, as will become clear in the following chapter,
there are a number of stopping criteria that can guide how many snapshots to take.

It should be noted that the matrix 𝑨0 in eq. (3.35) can be further affinely decomposed
into a impedance (“𝑧") independent matrix with a coefficient equal to 𝑧−1

𝑙
, 𝑙 = 1, ..., 𝐿. In this

way, 𝑧𝑙 can be trained as an additional set of parameters. However, we found that even across
a large range of contact impedances, the effect on the FPs and IPs was negligible, as reported
for EEG [135].

The reduced models generated for each electrode pair are completely independent,
similarly to the IPs for the traditional method. Therefore, computational work was trivially
parallelised by electrode pair on a cluster computer with 11 Intel(R) Xeon(R) X5660 CPU
nodes at 2.80GHz. Each node had 12 cores and 16GB of memory per core.

4.4.3 ROM Performance Assessment

This assessment serves two main purposes. The first is to confirm that the pEIT-FP is
meaningfully reducible in the sense that, for small 𝑁 , 𝒖𝑎 quickly converges to 𝒖. The second
is to validate the bound while simultaneously assessing its tightness. To achieve these aims,
we plotted the average and maximum RE(𝝈) and Δ𝑅𝐸 (𝝈) as a function of 𝑁 . The Δ𝑅𝐸 (𝝈)
was calculated in the training phase during the greedy algorithm for a 6000 sample train
across 𝒫 for each electrode pair. The mean and maximum Δ𝑅𝐸 (𝝈) across the sample train
were found for each electrode pair and then averaged across all electrode pairs. The RE(𝝈)
was calculated for each electrode pair for 100 samples of 𝒫. The average RE(𝝈) across all
electrodes for each sample was found before plotting the average and maximum across 𝒫.
This was repeated for an increasing number of snapshots.
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Fig. 4.4 Average and maximum Δ𝑅𝐸 (𝝈) and RE(𝝈) for a sample of parameters (averaged
across electrodes) against the number of snapshots.

4.5 Results

Figs. 4.3b-d show a subset of the basis vectors (i.e., 𝜻 𝑖 for 𝑖 = 2,4,11) that constitute the
reduced basis space. Each additional function to the first is an orthogonal projection to
the matrix V and encodes additional information into the reduced model. In particular, the
basis vector 𝜻11 (Fig. 4.3f) shows that after the projection there is a significant difference in
electrical potential solution in the brain between the previous sample conductivities and those
for the snapshot. Once added, this results in a reduced model with specific information about
the response of the electrical potential in the brain to conductivity changes in the model.
This demonstrates the greedy algorithm in action. The same effect can be seen with the
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spongiform bone with respect to the bright spots in the skull in basis vector 𝜻4 (Fig. 4.3d)
and 𝜻11.

Fig. 4.4 shows the average and maximum Δ𝑅𝐸 (𝝈) and RE(𝝈) as a function of snapshots.
The Δ𝑅𝐸 (𝝈) was calculated across the sample set Ξ and the RE(𝝈) was found for 100
conductivity samples. It is interesting to note that the bound becomes slightly sharper as
the number of snapshots increases. Fig. 4.4 also demonstrates that Δ𝑅𝐸 (𝝈) can be used
as a stopping criteria for the number of snapshots used to train the model. When set, the
greedy algorithm will stop when Δ𝑅𝐸 (𝝈) for every point in the fine sample is below the
threshold stated. Using this stopping criteria ensures that the RE(𝝈) in the FP is below the
threshold. However, choosing a threshold is not trivial (see Section 5.6) and there is a risk of
unnecessary training of the model.

4.6 Further Notes

A time penalty incurred by ROM is the computational cost associated with training the
stability factor interpolant during the offline phase, requiring multiple solutions to a gener-
alised eigenvalue problem. This process takes approximately 15-30 minutes per problem
(for an Intel Xeon CPU at 2.8 GHz for our model) and can be parallelised on a cluster. The
interpolant generated is source vector independent, and therefore can be used for all electrode
pairs. Although small in comparison to the training for ROM and the traditional method, this
should still be considered as part of the offline training process. There exists some techniques
that minimise the computational load of this stage such as greedy algorithms to reduce the
number of interpolation points needed [112]. Exploring these optimisations of the framework
will be work for the future. Further, we’ve found that interpolating between these points in
a 6-dimensional space is a non-trivial task due to the complexity of the resulting manifold
and the possible noise in the interpolation data. We found that the use of too many randomly
selected interpolation points led to over-fitting and consequently a poor interpolation. The
more conservative strategies suggested by Manzoni et al. (2015) [112] may help tackle this
class of problem and this shall be explored in future work.

In this framework, we use the L2-norm in both the Δ𝑅𝐸 (𝝈) and the projection due to its
ease of implementation. However, an equally valid Δ𝑅𝐸 (𝝈) can also be calculated using the
norm of the space containing the solution [139]. The solution to the variational formulation
of the problem can be found in an appropriate quotient Hilbert space, equipped with a norm
that can be used for this task [162]. Modifying our framework to utilise this norm may
improve the sharpness of the bound. One artefact of the training noticed was the loss of
orthogonality in the transformation matrix after approximately 150 snapshots. This could be
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due to numerical errors introduced into the Gram-Schmidt orthonormalisation. We use the
classical Gram-Schmidt process in this work, however, a well known and more numerically
stable method called the modified Gram-Schmidt method could also be used [32]. Other
numerically stable implementations of the Gram-Schmidt process have been developed and
these may be explored in the future [38].

An additional substantial speed-up was achieved in the greedy algorithm by utilising the
reduced model at each iteration to provide an initial guess for the PCG method when solving
for a snapshot. As snapshots are added to the reduced model, the initial guess improves
which leads to faster PCG solutions. Practically, this means that the time taken for one
snapshot is halved after approximately 40 snapshots.

Fig. 4.4 shows that the pEIT-FP is highly reducible, demonstrated by the rapid reduction
in relative error. This impressive performance could be explained by the solution manifold
being relatively smooth across the chosen parameter space meaning fewer snapshots are
required to adequately characterise it. The presence of a smooth solution manifold has been
shown in other work (e.g., Turovets et al. (2008) [169]) for single tissue conductivities where
the manifold took the form of a “shallow valley". If this behavior extends to a 6-dimensional
parameter space, this could explain the reducibility of the problem. Please see Chapter 6 for
further discussion on this topic.

4.7 Summary

This chapter has introduced reduced order modelling (ROM) and covered the basic implemen-
tation of ROM applied to the pEIT-FP. The basic theory for ROM was laid out, including the
mathematically rigorous bound, and the training of the reduced model, before its implemen-
tation in a realistic head model. The reducibility of the problem was confirmed by assessing
the accuracy of the reduced solutions against the solutions to the full systems of equations,
while simultaneously verifying the error bound. This chapter shows most importantly that a
reduced model of the pEIT-FP is a suitable replacement for the full-order system, meaning it
can be used in the pEIT-IP.The main points of the chapter are as follows:

• ROM is a dimensionality reduction technique where a relatively low-dimensional
model mapping changes in parameter space to changes in the solution of a system of
equations is built. This reduced model is constructed with a number of solutions to
the parameter-dependent system of equations with a specific set of these parameters
(called snapshots). In the case of the system of equations being large and problem
being sufficiently reducible, the resulting model is significantly lower in dimensionality
than the system of equations.
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• The property of affine decomposition is required for any system to be suitable for
ROM. Therefore ROM can be applied to the pEIT-FP to obtain a reduced model
that can evaluate a sufficiently accurate approximate solution for any point in the
parameter/conductivity space 𝒫.

• We implemented ROM with pEIT for a realistic head model with 800k nodes and six
head tissues by constructing a reduced pEIT-FP model for each electrode injection pair
considered in the pEIT protocol. The models were trained within a parameter space
defined by the variability in individual tissues found in the literature.

• The selection of the snapshots used to build the reduced model is guided by a rigorous
error bound, that serves as an estimate of the error between the approximate solution
and the full-order solution across the parameter space. For the specific case of pEIT,
this error bound is verified in this chapter.

• The accuracy of the approximate solutions found using the reduced model is assessed
as a function of the snapshots required to build the models. It is shown that with only
30 snapshots to build the model, the average relative error is below 10−5 across 𝒫 and
for all injection pairs.



Chapter 5

Reduced Order Modelling for parametric
Electrical Impedance Tomography:
Implementation and Applications

5.1 Overview and Commentary

So far, the computational cost of the pEIT-FP and a solution for reducing this cost using
ROM have been suggested. In this chapter, the original motivation for pEIT is revisited
by utilising the newly trained ROM-pEIT-FP in the pEIT-IP. The metrics of conductivity
estimation accuracy and computational cost are used to compare and contrast ROM-pEIT
and the current state-of-the-art approach. A brief primer on the use of a gradient-assisted
method in pEIT is given before its comparison with ROM-pEIT using synthetic and real
data. We find a significant improvement in speed, leading to a practical improvement in
the estimation accuracy. After this verification, additional use cases are explored that this
new framework now allows, including the estimation of previously unreachable tissues and
anisotropic tissues, estimation depending on reference electrode placement and using new
pEIT protocols.

This chapter has been adapted and extended from a publication provisionally accepted by
the Journal of Neural Engineering: Matthew R. Walker, Mariano Fernández-Corazza, Sergei
Turovets and Leandro Beltrachini, Electrical Impedance Tomography Meets Reduced Order
Modelling: a Framework for Faster and More Reliable Conductivity Estimations. Leandro
Beltrachini contributed to the conceptualisation and programming of the work. Mariano
Fernández-Corazza and Sergei Turovets collected the real data used in this chapter. All other
work is that of the author of this thesis. Similarly to the last chapter, further details, beyond
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those included in the publication, have been added to this chapter and more exploratory
analysis provided.

5.2 Introduction

With the ROM-pEIT-FP trained and verified to be a suitable replacement for the full-order
pEIT-FP, we can now perform the pEIT-IP where the FPs are generated in real-time. The
resulting IP is therefore orders of magnitude faster than the original full-order version. This
speedup in the IP yields many benefits, which are explored in detail this chapter. This work is
placed in the context of the literature by comparison with the state-of-the-art technique. The
current best effort to address computational load of the IP is to reduce the number of solutions
required for the pEIT-IP to converge by utilising a gradient assisted optimisation method [61].
This approach has proven successful for estimating scalp and skull conductivities from
𝑖𝑛 𝑣𝑖𝑣𝑜 and synthetic measurements to a good level of accuracy [63, 60]. However, this
method requires the additional calculation of a gradient in each iteration, which itself is
computationally costly. Furthermore, estimating the conductivity of some tissues proves
challenging. For example, the conductivity of the spongiform bone inside the skull has been
estimated with a coefficient of variation as large as one [63].

This chapter compares the current state-of-the-art and ROM-pEIT in both synthetic and
real data. With the synthetic data, we are able to simulate a range of possible scenarios,
to thoroughly test the feasibility of ROM-pEIT, and highlight its advantages. The use of
real data allows the validation of ROM-pEIT in a real world setting. Throughout, we show
that this new ROM-pEIT framework yields significant improvements in the speed of the
estimation of all tissues in the head, assimilating the new capability to confidently estimate
conductivities previously unreachable with traditional approaches.

5.3 Experiments with Synthetic Data

5.3.1 Setup

To generate synthetic pEIT signal data, the full-order FP for each injection pair is solved for a
range of conductivity sets 𝝈, where the injection pairs are the same used to train the ROMs in
the previous chapter. Gaussian noise was then added to the measurements that had a standard
deviation of 0.82 𝜇𝑉 , which is similar to the noise found in real measurements [63].

Similarly to other work [63], we have removed some erroneous estimations from injection
patterns where the IP has either not converged or has given an unrealistic conductivity (e.g.,
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negative conductivities), which may occur for the traditional method only as it is based on an
unconstrained optimisation technique.

5.3.2 Experiment 1 - IP Performance

To assess how useful the ROM-pEIT framework is, we considered two important metrics
in pEIT: the accuracy of the estimations from the inverse problem and the computational
cost required to achieve them. To that end, we compared our results with the best approach
currently in the field, which provides reliable estimations for scalp and compact skull
electrical conductivities [63]. This method minimises eq. (3.53) using the gradient-assisted
quasi-Newton method. However, this requires the calculation of the gradient of the solution
for each FP, for each of the parameters being searched for [55, 63]. The gradient can be
found using [63]

𝜕A−1(𝝈)b
𝜕𝜎𝑝

= −A−1(𝝈)A𝑝𝒖. (5.1)

From eq. (5.1), it is clear that finding each of the gradients requires solving another large
system of equations similar to the FP. This results in a significant overhead in terms of
computational cost, especially when multiple parameters are being estimated simultaneously.
Inserting this into the loop in Fig. 3.7 shows that, for each iteration in the optimisation, the
number of large systems of equations to solve is equal to the FP plus the number of tissues
being estimated. Henceforth, we shall refer to this method of gradient assisted optimisation
using the full-order FP as the traditional method.

A further consequence of using the reduced system of eqs. (4.5) is that the derivative (5.1)
can no longer be calculated and therefore neither can the quasi-Newton method be utilised
efficiently. However, using quasi-Newton methods to reduce the computational cost is no
longer of concern, and we are free to explore other methods, such as the interior-point
optimisation approach. Although this method requires more loops and therefore more
systems to solve than the quasi-Newton algorithm, the cost of the new optimisation is still
negligible compared to the traditional technique.

Therefore, we have chosen to compare the computational cost of the ROM-pEIT frame-
work and the traditional method by using the number of (𝑛+ 𝐿) × (𝑛+ 𝐿) linear systems of
equations needed to be solved for each electrode pair. For ROM, all of these systems are
solved in the offline phase. Given that these systems embody the bulk of the computational
work, it is an appropriate metric for comparison. Making the comparison independent of the
electrode pairs means that the savings are the same irrespective of the injection protocols
used.
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For the traditional method, the IP was run as a 3-parameter search, optimising for the
scalp, compact skull and spongiform bone simultaneously. For the conductivities not being
optimised (CSF, GM, WM), they were fixed to the ground truth values used to make the
synthetic measurements. We chose this format to isolate and assess the estimation of the
three conductivities stated only. To assess the improvement in the IP, we redefined the relative
error (RE) as

𝑅𝐸 = |�̂�−𝜎 |/𝜎, (5.2)

where �̂� and 𝜎 are the estimated and the ground truth scalar conductivities, respectively. The
estimation progress was logged at each iteration and plotted as the RE between the estimation
and the sample parameters. The ROM IP was run as a 6-parameter search to estimate all of
the compartments in the model. All optimisations were started from the centre point of the
ranges specified in Table 4.1.

The mean of the RE in the estimation for each tissue for each number of iterations (and
function evaluations within those iterations) was calculated, and then averaged across 10
randomly selected conductivity samples from a uniform distribution. We used 10 samples
due to the computational cost of the traditional method. The IP with ROM was then run for a
further 90 samples of 𝒫 and plotted separately with the average RE across the samples and
electrodes displayed for all tissues.

To further assess the estimations, we repeated the ROM-pEIT IP with the reduced model
containing 30 snapshots for various signal-to-noise ratios by increasing the standard deviation
in the additive Gaussian noise. The RE in each tissue was averaged across all electrode pairs
and samples.

5.3.3 Experiment 2 - Anisotropy

It has been shown that the inclusion of the spongiform bone in head models reduces the
error in the EEG-FP and IP [115]. However, in the event of missing spongiform information,
the skull may be modelled as a single compartment with anisotropic conductivity [60, 49].
Therefore, a separate experiment aimed to demonstrate the adaptation of ROM-pEIT to
model a homogeneous and anisotropic skull conductivity.

Firstly, we modified the realistic head model by merging the compact and spongiform
bone to create one homogeneous skull compartment. We then trained another ROM model
with the new head model where the conductivity tensor field for the skull compartment has
been transformed from a Cartesian basis to a radial and tangential basis relative to the centre
point of the brain. The range of values used for both radial and tangential conductivities were
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from the minimum compact skull (0.002 S/m) to the maximum spongiform skull (0.043 S/m)
used in the previous experiments. This was to accommodate for a wide range of possible
skull compositions, from entirely compact skull to significant proportions of spongiform
bone.

We analysed the sensitivity of the ROM-pEIT framework to anisotropic conductivities in
the skull by assessing the RE in each compartment. To achieve this, we created 100 synthetic
measurements using the full-order model with noise. The model was adapted by merging
the compact and spongiform skull and given an anisotropic conductivity in the same range
used for ROM. These measurements were then used to run the IP with a new reduced model,
trained with radial and tangential conductivities in the whole skull. We plotted the RE in the
estimation for each tissue compartment to assess the sensitivity of the reduced basis IP to the
radial and tangential components of the skull conductivity. As before, the IP was run as a
6-parameter estimation, this time estimating the radial and tangential values, replacing the
compact and spongiform skull conductivities.

To create an anisotropic model we first defined a conductivity tensor with a basis that is
radial and tangential with respect to the surface of the scalp as

𝝈 =
©«
𝜎𝑡 0 0
0 𝜎𝑡 0
0 0 𝜎𝑟

ª®®¬ , (5.3)

where 𝜎𝑡 is the tangential component and 𝜎𝑟 is the radial component of the conductivity. To
use this for the construction of the stiffness matrix, this tensor has to be transformed back to
a Cartesian basis using two rotations described by the matrix

𝐶 =
©«
𝑐𝑜𝑠(𝜃)𝑐𝑜𝑠(𝜙) −𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)𝑠𝑖𝑛(𝜙)
𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠(𝜙) 𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜃)𝑠𝑖𝑛(𝜙)

−𝑠𝑖𝑛(𝜙) 0 𝑐𝑜𝑠(𝜙)

ª®®¬ , (5.4)

where C is a change of basis matrix, and 𝜃 and 𝜙 are angles of rotation which are specific to
each element and calculated using the difference between a vector from the element and the
closest triangle on the mesh surface to that element and the Cartesian basis. The tensor is
transformed by

𝝈𝑐𝑎𝑟𝑡 = 𝐶𝝈𝐶
𝑇 . (5.5)
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5.3.4 Experiment 3 - Response to Reference Choice

A common reference electrode is standard in EEG setups to ensure unbiased readings between
amplifiers. This electrode is most often fixed in place at the vertex (electrode Cz). However,
it has been suggested that a more flexible reference could yield fewer artifacts in EEG
data [86]. Although choosing a reference for the potential measurements has been investigated
thoroughly through the lens of “re-referencing" techniques in EEG, to our knowledge, no
such analysis has been performed for pEIT. Furthermore, although re-referencing allows the
use of average reference (AR) and the reference electrode standardisation technique (REST),
these methods still encode the information of the originally referenced potentials and, as
such, are impacted heavily by the use of realistic head models [39, 109, 200]. In this context
we used ROM-pEIT to investigate the impact of the original choice of reference electrode in
a situation of missing spongiform bone information.

Firstly, we trained a reduced model with the compact and spongiform bone merged into a
single whole skull compartment. The conductivity ranges used in training for each tissue were
the interquartile ranges in Table 4.1 where the whole skull compartment was trained between
the lower quartile for compact bone and upper quartile for spongiform bone. We created a
current injection protocol comprising 106 injection-extraction electrode pairs with a single
common reference. These pairs included a set of 106 unique injection electrodes, where
the extraction electrodes were selected to be the opposite side of the head (with electrodes
repeating no more than twice). This strategy was chosen to obtain maximum coverage of
the head and probe deep tissues [60]. We repeated the protocol sequentially changing the
reference to every electrode position (and omitting pairs involving such an electrode). This
resulted in 133 sets of synthetic measurements with a unique reference electrode in each set.
Next, we ran the IP for each electrode pair in the protocol in all sets, totalling over 14,000
IPs.

To assess the effect of the reference selection on the estimations, we monitored the
standard deviation in the IP skull estimations in each set and then plotted this value on the
reference electrode of that set, before interpolating across the skull. We then reported the
estimations and standard deviations for the reference electrode that has the most variability.

5.3.5 Experiment 4 - Staged Optimisation

During the inverse problem, the interior-point optimisation explores the 6-dimensional
parameter space, searching for the global minima. However, it is unclear how complex the
solution manifold in this many dimensions is, and therefore how many local minima the
optimisation could be caught in. In this experiment, we utilise a custom pEIT protocol to
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extract more accurate conductivity estimations with the aim of simplifying the solution space
to search. To do this, we adapt the protocol in two ways that are now possible thanks to
ROM. The first is the use of a staged optimisation process, eliminating the scalp and compact
skull from the final optimisation step and therefore reducing the parameter space. The
second is combining the inverse problems of each injection pattern into a single simultaneous
optimisation, utilising the measurements from all patterns at once.

Up to this point we have considered injection patterns that contain one injection electrode
and one sink electrode, separated by a considerable distance for the majority of patterns. In
the real data case, the injection and sink electrodes were opposite sides of the head to the
probe deeper tissues (e.g. grey matter and white matter). For injection and sink electrodes
that are close together (i.e. adjacent), it can be shown that the sensitivity of a pattern to deeper
tissues is reduced due to most of the current being shunted through the scalp [64, 2]. However,
we propose using this shunting to our advantage, by performing two sets of measurements.
The first utilises 20 adjacent patterns, where the injection electrode is kept constant and the
20 patterns are chosen where the sink electrode is adjacent or close to the injection electrode.
The injection electrode in this case was chosen to be one approximately half way between the
vertex electrode Cz and the left-side preauricular point. The second set was the same used
for the synthetic data previously (i.e., 132 injection pairs with a common sink electrode). All
pattern measurements were referenced using AR. The staged optimisation can be broken
down into the following steps:

1. Estimate the scalp conductivity using the adjacent injection patterns. Fix this conduc-
tivity for the following optimisations.

2. Estimate the compact skull conductivity using the second set of patterns (i.e. the same
as previous experiments). Fix this conductivity for final optimisation. The initial guess
was the result of the previous estimation.

3. Estimate the remaining tissue conductivities all together with the second set of injection
patterns. The initial guess was the result of the previous estimation.

This process was repeated for 50 random conductivity samples and for up to 50 snapshots
used to build the reduced model, where the data was generated synthetically. For each
snapshot number, the average relative error in the estimations was plotted for each tissue.
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Fig. 5.1 Average (black lines) and maximum (red lines) of the RE in the estimation of the
conductivities across multiple electrode pairs and for 10 sets of synthetic measurements
with uniformly distributed conductivity samples. The red and black dotted lines in each
figure correspond to the traditional method and the red and black full lines with crosses and
triangles respectively are for ROM.
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Fig. 5.2 RE in the conductivity estimations for each tissue as a function of the standard
deviation of the Gaussian noise added to the measurements used in the IP.

5.4 Results with Synthetic Data

5.4.1 Experiment 1 - IP Performance

Displayed in Fig. 5.1 is the average and maximum RE in the conductivity estimations for
ROM and the traditional method across 10 samples and all electrode pairs. It can be seen that
there are improvements in computational cost and accuracy of the ROM-pEIT framework
compared to the traditional method. This is shown for the first three compartments of the
head model (scalp, compact skull and spongiform bone) and the scalp and spongiform bone
separately. Focusing on the three compartment graph (Fig. 5.1c), we can see that the RE in
the IP estimation averaged across compartments, injection patterns, samples of parameter
space improves by nearly an order of magnitude, with the number of linear systems to solve
reducing by an order of magnitude too. The maximum error for any injection pair for any
sample is displayed in red crosses and also demonstrates an improvement over the average of
the traditional method.

The number of injection pairs removed from the traditional estimations due to erroneous
results was approximately 30 for two of the samples and none for the rest. All injection pairs
were preserved for the ROM-pEIT IPs.
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Fig. 5.3 RE for each individual compartment as a function of snapshots across 100 samples
and 132 injection pairs using the ROM-pEIT method.

It is useful to separate all of the conductivities to see which are contributing the most to
the REs seen in Fig. 5.1c. The RE for the scalp is shown in Fig. 5.1a, where the improvement
in accuracy and computational effort due to the ROM-pEIT framework is most apparent
with a reduction in systems to solve from 250 to 10 maintaining an order of magnitude
improvement in RE. In Fig. 5.1b, we see that the traditional method cannot obtain a reliable
estimate for the spongiform bone with the optimisation implementation used. However, the
ROM-pEIT framework is able to estimate the conductivity of the spongiform bone down to
an average RE of almost 1% and a maximum RE of 5%.

As previously mentioned, the benefits of using ROM become most clear during a 6-
parameter search where the IP can optimise for all compartments in the model. Fig. 5.3
shows the average RE for ROM but for all tissue compartments, as a function of the number
of snapshots used in the estimation. The figure shows us that with ROM and the optimisations
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Fig. 5.4 Sensitivity Analysis across 100 samples for the reduced basis anisotropic model.
The estimations are for the full 6-parameter space using 30 snapshots for each electrode pair.
Each box plot shows the estimation error in a single tissue that is labelled.

it allows, the IP is able to estimate CSF, GM and WM in the brain to approximately a 3%, 4%,
7% RE, respectively. It is also worth noting that the coefficient of variation in the electrode
estimations was between 0.001 and 0.1 for all tissues after 30 snapshots.

From Figs. 5.1 and 5.3 it is clear that the accuracy of the IP with ROM stops improving
after 30 snapshots. Therefore, we chose to only train the anisotropic reduced model in
Experiment 3 up to this number to perform the sensitivity analysis.

Each traditional method function evaluation required approximately 250 s for each
PCG followed by 1200 s for the full gradient calculation (consisting of 3 additional PCGs
and 3 large matrix calculations). Each PCG in a greedy algorithm took a similar time
as the traditional method plus 10 seconds for the overhead of calculating the bound and
orthonormalising the solution to the transformation matrix.
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Scalp Skull CSF GM WM
True 369 (5.9/38) 1626 421 134
Est. 362 ± 22 8.7 ± 1.2 1602 ± 157 325 ± 98 101 ± 25

Table 5.1 Ground truth and estimated conductivities in the situation of a missing spongiform
bone compartment. Units in mS/m.

An additional substantial speed-up was achieved in the greedy algorithm by utilising
the reduced model at the previous iteration to provide an initial guess for the PCG method
when solving for a snapshot. As snapshots are added to the reduced model, the initial guess
improves, leading to faster PCG solutions. Practically, this means that the time taken for one
snapshot is halved after approximately 40 snapshots.

Times varied substantially due to innate variability in compute nodes, even of the same
species and differences in convergence speeds. However, we found that the traditional
method took, on average, 30-40 hours to converge using 75 function evaluations while
trivially parallelised on a cluster. Conversely, the greedy algorithm used to train the reduced
model took only 1.5 hours to reach 40 snapshots. The resulting 132 ROM-pEIT IPs (one for
each pair) took approximately 20 seconds to complete in series on a single compute node.

Fig. 5.2 shows the response of the IP estimations for each tissue to varying intensities
of noise, while utilising the interior-point optimisation and ROM-pEIT FPs. As expected,
the RE in most tissues increase as noise increases. Of particular interest, is the RE in the
spongiform bone, which remains stable under noise that is 1.5 orders of magnitude greater
than the noise obtained from real measurements [63].

5.4.2 Experiment 2 - Anisotropy

The results of the sensitivity analysis described in Section 5.3.3 are displayed in Fig. 5.4.
From this analysis we can see that the framework presented is sensitive to the tangential
and radial conductivity components of the skull while remaining sensitive to the inner
compartments.

5.4.3 Experiment 3 - Response to Reference Choice

Fig. 5.5a displays the ratio of spongiform bone to compact bone in the skull from 0 to 1.
This shows the distribution of the spongiform bone within the skull. Plotted across the skull
in Fig. 5.5b are the standard deviations in the estimations for the skull compartment across
electrode pairs as a function of the reference electrode used. In other words, the colour at
each point on the skull represents the variability in 106 IP skull estimations if the reference
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Fig. 5.5 a) Ratio of spongiform bone to compact bone that makes up a given point in the
skull. b) Standard deviation (S/m) in the skull estimations in all electrode pairs plotted as a
function of the reference electrode used and then interpolated over the skull.

electrode were placed over that point. Note that the bright yellow areas clearly correlate with
the spongiform bone information that is missing, indicating that when the reference electrode
is close to a modelling inaccuracy, the estimations become less stable. The generation of
Fig. 5.5b required over 14,000 IPs and at least 10 million FPs, needing only 30 minutes to
complete on a single PC (Intel(R) Core(TM) i5-6500 CPU at 3.20GHz). Within reason, this
analysis could not be possible without ROM-pEIT.

Table 5.1 contains the ground truth conductivities for the synthetic measurements and the
estimated conductivities with standard deviations for all pairs when considering the reference
electrode corresponding to the bright yellow spot in Fig. 5.5. Note that the standard deviation
is high in all compartments, as well as the skull, demonstrating the impact of incorrect skull
modelling on the conductivity estimations.

5.4.4 Experiment 4 - Staged Optimisation

Fig. 5.6 displays the average conductivity estimation for each number of snapshots in the
reduced model across 50 random conductivity samples. Through a comparison with Fig. 5.3,
there is clearly a substantial improvement of almost one order of magnitude in spongiform
bone estimation, with mild improvements in scalp and white matter conductivities. The effect
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Fig. 5.6 Average RE in each tissue for 50 conductivity samples when estimated using the
staged ROM-pEIT protocol.

on the spongiform bone estimation accuracy was only noticed when using the combination
of simultaneous pattern estimation and staged optimisation. Furthermore, the affect on the
spongiform bone estimation was far less profound when steps 2 and 3 were merged into one
estimation. It is unclear why this was the case.

We set the maximum number of function counts per optimisation to 3000, however,
we found no improvement when increasing this number. This was especially true for each
estimation after the first, given the initial guess improves with each stage.

5.5 Validation with Real Data

We use real pEIT data from 44, 46 and 52 year old male subjects labelled AM (Atlas Man),
CA (Caucasian Atlas) and AA (Asian Atlas), respectively. The head tissues for these subjects
were segmented from a T1-weighted MRI co-registered with a CT scan and the FEM models
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were generated with the iso2mesh package [138]. The data was acquired using a 128 sensor
net from EGI (Electrical Geodesics, Inc.) with one reference electrode (Cz) where 62 unique
injection patterns were applied using a current of ±20 𝜇𝐴 at a frequency of 27 Hz. Further
details on the image processing and data acquisition are described in Fernández-Corazza
et al. (2018) [63]. The data was cleaned by removing measurements from 3 bad channels
and removing patterns whose data was also noisy. This resulted in 36, 47 and 42 patterns
with usable data, respectively, each with one injection, one extraction and 123 measurement
electrodes. The injection and extraction electrodes were approximately diametrically opposite
sides of the head.

All research protocols involving human subjects complied with the ethical standards in
the Helsinki Declaration of 1975 and approved by EGI’s Institutional Review Boards (IRB).
Informed consent was obtained for each subject.

The ranges used to train the reduced models for each subject were initially expanded to
the minimum and maximum conductivities given in Table 4.1. We then trained secondary
reduced models with the conductivity range for spongiform bone expanded to [0.001, 0.3]
S/m to include the values estimated by Fernández-Corazza et al. (2018).

To replicate those results, we first ran the IP considering the scalp, compact bone and
spongiform bone compartments to be estimated and all others fixed to the same values used
in [63] for both ranges of conductivities. We then ran the IP considering all compartment
conductivities to be estimated simultaneously, for the ranges given in Table 4.1.

5.5.1 Results

Table 5.2 shows the average and standard deviation in the conductivity estimations obtained
for the three participants considering the full conductivity ranges in Table 4.1. Similarly,

Subject Scalp (mS/m) Compact Spongiform
bone (mS/m) bone (mS/m)

AM 243 ± 45 5.5 ± 2.0 34 ± 14
CA 287 ± 62 4.8 ± 1.3 48 ± 30
AA 360 ± 88 4.8 ± 1.9 11 ± 17
AM 214 ± 58 5.5 ± 2.5 195 ± 128
CA 277 ± 64 4.1 ± 1.1 225 ± 103
AA 345 ± 98 4.8 ± 2.1 174 ± 143

Table 5.2 Conductivity estimations by subject data and compartment considering all intracra-
nial compartments fixed using reduced model trained in the ranges from Table 4.1 (top three
rows) and the expanded spongiform range (bottom three rows).
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the values estimated considering the expanded spongiform bone range can also be found
in Table 5.2. These values are in strong agreement with the results obtained by Fernández-
Corazza et al. (2018) who obtained (for AM, CA and AA, respectively) scalp values of
249, 291, and 362 mS/m and compact skull values of 4.16, 4.22 and 4.25 mS/m with
similar standard deviations [63]. Table 5.3 contains the estimations for all tissues, found
simultaneously, considering the ranges in Table 4.1. Note that in the interest of lowering
the standard deviations of the estimations, we arbitrarily expanded the ranges used to train
the reduced models for all tissue compartments and found no improvement. Similarly, we
increased the number of snapshots taken to build the model up to 130 and still found no
improvement over estimations made with 40 snapshots. The spongiform bone estimations are
more difficult to compare, given the change in the estimations when the training ranges were
altered, and the significant standard deviations in the estimations across the electrode pairs,
suggesting estimations instability. However, the coefficient of variation in the spongiform
bone estimation is similar to that obtained by Fernández-Corazza et al. (2018).

It took approximately two hours to train each of the models up to 40 snapshots and 10
seconds to run all IPs for each subject. This is much faster than the estimations obtained by
Fernández-Corazza et al. (2018), which took days.

5.6 Discussion

We have presented a framework for the solution of the pEIT-FP using ROM, where we have
demonstrated a significant reduction in computational expense, resulting in a framework at
least 30 times faster than that of the current state-of-the-art approach. Similarly, we have

Subject Scalp (mS/m) Compact Spongiform
bone (mS/m) bone (mS/m)

AM 237 ± 42 6.4 ± 2.5 35 ± 14
CA 271 ± 64 6.0 ± 2.7 45 ± 29
AA 337 ± 94 5.9 ± 2.8 18 ± 27

CSF (mS/m) GM (mS/m) WM (mS/m)
AM 1455 ± 145 303 ± 278 118 ± 72
CA 1448 ± 138 231 ± 219 114 ± 63
AA 1433 ± 219 219 ± 259 99 ± 60

Table 5.3 Conductivity estimations of all compartments by subject data using reduced model
trained in the ranges from Table 4.1.
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shown that huge improvements can be achieved in conductivity estimations for all tissues,
many previously unreachable by pEIT in a reasonable time frame due to computational effort.

5.6.1 Synthetic Data

We have validated this approach experimentally by testing both methods on a realistic
6-layered head model to emulate typical use cases. Fig. 5.1 exhibits the speed up and
accuracy improvement of using ROM-pEIT over the traditional method when the inner tissue
conductivities are assumed to be known. A more realistic scenario would be that the inner
tissue conductivities are unknown. In this instance, we found that after 200 full order systems
solved the error in scalp estimations was half an order of magnitude higher than that achieved
assuming the inner conductivities known (Fig. 5.1). We also found that the spongiform bone
could not be estimated reasonably for the traditional algorithm.

For models that have been built from only T1-weighted MRI images, where segmenting
spongiform bone in the skull accurately is not feasible, it has been shown to reduce errors in
the EEG FP and IP when the anisotropy of the skull conductivity is considered [193]. In this
context, ROM-pEIT also extends to such a situation. Fig. 5.4 also shows us that this IP is
more sensitive to the radial conductivity than the tangential conductivity, which is consistent
with reported findings [60]. The reduced anisotropic model is also bounded and we found
that, for 30 snapshots, the mean Δ𝑅𝐸 (𝝈) was approximately 10−2 and the mean RE(𝝈) was
10−4.

The interior-point optimisation afforded by the use of ROM-pEIT FPs was chosen based
on its flexibility to handle large and small scale problems and the accuracy it provided in
the IP estimations. In Experiment 2, this algorithm performed well, however, it is useful
to assess its stability in the presence of different intensities of noise. Fig. 5.2 displays the
results for this analysis. For the purposes of pEIT, this optimisation technique appears robust,
however, other methods could be explored. With the speed of ROM-pEIT the analysis of
other optimisation algorithms would become a less onerous task.

Furthermore, we provided evidence that the choice of reference electrode clearly effects
the amount of standard deviation in the estimates substantially, as shown in Fig 5.5b. This
value is most affected over areas of modelling inaccuracy and vary by as much as 1.5 times
the average. Fig 5.5b demonstrates that errors in the potential at the reference electrode in
the FP are propagated to all other electrodes, resulting in larger standard deviations in the
estimations of each IP. Therefore, regardless of re-referencing scheme, the original reference
can have a substantial impact when modelling inaccuracies are present.

This observation has wide implications in the field of EEG, TES and pEIT given that
the reference electrode is often fixed in commercial electrode arrays to the centroparietal
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midline [86]. Therefore, we suggest this standard practice be revisited to allow more flexible
control of the position of the reference electrode.

It is worth noting that ROM-pEIT is useful for a pEIT setup with any number of electrodes.
Here, we have provided a sensitivity analysis of ROM-pEIT applied to a typical pEIT setup,
however, to further assess the validity of this methodology under different pEIT conditions,
this analysis should be extended. This extension would include the impact of electrode
position error, different sensor layouts and numbers, and contact impedance variability.
These parameters are beyond the scope of this thesis, however, they will be subject to further
investigation.

In addition, we found that, even with noiseless data, the estimation accuracy of all tissues
was limited by the optimisation algorithm due to the complexity of the solution space being
explored. This could b a limitation of the interior-point algorithm although other methods
were briefly explored and no additional accuracy was found. For example, the particle
swarm/multi-start approach was briefly explored, where the same optimisation is run with
many combinations of starting conditions. However, this saw little benefit and the number
of particles needed to sample a 6-dimensional space meaningfully was questioned. This
difficulty was partially solved with the use of adjacent injection patterns and a custom pEIT
protocol with staged optimisation, where the spongiform bone estimation improved, as
exhibited in Fig. 5.6.

5.6.2 Real Data

The ROM-pEIT framework has demonstrated strong agreement with the traditional method
for the real pEIT data from three subjects [63]. It was expected that, given the additional
freedom of the other compartments being estimated, the standard deviation in the estimations
across the electrode patterns may reduce thanks to the entire model becoming more individu-
alised, therefore removing errors introduced by incorrectly assigned conductivities. In this
context the ROM-pEIT framework has proven in simulated data that searching the parameter
space of this dimensionality is trivial. However, as seen in Tables 5.2- 5.3, the coefficient of
variation of the spongiform bone, CSF, GM and WM all remained high. When the ranges
were expanded, the coefficient of variation in all tissues remained approximately the same.

Combined with the analysis of the reference placement and the importance of anatomi-
cally correct head models, confirmed in Table 5.1, this leads us to hypothesise that a standard
modelling assumption could be causing the variability in the estimations of a single subject.
Given the standard deviations in the estimations of all compartments, the assumption of a
homogeneous scalp layer could be playing a role. This may be reasonable to challenge due
to its complex structure [58], role in EEG source localisation [187] and fat content [144].
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Additionally, sutures in the skull have been shown to significantly influence the EEG
FP and IP [115]. Although its effect on pEIT is less certain, it is likely to have a similar
effect given the large differences in conductivity between pure compact bone in the skull and
sutures [41].

From these observations, an investigation into the common modelling assumption of a
single homogeneous scalp layer is warranted, and could have wide implications for the field
of EEG, which relies heavily on these models. Crucially, this strongly emphasises the need
of pEIT and specifically the ROM-pEIT framework to challenge modelling assumptions.
Without these tools, investigations of this nature would be incredibly taxing. We believe the
framework we present is an essential tool for researchers in this context. Furthermore, as
shown with the synthetic data, estimation stability is affected significantly by the presence
of model inaccuracies. This instability can even be manipulated by the positioning of the
reference electrode. The instability in estimations, which would be represented by large
standard deviations in the conductivity estimations across electrode pairs, could be a key
metric for the assessment of the validity of modelling assumptions.

The real data used here was taken from male subjects with similar ages, between 44 and
52. This could be a transitional period for skull conductivity given that many sutures in the
skull are hypothesised to decrease in conductivity up until this age range approximately [115].
This may explain why subject AM has a higher skull conductivity than the others, being a
younger subject. The methodology we present could be used to aid research into changes
in skull conductivity with age, particularly given that reduced models could be reused and
therefore subjects could be monitored over time with ease.

5.6.3 Related Work

Some efforts have been made to avoid the computational expense of pEIT while retrieving
subject-specific conductivity values. Akalin Acar et al. (2016) [5] and Costa et al. (2017) [46]
demonstrated techniques for the simultaneous estimation of the conductivity of the skull
and the location of the source of electrical activity. Others have used a pre-calibration
technique for combined EEG and MEG where an initial conductivity value for the skull is
given and then tuned before the source localisation by using somatosensory evoked potential
data [198, 16, 10]. However, these techniques have only been demonstrated for estimating
the skull and brain conductivities. Moreover, the method presented in [5] which uses only
EEG data requires computational effort to converge, reported to be in the order of days by
the authors. Using ROM-pEIT allows all compartments to be estimated simultaneously in a
reasonable time frame.
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The computational costs of ESI related methods become particularly prohibitive when
performing sensitivity analyses, where effects of conductivity uncertainty in specific head
tissues is explored. One way this problem has been circumvented is through the use of
generalized Polynomial Chaos (gPC) expansions, where a result distribution is described by a
linear combination of multivariate orthogonal polynomial basis functions and corresponding
coefficients [155, 184]. Similarly to ROM, this method involves the calculation of the model
output at multiple points on a sparse grid with specific parameters required to weight the coef-
ficients. This technique was utilised by Schmidt et al. (2015) [155] for a sensitivity analysis
in transcranial Direct Current Stimulation (tDCS) and by Vorwerk et al. (2019) [184] in EEG.
Generalised PC has also been used for a conductivity uncertainty analysis in transcranial
magnetic stimulation (TMS) and tDCS by Saturnino et al. (2019) [153]. Although resulting
in an essential reduction in computational effort for these experiments, they still required the
evaluations of the full FP at hundreds of points in parameter space for gPC convergence. The
framework we present requires only a few dozen full order FP evaluations to reach a low RE
in the FPs and IPs.

A closely related work by Maksymenko et al. (2020) also demonstrates a reduced order
technique for fast solutions of the EEG FP [111]. Similarly, this framework used a set of
full-order solutions at points in parameter space chosen via a greedy algorithm. This model
could generate approximate lead field matrices for any conductivity set in parameter space
very rapidly. There are, however, some notable differences between this framework and the
one that we present in this work. Firstly, the implementation differs, where the former is
applied to the EEG FP and solved using the Boundary Element Method with a small number
of nodes in a model with 3 tissue compartments. Although it is suggested that it could equally
be applied to FEM, this is not shown. Fundamentally, we present a rigorous 𝑎 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑖
bound on the error in the reduced FP solution, and explicitly show this using a set of samples
across the parameter space. Whereas, in the aforementioned publication [111], the error is
not properly bounded.

Similarly, work by Codecasa et al. (2016) [44] has merged the techniques of ROM and
gPC to perform an uncertainty analysis in TMS, where the model order reduction is used
to guide the selection of the conductivity samples used for the polynomial chaos expansion.
This work resulted in a significant speed up over gPC with regression, demonstrating the
power of reduced order model techniques. There are a few differences in our work that make
it distinguishable from this, such as a bound on the approximation error, application to pEIT,
and the investigation of 3 additional tissues (scalp, compact skull and spongiform skull).

For studies involving gPC, where a model is trained using hundreds of support points,
all were sensitivity analyses. Due to the nature of this work it is essential to have a highly
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trained model. However, for personalised conductivity field reconstruction, there is more
interest in reducing the time from measurement to result. This is one of the strengths of
ROM-pEIT. Shown in Figs. 5.1 and 5.3, only 10−30 support points per injection pattern are
required for accurate estimations in all tissues.

McCann et al. (2019) showed that spongiform bone varies between subjects and mea-
surement techniques and that few attempts have been made to measure the conductivity of
this tissue 𝑖𝑛 𝑣𝑖𝑣𝑜. Fernández-Corazza et al. (2017) [63] used pEIT but with a significant
standard deviation and Aydin et al. (2014) [16] used the pre-EEG calibration method. The
latter found a spongiform conductivity of 84 mS/m [16] while the former found 173±151
mS/m [63]. In the case of the former, a mixture of random error and numerical error (both
present when using real data) may be responsible for the large standard deviation, however,
the comparisons we draw above only consider numerical error. Clearly, 𝑖𝑛 𝑣𝑖𝑣𝑜 measure-
ments of spongiform bone have been challenging and the distribution of conductivity of this
tissue among the population remains poorly understood as a result. The framework that
we present is able to estimate spongiform bone to a high level of precision 𝑖𝑛 𝑣𝑖𝑣𝑜 at the
frequencies used for ESI, which as of writing has not been achieved by any other validated
method in the literature. Furthermore, to the best of our knowledge, only two studies on
non-invasive 𝑖𝑛 𝑣𝑖𝑣𝑜 estimations of the CSF are present in the literature, with large errors in
the estimations reported [127, 67]. Although, highly invasive in vivo measurements of CSF
have found very little variance over a handful of subjects, non-invasive methods such as the
one presented could verify this with large studies [21].

It is worth emphasising the difference between imaging EIT and pEIT. For the imaging
modality of EIT, dimensionality reduction techniques have been explored in the form of basis
constraints [177] and autoencoders [159], amongst others. Fundamentally, these approaches
are tuned towards imaging EIT, which is a different type of problem to parametric EIT,
distinguished by how ill-posed the IP is. For imaging, the conductivity at each pixel/voxel is
reconstructed from only a handful of electrode measurements, whereas, in parametric EIT,
only a handful of conductivities are estimated from as many as 256 electrode measurements.
In the case of both aforementioned techniques, an approximate solution manifold is made,
similarly to ROM. However, with basis constraints, the support points are hand selected,
whereas, with autoencoders, the number of support points required is over 20,000 for a
16-channel system. The ill-posed nature of imaging EIT also requires stabilisation techniques
such as Tikhonov regularisation [178]. This type of stabilisation does not apply here.
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5.6.4 Future Work

A key feature of this work is the certified upper bound on the error in the FP. Although it
guarantees a maximum error for each snapshot number, its usefulness as a stopping criteria
is limited given the sharpness of the bound. A further challenge is that drawing a connection
between the error in the FP and IP is not trivial. However, from Figs. 5.1 and 5.3 it is clear that
optimal performance was achieved after 30 snapshots. Additionally, when the error between
the full-order and the RB signal becomes much smaller than the noise, eq. (3.53) becomes
approximately the norm of the noise over the electrodes. Relative to the measurements,
that becomes approximately 4− 5× 10−6 RE(𝝈) (for the noise we have used), which on
Fig. 4.4 corresponds to about 30 snapshots, as observed in the IP. For our head model, this
connects the observations in the FPs and IPs and therefore we suggest 30 snapshots as the
optimal number and this can serve as a stopping criteria. However, this could change between
participants, and more work is needed to confirm how variable this would be.

However, we emphasise that this choice in snapshot number could change depending
on the head model discretisation, level of noise in the measurements, and the number of
conductivities to estimate (as this will affect the dimensionality of the parameter space).
When applied to the head models of the real participants, we found no change in estimation
stability past 40 snapshots. This further supports the idea that we should challenge our
modelling assumptions. Nevertheless, a full analysis to characterise this value is due.

McCann et al. (2022) also investigated the effect of sutures on the EEG FP and IP and
found that omission of the sutures from a head model led to significant source localisation
errors [115]. It is unclear how the inclusion of sutures in a realistic head model may
affect the training of the reduced order model, however this should be considered in future
models. Moreover, with the possibility of estimating inner tissue compartments, the impact
of including sutures on the estimation of the inner compartments could be assessed.

TDCS has been shown to produce a greater intensity and focality of the electric current
at a point of interest when highly accurate head models are considered [188] and optimal
injection patterns are generated [148]. ROM could reduce the time constraints involved and
in an online process estimate the conductivities and optimal injection patterns together almost
instantly. Future work could involve producing a pipeline for TDCS such that the number of
measurements taken from the patient are kept to a minimum.

Another avenue for future development is exploring the effect of injection patterns on the
estimation accuracy. The staged optimisation we present partially explores this, however, it
introduced many variables, with unknown effects if changed. For example, the position of
the injection electrode for the for the first set of patterns was chosen arbitrarily, and changing
this position may effect the estimation of the scalp. Similarly, the second set were chosen to
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be comparable with the first experiments in synthetic data, however, they could possibly be
chosen to be more sensitive to the inner tissues (e.g. white matter) and possibly improve the
white matter estimations. A full sensitivity analysis on the effect of injection pattern protocol
on the estimation accuracy in each tissue is warranted. Such investigations are now made
much more accessible by the ROM-pEIT framework.

Many modern EEG systems have the capability of estimating the contact impedance
of each electrode placed on the scalp, while some work has attempted to reconstruct the
impedances form EIT data [35, 181]. The contact impedance for the electrodes in this work
were set as constant, justified by previous work, and the small size of the electrodes. However,
it is possible this reconstruction could be added to the framework and this may be explored
in future.

In conclusion, this new framework embodies a fresh approach to pEIT that will change
its accessibility and reliability, recasting its role in the generation of personalised realistic
head models used for ESI methods.

The software developed for this research can be found here:
https://github.com/09nwalkerm/ROMpEIT.

5.7 Summary

Chapter 4 described the training and accuracy of the reduced model for its use in the pEIT-FP.
This chapter has explored its incorporation into the pEIT-IP and the affect this has on the
accuracy and speed of the technique as a whole. A new framework, has been suggested
utilising the interior-point optimisation method to solve the IP, replacing the traditional
gradient-assisted Newton optimisation. This framework was then extensively tested in a
variety of common use cases. The main findings of this chapter can be summarised as
follows:

• The IP performance of ROM-pEIT framework (including training) is significantly faster
than the traditional method. For a 3-parameter optimisation in the traditional method,
ROM-pEIT is approximately 30 times faster, even when estimating 6 parameters
simultaneously. Due to its infeasibility, a 6-parameter search could not be performed
with the traditional method, showing the significant improvement obtained by using
ROM-pEIT. Consequently, the new capability to estimate every tissue in the head
model has been unlocked, allowing a far more effective characterisation of individual
tissue conductivities.
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• It is shown that the framework presented is also robust in the presence of high amounts
of noise. For Gaussian noise with a standard deviation 10 times greater than that found
in real measurements, the relative error in the conductivity of the scalp is less than
3×10−3 when using the new framework.

• The use of an anisotropic conductivity in the skull was also demonstrated in the new
ROM-pEIT framework, with similar results regarding time saved and the accuracy of
the tissue conductivities estimated.

• With a speed-up of orders of magnitude, new experiments can be designed, previously
impossible in a reasonable time frame. This is demonstrated by assessing the impact
that the choice of reference has on the standard deviations in the estimations of all
injection pairs, in the context of missing spongiform bone information. This experiment
was performed by training the reduced models for pEIT without any spongiform bone
in the skull and generating synthetic measurements with the spongiform in the skull.
The results show that the choice of reference location has a noticable impact on the
standard deviation of the estimates from each injection pair.

• ROM-pEIT was also validated using real pEIT data, but comparing the estimations
with the previous state-of-the-art method. Our results agree strongly.

• Analysis of the standard deviations in the real data estimations suggest that there is
something missing from our models. This discovery could only be possible with
ROM-pEIT, now that the computational limitation has been removed.

• With the computational limitation removed, the complexity of the solution space
hinders further accuracy improvements as the optimisations becomes stuck in local
minima. To overcome this, new pEIT protocols were explored where injection patterns
that target the scalp conductivity were used to reduce the dimensionality of the solution
space, thus improving the accuracy of further IPs. This expanded pEIT protocol led to
improved spongiform bone estimation.



Chapter 6

Fast Simultaneous Conductivity
Estimation and Source Localisation in
EEG using Reduced Order Modelling

6.1 Overview

Previous chapters have detailed ROM applied to the pEIT-FP. This chapter utilises the same
reduced models with the adjoint problem for the EEG-FP. The Primal-Dual Equivalence is
first described, and the pEIT-FP is linked to the EEG-FP. The use of ROM in the pEIT-FP
then being exploited in the EEG-FP is highlighted. This theory is then implemented and
validated in a similar way to previous chapters. The fundamental improvement this allows is
the ability to generate an entire leadfield matrix for any conductivity set. This enhancement
is then utilised for simultaneous conductivity and source localisation.

This chapter has been adapted from the work prepared for publication: Matthew R.
Walker and Leandro Beltrachini, Fast Simultaneous Conductivity Estimation and Source
Localisation in EEG using Reduced Order Modelling. Leandro Beltrachini contributed to the
conceptualisation and programming of the work. All other work is that of the author of this
thesis.

6.2 Introduction

In Chapter 2, we highlighted the importance of realistic head models and their impact on
the ESI techniques that rely on them. In the following chapter, we introduced the leadfield
matrix as a representation of the potentials on the electrodes for many sources, generated by
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computationally expensive EEG-FPs. Given that the number of sources can be very large
(sometimes up to 30,000), generating leafield matrices can be extremely costly. However, the
use of EEG-IPs with head models untailored to a patient have been shown to have practical
implications in real world use cases such as the localisation of epileptogenic zones [122, 119].

The skull is often touted as the most influential tissue in EEG source reconstruction.
The modelling of its structure has been shown to impact the EEG-FP and EEG-IP strongly,
making the case for anatomically accurate head models to be used [49, 119, 104, 42, 185, 175,
106, 19, 115]. Often overlooked is the use personalised conductivity parameters for the skull
and other tissues, due to the lack of individual specific information. In this case literature
values are often used as a substitute. However, it has been shown that the mischaracterisation
of skull conductivity has a significant impact in EEG (as well as TES) and is as important as
the structure [120, 153, 155, 18, 6, 172]. In the case of erroneous conductivities assigned to
the skull, there is a clear impact on the depth the reconstructed source [184].

Concern over the skull conductivity is justified given the variations reported in the
literature values from in vivo and in vitro measurements [41, 7, 8, 170, 116]. However,
significant work has shown that all tissue conductivities impact the EEG-FP and EEG-IP,
motivating the need for a more involved approach to conductivity estimation [184, 187, 81,
83, 193, 88]. One way to achieve a decent approximation of multiple tissues is through the
use of pEIT (specifically ROM-pEIT, as shown in previous chapters [189]) thanks to the
strong SNR in the signal [63, 53, 103, 79, 67, 47, 149, 125, 43, 132]. Unfortunately, this is
not yet standard practice in the field, largely due to lack of equipment.

To partially address this problem, many have suggested the use EEG and MEG data
such as SEP/SEF (somatosensory evoked field) readings to calibrate the skull and/or brain
conductivities [10, 79, 23, 93, 198, 157, 70, 16]. SEP/SEF data is an attractive option because
of how well it has been characterised in the literature as has been shown [195, 11, 10, 9].
To circumvent the cost associated with MEG, others have presented frameworks for the use
of SEP-only data to calibrate conductivities [80, 173, 111]. Some have even suggested the
use of any EEG data to tune conductivities [5, 101, 46]. Additionally, avoiding the need
for calibration of the skull entirely has been explored through the selection of the inverse
algorithm [163] and using Bayesian inference [145, 101].

A common disadvantage amongst all of these these methods is that they are plagued by
computational constraints, often imposed by the calculation of leadfield matrices, limiting
the techniques to calibrate only one or two tissues. The use of fast transfer matrices [196]
and GPU implementations [90] can (and are) employed to aid these efforts, but are still too
computationally expensive to explore more than one tissue for a refined realistic head model.
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In this chapter, we propose the integration of ROM in the adjoint EEG-FP (pEIT-FP)
to generate fast lead field matrices of the order of 3 seconds for any set of tissue conduc-
tivities. This allows the use of optimisation methods for simultaneous source localisation
and conductivity estimation of all modelled tissues with only EEG data. Therefore, we
employ synthetically generated SEP data to calibrate these tissue conductivities in a realistic
6-layered head model and explore the improvements in the FP and IP from the resulting
tuned conductivity sets.

6.3 Methods

6.3.1 Reduced Order Modelling in the Dual Problem

In Chapter 3, we covered the treatment of the EEG-FP as a primal problem with a corre-
sponding dual problem. The key aim of any primal-dual formulation is to isolate the solution
values of interest in the primal problem, and find a dual problem that solves for only these
value. In practical scenarios where these problems are solved numerically, the computational
savings can be significant [75]. In the case of the EEG-FP, we are interested in only the
potential on the electrodes, and the pEIT serves as its dual problem resulting in only 𝐿−1
problems to solve (see Chapter 3 for details).

With the pEIT-FP identified as the dual problem for the EEG-FP, we can now utilise
our ROM-pEIT implementation from previous chapters to provide real-time solutions for
the 𝐿−1 dual problems for any tissue conductivity set. The primal-dual equivalence can be
shown in matrix form quite straightforwardly by multiplying the EEG-FP system eq. (3.41)
by a selection matrix 𝑯 ∈ R(𝐿−1)×(𝑛+𝐿) , obtaining

𝑯𝒖𝑐𝑗 (𝝈) = 𝑯𝑨(𝝈)−1𝒃𝐸𝐸𝐺𝑗 (𝝈), (6.1)

where
𝑯 =

[
0(𝐿−1)×𝑛 | 𝑰 (𝐿−1)×(𝐿−1) | −1(𝐿−1)

]
(6.2)

and 𝒃𝐸𝐸𝐺𝑗 (𝝈) and 𝑢𝑐
𝑗
(𝝈) are the source vector and correction potential for the 𝑗 th source,

respectively. With some simple manipulation is can be seen that 𝑯𝑨(𝝈)−1 from eq. (6.1)
can be transformed into 𝐿−1 pEIT-FP solutions in the following way

𝑯𝑨(𝝈)−1 = 𝑨(𝝈)−1𝑯𝑇 = 𝑨(𝝈)−1𝒃𝐸𝐼𝑇𝑙 = 𝒖𝐸𝐼𝑇𝑙 (𝝈) for 𝑙 = 1, ..., 𝐿−1, (6.3)
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where, the reduced solution found with ROM-pEIT can be used as a replacement for the
full-order pEIT-FP solution:

𝒖𝐸𝐼𝑇𝑙 (𝝈) ≈ V𝑙𝒖𝑁𝑙 (𝝈) = 𝒖𝑁𝑙 (𝝈)
𝑇V𝑇𝑙 . (6.4)

Substituting eq. (6.3) and eq. (6.4) into eq. (6.1) we find

𝑯𝒖𝑐𝑗 (𝝈) = (𝒖𝑁𝑙 (𝝈))
𝑇 V𝑇𝑙 𝒃

𝐸𝐸𝐺
𝑗 (𝝈)︸         ︷︷         ︸

𝒱𝑙 𝑗 (𝝈)

(6.5)

where 𝒖𝑁 (𝝈) can be calculated in real-time using eq. (4.5). With the reduced pEIT-FP
model trained, eq. (6.5) already represents a significant speed-up, given that the biggest
computational expense is now in the calculation of 𝒃𝐸𝐸𝐺𝑗 (𝝈), which is far less than that of a
full EEG-FP. While this can still be intensive when using the subtraction approach, as noted
in Chapter 3, the use of faster source modelling approaches such as the St Venant approach
could improve this.

At this stage, to generate a leadfield matrix with a specific set of tissue conductivities 𝝈
requires solving 𝐿 −1 ROM-pEIT-FPs (requiring milliseconds to compute) and 𝑛𝑠 source
vectors (approx. 1 minute each on a standard PC for the analytical subtraction approach),
due to its dependence on the conductivity. This is still too computationally intensive for
a real-time setting. Therefore, in the next section, we construct source vectors that are
independent of the conductivity, allowing the further splitting of the computational effort.

6.3.2 Affine Decomposition of 𝒱𝑙 𝑗 (𝝈)

The aim of this section is to formulate V𝑇
𝑙
𝒃𝐸𝐸𝐺𝑗 (𝝈) into 𝝈-dependent and 𝝈-independent

components. To achieve this we exploit the property of affine decomposition in the source
vector, a property shared with the stiffness matrix. This allows the 𝝈-independent vectors
to be precomputed, multiplied with V𝑇

𝑙
and then stored for each source for later use in

the real time generation of leadfield matrices. The affine decomposition can be expressed
mathematically as

𝒃𝐸𝐸𝐺𝑗 (𝝈) = 1
𝝈∞ (𝒃𝐶𝐸𝑀𝑗 +

𝑃−1∑︁
𝑝=1

𝜎𝑐𝑝𝒃
𝑣
𝑗 𝑝) + 𝒃𝑠𝑗 , (6.6)

where 𝑃 is the number of tissues in the model, 𝒃𝑝𝑣 and 𝒃𝑠 are the made with the first and
second terms in eq. (3.44) respectively from the analytical method and 𝒃𝐶𝐸𝑀 contains the



6.4 Implementation and Experiments 93

contribution from the final term in eq. (3.44). Multiplying eq. (6.6) by V𝑇
𝑙

leads to

V𝑇𝑙 𝒃
𝐸𝐸𝐺
𝑗 (𝝈)︸         ︷︷         ︸

𝒱𝑙 𝑗 (𝝈)

=
1
𝝈∞ (V𝑇𝑙 𝒃

𝐶𝐸𝑀
𝑗︸    ︷︷    ︸

𝒱
𝐶𝐸𝑀
𝑙 𝑗

+
𝑃−1∑︁
𝑝=1

𝜎𝑐𝑝V
𝑇
𝑙 𝒃

𝑣
𝑗 𝑝︸ ︷︷ ︸

𝒱
𝑣
𝑙 𝑗 𝑝

) +V𝑇𝑙 𝒃
𝑠
𝑗︸︷︷︸

𝒱
𝑠
𝑙 𝑗

, (6.7)

where the matrices 𝒱𝐶𝐸𝑀
𝑙 𝑗

∈ R𝑁 , 𝒱𝑣
𝑙 𝑗 𝑝

∈ R𝑁 and 𝒱
𝑠
𝑙 𝑗
∈ R𝑁 for 𝑙 = 1, ..., 𝐿−1, 𝑗 = 1, ..., 𝑛𝑠 and

𝑝 = 1, ..., 𝑃−1, can be precomputed and stored. The calculation of these matrices will be
referred to as an offline phase, where the complementary online phase consists of linearly
combining 𝒱𝑙 𝑗 (𝝈) with eq. (6.7).

The affine decomposition above is performed for all sources separately. Therefore, the full
decomposition of 𝒱𝑙 𝑗 (𝝈) for 𝑙 = 1, ..., 𝐿−1 and 𝑗 = 1, ..., 𝑛𝑠 results in 𝑃+1 stored matrices
with dimensions 𝑁 ×𝑛𝑠 × (𝐿−1).

6.3.3 Online Evaluation of a Leadfield Matrix

Finding 𝒱𝑙 𝑗 (𝝈) requires only matrix multiplication and addition for relatively small matrices,
which can be done very quickly. Combined with the speed of finding the reduced solution,
resolving eq. (6.5) is almost real-time and, by extension, the leadfield matrix can made
extremely quickly, even for a large 𝑛𝑠. For a highly refined realistic head model with 830,000
nodes, we were able to generate full leadfield matrices for 30,000 sources and any given 𝝈 in
only 3 seconds.

6.4 Implementation and Experiments

6.4.1 Setup and Implementation

We used a realistic model of the head based on the Colin27 atlas, made with 830k nodes and
over 5M elements and processed as in previous publications [115]. The number of electrodes
modelled was 165 and six head tissues were segmented into different compartments. This
model was processed from the same imaging data as used in Chapter 4, (see Fig. 4.3). The
reduced models for the pEIT-FP were trained in the same way as in chapter 4 where the
injection patterns all had electrode 165 as the common sink. This electrode was placed above
the sagital suture in the Cz position. The source space contained 29,018 sources in the left
hemisphere of the brain with orientations normal to the cortical surface and magnitudes of
2 𝑛𝐴𝑚. The source vectors were calculated using the analytical subtraction approach [27].
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The work was parallelised by distributing the sources on a cluster of 11 Intel(R) Xeon(R)
X5660 CPU nodes at 2.80GHz. Each node had 12 cores and 192 GB of random access
memory (RAM), and was responsible for processing 𝒱

𝐶𝐸𝑀
𝑙 𝑗

∈ R𝑁 , 𝒱𝑣
𝑙 𝑗 𝑝

∈ R𝑁 and 𝒱
𝑠
𝑙 𝑗
∈

R𝑁 for 𝑙 = 1, ..., 𝐿 − 1 and for 700 sources ( 𝑗). The high amounts of RAM is needed to
simultaneously work on the 700 sources (each with seven source vectors - see decomposition)
and at least one V ∈ R(𝑛+𝐿)×𝑁 at any given time. The infinity potential 𝒃∞ is calculated
and stored separately and can be added to the leadfield matrix in real time after a simple
multiplication with 𝝈∞.

6.4.2 Numerical Leadfield Error

To verify the validity of this method and confirm the reducibility of the EEG-FP, the leadfield
matrix generated using ROM is compared to the leadfield matrix constructed using standard
EEG-FPs (i.e. the primal problem). The source space first needs to be reduced to make
this validation feasible. A source subspace of 1000 dipoles is selected uniformly across the
cortical surface to form leadfield matrices with 1000 sets of electrode potentials, all referenced
to electrode 165 (Cz). Both leadfield matrices were made for 50 random conducitivty samples,
selected within the IQ range shown in Table 4.1. This was repeated for 100 snapshots used in
the pEIT-FP (i.e. the dual problem). To compare the leadfield matrices, we used the relative
error (RE) between the two sets of potentials for a particular source. First we define a general
RE between two values 𝑎 and 𝑏 as

𝑅𝐸 (𝑎, 𝑏) = | |𝑎− 𝑏 | |2
| |𝑏 | |2

. (6.8)

Then the RE between two sets of potentials is 𝑅𝐸 (𝑼𝑃
𝑗 ,𝑼

𝐷
𝑗 ), where 𝑼𝑃

𝑗 is the set of potentials
for the 𝑗 th source in the leadfield matrix made from the primal problem and 𝑼𝐷

𝑗 is the dual
equivalent. This was repeated for each source, conductivity sample and snapshot number. The
maximum and average of these values was plotted as a function of snapshot. To demonstrate
the reduction in RE, the maximum value across the conductivity samples was plotted on an
inflated cortex for snapshot numbers 10, 15, 20 and 30.

6.4.3 Simultaneous Conductivity Estimations and Source Localisation

Synthetic SEP Data

The first SEP components have been suggested to originate from single dipoles or combi-
nations of single dipoles in the brain stem, and primary somatosensory cortex with both
tangential and radial orientations [36]. The tangentially orientated dipole source is thought to
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Fig. 6.1 Position of quasi-radial and quasi-tangential dipole sources (red arrows) on the left
hemisphere of the cortex. The views are (from left to right) in the axial plane, saggital plane
and half way between the saggital and coronal plane.

be responsible for the P20/N20 component with a radially orientated source responsible for
the P22/N22 component [36, 22]. Significant work utilising SEP/SEF data for conductivity
calibration thus far has focused on the use of the tangentially oriented dipole source due to
MEGs insensitivity to radially oriented sources [86]. However, work has been done to extract
brain and skull conductivities using simultaneously simulated (and reconstructed) tangential
and radial dipoles [108, 70]. Here we use a similar paradigm, however, we generate two
distinct sets of measurements to replicate both the P20/N20 and P22/N22 component; one
from a single quasi-tangential source on the anterior wall of the postcentral gyrus (Brodmann
area 3b) and one from a single quasi-radial source on the top of the postcentral gyrus (Brod-
mann area 1). Fig. 6.1 shows the positions of these two dipoles on the cortical surface. For
each component we generated three sets of noisy measurements with different SNRs for 50
different conductivity sets. We used additive Gaussian noise with SNRs of 40 dB, 25 dB and
20 dB, as used in previous studies [108], where 25 dB has been found in real data [108, 70].

Simultaneous Optimisation of Sources and Conductivities

With the new capability to generate leadfield matrices with very little computational effort,
new methods that were previously infeasible can be conceptualised. We present an algorithm
for the simultaneous reconstruction of conductivities and dipole sources from two SEP
components. The measurements for each SEP component would be the potentials on the



96 ROM with EEG: Fast Leadfield Matrices for Conductivity Estimation

electrodes at the post-stimulus time associated with the component. The principle approach
here is to minimise the RE (𝑅𝐸20 and 𝑅𝐸22) between the SEP component measurements
(𝒚20 and 𝒚22) and the electrode potentials (𝑼(𝝈, 𝒓20) and 𝑼(𝝈, 𝒓22)) of a set of reconstructed
sources (𝒓20 and 𝒓22) made with the conductivity set 𝝈. This can be expressed mathematically
as

argmin
𝝈,𝒓20,𝒓22

{(𝒚𝑇20𝒚20)−1(𝒚20 −𝑼(𝝈, 𝒓20))𝑇 (𝒚20 −𝑼(𝝈, 𝒓20))

+(𝒚𝑇22𝒚22)−1(𝒚22 −𝑼(𝝈, 𝒓22))𝑇 (𝒚22 −𝑼(𝝈, 𝒓22))},
(6.9)

where the RE for each component is 𝑅𝐸20 = 𝑅𝐸 (𝑼(𝝈, 𝒓20), 𝒚20) and 𝑅𝐸22 = 𝑅𝐸 (𝑼(𝝈, 𝒓22), 𝒚22).
For this minimisation task we employ the interior-point optimisation algorithm to search
for the conductivity set while each function evaluation in the optimisation contains a nested
sLORETA algorithm to search for the reconstructed dipoles. The full optimisation can be
summarised as follows,

1. Set initial guess 𝝈𝑛𝑒𝑤 = 𝝈0 (mid point of ranges in Table 4.1).

2. Generate leadfield matrix with 𝝈𝑛𝑒𝑤.

3. Perform sLORETA algorithm with 𝒚20 and leadfield, reconstructing dipole position.

4. Perform sLORETA algorithm with 𝒚22 and leadfield, reconstructing dipole position.

5. Select dipole position for each component from leadfield matrix and find the sum of
the RE [i.e., (𝑅𝐸20 +𝑅𝐸22)].

6. Repeat steps 2-6 (one function evaluation) until interior-point algorithm chooses new
conductivity set 𝝈𝑛𝑒𝑤.

7. Repeat steps 6 until a minima is found.

In a similar way to Chapter 5, our first experiment aims to assess the accuracy of the
reconstructed conductivities. We consider again the RE in the conductivity estimations as
a function of the number of snapshots used in the dual problem. Here, the RE is the same
as defined in eq. (5.2) and the snapshots in the dual problem is the number of iterations in
the greedy algorithm used to train the reduced models used in the adjoint pEIT-FP. We ran
the optimisation detailed above for 50 sets of conductivities and three different SNRs in the
synthetic SEP data and for each number of snapshots. We the plotted the average RE for each
tissue conductivity estimated across the 50 conductivity samples and for each of the SNRs.
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Additionally, we also considered the scenario where the CSF, spongiform bone and GM
are known, to replicate a common modelling case where only the skin, skull and brain are
considered in the estimation. The same procedure is repeated and results are plotting in the
same way as above.

Forward and Inverse Errors

It is important to explore how meaningful the conductivity estimations are and ultimately if
they lead to lower errors in the FP or IP. To assess the error in the FP, we generated leadfield
matrices using the true conductivity values of each of the 50 sample conductivities, followed
by leadfield matrices with the estimated conductivities (at 30 snapshots) for each of the
samples, for each of SNR. Leadfield matrices were also made the conductivities from the
middle of the ranges in Table 4.1 as a comparison. The leadfield matrices were made using
the same adjoint framework, but with 150 snapshots used to train the reduced pEIT-FP, to
guarantee low errors for the entire source space.

The RE between the potentials in the true leadfield matrix and the others was found for
each source, and the maximum and average for each source across all samples was plotted on
an inflated cortex. This was repeated for each level of noise and the mid-point conductivities.
The RE here is defined as 𝑅𝐸 (𝑼 𝑗

𝐸𝑆𝑇
,𝑼 𝑗

𝑇𝑅𝑈𝐸
), where 𝑼 𝑗

𝐸𝑆𝑇
are the potentials for source 𝑗

in the leadfield matrix generated using either one of the estimated conductivities or the
mid-point conductivities and 𝑼 𝑗

𝑇𝑅𝑈𝐸
are the potentials for source 𝑗 in the leadfield matrix

generated using the true conductivities.
For the IP, the sLORETA algorithm was performed using both the leadfield matrices

generated from the conductivities estimated from the 25dB SNR signal and mid-point
conductivities, where the true conductivity leadfield matrices were used as the measurements
(i.e., without any noise in the measurements). For both leadfield matrices and each source,
the maximum and average localisation error in millimeters across all conductivity samples
was plotted on the inflated cortex.

6.4.4 Simultaneous EIT and EEG Conductivity Estimation

Finally, as an exploratory experiment, we combined the strengths of both pEIT-based con-
ductivity estimation and SEP-based conductivity estimation. We used the same signals
generated previously for the 50 conductivity samples and 3 SNR values. Firstly, we used
ROM-pEIT to estimate the scalp and skull conductivities using the staged algorithm described
in Section 5.3.5. Secondly, we use a combination of the staged algorithm and the algorithm
described in Section 6.4.3 to reconstruct the final tissues. This combination consists of
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Fig. 6.2 Overlaid on Fig. 4.4 is the maximum and average RE (light green and dark green,
respectively) in 1000 dipoles in the leadfield matrices generated for 50 conductivity samples
as a function of the snapshots used to train the dual problem (ROM-pEIT). Here, 𝑅𝐸𝐸𝐸𝐺 is
𝑅𝐸 (𝑼𝐸𝑆𝑇 ,𝑼𝑇𝑅𝑈𝐸 ) and 𝑅𝐸𝐸𝐼𝑇 = 𝑅𝐸 (𝝈) and Δ𝑅𝐸 (𝝈) are defined in eq. (4.1).

minimising both the pEIT-based RE and then SEP-based RE simultaneously. The pEIT
measurements used for estimation used the same protocol as described before, with the same
Gaussian noise with standard deviation 0.82 𝜇𝑉 . The average RE (defined in eq. (5.2)) in the
conductivity estimations across the 50 samples was plotted per tissue for each of the SNR
values.
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Fig. 6.3 Maximum RE in the FP across 50 conductivity samples for 1000 sources plotted on
an inflated cortex for a) 10, b) 15, c) 20 and d) 30 snapshots used to train the dual problem
(ROM-pEIT).

6.5 Results

6.5.1 Numerical Leadfield Error

Fig. 6.2 displays the maximum and average RE in 1000 dipole sources in the leadfield
matrix for 50 conductivity samples for each number of snapshots used in the dual problem
as described in Section 6.4.2. Additionally, Fig. 6.2 shows a comparison between the RE
in the leadfield matrix and the RE in the dual problem (ROM-pEIT) with the relative error
bound Δ𝑅𝐸 (𝝈) also displayed. Notice how Δ𝑅𝐸 (𝝈) decreases at the same rate as the RE in
the leadfield matrix and appears to also tightly bound this error.

We also show in Fig. 6.3 the maximum RE across all conductivity samples for each
source and plot this on an inflated cortex for different number of snapshots used in the dual
problem. From this figure, it is clear that the RE in the sources across the entire cortex are
decreasing with increasing snapshots and that 30 snapshots is sufficient to obtain maximum
relative errors below 0.005 for any conductivity parameter and source combination.
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Fig. 6.4 Average RE in each tissue conductivity estimation using simultaneous reconstruction
of SEP sources as a function of the number of snapshots used to train the dual problem
(ROM-pEIT). Results are displayed for varying numbers of SNRs (20dB, 25dB and 40dB) in
the synthetic SEP data. All tissue conductivities are freely estimated.
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Fig. 6.5 Maximum (top) and average (bottom) RE in each source across 50 conductivity
samples a,c) in the leadfield matrix made with the mid-point conductivities and b,d) in the
leadfield matrix made with the estimated conductivities from the 25dB SNR signal.

6.5.2 Simultaneous Conductivity Estimations and Source Localisation

Fig. 6.4 shows the average RE for each tissue across 50 samples in the estimates obtained
using the SEP data with simultaneous source reconstruction. These values are plotted as
functions of the number of snapshots used in the dual problem (ROM-pEIT). This is shown
for different amounts of noise in the SEP data, where the SEP signals had SNR values of 40
dB, 25 dB and 20 dB. It can be seen that in all noise cases there is an improvement in the
GM and CSF as the snapshots increase. For the 40 dB case there is a decrease in the RE for
every tissue as the snapshots increase. However, for the 20 dB case there is a flat response
for the spongiform bone and scalp, which coincides with no improvement in the estimation
of the spongiform bone or scalp over the standard literature values.

The reconstruction of both sources was exact for every conductivity sample and SNR.
Each optimisation took roughly 5 minutes on a single CPU core, where the number of
function evaluations in the optimisation affected the overall time. The maximum function
evaluations for the optimisation was set to 3000, however, we found no improvement in the
estimations with a higher value.
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Fig. 6.6 Maximum RE in each source across 50 conductivity samples in the leadfield matrix
made with the estimated conductivities from the a) 40 dB, b) 25 dB and c) 20 dB SNR
signals.

In Fig. 6.5 a comparison is displayed in the RE in the EEG-FP for each source in the
source space between FPs solved with the mid-point conductivities and solutions with the
estimated conductivities from the 25 dB SNR SEP signals. Clearly, there is a substantial
reduction in the RE in the EEG-FP when the calibrated conductivities are used over the
standard literature values.

Shown in Fig. 6.6, is a comparison in the RE in the EEG-FP between the estimated
conductivities of different SNRs in the SEP data. There is very little difference between the
3 plots, suggesting that even noisy data can be used to extract a calibrated conductivity set
that improves the EEG-FP. This becomes even clearer when compared with Fig. 6.5.

Fig. 6.7 plots the source localisation error for each source in the source space when the
leadfield matrix used in the sLORETA algorithm is made with the mid-point conductivities
and the estimated conductivities (25 dB SNR). From this plot, there is a clear improvement
across the entire cortex in source localisation when the conductivity is calibrated with the
SEP optimisation we present.

The plots in Fig. 6.8 are similar to the plots in Fig. 6.4, however, they represent the
scenario where the three tissue conductivities are known (WM, CSF and spongiform bone).
There is a clear improvement in the estimation of the scalp, skull and grey matter for all
SNRs. The improvement in the scalp conductivity estimation for the 20 dB SNR SEP data is
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Fig. 6.7 Maximum (top) and average (bottom) localisation error in millimeters for each
source across the conductivity samples when using the sLORETA algorithm with the leadfield
matrices made with the a,c) mid-point conductivities and b,d) estimated conductivities (25
dB SNR).

particularly noticeable. Again, the source reconstructions of the radial and tangential sources
were exact in all cases.

The total time required to compute 𝒱
𝐶𝐸𝑀
𝑙 𝑗

, 𝒱𝑣
𝑙 𝑗 𝑝

and 𝒱
𝑠
𝑙 𝑗

for 29018 sources, 150 snap-
shots and 5 tissue compartments was approximately 11 hours parallelised on the 11 nodes
mentioned in the Setup and Implementation Section.

6.5.3 Simultaneous EIT and EEG Conductivity Estimation

Finally, Fig. 6.9 shows the RE in the estimations of the tissue conductivities from the
combined pEIT-based and SEP-based estimations (described in Section 6.4.4) as a function
of the snapshots used to train the dual problem. The results are again split by the SNR of the
SEP signal used in the optimisation.
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Fig. 6.8 Average RE in each tissue conductivity estimation using simultaneous reconstruction
of SEP sources as a function of the number of snapshots used to train the dual problem
(ROM-pEIT). Results are displayed for varying numbers of SNRs (20dB, 25dB and 40dB) in
the synthetic SEP data. Here, the conductivities of WM, CSF and spongiform bone are fixed
to their known values, with 3 conductivities (scalp, compact bone and GM) freely estimated.
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Fig. 6.9 Average RE in tissue conductivity estimations across 50 conductivity samples
utilising the combined ROM-pEIT-SEP based method of optimisation, as a function of
snapshots used for ROM-pEIT. Each plot represents a different SNR of the SEP signal used.
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6.6 Discussion

In this chapter, we have presented a framework for the use of ROM-pEIT as the dual problem
in the EEG-FP to rapidly generate leadfield matrices for any conductivity set. Consequently,
this allowed us to implement a fast optimisation method for the simultaneous reconstruction
of SEP dipole sources and multiple head tissue conductivities. The resulting calibration of
these head tissues has led to significantly lower REs in the FP and lower localisation errors
in the IP.

Firstly, we confirmed that the reduced version of the EEG-FP (ROM-EEG) was a suitable
replacement for the full-order equivalent by comparing the potentials for 1000 dipoles in the
leadfield matrix. Fig. 6.2 indicates that the difference between these techniques tends to zero
as the number of snapshots used to train the dual problem increases. After 100 snapshots, this
figure shows that the maximum error in the ROM-EEG-FP is below 10−4, which is negligible
in comparison to the numerical errors in the EEG-FP [24]. Furthermore, Fig. 6.2 shows that
the relative error bound in the dual problem (ROM-pEIT) could serve as a practical bound
for the relative error in the ROM-EEG-FP.

We then validated the simultaneous optimisation technique in a realistic 6-layered head
model using synthetically generated SEP data. Fig. 6.4 shows that for high SNR values
in the SEP signals, all modelled tissue conductivities can be estimated well with only 30
snapshots needed to train the dual problem. For lower SNR values, some tissues are no longer
estimated well but the GM and CSF still remain well characterised (at least down to 20 dB).
Importantly, Figs. 6.5, 6.6 and 6.7 show that, for 25 dB SNR, a substantial improvement can
be obtained in the EEG-FP and EEG-IP for almost any source in the cortex when utilising
the calibrated conductivity set.

Additionally, the results for estimating all tissues suggested that the complexity of the
solution manifold in the 6-dimensional parameter space, could be the main limiting factor for
further reductions in the RE of the conductivity estimations. We removed 3 of the dimensions
from the estimation and found an improvement in the RE of the estimations for the remaining
tissues as shown in Fig. 6.8. This shows the benefit of having some a priori information
about the conductivities from a technique such as pEIT.

Lastly, combining the strengths of both ROM-pEIT and ROM-EEG, we can obtain an
accurate characterisation from all tissues in the head model when using high SNR SEP data.
From Fig. 6.9 it is clear that for high SNR values, the estimations are better than either
technique alone. For low SNR values, the estimation clearly tends to the values obtained by
ROM-pEIT, with diminishing contribution from the SEP part of the optimisation. This is
a strong advocation for the pEIT method itself as a tool for conductivity characterisation.
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However, given both of these techniques require the same hardware as EEG (with minor
alterations for pEIT), and can be performed in a reasonable time frame.

For all of the above experiments, loading the stored values 𝒱
𝐶𝐸𝑀
𝑙 𝑗

, 𝒱𝑣
𝑙 𝑗 𝑝

and 𝒱
𝑠
𝑙 𝑗

for
𝑙 = 1, ..., 𝐿 − 1, 𝑗 = 1, ..., 𝑛𝑠 and 𝑝 = 1, ...,5, required 80 GB of RAM. Even though only a
single CPU was needed to operate on the values, the large amount of RAM is of course much
higher than for a standard PC. However, for these experiments, the full 150 snapshots in the
dual problem were loaded. As seen in Figs. 6.4 and 6.8, 30 snapshots in the dual problem is
more than sufficient, and further snapshots did not provide any improvements in estimation
accuracy. Therefore, the stored values could easily be cut down to 30 snapshots to reflect this
and require only 16 GB of RAM, which is much closer to standard RAM provisions. The
same improvement would be found for the pre-computation stage, where reducing the size of
matrix V could improve the RAM and computational requirements significantly.

A further improvement could even be found by cutting the source space down to only
sources in the postcentral gyrus, central sulcus and postcentral gyrus (a reasonable assumption
to make about the origin of SEP signals). This would shrink the source space to 1831 sources
in our case and not only reduce the RAM required but speed up the estimations. We found
this led to an 8-fold increase in the speed of the optimisation.

Of the time taken to precompute 𝒱𝐶𝐸𝑀
𝑙 𝑗

, 𝒱𝑣
𝑙 𝑗 𝑝

and 𝒱
𝑠
𝑙 𝑗

for 𝑙 = 1, ..., 𝐿−1, 𝑗 = 1, ..., 𝑛𝑠 and
𝑝 = 1, ...,5, the vast majority was to calculate the source vectors of the subtraction approach.
These then had to be held in memory as non-sparse vectors. This has considerable memory
and computational demands. By exploring other source vector representations that have far
smaller RAM and computational requirements (such as St Venants approach), this process
could be made considerably faster. Given that the construction of the source vector can
be arbitrarily changed, this could be left to the user of the framework to decide. However,
it should be noted that the use of source vector representations other than the subtraction
approach will introduce theoretical issues due to a lack of existence and uniqueness in the
solution, and it is unclear how the framework would behave in this scenario [75].

Previous approaches to minimising the computational burden of generating leadfield
matrices include the use of a transfer matrix (see Chapter 3, Section 3.3.1). This method
reduces the number of large systems to solve down to the number of electrodes minus
one. However, this is only applicable to a previously defined conductivity set. Building
the reduced models is computationally more expensive than a single transfer matrix, but
results in the significant advantage of generating a leadfield matrix for any conductivity set
afterwards. Subsequently, this leads to the ability to estimate conductivities very quickly,
which would not be possible with the transfer matrix approach.
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6.6.1 Related Work

The most closely related work to ours is by Maksymenko et al. (2020), where a similar
dimensionality reduction technique is employed to approximate leadfield matrices [111].
This approximation is then used to obtain tissue conductivities for unspecified simulated
EEG data and real SEP data, with only 10 snapshots (called support points in their work)
needed. Our technique differs in a number of ways. The first is in the implementation. We
demonstrated our method in a realistic FE head model with 6 tissue compartments whereas,
Maksymenko et al. (2020) use only a 3-layered boundary element (BE) method head model,
reducing the computational complexity significantly. Secondly, their method is only shown
to estimate 3 tissue conductivities (brain, scalp and skull) in the synthetic data and 2 (brain
and skull) in the real SEP data, while we consider 6 conductivities (massively increasing the
size of the conductivity space). Thirdly, the error bound they present, although rigorously
derived, does not appear to bound the real error (see Fig. 3a in Maksymenko et al. (2020)).
We present a rigorous error bound in the dual problem (pEIT-FP), that is not only certified in
bounding the real error, but appears to be a good approximation of the error in the EEG-FP.

Another relevant piece of work by Lew et al. (2009) describes the use of Low-Resolution
Conductivity Estimation (LRCE) that uses simulated annealing (SA) to minimise a cost
function with the aim of simultaneously tangential and radial dipoles from simulated and
real SEP data [108]. Their method discretises the conductivity space and then utilises the
transfer matrix approach to generate full-order leadfield matrices for multiple combinations
of conductivities and sources. For high SNRs this work achieved low source localisation
errors and accurate conductivity estimations in the synthetic data, however the technique
struggled with SNRs around 20 dB. Our method stands apart from this in a few ways. Firstly,
the computational cost of the optimisation step was much higher, where the SA took 17 hours
in one case. Our optimisation step takes only a handful of minutes. The precompute time
for their method was much lower, however, they utilised a much coarser head model and
used the St. Venants approach in the source vector. Secondly, we implement the CEM in
our experiments, as opposed to the PEM in Lew et al. (2009). Thirdly, due to the number of
full-order leadfield matrices needing to be generated being proportional to the conductivity
space and its discretisation, they only estimated the brain and skull conductivities. For our
technique, once the dual problem is trained, the leadfield matrix can be calculated for any
point in a continuous 𝑛-dimensional conductivity space where 𝑛 is arbitrary. Therefore, for
high SNRs, we were able to estimate all tissue conductivities accurately.

Another popular approach is the use of SEP and SEF data to calibrate the skull conduc-
tivity [79, 93, 16, 108, 10, 198, 157, 70, 23]. The main principle here is to combine the
advantages of both techniques and reduce the disadvantages of each. Specifically, MEG is
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better at localisation of tangentially oriented sources with little known information on the
conductivity and EEG is sensitive to the conductivity field and radial sources. Therefore, the
MEG-SEF data can be used to localise and fix the source in place while the EEG-SEP data is
used to find the orientation and magnitude of the source and estimate the skull conductivity.
A crucial distinction between this popular approach and our technique is the necessity for
MEG. Our approach allows for the characterisation of many tissues while reconstructing the
source with high accuracy without the need for SEF data. This is an important aspect, given
the availability of MEG and cost of owning and operating MEG systems. Furthermore, most
studies cited only tune the skull conductivity, while our approach attempts to reconstruct all
tissues in the head model. On the other hand, a strength of these works in comparison to this
one is the reconstruction of the orientation and magnitude of the sources. Investigating the
impact of incorporating this additional calibration will be considered future work.

Three other closely related pieces of work are that of Gutierrez et al. (2004), Vallaghe et
al. (2007) and Costa et al. (2017) [80, 173, 46]. All of these works use EEG data only to
estimate tissue conductivities in a head model. In the case of the former, they assume a known
dipole source and their technique could not be applied to realistic head models. Vallaghe et
al. (2007) implements an optimisation that searches to minimise a cost function connecting
the conductivities and source location with the measured signal. However, they use a 3-
layered BEM model with approx. 800 vertices for each of the 3 surfaces and only 4000
possible source positions on the cortical surface. This dramatically reduces the complexity
of the problem, allowing the EEG-FP to be computed very quickly but suffers from a lack
of anatomical accuracy compared to a highly refined model with more compartments. In
the latter, Bayesian methods are also employed with Markov Chain Monte Carlo (MCMC)
based optimisation, utilising a polynomial matrix to approximate the leadfield matrix and
aid sampling in the MCMC. The polynomial matrix is built using the full-order leadfield
matrices as support points. This method showed an improvement over the previous methods
from Gutierrez et al. (2004) and Vallaghe et al. (2007) and demonstrated their technique with
real Auditory Evoked Potentials (AEP) data. However, the polynomial matrix still required
10 support points for one tissue (skull), which are chosen linearly across the conductivity
space. We utilised a greedy algorithm in the dual problem that selects the support points
(snapshots) in a robust way, that only requires 30 in order to characterise a 6-dimensional
conductivity space.

Finally, work by Akalin Acar et al. (2016) used sensitivity matrices to reduce the number
of full leadfield matrices needing to be calculated and therefore calibrate the the brain to
skull conductivity ratio (BSCR), in an EEG data set. While this technique appeared to work
well, it was only shown for a low resolution FEM mesh (240,000 nodes) and estimating one
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conductivity ratio, and in this scenario took up to 4.6 days to converge on a single workstation.
Our method is shown to calibrate 6 tissues, in a highly refined, realistic head model (830,000
nodes).

6.6.2 Future Work

During the experimental process it was noticed that, when running the first simultaneous
estimation including all tissues in the case of a noiseless SEP signal, with a dual problem
trained with 150 snapshots, yielded no better results than with a signal with an SNR of 40
dB result at 30 snapshots. One possible explanation for this is the solution manifold in a
6-dimensional parameter space being very complex, with many local minima. This was
the motivation for the reduced compartment number experiment (as previously mentioned).
Many local minima that trap the optimisation procedure could be responsible for limiting
the estimation accuracy of many tissues. This makes intuitive sense given that multiple
combinations of conductivities can explain the same EEG data. An example of this is given
in Fig. 6.10, where the RE in the FP for a tangential source is plotted as a function of the
conductivity in the scalp and the GM. From this figure it can be seen clearly that there are
many possible combinations that could explain the data almost perfectly (indicated by the
red dotted line). Here, the RE is between a FP made with known conductivities (black dot)
and an FP made with varying conductivities.

Future work would focus on exploring ways to navigate the conductivity space better in
the sense of finding the global minima more reliably. Changing the optimisation method
could be one way to compensate for many local minima. For example, particle swarm
approaches have been known to help with poorly determined problems with smooth valley
solution manifolds and have recently been used in EIT imaging for stroke detection [110].
Other methods like SA have been used by others for similar problems [169, 108]. Similarly,
tuning the hyperparameters of the dual problem (e.g. the bound sample train) may yield
some benefit (see previous chapter).

Another avenue for further research would be to investigate the impact of setup changes on
the estimations (e.g., number of electrodes and position of reference electrode). Furthermore,
testing the effect of missing tissue information (similarly to the last chapter with pEIT)
should be essential work for the future. From the previous chapter, the impact of a missing
tissue compartment on forward and inverse solutions to the pEIT problem is large. Coupled
with the findings from real pEIT data which suggest that a modelling inaccuracy is present,
this impact is even more topical. This could prove especially important in EEG given the
source of current is separated by several compartments from the measurement electrodes
(conversely to pEIT). On this note, if additional compartments (e.g., a layer of fat) were to be
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Fig. 6.10 RE (colourbar) in the FP of a tangential dipole source between one with known
conductivity (black dot) and varying GM and scalp conductivities plotted as the function of
the conductivities. The red dotted line indicates combinations of conductivities that produce
extremely similar FP solutions.

included in the head model, this would increase the dimensions of the conductivity space and
therefore accentuate the problems mentioned in the previous paragraph. The likelihood of a
large modelling error could also potentially limit meaningful tests on real EEG data.

This study focuses on the reconstruction of a tangential and radial dipole source that could
be likely generators of the SEP P20/N20 and P22/N22 components respectively. However, in
principle this estimation procedure should be possible with a range of potential readings from
dipole source generators. For example, AEP, laser evoked potential (LEP) and visual evoked
potentials (VEP) data could all be used provided the SNR in the data is relatively high. Even
within the SEP response data, there are multiple other components that could be explored
(e.g., P35/N35), both in the short-latency and long-latency classes. Additionally, depending
on the data used, there could be an impact due to the depth of the source being reconstructed.

The dual problem was trained in the conductivity ranges that were reported to explain
most of the variance in individual conductivities [116]. This range could be arbitrarily
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expanded however, to capture a wider conductivity space. This would likely require more
snapshots to be used in the dual problem, but would provide even greater improvements in
source localisation error if the same experiments were run again.

The approach we present has enabled the individual characterisation of multiple tissue
conductivities with a simultaneous source localisation from EEG-SEP data. This represents a
crucial step towards fully personalised head models that are essential for ESI techniques. The
savings in the FP and IP we demonstrate suggest the power this technique has to transform
the accuracy of EEG.

6.7 Summary

In this chapter, have presented a framework for integrating the ROM-pEIT technique devel-
oped in previous chapters into the EEG-FP via a primal-dual splitting of the problem. We
showed that this new framework allowed the generation of fast leadfield matrices for any
conductivity set. Consequently, we are able to employ simple optimisation methods to tune a
set of conductivities and therefore lower the forward and inverse errors for EEG. The main
conclusions of this chapter are as follows:

• The adjoint problem for the EEG-FP is the pEIT-FP. Therefore, we were able to
simply substitute the pEIT-FP for the ROM-pEIT developed in previous chapters. This
allowed us to develop a framework for the rapid generation of an EEG-FP via a set
of ROM-pEIT, for any conductivity set. Further, we can now generate entire leadfield
matrices seconds, opening up new possibilities for experimentation.

• With the ability to make almost instant leadfield matrices, we were able to tune the
conductivity set until it matches an EEG-FP solution. Additionally, we could add in
the localisation of the source of the EEG-FP to simultaneously reconstruct both of
these parameters.

• We show that the ability to simultaneously localise the source of EEG data and the
conductivities of the tissue of the head can be achieved with the well characterised
SEP components P20/N20 and P22/N22. Although in principle this could be achieved
with any EEG data.

• The reconstruction of the sources is exact in all cases, even for signals with SNR
values of 20 dB. Furthermore, the accuracy in the FP and IP for the entire cortex
is substantially improved when using the tuned conductivity set as apposed to the
standard literature values.
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• Many other methods proposed in the literature that have similar aims only consider the
one or two conductivities and/or use very course head models due to computational
limits. The approach presented in this work considers many tissue conductivities in a
refined realistic head model. The other main advantage to our method is that there is
no need for MEG data.

• This method also highlighted the complexity of the solution space for the EEG-FP when
multiple conductivity dimensions are considered, showing that simple optimisation
methods are prone to falling into local minima.

• Finally, this framework is flexible enough to allow pEIT and EEG to be used in
conjunction with one another to provide highly accurate conductivity estimates for
every tissue. This highlights the need for pEIT to become a standard procedure for
ESI.





Chapter 7

Conclusions and Future Directions

7.1 Thesis Overview

Characterising the electrical activity in the brain is essential to our understanding of its
function. To study this activity we use EEG, where electrical potential readings are taken
on the scalp to infer the sources of current. This inference comes with a computational
cost, that rises with the inclusion of more detailed anatomical information in the head
models constructed for EEG. Additionally, including information about the conductivity
profile of each biological tissue in EEG can be achieved with pEIT, however, this is also
computationally intensive. The cost of both methods can be prohibitive in some cases,
especially when trying to include personalised conductivity parameters. This results in
compromises such as standard literature-based conductivity values being assigned to head
models. The computational expense of these methods is therefore a barrier to widespread
personalisation of EEG methods.

This thesis has proposed the use of ROM to alleviate the computational demand of
pEIT and EEG. Effectively, ROM is able to formulate, after some training, a reduced EEG-
FP and pEIT-FP, that can be evaluated for any conductivity set in real-time. As a result,
both techniques can be used for the estimation of head tissue conductivities assigned to
personalised head models, with varying sensitivities to different tissues.

7.2 Contributions and Findings

In Chapter 4, the application of ROM to the pEIT-FP was demonstrated in a realistic 6-
compartment head model with 132 electrodes modelled on the scalp. The relative error
bound for ROM in the FP was verified by comparing 100 full-order numerical solutions with
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the reduced solutions. Simultaneously, it was shown that the problem is reducible and we
found that after 30 snapshots, the average RE for between the forward solutions was below
10−5. This showed that with only 30 snapshots, a highly accurate map between conductivity
changes in the parameters space 𝒫 and the FP solution was found. Although it was noted
that this may change, subject to other parameters in the FP.

Chapter 5 focused on the applications of the ROM-pEIT framework. Primarily, this
chapter assessed the inverse performance using the metric of RE in the tissue conductivity
estimation for each tissue. This metric was assessed in a number of scenarios. Firstly,
the use of ROM-pEIT was compared to the previous state-of-the-art method which used a
gradient-assisted Newton’s optimisation method in the inverse problem. The ROM-pEIT
framework utilised the interior-point optimisation due to being unable to calculate a gradient.
A comparison of the REs obtained against the computational force needed between each
method was performed. It was found that not only does ROM-pEIT speedup the time to
estimations by orders of magnitude, but additionally, this now makes it feasible to estimate
more tissues than previously possible. Secondly, a thorough sensitivity analysis was per-
formed, demonstrating the robustness of the new framework (including ROM-pEIT-FPs and
the interior-point optimisation) to noise, tissue compartments with anisotropic conductivities
and varying snapshot numbers. 30 snapshots appears sufficient for the accurate estimation
of many tissue with more snapshots adding no improvement. This observations appears
to hold for anisotropic compartments and for varying levels of noise. Thirdly, the use of
novel injection and measurement patterns was explored, with noticeable improvements in the
conductivity estimation of many of the inner tissue compartments. This experiment hinted
at the complexity of the solution space, and the possible manipulation of pEIT protocols to
help navigate it.

The placement of the reference electrode in the case of missing tissue information was
tested, showing that the large standard deviations between electrode pair estimations are
possible when the reference is chosen poorly and the information is missing from the model.
Furthermore, this aided the explanation of the results from real data, which showed large
standard deviations and strongly suggested a missing tissue layer in the head model. Given
that our head model had most tissues considered in modern literature, this indicates that a
common modelling assumption could be erroneous. This is a significant finding, that can
only be made now that ROM-pEIT has removed the computational barrier.

In the final experimental chapter, the use of the ROM-pEIT-FP as the dual problem to
the EEG-FP was demonstrated in a realistic head model with 165 electrodes and 6 tissue
compartments. This enabled the new capability to make extremely fast leadfield matrices
(of the order of 3 seconds) for any set of conductivity parameters. Ultimately, this enabled
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the simultaneous reconstruction of conductivities and current sources using synthetically
generated SEP components. Even with noisy EEG data with SNRs down to 20 dB, the
additional conductivity calibration afforded by the fast leadfield matrices resulted in a
zero error localisation for the SEP component generators. Consequently, a reduced source
localisation error across the whole cortex was found using the calibrated conductivities.

The complexity in the solution space were again noted as a limiting factor for the
accuracy of conductivity estimation in ROM-EEG, similarly to ROM-pEIT. Therefore, the
two techniques were merged in Chapter 6 to navigate the solution space more effectively.
Given that each technique is sensitive to different tissues, the combination has shown
improvement in estimation accuracy over any one technique alone for SNRs in the EEG data
around 40 dB.

Fundamentally, the application of ROM allows for exhaustive optimisation methods to be
used, which, aside from providing new tissues to be estimated, practically means that the
accuracy tissue conductivity estimations can be improved. Table 7.1 shows a comparison of
the accuracy of the conductivity estimations resulting from all the methods presented in this
thesis and, as such, provides a summary of the work. The values in the table are the RE of the
estimations with their standard deviations across a range of conductivity samples. Included
in this table are the RE values for the traditional method as a display of the starting point of
this thesis. From here, it is clear that the application of ROM to pEIT leads to a substantial
increase in the RE for the tissues of scalp, compact bone and spongiform bone while enabling
the capability of estimating CSF, GM and WM. This comparison even gives the traditional
method the advantage of knowing the exact inner tissue conductivities (which may not be
realistic). Furthermore, the addition of a staged optimisation utilising a new pEIT protocol
and an EEG-based optimisation utilising SEP data has shown that sensitivities to different
tissues change as the source(s) of current change. This was exploited by combining pEIT
and EEG data in a single optimisation process, utilising both ROM-pEIT and ROM-EEG
frameworks to achieve accurate electrical conductivity estimations in all tissues. This final
result represents the potential for a large shift in the field, allowing for a comprehensive and
holistic characterisation of conductivity field in head models used for ESI.
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Method Scalp Compact Spongiform CSF GM WM
(×10−4) bone (×10−4) bone (×10−4) (×10−4) (×10−4) (×10−4)

Traditional pEIT 23 ± 32 64 ± 61 1037 ± 824 N/A N/A N/A
ROM-pEIT 3.18 ± 3.51 22 ± 21 168 ± 215 283 ± 235 395 ± 311 671 ± 543

ROM-pEIT (staged) 1.99 ± 4.08 19 ± 29 17 ± 31 238 ± 226 240 ± 264 167 ± 350
ROM-EEG (25 dB) 1034 ± 876 803 ± 699 1864 ± 1520 257 ± 222 273 ± 248 542 ± 563
ROM-EEG (40 dB) 377 ± 478 327 ± 390 437 ± 568 68 ± 100 80 ± 105 155 ± 167

ROM-pEIT/EEG (staged - 25 dB) 1.94 ± 4.07 16 ± 29 16 ± 31 67 ± 46 70 ± 47 207 ± 206
ROM-pEIT/EEG (staged - 40 dB) 1.94 ± 4.07 16 ± 29 16 ± 31 19 ± 15 31 ± 26 144 ± 125

Table 7.1 Mean and standard deviation of RE of conductivity estimations for all tissues for each estimation method presented in this
thesis. The first and second rows are the traditional pEIT and ROM-pEIT method presented in Section 5.3.2, where the values were
computed with 10 and 100 conductivity samples respectively. The third row represents the staged ROM-pEIT optimisation method
using a new protocol described in Section 5.3.5, utilising 50 conductivity samples. Rows four and five represent the simultaneous
source localisation and conductivity estimation using ROM-EEG and SEP data, described in Section 6.4.3, where the data had SNRs
of 25 dB and 40 dB, respectively. Finally, rows six and seven represent the combination of the staged ROM-pEIT and ROM-EEG with
SEP data as described in Section 6.4.4, where the SEP data had SNRs of 25 dB and 40 dB respectively. Rows four to seven had mean
and standard deviations in the RE calculated over 50 conductivity samples. For each method using ROM, the models were trained with
30 snapshots.
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7.3 Limitations

One of the limitations of this work has been the use of the same mesh when generating
the reduced models and the synthetic measurements. This could be considered to be the
so-called inverse crime, whereby the measurements are favorably generated towards the
forward problems and therefore bias the results, even in the presence of noise. Similarly, in
the EEG work, the source localisation used a source space where the measurements were
made with dipoles in the positions on the same source space. To further test the robustness of
the methods presented in this thesis, future work would include the use of alternative meshes
and source spaces to generate the synthetic measurements, with the possibility of adding
Gaussian noise to the source space directly. Furthermore, for the SEP measurements, single
dipoles were used to generate the synthetic data. It may be more realistic to define a patch on
the cortex that generates the signal when creating the measurements. The use of sLORETA
would still be justified in this case as it is a distributed source inverse algorithm. Investigating
this could be work for the future.

To create noisy synthetic pEIT and EEG measurements, noise was added to full-order FP
simulations. In this synthetic data, we assumed a Gaussian noise model as this is typically
used to model noise in EEG recordings [192]. modelling more complex noise, such as
spatially and temporally correlated background noise, could be considered in future [30].
However, due to the high SNR of pEIT signals, this is expected to make negligible difference.
In EEG data, however, where the SNR is much lower, future work would include modelling
more complex noise sources.

Similarly, the results shown in Fig. 6.7 include the source localisation across the whole
cortex with no noise in the synthetic measurements. Noise was not included to demonstrate
the potential maximum benefits of having tuned conductivities (found using noisy SEP mea-
surements) over population average ones. In future work, adding noise to these measurements
would highlight whether these benefits would still be visible.

Uptake of pEIT in clinical practice could also be a limitation. To the best of our knowl-
edge, no commercial high-density pEIT system exist and previous datasets have been obtained
with ad hoc setups [169]. This could prevent the adoption of pEIT. The SEP-based tuning
could be more easily integrated into clinical pipelines, however, given that that the methods
of collection of evoked potentials data is already well established in the community, more
so than pEIT. For pEIT to be adopted more readily, standardised equipment and training in
its use should be developed, along with attitudes towards the method in the field changing.
Furthermore, the frameworks presented here show that they stumble when modelling inaccu-
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racies exist. This suggests that much more work is needed into the modelling assumptions
made in the field before widespread clinical adoption is considered.

Table 4.1 shows the ranges of conductivities used to the train the reduced models. While
these ranges represent the spread of the conductivities within the population according to
McCann et al. (2019), some ranges have a wide relative spread compared to others. For
example, maximum value of the spongiform bone is 88 times the minimum, whereas, the CSF
maximum is only 1.3 times the minimum. The small relative range in the CSF could make it
a good candidate for assuming the value as a population average to remove a dimension in
the estimation process (as highlighted to be beneficial in previous chapters. Conversely, the
large ratio in the spongiform bone could be responsible for more snapshots being needed
and would therefore benefit from narrowing the range down to be as narrow as possible.
Similarly, the ratio in the compact bone of the skull is 16.4. Given that the skull is highly
influential in EEG (see Vorwerk et al. (2024) [187]), reducing the relative size of the range
could lead to lower snapshot numbers. These ranges could potentially be reduced by further
distinguishing constituent tissues (e.g., skull sutures or bone plates).

To solve the large full-order systems in this work, we used an iterative PCG method with
incomplete LU preconditioners. Other methods could be considered for faster solutions, such
as multigrid or incomplete Cholesky preconditioners, as well as GPU implementations [59,
33, 90]. Other improvements could include the use of block conjugate gradient methods
for solving multiple systems with the same stiffness matrix but different right-hand side
vectors [124]. This could lead to a significant speed up with the possibility to reduce the
workload by sharing the effort for each snapshot between the reduced models. However,
all these variations would have a similar impact on both the traditional methods and the
presented reduced methods, which is one of the reasons we chose the number of systems to
solve as the metric for computational effort.

A limitation of the comparison between the traditional and presented ROM-pEIT method
is the number of conductivity samples used when testing the traditional method. While the
ten samples were taken randomly from a uniform distribution, this may not be enough to
adequately represent the 3-dimensional conductivity space. This limitation was imposed
by the computational expense of the traditional method. If this computational cost could
be alleviated (e.g., with one of the methods above), or if more computational power were
available, then a more thorough comparison could take place.

7.4 Future Directions

These latest capabilities of these methods has allowed new questions to be asked. This section
will touch on some of the avenues of research that could be most fruitful.
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7.4.1 modelling Assumptions

One of the biggest hurdles to overcome toward better EEG source localisation is inaccuracies
in the head models utilised. These models typically contain some assumptions about the
physical aspects of the head, (e.g., that the scalp is one single homogeneous layer with a
single conductivity). These assumptions are usually made based on the imaging data and
computational power available. However, as highlighted in Chapter 2, there is continuing
debate over which layers are essential to characterise, and to what degree. For example, seg-
mentation and inclusion of the CSF in head models has been shown to be important, however,
it has been suggested that standard literature values are sufficient for the conductivity.

Verification of modelling assumptions is also a challenge. Mostly, studies with synthetic
measurements are used to verify the impact of modelling variations in the forward and
inverse problems. While this is effective for assessing the impact of individual compartments
and properties, real data is needed to verify if the model is refined enough to explain the
measurements.

In EEG, verification through real data is a challenge due to the multiple unknown quanti-
ties in the source of current itself (e.g., its strength, orientation, location and distribution).
In pEIT, the source is exactly defined and therefore serves as a much better alternative
for studying modelling assumptions. Previously, pEIT has been limited by computational
constraints, preventing systemic analysis of every tissue layer and its contribution to current
propagation in the head. However, with ROM-pEIT, it is now possible to perform these
kinds of sensitivity studies, even in real data. Moreover, Chapter 5 showed the application
of ROM-pEIT to real data and strongly suggested that there are modelling assumptions that
need re-evaluating. Furthermore, the standard deviation in the estimations across injection
pairs was shown to be a reasonable litmus test for missing tissue information.

Clearly, it has been heavily indicated that 6-compartment head models including the
scalp, skull, spongiform bone, CSF, GM and WM are possibly not refined enough to explain
real data. As highlighted in Chapter 2 and the Discussion of Chapter 5, the missing model
information could be from a range of tissues (e.g., fat/adipose tissue, emissary veins, skull
sutures and dura mater). A survey of these tissues with significant amounts of real data
should be the primary direction of future research in this field. With both pEIT and SEP-EEG
data from a large range of participants, using these new ROM-based tools could uncover vital
information for the future of individual head model generation.

Within reason, the affine decomposition can be expanded such that any number of
tissue compartments can be included in the head model. This opens up the possibility to
partition tissues into subsections. For example, the skull can be partitioned into multiple
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bone plates separated by sutures. In future work, the individual bone plate conductivity could
be estimated.

7.4.2 Transcranial Direct Current Stimulation

A field closely related to EEG and pEIT is TDCS. This method aims to moderate the electrical
activity in the brain and has shown promise as a treatment for many neurological conditions
(e.g., depression [96]). Similarly to pEIT, this technique injects and extracts current from
electrodes, however, with a motivation to optimally target a specific region of the brain,
inducing high levels of current in that area. Consequently, the mathematical formulation for
the TDCS-FP is identical to that of pEIT [134], and therefore relies on realistic head models.
Naturally, it has been shown that TDCS is also impacted by the conductivities selected, where
the focality and intensity of current at a region of interest (ROI) increases when modelling
the exact conductivities [188, 114]. Further, varying configurations of injection patterns have
been shown to impact localisation of current from TDCS, where multiple injection electrode
montages are beneficial over typical pair montages [148]. Work has also been conducted to
assess the best algorithms for finding optimal injection patterns to target a ROI [65, 62].

With ROM-pEIT, the computational splitting of work into offline and online phases means
that the conducitivities could be estimated as soon as the measurements are taken, resulting
in an immediate determination of the optimal injection pattern. Clinically speaking, pEIT
could be easily added into a TDCS protocol to improve its effectiveness without requiring a
separate visit by the patient.

7.4.3 Technical Refinement

With any machine learning method, the hyperparameters used to build a model can have
a massive impact on the end result. This thesis did not cover any formal exploration of
these parameters in ROM and instead relied on values found with trial and error on the basis
that they were good enough to produce to the desired results. In future, there are some
hyperparameters that could effect the reduced models are built and consequently the solution
space. One example is the sample train used in the online evaluation of the bound (see
Section 4.3.2). The number of samples of the conductivity parameter space 𝒫 in the sample
train was only 6000 in the online evaluation of the bound. Taking more samples would have
represented the space better and potentially likely led to different snapshots being taken.
Smarter sampling methods could also be explored, rather than random sampling, where more
points are chosen where the solution manifold changes most rapidly. It is unclear how these
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changes would affect the IP, however, some investigation is definitely warranted. Similarly,
the number of stability factor interpolation points could be investigated.

One unexpected finding of this work is the complexity of solution manifold over the
6-dimensional parameter space. With noiseless synthetic data, it was expected that the
ROM-pEIT-IP would tend towards perfect conductivity estimations with increasing snapshot
number. However, it was noted in Chapter 5 that this was not the case. This situation
repeated itself with the ROM-EEG conductivity estimations. One explanation for this is the
optimisation algorithm could not find the global minimum in the solution manifold due to the
complexity of the solution space. This confirms how ill-posed the problems are, with many
local minima in the solution manifold. This problem could become even worse if additional
tissue compartments are added to the model. This challenge could be tackled in a number of
ways in future research. Firstly, alternative optimisation algorithms could be employed too
search the space more effectively (e.g., simulated annealing or particle swarm approaches).
Another way avenue to explore could be some form of regularisation which is common
in imaging EIT (e.g., Tikhonov regularisation). However, regularisation requires some a
priori knowledge about the solution, which could take the form of relationships between
conductivity layers (e.g., brain-to-skull ratios). Much more research into the variability
of tissue conductivity variation would be needed to assert such a condition. Additionally,
Chapter 5 showed that new pEIT protocols could navigate the space more efficiently. This
thesis only touched on the possibilities available here. With the ability to linearly combine
injection pairs to make any pEIT pattern, new protocols could be tested easily and assessed
on their sensitivity to different tissues. Work has already been done on the effect of multiple
sink electrode montages for pEIT [64], and this work could now be accelerated with the use
of ROM-pEIT.

A particular challenge of this work was the ad hoc management of memory and computing
power. Often, the parallelisation was tailored to the available cluster computer. While this
was trivial and could be adapted by any researcher, this is certainly an area that could
benefit from being optimised and possibly automated for the use of future researchers and
clinicians. A possible solution could come from the use of an message passing interface (MPI)
implementation in the code. Given that MPI libraries are ubiquitous on high performance
computing (HPC) systems and cluster computers, this would not introduce any portability
problems to the code. This could be implemented in MATLAB (the language and environment
used for this work and similar work like Zeffiro [90]) or re-written in C/C++ (the language
used for the related software DUNEuro [158]). One further route of exploration could be the
implementation of this work on graphic processing units (GPUs) which could also provide a
health speed up.
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Finally, a rigorous treatment of an error bound for the ROM-EEG-FP could be developed
in future. Fig. 6.2 hinted that the bound for the dual problem (ROM-pEIT-FP) seemed to also
bound the error in the ROM-EEG-FP tightly. While not rigorously derived, it does indicate
that this area could be worth exploring with the aim of building the reduced models more
efficiently. Bounding primal and dual problems has been explored in the literature, providing
a starting point for such an analysis to be explored in future [40].

7.5 Final Conclusion and Outlook

In conclusion, the techniques of EEG and pEIT can be substantially enhanced by the use of
ROM, unlocking new capabilities and thereby the potential for new levels of accuracy. The
computational barrier to both methods has been lowered significantly through refactoring
the costly computations into offline and online stages. This splitting has enabled additional
tissue conductivities to be included in the IPs of both methods. As a result, both techniques
have the potential to take up revolutionary new roles in the characterisation of brain activity.

The field of high accuracy EEG faces many challenges, one of which is the characterisa-
tion of appropriate head models. This work could mark a substantial step forward in the tools
required to meet this challenge, and pave the way for more rigorous scientific analysis of
common modelling assumptions. Further, with improved conductivity field characterisation,
the improvement in source localisation naturally follows, as we have shown. Given the
importance of source localisation in understanding brain function and the treatment and
diagnosis of disease, this work could have far reaching consequences.
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Appendix A

Details on the Stiffness Matrix

A.1 Volume and Area Coordinates

Solving the integrals in eqs. (3.34) in Cartesian coordinates can become protracted and
cumbersome. To alleviate this issue, barycentric coordinates can be employed to simplify
these integrals. These coordinates are often referred to as simplex coordinates or volume
or area coordinates in the special cases of 3 dimensional tetrahedrons and 2 dimensional
triangles respectively.

Firstly, let an arbitrary tetrahedron T𝑘 in the mesh have a volume 𝑉 and nodes 𝒑 𝒊 where
𝑖 = 1,2,3,4. Then, for any point 𝒓 ∈ T𝑘 there exists 4 tetrahedrons made from the points 𝒓

and 𝒑 𝒋 , 𝑗 = 1,2,3,4 ( 𝑗 ≠ 𝑖), with volumes 𝑉𝑖. The volume coordinates are then defined as

𝜉𝑖 =
𝑉𝑖

𝑉
=
𝑎𝑖 + 𝑏𝑖𝑥1 + 𝑐𝑖𝑥2 + 𝑑𝑖𝑥3

6𝑉
, 𝑖 = 1,2,3,4, (A.1)

or in matrix form,

𝝃 =
1

6𝑉
(𝒂 +𝚲𝑇 𝒓), (A.2)

where 𝝃 = [𝜉1, 𝜉2, 𝜉3, 𝜉4]𝑇 , 𝒓 = [𝑥1, 𝑥2, 𝑥3]𝑇 , 𝚲 = [𝒃, 𝒄, 𝒅]𝑇 and 𝒂, 𝒃, 𝒄 and 𝒅 are the 4× 1
vectors with elements 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 and 𝑑𝑖 respectively. Transforming the coordinate system to
volume coordinates normalises the tetrahedrons, therefore the basis functions in the volume
coordinate system simply reduce to 𝝍(𝝃) = 𝝃. This allows the integrals to take the form∫

T𝑘

𝜉𝑖1𝜉
𝑗

2𝜉
𝑘
3 𝜉

𝑗

4𝑑𝝃 = 6𝑉
𝑖! 𝑗!𝑘! 𝑗!

(𝑖 + 𝑗 + 𝑘 + 𝑗 +3)! . (A.3)
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A1 A3

A2
p1

p2

p3

r

Fig. A.1 A triangle (simplex), part of a finite element mesh, with area 𝐴 and vertices
𝒑𝑖 (𝑖 = 1,2,3) being transformed from Cartesian Coordinates to Area Coordinates. The red
dot labelled 𝒓 can be any point within the triangle and creates the 3 triangles with areas 𝑨𝑖
where 𝑖 = 1,2,3.

Similarly, for the 2 dimensional case, the area coordinates and the corresponding integrals
take the form

𝜉𝑖 =
𝐴𝑖

𝐴
=
𝑎𝑖 + 𝑏𝑖𝑥1 + 𝑐𝑖𝑥2

2𝐴
, 𝑖 = 1,2,3, (A.4a)∫

T𝑘

𝜉𝑖1𝜉
𝑗

2𝜉
𝑘
3 𝑑𝝃 = 2𝐴

𝑖! 𝑗!𝑘!
(𝑖 + 𝑗 + 𝑘 +2)! , (A.4b)

where T𝑘 is an arbitrary triangle with area 𝐴 split into 3 additional triangles with areas
𝐴𝑖, 𝑖 = 1,2,3, by any point 𝒓 ∈ T𝑘 and points 𝒑 𝒋 , 𝑗 = 1,2,3, ( 𝑗 ≠ 𝑖). An example of this is
given in Fig. A.1. After significant algebraic manipulation, the element matrices used for
constructing the global stiffness matrix, can be computed simply as
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Fig. A.2 Non-zero inputs of the stiffness matrices plotted by position for left) spherical head
model with 84K nodes and 120 electrodes and right) realistic head model with 650K nodes
and 133 electrodes.

𝑲𝑒1𝑘 =
1

36𝑉𝑒
𝚲𝑇𝝈𝚲, (A.5a)

𝑲𝑒2𝑘 =

𝐿∑︁
𝑙=1

1
𝑧𝑙

𝐴𝑒

12
(13,3 + 𝑰3), (A.5b)

𝑩𝑒𝑘 =
𝐿∑︁
𝑙=1

1
𝑧𝑙

𝐴𝑒

3
11,3, (A.5c)

where 𝑰3 is a 3×3 identity matrix, 13,3 is a 3×3 matrix of ones and 11,3 is a 1×3 vector
of ones. 𝑲𝑒1

𝑘
and 𝑲𝑒2

𝑘
are constructed separately and summed to make 𝑲(𝝈) following

eq. (3.34)a.
Employing volume and area coordinates have previously been used for the PEM in

EEG [24] and for FE implementations of the Bloch-Torrey equations [28]. Alternatively,
linear Lagrangian basis functions have also been utilised by Pursiainen et al. (2012) [135].
For more details on the derivation of the above element stiffness matrices the reader is directed
to Beltrachini et al. (2015), Beltrachini (2019) and Silvester and Ferrari (1996) [28, 24, 161].
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A.2 Sparse Stiffness Matrices

After solving the element stiffness matrices and summing the contributions for each node,
the resulting stiffness matrix is highly sparse. This property makes it efficient to store when
using sparse matrix tools (e.g., sparse() in MATLAB). Revisiting the spherical head model
example with 120 electrodes and 84K nodes, the number of non-zero inputs is ∼1.2M, only
0.0177% of the total number of matrix inputs. In a realistic head model, with 650K nodes and
133 electrodes, the stiffness matrix has ∼10M non-zero inputs which occupies only 0.0024%
of the matrix. Fig. A.2 is a visual representation of the sparseness of the stiffness matrices.
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