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Abstract

Recent developments in cosmological observables are leading to an era of precision
cosmology. At the forefront are observations of the Cosmic Microwave Background
(CMB), which are capable of testing entire cosmological models by themselves. I
present an overview of the development of CMB observations with legacy space-, and
modern ground-based observatories, as well as the work done on the creation of new,
modern Bayesian likelihood codes capable of constraining cosmological parameters
from these observations. Additionally, developments in machine learning have allowed
for accelerated inference by using neural network emulators. I present work on the
development of a complete software suite with the CosmoPower emulator framework,
opening new avenues for the prescription, creation, and application of new high-
accuracy emulators that are applicable for these precise measurements. Finally, I bring
all this work together in an overview of the work done on the upcoming data release
(DR6) of the Atacama Cosmology Telescope (ACT). This work entails the development
and testing of the ACT DR6 likelihood for both standard and extended cosmologies on
a suite of purpose-built simulations. When published, the future ACT DR6 release will
include small-scale temperature and polarization data of the CMB that will provide the
most stringent cosmological tests from the CMB alone to date.
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Chapter 1

Introduction and the Cosmic Microwave
Background

𒌓𒊑𒀀𒌓𒋤𒁺𒊑𒀀
𒈪𒊑𒀀𒈪𒁀𒁺𒊑𒀀
𒈬𒊑𒀀𒈬𒋤𒁺𒊑𒀀

In this introduction, I provide an overview of the necessary physics of background
cosmology, the Cosmic Microwave Background (CMB), the standard model of cosmology
(ΛCDM), and measurements of ΛCDM with the CMB.

The structure of this chapter is as follows:

• In section 1.1, I will give a broad overview of non-perturbed background cosmology
and the expansion history of the universe;

• In section 1.2, I explain the ΛCDM model that is currently considered the “standard
model” of cosmology;

• In section 1.3, I explain how this ΛCDM model gives rise to the Cosmic Microwave
Background (CMB), and how the history of the universe is imprinted in features
of the CMB;

• In section 1.4, I explain the power spectrum of the CMB, which is the main probe
we aim to measure with experiments;

• In section 1.5, I give an idea of what goes into measuring this power spectrum;
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Introduction and the Cosmic Microwave Background

• In section 1.6, I give an overview of extensions of the ΛCDM model, and what is
currently at the forefront of CMB research;

• In section 1.7, I give an overview of important past, present, and future experiments
that observe(d) the CMB.

The base material has been sourced from a variety of resources, primarily from

• Daniel Baumann’s lecture notes on Advanced Cosmology, sourced from his webpage
http://cosmology.amsterdam/education/advanced-cosmology/, last
opened August 2024;

• Scott Dodelson, Modern Cosmology, Second Edition, 2020, Academic Press.

with any further references given in the text.

1.1 A Cosmological History of the Universe

The entire history of our universe begins, of course, with Albert Einstein. In
1916 he published his Theory of General Relativity (GR), which forms the basis for our
best understanding of gravitation. In it, gravity is described not as an attraction
between masses, but by a curvature of the spacetime through which objects move
as a consequence of mass.

The relation between mass-energy and curvature is summarized in the Einstein
field equations,

Rµν − 1
2Rgµν + Λgµν = 8πG

c4 Tµν . (1.1)

Here, Rµν is the Ricci tensor, and R = Rµ
µ is its contraction, the Ricci scalar. gµν

is the metric tensor, and Tµν the stress-energy tensor. The scalar Λ is the vacuum energy
density, which appears in the equations as a degree of freedom.

In the years that followed Einstein’s discovery, several people, notably Friedmann,
Lemaître, Robertson, and Walker, independently worked on a solution to the field
equations of GR that we now know as the FLRW metric

ds2 = −c2dt2 + a(t)2
[

dr2

1 − κr2 + r2dθ2 + r2 sin2 θdϕ2
]

. (1.2)

In this FLRW metric, space can homogeneously expand or contract with a scale
factor a(t). Spacetime also has a curvature κ = +1, 0 or −1, where these three values
refer to an open, flat or closed spatial geometry respectively. This metric only describes

2 Precision Cosmology from Small-Scale CMB Observations
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A Cosmological History of the Universe

the curvature of spacetime. For us to inspect any properties of spacetime, and to learn
how it affects objects and their kinematics, we need to describe the right hand side of
Equation 1.1 by means of a stress-energy tensor

Tµν = (ρ + p)uµuν − pgµν . (1.3)

Here, we have made the assumption that our Universe is filled by a perfect fluid
with a density ρ and an isotropic pressure p, and uµ is the four-velocity of an observer
moving relative to the fluid. For an observer comoving with the fluid, uµ = (1, 0, 0, 0),
and the fluid only retains its diagonal term

Tµν = diag(−ρ, p⃗). (1.4)

We can now combine our metric from Equation 1.2 and our stress-energy tensor
Equation 1.4 into our field equations Equation 1.1 and find

H2 ≡ ȧ2

a2 = 8πGρ

3 − κ

a2 (1.5)

ä

a
= −4πG(ρ + 3p)

3 (1.6)

These equations describe the Hubble parameter H , which is the time evolution
of the scale parameter a as a function of the density ρ, pressure p, and curvature κ of
the universe. The parameter H measures the rate at which two comoving points are
receding from each other relative to their comoving distance. This is often expressed as
Hubble’s law, v = Hd, with v the recession velocity and d the physical distance between
two comoving points. For a distant object, this recession velocity is often measured
through its redshift z. In cosmology, this redshift is not necessarily due to a true velocity,
and thus we define cosmological redshift in terms of the scale factor as z + 1 ≡ 1/a.

Since general solutions for Equation 1.5 are hard to find, one often looks at the
limiting behaviour of these equations as a function of the relation between the density
and pressure of the contents of the universe. A common way to do this is to set κ = 0,
and then describe the equation of state for these contents as:

p = wρ (1.7)

Where w is the parameter of state, usually taken to be a constant, that equates
the relation between pressure and density of the contents of the universe. Assuming a
single component with a known parameter of state, solving the Friedmann equations

H. T. Jense 3



Introduction and the Cosmic Microwave Background

gives a simple expression for the scale factor,

a(t) = a0t
2

3(w+1) , (1.8)

where a0 is a constant of proportionality, commonly taken such that a0 = a(t0) =
1, where t0 is present time*.

As the universe is filled with many different components, it is useful to look at
a variety of important ones, and how their properties affect the expansion rate. Such
components can primarily be classified by how their pressure relates to their density.

Matter is the component of all non-relativistic, massive particles, for which the
pressure is negligible compared to their density, i.e. p = 0 and hence w = 0. Substituting
this into Equation 1.8, we get

a(t) = a0t
2/3. (1.9)

Radiation is the component of both relativistic massive particles that are dominated
by their kinetic energy, or massless particles like photons. Their pressure is a third of
their density, so w = 1/3, and

a(t) = a0t
1/2. (1.10)

Then there is dark energy, which follow from the special case where w = −1,
or where p = −ρ. For this value, this solution breaks down and one needs to solve the
Friedmann equations directly to find that

a(t) ∼ et (1.11)

Such behaviour is usually associated with the dark energy component, denoted
with the symbol Λ. This component is usually understood as an intrinsic energy density
of space (also known as “vacuum energy”), that causes space to expand over time.

The behaviour of all these different models is shown together in Figure 1.1.

If applied to our Universe, however, one finds that a single component is not
quite accurate enough, as we already know of the existence of at least two components
in our Universe (those being matter and radiation). However, one can write down their
solution as a linear combination of different solution to Equation 1.8, and solve the time
evolution for the scale factor for a universe with multiple components. To do this, it is
easier to rewrite Equation 1.5 by taking:

*Throughout this work, a subscript zero will always be used for “at present time”, e.g. X0 is “the
value of X at present time.”

4 Precision Cosmology from Small-Scale CMB Observations
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Radiation-dominated (w = 1/3)

-dominated (w = 1)

Figure 1.1. The expansion rate of a universe dominated by (black) matter (a ∝ t2/3),
(red) radiation (a ∝ t1/2), and (blue) a cosmological constant (a ∝ et).

ρc = 3H2

8πG
(1.12)

And observing that if ρ = ρc, κ = 0. This density measure ρc is known as the
critical density and it the density for which a universe with flat geometry is expanding
at a specific rate H . In fact, it becomes easy to rescale our density with respect to the
critical density

Ω ≡ ρ

ρc

(1.13)

We can now recognize that a flat universe is a universe at which Ω = 1 — namely
a universe at which the density is exactly the critical density and thus has flat spatial
curvature. With this we can write the first Friedmann equation more simply as:

H2

H0
2 = Ω0,ra

−4 + Ω0,ma−3 + Ω0,Λ + Ω0,κa−2 (1.14)

Where Ω0,i is the present-day density of a specific component, with r for radiation,
m for matter, and Λ for dark energy. There is also a term with Ω0,κ ≡ 1 − Ω0, which is
the density of curvature, which for a flat universe would be zero and disappear as a
term. By taking a known set of Ω0,i parameters, one can integrate this equation over
time and follow the expansion history of the universe according to GR. This is shown in

H. T. Jense 5
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Figure 1.2. The expansion history for a flat universe with Ωm,0 = 0.3, ΩΛ,0 = 0.7
and Ωr,0 ∼ 10−4 (these numbers where chosen to approximate our best measurement
for our own Universe), calculated by numerically integrating Equation 1.14. The top
figure shows the scale factor as a function of time, while the bottom figure shows
the density fraction of the various components over time. The vertical dashed lines
show two epochs, first where Ωr = Ωm (known as matter-radiation equality), and later
where Ωm = ΩΛ. In these three regimes, the scale factor expands as in Equation 1.8 and
Equation 1.11.

Figure 1.2.
Because these different components dominate the universe at different stages, the

evolution of the universe will be different throughout its history. The parameterization
of Equation 1.14 also only gives an overview of the average density across the universe,
which assumes the universe is perfectly homogenous. In the next section, section 1.2,
I will go through our best understanding of this evolution in more detail, and give a
qualitative overview of how inhomogeneities behave over time.

1.2 The ΛCDM model

In 1927, Georges Lemaître independently derived the FRLW metric and, coupled
with observations of the recession of distant galaxies, proposed an expansion of the
Universe (Lemaître, 1927). More importantly, Lemaître argued that since the Universe is
expanding, it must have expanded from a smaller state in the past. This proposal led to
Edwin Hubble’s observations in 1929 where he showed that distant galaxies are indeed
receding, at a rate known as the Hubble Parameter, which at present is measured at

6 Precision Cosmology from Small-Scale CMB Observations
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H0 ≈ 67 − 72 km/s/Mpc. In 1964, the discovery of the cosmic microwave background
or CMB (Penzias and Wilson, 1965) – which I will describe in more detail in section 1.3 –
provided evidence of an initial hot, dense state of the Universe, which expanded over
time into its current distribution of galaxies within a cosmic web of large scale filaments.

Observations of the CMB showed that the Universe was incredibly homogeneous
and smooth early on. If small perturbations exist, then these will over time accumulate
more mass and grow into the large-scale structure of the Universe. Early observations
showed however, that the Universe at present day is highly clustered, while the early-
Universe CMB is far too smooth to seed the perturbations that can grow into this
clustered structure. The inability at the time to relate the relatively homogeneous nature
of the CMB with the highly clustered nature of matter at present day gave rise to the
idea that cold dark matter (CDM) has to dominate the mass component of the Universe.
In addition, the relatively flat shape of spacetime and the apparent thermal equilibrium
of the early Universe gave rise to the formulation of the cosmic inflation paradigm (see
subsection 1.3.1).

These observations led to the present-day concordance model for cosmology†,
known as the ΛCDM model. This model makes only a few basic assumptions:

• General Relativity is a correct description of gravity on cosmological scales;

• The Universe is homogeneous and isotropic on cosmological scales;

• There is a dark matter component that was cold at matter-radiation equality (cold
dark matter, or CDM);

• There is a component driving the accelerated expansion of the Universe similar to
a cosmological constant Λ.

ΛCDM cosmology allows us to summarize the entire cosmological history of the
Universe in only six basic parameters, which is the number needed to fit to cosmological
observables. While more free parameters, such as the spatial curvature, or mass of
neutrinos, can be introduced as additional degrees of freedom, measurements of these
parameters have not yet yielded any deviations from basic assumptions or external
measurements. For these two given examples, we have not detected a deviation from the
simple assumption of flat spatial curvature, nor have we made a nonzero measurement
of the mass of neutrinos from cosmological probes. There is no one set of parameters

†It is called a “concordance” model because, when it was devised, it reached a consensus between the
cosmology described by these different observational probes.
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that must be used to fit for — instead, there is some freedom of choice, and the remaining
parameters can be exactly derived from the original six.

A common set of six parameters chosen are:

1. The Hubble parameter H0;

2. The present-day physical density of baryonic matter Ωb,0h
2 and cold dark matter

Ωc,0h
2, where h ≡ H0/100 km/s/Mpc is a normalized present-day Hubble parameter;

3. The amplitude As and spectral index ns of the primordial power spectrum;

4. The optical depth at reionization τreio.

These first three parameters have been described above already. The latter three
will be described more in detail in subsection 1.3.1 and subsection 1.3.4, later on. An
additional parameter, θ∗, will be mentioned in subsection 1.3.2. Because this parameter
can be fully derived from the other six, it is not a free parameter, but it is often used in
analysis instead of the Hubble parameter H0.

1.3 The Cosmic Microwave Background

The Cosmic Microwave Background or CMB is one of the key observables in
cosmology. It was first predicted to exist in the 1940s by Alpher and Herman (Alpher,
1948). Based on the assumption that the Universe is expanding, and that the Universe
expanded in the past from a smaller state, we can argue that the Universe must have
been denser and hotter in the past. In the distant past, the density of matter must
have been so great that any heat in the form of radiation could not disspiate due to
optical depth being far greater than unity. At some point however, the expansion of the
Universe caused the density of matter to drop so low that optical depth dropped far
enough for this radiation to radiate out. This is the first epoch at which the Universe
became transparent to radiation — at any earlier point in time the Universe must have
been opaque to radiation and we cannot make any observations from photons. Looking
back at this point in the Universe’s history shows an all-sky background of photons,
radiating away from an opaque layer of matter: this primordial radiation is what we
call the CMB.

The CMB was detected first in 1965 by Arno Penzias and Robert Wilson, during
attempts to remove any sources of antenna noise for long-distance radio communications
(Penzias and Wilson, 1965). It was originally formed as the thermal emission of the
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primordial plasma, with the photons last interacting with this plasma via Thomson
scattering. The point at which these photons last scattered is called the surface of last
scattering , which is observed at present day to be around z∗ = 1090.97 ± 0.89 (Bennett
et al., 2013).

At present, the CMB radiation forms an all-sky black-body emission at a temperature
TCMB = 2.755 K (Fixsen, 2009) , which corresponds to a temperature around decoupling
of T∗ = TCMB(1 + z∗) ≈ 3000 K. At this observed present-day temperature, the black-
body emission peaks around a frequency of 162 GHz, or a wavelength of 8 millimetres.
Coincidentally and usefully, this peak is right at the transition point where Galactic
synchrotron radiation (which dominates at lower frequencies) and Galactic thermal
dust emission (which dominates at higher frequencies) cross-over, and the sum of their
emission is at a minimum. Thus Galactic contamination is at a minimum in the range
where the CMB is brightest. Additionally, at this wavelength, the Earth’s atmosphere
is highly transparent, with a gap between the absorption spectra of water vapor and
carbon dioxide. This makes it possible to observe the CMB from the surface of the Earth.

Despite any assumptions we have made of homogeneity and isotropy, the
universe itself is not perfectly homogeneous. Any form of primordial inhomogeneity
causes tiny fluctuations in the primordial plasma, and thus the CMB forms an all-sky
field of fluctuations in temperature and polarization. These fluctuations of the order
of ∆TCMB ≤ ±300µK are measurable across the sky, meaning inhomogeneities existed
of the order of ∆T/T ∼ O(10−5). An all-sky measurement of these anisotropies as
measured by the Planck satellite is shown in Figure 1.3. In addition to this temperature
anisotropy component, the CMB also has a polarized component, which too inhibits its
own anisotropies. I will delve into more details about this in subsection 1.4.2.

To explain how primordial features and cosmological physics affected the CMB,
both at and after the surface of last scattering, I will summarize the thermal history of
the universe in this section.

1.3.1 Initial Conditions

The ΛCDM model assumes that the universe started existing as a tiny, hot
state of matter, radiation, and other components. The state must have been small
enough that the entire universe was a quantum system, and any later fluctuations
in density must have been seeded by the quantum fluctuations in this field. This
was immediately followed, within about 10−30 seconds of this state’s existence, of a
period of rapid, exponential expansion during which the universe expanded by a factor
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Figure 1.3. A map of the all-sky CMB temperature anisotropy as measured by
Planck (Planck Collaboration, 2020a). Note that while the mean temperature TCMB =
2.756K, the amplitude of the measured fluctuations are no more than ∆TCMB = ±300µK,
meaning the CMB is extremely homogeneous across the sky.
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∼ e60. This rapid expansion is known as inflation. In addition to creating the initial
seeds for inhomogeneities, inflation also explains the relative flatness of the universe,
|Ω0 − 1| ≪ 1, as any overdensity got smoothed out over a larger volume.

As a result of inflation, these inhomogeneities were blown up to form a universe
filled with overdensities - regions which contained more mass than the average density
in the universe. The initial conditions follow a power spectrum of overdensities, often
called the primordial power spectrum, parameterized as

P (k) = As

(
k

k∗

)ns−1

, (1.15)

where k is the wavenumber of an overdensity, k∗ is an arbitrary pivot scale, As is
the fluctuation amplitude at that pivot scale, and ns is the spectral index of the power
law. This power law describes the initial state of scalar (density) perturbations in the
universe. In addition, the initial conditions should include some tensor perturbations in
the form of some primordial gravitational waves. These tensor perturbations follow a
similar power law, but with an initial tensor fluctuation amplitude At and spectral index
nt.

The origin of these Gaussian initial conditions is assumed to be the inflation
epoch of the universe, during which the universe rapidly expanded from a small, hot,
primordial plasma, which were Gaussian before reheating. The exact physics of inflation
determine the possible values for As, ns, At, and nt.

Current measurements from the CMB anisotropies in temperature and polarization
have given us good measurements of the scalar spectral index parameters As and ns (as
we will see in later chapters, namely chapter 3 and chapter 5). Because we do not have
a good measurement of it yet, a value that is of interest in the context of cosmology, is
the tensor-to-scalar ratio r ≡ At/As, which measures the amount of primordial tensor
fluctuations relative to the amount of scalar fluctuations. Current constraints put this
value at r < 0.036 (Ade and et al., 2021).

1.3.2 Decoupling, the Sound Horizon and Acoustic Peaks

Because the primordial power spectrum of overdensities is nonzero, the universe
has some initial anisotropies in it, which will evolve over time. Overdense regions
of dark matter will collapse under gravity, while overdense regions of radiation will
attempt to diffuse away towards underdense regions. Baryons, which are attracted to
gravity, will attempt to follow the dark matter into overdense regions, but so long as
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the baryonic density is high enough, they will — unlike the dark matter — experience a
radiation pressure that forces them outwards into underdense regions. Thus initially,
these overdense pockets of baryons are forced outwards against gravitational infalling.

For a universe that is also changing in scale over time, the concept of a physical
size measure needs to account for a time-varying distance measure. The particle horizon
is the maximal distance that a signal can travel between some initial time and a later
time:

r(t) =
t∫

0

dt

a(t) . (1.16)

In the early universe however, the high density of baryons causes photons to
remain coupled to them, meaning a photon cannot travel at a speed faster than the
sound speed cs. As such, any overdensity in the primordial plasma grows in size as

rs(t) =
t∫

0

cs(t)dt

a(t) , (1.17)

where cs(t) = 1/
√

3 while photons remain coupled to baryons. As these overdensities
grow in physical size, the number density of baryons drops, and as a result photons can
diffuse out of these overdensities, lowering the outward pressure and thus the sound
speed cs(t) ≲ 1/

√
3. At the point where photons decouple from baryons, we are left

with a shell-shaped overdensity of baryons.

In response to the disappearance of this thermal radiation pressure, these baryon
overdensities will suddenly be left with only a gravitational pull inwards towards the
dark matter overdensity in the middle, and start collapsing. Because they will contract
again in physical size, this will increase the number density of baryons again, which
means the radiation pressure increases, forcing the shell outwards again. The baryonic
shell will oscillate around a size known as the sound horizon size, r∗ ≡ rs(t∗), which
is a universal quantity that can be computed as the scale of the sound horizon at the
time t∗ when radiation finally fully decouples from baryonic matter. A similar quantity,
the sound horizon at drag epoch rd ≡ rs(td), is the maximal distance that baryons
can travel due to radiation pressure, which is slightly higher due to baryons traveling
outward before they reach their largest scales under gravitational infalling. Baryons in
the large scale structure (LSS) of the universe tend to exist in hollow, overdense shells
with a radius rd. These overdensities are known as baryon acoustic oscillations or BAO
features, where baryons undergo oscillating periods of compression and rarefraction.

12 Precision Cosmology from Small-Scale CMB Observations



The Cosmic Microwave Background

On the sky, fluctuations of a size r∗ form patterns at an angular scale θ∗, known as
the angular scale at decoupling. Because the exact size of θ∗ is dependent on the
background evolution of the primordial plasma, the value of θ∗ can conversely be used
as a measurement of the universe’s cosmological properties.

1.3.3 Recombination and the Dark Ages

As the universe expands in size, the matter density drops because the same
number of particles now occupy a larger volume, and at the same time the temperature
drops because thermal energy similarly occupies a larger volume of space. Because
of this, we reach the epoch of recombination‡, where the temperature is low enough
for the electrons and protons in the primordial plasma to combine and form neutral
hydrogen.

In Figure 1.4, I show the reionization history of the universe as described by the
ΛCDM model. The figure shows the redshift of the universe z, with high redshift being
the early universe and zero redshift the present day, against the ionization fraction χe(z),
being the number of free electrons per atomic nucleus. For a universe that consists
fully of hydrogen, this number will vary between zero (no free electrons) and one
(one free electron per hydrogen nucleus). However, ΛCDM assumes some brief early
universe nucleosynthesis, and thus a small amount of primordial helium should exist.
Because a helium atom contains two electrons per nucleus, we should see more than one
electron per atomic nucleus if the universe is fully ionized. Observations indicate that
the universe consisted for about 25% Helium by mass (Aver et al., 2015). In Figure 1.4 we
see, that at very high redshift, the universe is completely ionized at χe ≈ 1.17. The epoch
of recombination then happens between 103 ≲ zrec ≲ 104, where we see a stepwise drop
in the ionization fraction: this is because the different atomic properties of helium and
hydrogen mean that these two elements will recombine with their (in helium’s case:
first and second) electrons at different temperatures and thus at different redshifts. Once
the universe has cooled down enough, all electrons will exist in neutral hydrogen and
helium, and thus the ionization fraction χe = 0 after recombination, as seen at z ≲ 103.

The period following this epoch of recombination is called the dark ages, as it
represents a period during which neutral hydrogen and helium filled the entire universe
in a state where the gas was too warm and insufficiently clustered to form stellar objects.
This period lasting from about z ∼ 103 to the reionization period is poorly understood,
as there was no physical interaction between the CMB photons and neutral gas. One
possible observation for probing this moment in the universe’s evolution would be the

‡although it is called recombination, matter was not in a combined prior to this epoch.
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Figure 1.4. The ionization fraction of the universe χe as a function of redshift
z. The universe was ionized at first (high redshift), then underwent a process of
recombination (drop in ionization fraction at zrec ∼ 1000), only to be reionized at a
later stage (increase in ionization fraction at zreio = 7.68 ± 0.79 (Planck Collaboration,
2020d)). The main decrease and later increase in ionization fraction is due to the
ionization and later recombination of hydrogen, which forms the dominant atomic
component in the universe. The complicated structure of these increases and decreases
in ionization fraction is due to the existence of helium (J. N. Lockyer, Esq, 1868), which
recombines/reionizes at different energies than hydrogen. These two different transition
epochs are explained in subsection 1.3.3 and subsection 1.3.4 respectively.
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21 cm hyperfine transition of hydrogen, which, when accounting for redshift, could be
visible in the 15–200 MHz band on Earth.

1.3.4 The Epoch of Reionization

While the physics of recombination suggests the universe must have transitioned
to a neutral state, current observations indicate the opposite is true, and that the universe
is in a highly ionized state. This suggest that the universe must have undergone a second
transition back from recombination to an ionized state.

By observing the absorption spectra of distant quasars, we can probe the redshift
at which the universe transitioned from this neutral state back to an ionized state.
Neutral hydrogen absorbs strongly in the Lyman-α regime, and thus the period between
the epoch of recombination up to the present day must include a period of strong
absorption of Lyα emission. This period of strong absorption is known as the Gunn-
Peterson trough, and measurements indicate the transition to the current ionized state
must have happened before z ≳ 6 (Becker et al., 2001). This transition from the early,
neutral state to the current, ionized state is known as the epoch of reionization. This
epoch is shown in Figure 1.4, as the increase in ionization fraction at z ∼ 8. Because
hydrogen and helium ionize at slightly different energy levels, we see a second increase
in the ionization fraction at a slightly later z ∼ 5, which is due to the second reionization
of helium. After this, at z ≪ zreio, the universe is once again in a fully ionized state at
χe ≈ 1.17.

Measurements of the Lyman-α forest in the spectrum of quasars puts an upper
limit on the redshift when this transition must have occured, but due to the highly
sensitive nature of this measurement, it is hard to use this for a detailed measurement
of the entire epoch.

For observations of the CMB, the exact physics of reionization are not of interest,
since the impact they have on the exact shape of the CMB is minimal. What is of interest
however, is when exactly reionization happened, and how long it lasted. This is often
expressed in terms of the redshift of reionization zreio as well as a duration ∆z. Since the
exact model for reionization does not matter much at current experimental sensitivity, it
is commonly modeled as a simple transition from low to high ionization fraction

χe(z) = 1 + tanh((z − zreio)/∆z)
2 . (1.18)

Current contraints on the epoch of reionization are limited, so often the parameter
∆z ≈ 0.5 is kept fixed at this somewhat arbitrary value. The CMB alone has a very
weak dependence on this parameter ∆z, and thus its value cannot be directly inferred
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from it. However, as described later in this section, it will be possible to infer this from
secondary anisotropies through the Sunyaev-Zel’dovich effect.

Since the universe is not fully transparent to radiation at this point, the CMB
photons are slightly affected by the optical depth at reionization τreio, found by the
Planck mission to be τreio = 0.0544 ± 0.0073. This optical depth is equivalent to a redshift
zreio = 7.50 ± 0.82. Any increase in optical depth will suppress anisotropies in the CMB
through absorption, meaning the overall amplitude of anisotropy measurements is
inversely related to the optical depth at reionization.

It is believed that the epoch of reionzation was caused by the formation of the
first, massive, population of stars (see e.g. Zaroubi (2012); Klessen and Glover (2023)).
As the neutral hydrogen gas clustered to form the initial large scale structure of the
universe around z ∼ 8, dense pockets of gas formed the first, high-mass stars.

The formation of these ionized pockets in the universe creates an additional
secondary effect on the CMB known as the Sunyaev-Zel’dovich effect (SZ effect). CMB
photons traveling along the line-of-sight through pockets of ionized gas will scatter
off them through Compton scattering. With the ionized gas in the universe forming
a complicated large-scale structure in the universe after clustering, we differentiate
between the thermal (tSZ) and kinematic (kSZ) SZ effects.

The tSZ effect is created when a CMB photon is scattered by electrons in a thermal
distribution within a galaxy cluster. The tSZ effect can be used to detect galaxy clusters
from CMB map observations, study their gas profiles, and probe the baryon physics
within them (see e.g. Hilton et al. (2021)).

Electrons outside a galaxy cluster can experience bulk velocity through gravitational
infalling towards the cluster mass. This bulk motion can scatter the CMB and will
generate the kSZ effect, which is a much smaller effect than the tSZ effect.

The nature of reionization physics and cluster formation, and their interaction,
have an effect on the physical distribution of electrons through the large scale structure
of the universe, and thus on the details of the kSZ model. The kSZ effect is often modeled
in two components: an instantaneous patchy kSZ effect that is generated as the CMB
photons travel through the bubbles of reionized material that form during reionization.
Secondly, there is the late-time kSZ effect, that is formed by the CMB photons scattering
off the bulk motion of electrons in the large scale structure after the epoch of reionization.

Because the kSZ effect is caused by the distribution of electrons, which itself
is generated during the epoch of reionization, the physics of this epoch will leave an
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imprint on the kSZ effect itself. Precision measurements of the kSZ effect will be able to
probe reionization physics, and parameters such as the duration of reionization, ∆z, or
the clustering of matter σ8, better than observations of the CMB alone (e.g. MacCrann
et al. (2024); Hadzhiyska et al. (2024)).

1.3.5 Lensing of the CMB

Because of the inhomogeneous distribution of mass throughout the universe,
photons from the CMB are deflected by the presence of overdense regions such as galaxy
clusters. This in effect creates a lensing effect of the CMB, where matter overdensities
along the line of sight can warp an observer’s view of the CMB. A correct model for the
CMB must therefore include a model for the deflection of the CMB photons through
lensing, and either include this in the final observation model, or include some paradigm
to remove the lensing effects on the CMB.

In practice, the deflection of photons through lensing by the LSS is small, and
lensing effects are often approximated to first order. Assuming we observe the sky in
some direction n⃗, any mass near the line of sight will generate some small gravitational
potential field ϕ(n⃗), which causes a deflection of nearby photons, meaning we end
up seeing the CMB that was really at position n⃗ + ∇ϕ(n⃗). If we try to measure some
unlensed function F (n⃗) along the sky, then, to first order, we will really see a lensed
version F L of this. This function F L is to first order

F L(n⃗) = F u(n⃗ + ∇ϕ(n⃗)) ≈ F u(n⃗) + ∇ϕ(n⃗) · ∇F u(n⃗) + O(∇2ϕ), (1.19)

where F u is the unlensed version of F . The value of the lensing potential ϕ(n⃗)
is critical in modeling and measuring the CMB. Because the second term on the right
hand side is proportional to ∇F , any small-scale effect in the CMB (which changes
more rapidly across the sky and thus has a higher value of ∇F ) will be more affected
by lensing effects. Thus, as we aim to make more precise measurements of small-scale
features in the CMB, including the effects of lensing become more important.

In addition, as we will see later in subsection 1.4.2, any polarized component of
the CMB will be affected by lensing, as lensing will warp the view of the Stokes Q and
U modes.

The correct modeling of lensing involves a correct modeling of the clustering of
matter across the universe. This involves predicting how matter is initially distributed,
how this distribution evolves over cosmic time, and how this evolving distribution
correlates with itself and with the CMB photons to deflect their paths towards the
observer.
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1.3.6 Other Probes of Cosmology

While for this thesis, the CMB is the main cosmological probe of interest, there
are other observables that in one way or another constrain cosmological models and
parameters. As the CMB probes the universe at high redshift (zCMB ≈ 1050), combinations
of CMB experiments with probes that measure different redshifts can help break
degeneracies that exist in each experiment separately, or constrain parameters in a
different way that makes the joint constraint much tighter than the individual ones.

One of the more traditional measurements for cosmology is the use of distance
ladder measurements, whereby the present-day Hubble parameter is measured by probing
the redshift-distance relation cz = H0d directly – relating the redshift z, Hubble
parameter H0 and distance d to an object. Key to this procedure is a method to accurately
infer the distance to an object, for which the cosmic distance ladder is used: a stepwise
procedure to measure the distance to nearby objects, using this to measure the distance
to moderately far-away objects, which are then used to calibrate the measurement of
distances to far-away objects. The SH0ES project uses the Hubble Space Telescope and
Gaia to measure the distance to nearby Cepheid variable stars to calibrate the distance
to supernovae in nearby galaxies, which are then used to measure the distance to
supernovae in distant galaxies, out to a redshift of z ≤ 0.01. The value reported in Riess
et al. (2022), at H0 = (73.04±1.04) km/s/Mpc is famously in disagreement with the value
found from CMB measurements by Planck (see later in Table 2.1), at a 5σ discrepancy
between them. This disagreement, which persists between nearby measurements of
the Hubble parameter being high, and high-redshift measurements being lower, is
commonly known as the Hubble tension and is an open problem in cosmology.

Baryon Acoustic Oscillation (BAO) measurements involve probing the distribution
of baryonic matter across distance and redshift. Experiments which probe the BAO
scale aim to measure the distribution of galaxies, and their angular (∆θ) and redshift
(∆z) distances, comparing it to the drag scale rd (see subsection 1.3.2) – since the latter
is a fixed size, this gives a measurement of how large this drag scale appears on the sky
as a function of its redshift, known as the angular diameter distance DL(z). Measuring
these indirectly probes the evolution rate of the universe as a function of redshift, H(z),
which traces the background evolution of the universe. Measurements such as those
from the recent DESI results (i.e. DESI Collaboration (2024)) constrain the matter density
Ωm and present-day expansion rate H0 of the universe.

Another way to probe the matter distribution in the universe is to look at the
dark matter distribution, or rather, means to infer it. Since the clustered nature of dark
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matter creates an uneven gravitational potential throughout the universe, photons that
travel from a distant object to us are deflected from their path due to this potential. Weak
gravitational lensing of galaxies seeks to probe the gravitational potential by estimating
the deflection of photons coming from distant galaxies to us at present day. The weak
lensing of these photons creates a deformed image of this galaxy, and the correlation of
the shapes and/or sizes of these galaxies probes the dark matter distribution between
the galaxy and a present-day observer. The Dark Energy Survey (DES) and Kilo-Degree
Survey (KiDS-1000) performed an analysis of the cosmic shear, measuring the matter
clustering parameter S8 ≡ σ8

√
Ωm/0.3 = 0.790+0.018

−0.014 (Dark Energy Survey Collaboration
and Kilo-Degree Survey Collaboration, 2023).

Finally, an upcoming probe that is of interest to cosmology is the use of Gravitational
Waves. For one, standard sirens, which are astrophysical sources of gravitational waves
of which the amplitude of the wave at the source is known precisely, could be used as
an alternative to supernovae in distance ladder measurements. The use of standard
sirens in these kinds of measurements could shed light on the prospects of the Hubble
tension by testing the calibrations of distance ladder measurements using Cepheid
variables. Alternatively, the observation of optical counterparts to gravitational wave
events could be used to measure the distance to galaxies without the need for distance
ladder measurements. Although initial results have been published from these kinds
of measurements (e.g. Hotokezaka et al. (2018); Mukherjee et al. (2020)), the lack of
sufficient events with optical counterparts have yet to make this method competitive
with supernova or CMB measurements of the Hubble parameter. A second use for
gravitational waves is the Cosmic Graviational Wave Background, which would be a
source of background gravitational waves originating from the physics of inflation (see
subsection 1.3.1). A measurement of the amplitude or shape of the power spectrum
of these gravitational waves would measure the tensor mode power spectrum, which
would be a parameter directly related to inflation models.

1.4 The CMB Power Spectrum

When making models or measurements of the CMB, we often work in harmonic
space rather than real space. Predictions about the CMB are statistical in nature, and
working in harmonic space (akin to working in Fourier space) is a natural way of
making measurements of things that are spatially-averaged on a sphere.
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1.4.1 Temperature Anisotropies

The CMB appears on the sky as some temperature map T (n⃗), with n⃗ the direction
vector. Under the assumption that this temperature follows a Gaussian distribution, we
often care about the variation ΘT (n⃗) = δT (n⃗)/T̄ , with T̄ the mean CMB temperature.
This function can be decomposed into a spherical harmonic decomposition as

ΘT (n⃗) =
∑
ℓm

aT
ℓmYℓm(n⃗) (1.20)

with Ylm(n⃗) the spherical harmonics functions, characterized by its parameters
ℓ, m, and its amplitude coefficients aT

ℓm. This decomposition is akin to a Fourier
transform, but on a spherical surface (the sky) instead of a flat plane. Computing
these coefficients aℓm is therefore done with a spherical harmonic transform, which is
the spherical surface equivalent of a Fourier transform:

aℓm =
∫

Y ∗
ℓm(n⃗)Θ(n⃗) dn⃗, (1.21)

with ∗ indicating the complex conjugate, and the integral over the surface of the
sphere.

If we assume the temperature anisotropies to be statistically isotropic, we should
care only about statistical correlations in ΘT . Thus, we care about the isotropic two-point
correlation function

〈
ΘT (n⃗)ΘT (n⃗′)

〉
=
∑

ℓ

2ℓ + 1
4π

CT T
ℓ Pℓ(cos θ), (1.22)

where cos θ ≡ n⃗ · n⃗′, Pℓ are the Legendre polynomials, and CT T
ℓ are the coefficients

of the angular power spectrum (“angular” because they only depend on the angle θ

between the two directions of observation). Since this correlation function measures
the autospectrum of temperature with itself, these coefficients will be denoted as CT T

ℓ .
If the CMB is Gaussian, then these coefficients will capture all information about the
CMB, and all higher-order odd correlation functions ⟨Θ3⟩, ⟨Θ5⟩, etc. will be zero. In this
case, the coefficients of the angular power spectrum will be

Cℓ =
∑
m

a∗
ℓmaℓ(−m), (1.23)

with the sum over all possible values of m. A theory curve for the TT power
spectrum is shown in blue (the top-left figure) in Figure 1.5, based on the results
from the Planck 2018 data release (see more details in later chapters). Marked in this
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Figure 1.5. The theoretical temperature autospectra CT T
ℓ (blue) and CEE

ℓ (green), as
well as the cross-spectrum CT E

ℓ . The spectra are here plotted as Dℓ ≡ ℓ(ℓ + 1)Cℓ/2π for
a fiducial cosmology similar to the Planck 2018 best fit (Planck Collaboration, 2020d).
Several important features in the TT autospectrum are labeled. The vertical grey lines
indicate the approximate locations of the first three acoustic peaks in the TT autospectra,
which correspond to dips in the EE autospectrum and zero-crossings in the TE cross-
spectrum.

figure at the acoustic peaks, which are, as mentioned before, generated by baryon-
radiation interactions around the time of decoupling (see subsection 1.3.2). These
peaks correspond to the scales of maximum compression or rarefraction of the plasma
oscillations. Smaller scale features are less prominent, as photon diffusion causes them
over time to be “washed out” and be suppressed. This effect is known as Silk damping,
and is the main reason for the decay in amplitude for peaks at higher ℓ.

If primordial non-Gaussianities are observed in the CMB, they will point to the
existence of non-Gaussianities in the primordial power spectrum. These would be seen
in the existence of a bispectrum

B(k1, k2, k3) ∼ fNL [P (k1)P (k2) + P (k2)P (k3) + P (k1)P (k3)] , (1.24)

where fNL is a free parameter that expresses the amplitude of the bispectrum B

with respect to the primordial power spectrum P . Current constraints from the CMB put
fNL at f local

NL = −0.9±5.1; f equil
NL = −26±47; f ortho

NL = −38±24 (Planck Collaboration, 2019).
This points to the CMB being highly Gaussian. As such, we approximate our baseline
results to a Gaussian field, while we continue to explore non-Gaussian contributions.
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1.4.2 Polarization Anisotropies

The CMB anisotropies are caused by Thomspon scattering within the primordial
fluid. Because Thomson scattering has different emission coefficients for polarizations
perpendicular and tangential to the scattering angle, if there is a local quadrupole in
the CMB temperature anisotropy, this directional dependence can generate a polarized
anisotropy. As such, in the presence of a local quadrupole, the CMB will naturally have
a polarized anisotropic component as well, arising from the anisotropic properties of the
initial density fluid. If there is a local hot-cold quadrupole in the CMB temperature field,
then Thomson scattering will generate a polarized anisotropy with polarization angles
orthogonal to this quadrupole anisotropy – i.e. the hot-hot axis of the local temperature
quadrupole will be orthogonal to the hot-hot axis of the local polarization anisotropy.

Under the assumption of global isotropy, the polarization of the CMB should
only consist of components which are rotationally invariant. This is often done by
looking at the curl-free and divergence-free components of the polarization, also known
as the E– and B–modes of the CMB. See Figure 1.6 for a comparison of the difference
between E– and B–modes.

E–modes appear naturally as a CMB component due to the fact that Thomson
scattering is polarization-dependent. Local temperature quadrupole anisotropies in
the primordial plasma will cause charged particles to diffuse from hot to cold regions,
and the scattering of CMB photons off of these particles will induce a small polarized
E–mode component.

B–modes are not generated via this process. Instead, any B–modes visible must
originate from tensor perturbations in the early universe, and thus be related to some
physics of inflation. Such B–modes are called primordial B–modes, and a measurement
of the large scale angular B–mode autospectrum would allow for a measurement of the
tensor-to-scalar ratio r, as described in subsection 1.3.1.

Physically, polarization as measured by a telescope is often expressed in terms
of the Stokes Q and U parameters, indicating the horizontal-vertical, and orthogonal-
diagonal components of a photon’s polarization mode. Similarly to how we decompose
the temperature anisotropy into the spherical harmonics, we decompose the polarization
fields together into two polarization spherical harmonics

aE
ℓm ± iaB

ℓm = −
∫

±2Y
∗

ℓm(n⃗) [Q ± iU ] (n⃗) dn⃗, (1.25)

where ±2Yℓm are the spin–2 spherical harmonics, as opposed to the spin–0
spherical harmonics that are used in the temperature field. For this reason, the polarization
modes sometimes called spin–2 components of the CMB.
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Figure 1.6. A sketch showing a comparison of (blue, left) a curl-free E–mode pattern
and (red, right) a divergence-free B–mode pattern. Notice that both E– and B–modes
are invariant under a uniform rotation. Rotating each polarized photon in an E–mode
by 45 degrees will yield a B–mode, and vice-versa.

Gravitational lensing of polarized photons can cause a deflection of the photon
path, as mensioned in subsection 1.3.5. This happens through the same manner in
which the CMB temperature map gets deflected

[
QL ± iUL

]
(n⃗) = [Qu ± iUu] (n⃗ + ∇ϕ(n⃗)) (1.26)

Based on Figure 1.6, rotating each polarized photon of an E–mode by 45 degrees
will create B–modes. Hence, the addition of lensing effects will lead to some E–modes
of the CMB to form lensed B–modes, as opposed to the primordial B–modes mentioned
above.

For this thesis, only the E-mode polarization, its autospectrum CEE
ℓ , and its

cross-spectrum CT E
ℓ with temperature are relevant. The full B–mode spectrum is quite

weak in amplitude (on the order of O(10−4) of the TT power spectrum amplitude), and
B–modes are not easy to measure. The experiments treated in this work do not have a
signal-dominated measurement of the B–modes, and thus I shall not discuss them in
this thesis.

Similar to the temperature anisotropy, there is a polarization anisotropy field
ΘE(n⃗) = δE(n⃗)/Ē, with Ē the mean CMB temperature of the E-mode polarization field.
Akin to Equation 1.22, combining our measurement of the temperature field and the
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polarization field, we get three measures of correlation

〈
ΘT (n⃗)ΘT (n⃗′)

〉
=
∑

ℓ

2ℓ + 1
4π

CT T
ℓ Pℓ(cos θ),

〈
ΘT (n⃗)ΘE(n⃗′)

〉
=
∑

ℓ

2ℓ + 1
4π

CT E
ℓ Pℓ(cos θ),

〈
ΘE(n⃗)ΘE(n⃗′)

〉
=
∑

ℓ

2ℓ + 1
4π

CEE
ℓ Pℓ(cos θ). (1.27)

Here, the numbers CT T
ℓ measure the amplitudes of the autocorrelation of the

temperature field, and CEE
ℓ measure the autocorrelation of the E-mode polarization

field. The numbers CT E
ℓ measure the cross-correlation of the temperature and E-mode

polarization field. An example of these functions is shown in Figure 1.5, with the
TE–cross spectrum in orange (lower left) and the EE–autospectrum in green (lower
right).

The polarization spectra contain similar peaks to the temperature spectra. We saw
before that the peaks in the temperature autospectrum were created by the compression
and rarefraction of the primordial plasma. Contrary to this, the peaks in the polarization
autospectrum are generated by the motion of plasma with respect to the photons. If
we approximate these acoustic oscillations as harmonic oscillators, then the velocity
will be zero at maximum compression and rarefraction, while it reach a maximum
inbetween two such moments. As such, the EE power spectrum is approximately 90
degrees out of phase with the temperature power spectrum. This is shown in Figure 1.5
by the vertical markers at the first three acoustic peaks in the temperature autospectrum,
which correspond to minima in the polarization autospectrum. At these points, the two
spectra are out of phase, and the TE cross-spectrum is close to zero.

1.4.3 Modeling the Power Spectrum

Computing what the CMB power spectrum should look like given a set of
cosmological parameters is no easy task. It involves computing the background
evolution of the universe, the evolution of overdensities of baryonic matter, dark
matter, radiation, and other components such as neutrinos within this background, and
ultimately deriving how a photon that scatters at the surface of last scattering reaches
our present-day instruments while traveling through this evolving universe. This
ultimately comes down to solving a series of coupled non-linear differential equations
that describe the time-evolution of the matter-radiation fluid in the universe. Solving
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these equations give rise to a set of transfer functions ∆X
ℓ (k) that explain how a Fourier

mode k is transformed into the ℓ spherical harmonic of some observable X – where for
the CMB there are X = {T, E}.

Once these transfer functions ∆X
ℓ (k) are computed, we can compute the correlation

of our observed quantities by integrating over them and our primordial power spectrum
as:

CXY
ℓ = 4π

∫
∆X

ℓ (k)∆Y
ℓ (k)P (k) d ln k, (1.28)

where the factor 4π comes from the fact that we’re integating over the surface of
a sphere.

The effects of lensing on the CMB, as explained briefly in subsection 1.3.5, then
need to be taken into account as an additional modification of the Cℓ functions. This
is often done by computing a lensing power spectrum Cϕϕ

ℓ , defined as the spherical
harmonics of the lensing potential ϕ across the sky, which is derived from the redshift-
dependence of the power spectrum of matter clustering. Lensing effects on the CMB
power spectrum can then be computed as the sums across multiple ℓ ranges of combinations
of CXY

ℓ and Cϕϕ
ℓ .

Computing CMB power spectra with camb

Computing what these transfer functions, and the inclusion of lensing effects, look like
is a complicated endeavour. Software packages, such as the code camb (Lewis et al.,
2000)§, exist to compute observables such as the CMB power spectrum. Given a set
of cosmological parameters, camb can compute the expected observed CMB power
spectrum. It does so by first computing the background evolution of the universe
by solving the Friedmann equations I described in section 1.1. These background
evolution results can already be used for computing cosmological constraints from BAO
measurements or distance ladder measurements. To compute the CMB power spectrum
however, camb needs to compute the evolution of a perturbation within the universe,
and then propagate this to the line-of-sight scattering of a photon that travels from
the surface of last scattering to the present, which yields these transfer functions ∆ℓ(k).
Integrating over these transfer functions then allows one to compute the unlensed CMB
power spectrum, as shown in Equation 1.28. Including the effects of lensing involves
sums over different ℓ modes for the unlensed power spectrum and the power spectrum

§https://github.com/cmbant/CAMB and https://camb.info/
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of the lensing potential, including cross-terms for the E and B polarization modes which
get coupled due to these lensing effects. When all these computations have finished,
the user is left with an array of power spectra, CXY

ℓ , which contain models for the
temperature and polarization power spectra given the requested input parameters up
to some accuracy target.

Another advantage to using a code like camb is the fact that these code are often
highly modular: certain components such as the treatment of recombination physics, or
the parameterization of the primordial power spectrum, are all handled by individual
modules that can be swapped out for different codes if desired. For example, the
treatment of dark energy, which by default is assumed to have an equation of state with
w = −1, can be swapped out for a component where w is redshift-dependent.

Later, in chapter 4 I will describe my work on novel techniques to speed up these
computations using neural network emulators.

1.5 Measurements of the Power Spectrum

Measurements of the CMB power spectrum take several steps. First, the CMB is
measured as a field on the sky, with temperature T and polarization anisotropies Q, U

as a function of position n⃗. Once the CMB is mapped across the sky, this function gets
decomposed into the spherical harmonic coefficients aℓm. These are then summed over
to compute the power spectrum Cℓs.

For an ideal measurement of the CMB, without any instrumental noise or other
external factors, our measurement of the power spectrum Cℓs is limited by the fact that
we have only one sky to measure, and thus our measured value of the power spectrum
will randomly scatter around the theoretical prediction due with a Gaussian error. This
ideal error, known as the cosmic variance limit, is given by

ΣXY,ZW
ℓ1,ℓ2 = δℓ1,ℓ2

fsky(2ℓ + 1)
[(

CXY
ℓ CZW

ℓ

)
+
(
CXZ

ℓ CY W
ℓ

)]
, (1.29)

where ΣXY,ZW
ℓ1,ℓ2 measures the covariance between CXY

ℓ1 and CZW
ℓ2 , and fsky is

the fraction of the sky that is observed with this ideal experiment. Note that the
inclusion of the Kronecker delta function δℓ1,ℓ2 means that this covariance matrix is
diagonal, meaning there is no covariance between different modes. Figure 1.7 shows a
comparison of the theoretical TT power spectrum, compared with a cosmic variance-
limited measurement.

To limit the impact of scatter by different Cℓs, the measured data points of the
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Figure 1.7. The cosmic variance limit (CVL) of the TT auto-spectrum. The blue line
shows the theoretical prediction for the power spectrum, the grey dots represent
a random sample of potential measurements of the CT T

ℓ coefficients, while the red
dots are these random samples averaged over a moving window of ∆ℓ = 50. For
increasingly smaller angular scales (higher ℓ), the scatter decreases and approaches the
mean, proportional to σT T

ℓ ∼ (2ℓ + 1)−1/2. We notice that by taking the moving average
over the random samples, we recover the power spectrum, but lose some granularity in
the low-ℓ regime.

CMB are often binned. This binning procedure simply takes a group of adjacent ℓ-modes
in a predetermined range, and averages over them to estimate the mean and error of
a binned data point. The effect of binning is also shown in Figure 1.7 in the red data
points and errorbars.

For real experimental observations, we will end up with a covariance matrix
that has a much more complex structure than this. These additional terms are due to
(un)correlated noise from the instrument itself, and mode coupling due to the lensing
of the CMB; the latter of these two dominates the off-diagonal contributions of the
covariance matrix, especially in the blocks for the polarized modes of the CMB.

On top of the terms mentioned here, the covariance will also include terms
coming from foreground emission in the microwave regime, lensing effects of the CMB,
and correlations between adjacent bins. A common way to estimate the full covariance

H. T. Jense 27



Introduction and the Cosmic Microwave Background

matrix is to either analytically estimate each individual term and add them up, or to
make multiple simulations of the sky and compute the covariance from monte carlo
estimation (see e.g. Atkins et al. (2023)). The result is a dense covariance matrix that
includes any kinds of factors known for the covariance of different modes and cross-
spectra.

With the covariance of the Cℓ’s known, it becomes a question of how to measure
the model parameters, and how to propagate the error on the measurement of the CMB
to the error on these parameters. The methodology of Gaussian likelihood modeling
and MCMC parameter sampling is discussed in detail in section 2.1.

1.6 Testing the ΛCDM model with the CMB

The ΛCDM model makes several assumptions that are not necessarily true,
but close enough to constraints that some fiducial value or model is often left fixed.
Such assumptions can be relaxed. For example one could instead of keeping the mass
of neutrinos fixed to some value obtained from particle physics experiments, try to
measure the mass of neutrinos from the CMB and/or other cosmological probes directly.
Or one could see if dark energy has a different equation of state from w = −1, that
we assumed before. Such models are considered extensions of ΛCDM and are at the
forefront of cosmological research. I will go through a variety of the most important
extension models.

1.6.1 Shape of the Universe

We assumed earlier in section 1.1 that the universe is flat, meaning that Ωκ,0 = 0.
This is not a requirement of the universe, and the value of Ωκ,0 is a free parameter.
Early experiments in cosmology, as I will later touch on in subsection 1.7.1, were aimed
at measuring this value precisely, and it was soon discovered that at the very least,
Ωκ,0 ≈ 0. For an evolving universe, 0 is a metastable equilibrium value, meaning that
any tiny deviation from zero will cause the universe to start deviating from flatness
more over time. The fact that the universe is very close to flat was considered a problem
for cosmology in the 70s, until in the 80s the inflation paradigm (see subsection 1.3.1)
was proposed as a solution to among other things this flatness problem.

At present, the flatness condition is implicitly assumed in ΛCDM, as so far all
measurements are consistent with a flat universe. A non-flat universe with Ωκ,0 as a
seventh free parameter is an extension model that is still of interest for measurement.
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1.6.2 Non-flat Primordial Power Spectra

The initial conditions for the universe assume a primordial plasma with a
density distribution following a nearly flat (ns ≈ 1) power law, as described earlier in
subsection 1.3.1. This scale-invariant power spectrum was originally predicted from
the inflation paradigm, which itself was proposed to address the existing horizon and
flatness problems in cosmology at the time.

The exact physics of inflation however, are not known to date, and any kind of
field theory assumptions for inflation do not fit within the Standard Model of particle
physics. These physics can be probed by probing the shape of the primordial power
spectrum. The most stringent two-parameter model for the primordial power spectrum
P (k) can be relaxed in numerous ways through extension models. One example is by
adding a simple running of the spectral index, nrun, which quantifies how much the
spectral index ns is varying across different values of k.

1.6.3 Neutrino Mass

Neutrinos are light, weakly-interacting particles that are difficult to measure
directly with particle physics experiments. Measurements of neutrino oscillations
indicate that neutrinos have some non-zero mass, but attempts at measuring this
mass have not been successful so far. Because of their light masses, neutrinos form a
relativistic particle contribution to the radiation density of the early universe, whilst
forming a dark matter contribution at late times – their interaction strength being too
weak to act as baryonic matter. Because the nature of this transition depends on the
mass of the neutrinos, there is a possibility for inferring the total mass between the three
neutrino eigenstates, Σmν , from cosmological measurements.

Current constraints from particle physics put the sum of the neutrino masses
at Σmν > 0.06 eV, assuming a normal ordering of the mass eigenstates with a minimal
mass among the two lowest mass states.

Cosmological probes, such as measurements of the CMB or of BAO features,
give a constraint on the upper bound of Σmν . Current constraints from the Dark Energy
Spectroscopic Instrument (DESI) survey on galaxy clustering and BAO shapes, give an
upper bound of Σmν < 0.072 eV at 95% credible interval (DESI Collaboration, 2024).

1.6.4 Number of Relativistic Species

In the early universe, when the primordial plasma has a temperature higher than
the mass of a baryonic particle, that particle behaves more like radiation than matter as
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the two remain coupled together. Neutrinos, which have a mass much less than most
other baryons, provide a contribution to radiation that is often parametrized via the
number Neff , known as the effective number of relativistic species, as

ρr = ργ + ρν = ργ

[
1 + Neff

7
8

( 4
11

)4/3]
, (1.30)

where the numerical factor 7/8(4/11)4/3 comes from particle physics and the
number of spin states that neutrinos can occupy. The main prediction for Neff comes from
particle physics, where the Standard Model predicts Neff = 3.044, under the assumption
of three light neutrinos, interacting via the electroweak interaction. Deviations from this
number can point to the existence of particles or physics beyond the Standard Model,
whether an additional boson or fermion, or an interaction term (Bennett et al., 2020).

The value for Neff can be probed through the background expansion rate of
the universe, the abundances of primordial elements, and radiation perturbations.
Deviations from the standard value of Neff can be measured through the damping tail
and position of the acoustic peaks in temperature and E-mode polarization (Hou et al.,
2013).

1.6.5 Dark Energy

The dark energy component of the universe, described earlier in section 1.1, is a
component that is assumed to have a parameter of state w = −1. This assumption can
be relaxed in a variety of ways. A common model is to add some free parameter w we
can fit for, giving us the wCDM model.

Alternatively, some cosmological probes can at times fit for a time-varying
function, often parametrized as

w(a) = w0 + wa(1 − a) (1.31)

with w0 and wa free parameters to model for, and a the scale parameter of the
universe. This extension is often called the w0wa extension.

Measurements of the CMB are not good at constraining the nature of dark energy,
and constraints on the w0wa cosmology from the CMB alone are poor. At the scales
where the CMB is affected by varying values of w0wa, constraints on measurements of
the CMB are dominated by cosmic variance. Adding these degrees of freedom opens up
parameter degeneracies between w0wa and other parameters. As such, the CMB alone
cannot constrain this kind of model for dark energy well.
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1.7 Leading experiments for CMB Measurements

1.7.1 Early Space and Balloon Missions

When it became apparent in the 1970s that early-universe physics in the universe
determine the nature of anisotropies of the CMB, experiments to measure these anisotropies
became of interest.

Initial efforts were quite limited. It was not until the launch of the Cosmic
Background Explorer (COBE) in 1989 that the first precision measurements of the all-sky
anisotropies were performed. COBE measured the sky anisotropy on angular scales
> 7◦, which is greater than the horizon size at decoupling (see subsection 1.3.2). The
smoothness of the CMB at this scale was essential in showing that the early universe
was in thermal equilibrium between matter and radiation. Results presented in 1992
showed agreement with the initial scale-invariant inflation model predictions (ns ≈ 1),
as well as anisotropies of a scale that could seed the structure-growth needed for the
present-day large scale structure clustering (Smoot et al., 1992).

Almost a decade later, the next great breakthrough came with the Balloon Observations
Of Millimetric Extragalactic Radiation and Geophysics (BOOMERanG) and Millimeter
Anisotropy eXperiment IMaging Array (MAXIMA) missions. The two experiments were
both balloon-borne telescopes that aimed to map out the first peak in the CMB anisotropy
power spectrum, with the intention of testing the flatness of the universe. The BOOMERanG
data set showed that the first acoustic peak in the CMB power spectrum peaked
at ℓ = 197 ± 6, which was the first indication that the universe was indeed flat
in shape (de Bernardis and et al., 2000), indicating that 0.88 < Ω0 < 1.12 at the
95% confidence level. The concurrent MAXIMA mission gave a measurement of the
anisotropies down to ℓ ∼ 785 (Hanany et al., 2000). This measurement gave rise to the
first values for the baryon density of Ωbh

2 = 0.030 ± 0.005 (Bond and et al., 2000), which
was the first measurement of this value independent of primordial nucleosynthesis
estimates.

These measurements of the CMB anisotropies showed that the CMB was a critical
probe of cosmological parameters, one sufficiently constraining on the ΛCDM model
even by itself. Soon after the success of the BOOMERanG and MAXIMA missions,
space-based observatories were launched and started mapping the full-sky CMB to
make a complete measurement of the power spectra.
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1.7.2 Precision Cosmology from Space

Wilkinson Microwave Anisotropy Probe

The Wilkinson Microwave Anisotropy Probe (WMAP) was launched in 2001, measuring
the CMB in both temperature and polarization until 2010. It created a full-sky map of
the CMB with a 13 arcminute resolution. The final, 9-year temperature and polarization
results provided the first precision measurements of the CMB anisotropies over the
entire sky (Hinshaw et al., 2013). By observing in five different frequency bands betwen
23 and 94 GHz, it allowed for mapping foreground contaminations such as synchrotron
radiation, free-free emission, and astrophysical dust.

The WMAP collaboration published their results in incremental releases. The first
release, in 2003, provided a measurement of all six cosmological parameters based on the
ΛCDM model, as well as some constraints of extension models. Although the constraints
of WMAP at this time were not enough to provide strong evidence on ΛCDM as a model,
the first measurement of the redshift of reionization from WMAP ruled out warm dark
matter as a dark matter candidate (Spergel et al., 2003). Combined constraints with
external probes gave constraints on the flatness of the universe, the equation of state for
dark energy, and an upper limit on the mass and amount of neutrinos in the universe.
The later five-year results provided the first statistically significant detection of cosmic
neutrinos with a high-confidence measurement of Neff > 0 (Dunkley et al., 2009).

Later, improved measurements of the CMB power spectra in temperature and
E-mode polarization yielded an independent, complete six-parameter measurement
of ΛCDM, as well as constraints of extensions of this model. With the release of the
9-year data release in 2012, the flatness of the universe was constrainted to 1 − Ω0 =
−0.0027 ± 0.0039, giving a major improvement over the BOOMERanG experiment over
a decade earlier (Hinshaw et al., 2013).

To this day, the WMAP measurement of the first acoustic peak remains useful for
joint analyses with small-scale measurements of the CMB. In section 3.2, I will delve
more into the analysis of this data, and my work on a modern reimplementation of the
likelihood software for use in modern joint analyses.

Planck

The Planck spacecraft succeeded the WMAP probe, launched in 2009 and started its
all-sky survey of the microwave background between 30 and 857 GHz later that year.
The all-sky measurements by Planck provided a large-scale measurement of the CMB
that complemented the start of observations by the ground-based telescopes ACT and

32 Precision Cosmology from Small-Scale CMB Observations



Leading experiments for CMB Measurements

10 3

10 2

10 1

100

101

102

103

XX
[

K2 ]

CMB- TT

CMB- EE

CMB- BB

Primordial
r=0.1

Planck (PR3, 2018)
ACT (DR4/DR6, 2020-2023)
SPTpol/SPT3G (2018-2021)
POLARBEAR (2017/2020)
BICEP2/Keck (2018) 

December 2023

90 1 0.2 0.1 0.05
Angular scale

50 100 150 200 250 300
200

100

0

100

TE
[

K2 ]

CMB- TE

2 150 500 1000 2000 3000 4000
Multipole 

0

1

10
7 [

(
+

1)
]2 C

/2

CMB- Lensing

Figure 1.8. An overview of modern precision measurements of the CMB power
spectra. The largest angular scales for temperature and E-mode polarization are
currently best measured by Planck (blue). The Atacama Cosmology Telescope (ACT,
red) and South Pole Telescope (SPT, yellow) are ground-based observatories aiming
to measure the intermediate- and small-scale anisotropies. The POLARBEAR (green)
and BICEP/Keck (purple) experiments are ground-based observatories aiming to make
the first precision measurements of the B-mode polarization spectra. The dashed line
shows the best-fitting cosmology based on the Planck data, and the dash-dotted line
shows the primordial B-mode signal expected from a tensor-to-scalar ratio r = 0.1.
Figure by Erminia Calabrese (2023).
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SPT (see subsection 1.7.3), which focused on small-scale features. Planck exceeded
WMAP in sensitivity and resolution, both in its measurements of the CMB temperature
and polarization, giving improved all-sky maps of the CMB. The wider frequency range
of Planck allowed it to map out Galactic thermal dust emission, which is an important
contaminant in the microwave sky, and dominates at higher frequencies than the CMB.

The latest legacy results from Planck, published five years after its decommissioning,
collated the most extensive multi-frequency maps of the full microwave sky; presented
the most accurate large-scale measurement of the CMB anisotropies in temperature
and polarization; constrained five of the six parameters of the ΛCDM model to sub-
precent level accuracy; and showed no hints of beyond-ΛCDM physics by itself (Planck
Collaboration, 2020c).

The CMB power spectra as measured by Planck in the blue points, and the
best-fitting cosmology in the dashed grey line, are shown in Figure 1.8, compared to
measurements of the CMB by newer, ground-based observatories.

To this day, results from the Planck measurement of the CMB anisotropies
remain a state-of-the-art, independent measurement of the ΛCDM model, and is often
used as a baseline for other measurements, from either the CMB or other probes, to
compare against. The stringent upper limits of Planck on non-standard models for
inflation, primordial non-Gaussianity, and isocurvature modes have vastly constrained
the parameter space for explorations of these kinds of theoretical models. Limits on
extensions to ΛCDM, tighter than those measured by WMAP, have shown that Planck
is highly consistent with, and supportive of, the ΛCDM model. A summary of the
constraints on ΛCDM and its extensions by Planck are shown later in Table 2.1. By itself,
Planck constrained the spatial curvature of the universe much closer to flatness, provided
a 7σ measurement of the existence of light neutrinos, showed that the primordial power
spectrum is extremely flat, and gave an upper limit to the tensor-to-scalar ratio. Each of
these measurements provided compelling arguments in favor of the ΛCDM model.

As part of this thesis, in section 3.4, I will go through the methodology that
was used to analyse Planck’s measurement of the small-scale CMB temperature and
E-mode spectra, as well as my work in our recreation of the full analysis using the
Simons Observatory pipeline.
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1.7.3 Precision Cosmology from the Ground

When measuring smaller scales in the CMB, larger instruments are needed. As it
is easier to build larger instruments on the ground than it is to send them out into space,
the smaller scales of the CMB are more accessible from the ground. On the ground,
larger dishes can be built, serviced, and upgraded when needed, which is impossible to
do in deep space – both WMAP and Planck orbited far from Earth. Spacecraft thus need
to be sent in one mission with a finite lifespan and thus observing time.

The CMB blackbody function peaks at 162 GHz, which coincidentally coincides
with a gap in the absorption spectrum of the Earth’s atmosphere. As such, ground-
based experiments for the CMB are a viable option to investigate the small-scales,
complementary to the large-scale observations that are more accessible with full-sky
observations from space. Locations with low water vapour in the atmosphere, such as
the Atacama Desert in Chile and the Antarctic region at the South Pole are well-suited
for these, to reduce additional contamination from the atmosphere.

Initial explorations of the small-scale temperature and polarization modes of the
CMB came with the Antarctic Degree Angular Scale Interferometer (DASI) instrument,
which in 2001 succesfully reported a measurement of the second and third acoustic
peaks in the temperature autospectrum (Halverson et al., 2002). Later, this was followed
up with a detection of the E–mode polarization spectrum, as well as the TE–cross
spectrum measurement (Leitch et al., 2005).

At present, the South Pole Telescope (SPT) experiment, located at the Amundsen-
Scott South Pole Station in the Antarctic, is observing the microwave sky in temperature
and E–mode polarization across a ∼ 1500deg2 patch of the sky in three bands at 95,
150, and 220 GHz (Carlstrom and et al., 2011). The low humidity at the south pole,
especially during the Antarctic winter, allows for minimal atmospheric contamination
in sub-millimetre observations. Since finishing construction in 2007, SPT has undergone
multiple upgrades to its camera, with the most recent SPT-3G camera being installed
in 2017. Its most recent data release, presented in Balkenhol et al. (2023), contained
signal-dominated measurements of the CMB power spectra between 300 ≤ ℓ ≤ 3000 in
TE and EE, as well as between 750 ≤ ℓ ≤ 3000 in TT. The constraints from SPT, which
provide smaller error bars than those of Planck and go to higher multipoles, showed
great agreement with Planck across the entire data range, both at the power spectrum
level and at the parameter level.

Complementary to this, the Background Imaging of Cosmic Extragalactic Polarization

H. T. Jense 35



Introduction and the Cosmic Microwave Background

(BICEP) and Keck Array experiments are telescopes aiming at measuring the B–mode
autospectrum. BICEP/Keck have been observing the polarized microwave sky from
the Amundsen-Scott South Pole Station since 2006, aiming to beat the noise levels and
Galactic dust foregrounds as much as possible. A measurement of the large-scale B–
mode polarization autospectrum would give insight into the physics of cosmic inflation
by probing the tensor-to-scalar ratio r, as described in subsection 1.3.1. Figure 1.8 shows
the most up-to-date results from the BICEP2/Keck experiments in purple. So far, the
experiments, along with WMAP and Planck data, have put the most stringent upper
limit of r < 0.036 at 95% confidence level (Ade and et al., 2021).

The Atacama Cosmology Telescope

The Atacama Cosmology Telescope (ACT) was a 6-metre telescope located on Cerro
Toco in the Atacama Desert in the north of Chile, at an elevation of 5190 metres. Built
in 2007 and seeing first light at the end of that year, ACT has gone through several
generations of cameras. The latest camera, AdvACT, has observed roughly half of the
sky from 2017 until decommissioning in 2022, at 30, 40, 95, 150, and 220 GHz frequencies
in both temperature and polarization, the last three of which are to be used for the
upcoming Data Release 6 (DR6) analysis, and constitute a majority of the data volume.

The main goals of ACT were to make a measurement of the CMB power spectra in
temperature and E–mode polarization at small, arcminute-size, scales. These measurements,
which are complementary to the large angular scales probed by the previous WMAP
and partially concurrent Planck observatories, aimed to be a stringent test of the ΛCDM
model at small scales. The initial results from the first ACT camera, MBAC, gave
a measurement of the small-scale temperature power spectrum at 148 and 218 GHz
which was consistent with the cosmology measured by WMAP (Dunkley et al., 2011).
Additionally, observations of the CMB by ACT alone gave the first evidence supporting
dark energy (Sherwin et al., 2011), and lensing of the CMB (Das et al., 2011)

The following instrument, the ACTPol camera, was designed to measure the
temperature and polarization anisotropies at 98 and 150 GHz. The DR4 maps and
power spectra were published in 2020, giving new, small-scale measurements of the
polarization modes that went beyond the scales accessible by Planck (Choi et al., 2020).
These measurements were compared to the earlier WMAP and Planck results, and found
to be in good consistency with pre-existing results and with ΛCDM. The addition
of these precision small-scale features gave improved constraints on the running
of the spectral index, the number of relativistic species, and the primordial Helium
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fraction (Aiola et al., 2020).

At the small scale anisotropies (ℓ > 3000) which ACT is targeting, the microwave
sky is dominated by signals of astrophysical origins, the full list of the most important
components is explained later in subsection 2.2.1. The ACT power spectrum contains
measurements of these components in different frequencies across 40% of the sky in the
range 600 < ℓ < 8000, the smallest of which are arcminute scale in size.

The ACT DR4 CMB power spectrum measurement is shown in Figure 1.8 in the
red data points, along with the lensing power spectrum from ACT DR6. The additional
constraining power of ACT over Planck comes from the smaller scales (ℓ > 2500) which
were not measurable with Planck, as well as the improved measurement of the E–mode
polarizations over Planck.

The sensitivity of ACT, which improves over Planck at small scales, has made
substantial contributions to cluster cosmology by providing high-quality catalogs of
optically-confirmed clusters across over ten thousand square degrees of the sky (Hilton
et al., 2021). Since ACT was making continuous scans of the sky in the microwave
regime, ACT data has been used in the search for transient sources (Naess and et al.,
2021a), while also putting upper limits on the existence of a super-Earth planet (“Planet
9”) within the Solar system (Naess and et al., 2021b).

Some of the more recent results of ACT include the DR6 lensing maps (Qu et al.,
2023; Madhavacheril et al., 2023). The upcoming results from the ACT DR6 power
spectrum analysis will give new constraints on the ΛCDM cosmological parameters
at the same level of, but independent from, Planck. Additional new measurements of
astrophysical small-scale anisotropies will give additional constraining power on the
epoch of reionization from the SZ effect (Calabrese et al., 2014).

Analysing the ACT DR6 primary power spectrum data has been a major part of
my thesis, and in chapter 5, I will cover this analysis in detail.

Simons Observatory

The Simons Observatory (SO) is a CMB experiment under construction on Cerro Toco
in the Atacama desert in the north of Chile, with some components already finished and
some components due to begin overstations during the next year. SO is aiming to be the
next generation in CMB experiments, building on the developments in ground-based
measurements of the microwave sky and targeting a variety in scientific objectives for
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CMB cosmology and intergalactic astrophysics (The Simons Observatory collaboration,
2019).

SO will be located in the Atacama Desert at an altitude of 5200 metres on the
Cerro Toco plateau in Chile, built near the former site of ACT. The full SO experiment
will be split between a single Large Aperture Telescope (LAT) and a collection of Small
Aperture Telescopes (SATs).

The SATs will be a set of at least four 0.5-metre refracting telescopes, aimed
at measuring the large-scale (ℓ ≤ 200) primordial B–mode signal. Some of the SATs
have finished construction in 2023 and have begun collecting data as of writing. The
nominal plan for SO will involve six SATs, of which two of those coming from the
United Kingdom, and extensions of the SO Project being planned with international
contributions from SO:UK (United Kingdom), SO:JP (Japan).

The LAT will be a single telescope with a 6 metre primary mirror, similar in
size to ACT. The LAT receiver will have seven optics tubes, spanning frequency bands
between 27 to 280 GHz, with space for more optics tubes in the future. Each optics tube
will have three detector arrays, one for each of intensity and two linear polarization
detectors. One low-frequency (LF) tube will make measurements in two bands centred
at 27 and 39 GHz; four mid-frequency (MF) tubes will have bands centred at 93 and 145
GHz; and two high-frequency (HF) tubes will have bands at 225 and 280 GHz. The LAT
will attain arcminute angular resolution, with a field of view of approximately 7.8◦ in
diameter (Galitzki and et al., 2018).

The SO LAT survey will cover a large area of the sky, at roughly 40% of the
sky with uniform coverage. The sky area is chosen to provide optimal overlap with
other survey experiments, such as the Dark Energy Survey (DES, Dark Energy Survey
Collaboration (2005)), the Dark Energy Spectroscopic Instrument (DESI, DESI Collaboration
(2016, 2022)), the Vera C. Rubin Observatory (formerly known as LSST, The LSST Dark
Energy Science Collaboration et al. (2021)), and the Euclid satellite (Euclid Collaboration
et al., 2024).

Going beyond the precision levels of current CMB experiments, the Simons
Observatory will provide new, highly-accuracy small-scale measurements of the CMB.
This will provide the most precise, independent test of the ΛCDM model from the
CMB alone since Planck. In addition, the small-scale features of the CMB will provide
insights into constraints of beyond-ΛCDM physics. In the small scale damping tail of the
CMB, effects such as the number of relativistic species Neff , will be precisely measured
as a test of the standard model complementary to particle physics. Measurements
of the Hubble parameter H0 will reveal whether the so-called Hubble tension is real
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or an artefact of Planck systematics. Lensing effects on the CMB will constrain the
mass of neutrinos down to σ(Σmν) = 0.09 eV (The Simons Observatory collaboration,
2019), and combinations with external probes will take us to a regime where we can
potentially make a discovery. The large sky area of the LAT survey will provide
additional astrophysical science for Galactic and extragalactic components (Hensley
et al., 2022). These include Galactic thermal dust emission, extragalactic Sunyaev-
Zel’dovich emission, distant radio-loud galaxies, and the cosmic infrared background
(CIB).

In section 3.5, I will discuss the work I have done in the development of the SO
analysis software. This work is essential for the future analysis of the primary CMB
power spectrum analysis with SO LAT data.

Future Experiments for CMB Cosmology

Beyond the experiments mentioned above, future experiments are investigated and
science cases are explored for the next generation of CMB measurements.

The LiteBIRD mission is a proposed space observatory aiming to measure the
large-scale polarization modes of the CMB, with the purpose of measuring the low-ℓ
B-mode polarization peak generated by inflationary gravitational waves (LiteBIRD
Collaboration, 2022). Current, mostly ground-based, constraints on the inflationary
features in the B-mode autospectrum have found an upper limit in the tensor-to-scalar
ratio of r < 0.032 (Ade and et al., 2021), see also subsection 1.3.1. The plans for the future
LiteBIRD mission is a space-based observatory, which will be able to access the full-sky
polarization modes, with the objective of estimating the lensing B-mode polarization, in
order to subtract them off the full B-mode map and thus infer the primordial B-modes
only. The mission proposal for LiteBIRD aims to constrain the tensor-to-scalar ratio
r ∼ O(10−3) (Namikawa et al., 2023).

Concurrently, the CMB-S4 observatory is a planned, so-called Stage-IV observatory¶,
aimed to consist of several large aperture telescopes, improving over previous designs
to contain hundred of thousands of detectors each, alongside a series of small aperture
telescopes aimed at measuring the degree-scale B-mode polarization (Abazajian and
et al., 2016).

¶The various “stages” of CMB experiments are often discerned through the number of detectors per
single telescope: from hundreds for Stage-I, to thousands for Stage-II, to tens of thousands for Stage-III,
and beyond that for Stage-IV.
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Chapter 2

Cosmology from the CMB
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In this chapter, I discuss the methodology behind extracting cosmological information
from CMB data. I discuss the general components of the likelihood function, and the
statistical methodology of Markov Chain Monte Carlo (MCMC) sampling.

Central to this chapter is the concept of Bayesian Inference, the statistical
methodology to obtain information about some set of parameters θ that describe a
model M , by producing a probability distribution for θ (Larry Wasserman, 2004). In
Bayesian statistics, as opposed to frequentist statistics, probability describes some sense
of belief in the fact that something is true. This implies that we can have a probability
distribution for a parameter, P(θ|M), which describes some sense of belief that we have
that the true value of θ is around a given number.

The Bayesian Inference methodology takes some prior knowledge of θ (which
can be very little), chooses some statistical model for the probability of measuring some
set of data X that given θ, and infers the posterior probability P(θ|X, M) using the
famous Bayes’ Formula:

P(θ|X, M) = L(X|θ, M)π(θ)
P(X|M) , (2.1)

where the left hand side is our inferred posterior probability of some set of
parameter values given a set of observations, and the right hand side is the probability
that we would find this data given the model, multiplied by a factor based on our prior
knowledge of our parameters and data.
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This application of Bayes’ theorem can be seen as a way to update our knowledge
of θ: we start with some prior idea about what θ might be, and after measuring
some data X we get a new, updated, conditional probablity P(θ|X, M). The evidence
P(X|M) =

∫
L(X|θ, M)π(θ) dθ is the likelihood marginalized over the full parameter

space of the given model. We often have the freedom to vary our paramter θ while
keeping our data X fixed: as such, I shall write the conditional probability of our
data matching our model as the likelihood function L(θ|X, M). Finally, the evidence
P(X|M) exists as a normalization factor over the data X , and is independent of θ. I will
implicitly drop this factor, since we will be mostly considering parameter estimation
with a single model, and as such the evidence acts only as a normalisation constant and
can be ignored.

In this chapter, I will go through the steps involved in the application of Bayesian
Inference within cosmology from cosmic microwave background observations.

• In section 2.1, I will lay out what the general structure of the likelihood function
L(θ|X) is, and how we forward model the primary CMB signal;

• Following that, in subsection 2.2.1, I will go through the parametrization of the
secondary emission in the form of astrophysical foregrounds, which contain
information about the astrophysics that adds a secondary term to the microwave
signal, and form a nuisance component of our full signal;

• In subsection 2.2.2, I will explain the basic forward modeling we employ for
instrumental systematics, such as calibration uncertainties or bandpass mismatch,
and how they affect our signal model;

• Finally, in section 2.3, I will explain the concept of Markov Chain Monte Carlo
(MCMC) sampling and its use in sampling the posterior P(θ|X, M) from the
likelihood L(θ|X).

The following paper forms parts of this chapter:

• The Simons Observatory: impact of bandpass, polarization angle and calibration
uncertainties on small-scale power spectrum analysis, S. Giardiello, M. Gerbino, L.
Pagano, et al., (2024);
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2.1 General Likelihood Implementation

2.1.1 Likelihood Function

We seek the function L(X|θ, M), which is the likelihood L of our data X given
some forward modeling based on parameters θ and a model M . For our data, this
is whatever measurement of the signal Cℓs we measure. As described before in the
introduction, this will be some combination of (1) the CMB Cℓs coming from our power
spectrum model given a cosmology; (2) any additional contribution from secondaries,
which are based on astrophysical effects; (3) any modification of these combined signals
due to the systematics of our instrumental properties. I will denote our theoretical
model for the total signal as Cth

ℓ (θ, M), and the signal we measured as Ĉd
ℓ .

For large enough ℓ, the microwave power spectrum is fully Gaussian*. This
means we can write our likelihood function as:

log L(Ĉd
ℓ |θ, M) = −1

2
[
Ĉd

ℓ − Cth
ℓ (θ, M)

]T
Σ−1

[
Ĉd

ℓ − Cth
ℓ (θ, M)

]
− 1

2 log det Σ, (2.2)

where Cth
ℓ (θ, M) is the theoretical prediction of the signal. The 1

2 ln det Σ factor
is a constant term that normalizes the Gaussian likelihood such that it integrates to
unity. Since we often only compare likelihood ratios or log-likelihood differences, such
terms commonly cancel out. I will therefore implicitly drop this constant term in future
expressions of the likelihood function.

Because the CMB Cℓs span a large range of orders of magnitude, we find that it
is more efficient to work in Dℓ ≡ ℓ(ℓ + 1)Cℓ/2π space. Since the difference is merely a
numerical, constant prefactor in our data and theory vectors, and covariance matrix, we
can trivially write our likelihood as:

log L(D̂d
ℓ |θ, M) = −1

2
[
D̂d

ℓ − Dth
ℓ (θ, M)

]T
Σ−1

[
D̂d

ℓ − Dth
ℓ (θ, M)

]
, (2.3)

where now the covariance matrix Σ includes the constant ℓ(ℓ + 1)/2π factor to
translate from Cℓ to Dℓ space.

*The CMB is very Gaussian above ℓ ≈ 100, although in Planck Collaboration (2016), the Planck analysis
found that for ℓ = 30 ∼ 100, the Gaussian shape is reasonably close as well with minimal bias on their
parameter constraints.
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2.1.2 The Data Vector

For inference from small-scale CMB features, we are interested in both the
temperature and E–mode polarization of the CMB. As introduced before in subsection 1.4.2,
this means we are interested in the TT and EE autospectra, as well as the TE cross-
spectrum.

Our full data and model vectors Dℓ will thus consist of three sets of data: namely
the TT, TE, and EE spectra. These three are commonly concatenated, one after another,
into one longer vector. Whenever I write Dℓ, I implicitly mean the concatenation of
DT T

ℓ , DT E
ℓ , DEE

ℓ , or any kind of permutation of these three.

The covariance matrix Σ for such a data vector may also include correlations
between these signals. For example, any noise in the temperature measurement will
affect both the TT and TE power spectra, thus the covariance matrix will contain
information in its TT-TE block to describe the correlated noise property that these
different spectra have.

Apart from measuring both temperature and E-mode polarization separately, we
also measure both across multiple frequencies. As such, most likelihood functions we
consider will consist of a full data vector Dℓ with multiple instances of the TT, TE, and
EE power spectra, for each different pair of frequencies that have been measured. While
the CMB component of these cross-spectra is assumed to be the same, the terms coming
from astrophysical sources will vary with frequency in a manner that is different from a
blackbody spectrum.

In our data vector, we denote this by explicitly denoting both whether a term is a
temperature T or polarization mode E, and which frequency either term is measured
at. If component X is measured at some frequency ν1 and component Y is measured at
some frequency ν2, then the cross-spectrum of these two is DXY

ℓ,ν1ν2 . This cross-spectrum
is potentially different from a measurement of component X measured at ν2 and Y at
ν1.

As a simple illustrative example, for a theoretical experiment that measures the
CMB in temperature and E-mode polarization, both at 90 and 150 GHz, the full data
vector could have a structure similar to:

Dℓ,ν1ν2 =
{
DT T

ℓ,90×90, DT E
ℓ,90×90, DEE

ℓ,90×90,

DT T
ℓ,90×150, DT E

ℓ,90×150, DT E
ℓ,150×90, DEE

ℓ,90×150,

DT T
ℓ,150×150, DT E

ℓ,150×150, DEE
ℓ,150×150

}
, (2.4)
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where it should be noted that DT E
ℓ,90×150 ̸= DT E

ℓ,150×90, since one of them measures
temperature at 90 GHz and polarization at 150 GHz, while the other one measures
temperature at 150 GHz and polarization at 90 GHz. Sometimes this may be indicates
by writing DT E

ℓ,150×90 as DET
ℓ,90×150 instead (note the swapping of TE instead of 90 × 150).

2.1.3 Binning

Since our measurement of each Dℓ is, even at cosmic variance limit, going to
scatter around the theoretical Dℓ for a given cosmology, we expect that our observational
power spectrum will not be a perfectly smooth curve. As mentioned before in section 1.5,
we compress the data into a binned measurement.

By averaging our signal over adjacent ℓ modes, we can bring down the error of
our signal, improving our signal-to-noise ratio, at the cost of losing a bit of the finer
structure in the features of the signal. This process of averaging the signal over several
different ℓ samples is called binning.

Given a collection of samples Dℓ, we write the binned vector Db as

Db =
∑

ℓ

wbℓDℓ (2.5)

with wbℓ the window function of bin b. Similarly, we bin the covariance matrix
the same way was

ΣXY,ZW
b1,b2 =

∑
ℓ1,ℓ2

wb1ℓ1wb2ℓ2ΣXY,ZW
ℓ1,ℓ2 , (2.6)

where now we estimate the covariance between binned Db modes instead of
between separate Dℓ modes. In the last chapter, Figure 1.7 showed the power spectrum
with the binned data points in red.

For CMB experiments, estimating what the covariance matrix looks like is a
multi-step process. Analytical estimates can be made by assuming the cosmic variance
limit and uncorrelated white noise, but these do not take covariances between different
bins into account. A different way to estimate the covariance matrix is to create a map of
the sky according to a fiducial CMB model and some model for foregrounds. This map
is then polluted with a model for the instrumental noise of the experiment, before being
passed through the same pipeline that will later compute the power spectrum from the
data. The resulting power spectrum from this simulated map will contain a random,
noisy evaluation of the CMB based on some simulation. By computing the power
spectra of many different random evaluations of the CMB, foregrounds, and noise, the
covariance matrix can be computed as the covariance of these different spectra. The
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challenge in this process comes mainly from correctly simulating the instrumental noise
properties on these maps. Atkins et al. (2023) gives an overview of this noise simulation
for the Atacama Cosmology Telescope as part of the upcoming DR6 data release, which I
will later talk about in chapter 5.

2.2 Full Spectrum Model
The main two things we need to model the power spectrum is some theory

prediction and a way in which we model how a theoretical signal would be measured
by the instrument.

The theoretical observable curve will include a component DCMB
ℓ from the CMB.

This curve is usually computed from some cosmological prediction with an Einstein-
Boltzmann code, as described in section 1.4. In addition, there is a component Dfg

ℓ,ν1ν2

coming from a number of astrophysical foregrounds, such as thermal emission from
dust, radio emission from distance galaxies, or the interaction between the CMB and hot
plasma in galaxy clusters. I will go into details for the full description of these relevant
components later in subsection 2.2.1. Since these components do not necessarily follow
a blackbody spectrum, they will have a different frequency dependence than the CMB
power spectrum, and thus are indexed by an additional ν1, ν2 index for describe that.

Then there are a variety of ways in which the theory curve gets modified
for instrumental systematics. For the most part, imperfect signal transmission and
polarization filters will simply multiply the entire theory signal with some number,
while a mismatch between the modeled frequency and the measured frequency can
cause shifts in components which have a frequency dependent model. Asymmetries
in the beam profile can create incorrect polarization anisotropies as the temperature
signal “leaks” into the polarization signal, and uncercainties in the polarization angle
can create a confusion between a measured E- and B-mode signal. A complete overview
of the components relevant for my analyses is given in subsubsection 2.2.2.

We write our full model vector as

Dth
b (θ, M) = wbℓ

[
cXY

ij

(
DCMB

ℓ + Dfg
ℓ,ν1ν2

)]
(2.7)

where wbℓ are our window functions (see subsection 2.1.3), cXY
ij is a calibration

factor for a given cross-spectrum, and Dfg
ℓ,ν1ν2 is an additional component from astrophyisical

foreground emission. I have described modeling of the CMB power spectrum before in
subsection 1.4.3. I will lay out the component of the foreground model in subsection 2.2.1,
and the instrumental nuisance factors in subsubsection 2.2.2.
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2.2.1 Astrophysical Foreground Model

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
10 1

100

101

102

103

104

 [
K

2 ]

TT 150x150 signal
CMB
Foregrounds
Observed signal

Figure 2.1. A comparison of the observed TT and pure CMB signal at 150 × 150 GHZ for
an SO-like experiment where most of the Galactic dust is masked. The CMB signal for a
fiducial cosmology is shown in grey, while the full foreground signal is shown in black.
The sum of the two components is shown in the black dashed line. Note that the CMB
only dominates the signal up to an ℓ ∼ 3000, and above this the astrophysical foreground
emission takes over. For experiments which include signals above ℓ = 1000 ∼ 2000,
correctly modeling the contamination by astrophysical foregrounds becomes imperative.

At around scales of ℓ ∼ 3000, the microwave background is dominated by
astrophysical foregrounds (see Figure 2.1). This means that the full signal Dℓ needs to
be modeled as

Dℓ,ν1ν2 = DCMB
ℓ + DSZ

ℓ,ν1ν2 + DCIB
ℓ,ν1ν2 + Ddust

ℓ,ν1ν2 + Dps
ℓ,ν1ν2 (2.8)

where now Dℓ,ν1ν2 depends also on the frequencies ν1ν2 of the cross-spectrum,
DCMB

ℓ is the CMB signal, which is blackbody and thus does not depend on frequency,
DSZ

ℓ,ν is the Sunyaev-Zel’dovich effect, DCIB
ℓ,ν is the cosmic infrared background (CIB),

Ddust
ℓ,ν is galactic dust, and Dps

ℓ,ν is the contribution from radio point sources (e.g. Active
Galactic Nuclei). For the polarization components TE and EE, only the dust and point
source terms are important. Additional terms, such as galactic synchrotron emission,
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are ignored in this case, as, for the small-scale analyses treated in this work, they are
below the detection limit for the frequency range of current ground-based telescopes.

I will follow Choi et al. (2020) in describing the various components here. A plot
with models for all foreground components in temperature is shown in Figure 2.2.

The Sunyaev–Zel’dovich Effect

The Sunyaev–Zel’dovich (SZ) effect is a secondary anisotropy caused by inverse Compton
scattering of CMB photons off high-energy, charged particles (often electrons) in galaxy
clusters. Often for CMB observations, two components are considered: the thermal
SZ effect and the kinematic SZ effect, also denoted tSZ and kSZ respectively. While
both are the same effect (inverse Compton scattering of the CMB photons), they are
caused by electrons in different regimes. I have given an overview in the SZ before
in subsection 1.3.4.

The tSZ effect is caused by electrons in hot gas in a thermal distribution within a
cluster. When a CMB photon travels through a cluster, the thermal distribution of the
electrons inside tends to scatter the photon as it is traveling through. This scattering
causes local a spectral distortion of the CMB blackbody, as low-energy photons are
scattered upwards to higher energies. At frequencies below the peak frequency of the
CMB (162 GHz), an SZ cluster appears like a small “cold spot” on the map, since there
is a deficiency in low-energy photons, while at higher frequencies, these clusters appear
as “hot spots”, since there is an increase in higher-energy photons (Mroczkowski et al.,
2019).

Outside of primary CMB power spectrum analysis, maps of the tSZ effect can
be compared to X-ray emission of the intracluster gas to determine the baryonic mass
content of the cluster (Hilton et al., 2021). A model for the tSZ power spectrum can be
motivated by cosmological simulations, and is given by:

DtSZ
ℓ,ν1ν2 = AtSZDtSZ

ℓ,0
f(ν1)f(ν2)

f(ν0)2 , (2.9)

where f(ν) = x coth(x/2) − 4, with x ≡ hν/kBTCMB, a free amplitude AtSZ, and a
template Dℓ,0 normalized to unity at some ℓ0 and ν0 (Battaglia et al., 2012). These pivot
points are often taken to be ℓ0 = 3000 and ν0 = 150GHz.

The kSZ effect is caused by galaxy clusters having a peculiar velocity with respect
to the Hubble flow. It is modeled as:
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DkSZ
ℓ = AkSZDkSZ

ℓ,0 , (2.10)

where DkSZ
ℓ,0 is a template spectrum derived from cosmological simulations (Battaglia

et al., 2010).

Measurements of the exact nature of the kSZ power spectrum are of interest for
cosmological research as well. As described earlier in subsection 1.3.4, the physics of
the Epoch of Reionization impact the structure of the cosmic web, which leads to a
potentially measurable effect in the kSZ power spectrum. By precisely measuring the
kSZ power spectrum at small scales, a measurement of reionization physics, which
is normally only loosely constrained by the large scale EE power spectrum, can give
new insights in a moment in the Universe’s early history that is poorly understood so
far (Calabrese et al., 2014).

The Cosmic Infrared Background

The Cosmic Infrared Background (CIB) is the thermal dust emission from star-forming
galaxies at high redshift. This component contains two parts, a poisson term (CIBp) and
a clustered term (CIBc), which are modeled as

DCIBp
ℓ,ν = Ap

ℓ(ℓ + 1)
ℓ0(ℓ0 + 1)

(
µ(ν1, βp)µ(ν2, βp)

µ(ν0, βp)2

)
, (2.11)

DCIBc
ℓ,ν = AcDCIBc

ℓ,0
ℓ(ℓ + 1)

ℓ0(ℓ0 + 1)

(
µ(ν1, βc)µ(ν2, βc)

µ(ν0, βc)2

)
, (2.12)

with µ(ν, β) ≡ νβBν(Td)g(ν) a modified blackbody function for some effective
dust temperature Td = 9.6K. This dust temperature, while not perfectly known, is not
well constrained in the frequency range observed by most CMB experiments, as it is
degenerate with the spectral index β. For the clustered component, the power spectrum
shape DCIBc

ℓ,0 is often taken to be a template in ℓ < 3000 coming from high-frequency
measurements of Planck (Planck Collaboration, 2014), and extrapolated as DCIBc

ℓ,0 ∝ ℓαc

with αc = 0.8 above that (Addison et al., 2012). The spectral indices βp, βc are related but
not necessarily equal. Current constraining power is consistent with βp = βc being fixed.

In addition, there is a cross-correlation between the clustered CIB and the tSZ
effect. This correlation is included either by the creation of a joint tSZ-CIBc template, or
by simply subtracting a term of the form
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DtSZ×CIB
ℓ,ν = −2ξ

√
AtSZACIBcDtSZ−CIBc

ℓ,0
f(ν1)µ(ν2, βc) + f(ν2)µ(ν1, βc)

f(ν0)
(2.13)

with AtSZ, Ac the amplitudes of the tSZ and clustered CIB spectra, ξ the correlation
parameter, and DtSZ−CIBc

ℓ,0 the spectrum template (Addison et al., 2012). The functions
f(ν) and µ(ν, β) the same as those mentioned above.

Galactic Dust

Galactic dust is an important, non-isotropic foreground component. The center and
plane of the Milky Way galaxy dominates the microwave emission, especially at higher
frequencies. For small angular scales, observing the sky away from the galaxtic plane is
an option, but for large angular scales, observing the galactic plane is needed. For the
latter, the Planck satellite used its 353 GHz channel to map out the galactic foreground,
which was then used to identify areas of strong emission, which are then used to mask
out regions where galactic dust emission dominates the microwave emission.

Ground-based experiments rely on these high-frequency measurements from
space to mask the Galaxy. For example, in the ACT DR4 analysis, the Planck Galactic
mask was used to cut out the sky regions containing dominant galactic foregrounds.
The remaining area is expected to contain emissions of only O(1%) of the CMB power in
the 90 and 150 GHz channels of ACT. This residual dust was then modeled as a power
law in harmonic space:

Ddust
ℓ,ν = Adust

(
ℓ

ℓ0

)αd+2

Fd
ν g1(ν)2, (2.14)

with Adust a free scaling amplitude for dust, ℓ0 = 500 an arbitrary, pre-determined
pivot scale, and αd the spectral index, found to be −2.6 for TT, −2.4 for TE and −2.6
for EE (Planck Collaboration, 2020b; Choi et al., 2020). The remaining two terms, Fd

ν

is a conversion factor between the Planck modified blackbody dust model in antenna
temperature, and g1(ν) is a conversion factor from antenna to CMB temperature. Here,
the antenna temperature is a measurement of the total amount of power received by the
detector, which the factor Fd

ν converts from the modified blackbody temperature at 353
GHz by Planck to the temperature measured by the ACT detector at a frequency ν. The
factor g1(ν) then converts this from a signal with a given power at a frequency ν to a
temperature fluctuation relative to the CMB temperature at that frequency.
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Radio Sources

Distant, unresolved radio sources provide an additional Poisson-like noise component.
Each experiment will have a detection limit for bright sources, which can be removed
at the map level by either masking or subtracting a template. A large number of radio
sources will however, be too faint and remain unresolved and cannot be removed in
this manner. The power from this latter component is modeled as a power law:

Dradio
ℓ,ν = As

(
ν

ν0

)βs ℓ(ℓ + 1)
ℓ0(ℓ0 + 1) (2.15)

where ν0 = 150GHz, ℓ0 = 3000 are arbitrary pivot scales, and As and βs are the
amplitude and spectral index of the model.

It is usually assumed that βs is the same in both temperature and polarization,
βT

s = βE
s , but this is not necessarily true, and with the prospect of improved measurements

of the polarization power spectra, this assumption can be scrutinized.
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Figure 2.2. A fiducial model for the expected contamination of the TT signal at 150×150
GHz for an SO-like experiment. The pure CMB signal (grey) dominates the signal below
ℓ ∼ 3000 (see also Figure 2.1), while above that the various astrophysical foregrounds
become a dominant contribution to the full TT signal.
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2.2.2 Instrumental Nuisance Parameters

Instrumental noise and miscalibration factors can affect our measurement of
the CMB and astrophysical foregrounds. To some extent, corrections for these factors
can be applied to the power spectrum measurement prior to likelihood modelling, but
uncertainties of what the exact value of these factors are have to be marginalized over
to obtain proper posterior parameter constraints.

For most experiments, we need to correct for a variety of instrumental systematics.
These systematics include things like gain calibration, polarization efficiencies, or
mismatch in the bandpass center. A summary of the impact of these uncertainties
on cosmological measurements is given in Giardiello et al. (2024). I provide an overview
of how some of these parameters are included in the model. These will be part of the
data vectors that we will fit for in chapter 5.

Calibration and Polarization Efficiency Factors

Calibration and polarization efficiency factors arise from imperfect transmission of the
signal throughout the instrument. Since any instrument will absorb a small amount
of signal as it passes through the optics, the true signal will be slightly stronger than
reported by the detector. In addition, the full CMB map needs to be calibrated with
respect to the CMB dipole to correct for a contribution due to the the motion of the Sun
through the Galactic plane.

Each of these parameters is applied as a multiplicative factor to the model, as:

DT T,ij
ℓ,ν1ν2 → DT T,ij

ℓ,ν1ν2 / cal2dipci
ν1cj

ν2 ,

DT E,ij
ℓ,ν1ν2 → DT E,ij

ℓ,ν1ν2 / cal2dipci
ν1cj

ν2pj
ν2 ,

DEE,ij
ℓ,ν1ν2 → DEE,ij

ℓ,ν1ν2 / cal2dipci
ν1pi

ν1cj
ν2pj

ν2 ,

where i and ν1 refer to the first detector array and its frequency, and j and ν2

refer to the second detector array and its frequency in the cross-spectrum. We note
that every component is multiplied by the global dipole calibration gain factor, each
component of a given array d at a given frequency ν is multiplied by the calibration
factor cd

ν , and each polarized component of that array is multiplied by pd
ν .

Bandpass Integration and Mismatch

The optical path of the instrument is frequency-dependent, and the transmission of the
signal will depend on its frequency ν. We treat the signal as if it is a singular frequency,
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but in reality the detector will absorb a whole range of frequencies, giving a transmission
bandpass F (ν). For the most part, this means that for a foreground component, its
actual signal strength will be proportional to its integrated signal:

DXY,fg
ℓ,ν1ν2 ∝

∫
dν1

∫
dν2 F (ν1)F (ν2)f fg

SED(ν1, ν2)DXY,fg
ℓ , (2.16)

where f fg
SED(ν1, ν2) is the spectral energy distribution (SED) of the foreground

(described above), and the integrals are performed over the entire bandpass. Since we
are working in blackbody temperature units, the CMB signal is not frequency-dependent
and thus the CMB Dℓs will not depend on the bandpass F (ν).

If this bandpass profile is measured but there is a mismatch in its central
frequency, then the amplitudes of all foregrounds will shift around due to their differing
SEDs with respect to the central frequency. As such, if the true center of the bandpass of
detector d is not ν but actually ν + ∆ν

d, then the signal strength needs to be modeled as:

DXY,fg
ℓ,ν1ν2 ∝

∫
dν1

∫
dν2 F (ν1 + ∆ν1

d1)F (ν2 + ∆ν2
d2)f fg

SED(ν1 + ∆ν1
d1 , ν2 + ∆ν2

d2)DXY,fg
ℓ , (2.17)

where now all the bandpass profiles and SEDs are shifted with their respective
bandpass shift parameters ∆ν

d.

2.3 Markov Chain Monte Carlo Sampling

Now that we have some likelihood function L(X|θ, M) and some priors π(θ), we
seek to evaluate the full posterior P(θ|X, M) (see Equation 2.1). However, evaluating
the full posterior is difficult due to the high dimensionality and complexity of our
parameter space – note that we have at least 6 cosmological, about 15 astrophysical,
and commonly of the order of 5 to 15 instrumental parameters. Not only would
we need to find a maximum a posteriori (MAP) for our data, but computing the
uncertainties on our parameters requires somehow computing the Hessian of the
posterior likelihood function, which may not be computatinally feasible – and that is
assuming our parameter constraints are relatively Gaussian.

To this end, we need to employ some methodology to find the posterior constraints
on our parameters. A commonly used process for this is Markov chain Monte Carlo
(MCMC) sampling, a stochastic process that seeks to find a stable limiting equilibrium
distribution that closely follows the posterior distribution. While in theory an MCMC
process will only recover the posterior distribution in the limit of infinite samples, it is
often more than feasible to run an MCMC sampling process for a finite amount of time,
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and under certain tests and checks the resulting posterior density function (PDF) can be
assumed to be “close enough” that it is not statistically significantly different from the
true PDF.

For MCMC sampling, there are multiple publicly available softwares for cosmological
sampling. We make use of the sampling software cobaya Lewis (2013); Torrado and
Lewis (2019, 2021)†, a large suite of python software for Bayesian analysis. Among
other things, cobaya comes with a full MCMC sampler and a χ2-minimizer to quickly
explore the best-fitting region in parameter space, and allows accessible interfacing
to custom-made theory and likelihood software. In addition, cobaya contains the
necessary interfacing for parallel computing, meaning that multiple chains can be run at
the same time, while allowing their samplers to exchange intermediate results with each
other to improve estimation of posterior probability statistics from multiple runners at
the same time during the sampling process.

There are a variety of MCMC algorithms that can do this, but we will employ the
Metropolis–Hastings algorithm (Metropolis et al., 1953; Hastings, 1970). The general
process of this Metropolis–Hastings algorithm is as follows:

1. Pick a starting point θ1, this is where our chain starts sampling;

2. Draw a sample y ∼ G(y|θi);

3. Evaluate the acceptance ratio α = P(y|X)/P(θi|X) ;

4. Compute a random number r ∼ U(0, 1), if r ≤ α, then θi+1 = y, else θi+1 = θi;

5. Repeat steps 2–5 until we consider our chain sufficiently long or converged.

In this method, the samples {θ1, . . . θn} are the accepted samples that form our
chain, the point y is called our candidate for each step in the chain, α is the acceptance
ratio, G is our proposal distribution, P(θ|X) is our target distribution, and U(0, 1) is a
uniform distribution on the interval [0, 1].

We seek a target distribution P(θ|X, M) , which we find should follow our
likelihood function L(X|θ, M) and our prior distribution π(θ), with X our data and θ

our parameter vector. Since we have described before methods of computing the log-
likelihood function, it is also common to transform our acceptance test from a uniform
distribution to an exponential one, by observing that the test whether

†https://github.com/CobayaSampler/cobaya
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α ≡ L(X|y)π(y)
L(X|θi)π(θi)

?
≷ r ∼ U(0, 1), (2.18)

is equivalent to checking

log α = [log L(X|y) + log π(y)] − [log L(X|θi) + log π(θi)]
?
≷ log r ∼ Exp(1), (2.19)

where Exp(1) is the standard exponential distribution. This can be a more
efficient way of computing the acceptance rate if computing the log-likelihood function
is calculated.

After sufficient sampling, the probability density function P(θ|X, M) can be
estimated from the distribution of the accepted samples in the chain {θ1, . . . θn}. Once
this probability density function is known, summary statistics of this can be derived,
such as the mean and credible intervals of the parameters. The purpose of MCMC
sampling is thus to estimate the PDF and any derived statistics from samples taken of
the PDF, and MCMC sampling with the Metropolis–Hastings algorithm is a method to
properly sample the PDF.

Figure Figure 2.3 shows a simple, pedagogical example of a 2-dimensional
probability distribution that is sampled with the Metropolis–Hastings algorithm. The
figure shows a two-dimensional plane, with a two-dimensional multivariate normal
probability distribution in blue, that is sampled with the Metropolis–Hastings algorithm
in the red points. Notice how the chain was started far away from the center of the PDF,
but after a relatively short amount of steps, the chain converged towards the center
of the PDF and started sampling a region of high probablity. After sampling 200 data
points, the resulting estimate of the PDF is shown in red, which follows a similar shape
(but slightly underestimates the scale) of the true PDF.

Proposal Updating and Burn-in

Since for a Markov chain model, any steps taken can only rely on the current state of our
chain, the distribution G(y) can only rely on our current chain step θi, hence G = G(y|θi).
It is common for this distribution to pick a multivariate Gaussian distribution with some
covariance Σ that we know or assume is close to our posterior distribution covariance.

Updating the proposal distribution is a useful tool in converging to a proper
posterior distribution. A method often employed is to start with some guess for the
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Figure 2.3. An example of a 2-dimensional posterior distribution sampled with a
markov chain monte carlo method. The 1 and 2σ confidence levels of the blue ellipses
show the true likelihood distribution of the parameters. The red points shows the 200
random samples drawn by following the Metropolis-Hastings algorithm. The chain
started in the lower right corner at (10, −8), far outside the posterior distribution, and
within 17 accepted samples, the chain reached the 95%-confidence level of the posterior
distribution. The proposal distribution was an uncorrelated multivariate Gaussian.
After removing the first one-third of the chain, the inferred posterior is shown in the
red ellipses.

proposal distribution, and, after a period of sampling, updating this guess based on the
chain of accepted samples so far.

Without knowledge of the posterior distribution, it is difficult to know what to
use as a proposal distribution. In some cases, the approximate shape of the proposal can
be guessed, for example it is known that for CMB observations, the Hubble parameter
H0 and cold dark matter density Ωch

2 are quite correlated, so any proposal that captures
that correlation will be better than one that does not. It might also be the case that
sub-blocks of the covariance matrix are known, for example if the covariance of the
foreground parameters is known for one cosmological model, then it can still be used
for inference with a different cosmological model, as the foregrounds are usually not
majorly correlated with the cosmological parameters.
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When no proposal distribution is given, cobaya has the option to make an
educated guess the shape of the proposal distribution based on the known covariance of
parameters from cosmological observables. Alternatively, cobaya uses a fully diagonal
covariance matrix, of which the entries are given by the user. For these cases, it is often
useful to underestimate the proposal distribution, as a proposal distribution that is too
wide will lead to a poor acceptance rate initially, due to a lot of samples being rejected.

This does mean that initially, when our guess distribution is poor, our chain
might not be sampling proportionately from the true posterior distribution. As a result,
it is common practice to let our chains run for a while first so they can start exploring
parameter space first, and then prune part of the chain at the starting so-called burn-
in period and consider only the later part of the chain in posterior evaluation. It is
common practice to discard a fraction of samples from the beginning of the chain,
typically 0.3 ∼ 0.5.

Convergence Checking

An MCMC is converged when the distribution of the accepted samples {θi} is sufficiently
close to the posterior distribution P (θ|X). Since of course the latter is not known a
priori, it raises a question on how to determine whether our distribution has converged
or not.

One method would be to visually inspect the posteriors of the chain and, if they
are not visually smooth, continue running the chain for longer. Another method might
be to sample the posterior probability with multiple chains, and having them start in
different regions of parameter space, so that the initial exploration and burn-in phase
will sample different parts of the posterior probability density function.

cobaya uses the method described in Lewis (2013), where a single statistic, the
Gelman-Rubin statistic or R − 1 is computed over part of the entire chain. This value
represents the largest orthonormalized variance between chains with respect to the
means. The R−1 statistic decreases as the chain reaches convergence, and a target value
of R−1 ∼ O(10−2) is a reasonably good aim for convergence. As a lower value indicates
a better estimate of the posterior distribution and the covariance of the parameters,
whenever the R − 1 statistic drops, cobaya also updates the proposal distribution G of
the chain to a multivariate Gaussian with a covariance matrix of the chain up to this
point.
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2.3.1 Maximum Likelihood Estimation and Model Selection

Often, we are also interested in the Maximum Likelihood Estimate (MLE) θ̂ of
our model. Mathematically speaking, the MLE is simply the set of parameters that
maximizes the likelihood function L(θ|X, M). We are interested in the MLE because it
gives the values of the parameters that give the best fit of the model to our data. Based
on this MLE, we seek to find a model selection criterion, which is simply a score we
assign to a model that, when compared to the score of a different model, provides us
with a means to see how well these two different models compare to each other. A good
model selection criterion will choose a model that finds the right balance between the
complexity of a model and the goodness of the fit to the data.

We can estimate the MLE by running a χ2-minimizer (or a log-likelihood maximizer).
Finding such a minimum or maximum can be tricky, and much work has been done in
developing algorithms that can find good estimates without needing to compute the
derivatives of the log-likelihood function, while avoiding getting stuck in local minima
or maxima. Within cobaya, the BOBYQA algorithm is used to find the minimum χ2, or
the MLE, of a log-likelihood function (Cartis et al., 2018, 2021; Powell, 2009).

There is no simple model selection criterion that unambiguously proves one
model is better than another. The posterior odds ratio, P(M1|X)/P(M2|X), is the
quantity that we are interested in, but computing this requires knowledge of the
evidence P(X|M), which is often time-consuming to estimate directly for a given model.
As such, we rely on approximate methods to perform this task. For cosmological and
astrophysical model selection, we chose to use the Bayesian Information Criterion
(BIC), which was found to be a good choice for selection different parameterizations (Liddle,
2004), and is defined‡ as:

BIC(M) = 2 log
(
L(θ̂|X, M)

)
− |M | log N, (2.20)

where M is the model that describes our theory Dth
b (θ, M), L(θ̂|X, M) is the

MLE of the model, |M | is the number of parameters describing M (thus the number of
parameters in θ), and N is the number of data points in our measurement (Bhat and
Kumar, 2010).

If we compare the BIC of two different models, then the model with the highest
BIC is the model that fits the data best. Notice that for a model with a lower MLE, the
BIC may still end up being higher if the number of parameters is lower than that for a

‡Some definitions of the BIC have a factor 2 difference, or (as is the case for Liddle (2004)) may differ
in sign convention.
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model with a higher MLE. The second term in the definition of the BIC acts as a penalty
for adding extra parameters to the model.

2.4 Current Constraints on ΛCDM

Here I give an example of how we can take a state-of-the-art measurement of
the CMB, along with the functions and methods described above, to get estimates of
cosmological parameters for the ΛCDM model.

In 2018, the Planck constraints on ΛCDM parameters, as derived from their
analysis of the TT, TE, and EE CMB power spectra, were published in Planck Collaboration
(2020d). These constraints were obtained from the all-sky CMB in T and E polarization,
with measurement of the TT, TE, and EE power spectra between 30 ≤ ℓ ≤ 2508.
The large-scale (ℓ ≤ 29) temperature analysis was performed by the Commander

likelihood, which includes non-Gaussian corrections needed for these large scales
(Planck Collaboration, 2020a). An additional separate analysis of the EE power spectrum
in the range 2 ≤ ℓ ≤ 30, called the lowE analysis, was included, which is needed to
constrain the optical depth at reionization τreio.

Table 2.1 gives an overview of the constraints on ΛCDM cosmology from the
Planck 2018 analysis. It shows the constraints on the six parameters that were varied
in their cosmological model, as well as six derived parameters that were computed
from these constraints. The data observed by the Planck satellite was well described by
ΛCDM, with good constraints on all six parameters from this model: apart from τreio, all
parameters were measured with 1% precision or less. To date, this measurement of the
ΛCDM model from Planck is among the most stringent constraints of the entire ΛCDM
model from the CMB alone. By itself, Planck provided high precision measurements
of all six parameters of the ΛCDM model, while also putting tight constraints on the
possibilities for extension models.

In the absence of any constraints on the parameters beyond the six of ΛCDM,
we often keep these beyond-ΛCDM parameters fixed to some fiducial parameter that
we base on either an assumption or other measurements of physics. As such, unless
otherwise specified, we keep the spatial curvature Ωκ, the running of the spectral index
dns/d ln k, and the tensor-to-scalar ratio r all fixed to zero. We also keep the sum
of the neutrino masses Σmν to 0.06 eV based on the lower bound found in neutrino
oscillation experiments, and the effective number of relativistic species Neff to 3.044
based on calculations from the Standard Model of particle physics. Despite the good
fit of ΛCDM to the Planck data, there is still room for exploration of several extensions
of the ΛCDM model. In the lower part of Table 2.1, I summarize several extensions
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Parameter Planck constraint

Ωbh
2 (2.233 ± 0.015) × 10−2

Ωch
2 (11.98 ± 0.12) × 10−2

100θMC 1.04077 ± 0.00047
τreio (5.40 ± 0.74) × 10−2

ns 0.9652 ± 0.0042
log(1010As) 3.043 ± 0.014

H0 (67.37 ± 0.54) km/s/Mpc
100θ∗ 1.04097 ± 0.00046
zreio 7.50 ± 0.82
Ωm 0.321 ± 0.013
σ8 0.8118 ± 0.0089
S8 0.840 ± 0.024
Ωκ 0 −0.044+0.033

−0.034
Σmν 0.06 eV < 0.257 eV
Neff 3.044 2.92+0.36

−0.37
dns/d ln k 0 −0.006 ± 0.013

r 0 < 0.107

Table 2.1. (Top half): The best-fitting parameters for ΛCDM as found by Planck
Collaboration (2020d). The parameters in this case are: the observed densities in
baryonic matter Ωbh

2 and cold dark matter Ωch
2; the approximate angular scale at last

scattering, θMC; the optical depth at reionization τreio; the power law index ns and initial
amplitude As of primordial fluctuations. (Middle): Various other parameters that can be
derived from the first six, and their inferred constraints as found by Planck: the present-
day Hubble parameter H0 in units of km/s/Mpc; the angular scale at last scattering, θ∗;
the redshift of the midpoint of reionization zreio; the matter density Ωm; and the matter
clustering parameters σ8 and S8. (Bottom half): Extensions to the ΛCDM model, their
assumed fixed values in ΛCDM, and their constraints in extended cosmologies (see
section 1.6 for descriptions of these models): the density of curvature Ωκ; the sum of
the mass-eigenstates of neutrinos Σmν in units of eV; the effective number of relativistic
species Neff ; the running of the primordial spectral index dns/d ln k; and the tensor-to-
scalar ratio r.
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to the ΛCDM model, their assumed (fixed) values, and constraints found by Planck in
extended cosmological analyses. I have described these extension models before in
section 1.6.

These Planck constraints showed here were derived from the plik likelihood
function. In the next chapter, specifically in section 3.4, I will delve into details of this
plik likelihood function, as part of our work in the re-analysis of the Planck data with
the Simons Observatory pipeline.
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Chapter 3

Likelihood Software for new CMB Analyses

In this chapter, I discuss the development of modern likelihoods for CMB data. This
involves a discussion of legacy likelihood design, as well as modern, state-of-the-art
likelihood implementations. For the most part, this chapter will be parallel to the
mathematical description I provided in chapter 2, and will instead focus on the software
implementation side of these likelihoods.

I will describe likelihood implementations for data from the WMAP, Planck,
ACT, and SO experiments. I have previously described these experiments, and their
observations, in more detail in section 1.7.

• In section 3.1, I will give an overview of the requirements for likelihood software,
and a schematic overview of their desired functionality;

• In section 3.2, I will present the single-spectrum WMAP likelihood and my modern
reimplementation of the WMAP v5 likelihood in pyWMAP;

• In section 3.3, I will present the MFLike likelihood for the Simons Observatory, as
an example of modern likelihood design;

• In section 3.4, I will show how we adapted MFLike for our reanalysis of the Planck
PR3 data, and recovered the same cosmological constraints.

• In section 3.5, I will present results from applying the MFLike likelihood on
simulated data vectors for the Simons Observatory, and methods we employed to
validate the likelihood function;

• Finally, I will end in section 3.6 with the design for the foreground marginalization
procedure to compress the multifrequency data into a smaller CMB-only dataset,
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and the design for the likelihood for this data, and I will provide an example of
this procedure applied to a simulated SO data vector.

The following papers form parts of this chapter:

• The Simons Observatory: impact of bandpass, polarization angle and calibration
uncertainties on small-scale power spectrum analysis, S. Giardiello, M. Gerbino, L.
Pagano, et al., (2024);

My contributions for this paper consist of aiding in the development of the
CosmoPower framework (which I describe in more details in chapter 4) and MFLike

likelihood software (which I describe later in this chapter in subsection 3.3.1 and
section 3.5), and their applications within the inference framework used in this paper.
I also contributed as a member of the SO collaboration on the development of the SO
analysis software used within these analyses. I adapted parts of subsection 3.3.1 and
section 3.5 after this paper.

• The Atacama Cosmology Telescope: DR6 Gravitational Lensing Map and
Cosmological Parameters, M. S. Madhavacheril et al., (2024);

• The Atacama Cosmology Telescope: A Measurement of the DR6 CMB Lensing
Power Spectrum and Its Implications for Structure Growth, F. J. Qu et al., (2024);

My contributions for these papers consist of my implementation of the pyWMAP
software (which I describe later in this chapter section 3.2), which was used for the
ACT +WMAP analysis within these papers. I also contributed as a member of the
ACT collaboration on the development of the ACT analysis software used within these
analyses.

• The Simons Observatory: a new open-source power spectrum pipeline applied
to the Planck Legacy Data, Z. Li, T. Louis, E. Calabrese., and H. T. Jense et al., (2021);

My contributions for this paper involve writing the Planck likelihood within the
MFLike software. My work forms sections 5 and 6 in this paper, including figures 11,
12, and 13. I adapted section 3.4 after the corresponding sections from this paper, and
included the figures as Figure 3.4, Figure 3.5, and Figure 3.6 respectively.
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3.1 Likelihood Design

Cosmological data releases from CMB experiments include making publicly
available software required for likelihood analyses. Over the past two decades, a
full analysis was often done with bespoke software for each experiment, specifically
designed for the instrument which data was being analysed. Elements were often
hard-coded or difficuly to modify for explorations beyond the baseline case.

For example, in 2012, the WMAP mission released its final, 9-year data release.
To compute the best-fitting cosmology and parameter constraints, the accompanying
WMAPv5 likelihood was released. This likelihood was written as a Fortran module
containing the necessary functions to compute the covariance matrix and high-ℓ (ℓ > 32)
spectra differences, as well as the low-ℓ (ℓ < 32) likelihood from the pixel data and
noise estimates. This likelihood required to be manually compiled to be incorporated
in the sampling software CosmoMC, which was also written in Fortran, and could be
cross-linked to theoretical Boltzmann codes such as camb by including them in the
compilation unit as well. After compilation, parameters and run settings could be
passed to CosmoMC for the particular cosmology one was interested in by modifying a
simple plain text setup file.

However, for performing different data cuts, for example if one was interested
in the constraints from the temperature-only data from WMAP, or if one wanted to
compare if the low-ℓ pixel-likelihood yielded the same or similar results as the low-ℓ
Gibbs sampled bandpowers, one would have to modify the underlying source code
manually and recompile the entire unit to re-run this experiment for comparisons.

When running one likelihood, this would not be necessarily difficult or tedious,
and most software engineers would hopefully release human-readable and well-docu-
mented code that was easily modified to suit one’s needs. For extended explorations
when many runs are needed, and considering a general user, including students and
other cosmologists, this approach becomes difficult and prone to mistakes or limitations.

While some aspects of the likelihood are indeed experiment-specific, many
components are common to all datasets and to be able to combine multiple experiments
it is imperative to streamline modifications, combinations, and choices of options.
This need for multi-experiment analysis has driven us to a more modular, readable,
and accessible design. We have transitioned from writing experiment-specific, single-
purpose, Fortran likelihood software to modern python implementations, which inter-
face with modern sampling software such as cobaya. These new sampling software
are capable of interfacing with multiple likelihood and theory codes under variable
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Sampler Likelihood

Theory

Data

Parameters and Settings

Constraints

Figure 3.1. A schematic overview of the components of a modern likelihood sampling
interface. The sampler software is at the center: it loads in any collection of parameters
and settings and interfaces with the needed components of the code. The theory codes
compute any kind of intermediate observables (for example: computing the CMB power
spectra from cosmological parameters, or modeling some kind of foreground model
from astrophysical and/or cosmological parameters). The likelihood function then
takes in the theory observables and and other parameters from the sampler, and returns
the log L of the model given the data. The sampler then provides results which allow
one to compute parameter constraints and results.

parameters and settings, without the need for the end-user to directly edit the underlying
code bases. The new python software packages can be installed on the user-side with
minimal hassle. An example of how a modern likelihood-to-parameter framework
works is shown in Figure 3.1.

My work during my research has included reimplementing legacy likelihoods in
modern analysis frameworks, and developing new likelihoods for current and future
experiments. We sought to update and recreate existing legacy software, such as the
WMAP (see section 3.2) and Planck (see section 3.4) likelihoods – which are still of
interest for future analyses – in modern, up-to-date environments. Alongside this we
have been building the infrastructure for current (ACT DR6, see chapter 5) and future
(SO, see section 3.5) ground-based observations.

We reflect back on chapter 2, notably on Equation 2.3, where I prescibed the
general likelihood function we wish to implement for our dataset. For most of the
work in this thesis, we focus on the ℓ > 30 regime of the power spectra, where the
CMB is highly Gaussian in nature. As such, the Gaussian likelihood function given
in Equation 2.3 is applicable to our statistical model for the likelihood.

For a single-frequency dataset, our instrument measures the CMB at a single
frequency in temperature and E–mode polarization. The full data vector will have the
form D̂d

b =
{
D̂T T

b , D̂T E
b , D̂EE

b

}
, where b is the bin of each datapoint, and we have the
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error for and covariance between each data point, described by a covariance matrix
Σb1,b2 .

Our log-likelihood will be a function log L(D̂d
b |θ), where θ = {Ωbh

2, Ωch
2, θMC, ns,

log As, τ∗, ...} is the set of cosmological parameters, plus any kind of potential nuisance
parameters that we need to include. This function takes these parameters and computes
the log-likelihood of the data given the model. For this, such a likelihood commonly
takes the following steps:

1. Compute the theoretical CMB vector DCMB
ℓ =

{
DT T,CMB

ℓ , DT E,CMB
ℓ , DEE,CMB

ℓ

}
from

the cosmological parameters with an Einstein-Boltzmann code;

2. Bin each spectrum with a given window function w as DXY,CMB
b = ∑

ℓ
wbℓDXY,CMB

ℓ ;

3. Include any additional systematics, such as calibration uncertainty, that modifies
the spectrum (see subsection 2.2.2); I will denote it here as a generic function
Dth

b (θ) = f
(
DCMB

b , θ
)
, which includes any other parameters θ that we consider in

our model;

4. Compare the forward theory model with the data and the covariance matrix, and
calculate the likelihood log L = −1

2

[
D̂d

b − Dth
b (θ)

]
Σ−1

[
D̂d

b − Dth
b (θ)

]
.

The exact nature of the function f will depend on the specific experiment setup,
and the treatment of foreground nuisances. However, for different experiments, each
of these steps can include modules which are shared between experiments, and the
software for doing this capable of doing these steps in order for multiple experiments at
the same time.

We can see these actions enumerated here reflected back in Figure 3.1. Computing
the theoretical CMB forward model vector is performed by the theory code. This
theoretical model is passed on to the likelihood code, which adds additional systematics
effects and other model components to the full theoretical model vector, and compares
it with the observed data to compute the log-likelihood function. The sampler code is
then responsible for sampling the log-likelihood function across parameter space, and
infer any constraints from the results.

3.2 A Re-implementation of the WMAP 9-Year Likelihood

The Wilkinson Microwave Anisotropy Probe (WMAP) was an all-sky satellite mission
that observed the CMB for nine years between 2001 and 2010. The 9-year data release,
presented in Hinshaw and et al. (2013); Bennett and et al. (2013), included all-sky maps
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in five bands between 20 and 95 GHz. It provided a measurement of the CMB power
spectrum in temperature up to ℓ ≈ 1200, and in the temperature-polarization cross-
spectrum up to ℓ ≈ 1000.

Despite its age and the release of more precise data, the creation of a python
implementation of the WMAP likelihood has useful benefits. Primarily, for ground-
based observatories, the limited sky coverage provides limited measurement of the
larger angular scales, importantly the first acoustic peak in the range 2 < ℓ < 400
which is essential in constraining the baryon density Ωbh

2 and the primordial spectral
index ns. Because WMAP provides an independent, signal-dominated measurement
of this part of the power spectrum, the usage of WMAP as opposed to Planck allows
for an independent measurement of the CMB as a means to verify the Planck results.
In addition, WMAP is noise-dominated in the regime where the signal from current
ground-based telescopes begins, meaning that the covariance between WMAP and
ground-based data is negligible. This allows for the inclusion of WMAP data without
having to cut the data from ground-based telescopes, nor the inclusion of a deeper
re-analysis of the covariance between WMAP and newer data. Finally, the WMAP signal
is dominated by the CMB signal, with limited contamination from foregrounds. A
single amplitude for the SZ emission in temperature is used for the analysis. This means
that the parameter volume does not increase much by combining with WMAP.

My reimplementation of the WMAP likelihood, released as pyWMAP, was used in
the ACT DR6 lensing analysis, see Madhavacheril et al. (2023). This implementation
closely follows the original WMAP v5 likelihood, presented in Bennett and et al. (2013),
but does not include the low-ℓ components in TE, or EE (data below ℓ = 24). The full
code for pyWMAP is publicly available online at https://github.com/HTJense/
pyWMAP.

For the high-ℓ part, the parameter estimation follows Hinshaw et al. (2003),
where they use the Gaussian estimation of the power spectrum Dℓs. The binned power
spectrum is assumed to have the form

Db = wbℓDℓ + Nb, (3.1)

where Nb is a binned uncorrelated noise component. We did not re-estimate the
noise curve, but instead re-used their estimate of

N ≈ N0 + N1

(450
ℓ

)
, (3.2)
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where N0 and N1 are fixed coefficients . These coefficients were found by the
WMAP team by assuming the measurements of one autospectrum in two different years
would be the same, apart from its noise measurement. They found the coefficients of N

by assuming two different years of measurements would contain the same CMB power
spectrum but independent noise power spectra. Thus, by cross-correlating different
years, one can cancel out the noise and be retained with only the CMB power spectrum,
and thus the noise curve would be,

⟨N⟩ = 1
2
∑
j1,j2

[
Dj1j1

ℓ − Dj1j2
ℓ

]
, (3.3)

where the indices j stand for the different years of observations, and Dj1j1
ℓ stands

for the autospectrum of one year with itself, while Dj1j2
ℓ stands for the cross-spectrum

of one year of observations with a different year of observations (Hinshaw et al., 2007).
The values for N0 and N1 were then found by fitting Equation 3.2 to this estimator over
the range 33 ≤ ℓ ≤ 1024.

We then compute the covariance matrix by estimating the uncertainty per Dℓ as

∆Dℓ = 1
fsky

√
2

2ℓ + 1
(
Dfid

ℓ + Nℓ

)
, (3.4)

where Dfid
ℓ is a fiducial model for the CMB and foreground power spectrum. This

gives a good estimate for cosmic variance, instrumental noise, and mode coupling. We
see that this equation is similar to our cosmic-variance limit given in Equation 1.29,
but with an added term for the uncorrelated noise. An additional component needs
to be added to the covariance for the effects of beam deconvolution and uncertainties
in point-source subtraction, which is a term I did not re-estimate for my work and
follows the same treatment as (Hinshaw et al., 2003). This adds a slightly off-diagonal
component to the covariance matrix.

In the regime where WMAP measures the microwave background, at ℓ < 1200,
the signal is dominated by the CMB. Separate cleaning is done to remove thermal dust
emission from the galaxy, and apart from that, the only remaining contamination comes
from the Sunyaev-Zel’dovich effect. To model this, a single template spectrum with a
freely-varying relativy amplitude is added to the theory curve, as

Dth
ℓ = DCMB

ℓ + ASZDSZ
ℓ (3.5)

with 0 ≤ ASZ ≤ 2 for the amplitude of the SZ component relative to the fiducial
value. It was found that marginalizing over the SZ amplitude affects the cosmological
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Figure 3.2. The marginalized ΛCDM cosmological parameters (blue) recovered with
my python WMAP likelihood implementation versus the (black) marginals from the
original WMAPv5 likelihood constraints. I show that my likelihood implementation
perfectly recovers the parameter constraints from the WMAP measurements of the
CMB.

parameters by ≲ 0.4σ, while the amplitude of the SZ template itself was unconstrained.

For the low-ℓ temperature analysis, I reimplemented the analysis of the Gibbs
sampling method which is described in (Dunkley et al., 2009). This analysis uses
a Blackwell–Rao (BR) estimator for computing the likelihood, based on some initial
estimate of the data Dℓs.

For my reimplementation of the WMAP likelihood, we verified that the resulting
log-likelihood as well as some posterior parameter constraints matches those of the
original WMAP analysis. We verified that for a fiducial CMB power spectrum, the
chi-square of the code is sufficiently close to the original code, confirming that ∆χ2 ≈
2 × 10−4 (where the absolute χ2 ≈ 7557.96) for the theoretical power spectrum that was
packaged with the original WMAP v5 likelihood. In addition, we also verified that
individual components of the likelihood resulted in a chi-square value that was similarly
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close to the original code. The remaining differences can be down to computational
differences, such as a different algorithm being used for matrix inversion between the
two codes. In Figure 3.2, I compare the 1D posteriors of the constraints recovered with
my WMAP likelihood versus the original WMAP likelihood ran with the same settings.

3.3 Multi-Frequency Spectra Likelihoods

As mentioned in the previous chapters, observations of the CMB power spectra
get contaminated by astrophysical foregrounds, and this combined signal gets affected
by instrumental noise properties. This means that present and future observations of
the CMB will require methods to separate these nuisances from the CMB signal and
extract cosmological information from the T and E mode data.

With the advent of new, high-precision observations from telescopes such as
the Simons Observatory, there is an ongoing drive to go from older single-purpose
likelihoods to more modern, open, and modular designs that allow for better access to
underlying data products and analyses.

As mentioned before in subsection 2.1.2, when observing the microwave sky
in multiple frequencies, multiple cross-spectra between different frequency pairs are
possible. This means that the full data vector will no longer just be single TT, TE, and
EE spectra observations, but instead each spectrum will appear multiple times in the
data vector, each for different cross-frequency pairs.

In this section, I will go through the implementation of MFLike, a Gaussian
MultiFrequency Likelihood software that is under development for the future SO LAT
analysis (see subsubsection 1.7.3 for a summary of SO and the LAT), and has been
applied for a re-analysis of legacy Planck data (section 3.4), as well as the analysis of the
upcoming ACT DR6 data (chapter 5).

With the design philosophy of modularity and interoperability, MFLike consists
of multiple components, with the intention that, for example, the computation of power
spectra for astrophysical foregrounds exists in a standalone library that interfaces with
not just the multifrequency likelihood, but with other components of the SO (or other
experiment) pipelines as well. I will discuss each of the components relating to the
MFLike software suite, parallel to the discussion of the likelihood function described in
the previous chapter.
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SOLikeT:
Other SO

likelihood codes
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SO Codes

Figure 3.3. An overview of the various components of the SO analysis pipeline (black,
dashed box), the main components of MFLike (red, solid box), and how each of
these interface with each other and various external components. The full package
of MFLike consists of the Theoryforge (green), which takes in the various theoretical
components and builds a model for the data vector, and the Likelihood (green), which
compares the theory model to the data and computes the log-likelihood function. The
Theoryforge interfaces with the Boltzmann code to obtain theoretical CMB power spectra,
as well as the SO softwares fgspectra for power spectra of astrophysical foregrounds,
and SYSLibrary for instrumental systematics modeling. The combined power spectrum
model is then passed to the Likelihood, which compares it to the Data (blue) computes
the log-likelihood function, passing this to cobaya. The SO analysis pipeline also
contains codes for computing log-likelihoods from other probes (such as CMB lensing,
or cross-covariance with galaxy clustering), and each of these codes can interface with
each other to compute joint constraints on cosmology.
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3.3.1 An Overview of the MFLike likelihood

A schematic overview of all components that MFLike interfaces with is given
in Figure 3.3. The main code base of MFLike is split into two components: the
Theoryforge, which computes the theory model given the parameters, and the Likelihood,
which computes the log-likelihood given the theory model. The software package
formed of these two components allows one to compute cosmological constraints
from multifrequency CMB data. The full code for MFLike is available online at
https://github.com/simonsobs/LAT_MFLike.

The reasoning behind this high level of modularity and interfacing, is the attempt
at building a catalog of softwares that can handle data and models beyond just SO
results.

fgspectra: Foreground Modeling

fgspectra is the SO library for computing multifrequency power spectra for astrophysical
foreground models. The full code is available online at https://github.com/
simonsobs/fgspectra.

Mathematically, fgspectra seeks to model any astrophysical foreground component
as any function of the frequency-dependent part of the function f(ν); the ℓ-dependent
part of the function Cℓ; and whatever other parameters θ the foreground model depends
on. Comparing the generic idea with the various components described in subsection 2.2.1,
we see that most spectra are implemented as a simple factorized cross-spectrum,

Dℓ,ν1,ν2(θ) = f(ν1, θ)f(ν2, θ)Cℓ(θ), (3.6)

with f(ν, θ) the spectral dependency of the component, which may depend on
additional parameters θ. In fact, the only component that is commonly not a simple
factorized cross-spectrum is the joint tSZ-CIB model, which contains a correlation term
and thus has a slightly more complicated form that includes Equation 2.13.

By writing all this in generic form rather than implementing a fixed-pipeline
foreground model, fgspectra permits easy configuration of foreground models. With
the LAT’s aim at measuring high-accuracy multi-frequency cross-spectra, this will allow
for investigation of the exact modeling of astrophysical foregrounds, for example for
the testing models of correlations or decorrelations between different components.

At present, the publicly available library of fgspectra contains templates
capable of describing all components described previously in subsection 2.2.1. These
include ℓ space templates for tSZ, kSZ, and CIB components; frequency-dependency
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terms for tSZ, modified blackbody, and power laws; and cross-spectrum models for
simple factorized cross-spectra, and cross-spectra with correlations (e.g. tSZxCIB).
Beyond currently used models, a wide variety of additional models is available as well,
such as the ability to tilt a template in ℓ space to explore mis-modeling systematics,
templates for synchrotron radiation and free-free emission, and cross-spectra for de-
correlation between different components.

SYSLibrary: Instrumental Systematics

SYSLibrary is the SO library for computing multifrequency power spectrum modifications
based on instrumental systematics models. The full SYSLibrary package comes with
implementations for per-spectrum calibration factors, polarization angle miscalibration,
and T to E leakage. The full code is available online at https://github.com/
simonsobs/syslibrary.

For this thesis, only per-spectrum calibration is considered, and it is used for
both a per-array gain calibration and polarization efficiency factor, as described before
in subsubsection 2.2.2.

Full Theory Computation

The full theory computation is now based on a combination of (1) the theoretical CMB
power spectra obtained from the Boltzmann code, (2) the astrophysical foreground
model obtained from fgspectra, and (3) any modifications to this model due to the
model applied by SYSLibrary. The full model is the sum of the CMB power spectrum,
plus the foreground model integrated over the bandpass, both calibrated for gain and
polarization efficiencies, and then binned according to the window functions.

MFLike is written to interface with the cosmological sampling software cobaya.
As a consequence, it is easy to recover constraints on cosmological, astrophyiscal, and
other nuisance parameters from the MFLike log-likelihood function through MCMC
sampling (see section 2.3).

As two examples of the use of MFLike, I provide in section 3.4 an overview of our
work on the re-analysis of the Planck 2018 data with MFLike. Afterwards, in section 3.5,
I show our work within the SO collaboration on validating the MFLike likelihood on
simulated data vectors for the SO LAT.

74 Precision Cosmology from Small-Scale CMB Observations

https://github.com/simonsobs/syslibrary
https://github.com/simonsobs/syslibrary


MFLike applied to Planck legacy data

3.4 MFLike applied to Planck legacy data

The original Planck plik likelihood is the likelihood implementation for the high-ℓ
multipoles from the Planck satellite (Planck Collaboration, 2020b). Since the CMB is
sufficiently Gaussian in the ℓ > 30 regime, it follows a simple Gaussian implementation
of the likelihood function as previously described in section 2.1.

For the work we did in Li et al. (2021), we sought to reproduce the Planck 2018
analysis using the SO analysis pipeline. For my work, I adapted the MFLike likelihood
to read the Planck data products and model the noise properties of Planck, while adapting
the foreground nuisance models from fgspectra to include models for and interface
with the Planck data. The full code for MFLike-plik is publicly available online at
https://github.com/simonsobs/LAT_MFLike/tree/mflike-plik.

3.4.1 Likelihood Function

I developed MFLike-plik to adapt MFLike for the high-ℓ (ℓ > 30) part of the
TT, TE, and EE spectra of Planck. The datavector of the spectra, Dd

b , and its covariance
matrix Σ, were obtained by SO collaborators re-evaluating the Planck maps with the SO
pipeline, while the likelihood was implemented by me as a Gaussian likelihood, with
the log-likelihood function given in Equation 2.2. For the Planck likelihood, this forward
model for the cross-frequency binned spectrum is written as:

DXY,th
b,ν1ν2 (θ) = wbℓc

X
ν1cY

ν2

[
DXY,CMB

ℓ (θ1) + DXY,fg
ℓ,ν1ν2(θ2) + DXY,sys

ℓ,ν1ν2

]
(3.7)

where DXY,CMB
ℓ is a CMB theory prediction for a given set of cosmological

parameters θ1, and the other two terms account for frequency-dependent foregrounds
and residual systematics, respectively.

Foregrounds: DXY,fg
ℓ,ν1ν2(θ2) is the secondary signal from galactic and extragalactic

emission and depends on a set of 20 foreground parameters θ2. We describe this model
in detail in subsection 2.2.1. In temperature this term includes thermal and kinematic
Sunyaev-Zel’dovich (SZ) emission, dusty star-forming and radio galaxies appearing
as point sources (ps), a clustering term for the cosmic infrared background (CIB), a
correlation between thermal SZ and CIB (tSZxCIB), and thermal dust emission from our
galaxy (dust). In polarization the galactic dust is modeled for both TE and EE. For our
implementation, we adopted the public SO library fgspectra that builds cross-spectra
predictions for foreground components at different frequencies for a given set of model
parameters.
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Parameter Description Prior

AtSZ Thermal SZ amplitude. ≥ 0
AkSZ Kinematic SZ amplitude. ≥ 0
ACIB

217 CIB amplitude at 217 GHz. ≥ 0
ξ tSZ-CIB correlation scale. 0 ≤ ξ ≤ 1
APS

100 Unresolved radio sources in TT at 100x100. ≥ 0
APS

143 Unresolved radio sources in TT at 143x143. ≥ 0
APS

143×217 Unresolved radio sources in TT at 143x217. ≥ 0
APS

217 Unresolved radio sources in TT at 217x217. ≥ 0
Adust

100 Galactic dust amplitude in TT at 100x100. (8.6 ± 2.0) µK2

Adust
143 Galactic dust amplitude in TT at 143x143. (10.6 ± 2.0) µK2

Adust
143×217 Galactic dust amplitude in TT at 143x217. (23.5 ± 8.5) µK2

Adust
217 Galactic dust amplitude in TT at 217x217. (91.9 ± 20.0) µK2

Adust,TE
100 Galactic dust amplitude in TE at 100x100. (0.130 ± 0.042) µK2

Adust,TE
100×143 Galactic dust amplitude in TE at 100x143. (0.130 ± 0.036) µK2

Adust,TE
100×217 Galactic dust amplitude in TE at 100x217. (0.46 ± 0.09) µK2

Adust,TE
143 Galactic dust amplitude in TE at 143x143. (0.207 ± 0.072) µK2

Adust,TE
143×217 Galactic dust amplitude in TE at 143x217. (0.69 ± 0.09) µK2

Adust,TE
217 Galactic dust amplitude in TE at 217x217. (1.938 ± 0.54) µK2

c100 Calibration of the 100 GHz spectra relative to 143 GHz. 1.0002 ± 0.0007
c217 Calibration of the 217 GHz spectra relative to 143 GHz. 0.99805 ± 0.00065

Table 3.1. The nuisance parameter model for the MFLike plik analysis we presented
in Li et al. (2021). We also imposed the additional prior AtSZ + 1.6AkSZ = (9.5 ± 3.0) µK2.
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Because the Planck masks are frequency-dependent, the residual dust emission
is not the same in each cross-spectrum. As such, the frequency scaling described
in subsubsection 2.2.1 is not appropriate. Instead, the dust is modeled independently per
cross-frequency, and the amplitude of each template is constrained with a prior per cross-
frequency which is computed individually. We adapted the standard dust template
in fgspectra but used a custom frequency-dependent component to independently
vary these amplitudes. A full overview of all nuisance parameters and their priors is
given in Table 3.1.

Systematics: DXY,sys
ℓ,ν1ν2 is a term correcting the model for residual levels of systematic

effects. We added a module in MFLike-plik to include the frequency-dependent
templates for beam leakage, sub-pixel noise corrections, and correlated noise corrections
to the model vector with fixed amplitudes. We reused the model from Planck Collaboration
(2020b) and did not re-estimate these templates in our analysis.

Calibration and polarization efficiencies: The full theory vector is then calibrated
and corrected for polarization efficiencies cX

ν before comparing to the data. As in Planck
Collaboration (2020b), the model is calibrated assuming a fixed temperature calibration
equal to unity at 143GHz, and polarization efficiencies are also fixed to 1.021, 0.966, and
1.04 for 100, 143, and 217GHz, respectively. The 100 and 217GHz temperature calibration
factors are added as nuisance parameters as a third component to the θ vector and
varied with the same Gaussian priors used in Planck Collaboration (2020b).

3.4.2 Tests of Parameters

We directly compared our re-estimated spectra and covariance products with
the Planck PR3 products. We looked at the outputs of the cosmological pipeline and
tested how cosmological parameters derived from our new inputs compare with those
of Planck Collaboration (2020d) for ΛCDM and a select few single-parameter extension
models.

To do this, I coupled our likelihood to cobaya (see section 2.3), extending the
Planck paramameter configuration files already existing in cobaya to call MFLike-plik
for the high-ℓ spectra. We also include the pre-existing PR3 likelihood implementation
for the low-ℓ Planck data in temperature and EE polarization, called “lowl” and “lowE”
respectively.

The results of our ΛCDM run are shown in Figure 3.4, with the Planck PR3 results
in orange and our re-analyzed SOmode results in blue. We find excellent agreement for
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the six basic ΛCDM parameters between our inputs and Planck Collaboration (2020d),
with all parameters agreeing to within 0.1σ.

The distributions of the foreground parameters are shown in Figure 3.5. In this
case, all parameters are consistent with those reported in Planck Collaboration (2020d)
within 0.1σ, except for the amplitudes of thermal dust in TE at frequencies higher than
100 GHz, which show small shifts of ≤ 1σ. Since the dust amplitudes in TT and TE were
varied with a Gaussian prior imposed, but the EE amplitudes were remained fixed, we
attribute the small shifts in TE parameters to the small differences in the EE spectra at
low multipoles we recovered, where the dust contamionation is significant, at 143 and
217 GHz. We tested that these shifts were indeed coming from spectrum differences,
rather than differences in the covariance matrix, by estimating parameters using the PR3
spectra together with our new SOmode covariance matrix. This combination resulted in
no parameter shifts in the foreground parameters.

We also explore a standard set of ΛCDM extensions to validate our products on
multiple theories and parametrizations. We estimate the constraints on the effective
number of relativistic species Neff , the running of the spectral index nrun, the amplitude
of lensing smoothing in the power spectra AL, and the spatial curvature Ωκ. In all cases,
we recover the Planck 2018 results (as seen in Planck Collaboration (2020d)) to within
0.1σ as shown in Figure 3.6.

3.5 MFLike Development and Validation for the Simons

Observatory

As mentioned before, the MFLike likelihood is designed for use with the to-
be-completed Simons Observatory Large Aperture Telescope (SO LAT), which is under
construction in the Atacama Desert in Chile. The basic framework has been shown in
subsection 3.3.1, and here I will focus on summarising its status for deployment on SO
data.

The LAT will observe the microwave sky in temperature and polarization at 93,
145, and 225GHz. The nominal plan for sky coverage is to observe fsky ≈ 40%, which
gives a signal-dominated and cosmic-variance limited power spectrum at ℓ ≤ 3000
in temperature and ℓ ≤ 2000 in polarization (The Simons Observatory collaboration,
2019), and new observations spanning up to a much higher ℓ ∼ 9000. Cosmology,
foreground cleaning, and astrophysical science from small-scale, multifrequency data
will become a major component of the SO science products. Within the SO Power
Spectrum analysis working group, I have contributed to the development of MFLike for
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Figure 3.4. The cosmological parameters found with the MFLike-plik likelihood
(blue) and the original plik results (orange). Both constraints make use of the external
original likelihood for low-ℓ temperature and polarization data, which is needed to
constrain τ (Li et al., 2021).

H. T. Jense 79



Likelihood Software for new CMB Analyses

0 5 10
AtSZ

0 5 10
AkSZ

0.0 0.5 1.0 20 40 60
ACIB

217

100 200 300 400
APS

100

0 50 100
APS

143

0 50 100
APS

143 × 217

100 200
APS

217

0 10
AdustTT

100

10 20
AdustTT

143

0 50
AdustTT

143 × 217

0 100
AdustTT

217

0.0 0.2
AdustTE

100

0.0 0.1 0.2 0.3
AdustTE

100 × 143

0.1 0.5 0.9
AdustTE

100 × 217

0.0 0.5
AdustTE

143

0.5 1.0
AdustTE

143 × 217

0 2 4
AdustTE

217

0.998 1.002
c100

0.996 1.000
c217

Figure 3.5. The foreground and calibration parameters found with the MFLike-plik
likelihood (blue) versus the original plik results (orange). The black dotted lines
illustrate the gaussian priors imposed on the dust and calibration amplitudes. An
additional joint prior is used for the tSZ and kSZ amplitudes and is not shown here.
The two pipelines give consistent results, with small shifts only in some of the TE dust
amplitudes, which we attribute to the small differences found in the EE spectra at low
multipoles (Li et al., 2021).
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Figure 3.6. The ΛCDM extensions found with the MFLike-plik likelihood (blue) and
the original plik results (orange). We show the constraints on (top left) the effective
number of relativistic species Neff , (top right) the running of the spectral index nrun,
(lower left) the amplitude of lensing smoothing in the power spectra AL, (lower right)
and the spatial curvature Ωk (Li et al., 2021).
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the LAT power spectrum analysis. I have also contributed to the SO Likelihood and Theory
package SOLikeT*, which will make SO data easily available for cross-probe analysis,
interfacing MFLike for power spectra to other observables such as CMB lensing, cross-
correlations with cosmic shear (see e.g. Shaikh et al. (2023)), halo modeling, or galaxy
cluster counts.

3.5.1 Using MFLike on SO simulations

After building the basic suite of software composing MFLike, and validating it
on Planck, within the SO collaboration we have started extensive tests on SO simulations.
As an important step to validate the functioning of the likelihood, we run the MFLike
software on simulated data vectors for SO LAT observations. Simulated data vectors
were generated from Gaussian sky realizations of a fiducial set of parameters. The
simulated power spectra D̂d

b and and covariance were generated using PSPipe†, the
same software that will be used for the real data analysis when the LAT comes online.
These simulated data vectors on Gaussian scales between 30 ≤ ℓ ≤ 9000 are then passed
to MFLike for modeling and measurements.

At the likelihood level, we model the full multifrequency microwave signal as a
combination of CMB and foreground components. The full foreground model is the
same as the one described in subsection 2.2.1, with SZ, CIB, Galactic dust, and radio
point source components in temperature and E-mode polarization.

The full suite of simulated data vectors is available publicly as part of the MFLike
software.

I show the recovery of the fiducial cosmological parameters for all 100 simulated
data vectors in Figure 3.7. For this figure, I ran the cobaya MCMC sampler, interfaced
with the MFLike likelihood and a CMB theory code CosmoPower (see chapter 4), to
constrain the cosmological and astrophysical foreground parameters. I did not consider
any instrumental systematics in this analysis, and I refer to Giardiello et al. (2024) for a
recent extensive analysis of SO simulations, including the impact of various systematics
and the importance of external characterization of instrumental properties. For ΛCDM
cosmological parameters, I show a good recovery of the fiducial input parameters
compared to the mean of the 100 simulations.

*https://github.com/simonsobs/SOLikeT
†https://github.com/simonsobs/PSpipe
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Figure 3.7. Recovery of the fiducial cosmological parameters of a set of simulated
data vectors for SO LAT. These data vectors are Gaussian realizations of a fiducial
cosmology and foreground model, and do not consider any instrumental systematics
for the LAT (see Giardiello et al. (2024) for a complete overview of the effect of systematic
uncertainties in these simulations). I imposed a Gaussian prior on the optical depth
τreio = (5.44 ± 0.58) × 10−2, since this parameter cannot be constrainted by the LAT
alone. Various grey distributions are the posterior distributions obtained from the 100
different Gaussian realizations of the data. The black distribution is the mean of all of
these 100 posteriors, with the vertical line showing the mean of this distribution. The
red vertical line shows the fiducial input value, and the captions show the difference
between the fiducial input value and the recovered mean over 100 simulations. Overall,
I make a good recovery of the fiducial cosmology, with minimal discrepancies or biases
(< ±0.25σ) on any parameter.
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3.6 A CMB-only Likelihood

For purely cosmological analysis, it is more practical to work with a CMB-only
dataset. For this, some kind of subtraction of the foreground contamination is necessary.
This can be done at the map level, where techniques such as component separation are
used to differentiate the maps in linear space to different maps in component emission
(e.g. Coulton et al. (2023)).

As a different method, we employed foreground marginalization at the power
spectrum level to indepently marginalize over the foreground contamination and
produce a clean, CMB-only power spectrum for cosmological analysis. These CMB-only
power spectra can then be exploited with a simple CMB-only likelihood (as done for
ACT, Planck, and SPT (Dunkley et al., 2013; Planck Collaboration, 2016, 2020b; Choi et al.,
2020)). To do this, we start from MFLike and sample at the same time the foreground
and nuisance parameters, as well as the individual CMB bandpowers without assuming
any cosmological model. For the latter step, we employ the Gibbs sampling method
described in (Dunkley et al., 2013), which goes as follows.

We recall from Equation 3.7, that our data vector has the form

Db,ν1ν2(θ) = DCMB
b,ν1ν2 + Dsec

b,ν1ν2(θ2), (3.8)

where Dsec
ℓ refers to any secondaries (foreground contamination and instrumental

uncertainties) in our signal, which depend on the parameters θ2 of our model for
the secondary contamination, and we do not assume any model for the CMB power
spectrum based on the cosmological parameters θ1. Since our data is binned, we write
the spectrum in bandpowers b, as Db = ∑

ℓ wb,ℓDℓ. Since the CMB is blackbody, we know
that for any ν1, ν2, the CMB Dbs will be the same. We can thus estimate the mean and
covariance of our CMB Dbs efficiently by means of a mapping matrix M that maps the
ncmb elements of our CMB data vector to the nspec elements of our observed data vector.
This gives us:

Db(θ) = MDCMB
b + Dsec

b (θ2), (3.9)

where M helps us map our blackbody CMB Dbs to our multi-frequency data
Dbs. To this end, M is a rectangular matrix that is equal to 1 if DCMB

b contains CMB
bandpowers that feed into Db, or 0 otherwise. We need to correct this however, for
the fact that our CMB bandpowers are calibrated with our calibration factors cd

ν and
polarization efficiencies pd

ν (see subsubsection 2.2.2). If a theoretical power spectrum
is multiplied by ci

ν1cj
ν2 in our data vector, then we need to include this factor in our
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mapping matrix. Schematically, if we consider the cross-spectra for arrays A and B, our
mapping matrix will now have the following shape:
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. (3.10)

To estimate our DCMB
b , we want to marginalize over all secondary parameters θ2,

which gives us a posterior distribution

P
(
DCMB

b

∣∣∣Cb,ν1ν2

)
=
∫
P
(
DCMB

b , θ2

∣∣∣Cb,ν1ν2

)
π(θ2) dθ2. (3.11)

For this, Gibbs sampling is an efficient way to map out the joint distribution
P
(
DCMB

b , θ2

∣∣∣Csec
b,ν1ν2

)
. Gibbs sampling is a generalized form of the Metropolis-Hastings

MCMC algorithm, where some joint distribution P(X1, X2) can be sampled even if
one only knows the distributions P(X1|X2) and P(X2|X1). In our case, we can sample
P(θ2|DCMB

b ) with the Metropolis-Hastings algorithm, while computing P(DCMB
b |θ2) by

direct sampling of the CMB bandpowers from the data vector.

We get a full, multi-frequency log-likelihood as:

−2 ln L =
(
MDCMB

b + Csec
b,ν1ν2 − Cb,ν1ν2

)T
Σ−1

(
MDCMB

b + Csec
b,ν1ν2 − Cb,ν1ν2

)
, (3.12)

For fixed θ2, and thus fixed Csec
b,ν1ν2 , the conditional distribution for the CMB

bandpowers, P(DCMB
b |θ2, Cb,ν1ν2) is given by:

−2 lnP(DCMB
b |θ2, Cb,ν1ν2) =

(
DCMB

b − D̂res
b

)T
Q−1

(
DCMB

b − D̂res
b

)
(3.13)

where D̂res
b is the mean of of the residual of the data minus the foregrounds,

and Q is the covariance of the CMB Dbs. We can find these by taking the derivative
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of Equation 3.12 with respect to the CMB bandpowers, assuming the CMB is a pure,
Gaussian distribution with uniform flat priors, giving us:

Q = MT Σ−1M, (3.14)

and

D̂res
b = Q−1

[
MT Σ−1

(
Db,ν1ν2 − Dsec

b,ν1ν2

)]
. (3.15)

We can draw a random sample from this Gaussian distribution by taking the
Cholesky decomposition of the covariance matrix, Q = LLT , and drawing a random
vector

DCMB
b = D̂res

b + Ly (3.16)

where y ∼ N (0, 1) is a vector drawn from a standard normal distribution.

Moving back to Gibbs sampling, we can now sample the joint posterior of
DCMB

b and θ2 by alternating sampling steps between one and the other. This changes
our MCMC sampling procedure, as described in section 2.3, to the following Gibbs
sampling procedure:

1. Pick a starting point θ2,1 and compute the bandpowers DCMB
b,1 , this is where our

chain starts sampling;

2. At our current point θ2,i and DCMB
b,i , evaluate the posterior likelihood P(DCMB

b,i , θ2,i);

3. Draw a new sample θ′
2 ∼ G(θ′

2|θ2,i, DCMB
b );

4. At this point, compute the new CMB bandpowers DCMB
b

′ from our data and our
sample θ⃗2

′
, and add them to the chain DCMB

b,i+1 = DCMB
b

′;

5. Check if the log-posterior ratio α = P(DCMB
b

′
, θ′

2)/P(DCMB
b,i , θ2,i) is accepted;

6. If the point is accepted, then θ2,i+1 = θ′
2, else θ2,i+1 = θ2,i;

7. Repeat steps 2–6 until we consider our chain sufficiently long or converged;

To avoid full degeneracy between the bandpower amplitudes and the calibration
parameters, we often choose to fix the dipole calibration to unity and one polarization
efficiency parameter to its best-fitting value we recovered from the full MCMC run.
We then need to remember to include the dipole calibration and a single polarization
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efficiency parameter in our final likelihood. Since it only involves two additional
parameters, as opposed to a full model of two dozen astrophyical and instrumental
nuisance parameters, this leads to minimal impact on parameter constraints.

3.6.1 The Likelihood for the CMB-only dataset

We are now left with a set of samples for the CMB bandpowers, and can build
a likelihood to estimate the cosmological parameters from these bandpowers. To do
this, we first compute the mean and covariance from the spectra, assuming they follow
a Gaussian distribution, D̂b and Σ.

The CMB-only likelihood now needs only an input theoretical CMB power
spectrum, DCMB

ℓ , as well as a reduced set of nuisance parameters. Because we need to
fix some calibration parameters to avoid full degeneracies, we need to include them in
the CMB-only likelihood as an additional nuisance to marginalize over.

This means our entire simplified likelihood function becomes

log L = −1
2
[
D̂b − cXY wbℓDXY,th

ℓ (θ)
]

Σ−1
[
D̂b − cXY wbℓDXY,th

ℓ (θ)
]T

(3.17)

with wbℓ the window functions of the CMB bandpowers, cXY the nuisance
parameters we did not yet marginalize over, and DXY,th

ℓ (θ) the theoretical power
spectrum. This has reduced the total number of parameters for log L from ∼ 40 down
to ∼ 8, as we no longer need to marginalize over all the foreground and various
instrumental systematic parameters: all of this information has been captured in the
covariance matrix Σ. Additionally, the full multifrequency cross-spectrum information
has been compressed by about a factor 10, as we no longer have multiple measurements
of each CMB power spectrum, but instead only have one spectrum for TT, one for TE,
and one for EE. This also compresses the size of the full covariance matrix by a factor
100.

3.6.2 Recovery of fiducial CMB bandpowers and cosmology

I ran a python implementation of the above algorithm, using a custom interface
with the MFLike likelihood code, on one of the simulated data vectors for SO LAT. I
extracted the CMB bandpowers in TT, TE, and EE up to ℓ = 7000, and assumed the
CMB bandpowers were zero above this. This is done to avoid degeneracies between
the CMB and foreground components, and the assumption that the CMB is zero can
safely be made in the regime where the CMB bandpowers are O(10%) of the weighted
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Figure 3.8. The CMB bandpowers (points) for a SO simulated data vector compared
to the fiducial power spectrum (black line). The subfigures show the TT (blue, top
left), TE (orange, lower left), and EE (green, lower right) power spectra in the full
30 ≤ ℓ ≤ 7000 range where we are able to extract a CMB-only signal from LAT data.
The extracted CMB bandpowers are consistent with the fiducial power spectrum with
minimal bias to the measurement. Although the mean bandpowers for the TT and EE
autospectra appear to deviate from the fiducial spectrum at high ell (ℓ > 5000), this
is due to simulation-specific scatter, the logarithmic scale used in the plot, as well as
degeneracies with the foregrounds; it does not affect the parameter measurement, as
shown in Figure 3.9.

cross-spectrum error. Because the simulations do not yet include any instrumental
systematics modeling, I opted to leave all instrumental nuisance parameters fixed to
their fiducial inputs. This means we do not need any additional calibration parameters
later in the CMB-only likelihood either. In the future, when we do need to model for
these systematics, we will pick one polarized array (preferably the one that makes
the most sensitive measurement of the CMB), and fix its polarization efficiency to its
maximum likelihood estimation during the extraction step, alongside the overall gain
calibration. These two additional parameters then need to be marginalized over in the
CMB-only likelihood.

I show a comparison of the fiducial CMB power spectra and the recovered
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CMB bandpowers in Figure 3.8. We see an excellent recovery of the fiducial power
spectrum, with no visible biases in the extracted CMB bandpowers. The final recovered
bandpowers fall within O(1 − 10µK2) of the theoretical power spectrum, with a high
fidelity recovery of the CMB signal in the 1000 ≤ ℓ ≤ 5000 range.

We can now recover cosmological parameters from this data through a CMB-
only analysis. I wrote a likelihood as described in subsection 3.6.1 for the extracted
bandpowers from this simulation, and compared it to the fiducial parameters as well
as the constraints from the multifrequency analysis with MFLike. The bandpower
windows used in this likelihood were the same as those in MFLike. Only the CMB
signal, DXY,th

ℓ (θ) needs to be modeled, and no additional systematics need to be
marginalized over for now.

I show the results of running a CMB-only likelihood in Figure 3.9. Overall,
we see that the foreground marginalization procedure recovers a power spectrum
which contains the same cosmological information as the multifrequency data, while
needing over a factor 10 less samples to converge. The difference in constraints in
the cosmological parameters compared to the fiducial parameters is purely down to
sample variance, as is shown earlier in Figure 3.7. The foreground marginalization
procedure imposes no bias in the cosmological constraints while offering a greater speed
in convergence for Bayesian analysis.
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Figure 3.9. A comparison of the recovered cosmological parameters from a single SO
LAT simulation, computed with both a full MFLike analysis (blue), and a foreground-
marginalized CMB-only analysis (orange), with the fiducial cosmology shown in the
black vertical lines. We see excellent agreement between the two results. Performing a
foreground-marginalization shows no significant loss in constraining power, while the
number of required samples to reach a fully converged MCMC analysis was reduced
from ∼ 370000 to ∼ 26000.
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Chapter 4

Emulators for High-Precision Cosmology

𒌨𒂠𒊑𒂠𒁮𒂠𒅔𒆭𒈠
𒃻𒈾𒈨𒅆𒉡𒈬𒌦𒃮
𒉈𒂗𒅅𒋺𒂗𒂊𒊺

In this chapter, I will discuss modern developments in the deployment of
cosmological emulators in Bayesian inference. With the development of new, small-
scale observatories comes an ever-increasing pressure on cosmological theory codes to
provide more precise computations of theory models. This is leading to an exponential
increase in the need for computer power, as these theory models have non-linear
complexity in ℓ scaling, accuracy increases, and beyond-ΛCDM physics modeling.
Emulators provide a natural solution to this problem, and part of my work has been to
create and characterize neural network emulators with the python package CosmoPower,
as well as to create new software interfaces for CosmoPower to connect it with cobaya

and other Bayesian inference frameworks for widespread adoption of emulator usage.

In this chapter, I will go through the need for and function of neural network
emulators. The structure of this chapter is as follows:

• I will delve into the limitations of current, traditional, Einstein-Boltzmann codes
in section 4.1, and argue the need for emulators;

• I will explain the concept of emulators in section 4.2, explaining what an emulator
is, and the basic mathematics behind neural network (NN) emulators;
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• In section 4.3, I will go through our work on the software CosmoPower, its
implementation of NN emulators for cosmological inference, and the framework
we have developed for the creation and characterization; I will also show our set
of (beyond)-ΛCDM emulators that I have created for our work;

• In section 4.4, I will show our design concept for human-readable and machine-
parsable prescription files, which are a simple prescription for using the pipeline
described in section 4.3 without the need for any bespoke software development
by the end-user;

• I will conclude with displaying the accuracy and speed of our new suite of
emulators in section 4.5, showing that our emulators are accurate enough to
recover cosmic variance-limited cosmological parameters without any biases.

The following papers were used for this chapter:

• A complete framework for cosmological emulation and inference with CosmoPower,
Jense, Harrison, Calabrese, Spurio Mancini, Bolliet, Dunkley, and Hill (2024);

This paper, which I authored and is based on my work, forms the main body
of this chapter. Most figures, notably Figure 4.2, 4.3, 4.5, 4.6, 4.7, 4.8, are my work and
included directly from the paper. Sections 4.3 through 4.5 are adapted from this paper.

• CosmoPower: emulating cosmological power spectra for accelerated Bayesian
inference from next-generation surveys, Spurio Mancini, Piras, Alsing, Joachimi,
and Hobson (2022);

While I have not personally contributed to this paper, work in this chapter
continues from this paper, and parts of section 4.2 are based on this paper. I explicitly
refer to this paper when I use content from it.

• High-accuracy emulators for observables in ΛCDM, Neff , Σmν , and w cosmologies,
Bolliet, Spurio Mancini, Hill, Madhavacheril, Jense, Calabrese, and Dunkley (2023);

I have co-authored this paper and part of the methodology from this chapter is
adapated from this work. I explicitly refer to this paper when I use content from it.
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4.1 Limitations of Conventional Cosmological Codes

We have seen throughout the previous chapters how we compute models for
cosmological probes and fit these to observational data to recover constraints on
cosmological parameters. We recall that for the CMB, this is done by computing a
set of transfer functions ∆X

ℓ (k) and using it to relate the primordial power spectrum
P (k) to the observed quantity CXY

ℓ as

CXY
ℓ = 4π

∫
∆X

ℓ (k)∆Y
ℓ (k)P (k) dlnk (4.1)

However, this computed quantity does not take into account lensing effects, and
we can only observe the lensed CMB with telescopes. Lensing effects cause a coupling
between different ℓ modes of the CMB, and especially at high multipoles, these effects
can become an important observational effect. Because of this, if we observe the CMB
up to some ℓ, we actually need to compute our theoretical model to a higher ℓmax in
order to accurately including the effects in the lensing tail of the CMB. At present
this is done with conventional codes that model the CMB power spectrum, so-called
Einstein-Boltzmann codes, which can accurately model the CMB power spectrum to
high precision, provided one has the computation power.

These requirements however, yield a series of difficult computational limitations
on our theoretical model for the CMB Cℓs:

• With more precise data, we need to increase our computational precision in order
to accurately constrain cosmological parameters;

• With more small-scale data, we need to compute our observables to higher
multipoles, which require more accurate transfer functions ∆X

ℓ (k) that reach
regimes where our integration step size over k needs to be shorter;

• As we reach higher multipoles, the effects of CMB lensing become more important,
which couples our already high ℓ modes to even higher ℓ multipoles, meaning we
need to compute our theory curve to even higher multipoles than before.

4.2 Cosmological Emulators

A Cosmological emulator is any kind of computational system that recreates
(“emulates”) the mapping between cosmological parameters θ and observable quantities
C without relying on the full theoretical computation of classical Boltzmann solvers.
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4.2.1 Neural Network design

Following the design set out in the original CosmoPower paper Spurio Mancini
et al. (2022), we employ Neural Network (NN) emulators. A neural network is a set
of densely connected neurons that relate the inputs to the outputs via a network of
weighted connections. See Figure 4.1 for a schematic overview.

Ωbh
2

Ωch
2

H0

Inputs

Cℓ=2

Cℓ=3

. . .

Cℓ=2508

Outputs

Hidden Layers

Figure 4.1. A schematic overview of a Neural Network. It consists of several neurons
(circles) that are connected via weights (lines). This particular example network consists
of four layers, with the first input layer having three neurons (representing here the
cosmological input parameters Ωbh

2, Ωch
2, and H0), the two hidden layers having five

neurons each, and the final output layer having 2507 neurons (it thus emulates a mapping
R3 → R2507, computing CMB multipoles Cℓ(Ωbh

2, Ωch
2, H0) for 2 ≤ ℓ ≤ 2508). The layers

are densely connected, meaning that between consecutive layers A and B, each neuron in
A is connected to each neuron in B. The value of a specific node is determined by the
activation function f of that node and the weighted inputs Wx⃗ of all connected nodes
in the previous layer.

From a mathematical point of view, we have a series of input values x⃗1 =
(x1

1, x1
2, . . . x1

n), sets of weights W 1, . . . , W l−1 (which are matrices) and biases β⃗1, . . . , β⃗l−1

(which are also vectors), and some activation function f(x⃗). We define the relation
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between layer i and layer i + 1 as:

x⃗i+1 = f(W ix⃗i + β⃗i), (4.2)

where ultimately the output we are interested in is the final value x⃗l.

There is a lot of freedom in the choice of the number of layers (the value of l), the
number of hidden nodes in each layer (the shapes of the matrices W and the vectors
β⃗), and the type of activation function (the function f ). The exact type of activation
function is a free choice and is not necessarily easy to decide a priori. A popular choice
is the so-called Rectified Linear Unit (ReLU) function

f(x⃗) = max(0, a⃗ ⊙ x⃗), (4.3)

where ⊙ signifies element-wise multiplication, and the max function is operating
element-wise. This function has the advantage of being simple, having a very simple
derivative.

In our case, we will end up using a more general activation function, that can
interpolate between a linear activation and the ReLU function. We implement the
weighted swish function as I later define in Equation 4.5.

Training

The question then becomes to optimize the network, such that the mapping θ⃗ → CXY
ℓ is

accurate enough for our analysis. This is done via machine learning, where the network
is initially set to a random state, and iteratively tweaked to reproduce pre-generated
training data. The goal is to minimize the different between the predicted observables
ĈXY

ℓ (θ⃗) and the true observable CXY
ℓ (θ⃗). This difference is often expressed in terms of

the loss function E , which in our case we chose to be the mean square difference

E ≡
∑

ℓ

(
Ĉℓ − µℓ

σℓ

− Cℓ − µℓ

σℓ

)2

=
∑

ℓ

(
Ĉℓ − Cℓ

σℓ

)2

, (4.4)

where each Ĉℓ and Cℓ is normalized with respect to the mean µℓ and standard
deviation σℓ of the training data. For other emulated quantities, for example the matter
power spectrum P (k) or any kind of derived parameter like σ8, we use the same loss
function and normalize the outputs with respect to the mean and standard deviation of
the training dataset.

We generate a large number of training samples, which consists of pairs of θ⃗ and
CXY

ℓ that are sampled across our parameter space
{
θ⃗
}

. To ensure an even distribution
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of our parameter space, we employ Latin Hypercube Sampling (LHS) for an optimal
distribution of input parameters. Each training pass consists of the following:

1. We group the training data into different batches for improved stability, setting
aside a small (∼ 10%) subset of our samples for validation testing;

2. We pass our batches through the network and evaluate the predicted ĈXY
ℓ = N(θ⃗)

(where N is the function that is the entirety of our neural network);

3. We tweak our hyperparameters W i, β⃗i, and γ⃗i to decrease loss function E , across
the entire batch;

4. After passing through each of our training batches, we evaluate the network at
our validation batch once and report on the validation loss Eval;

5. If the validation error stagnates and does not decrease for a number of training
steps in a row, we stop this training pass and move on to the next.

Assuming our input training data set is large enough, the number of training
steps is large enough, and our training goes well, we will slowly converge onto a set of
hyperparameters that accurately reproduce our mapping CXY

ℓ (θ⃗).
The crucial step in this is step 3, where we want to tweak our hyperparameters

such that the loss function E goes down with each training step. This is commonly done
via some optimization algorithm, such as stochastic gradient descent. Since our emulator
is purely described via differentiable function f(x⃗) and linear operations between the
weights, biases, and input values, it is mathematically possible and computationally
feasible to evaluate the gradients dE/dW i, dE/dβ⃗i, and dE/dγ⃗i. These are then passed
to the optimization algorithm, which then tweaks the hyperparameters in a manner
that should improve the accuracy of the network.

The actual accuracy of a network is often not expressed in terms of the loss E
but rather the validation loss Eval, which is the loss over a set of data points that are
not used in the set passed to the optimizer. This separate validation dataset is used to
avoid overfitting of the model, which is a real risk when the original dataset is used for
validation.

4.2.2 Reusability

A large problem in the use of cosmological emulators is the upfront investment
cost of training a neural network. A single cosmological analysis requires running
an MCMC chain with O(105) samples, which would require a similar number of
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evaluations of an Einstein-Boltzmann code. Preparing an emulator for Stage-IV accuracy
takes a similar number of training samples, which need to be pre-generated with a
classical Einstein-Boltzmann code. Then, the neural network needs to be trained on
these samples, which is an additional investment cost on creation before one gets to
running the MCMC. However, once one has a sufficiently stable and accurate emulator,
it no longer needs to be trained again and can be used for many analyses without having
to run the underlying Einstein-Boltzmann code again. For this reason, reusability is key
in emulators, as an emulator only needs to be used twice for it to be more efficient than
an Einstein-Boltzmann code.

4.3 Implementation

Package Prescription

§4.3.1

Generate Training Data

§4.3.3, 4.4.1

Boltzmann code

Train Emulators

§4.3.4

Emulator Files Accuracy Validation

§4.3.6

Wrapper

§4.5

Sampling SoftwareSampling Configuration MCMC Chain

Cosmological data

Cosmological constraints

§4.5

Emulator creation

Emulator usage

Figure 4.2. An overview of the workflow with CosmoPower: To create a new emulator
(top blue box), we write a packaging prescription, use that to generate training data, and
from that train emulators which outputs several emulator files, for which we can easily
generate plots which validate the accuracy of the emulators. This packaging prescription
and set of emulator files are then shared with the end-user (red arrows), who wants
to use the emulators (bottom blue box): the prescription is put inside the sampling
configuration file, which is given to our software wrappers, which provide the user with an
MCMC chain that can be used to find cosmological constraints. The various labels refer to
the sections where these individual steps are described in this chapter.

In this section I describe the details of our emulators: what is emulated and with
which inputs, how an emulation is performed and how the emulators are validated.
This serves both as a full description of the emulators that I released with my work,
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Parameter Range Default Value

Ωbh
2 [0.015, 0.03] –

Ωch
2 [0.09, 0.15] –

ln(1010As) [2.5, 3.5] –
ns [0.85, 1.05] –

τreio [0.02, 0.20] –
H0 [km/s/Mpc] [40, 100] –

zpk [0, 20] –
log TAGN [7.3, 8.3] 7.8

Neff [1.5, 5.5] 3.044
Σmν [eV] [0, 0.5] 0.06

w0 [−1.5, 0] -1.0
wa [−2, 1.5] 0.0

Table 4.1. Table of parameter ranges over which we trained our emulators. Compare
this with the textual specification in Figure 4.11. The top section of the table refers to the
background cosmology parameters used in almost all emulators. The middle section of
the table contains the redshift and baryonic feedback parameter log TAGN used only in
the P (k, z) and σ8(z) emulators, with their default values from camb used in the CMB
and background evolution emulators. The bottom section of the table shows the ranges
of the single-/two-parameter extension model emulators, and their default values taken
in the base ΛCDM case. Each emulator takes in the first six parameters, and one or two
extension parameters, with the exception for Cϕϕ

ℓ , and background quantities, which do
not rely on τreio.

and as guidelines on the creation of new emulators packaged and usable in the same
way (e.g. for extended cosmological models). By emulator I mean a ‘black box’ code
which is capable of ingesting a set of cosmological parameters θ⃗ and outputting a set
of predictions for the summary statistics of a set of observables {d⃗1(θ⃗), d⃗2(θ⃗), . . . , d⃗N(θ⃗)}
which are indistinguishable (within a given tolerance) from the set which would have
been produced by a code which explicitly implements numerical models of the physics
relating the d⃗ and θ⃗. As the emulation works effectively as an interpolation of the
quantites d⃗ between known points, I rely on the fact that the d⃗ vary smoothly with
respect to the input parameters.

To meet the requirements for Stage-IV analyses, we use the camb accuracy
settings suggested by McCarthy et al. (2022); Hill et al. (2022) as adequate for convergence
of the likelihood value obtained from data with this level of precision, summarised
in Figure 4.4.
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Figure 4.3. An overview of the accuracy reached by a trained CT T
ℓ emulator given the

number of training spectra used to train the emulator, for an increasing number of
input parameters. The solid coloured lines and point represent the 68% error of a CT T

ℓ

emulator trained with NS samples (the dotted shaded lines and points show the similar
behaviour observed at 99%), averaged over the entire ℓ-range. We show the full-size
emulators generated with NS = 100000 for ΛCDM and NS = 120000 for extended
models, as well as emulators with a smaller training set to show how accuracy scales
with NS and input parameters. We train emulators for ΛCDM (6 parameters, blue),
+Σmν (7 parameters, orange), and +Neff +Σmν (8 parameters, green), each on a random
smaller subset of the full training dataset, scaling the training batch size proportional
to the size of the subset. We show how the mean emulation error decreases as the
number of training spectra increases, and increases as we increase the complexity of the
parameter space. We note, however, that scaling of emulators accuracy with number of
input parameters is non linear, the nature and impact on the emulated quantity of the
specific parameter will matter for this behaviour.
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Quantity Range Emulator

CT T
ℓ 2 ≤ ℓ ≤ 10000 NN of log-spectra

CT E
ℓ 2 ≤ ℓ ≤ 10000 NN+PCA of spectra

CEE
ℓ 2 ≤ ℓ ≤ 10000 NN of log-spectra

CBB
ℓ 2 ≤ ℓ ≤ 10000 NN of log-spectra

Cϕϕ
ℓ 2 ≤ ℓ ≤ 10000 NN+PCA of log-spectra

Plin(k, z) 10−4 ≤ k ≤ 50 NN of log-spectra
PNL(k, z) 10−4 ≤ k ≤ 50 NN of log-spectra

PNL/Plin(k, z) 10−4 ≤ k ≤ 50 NN of spectra ratio
H(z) 0 ≤ z ≤ 20 NN of evolution
σ8(z) 0 ≤ z ≤ 20 NN of evolution
DA(z) 0 ≤ z ≤ 20 NN of evolution

derived parameters – NN of value of derived parameters

Table 4.2. Emulated quantities, ranges of scales covered and type of emulator employed
for each of them.

1 lmax: 10000
2 kmax: 10.0
3 k_per_logint: 130
4 nonlinear: True
5 lens_potential_accuracy: 8
6 lens_margin: 2050
7 lAccuracyBoost: 1.2
8 min_l_logl_sampling: 6000
9 DoLateRadTruncation: False
10 recombination_model: CosmoRec

Figure 4.4. Accuracy settings for camb, based on the settings earlier suggested in
McCarthy et al. (2022); Hill et al. (2022). This can be compared with Figure 4.11, which
contains the parameters over which the training data is to be generated.
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4.3.1 Emulated Quantities

In Table 4.2 we show the full list of quantities output by the Einstein-Boltzmann
code (camb v.1.5.2) which we emulate. As output observables we generate the CMB
temperature, polarisation and lensing potential angular power spectra; linear and non-
linear matter power spectra (and their ratio); and a limited set of background expansion
and derived perturbation quantities also output by the Einstein-Boltzmann code.

We compute the CMB angular power spectra in the multipole range 2 ≤ ℓ ≤
10000 in each of TT, TE, EE, and BB combinations for different cosmological models.
In the basic configurations, we use as inputs for our emulators the six cosmological
parameters of the standard ΛCDM model: Ωbh

2, Ωch
2, H0, ns, log(1010As), and τreio. We

add additional model parameters to these for separate emulators for ΛCDM extension
models as explained below. When not explicitly varied, neutrinos are described by
fixing Neff = 3.044, corresponding to the contribution from the three Standard Model
neutrino species, with one of them carrying a total 0.06 eV mass.

We also emulate the CMB lensing potential ϕϕ power spectrum in the same
multipole range. For this we use the same parameter inputs except the optical depth to
reionization, given that the lensing potential power spectrum does not depend on it.

In addition to emulators for these CMB observables, we also generated emulators
of several non-CMB observables. Firstly, we created an emulator for the matter power
spectrum P (k, z). Similarly to how the CMB power spectrum describes the distribution
of CMB photons on the sky, the matter power spectrum describes the spatial clustering
of matter at wavenumbers k and redshift z. For the matter power spectrum, we
compute the linear matter power spectrum Plin(k) for five input parameters: Ωbh

2,
Ωch

2, ln(1010As), ns, and H0, plus again the extra parameters for the extension models.
For all matter power spectra we also treat the redshift z as an input parameter, resulting
in an emulator function which acts as Plin(k, θ⃗), where θ⃗ includes the redshift. For the
non-linear matter power spectrum, we emulate both the PNL(k, z) spectrum itself and
the non-linear boost PNL/Plin(k, z) − 1. For the emulators included in our work, we
emulate the 2020 version of HMCode described in Mead et al. (2021). We sample the
wavenumber k at 500 points in the range 10−4 ≤ k ≤ 50 Mpc−1 with logarithmic spacing.
Note that we compute P (k) up to k = 100 Mpc−1 for improved accuracy.

We additionally emulated several background evolution quantities. For these,
we use redshift in the range 0 ≤ z ≤ 20, sampled at 5000 equally-spaced points, as
the modes along which we evaluate the redshift-evolution of the Hubble parameter
H(z), the angular diameter distance DA(z), and the clustering parameter σ8(z) for the
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five input parameters Ωbh
2, Ωch

2, ln(1010As), ns, and H0, plus the extension model
parameters where relevant. Adding these background quantities to our emulator
packages allows for additional cosmological constraints from e.g. BAO measurements.
Additional background quantities, such as fσ8(z) ≡ −(1 + z)dσ8/dz, can also be easily
computed from these quantities with minimal overhead or loss of accuracy.

Finally, we compute ten derived parameters, namely:

1. The angular acoustic scale θ∗ at the surface of last scattering;

2. The matter clustering parameter σ8;

3. The primordial helium fraction YHe;

4. The redshift zreio of reionization, defined as the midpoint of reionization described
by a simple hyperbolic tangent;

5. The optical depth τr,end at the end of recombination;

6. The redshift z∗ at the surface of last scattering;

7. The sound horizon scale r∗ at the surface of last scattering;

8. The redshift zd at the baryon drag epoch;

9. The sound horizon scale rd at the baryon drag epoch;

10. The effective number of relativistic species Neff .

It is common to use θ∗, the angular scale when optical depth is unity, or the
approximate parameter θMC, as a sampled parameter in MCMC analyses of CMB data
due to its lower level of covariance with other parameters than H0. We noted that camb
and CLASS use different points at which to evaluate the angular scale (with CLASS

defining θs as the angular scale at maximum visibility, which is close to but not the
same as θ∗, which is used in camb). We have commented on this in prior work on
Stage-IV emulator creation with CLASS, described in Bolliet et al. (2023). To maintain
cross-compatibility between our emulators, and to remain consistent with our earlier
work, we therefore use H0 as an input, and not θ∗. Including these derived parameters
as emulators allow us to recover the posterior distributions on these quantities, either
directly storing their computed values while sampling the chain, or afterwards by
post-processing a converged MCMC chain.
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Quantity Parameters

CT T
ℓ , CT E

ℓ , CEE
ℓ , CBB

ℓ (Ωbh
2, Ωch

2, ln(1010As), ns, H0, τreio)
Cϕϕ

ℓ (Ωbh
2, Ωch

2, ln(1010As), ns, H0)
H(z), DA(z) (Ωbh

2, Ωch
2, ln(1010As), ns, H0)

derived parameters (Ωbh
2, Ωch

2, ln(1010As), ns, H0, τreio)
PL(k, zpk) (Ωbh

2, Ωch
2, ln(1010As), ns, H0, zpk)

PNL(k, zpk), PNL/PL(k, zpk) − 1 (Ωbh
2, Ωch

2, ln(1010As), ns, H0, zpk, log TAGN)
σ8(z) (Ωbh

2, Ωch
2, ln(1010As), ns, H0, log TAGN)

Table 4.3. The input parameters used for each emulator for the ΛCDM case. For the
extension models, all extension parameters are used across all emulators.

4.3.2 Cosmological Models

We provide emulators for CMB power spectra from the ΛCDM model with
parameters (Ωbh

2, Ωch
2, ln(1010As), ns, H0, τreio) defined above as well as the following

four extended models:

1. ΛCDM +Neff : varying the effective number of relativistic species Neff ;

2. ΛCDM +Σmν : varying the sum of neutrino masses Σmν ;

3. ΛCDM +NeffΣmν : varying both the number and mass sum of neutrinos;

4. ΛCDM +w0wa: varying the dark energy equation of state described with two parameters
w0 and wa.

Each of these four extension models is emulated separately, with the extension
parameters used as additional inputs. These parameters, except τreio, are also used
as inputs for the redshift evolutions H(z) and DA(z). We also do not use τreio for the
lensing potential Cϕϕ

ℓ .
The matter power spectrum is often computed as the linear and non-linear power

spectra, the latter of which includes terms for baryonic interactions, which tend to be
model-dependent. For the linear PL(k, zpk), non-linear PNL(k, zpk) and non-linear boost
PNL/PL(k, zpk) − 1 emulators, we use all the same input parameters except τreio, and
include an extra parameter zpk for the redshift of the power spectrum. For the non-linear
models and σ8(z), we need to include the parameter of the baryonic feedback model,
which is the AGN temperature log TAGN that appears in HMCode (Mead et al., 2021).

All input parameter choices are summarized in Table 4.3.
For the remaining model choices, which set a primordial helium fraction set from

BBN consistency using PRIMAT (Pitrou et al., 2018), recombination from the CosmoRec
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code (Chluba and Thomas, 2010; Chluba et al., 2010), and reionization modeled with a
simple hyperbolic tangent with a redshift width ∆z = 0.5. Most of these options are
the default settings in camb. We only changed the recombination code to CosmoRec,
whereas the camb default is to use the older RECFAST code.

4.3.3 Training Data

Training of emulators involves creating a set of output data d⃗ at a finite sample of
known parameter values θ⃗ using the code to be emulated (i.e. the Einstein-Boltzmann
code here). These data will then subsequently used in subsection 4.3.4 for the neural
network to learn an approximate (but high accuracy) mapping between input and
output. Training data must be generated at a high enough resolution in the input
parameters that we can smoothly interpolate between outputs. The training data only
need to be generated once, to train the emulator, and do not need to be generated using
the computationally intensive numerical code again in any subsequent inference.

Following Spurio Mancini et al. (2022) and Bolliet et al. (2023), we generate NS =
105 sets of output spectra as training data, of which 20% will be used for validating the
network accuracy, and the rest for training. Our parameter space is shown in Table 4.1.
We employ Latin Hypercube (LHC) sampling for ensuring our parameter space is
evenly sampled. For extended models, we choose to generate slightly more spectra at
NS = 1.2 × 105, to compensate for the expanded parameter space. To demonstrate the
need for this and to provide some guidance on how to select NS , we show a comparison
of the mean prediction error versus the size of the training dataset in Figure 4.3, for a
varying number of input parameters. The figure shows that there is not a simple linear
scaling with the number of parameters. Although increasing the number of parameters
always requires a larger training set to reach the desired target accuracy, the physical
nature and range of variation of the specific additional parameter will impact the results.
For example, if we extend ΛCDM varying Neff or Σmν , we observe different behaviours,
even if in both cases it is only one additional input parameter (7 input parameters
compared to 6 for ΛCDM). We explain this by noting that cosmological observables
have different responses to different parameters, according to the physics signature
they are tracking. For example, the CMB TT spectrum will exhibit a strong dependence
on Neff – changing both the peak position and amplitude at all scales, but less so on
Σmν which will primarily appear at scales dominated by lensing. Hence in Figure 4.3
the ΛCDM +Neff case requires more training than ΛCDM +Σmν . When we expand
further the model to ΛCDM +NeffΣmν (8 input parameters compared to 6 for ΛCDM),
we observe a very similar behaviour to the 7-parameter case ΛCDM +Neff , because we
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have already covered most of the strongly-varying training region. We conclude that
to achieve the desired convergence of the emulators, the user will need to monitor the
behaviour of their specific model and perform some exploratory studies of how the
emulators depend on the model parameters.

4.3.4 Network Design and Training

Following Spurio Mancini et al. (2022), we implement the emulators as dense
neural networks, with four hidden layers of 512 neurons each. Each emulator takes
the normalised parameters as input, and maps it to normalised spectra. We use the
activation function from Spurio Mancini et al. (2022):

f(x⃗) =
[
γ⃗ +

(
1 + e−β⃗⊙x⃗

)−1
⊙ (1 − γ⃗)

]
⊙ x⃗, (4.5)

which is sometimes referred to as the weighted swish function, with β⃗ and γ⃗

hyperparameters we can optimize. For the optimizer, we re-use the Adam optimizer.
The input and output quantities are normalised with respect to mean and standard
deviations of the respective ranges. For most quantities, as detailed in Table 4.2 we
emulate the logarithm of the spectrum, as the high dynamic range of these values makes
it easier for the emulator to reconstruct the log-values. We employ the same method for
the background quantities H(z), σ8(z), and DA(z), where we reconstruct the logarithm
of the redshift evolution.

For the CT E
ℓ emulator, the resulting raw spectra include zero-crossings which

make emulating the log-spectra impossible. Because the unscaled spectra still contain
a high dynamic range in values, we followed Spurio Mancini et al. (2022) in first
decomposing the spectra with a Principal Component Analysis (PCA) and then subse-
quently emulating the sets of PCs. Similar to before, we decompose the CT E

ℓ spectra
into 512 PCs. Even though they remain completely positive, we also decompose the
Cϕϕ

ℓ spectra into 64 PCs. We find that this is more effective at emulating the ϕϕ spectra,
which we explain with the reduced dimensionality of the information contained in the
ϕϕ spectra. We construct scree plots, showing the eigenvalues associated with each PC
in the decomposition, and identify the “elbow” at which higher PC numbers no longer
carry significant weight and can be discarded. We did some investigating into some
robust guidelines for this decomposition, which is summarised in subsection 4.3.5. With
this setup, our emulator design for the CMB spectra remains fully consistent with the
original emulators from Spurio Mancini et al. (2022).

For the matter power spectra Plin(k, zpk) and PNL(k, zpk), we choose to emulate
log Plin(k, zpk) and the non-linear boost PNL/Plin(k, zpk) − 1 for best performance. These
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quantities are functions of two parameters, the wavenumber k and redshift zpk. Similar
to previous emulators we have developed, we use k as the one-dimensional grid along
which we sample our spectra, and use zpk as an additional input for our P (k) emulators.

The time it takes to train an emulator depends on many factors, including the
size of the dataset, the number of inputs and outputs of the network, the hardware
performance, as well as some slightly random factors due to the inherently stochastic
nature of training. At 105 training samples for a network, we find it takes O(1h) to train
a Cℓ network on a GPU. If no GPU hardware or the required software is available, then
the emulators can alternatively be trained on a CPU, which for the same case still only
takes O(10h) to perform. For the generation of training data, which can take O(10s) for
a relatively simple model like ΛCDM, that means the only upfront cost is O(10days) for
generating training data – or less, since this program is highly parallelizable.

Of interest to a user of a pre-trained emulator, is the time spent on generating the
initial training sample compared to evaluating a pre-trained emulator. For the accuracy
settings and models presented here, it takes camb about 12 seconds to compute either
the CMB spectra on a cluster. This is compared to evaluating the emulator, which
took about 11 milliseconds on an average end-user laptop without GPU-acceleration. It
should also be noted that for more complicated cosmological models, the computation
performed by camb can be slower, while the emulator evaluation speed does not
increase unless the architecture needs to be significantly changed.

4.3.5 Principal Component Analysis

The use of Principal Component Analysis (PCA) can be worthwhile in improving
the accuracy of the emulator by compressing the full data into a smaller number of free
components. While the reduction in freedom in the output is reduced and has therefore
less capacity to accurately recover the original spectra, the reduced dimensionality of the
output vector means that the emulator can more efficiently train on this reproduction.

The choice of whether or not to use PCA is not trivial, and there is no simple
test that can conclusively show that the use of PCA compression is guaranteed to be
beneficial before training an emulator. While for some cases, like CT E

ℓ , the use of a PCA
is needed due to the zero-crossing of the observed quantity, it may not be obvious a
priori that the use of a PCA can improve it for other quantities as well.

It was observed in Spurio Mancini et al. (2022) that the Cϕϕ
ℓ emulator improved

in accuracy when employing PCA compression. We observed that this can be explained
by making a scree plot, which is a line plot of the eigenvalues of all retained PCA
components. We show a scree plot of the training data for our ΛCDM emulators
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Figure 4.5. A scree plot, showing the unexplained variance of a PCA compression for the
various CMB quantities, as a function of the number of retained principal components.
The “scree” of each line is the flat plateau of each line. We observed that for Cϕϕ

ℓ ,
this scree lies around 64 principal components (vertical red line), and hence a PCA
compression of 64 retained components is effective for a Cϕϕ

ℓ emulator. Conversely,
however, observing the scree for CBB

ℓ at around 100 principal components, we expected
the same to see for this quantity. We attribute the lack of an improvement in emulation
for this quantity to the presence of important features which shift in ℓ-space for that
quantity, which would not be retained by our implementation of PCA.
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in Figure 4.5. By observing where this line flattens out (the “scree” of the line), one can
estimate the amount of components that need to be retained in the PCA. For the Cϕϕ

ℓ

spectra, we found that this scree appears around 60 components, which means around
64 components should be sufficient to accurately decompose the 10000 ℓ modes of the
spectra without loss of information. Similarly, a scree plot showed that a few hundred
components should be sufficient for CT E

ℓ .

However, a scree plot is not necessarily conclusive. We observed that the
CBB

ℓ are also dense enough that about 200 PCA components should be capable of
accurately recovering them. Upon training such an emulator however, we found that
direct emulation of CBB

ℓ was more accurate than one that employed PCA compression.
We think this is due to the fact that the BB spectra contain features which vary in
ℓ under certain parameter variations, and hence cannot be properly accounted for
in PCA compression. Since our regular emulators were shown to be more than
accurate for physical analysis, we did not do an in-depth analysis of this discrepancy.
Further investigation, or a different type of information compaction that does allow
for horizontal shifts in ℓ-space, can perhaps allow for more accurate emulators in the
future.

4.3.6 Accuracy of Emulated Observables

To assess the accuracy of our emulators we perform a number of comparisons
between the observables emulated and those calculated directly with camb. This allows
us to understand if we have reached the theoretical calculation accuracy required for
Stage-IV analyses.

In Figure 4.6 we report the difference between direct camb outputs and emulated
observables for ΛCDM, showing contours corresponding to the fraction of our training
spectra (across the full parameter space) which lie within a given level of agreement
with the emulated values. All the CMB spectra reach sub-percent accuracy (note that
the TE higher values are numerical artefacts due to diving for a signal crossing 0); the
matter power spectrum is accurate at the few percent level for very large range of wave
numbers.

For the CMB observables, as done in previous works we can also compute the
difference relative to (or ‘in units of’) a specific experiment’s sensitivity which tracks
the noise for each observable NXY

ℓ with
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Figure 4.6. A validation graph generated from our trained networks for ΛCDM. We
show the error in the reconstructed CMB power spectrum in TT (blue, top-left), TE
(orange, top-right), EE (green, centre-left), BB (red, centre-left), ϕϕ (purple, bottom-left),
and P (k) (brown, bottom-right) relative to the camb theory curve. The bands show the
68/95/99% contours (from darkest to lightest shades). Note the different scale for TE,
for which errors get blown up due to the zero-crossings of the input power spectrum.
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(
σXY

ℓ

)2
= 1

fsky(2ℓ + 1)
[(

CXX
ℓ CY Y

ℓ

)
+
(
CXY

ℓ CY X
ℓ

)]
. (4.6)

where, for the cosmic variance limit, fsky = 1 and NXY
ℓ = 0 for all XY . For SO,

we use fsky = 0.4 and we use the publicly available NT T
ℓ , NEE

ℓ , and NBB
ℓ noise curves,

presented in The Simons Observatory collaboration (2019).
We show this accuracy of our emulators relative to the cosmic variance-limited

experimental noise in figures 4.7, 4.8 for ΛCDM, and ΛCDM +Σmν respectively. Similar
figures for the other extension models are presented in Jense et al. (2024).

Since we create several emulators that emulate the same quantity in different
ways, we are also able to compare their emulations to learn more about the effect that
the setup has on the emulation quality. Of note we made a test of the recovery of:

• The non-linear matter power spectrum, which we emulate both directly as PNL(k)
and through the linear and boost emulators PL(k)(1 + Pboost(k));

• The clustering parameter σ8 at redshift zero, which is emulated by the derived
parameters emulator and by the redshift evolution σ8(z) emulator.

Since the matter power spectrum emulators are all trained across similar training
data, testing this comparison was relatively easy. We simply passed the validation input
parameters for the non-linear emulator through the linear and boost emulators, and
then computed the non-linear power spectrum from these two emulated quantities,
and compared it with the same recovery from the non-linear emulator. We show
a comparison of these two accuracy quantities in Figure 4.9. We note that altough
Spurio Mancini et al. (2022) suggested emulating the non-linear boost, we find that direct
emulation of the nonlinear power spectrum is slightly better at emulation, particularly
in the 10−2 < k < 101 range.

We compare the recovery of the present-day matter clustering σ8(z = 0) in
Figure 4.10, where we evaluate the derived parameter emulator and the zero redshift
bin of the σ8(z) emulator. Because the latter emulator uses baryonic feedback parameters
as an additional input, but the former does not, we generated training samples across
the fixed value of log TAGN = 7.8 (see Table 4.1). We found that for this data recovery,
the σ8(z) emulator was better at computing this quantity than the derived parameter
emulator. This result may seem surprising at first, but can be explained relatively
straightforward with the fact that the full set of training data for the σ8(z) emulator
contains more data, as even data at z > 0 can help the emulator pick up information
about the z = 0 bin.
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Figure 4.7. A validation graph generated from our trained networks for ΛCDM. We
show the error in the reconstructed CMB power spectrum in TT (blue, top-left), TE
(orange, top-right), EE (green, centre-left), BB (red, centre-left), ϕϕ (purple, bottom-left),
and P (k) (brown, bottom-right) relative to the experimental noise of a cosmic variance-
limited experiment. The bands show the 68/95/99% contours (from darkest to lightest
shades).
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Figure 4.8. A validation graph generated from our trained networks for ΛCDM +Σmν .
We show the error in the reconstructed CMB power spectrum in TT (blue, top-left), TE
(orange, top-right), EE (green, centre-left), BB (red, centre-left), ϕϕ (purple, bottom-left),
and P (k) (brown, bottom-right) relative to the experimental noise of a cosmic variance-
limited experiment. The bands show the 68/95/99% contours (from darkest to lightest
shades).
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Figure 4.9. A comparison of the error in the emulation of the non-linear matter power
spectrum by direct emulation (top panel, blue), and through the combination of linear
and non-linear boost emulators (bottom panel, orange). We note that at low k, the
emulators are equally effective at emulation, but at high k, the direct emulator is better
at emulating the non-linear matter power spectrum than the combination of the linear
and boost emulators, although the difference decreases again in the non-linear tail of
the power spectrum (k > 100). This suggests that with our setup, the boost emulator is
not necessarily better at emulating the non-linear power spectrum, and direct emulation
is sufficient for sub-percent (≪ 10−2) inaccuracy.
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Figure 4.10. A comparison of the recovery of the derived parameter σ8 (blue) and the
evaluation of the full σ8(z) emulator at z = 0 (red) from validation samples. Since the
former emulator does not take the baryonic feedback model into account, we fixed the
relevant parameter log TAGN = 7.8 across this testing dataset. Although the validation
data used is more similar to the training data for the derived parameter than the redshift
evolution emulator, the latter is better at emulating the quantity. We attribute this to the
fact that the space of training spectra for the σ8(z) may be better suited for recovering
this quantity, although we note that we were not able to test if this recovery holds up as
well when varying the baryonic feedback model.
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4.4 Packaging Prescription

As part of this work, alongside new emulators we designed a packaging prescription
for CosmoPower emulators. This prescription is both human- and machine-readable
and serves as a description of what the emulator is capable of and its full design
specifications. We updated the CosmoPower software package to include a full parser
for the packaging prescription.

To create and train a new emulator, the packaging prescription is designed
to guide both the author and a later user through the process of considering what
quantities are emulated, how, and to what accuracy.

In this section, we describe the main steps of creating an emulator, namely: (1)
describing the input parameters and output data, and generating the training spectra
with the Einstein-Boltzmann code, (2) detailing the specifications of the emulator and the
training parameters, and performing the training process, and (3) testing the validation
of emulators. We follow the creation of the emulators we specified in section 4.3,
and describe how the packaging prescription of these emulators is setup, as well as
alternative options and choices available for the user.

4.4.1 Generating Training Data

As mentioned before, CosmoPower uses LHC sampling, which allows for an
evenly spaced grid of sampling points that are sufficiently distributed that the entire
parameter space is covered with minimal variation in sampling density. In Figure 4.11
we show how to prescribe the LHC grid in the prescription file.

The emulated_code block of the packaging contains information about the
Einstein-Boltzmann code being emulated, in particular the name and version number.
If a customized version of a code is used, it is possible to manually specify the import
path with the boltzmann_path keyword. The inputs keyword is the list of named
parameters which will be varied as inputs to the Einstein-Boltzmann code. extra_args
contains code parameters which embody any model choices or approximation and
accuracy settings.

The samples block specifies the Ntraining training spectra to be generated.
The packaging prescription recognises four different types of parameters in the parameters
block:

1. Sampled parameters, these are the parameters that the LHC is created over, and
are defined with a minimum-maximum pair for the range over which the LHC is
sampled, e.g. ombh2: [0.015, 0.03];
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1 emulated_code:
2 name: camb
3 version: "1.5.2"
4 inputs: [ombh2, omch2, As, ns, H0, tau]
5 extra_args:
6 <...>
7

8 samples:
9 Ntraining: 100000
10 parameters:
11 ombh2: [0.015,0.03]
12 omch2: [0.09,0.15]
13 # We want to sample on log(10^10 As), but our
14 # Boltzmann code takes As as an input.
15 logA: [2.5,3.5]
16 As: "lambda logA: 1.e-10 * np.exp(logA)"
17 tau: [0.02, 0.20]
18 ns: [0.85, 1.05]
19 H0: [40.0, 100.0]
20 # Parameters computed by the Boltzmann code
21 thetastar:
22 sigma8:
23 YHe:
24 zrei:
25 taurend:
26 zstar:
27 rstar:
28 zdrag:
29 rdrag:
30 Neff:

Figure 4.11. Code snippet for sampling and parameters block, compare this
with Table 4.1. In the example here, we setup the aforementioned six parameters
to sample over, add an intermediate parameter As, and add the nine parameters which
are derived directly from the Boltzmann code, in this case camb. Note that camb expects
the primordial amplitude As to be provided, but it is far more common to sample over
ln(1010As) instead. By defining the logA parameter and marking the As parameter as
a derived parameter from that, we can perfectly accomplish this. At the bottom we
show the nine parameters we derive from the Boltzmann code - in this case, they are
computed by camb. It is possible to use any of the parameters defined in this block as
an input to the networks, including the parameters derived from the Boltzmann code.
The extra_args block would include any accuracy settings, as seen in Figure 4.4.
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2. Derived parameters, these are parameters that are trivially derived from other
sampled parameters, and are defined with a text string prescribing a python lambda
function equation to derive them directly, e.g. As: "lambda logA: 1.e-10 *

np.exp(logA)";

3. Fixed parameters, these are simply defined by writing a single numerical value that
the parameter is set to, e.g. mnu: 0.06;

4. Computed parameters, these are parameters that we cannot easily compute ourselves,
but the Boltzmann code can, and these are defined by simply leaving an empty tag
in the parameter list. These parameters are specified by variable names available
to CosmoPower at the spectra generation stage via the python interfaces of the
Einstein-Boltzmann codes being emulated, e.g. YHe: .

Any of these types of parameters can be used as an input to a network, and any
of the first three types can be used as an input for the Einstein-Boltzmann code. It is for
example possible to create an LHC over a range of Hubble parameter H0, while using
the angular scale θ∗, as computed by the Einstein-Boltzmann code, as an input for the
emulators.

The networks block specifies the neural networks to be created using the
training data. It is possible to specify multiple networks, each under a quantity

heading, which each have their own set of network properties specified as further blocks
and keywords. When creating CosmoPower networks, the current list of quantities to
which can emulated is defined and described as follows:

• Cl/xy: referring to (lensed) CMB angular power spectra CXY
ℓ with X, Y any combination

of T/E/B (CT T
ℓ , CT E

ℓ , CEE
ℓ , CT B

ℓ , CEB
ℓ , and CBB

ℓ );

• Cl/pp: CMB lensing potential spectrum for ϕϕ, there are also options available for
cross-spectra with primary CMB via Cl/pt, Cl/pe, and Cl/pb;

• Pk/lin and Pk/nonlin: Matter power spectrum for linear Plin(k, z) and non-linear
Pnl(k, z);

• Pk/nlboost: The non-linear boost (PNL/Plin − 1)(k, z) defined as the non-linear
boost to the linear matter power spectrum;

• Hubble, Omegab, Omegac, Omegam, sigma8 and DA: The redshift-evolving quantities
H(z), Ωb(z), Ωc(z), Ωm(z), σ8(z), and DA(z).
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1 networks:
2 - quantity: "Cl/tt"
3 inputs: [ombh2, omch2, logA, ns, H0, tau]
4 type: NN
5 log: True
6 modes:
7 label: l
8 range: [2,10000]
9 n_traits:
10 n_hidden: [512, 512, 512, 512]
11 training:
12 validation_split: 0.1
13 learning_rates: [1.e-2, 1.e-3, 1.e-4, 1.e-5, 1.e-6, 1.e-7]
14 batch_sizes: [1000, 2000, 5000, 10000, 20000, 50000]
15 gradient_accumulation_steps: 1
16 patience_values: 100
17 max_epochs: 1000

Figure 4.12. Code snippet for network block. We setup a network that emulates
log10(CT T

ℓ )(θ) with our six input parameters θ = {Ωbh
2, Ωch

2, log(1010As), ns, h, τ} and ℓ
between 2 and 10000. The network is a fully connected dense neural network with 4
hidden layers of 512 neurons each. Our training block defines the fraction of example
spectra used for validation estimation, the learning rates of each learning step, the batch
size over which we average, any gradient accumulation steps, patience values, and
maximum number of training epochs.

It is also possible to specify derived quantities. This network will automatically
use all parameters from the parameter block that are computed by the Einstein-
Boltzmann code as outputs. So, when we specify a derived network in our emulators
similar to our CT T

ℓ emulator, we create an emulator that emulates the computation of
the nine quantities mentioned in subsection 4.3.1 (which are the nine parameters we
listed in Figure 4.11).

In Figure 4.12 we show an example for the network block of an emulator trained
on primary CMB CT T

ℓ data for 2 ≤ ℓ ≤ 10000. We discuss the choices made in this block
in more detail in section 4.3.

Once the packaging file has been set up with the sections specified above, it
becomes easy to generate training data for networks by calling:

python -m cosmopower generate <yamlfile>

In addition, the --resume flag can be used to increase more samples for an
already existing set of data points, if it is found afterwards that the training set size is not
large enough for training to result in good recovery of spectra from the emulator. When
resuming the generation of samples, any pre-existing LHC will be used (if compatible
with the given prescription) and any pre-existing samples are not re-generated. This
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can be used for continuing a run that was cancelled or stopped before, adding new
quantities that were not computed earlier, or increasing the number of samples beyond
the LHC that was generated beforehand.

We store the generated training data in hdf5 files, which are optimised for large,
table-like datasets, and allow for both fast read-write access and good data compression.
We also include the option to automatically split the data into multiple files, to prevent
memory issues from opening a too large a single file at once. For our ΛCDM emulators,
this means that we generate about 4 GB worth of training spectra per emulator, split
across ten files.

4.4.2 Choices for Emulator design and Training

Because of the large amount of freedom in choosing the hyperparameters for the
emulator design and training, it can be hard to determine what settings are optimal for
a good training pass. In addition, the impact of certain decisions can wildly vary from
either minimal to substantial. As a result, we cannot provide clear guidance on what
settings to use but there are a few rules of thumb that can be used when determining
the training settings which we recommend:

• The validation split should be about 10-20%;

• Each iteration, the learning rate should go down and the batch size should go up – this
makes the emulator learn at more precise steps as it gets closer to a local optimum;

• If a learning iteration reaches the maximum number of epochs instead of a patience
value, that means it could have learned for longer, and it hasn’t fully optimised yet -
try to increase the batch size or learning rate for this iteration or an earlier one.

CosmoPower keeps track of the validation loss for every epoch, and saves this
to a plain text file for post-training analysis and diagnosis of training issues.

4.5 Comparison of Recovered Cosmology

We now demonstrate that we can use our emulators in parameter inference
analysis, generating posterior samples using Monte Carlo chains with wrappers we
created for mcmc sampling softwares, interfacing with the same network packaging. We
created two wrappers, one for cobaya and one for the similar software CosmoSIS (Zuntz
et al., 2015). In order to utilise all of the output quantities we do this for a set of
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Parameter Fiducial Value

Ωbh
2 2.2383 × 10−2

Ωch
2 12.011 × 10−2

H0 67.32 km/s/Mpc
ns 0.966

log(1010As) 3.0448
τ 5.43 × 10−2

log TAGN 7.8
Σmν 0.12eV

Table 4.4. The fiducial parameters used for generating the smooth data vector. The first
six parameters refer to the cosmology, while log TAGN is the baryonic feedback parameter
used in the non-linear model of camb. The last parameter is specific for the extension
model we tested, with a neutrino mass for the inverted hierarchy to ensure that we
could recover a closed posterior for our +Σmν emulators. The remaining accuracy
settings are the same as in Figure 4.4.

observables: primary CMB, CMB lensing, galaxy weak lensing, and galaxy clustering.
Note that this allows for quick and easy cross-validation of the results from using
different Einstein-Boltzmann codes between different inference packages (e.g., CLASS
and camb in cobaya). This is particularly important because leading cosmology
collaborations adopt different combinations of these codes while releasing results which
we want to compare and combine.

4.5.1 Simulated data vectors

For full validation, it is important to check that not only the emulators recover
the cosmological observables to high accuracy, but also that there is no inherent bias
when using our emulators for estimation of the final cosmological parameters. To do
this, we can generate simulated data for the observables we emulate with a theoretical
covariance matrix and perform a parameter inference analysis on them using the
wrappers described above.

Cosmic-variance-limited CMB data

For our testing purposes, we generate a smooth data vector with cosmic-variance-
limited noise (such that our conclusions apply to all current and future experiments).
This data vector contains data from a fiducial cosmology (see Table 4.4) for the CMB
power spectra CT T

ℓ , CT E
ℓ , and CEE

ℓ , as well as the lensing potential spectrum Cϕϕ
ℓ . For

the CMB data vector, the cosmic-variance-limited noise model is similar to Equation 4.6,
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with NXX
ℓ = NXY

ℓ = 0 for all combinations of XX and XY . We constrain our analysis
to the multipole range 2 ≤ ℓ ≤ 6000. To explore the parameter space we add a log-
likelihood function as a simple Gaussian chi-square distribution:

log L = −1
2
∑

ℓ

(
Cpred

ℓ − Cdata
ℓ

σℓ

)2

. (4.7)

Since the data vector is smooth, we expect to recover the exact input parameters
with a final χ2 = 0. We found that for the fiducial cosmological parameters, CosmoPower
was able to recover the same χ2 value down to ∆χ2 = 0.005.

4.5.2 Results

Figure 4.13 shows the recovered contours of cobaya+CosmoPower versus the
cobaya+camb posteriors from a CMB cosmic-variance-limited dataset. We show that
we can reproduce the camb best-fit cosmology and posterior distribution to < 0.1σ of
the cosmic variance limit error bars in both inference codes. Figure 4.14 shows the same
result within cobaya for the +∑

mν emulator as an example for an extended model.
For a simple ΛCDM model and the cosmic-variance-limited CMB data, we found

that a camb chain took ∼ 10 hours, while for CosmoPower it takes only ∼ 20 minutes
to run to convergence. Most of this speed-up comes from the fact that at this level of
accuracy, an evaluation of a camb power spectrum takes ∼ 20s to compute, while the
same computation takes CosmoPower∼ 0.1s, at which point computing any non-trivial
likelihood function becomes the limiting factor. When going to beyond-ΛCDM models,
the time it takes to run a camb chain will go up due to the increased complexity or
accuracy requirements from the computations. For CosmoPower however, the pre-
trained emulators do not require more complicated computation when running these
chains, and as such the time it takes a CosmoPower chain to converge will only increase
slightly due to the larger parameter space that needs to be explored.
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Figure 4.13. To illustrate that we can estimate posteriors in cobaya we show the same
68% and 95% confidence levels for ΛCDM parameters from CMB cosmic-variance-
limited power spectra, obtained from a full MCMC run done for CosmoPower (blue)
or with the camb (red) for cobaya. The grey dashed lines show the fiducial parameters,
and we note a good recovery of these.
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Figure 4.14. The same figure as Figure 4.13, but for the ΛCDM +Σmν extension. We
note a good recovery of the input parameters, including for the extension parameter.
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Figure 4.15. A comparison of the log-posterior (top panel) and fractional difference
in the log-posterior (bottom panel) for a chain ran with camb and each of the sample
points re-evaluated with CosmoPower. The chain was run on a mock galaxy-lensing
sample using CosmoSIS. Note how the CosmoPower emulator was able to recover
the same log-posterior to within 0.005% of the camb log-posterior on the same sample
points.
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Chapter 5

New Results from the Atacama Cosmology
Telescope

In this chapter, I discuss work I have done on the data analysis for Data Release 6 of the
Atacama Cosmology Telescope (ACT DR6). Work on ACT DR6 will be published in a
series of collaboration papers in the near future. Here, I summarize my contributions to
these future publications.

The makeup of this chapter is as follows:

• In section 5.1, I will go through the specifications of the ACT instrument, a broad
overview of the sky area observed by ACT.

• Following in section 5.2, I will give an overview of the observed power spectra in
ACT DR6, what we are aiming to measure with it, and what external datasets we
will combine with for increased constraints.

• I will summarize the various validation and null tests in section 5.3, and the
recovery of ΛCDM parameters in section 5.4.

• Finally, in section 5.5, I will go over the cosmological constraints from the ACT
DR6 power spectrum.

All this work has, within the collaboration, been done on data coming from ACT.
However, as this work is not yet finalized and the data has not yet been published, I will
describe the whole pipeline and expected results, using a simulation of ACT DR6 data
as an example. Any constraints from the ACT DR6 CMB power spectrum are forecasts
for the upcoming data release.

Some sections regarding the ACT instrument, or the ACT DR6 data are taken
from public ACT papers:
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• The introduction to section 5.1 is adapted from a similar description of the ACT
DR6 lensing dataset in Madhavacheril et al. (2023);

• The details about the polarized arrays used in the ACT DR6 data, given in Table 5.1,
is taken from Atkins et al. (2023).

All figures and forecasts presented in this chapter are my own, created as part
of my contributions within the ACT collaboration. While the work presented here is
part of the upcoming ACT DR6 release and papers, none of the text used here is directly
adapted from these papers.

5.1 The Atacama Cosmology Telescope

The Atacama Cosmology Telescope (ACT) was a 6-meter off-axis Gregorian
telescope, located at an elevation of 5190 m on Cerro Toco in the Atacama Desert in
Chile. Operational from 2007 until 2022, it measured the microwave sky at arcminute
resolution at millimeter wavelengths. Since 2016, the telescope was equipped with the
Advanced ACTPol (AdvACT) receiver containing arrays of superconducting transition-
edge sensor bolometers, sensitive to both temperature and polarization at frequencies
centered roughly at 30, 40, 97, 149 and 225 GHz (Fowler et al., 2007; Thornton and
et al., 2016); we denote these bands as f030, f040, f090, f150 and f220. For the Data
Release 6 (DR6) analysis, we use the night-time temperature and polarization AdvACT
data collected from 2017 to 2021 covering the CMB-dominated frequency bands f090
and f150 of detector arrays PA5 and PA6, as well as the small-scale temperature data
from f220 of PA4 for improved constraints on astrophysical foregrounds. The full size
of this survey covers rougly 40% of the sky at arcminute resolution. See Table 5.1 for
information on the instrumentation data.

5.2 The DR6 Power Spectra

5.2.1 Cross Spectra

Following the description of the PAs from+Table 5.1, ACT DR6 will contain
measurements of the power spectrum in temperature and E-mode polarization in three
different frequency bands, namely 90, 150, and 220 GHz. The first two of these frequency
bands contain both temperature and the E-mode polarization and are measured by two
different PAs, PA5 and PA6, while the 220 GHz band is only measured in temperature
and only by the PA4 detector array. I will denote the individual measurements of the
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Detector Array Frequency (GHz) Polarization Beam (arcmin)

PA4 220 No 1.0182 – 277

PA5

90 Yes 2.077 – 112
150 Yes 1.4124 – 172

PA6

90 Yes 2.077 – 112
150 Yes 1.4124 – 172

Table 5.1. The different polarized arrays (PAs) that are used in ACT DR6, and the
frequencies and modes observed by each, and their beam sizes. The frequency column
cites the nominal central frequency of the array, and the full range of the bandpass of
that array. The beam size refers to the average beam full width at half maximum (Atkins
et al., 2023).

CMB by the different detector arrays in frequency channels as pa4_f220, pa5_f090,
etc.

We end up with 5 measurements of the CMB temperature and 4 of the E-mode
polarization. To minimize the impact of the large mode contamination (from e.g. the
atmosphere, or ground pickup), the cross-spectra with PA4/PA5/PA6 are cut at ℓ <

1000/600/800 in temperature respectively, and at ℓ = 500 in polarization. We use the
pa4_f220 channel only in TT cross-spectra, meaning that we only have TE and EE
data in 90 and 150 GHz. We thus have a total of 15 measurements of multifrequency
CMB TT autospectra, 16 TE cross-spectra, and 10 EE autospectra.

I show a comparison of the forecasted sensitivity of ACT DR6 with the Planck
measurement of the CMB in Figure 5.1. This figure shows a comparison of the ACT
DR6 forecasted CMB-only power spectra compared to the Planck 2018 CMB-only power
spectra from Planck Collaboration (2020b). These ACT DR6 power spectra have been
foreground-marginalized using the Gibbs sampling procedure explained before in
section 3.6, extracting the CMB bandpowers up to ℓ ≤ 6000 ∼ 6500 in both temperature
and polarization. We found that this ℓ value is optimal for getting the lowest variance
measurement of the foreground-marginalized temperature data – as changing this
value to a lower/higher value leads to the Gibbs sampling procedure not properly
disentangling the CMB bandpowers from the kSZ foreground emission (which is also
blackbody). At ℓ = 6000 ∼ 6500, the CMB emission is well enough into the noise floor
of the measurement, and and blackbody signal beyond this point can be safely assumed
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Figure 5.1. A comparison of the forecasted sensitivity of ACT DR6 and the sensitivity
of Planck in TT (blue, top-left), TE (orange, lower left), and EE (green, lower right).
Each corner shows a forecast of a nuisance-marginalized CMB-only power spectrum
in the top figure (in these figures, the errors shown are the 5σ confidence intervals for
visibility), and a comparison of the errorbar on these measurements in the lower figure
(note the log scale on the latter). The bands are the binned power spectra from the Planck
in grey and the ACT DR6 simulation in blue/orange/green. The ACT DR6 CMB-only
forecast is obtained by using the foreground marginalization procedure described before
in section 3.6 on a single simulation of the ACT DR6 power spectra, while the Planck
CMB-only power spectra are described in section 3.5.2 of Planck Collaboration (2020b).
We see that ACT DR6 is comparable to Planck in TT in the range 600 ≤ ℓ ≤ 2000, and
better at smaller scales and in polarization mode power spectra. We expect ACT DR6 to
have µK2-sensitivity in TT after combining all cross-spectra, and sub-µK2-sensitivity in
combined polarization cross-spectra, all down to ℓ = 6000 ∼ 6500.
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to be fully from the kSZ effect.

5.2.2 Theory Model

We use the specifications from section 2.1 for the ACT DR6 power spectrum
model. For the CMB signal itself, the likelihood code MFLike can interface with a
CMB theory code, either an Einstein-Boltzmann code such as camb or CLASS, or our
cosmological emulators for CosmoPower as described in chapter 4. This interfacing
with theory codes is shown earlier in Figure 3.1, and the surrounding text. We model the
CMB up to ℓ = 9000, using high-precision settings for camb or CLASS to ensure proper
modelling of the small-scale features in the CMB power spectra. Our cosmological
emulators presented earlier follow settings described in Figure 4.4, and accuracy settings
of comparable level were used whenever we used camb or CLASS directly.

In the remainder of this section, I will go through the details of which part of
the model is used in ACT DR6. For details on the model itself, I refer back to the
aforementioned sections for an in-depth discussion of these components. The full set of
parameters and any priors we set upon them are given in Table 5.2.

Astrophysical Foregrounds

For all frequencies, we apply the Planck cosmology mask to our maps first. For the TT
spectra, we model the thermal and kinematic Sunyaev–Zel’dovich effects, the clustered
and poisson components of the Cosmic Infrared Background, the cross-corerlation
between tSZ and CIB, residual diffuse Galactic dust emission, and residual unresolved
point sources. For polarization components, we only model the last two components.
Contrary to the previous DR4 data release, we do not employ an external prior to
the amplitude of the CIB templates, since we now include the f220 data which helps
constrain it directly. In the unmasked area, the diffuse Galactic foreground emission
is on the order of 1% of the CMB in power for TT, TE, and EE. For the power spectra,
we employ an astrophysical foreground model as described earlier in subsection 2.2.1.
For the diffuse Galactic dust emission, we measure the level of emission separately
by cross-correlating our maps with the Planck 353 GHz map, and use this as a prior
on the amplitude of our model. These priors are imposed on the parameters within
cobaya. I list the fiducial mean and the forecasted constraints on the TT, TE, and EE
dust amplitudes in the last column of Table 5.2. This leaves us with 14 parameters for
our model, which is summarized in Table 5.2.

With the inclusion of new, high-ℓ measurements in temperature, we have the
ability to differentiate between different astrophysical foreground models. Of interest
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Parameter Description Prior

AtSZ Thermal SZ amplitude. ≥ 0
αtSZ Thermal SZ template shape mismatch.
AkSZ Kinematic SZ amplitude. ≥ 0
Ac Clustered CIB amplitude. ≥ 0
βc Clustered CIB spectral index.
ξ tSZ-CIB correlation scale. 0 ≤ ξ ≤ 0.2
Ap Poisson CIB amplitude. ≥ 0
βp Poisson CIB spectral index.
AT T

s Unresolved radio sources in TT.
βs Spectral index of the radio templates. ≤ 0
AT T

g Galactic dust amplitude in TT. (8.83 ± 0.32) µK2

AT E
s Unresolved radio sources in TE.

AT E
g Galactic dust amplitude in TE. (0.43 ± 0.03) µK2

AEE
s Unresolved radio sources in EE. > 0

AEE
g Galactic dust amplitude in EE. (0.165 ± 0.017) µK2

Table 5.2. The 15 parameters of the ACT DR6 foreground model, and their priors. See
subsection 2.2.1 for a description of the model for these parameters. If not mentioned, we
impose an uninformative, wide, uniform prior on the parameter – for most parameters,
simply a wide, non-negative prior is used. The additional parameter αtSZ was added to
quantify a potential mismatch in the tSZ template shape. Due to the lack of sufficient
constraining power, we often consider βc = βp, reducing the number of free parameters
to 14.
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Parameter Description Prior

cACT Dipole calibration 1 ± 0.003
cf220

pa4

Per-frequency array gain calibration

1 ± 0.013
cf090

pa5 1 ± 0.0016
cf150

pa5 1 ± 0.0020
cf090

pa6 1 ± 0.0018
cf150

pa6 1 ± 0.0024
pf090

pa5

Per-frequency array polarization efficiencypf150
pa5

pf090
pa6

pf150
pa6

∆f220
pa4

Per-frequency array bandpass shift

(0 ± 3.6) GHz
∆f090

pa5 (0 ± 1.0) GHz
∆f150

pa5 (0 ± 1.3) GHz
∆f090

pa6 (0 ± 1.2) GHz
∆f150

pa6 (0 ± 1.1) GHz

Table 5.3. The 15 nuisance parameters for our model of the ACT DR6 instrument.
See subsubsection 5.2.2 for a description of the model for these parameters. We
impose Gaussian priors on the gain calibrations and bandpass shifts based on external
calibration with respect to the Planck temperature maps, and measurements of the
instrumental bandpass. The polarization efficiencies are free to vary within relatively
uninformative flat priors (between 0.9 < p < 1.1).

to us is the difference between the templates for the thermal Sunyaev-Zel’dovich effect
as presented in Battaglia et al. (2010, 2012) and Kim and The AGORA Collaboration
(2014). To this end, we added an additional parameter, αtSZ, that affects the shape of the
thermal SZ template, modifying Equation 2.9 as

DtSZ
ℓ,ν1ν2 = AtSZDtSZ

ℓ,0

(
ℓ

ℓ0

)αtSZ f(ν1)f(ν2)
f(ν0)2 , (5.1)

where the additional (ℓ/ℓ0)αtSZ term effectively tilts the high-ℓ tail of the tSZ
template, if it does not properly match the data. We used the tSZ template from
Battaglia et al. (2012) as our baseline, and let the shape parameter αtSZ vary freely. A
value of αtSZ = 0.0 would thus prefer the templates from Battaglia et al. (2012), while a
value of roughly αtSZ = −0.3 would indicate a tSZ model that is steeper at high-ℓ values
and is closer to the one from Kim and The AGORA Collaboration (2014).
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Instrumental Systematics

The ACT DR6 instrumental systematics model is made up of 15 parameters. Of
these, there are three parameters per frequency array: one overall gain calibration,
one polarization efficiency, and one bandpass shift. The only exception is the array PA4,
which is unpolarized, and thus does not have a polarization efficiency. On top of these
fourteen, there is one additional parameter for an overall calibration with respect to the
CMB dipole, which we obtain by calibrating our data to Planck.

We obtain priors on the calibration from calibrating our maps to Planck, and
on the bandpass shifts from measurements of the instrument. We impose only flat,
uninformative priors on our per-frequency array polarization efficiencies.

Because our overall calibration to the dipole is obtained from Planck, joint runs
combining ACT and Planck data must use a joint dipole calibration amplitude parameter
cACT = APlanck.

5.2.3 Inclusion of external datasets

We include several external datasets to the DR6 data. These either involve
measurements of the CMB at scales not covered by ACT, or the inclusion of other
measurements, such as lensing of the CMB, by the same or different experiments. For
the purposes of this thesis, I will focus mainly on external measurements of the large
angular scales of the CMB.

Since the optical depth at reionization is constrained by the ℓ < 10 bump in
polarization data, when not combining with any other data, we employ a prior coming
from the Sroll2 analysis of the Planck large-scale polarization data (Pagano et al.,
2020). We also analyze the ACT DR6 data with a direct inclusion of the Sroll2 dataset.

To measure the first acoustic peak independently of Planck, we combine with the
temperature and polarization spectra from WMAP. These spectra are noise-dominated
in the parts where the ACT data begins, so we ignore the covariance between the two
datasets when doing this combination. We ignore the ℓ < 23 polarization data from
WMAP, and instead employ either a prior on τ or use the Sroll2 data. We use the
pyWMAP implementation of the WMAPv5 dataset for cobaya, which I implemented and
described before in section 3.2.

When including the Planck data on the scales that are common between Planck
and ACT, we employ a cut on the Planck temperature data to only use the ℓ < 1000 part
of Planck, and only the ℓ > 1000 data of ACT. Since the polarization measurement of
Planck is noise-dominated in the regime where the ACT data begins, we use the full
polarization data from both instruments in this combination. We compare inclusion of
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both the plik and NPIPE analysis of the Planck data ("Planck Collaboration", 2020). We
use the plik implementation which I implemented and described before in section 3.4.

CMB Lensing

Lensing of the CMB by mass clusters has been measured by ACT in Madhavacheril
et al. (2023); Qu et al. (2023). CMB lensing indirectly probes the growth of structure
at intermediate redshifts of z ∼ 0.5 − 5, thereby providing additional information on
the matter density Ωm and clustering parameter σ8. We include the lensing potential
power spectrum Cϕϕ

ℓ as measured by ACT in Qu et al. (2023). We employ the baseline
act model when not using any Planck data, or the act_planck baseline model when
we do include such data (Carron et al., 2022). These datasets are implemented in the
act_dr6_lenslike package in cobaya, allowing easy inclusion of this data for our
analyses.

5.3 Likelihood Validation

A crucial first step was to validate the likelihood and analysis pipeline. For this,
we needed a series of mock datasets where we know the fiducial parameter value, while
also including a noise model that is a realistic representation of the true ACT noise. We
then needed to validate that we recovered the input parameters of our simulations, to
confirm that our pipeline is working correctly. When that was finished, we did the same
null tests that we planned to do for ACT DR6 on our data vector. This would give us an
idea of the distribution and confidence intervals of the null results from the actual data.

The methodology we used for performing the validation and null tests on
simulated data is similar to the one described in section 6.3.1 of Choi et al. (2020).

5.3.1 Simulated Data Vector

We generated a set of 1600 Gaussian CMB realizations of the full sky. These
realizations contain an unlensed CMB component based on the Planck 2018 best-fitting
model (Planck Collaboration, 2020d), which are then modified to account for the lensing
contribution.

Foreground emission from extragalactic sources is simulated with Gaussian
random fields on the full sky as well. The amplitudes of these spectra are fixed at a
fiducial value, which was known in advance, and was based on previous ACT results
(Choi et al., 2020).
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Because foreground emission is slightly non-Gaussian, but our model is Gaussian,
we also tested the recovery of the parameters from a single, non-Gaussian realization
based on the Agora simulation (Kim and The AGORA Collaboration, 2014). We used
a separate model for the SZ emission and measurement of the dust contamination in
these simulations. The purpose of this test was to ensure that our foreground model
captures enough complexity that our cosmological parameter recovery is not biased by
non-Gaussian foreground emission.

5.3.2 Recovery of Fiducial Parameters

In total, we had access to 1600 Gaussian CMB realizations. Because of the time it
took to analyse these, we restricted our analysis to a random selection of 100 simulated
data vectors for full MCMC analysis, and a selection of 400 simulated data vectors for
best-fit analysis, which was faster for certain null tests but required more measurements
for an accurate estimate of the mean and variance. To speed up the analysis of 400 data
vectors, we used CosmoPower, as described in chapter 4 and Jense et al. (2024).

The settings and data cuts on these simulations will be equivalent to what we
indend to set for ACT DR6. The only difference is that the simulations will have
idealized instrumental properties, meaning they include perfect gain calibration and
polarization efficiencies, and no bandpass shifts. Despite this, we still marginalize over
these parameters in our analyses.

In addition to recovering the fiducial parameters for our full dataset, we also
validated that our likelihood recovers the fiducial parameters from just the temperature
and polarization data separately, that is, for only the TT, TE, and EE components
separately, as well as for merely the TE/EE components together.

We established that for our likelihood to be unbiased, our recovered parameter
mean should not deviate from the fiducial cosmology by more than 0.2σ/

√
N , where N

is the number of simulations we tested. I show the parameter recovery from a subset of
100 simulations in Figure 5.2.

5.4 Parameter Null Tests on ΛCDM

We established a series of null tests for our power spectra. To ensure that our
data was consistent with itself, we sought to split the dataset into distinct subsets
that were not sensitive to changes in cosmology, and test that these subsets were
consistent in recovering the same cosmology. This involves splitting the full dataset
into two subsets A and B, and check that for each parameter p, the parameter difference

134 Precision Cosmology from Small-Scale CMB Observations



Parameter Null Tests on ΛCDM

0.0215 0.0220 0.0225 0.0230

bh2

0.7
Nsim

0.11 0.12 0.13

ch2

+0.4
Nsim

3.00 3.05 3.10
log(1010As)

+0.3
Nsim

0.92 0.94 0.96 0.98 1.00
ns

0.4
Nsim

0.03 0.04 0.05 0.06 0.07
reio

0.0
Nsim

64 66 68 70
H0

0.6
Nsim

Figure 5.2. A plot of the parameter recovery of 100 simulations of the ACT DR6
data. Each of the posterior parameter distributions of each of the 100 simulations
is individually shown in grey, and we can see that they scatter around the fiducial
parameter, shown in red. Additionally, the mixture distribution (viz. the “average
distribution”) is shown in black, and the recovered mean of all distributions is shown
in the dotted black line. The optical depth at reionization τreio is constrainted by a prior,
shown in blue. We see that there appears to be a slight bias in some parameters, as some
of the parameter means are 0.2 − 1σ/

√
N away from the fiducial mean: we confirmed

that this is due to the relatively small size of the subset of simulations we used, and this
apparent bias vanishes when we increase the number of simulations used.
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(pA − pB) ∼ N (0, σp). For N independently measured cosmological parameters, we
compute an N -dimensional χ2 value

χ2 = (pA − pB) (ΣA + ΣB)−1 (pA − pB)T (5.2)

where ΣA, ΣB are the covariances of the parameters p in datasets A and B

respectively. For the ACT cosmology, we have five independently measured cosmological
parameters, with only the optical depth of reionization τreio not measured directly by
ACT. Hence we compute this parameter-difference χ2 value over the remaining five
ΛCDM parameters.

Measuring this parameter-level χ2 value gives us an impression of whether our
parameter recovery is biased or not: for an unbiased parameter recovery, the distribution
of the computed χ2 values should tend towards a χ2 distribution as we increase the
number of simulations.

For ACT DR6, there are a variety of splits we could attempt, such as splitting per
array (i.e. A = pa5, B = pa6), and per frequency (i.e. A = f090, B = f150). Because
a per-array split could be biased by instrument-based choices, since for example our
ℓ-cuts are different per array, a per-array split could be biased by the fact that one array
uses less data than another one. Therefore, we opted to analyze only frequency splits for
our null tests. These splits do not include the pa4_f220 data, but this data is mainly
important for constraining astrophysical foregrounds, which are not of interest for these
null tests.

I show the results of a parameter null in Figure 5.3. For this figure, I ran 1000
χ2-minimizers over the separate f090 and f150 data cuts and recorded the bestfit
cosmological parameters for each of these minima. In the figure, I show the two-
dimensional scatter between each parameter difference - that is, each point shows how
much two different parameters differ from each other for a single simulation across
two data splits. I show that across all parameters, the minima scatter around zero
difference. This means that our likelihood has no parameter bias when performing
different data splits, showing a good recovery of parameters across simulations. In
addition, the scatter of these simulations gives us an expected confidence region in the
five-dimensional parameter space for our data nulls.

5.4.1 Null tests for Beyond-ΛCDM

Since ACT DR6 will provide new insights in small-scale CMB cosmology for the
purpose of precision testing of the ΛCDM model, we want to ensure that we have an
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Figure 5.3. A 90-150 null for ΛCDM. In each subplot, each datapoint shows the
parameter difference between the 90-only and 150-only constraint. We do not include
τreio in this plot as it is not measured by our data and needs a prior to constrain. The black
dashed lines show where we assume the center of the distribution should be, centred
on zero, while the grey ellipses show the 1 and 2σ confidence ellipses of the parameter
differences. We see that the distributions of parameter differences is consistent with
zero, showing no bias coming from our data split.
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unbiased recovery of beyond-ΛCDM parameters coming from this data. Parameters
such as the effective number of relativistic species, Neff , affect the CMB in the small-scale
damping tail of the power spectrum. We made similar null tests on our simulated data
vectors to see that we accurately recover the fiducial value of Neff with our array and
frequency splits. At the same time, opening up additional parameters should not affect
our recovery of the original 6 ΛCDM parameters. The recovery of these parameters
is shown in Figure 5.4, where we see that opening up an additional beyond-ΛCDM
parameter has no impact on our parameter recovery null, while the additional parameter
itself is also recovered well.

5.5 Forecasts for Constraints on Cosmological Parameters

Here I present forecasts on constraints on cosmological parameters from ACT
DR6 simulations. ACT DR6 will improve over Planck at the small scales, and these
measurements will improve our constraints on ΛCDM, while combinations with large
scales from WMAP or Planck will improve over the Planck-alone constraints that make
up ΛCDM constraints today.

We make forecasts for the combination of ACT DR6 alone compared to Planck
alone, as well as the combination of ACT DR6 +Planck together (with the cuts on ACT
and Planck data described before in subsection 5.2.3). In all cases, the Planck data also
includes the low-ℓ T and E likelihoods.

To obtain forecasts for ACT DR6, I ran the CMB extraction formalism over a
single simulation, extracting the foreground-marginalized CMB power spectrum up to
ℓ ≲ 6000 in TT, TE, and EE, confirming that there was no bias on the nuisance parameters
compared to the multifrequency likelihood. I then ran a chain over this CMB-only
data vector, including an additional marginalization over the overal calibration and
polarization efficiency parameters. To make a forecast for ACT +Planck, I include only
the Planck data at ℓ < 1000 and the ACT temperature CMB-only data at ℓ > 1000 (we do
not cut any polarization data from either dataset), ignoring any covariance between the
two datasets. Since the ACT simulation is different from the Planck data, I only cite the
standard deviation of the resulting posterior parameter constraints, showing how much
of an improvement the inclusion of ACT DR6 data will have over Planck alone.

5.5.1 Constraints on the ΛCDM Model

ACT DR6 will provide a measurement of 5 out of the 6 ΛCDM parameters,
with only the optical depth at reionization, τreio, depending on large-scale polarization
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Figure 5.4. A 90-150 null for ΛCDM +Neff . Each datapoint shows the parameter
difference between the 90-only and 150-only constraint. We do not include τreio in
this plot as it is not measured by our data range. The black dashed lines show where
we assume the center of the distribution should be, centred on zero. We see that the
distribution of parameter differences is consistent with zero, showing no bias coming
from our data split.
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that is outside the regime of ACT observations. When not combining with external
measurements, we impose the Gaussian prior τreio = (5.44 ± 0.73) × 10−2, coming
from Pagano et al. (2020).

I show the constraints from a measurement of ΛCDM, comparing ACT and
Planck, and their combination, in Figure 5.5. ACT alone is less constraining than Planck
on most parameters, mostly because of the lack of large scale features – missing out
on the first two acoustic peaks, and the reionization bump in the EE power spectrum.
However, the combination of ACT and Planck will give constraints on cosmology from
both large- and small-scale CMB features, giving constraints much tighter than have
ever been obtained from the CMB alone so far: inclusion of the ACT data will improve
constraints on five out of the six parameters by 10–55%. The inclusion of high-fidelity,
precise measurements of the TE and EE mode polarization power spectra will also
greatly improve the constraints on ΛCDM and extension models, as described hereafter.

5.5.2 Constraints on Beyond-ΛCDM Models

The small-scale data of ACT DR6 will give a signal-dominated measurement of
the CMB up to ℓ ≲ 6000. This new data will give us tests of the ΛCDM model beyond
the constraints of Planck. There are many models beyond-ΛCDM that are of interest,
but to compress it into a single example here, I show the constraints on the single-
parameter extension for ΛCDM +Neff here, which is a good proxy for any extension that
predominantly affects the small-scale features of the CMB power spectrum.

I give an overview of the constraining power on extension models from the ACT
DR6 data compared to and combined with Planck in Figure 5.6. The table in this figure
shows that the extra degree of freedom from the additional parameter blows up most of
the errorbars, when compared to Figure 5.5. The inclusion of ACT DR6 not only further
constrains the additional parameter, Neff , but it also more tightly constraints the six
parameters of ΛCDM within the freedom of this extension.

The forecasts presented here provide an outlook towards the upcoming ACT
DR6 data release, including forecasts on the constraining power from the new, precise,
small-scale measurement of the CMB anisotropies. These new measurements will
provide a new, constraining test for ΛCDM and its extensions.
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Figure 5.5. Image: A comparison of the constraining power of ACT DR6 (with a prior
on τreio, blue), Planck (using the plik TT/TE/EE+lowl+Sroll2 data, orange), ACT
+Planck (combined with a simple ℓ cut as described in subsection 5.2.3, green) and
ACT +Planck +lensing (also including the ACT DR6 lensing likelihood, red). Note that
the ACT DR6 simulated data vector is a single Gaussian realization, and thus scatters
around a different mean from the other two datasets, which are real data. The usage
of Planck refers to both the high-ℓ as well as low-ℓ (lowl+Sroll2) datasets. Table: A
comparison of the (forecasted) error bars from each of these four combinations for
ΛCDM.
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Figure 5.6. Image: A comparison of the constraining power for an extended model
of cosmology, of ACT DR6 (with a prior on τreio, blue), Planck (using the plik
TT/TE/EE+lowl+Sroll2 data, orange), ACT +Planck (combined with a simple ℓ cut
as described in subsection 5.2.3, green) and ACT +Planck +lensing (also including the
ACT DR6 lensing likelihood, red). Note that the ACT DR6 simulated data vector is a
single Gaussian realization, and thus scatters around a different mean from the other
two datasets, which are real data. The usage of Planck refers to both the high-ℓ as well
as low-ℓ (lowl+Sroll2) datasets. Table: A comparison of the (forecasted) error bars
from each of these three datasets for ΛCDM +Neff . The usage of Planck refers to both the
high-ℓ as well as low-ℓ (lowl+Sroll2) datasets.
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oatiy:daryvuS:xSayoiy:nurm:ouvam:vrnvtam:ty:mn
a:krtm:avoa:karhya:radiy:ma:apgudy:ydiy:imam:
hDgam:niy:apgudyahy:karhy:oahy:aurmzda:ouvam:
duSta:biya:utatiy:tuma:vsiy:biya:uta:drgm:jiva

6.1 Thesis Overview
I have presented an overview of the recent developments in Bayesian likelihoods

for cosmological analysis from past, present, and future CMB observations, focusing
on the analysis of small-scale multifrequency data. For this work, I have made new,
modern implementations of existing likelihoods for the WMAP and Planck analyses.
With these new likelihoods, we can perform future joint analyses between these legacy
space missions and future ground-based observations of the small scale CMB.

I have also presented an overview of the Simons Observatory CMB analysis
software MFLike. MFLike is a modern, flexible, multi-purpose software capable of
taking a model for a CMB power spectrum, templates and models for multifrequency
foreground components, and modeling instrumental systematics, and computing the
complete likelihood function. I have presented results of the analysis of simulated
data vectors for SO, showing that MFLike is capable of unbiased recovery of ΛCDM
parameters. In addition, I have created the foreground marginalization software for
MFLike that is capable of marginalizing over the nuisance parameters, recovering a
CMB-only data vector and likelihood that is of interest for cosmological analysis.

6.2 Developments in Cosmological Emulator Frameworks
I have presented a coherent framework for specifying, creating, packaging

and utilising emulators of cosmological Einstein-Boltzmann codes, building on the
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CosmoPower package. These emulators can speed up by orders of magnitude the
estimation of posteriors on cosmological and nuisance parameters from experimental
data and hence enable investigation of models which extend the fiducial ΛCDM
cosmology and the checking of the robustness of any conclusions made to a plethora
of modelling choices. By creating a specification for packaging and distributing such
emulators and providing wrappers for their use in popular inference packages we
hope to improve efficiency and reproducibility in cosmological studies, by allowing
appropriate emulators to be widely used by many different studies once they have
been trained. This kind of reproducibility across platforms will also assist in combining
different data sets to improve statistical constraining power and investigate more models
in more detail.

I have used the framework to produce a suite of emulators of quantities calculated
by camb v1.5.2: CMB primary angular power spectra CT T

ℓ , CT E
ℓ , CEE

ℓ , CBB
ℓ ; CMB lensing

power spectra Cϕϕ
ℓ ; linear and non-linear matter power P (k)lin, P (k)NL and a variety of

background and derived quantities. I have demonstrated the accuracy of the emulators
at both the spectrum level and the parameter-recovery level to accuracy appropriate for
Stage-IV data (and beyond to the cosmic variance limit for the CMB spectra).

6.3 Future Cosmological Constraints from CMB Experiments

The software I have contributed to will play a crucial role in the upcoming ACT
DR6 data release, and the future Simons Observatory data analysis. I have shown a wide
range of tests we have performed on simulated data vectors for the ACT DR6 data
release, which we hope to publish in the near future. The work I presented here includes
forecasts for the constraining power on the CMB-only data, the unbiased recovery of
cosmological parameters from Gaussian simulations of the ACT DR6 power spectra,
and forecasts for ΛCDM and beyond-ΛCDM parameter constraints with ACT DR6, both
alone and combined with Planck.

When published, the ACT DR6 power spectra will provide the most stringent
test for ΛCDM that we have to date. They will not only provide a test for ΛCDM
independent from Planck, serving as a separate validation of the Planck results, but the
joint ACT and Planck data will provide a new test of cosmological and physical models
from the CMB.

Once this data are available for the public, work will continue in training people
to use the then publicly-available likelihood software to perform their own analyses.
On top of the many new results coming from that, this will also provide a platform
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to thoroughly test MFLike for the future release of SO data in the years to come. The
continuing analysis of the impact of astrophysical and instrumental nuisances – which
will be of high importance for SO.

The creation of emulators for (beyond)-ΛCDM cosmology will increase in importance
with the future prospect of cross-probe analysis. The continuing pressure on computational
resources with the expansion of observational windows and improvement of constraining
power will lead to greater benefits in the use of emulators. Our work in the development
of a coherent suite of software for the usage of CosmoPower emulators for the development
and application of emulators will open avenues for new use of emulators in single- and
multi-probe cosmological analysis.

All this work lays important foundations for the future of cosmological analysis.
Looking back at only the previous twenty years of scientific breakthroughs made in
cosmology, it is intruiging and amazing to think what the next ten or twenty years will
hold for us.
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