Charith Perera (as,)
PhD, MBA

Internet of Things

Systems Design

Lab Book




INTERNET OF THINGS

GARAGE

PUBLISHED BY IOT GARAGE

Brand names, logos and trademarks used herein remain the property of their respective owners. This listing of any firm

or their logos is not intended to imply any endorsement or direct affiliation with the author.

How to cite this book

Charith Perera (Eds.), Internet of Things: Systems Design Lab Book, 10T Garage, 2023

Contributing Authors (alphabetical order)
Hakan Kayan, Michal Malecki, Yasar Majib

Version 2.2 (Latest), July 2024
Version 2.1, March 2024
Version 2.0, February 2024
Version 1.9, January 2024
Version 1.8, November 2023
Version 1.7, September 2023
Version 1.6, March 2023
Version 1.5, September 2022
Version 1.4, March 2022
Version 1.3, February 2022
Version 1.2, January 2022
Version 1.1, January 2021
Version 1.0, January 2020



NO OO N O O A O N —

o

Preface

loT Kit for BSc and MSc Labs and Coursework
Accessing the Code Repository

loT Extension Pack for MSc Only Labs

Additional Components for BSc and MSc Coursework
Hardware Requirement Summary

Micro-Controller Programming ® ..............................
Single-board Computer Programming ® .......................
Posting Data to an loT Cloud Platform® .......................
Connecting an loT Gateway toan loTCloud ® .................
Connecting a Sensor Node to loT Gateway @ ..................
End to End Full Stack loT Development® ... ... .................
Infroduction to Wireshark on Raspberry Pi® .. ..................
Programming Arduino with Blockly @ . ... ... ... .............

Programming Raspberry Pi with Python @ .. ... ... ... ... ... ... .

Bluetooth Low Energy (BLE) Based Systems ® ..................

14
15
18
20



11
12
13
14
15
16
17

RFID and NFC Based Tracking ® .............................. 139
Multimedia Communication® ... ... ... ... ... ... ... .... 149
Microcontroller Programming Simulator® .. ....... ... ... ... 157
Advance Sensors, Actuators, Components® ........ ... ... ... 169
3D Objects Designing and Printing® ......................... 181
Getting Started with Raspberry Pi Camera® ......... ... ... ... 191
Debugging the Raspberry Pi...... ... ... ... .. .. ... ... ... ..., 203

Debugging the Raspberry Pi...... ... ... ... .. ... ... ... ... ..., 203



Preface

This IOT LAB BOOK is primarily compiled to support the university courses on ‘Internet of Things:
Systems Design’ at both undergraduate and postgraduate levels. If you are taking either of these
modules, please make sure you follow this lab book. It is compulsory to complete labs marked @
for both undergraduate and postgraduate level modules. The labs marked @ are compulsory for the
postgraduate level.

This lab book guides you through a series of labs. Each lab has its objectives. It is expected that
you should be able to complete each lab session within two hours (most of the time, much less). This
lab book does assume that you have some amount of networking knowledge. Further, it is important
to mention that IoT, by nature, is a broad subject. Therefore, in a few lab sessions, we cannot
teach you all the topics in-depth. For example, Arduino programming use C/C++ programming
languages. However, we do not expect you to be an expert on C/C++ to follow the lab session.
However, if you have some background, you will find some known concepts in action and feel
comfortable. If you have never seen C/C++ before, you will, of course, feel nervous and sometimes
will feel lost.

Throughout the lab book, we provided explanations, external links, and references to reading
material. Especially if you do not understand certain programming tasks such as C/C++ it may be
worth reading those links. Further, these links will guide you to explore the universe of 1oT on
your own, beyond the labs we have provided here. Finally, we want to emphasise that this is not a
programming course. Therefore, we do not try to teach you a particular programming language
(though we try to provide as many links and references to develop your skills). It is up to you to
develop the gaps in your knowledge by referring to the links we provided.

— Further information, links and references. We will use multiple dedicated structures
throughout this lab book to offer different types of additional knowledge, including areas for
deeper thought, useful hints, and practical tips. These are here to guide your thinking and
support your learning, but you’re welcome to skip them if you prefer.



6

loT Kit for BSc and MSc Labs and Coursework

In order to follow all the labs in this lab book, you need the following components. The component
requirement for each lab is presented at the beginning of each chapter. You can also see the lab
numbers that we use for the items on figure captions.

Raspberry Pi The Raspberry Pi is a series of small single-board computers. We have tested the

labs with both Raspberry Pi3B+ and Raspberry Pi 4.

Choice of RAM

e

More powerful
processor

supply

UsB 3

GIGABIT
7, ETHERNET
MICRO HDMI PORTS \

Supporting 2 x 4K displays UsSB 2

Figure 1: Raspberry Pi - Labs (2, 3, 4, 5, 6)

Nofes We have provided the Raspberry Pi 4 version with 4GB RAM

Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz
1GB, 2GB or 4GB LPDDR4-3200 SDRAM (depending on model)

2.4 GHz and 5.0 GHz IEEE 802.11ac wireless, Bluetooth 5.0, BLE

Gigabit Ethernet

2 USB 3.0 ports; 2 USB 2.0 ports.

Raspberry Pi standard 40 pin GPIO header (fully backwards compatible with previ-
ous boards)

2 x micro-HDMI ports (up to 4kp60 supported)

2-lane MIPI DSI display port

2-lane MIPI CSI camera port

4-pole stereo audio and composite video port

H.265 (4kp60 decode), H264 (1080p60 decode, 1080p30 encode)

OpenGL ES 3.0 graphics

Micro-SD card slot for loading operating system and data storage

5V DC via USB-C connector (minimum 3A*)

5V DC via GPIO header (minimum 3A*)

Power over Ethernet (PoE) enabled (requires separate POE HAT)

Operating temperature: 0 — 50 degrees C ambient



7

GrovePi Plus GrovePi+ is an add-on board with 15 Grove 4-pin interfaces that brings Grove
sensors to the Raspberry Pi. GrovePi+ is an easy-to-use and modular system for hardware
hacking with the Raspberry Pi, no need for soldering or breadboards: plug in your Grove
sensors and start programming directly. Grove is an easy-to-use collection of more than 100
inexpensive plug-and-play modules that sense and control the physical world. Connecting
Grove Sensors to Raspberry Pi empowers your Pi in the physical world. With hundreds of
sensors to choose from, Grove families, the possibilities for interaction are endless.

— Grove Ecosystem. Most of the Grove components can be connected to Raspberry Pi
through GrovePi+ and can be connected Arduino micro-controller through Base Shield for
Arduino. Most components are interchangeable between two platforms (i.e.,g Raspberry
Pi and Arduino).

* Sensors: http://wiki.seeedstudio.com/Sensor/

* Actuators: http://wiki.seeedstudio.com/Actuator/

* Displays: http://wiki.seeedstudio.com/Display/

e Communications: http://wiki.seeedstudio.com/Communication/

Figure 2: GrovePi+ - Labs (2, 3, 4, 6)

Arduino Expansion Shield for Raspberry Pi B+ (V2.0) With the Arduino Adapter For Rasp-
berry Pi, there’s a way for the Raspberry Pi GPIO interface to adapt to Arduino pinouts,
it is now possible to use the Pi together with vast Arduino shields and hardware/software
resources: (i) Raspberry Pi GPIO interface to adapt to Arduino pinout, (ii) Compatible
with Arduino UNO, Leonardo, easy to connect with various Arduino shields, (iii) XBee
connector for connecting various XBee modules, and (iv) Sensor interface for connecting
various sensors.

Figure 3: Arduino - Labs (1, 5, 6)


http://wiki.seeedstudio.com/Sensor/
http://wiki.seeedstudio.com/Actuator/
http://wiki.seeedstudio.com/Display/
http://wiki.seeedstudio.com/Communication/

8

Base Shield for Arduino Arduino Uno is the most popular Arduino board so far; however, it is
sometimes frustrating when your project requires many sensors or LEDs, and your jumper
wires are in a mess. The Base Shield’s purpose is to help you eliminate breadboard and
jumper wires. With the rich grove connectors on the base board, you can conveniently add all
the grove modules to the Arduino Uno! The pinout of Base Shield V2 is the same as Arduino

Uno R3.

Figure 4: Base Shield - Labs (1, 5, 6)

Loudness (Sound) Sensor Sound Sensors can detect the sound intensity of the environment. The
main component of the module is a simple microphone based on the LM386 amplifier and an
electret microphone. This module’s output is analogue and can be easily sampled and tested
by a Seeeduino.

Figure 5: Loudness Sensor - Labs (6)

Light Sensor The light sensor integrates a photo-resistor (light-dependent resistor) to detect light
intensity. The resistance of the photo-resistor decreases when the intensity of light increases.
A dual OpAmp chip LM358 on board produces a voltage corresponding to light intensity (i.e.
based on resistance value). The output signal is an analogue value. The brighter the light is,
the larger the value. This module can be used to build a light-controlled switch, i.e. switch
off lights during daytime and switch on lights during nighttime.

Figure 6: Light Sensor - Labs (1, 6)

PIR Motion Sensor This sensor allows you to sense motion, usually human movement in its range.



9

Simply connect it to Grove-Base shield and program it. When anyone moves in its detecting
range, the sensor will output HIGH on its SIG (signal) pin.

Figure 7: PIR - Labs (1, 5, 6)

Temperature and Humidity This is a powerful sister version of our Grove - Temperature and

Humidity Sensor Pro in figure 8a. It has a complete and more accurate performance than the
basic version. The detecting range of this sensor is 5% RH - 99% RH, and -40C-80C. And
its accuracy reaches up to 2% RH and 0.5C. A professional choice for applications that have
relatively strict requirements.
The new Grove - Temperature & Humidity Sensor in figure 8b is based on the DHT20 sensor.
The DHT20 is an upgraded version of the DHT11, compared with the previous version, the
temperature and humidity measurement accuracy are higher, and the measurement range is
larger. It features I2C output which means it is easier to use.

(a) DHT11 (b) DHT20

Figure 8: Temperature & Humidity - Labs (2, 3)

Servo Motor Servo is a DC motor with a gearing and feedback system. It is used in the driving
mechanism of robots. The module is a bonus product for Grove lovers. We regulated the
three-wire servo into a Grove standard connector. You can plug and play it as a typical Grove
module now, without jumper wires clutter.

Figure 9: Servo Motor - Labs (1, 6)

LED Button LED Button is composed of Grove-Yellow Button, Grove-Blue LED Button and
Grove-Red LED Button. This button is stable and reliable with a 100 000 times long life.
With the built-in LED, you can apply it to many interesting projects. It is really useful to use
the LED to show the status of the button. We use a high-quality N-Channel MOSFET to
control the LED, ensuring high switching speed and low consumption.



10

Figure 10: LED Button - Labs (2)

Ultrasonic Ranger The Ultrasonic Distance Sensor is an ultrasonic transducer that utilizes ultra-
sonic waves to measure distance. It can measure from 3cm to 350cm with an accuracy of up
to 2mm. It is a perfect ultrasonic module for distance measurement, proximity sensors, and
ultrasonic detectors. This module has an ultrasonic transmitter and an ultrasonic receiver, so
you can consider it an ultrasonic transceiver. Familiar with sonar, when the 40KHz ultrasonic
wave generated by the transmitter encounters the object, the sound wave will be emitted back,
and the receiver can receive the reflected ultrasonic wave. It is only necessary to calculate
the time from the transmission to the reception and then multiply the speed of the sound in
the air (340 m/s) to calculate the distance from the sensor to the object.

Figure 11: Ultrasonic Ranger - Labs (2, 6)

Buzzer The buzzer module has a piezo buzzer as the main component. The piezo can be connected
to digital outputs and emit a tone when the output is HIGH. Alternatively, it can be connected
to an analogue pulse-width modulation output to generate various tones and effects.

Figure 12: Buzzer - Labs (2, 3, 4, 6)

LCD RGB Backlight Display This Grove enables you to set the colour to whatever you like via
the simple and concise Grove interface. It takes I2C as a communication method with your
microcontroller. So the number of pins required for data exchange and backlight control
shrinks from 10 to 2, relieving IOs for other challenging tasks. Besides, Grove - LCD RGB
Backlight supports user-defined characters. Want to get a love heart or some other foreign
characters? Just take advantage of this feature and design it.



11

Grove-LCD RGB Backliaht
- Va0l

Grove-LCD RGB Backliaht
CL V5.0
O, O

© o
(a) LCD version 4.0 (b) LCD verion 5.0

Figure 13: LCD - Labs (2, 6)

Serial Bluetooth v3.0 Serial Bluetooth is an easy-to-use module compatible with the existing
Grove Base Shield and designed for a transparent wireless serial connection setup. The serial
port Bluetooth module is fully qualified Bluetooth V2.0+EDR(Enhanced Data Rate) 2Mbps
Modulation with a complete 2.4GHz radio transceiver and baseband. It uses a CSR Bluecore
04-External single chip Bluetooth system with CMOS technology and AFH(Adaptive Fre-

quency Hopping Feature). It has the smallest footprint of 12.7mm x 27mm. Hope it will
simplify your overall design/development cycle.

Figure 14: Serial Bluetooth - Labs (5)

Raspberry Pi Camera v2 The Raspberry Pi Camera Module 2 can take hide definition videos and
photographs. It allows connecting attachments such as lenses. While we can attach different

cameras to Raspberry Pi, if case is not very specific, this camera should be preferred as there

are libraries already available. We can do live image processing on Raspberry Pi via this
camera as well.

i

—
§STHS
o

Canera V2.1 Mg

a
2

]
=

]
=1
2

L-MA A0S

-
=

Figure 15: Camera - Labs (16)

SD Card Sandisk Class 10 Micro SD card reinstalled with the Raspberry Pi operating system.



12

Figure 16: SD Card - Labs (2, 3, 4, 5, 6)

Micro HDMI to HDMI Cable Connect a device that has a micro HDMI port to an HDMI com-
patible TV or monitor to share music, video or images up to 1080p resolution. Connect

Monitor to Raspberry Pi.

Figure 17: Cable - Labs (2, 3, 4, 5, 6)

USB Keyboard and Mouse The keyboard has three in-built USB 2.0 type-A ports for powering
other peripherals (such as the official Raspberry Pi mouse).

Figure 18: Keyboard - Labs (2, 3, 4, 5, 6)

Software Requirements

Arduino IDE The Arduino integrated development environment (IDE) is a cross-platform appli-
cation (for Windows, macOS, and Linux) that is written in the programming language Java.
It is used to write and upload programs to Arduino-compatible boards and, with the help of
3rd party cores, other vendor development boards (https://www.arduino.cc/en/main/

software).


https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software

13

L Blink | Arduino 1.8.5

Figure 19: Arduino - Labs (1, 5, 6)

Node-RED Node-RED is an open source flow-based development tool for visual programming
developed originally by IBM for wiring together hardware devices, APIs and online services
as part of the Internet of Things. Node-RED provides a web browser-based flow editor, which
can be used to create JavaScript functions. Elements of applications can be saved or shared
for re-use. The runtime is built on Node.js. The flows created in Node-RED are stored using
JSON. Node-RED can be used both on edge on in the cloud. We will use Node-RED as the
edge IoT platform in our labs. (https://nodered.org/).

— e PR~ T
d @ connected Type. http in
caoh [} 40091040.013504
= ' msg.payload [ ] » Properties
S ) hooksjson | |
L L] requests, allowing the creation of simple.
i) timestamp Pproperties:
* msgp B

- e = [ ——

A egtan T e
serial For POST/PUT requests, the body is

By defaul, this expects the body of the.

> social
request to be url encoded:
> storage
foo=barathis=that

> analysis
To send JSON encoded data to the:

> advanced node, the content-type header of the
request must be setto
application/json

Note: This node does not send any
response 1o the hitp request, This
should be done with a subsequent
HTTP Resoonsa node.

Figure 20: Node-RED - Labs (2, 3, 4, 5, 6)

Thingsboard ThingsBoard is an open-source loT platform for device management, data collection,
processing and visualization for your [oT projects. ThingsBoard can be used both on edge
on in the cloud. In our labs, we will be using Thingsboard as the cloud IoT platform
(https://thingsboard.io/).


https://nodered.org/
https://thingsboard.io/

14

%ThingsBoard 58 WidgetsBundles > 8% Charts o e enant adminisrator
A HOME
State Chart [SEP A Radar - Chart js. [SAV A Pie- Flot [SRV A 2
J§ PLUGINS

¢ RULES

22 CUSTOMERS

[ ASSETS

(o0 DEVICES
BRRpc e AR Timeseries Bars - Flot I/ & PolarArea-Chartjs I/ &  Doughnut-Chartjs IV 4
s B econs M This Foure

B3 DASHBOARDS m e kL e -t
g g "."

Figure 21: Thingsboard - Labs (3, 4, 6)

Monitor (To Work From Home) You will need an external monitor to connect your Raspberry
Pi to complete the labs. If you are an experienced user, you can SSH into your Pi and do the
labs. According to your monitor’s input, you may need a micro-HDMI to HDMI, DVI, or
VGA (for older monitors) cable.

Accessing the Code Repository

All the code segments required to complete the labs in this /OT LAB BOOK can be found in the
following GitLab repository:

https://gitlab.com/I0TGarage/iot-lab-book

This repository contains scripts, sample code, and additional resources referenced throughout
the labs. When working through any of the lab exercises, please refer to the respective chapter’s
folder or file within the repository to locate the matching code examples. Any updates, bug fixes,
or enhancements will also be made available in this repository, so be sure to periodically check
it for the latest version of the code. By visiting the repository, you can:
* Clone or Download the Code: Pull down all relevant examples, scripts, and configura-
tions.
* Review Commit History: Explore how the code has evolved, examining different
versions and branches that may contain experimental features.
* Submit Issues: If you encounter any bugs or have questions, open an issue and collaborate
with the community for support or improvements.


https://gitlab.com/IOTGarage/iot-lab-book

15

loT Extension Pack for MSc Only Labs

LED Bar LED Bar is a 10-segment LED gauge bar with a built-in LED controlling chip. We use
LED bars when we want to demonstrate a level of something. For example, we can show
the remaining battery capacity, temperature level, distance, sound level etc. The bar colours
range from red to green, while red indicates the highest level.

Figure 22: LED bar - Labs (8, 9, 14)

Rotary Angle Sensor Rotary Angle Sensor v1.2 is a potentiometer. We can set the resistance up
to 10k Ohm. Thus, according to the input voltage potentiometer will generate an output. We
can use potentiometers when we want to divide voltage to a certain degree. Thus we can use
sensors that require 5V and 3.3V within the same setup.

Figure 23: Rotary Angle - Labs (8)

EMG Sensor We use electromyography sensors (EMG) to measure signals generated by our
muscles. They are useful for detecting any behavioural anomalies in our muscles. Also, they
are used to model the muscle behaviour of professionals such as athletes and footballers.

Figure 24: EMG - Labs (14)

Speaker Grove Speaker has a built-in potentiometer where we can set the sound level thus it offers
power amplification. We can also set the frequency to generate a different tone. Speaker are



16

useful when building alarm systems or distance indicators.

Figure 25: Speaker - Labs (12)

LED Socket Kit / LED Grove - LED Socket Kit allows us to control brightness of the LEDs via
the built-in potentiometer. We might like to set the LED brightness in several cases such
as reading a book, driving a car, or using a phone. Light-emitting diodes (LED) are one of
the most efficient light sources. We currently have them in our phones, TVs, monitors, and
simply anywhere we have a screen.

Figure 26: LED Socket Kit - Labs (10, 11)

RFID Reader RFID Reader is a module used to read uem4100 RFID card information with two
output formats: Uart and Wiegand. It has a sensitivity with maximum 7cm sensing distance.

Figure 27: RFID Reader - Labs (11)

NFC Reader NFC Tag is a highly integrated Near Field Communication Tag module,this module
is 12C interface,which base on M24LLR64E-R,M24L.R64E-R have a 64-bit unique identifier
and 64 -Kbit EEPROM.Grove - NFC Tag attach an independent PCB antenna which can
easily stretch out of any enclosure you use, leaving more room for you to design the exterior
of your project.



17

Figure 28: NFC Reader - Labs (11)

RDIF Tags Combo A set of 5 RFID tags, consisting of 3 key rings and 2 cards . Each chip has a
unique 64-bit code. Identifiers work a short distance from the device. The carrier frequency
is 125 kHz.

Figure 29: RDIF Tags Combo (11)

NFC Tags NFC Round Cards NFC 215 Card Tag Compatible with TagMo and Amiibo, 504 Bytes
Memory Fully Programmable for NFC-Enabled Devices

Figure 30: NFC Reader - Labs (11)



18

Additional Components for BSc and MSc Coursework

Thumb Joystick Joystick modules generate analogue signals that simulate the movements of the
cartesian coordinate system. It also has a push button that we can use as input. Its output

range is smaller than common joysticks. Thus, most of the time, we map the output to a
certain range.

Figure 31: Thumb Joystick - Labs (12)

Gesture Sensor for Arduino Gesture is based on PAJ7620U2 that integrates gesture recognition
function with general I12C interface into a single chip. It can recognize 9 gestures including
moving up, moving down, moving left, moving right, etc with a simple swipe by your hand.

Figure 32: Gesture Sensor

UART Wifi UART WiFi is a serial transceiver module featuring the ubiquitous ESP8285 IoT SoC.
With integrated TCP/IP protocol stack, this module lets your micro-controller interact with
WiFi networks with only a few lines of code. Each ESP8285 module comes pre-programmed
with an AT command set firmware, meaning you can send simple text commands to control
the device. The SoC features integrated WEP, WPA/WPA?2, TKIP, AES, and WAPI engines,

can act as an access point with DHCP, can join existing WiFi networks and has configurable
MAC and IP addresses.

Figure 33: UART WiFi

Triple Colour E-Ink Display Triple Color E-Ink Display 2.13” is a screen that can still be dis-
played after power off, we call it E-Paper(electronic paper) or E-Ink. The display is a TFT



19

active matrix electrophoretic display, with interface and a reference system design.The 2.13
inch active area contains 212x104 pixels, and has 1-bit white/black and 1-bit red full display
capabilities.

Figure 34: Triple Colour E-Ink Display

Blueseeed (BLE) Blueseeed is a cost-effective, low-power, true system-on-chip (SoC) for Blue-
tooth low energy applications. It enables robust BLE master or slave nodes to be built with
very low total bill-of-material costs. It is based on TI CC2540 chip, which has AT command
support.

Figure 35: Blueseeed



20

Hardware Requirements Summary

Hardware Components

Lab1 @

Lab8 @

Lab10 @
Lab11 @
Lab12 @
Lab 13 @
Lab14 @
Lab15@

Raspberry Pi (3B+, 4)

GrovePi Plus

Arduino Expansion Shield for RPi
Base Shield for Arduino
Loudness (Sound) Sensor
Light Sensor

PIR Motion Sensor
Temperature/Humidity (V11,V20)
Servo Motor

LED Button (Yellow/Blue/Red)
Ultrasonic Ranger

Buzzer

LCD Backlight Display (V4,V5)
Serial Bluetooth v3.0
Raspberry Pi Camera v2

SD Card

Micro HDMI to HDMI Cable
USB Keyboard and Mouse
Monitor

LED Bar

Rotary Angle Sensor

EMG Sensor

Speaker

LED Socket Kit / LED

RFID Reader

NFC Reader

RFID Tags Combo

NFEC Tags

Thumb Joystick

Blueseeed (BLE)

Gesture Sensor for Arduino
UART WiFi

Triple Colour E-Ink Display

NN N

NN Lab2 @

ANENEN

N\ N\|Lab3 @

N\ N|Lab4 @

~|Lab5 @

ENEN

SNENEN

AN N N N N N N NN ENENENENEN YT )

~|Lab7 @

ANONENEN

SNEN

ANENENENEN

NN Lab9 @

SNEN AN

ENENENENEN

SNENEN

ENEN

ANEN

ANENENENEN

ENEN

ENEN

SNEEENENEN

~|Lab16 @

ANENENENEN

Table 1: Required Hardware for Each Lab Tutorial



ARBDUINO
OPEN SOURCE
COMMUNITYV

1. M

cro-Controller Programming

Objectives

* Learn how to program a microcontroller (e.g., Arduino) with the Arduino IDE
* Learn how to read data from multiple sensors (light sensor, PIR motion sensor)
* Learn how to handle basic event-driven programming

* Learn how to integrate and control an actuator (servo motor)

Lab Plan

Actuator 1 Event Driven
(Servo Motor)  (LED Button)

/N
! b
' A
Sensor 2 O_l_’ T I
(Light) Base shield for Arduino
Sensor 3
' (PIR Sensor) Arduino Shield for
i Raspberry Pi ARDUINO

Figure 1.1: Conceptual Diagram of Lab 1 Setup

In this lab, you will:
1. Verify your Arduino environment and upload an empty (test) sketch.

2. Connect and read data from a light sensor (analog) and a PIR motion sensor (digital).
3. Use a button with an integrated LED to switch between sensor modes.

4. Attach and control a servo motor based on sensor conditions.



22 Chapter 1. Micro-Controller Programming ®

Required Hardware Components

¢ Microcontroller board: Arduino Leonardo or Arduino Uno
¢ Grove Base Shield for Arduino
¢ Sensors:
— Light Sensor (A3 port) (analog output)
— PIR Motion Sensor (D2 port) (digital output)
¢ Actuators:
— Servo Motor (D5 port) (PWM required)
— LED Button (D3 port) (digital input + LED indicator)
USB Cable (Arduino to PC)

Important: Check the Base Shield Power: Make sure the small black switch on the
shield is set to SV if your sensors require 5V. Confirm the green LED on the base shield is
illuminated; if not, toggle the power switch on the shield’s bottom-left corner. (Some sensors
may work on 3.3V, but this lab assumes 5V.) u

A. Setting Up the Arduino Environment

1. Install or Open the Arduino IDE.
If you are using the lab machines, the Arduino IDE is preinstalled. Look for the Arduino
icon on the desktop or in your applications menu.
If you are working on your own computer, you can download and install the Arduino IDE
from https://www.arduino.cc/en/Main/Software.

— How to Install the Arduino Desktop IDE on your own computer. The Arduino
Software (IDE) allows you to write programs (called “sketches’) and upload them to your
board. At the Arduino website: https://www.arduino.cc/en/Main/Software, you
will find two main options:

Online IDE If you have a reliable Internet connection, consider using the Arduino Web
Editor. This option allows you to:

» Save your sketches in the cloud, so you can access them from anywhere.
* Always stay up to date with the latest IDE version and libraries.
* Avoid manual installation or compatibility issues on your computer.

Desktop IDE If you would rather work offline, or if your connection is limited, install
the latest version of the desktop IDE. You can download it for Windows, macOS, or
Linux.

* Windows users: Run the installer, or unzip the portable version if you prefer
no-install setups.
* macOS users: Drag and drop the Arduino application into your Applications
folder.
* Linux users: Extract the downloaded package and run the installation script or
use your distribution’s package manager (if available).
Once installed, launch the IDE to verify it opens without errors and recognizes your
board when connected.

2. Connect Arduino via USB and Select Board/Port.
Use a standard USB cable (type A to micro/mini/USB-C, depending on your board) to
connect your Arduino to the computer. Give the system a few seconds to recognize the
device.
In the Arduino IDE:


https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software

23

* Tools — Board — Arduino Leonardo (or select the correct board model if using an
Arduino Uno, Arduino Mega, etc.).
* Tools — Port — choose the COM port (Windows) or /dev/ttyUSB_n, /dev/ttyACM_n,
or /dev/cu.usbmodem_n (macOS/Linux) that corresponds to your Arduino.
This step ensures the IDE knows exactly what type of board you have and which serial port
to use when uploading sketches.

@ sketch_novl1da | Arduino 1.8.13
File Edit Sketch Tools Help

Auto Format Ctrl+T
Archive Sketch
sketch_nov14 Fix Encoding 8 Reload
void setup() Manage Libraries... Ctrl+Shift+l
/7 PEE VU sl Monitor Crb+Shift+ M
} Serial Plotter Ctrl+Shift+L
void loop(] 1 WiFi101 / WiFiNIMA Firmware Updater
/4 put yous Board: "Arduino Leonardo” Boards Manager...
} Port Arduing Yin
Get Board Info Arduino Une
Programmer: "AVRISP mkll* Arduino Duemilanove or Diecimila
Burn Bootloader dioiang

Arduino Mega or Mega 2360
Arduine Mega ADK

. Arduine Leonardo
Arduine Leonardo ETH

Figure 1.2: Configuring the Arduino IDE Board to Arduino Leonardo

&) sketch_novlda | Arduino 1.8.13
File Edit Sketch Tools Help

Auto Format Ctrl+T
Archive Sketch
sketch_novidz Fix Enceding & Reload
void setup() Manage Libraries... Ctrl+Shift+|
MPRE YRR il Manitor Crl+ Shift+ M
1 Serial Plotter Ctrl+Shift+L

void loopi) | WIFi101 / WiFiNINA Firmware Updater

/f put your

Board: "Arduino Leonardo” >
1 Port: "COM3 (Arduino Leonardo)” Serial ports
Get Board Info [¥ COM3 (Arduino Leonardo)

Programmer: "AVRISP mkll" »

Burn Bootloader

Figure 1.3: Selecting the Correct Port

. Upload an Empty Sketch for Testing.
Testing your setup with a simple, empty sketch confirms that the IDE can communicate with
the Arduino.
* Create a new sketch via File — New. This opens a blank template with two main
functions: setup() and loop().

* Click the Upload icon (.) to send this empty sketch to your Arduino.
* If the process completes with “Done uploading” and no errors, your board is correctly
set up and ready to run sketches.



24 Chapter 1. Micro-Controller Programming ®

— Why do this?. An empty sketch upload is a quick way to ensure the board and IDE
can communicate. If you encounter errors here, it is easier to troubleshoot before adding
any complex code.

4. (Optional) Checking Serial Port Issues.
Occasionally, your computer may not detect the Arduino board or may assign an unexpected
port name. If the IDE cannot detect your board/port:

* Windows Users: Open Device Manager and check under Ports (COM & LPT). Look
for “Arduino” or “USB Serial Device” and note the COM number.

* macOS/Linux Users: Open a terminal and type 1s /dev/tty.* (macOS) or 1s
/dev/ttyACM* (Linux) to see all available serial devices. The Arduino port usually
appears shortly after plugging the board in.

If still undetected:

* Try a different USB cable or USB port (some cables are charge-only, lacking data
lines).

* Restart the Arduino IDE after reconnecting the board.

* Ensure you installed any drivers that certain Arduino clones might require.

Tips: If you still see no port, check that your board is receiving power (the onboard LED
should be lit), and confirm your USB cable is not damaged. n

B. Hardware Assembly

5. Attach the Base Shield on the Arduino.
Carefully align the male pins from the underside of the Base Shield with the female pin
headers on the Arduino. Make sure you press gently and evenly so that the shield sits flush
on the board.
— Why do this?. The Base Shield makes it simpler to connect Grove-compatible
sensors and actuators without messy wiring. It has clearly labeled ports that correspond
to digital, analog, or I’C pins on the Arduino, minimizing wiring confusion.

6. Connect Your Sensors and the Button:
Use Grove cables to link each component to the corresponding labeled port on the Base
Shield.
* LED Button — D3 port
Align the four-pin connector on the LED button cable with the D3 port. Gently push it
in until it clicks.
* PIR Motion Sensor — D2 port
The PIR sensor is sensitive to movement; placing it on a digital port (D2) makes it
easier to detect HIGH/LOW motion signals.
* Light Sensor — A3 port
This sensor outputs an analog voltage that varies with light intensity, so connecting it to
an analog input (A3) allows the Arduino to read precise light-level values.

Tips: Ensure that each Grove cable is fully inserted. If the sensor or button does not
respond later in testing, double-check the connection or try re-seating the Grove cable. =

7. (Later) Connect the Servo:
After you confirm that your sensors and button work correctly, plug in the servo motor to DS,
which is a PWM-capable pin (supports Pulse Width Modulation).



25

— Why do this?. The servo is powered from the same supply as the Arduino; connecting
it last helps you focus on sensor debugging first. Using a PWM pin gives you finer control
over the servo’s angle.

C. Reading Sensors and Handling Events

8.

10.

11.

Obtain and Type the Example Sketch.

In the GitLab repository, locate 1ight_motion_button.ino. Rather than copying and
pasting, type the code manually to practice each line. This helps you fully absorb how
variables, functions, and libraries work together to read sensor data and handle user input.

— Why do this?. Typing the code by hand forces you to process each line and often
reveals smaller details—Ilike syntax, library calls, and variable names—that might be
missed when you copy and paste. This builds a stronger foundation for troubleshooting
and understanding code structure.

Verify and Upload the Sketch.

* Click the checkmark icon () to verify (compile) the code. Fix any typos or syntax
errors if they appear in the console.

* Then click the upload icon () to flash (upload) the compiled program to the board.
 After upload, the LED on the button should blink by default. When you press the button,
it switches from reading the light sensor to reading the PIR sensor.

Tips: If the LED on the button does not blink or the upload fails, re-check your board
selection (Tools — Board) and COM port (Tools — Port). Also ensure the USB cable is
firmly connected. u

Open the Serial Monitor.

Click the Serial Monitor icon (E) or go to Tools — Serial Monitor to view real-time sensor
readings.

— No Output in the serial monitor?. If you are able to open "Serial Monitor" but there
is no output, make sure the Base Shield is properly.
Check the '"Green'' light The LED on base shield must be illuminated in green colour
like shown in figure 1.4
Turn on ""Base Shield' If there is no illuminated green light on base shield then switch
the black button found on the bottom left of base shield as shown in figure 1.4.

Testing the Sensors.

* Press/hold the button: The code switches from reading the light sensor to reading the
PIR motion sensor. Release the button to switch back.

» Light Sensor: Cover or shine a light on the sensor to change the analog reading
in the Serial Monitor. The closer you cover it, the lower the value; the brighter the
environment, the higher the value.

¢ PIR Sensor: Wave your hand in front of it or walk in front of the sensor. You should
see a digital “HIGH” or “Motion Detected” printout when movement is sensed.

Calibrating the Light Sensor If your environment is extremely bright or dim, you
may need to adjust thresholds in your code. For instance, you might change:


https://gitlab.com/IOTGarage/iot-lab-book.git

26 Chapter 1. Micro-Controller Programming ®

if (lightValue < 200) {
// it’s quite dark
}

Print out the 1ightValue using Serial.println(lightValue) to see actual numbers
and set thresholds that make sense for your lab conditions. "

12. Final Setup Example.
Figure 1.4 shows a reference layout of the light sensor, PIR motion sensor, and LED button
connected to the Base Shield.

Figure 1.4: Final Setup: Light Sensor, PIR Sensor, and LED Button on Base Shield

13. Sample Serial Monitor Output.
If everything is wired and programmed correctly, your Serial Monitor will display a continu-
ous stream of sensor readings, as in Figure 1.5.



27

€ coms - O X

| Send

Dark ~
Dark
Light
Light
Light
Light
Dark
Dark
Dark
Movement
Watching
Watching
Dark
Dark
Watching
Watching
v

Autoscroll [ Show timestamp MNewline ~ | 9600 baud w Clear output

Figure 1.5: Serial Monitor readings for Light/PIR

D. Incorporating the Servo Motor

13. Connect the Servo (DS port).
Plug the servo’s three-wire cable (signal, VCC, ground) into the DS port on the Base Shield.
If your servo cable does not have a Grove connector, ensure the pin order matches the shield’s
pin labeling (SIG to servo signal, VCC to servo power, GND to ground).
Next, download or open servo_example.ino from the same GitLab repository. This
example sketch typically initializes the servo and sweeps it through a range of angles. Upload
it to verify that the servo can move freely.

Tips: If the servo does not move or makes jittering noises:
* Double-check that the SIG, VCC, and GND wires are correctly aligned.
* Some servos may require slightly higher current. Ensure your Arduino is powered
via USB and (if needed) an external power supply on the barrel jack.
e If you see random movements, try adding a short delay(100) after each angle
command.

14. Observe the Servo.
With the servo_example. ino running, look for any movement as the code updates the
servo angle. You can also integrate it with the LED button or existing sensors:
* LED Button Integration: Pressing the button might trigger a specific angle, e.g., 180°
for “lock” or 0° for “unlock.”
* Sensor-Driven Behavior: If the code is monitoring the PIR or light sensor, it can
instruct the servo to rotate to a certain angle whenever motion is detected or when the
light reading crosses a threshold.

— Why do this?. Linking sensors to a servo actuator demonstrates how real IoT devices
respond to environmental changes. For instance, a locked door can open automatically
when light levels are adequate, or a motion sensor triggers the servo for a security function.

15. Refine Your Code.
As you combine the servo with other components, consider:
* Create helper functions: For instance, void moveServoTo(int angle){...} can
help keep the loop() clean and readable.



28 Chapter 1. Micro-Controller Programming ®

e Use Serial.println(): Print out the servo angle or relevant sensor values. This
helps with debugging and confirms that your logic (e.g., “Move to 180° if motion is
detected”) is being executed.

* Manage Timing: If the servo should only move once every few seconds, consider
using delay () or track elapsed time withmillis().

Tips: If your code becomes crowded, separate it into sections: one for sensor handling,
one for servo actions, and one for user interface (LED button). This modular approach
eases troubleshooting. C

16. Optional Use-Case: “Door Control”
Imagine the servo shaft is attached to a mini “door” or latch:
* Ifit’s dark OR the PIR sensor detects motion, rotate the servo to 180° (fully closed).
* Delay or Timer: Add delay(10000) (10 seconds) to keep it closed, then move it back
to 0° if you want it to re-open automatically.
* Combine with a Buzzer or LED for additional feedback, e.g., beep when the door
closes.
This scenario simulates a security or privacy feature and showcases how multiple sensors
and actuators can work together.

Measuring Success
* Blinking LED Button: By default, the LED on the button blinks, and stops blinking
while pressed.
* Sensor Readings: The Serial Monitor updates with readings from both the light sensor
(analog) and the PIR motion sensor (digital).
* Servo Motor Control: The servo correctly rotates (0°~180°) based on sensor events or
button press logic.

— Further Reading

* Grove Sensors Overview:
http://wiki.seeedstudio.com/Sensor/

* Arduino Programming Tutorials:
https://www.arduino.cc/en/Tutorial/HomePage

* Deeper Sensor Theory:
https://learn.sparkfun.com/tutorials/sensors

* Advanced PWM and Servos:
https://www.arduino.cc/en/Reference/Servo

Theory Deep Dive: Underlying Principles and Concepts

This section explores the key theoretical concepts related to microcontroller-based projects.
By understanding these fundamentals, you will gain deeper insights into how sensors,
actuators, and event-driven logic come together in embedded systems and the Internet of
Things (IoT).



http://wiki.seeedstudio.com/Sensor/
https://www.arduino.cc/en/Tutorial/HomePage
https://learn.sparkfun.com/tutorials/sensors
https://www.arduino.cc/en/Reference/Servo

29

A. Microcontroller Basics

A microcontroller (e.g., the ATmega32U4 or ATmega328P used on Arduino boards) is a
compact integrated circuit designed to execute simple, dedicated tasks:
* CPU Core: Executes program instructions stored in internal Flash memory.
* RAM: Used for temporary data while running the program.
* GPIO (General-Purpose Input/Output) Pins: Allow connection to sensors, actua-
tors, LEDs, and more.

A.1 Key Differences From Single-Board Computers

Unlike a Raspberry Pi (which runs a full operating system), a microcontroller typically:
* Runs “bare-metal” code: No multi-user OS.
* Limited clock speed and memory: For example, 16 MHz clock, 2kB RAM.
* Boots almost instantly and focuses on real-time responsiveness.

A.1.1 Why Use a Microcontroller?
* Real-Time Control: Quick, deterministic responses to sensor inputs and hardware
events.
* Low Power Consumption: Great for battery-powered or low-energy applications.
* Simplicity: Less complex than running a full OS; quick to set up, straightforward to
deploy.

B. Sensor Interfacing and Signal Types

In this lab, you worked with a light sensor (analog) and a PIR metion sensor (digital).
Microcontrollers can handle both analog and digital signals:

B.1 Analog Signails: Light Sensor

An analog signal can vary continuously over a range (e.g., 0-5 V). The Arduino includes an
Analog-to-Digital Converter (ADC) on certain pins (A0, A1, etc.) to convert the voltage
to a digital value:
* 10-bit Resolution: Arduino Uno/Leonardo map 0-5V to an integer range 0-1023.
* Light Sensor Output: More light — higher voltage — higher ADC reading.

B.1.1 Calibration and Thresholds
» Calibrate: Observe raw ADC readings in different lighting conditions (very dark vs.
brightly lit).
* Set a Threshold: Decide at which reading the environment is “dark” or “bright.” For
instance, if (lightValue < 200) might indicate darkness.

B.2 Digital Signals: PIR Motion Sensor
A PIR (Passive Infrared) sensor detects abrupt changes in infrared radiation (e.g., a person
moving). It outputs either:

¢« LOW (0V): No motion detected.

e HIGH (5V): Motion detected.

B.2.1 How PIR Works
* Pyroelectric Element: Generates a small charge when the IR level changes.
* Fresnel Lens: Broadens the detection area, focusing IR onto the sensor.




30

Chapter 1. Micro-Controller Programming ®

* Internal Circuitry: Interprets the signal and outputs a digital HIGH upon motion
detection.

C. Event-Driven Programming and Code Structure

Event-driven programming means the system reacts to specific “events” (button presses,
sensor triggers) rather than running everything continuously in a single loop. While Arduino
code typically uses a 1oop (), you can mimic event-driven behavior by checking conditions
each cycle:
* Button Press Event: Switch from reading the light sensor to reading the PIR sensor.
* Motion Detected: If PIR is HIGH, take an action (e.g., move the servo).

C.1 Handling Multiple Sensors
Inside the 1oop (), you might see:
* Check Light Value: Store in a variable, compare to a threshold.
* Check PIR Output: If digitalRead (PIR_pin) == HIGH, set a flag or trigger an
action.
* Button State: If pressed, switch your “mode” or logic branch.

C.1.1 Avoiding Delays
* delay() can block reading sensors in real time. Consider using short delays or a
non-blocking approach (e.g., usingmillis()).
* Responsive Systems often rely on quickly cycling through loop () to catch events
promptly.

D. Controlling Actuators: Servo Motors

A servo motor can rotate to a specified angle (e.g., 0°~180°). Arduinos use PWM (Pulse
Width Modulation) to send control signals:
» Standard Servos: Typically interpret a 1-2 ms pulse within a 20 ms frame (50 Hz).
— ~1.0ms pulse — 0°
— ~1.5ms pulse — 90°
— ~2.0ms pulse — 180°
* Servo Library in Arduino simplifies generating these precise pulse widths.

D.1 Example Use Cases
* Automated Door: Rotate servo to 180° if motion is detected or if it’s dark.
* Indicator Arm: Point an attached arrow or dial to indicate sensor readings (e.g.,
“safe” vs. “danger”).

D.1.1 Avoiding Jitter
» Stable Power: Servos draw current surges; ensure enough power supply or use an
external supply if needed.
* Smooth Movement: Gradually move the servo by small increments with short delays
if abrupt motion is undesirable.

N




31

E. Putting It All Together: Example Workflows

* Initialize Pins and Libraries: In setup (), configure pin modes for the light sensor,
PIR sensor, button, and servo.

* Loop Processing: Continuously read sensor values, check button state, and condi-
tionally set servo angles.

* Debugging via Serial Monitor: Print sensor readings and servo positions to Serial
for real-time feedback.

* Calibration and Refined Thresholds: Adjust code as needed based on real sensor
data (light levels, PIR responsiveness).

E.1 Testing Strategy

* Step-by-Step: Test each component individually (light sensor reading, PIR detection,
Servo Ssweep).

* Integration: Combine sensor logic and servo control once each element works
independently.

* Troubleshoot: If servo twitches erratically, check power. If PIR triggers too often,
ensure no direct drafts or vibrations.

F. Further Extensions and Real-World Considerations

* Buzzer or LED Alerts: Add an audible or visual indicator when motion/light crosses
thresholds.
» Data Logging: Store sensor values over time to detect patterns or run basic analytics
(e.g., how often motion is detected at night).
* Power Optimization: If battery-powered, reduce sensor polling rate or use sleep
modes to prolong battery life.
* Shield Compatibility: Different shields may have alternate pin mappings for sensors;
always double-check documentation.
By exploring these topics, you enhance the functionality of your microcontroller projects,
bridging the gap from simple demos to robust IoT solutions.

Final Note.

Understanding microcontroller architecture, analog/digital signals, event-driven pro-
gramming, and PWM control is fundamental. By applying these concepts, you are well
on your way to designing more advanced, creative, and reliable embedded systems. Ex-
perimentation and iterative testing will be your best guide as you refine and expand your
projects.







Cheicc o RaN

M CRO BN PORTS ‘\ se3
Suppe & O py U 2

RospberryPi

(2. Single-board Computer Programming ®

Objective

* Learn how to program a Single-board Computer (Raspberry Pi model 4B with 4GB RAM)
* Learn how to read data from multiple sensors

* Learn how to program actuators (e.g., a buzzer)

* Learn how to program a display (LCD)

Lab Plan

Single-board Computer
(Edge | Gateway Node)

Sensor 4 Sensor 5
(Temperature (Ultrasonic
and Humidity) Ranger)

C N )
\IJ \IJ
GrovePi+
Raspberry Pi 4
s L \
Display
Actuator 2 ; (LCD RGB
(Buzzer) Backlight)

In this lab, we will:



34

Chapter 2. Single-board Computer Programming @

A

Set up a Raspberry Pi with Grove Pi+ and verify that all sensors are detected.

Use Node-RED to run Python scripts (via the daemon node).

Read data from a Temperature & Humidity sensor and an Ultrasonic Ranger.

Display sensor data on an LCD screen.

Trigger a buzzer when certain conditions are met.

Complete an optional use-case scenario (“Cat in the Kitchen”) to tie everything together.

Required Hardware Components

» Raspberry Pi

* Grove Pi+

* Grove sensors: Ultrasonic Ranger, Temperature & Humidity sensor
* Buzzer

* LCD Backlight Display

* SD Card with OS installed (Raspberry Pi OS)

* Display and HDMI cable

* Keyboard and mouse

* Power supply

A. Setup of the Raspberry Pi

1. Insert the SD card into the SD card slot.

This microSD card is preloaded with the Raspberry Pi OS (operating system). Gently push it
into the card slot on the underside of the Pi until it clicks into place.

— Why do this?. The SD card contains the Pi’s operating system and all required files
to boot. Without it, the Pi cannot start up or run the lab environment.

2. Connect Peripherals (but do not power yet):

* Keyboard & Mouse: Plug these into any available USB ports on the Pi.

* Monitor: Use a micro HDMI to HDMI (or DVI) cable to attach your Pi to a display.
This allows you to see the desktop and operate the Pi using its GUL

* Important: Do not apply power to the Pi yet. You will do this after confirming all
other connections.

Tips: If you have a Raspberry Pi 4, you may have two micro HDMI ports. Usually, the
left port (when the USB-C power is on your right) is the primary display port. If you see
no display after powering on, try the other port. u

3. Attach Grove Pi+ to your Raspberry Pi.

Align the Grove Pi+ board’s 40-pin connector with the Pi’s GPIO header. Apply gentle
pressure so it sits securely without bending pins.

— Why do this?. Grove Pi+ provides convenient Grove ports (D, A, I?C) that map
to the Pi’s GPIO pins. This simplifies sensor and actuator connections, reducing wiring
complexity.

4. Connect Sensors to Grove Pi+ as shown below:

* LCD Backlight — I12C-2 port
This display uses I’C communication, so it must be plugged into an I12C port for data
and power.



35

¢ Temperature & Humidity Sensor (DHT) — D4 port

This digital sensor reads environmental data and sends it on a single pin (D4).
 Ultrasonic Ranger — D3 port

The ultrasonic module calculates distance by sending a ping and measuring its echo.
* Buzzer — D8 port

A digital pin (D8) can drive the buzzer to create various tones or alarms.

Confirm the cables click snugly into the Grove ports. If a sensor does not respond
later, recheck you inserted it into the correct numbered port.

5. Power on the Raspberry Pi.
Connect the Pi’s power supply (USB-C or micro USB, depending on your model). You
should see a red LED illuminate, indicating the Pi has power. The monitor should display a
boot sequence with small “raspberry” icons.

6. Connect to Wi-Fi.
After the desktop finishes loading:
* Click the network icon (top-right corner of the desktop) to select and join a Wi-Fi
network.
* Alternatively, open a terminal and run sudo raspi-config, then navigate to Network
Options — Wi-Fi.

7. Check Date and Time.
If your Pi’s clock is off, adjust it via the top menu bar or using the raspi-config tool
(detailed in Chapter 17). Having an accurate clock is crucial for logging sensor data and
authenticating with certain network services.

8. Enable I12C (if not already).
Click the Raspberry icon & | go to Preferences — Raspberry Pi Configuration — Inter-
faces and enable /2C. Reboot if prompted.

— Why do this?. The Pi’s I2C interface is disabled by default for security and resource
reasons. Many Grove modules (LCD displays, some sensors) communicate via I12C, so
enabling it is essential to allow the Pi to detect them.

9. Verify GrovePi+ via i2cdetect:
In a terminal window, type:

sudo i2cdetect -y 1

If you can see 04 in the output (similar to Figure 2.1), the Pi successfully detects the GrovePi+
board. Figures 2.1a and 2.1b show expected addresses for LCD versions 4.0 or 5.0.

pi@raspberrypi

pi@raspberrypi
e 1 2 3 4
-0

(2) LCD v4.0 (b) LCD v5.0

Figure 2.1: Verifying GrovePi+ Connection for different LCD versions



36 Chapter 2. Single-board Computer Programming @

Tips: 04 typically indicates the GrovePi+ device address. If you have multiple devices
on the 12C bus, you may see other addresses. For example, an I12C LCD might show up
around 3e or 3f. L

10. If you DON’T see 04:

* Reseat the GrovePi+ board and run i2cdetect -y 1 again.
« If it still doesn’t appear, update and reboot:

i bash <(curl —-sL https://raw. githubusercontent.com/node—red/linux —
installers/master/deb/update —nodejs—and—-nodered)

> curl —kL dexterindustries .com/update_grovepi | bash

3 sudo reboot

— Why do this?. The above scripts update Node-RED and the GrovePi+ firmware,
which can fix certain compatibility issues. If you still do not see address 04 after rebooting,
there may be a hardware fault or a deeper configuration issue.

B. Programming with Node-RED

11. Download the dht.py Script
Access the GitLab repository at this link. Save the file dht . py into your /home/pi directory
on the Raspberry Pi.
— Why do this?. This Python script reads temperature and humidity data from the DHT
sensor. Saving it in /home/pi (the default home directory) makes it easy to reference in
Node-RED or other scripts without navigating complex file paths.

12. Make the Python script executable.
1 sudo chmod 755 dht.py

This command grants execution permissions, allowing Node-RED or any user to run the
script directly (e.g., via . /dht.py or python3 dht.py).

— Different Sensor? (DHT20). Plug-in I2C Port: If you have the black DHT20 sen-
sor, it uses the I>C protocol. Connect it to an I’C port (e.g., 12C-1) on GrovePi+
instead of a digital port like D4.

Download Script: In the GitLab repository, look for dht20. py instead of dht. py.
Change File Permissions: Be sure to run:

1 sudo chmod 755 dht20.py

Adjust Code: If your Node-RED flow points to dht . py, rename references to dht20. py.

(a) DHT11 (Digital Signal) (b) DHT20 (12C)

13. Check npm Version (Optional).

I npm -V


https://gitlab.com/IOTGarage/iot-lab-book/-/blob/master/LAB%2002%20-%20Single-board%20Computer%20Programming/dht.py

37

If the version number is below 6, you may need to re-run the update steps from the previous
lab section to upgrade Node.js and npm. Outdated versions can cause compatibility issues
with certain Node-RED nodes or libraries.

14. Starting Node-RED.
From the Raspberry Pi’s desktop:
¢ Click the Raspberry menu (top-left corner) — Programming — Node-RED, or
* Open a terminal and type:

1 node-red

A new terminal window titled Node-RED console indicates the Node-RED server is launch-
ing.

Programming {’;. BlueJ Java IDE

W

.-q_
(3 Education

& Office >

twed ) Geany Programmer's Editor

* Greenfoot Java IDE

@ ntemet > @ mu

TY sound & video > &S Node-RED

? Graphics > ™ Scratch

Al Games > Scratch 2

k‘;l\ Accessones > Sense HAT Emulator
@ Help . Sonic Pi

E Thonny Python IDE

Figure 2.3: Starting the Node-RED service from the Pi Menu

— Why do this?. Node-RED is a flow-based development tool, ideal for IoT projects.
By running it locally on the Pi, you can visually wire together hardware inputs (sensors),
logic nodes, and outputs (e.g., LCD or cloud services) without having to write lengthy
code.

15. Node-RED Console and Local Server.
When Node-RED finishes starting, you’ll see status messages (like “Server now running at



38 Chapter 2. Single-board Computer Programming @

http://127.0.0.1:1880”) in the console. Open a web browser on the Pi (e.g., Chromium) and
navigate to:

http://localhost:1880

This is the Node-RED flow editor interface. You can ignore non-critical warnings in the
console, such as missing optional libraries.

16. Clean the Workspace and Deploy Once.
The editor may have sample nodes or flows from previous sessions. Remove any unwanted
flows or nodes:
 Select nodes, press Delete, or click the menu icon to remove entire flows.
* Click the red Deploy button (top-right). This saves your changes and initializes a fresh
workspace for your project.

17. Install node-red-node-daemon if Not Present.
In the flow editor, click the menu icon & (top-right corner) and select Manage Palette as
shown in Figure 2.4. Then:
* Install tab: Search for node-red-node-daemon.
* If it’s missing, click Install.
» Wait for the installation to complete before closing the window or redeploying.

Manage palette

Settings

Figure 2.4: Manage Palette to Install Additional Nodes

18. Add and Configure the Daemon Node.

* Locate the daemon node in the left panel (it may appear under “function” or “advanced”
categories).
* Drag it onto the workspace.
* Double-click the daemon node to open its properties (Figure 2.5):
— Command: python3
— Arguments: -u /home/pi/dht.py
(-u for unbuffered, ensuring real-time output in Node-RED.)
— Auto-start: Check “Start daemon on deploy” if you want the script to run each
time you click Deploy.

19. Connect a Debug Node.

* Drag a debug node from the left palette onto the workspace.


http://localhost:1880

%ﬂ- Properties

I Command python3

-
= Arguments

39

-u fhome/pifdht py
Auto-start daemon on deploy ?

(0 Add [enter] to every message sent ?

Relaunch command on exit or error ?
and format reply as a string A
on close kill process immediately
¥ Name

Note: The command should just be the actual command. All parameters
should be passed in as arguments.

Figure 2.5: Configuring the daemon Node with python3 -u /home/pi/dht.py

» Connect its input (the left side of the debug node) to the daemon node’s output (the
right side of the daemon node), forming a single wire between them.
helping you verify sensor readings.

* This debug node will display the temperature and humidity data that dht.py prints,
python3

s |
Figure 2.6: Simple Flow with a Daemon Node Feeding a Debug Node
20. Deploy and Observe.

Click Deploy again. In the right-hand panel of the Node-RED editor, click the Debug tab
to watch real-time output.

If everything is correct, dht . py will stream temperature/humidity data, as shown in Fig-
indicate a missing script or incorrect path.

ure 2.7. Any issues or error messages (e.g., “Command not found” or “No such file”’) may
Tips: If no data appears:

* Verify /home/pi/dht . py actually exists and is executable (chmod 755).

* Confirm the DHT sensor is on the correct port (D4 by default in the script) and
well-seated on GrovePi+.

outside Node-RED.

e Try running python3 /home/pi/dht.py in a terminal to check if it prints readings
21. Remove Connection, Re-Deploy (Optional).

If you want to stop the console from filling with data but keep the daemon running:
Debug panel.

* Click the wire between the daemon node and the debug node, then press Delete.
* Click Deploy again. The script will still run, but its output no longer routes to the



40 Chapter 2. Single-board Computer Programming @

i debug "
- &

b { temperature: 21.5, humidity:
64, heatIndex: 21.12 }

b { temperature: 21.5, humidity:
i hoot+T nioy* 749 1
od eatindex: 21.12 ;

¢ { temperature: 21.5, humidity:
R -4 1
54, heatIndex: 21.12 }

¢ { temperature: 21.5, humidity:
64, heatIndex: 21.12 }

Figure 2.7: Debug Window Showing Temperature/Humidity Values

— Why do this?. Large volumes of data can clutter the debug panel, making it hard
to read other messages. Temporarily removing or disabling the debug connection is a
convenient way to silence continuous output.

C. Creating a Thermometer with Display

20. Download 1cd.py
From the GitLab repository, locate and download 1cd.py, placing it in your /home/pi
directory. This script displays temperature data on the Grove-LCD RGB Backlight.

— Why do this?. Unlike the dht . py script, which only outputs readings to the con-
sole, 1cd.py showcases these readings on a physical LCD display. It provides a visual
thermometer-like experience and is helpful for quick, real-world feedback without needing
to open a serial monitor or debug window.

21. Make 1cd.py Executable.
1 sudo chmod 755 lcd.py

This step grants run permissions so that Node-RED (or any user) can execute 1cd. py directly.

— No output or error reading temperature?. Are you using a different screen or
sensor? For instance, Grove-LCD RGB Backlight V5.0 instead of V4.0, or a DHT20
sensor rather than DHT11?

What Happened? The 1cd.py script is tailored for a DHT11 sensor on an LCD v4.0.


https://gitlab.com/IOTGarage/iot-lab-book.git

41

Using different hardware might result in missing or incorrect data.

Download Look for dht#_1lcd#.py in the GitLab repository that matches your exact
hardware combination (e.g., DHT20 sensor and LCD v5.0).

Change Access Control After saving the correct file name, apply chmod 755 so it be-
comes executable.

Example For LCD v5.0 with a DHT20 sensor, you might need dht20_1cd5. py.

Grove-LCD RGB Backliaht
V5.0

op——V ©
(a) LCD version 4.0 (b) LCD version 5.0

Figure 2.8: Different versions of the LCD

22. Configure the Daemon Node.

In Node-RED, open your existing daemon node’s properties and replace:
* Command: python3
* Arguments: -u /home/pi/dht.py

with:
e Command: python3
* Arguments: -u /home/pi/lcd.py

Then click Deploy once more to apply these changes.

Tips: If you want to switch between dht . py (console-only) and 1cd.py (LCD output),
consider creating two daemon nodes in Node-RED. Simply enable the one you need by
connecting it to a debug node or relevant logic. u

23. Check the LCD.
If everything is wired correctly:
* The LCD’s backlight should illuminate.
» Temperature (and possibly humidity) values should scroll or update on the display.
» If you see no changes, verify that the LCD is plugged into 12C-2 (or an I>C port) and
confirm lcd. py references the correct pins or addresses.

— Why do this?. Displaying data on an LCD provides a tangible, user-friendly read-
out—ideal for standalone devices. You can keep an eye on temperature/humidity levels
without needing a laptop or additional serial terminal.

D. Programming Buzzer and Ranger

24. Download buzzerRanger . py.
Navigate to the GitLab repository and save buzzerRanger . py to your /home/pi directory.

— Why do this?. This Python script demonstrates how to read distance values from
the ultrasonic ranger and control the buzzer accordingly. Storing the file in /home/pi
keeps it consistent with other lab scripts (e.g., dht.py, 1cd.py) and makes it easy for
Node-RED to locate.


https://gitlab.com/IOTGarage/iot-lab-book/-/blob/master/LAB%2002%20-%20Single-board%20Computer%20Programming/buzzerRanger.py

42 Chapter 2. Single-board Computer Programming @

25. Make it Executable.
1 sudo chmod 755 buzzerRanger.py

This command ensures the script has the necessary permissions to run when called by
Node-RED or via a terminal.

26. Change Daemon Node to buzzerRanger . py.
In your Node-RED workspace:
* Double-click the daemon node you used for 1cd. py.
e Command: python3
* Arguments: -u /home/pi/buzzerRanger.py
* Click Done, then Deploy.

Tips: TIf you want to preserve your thermometer code, you can duplicate the daemon
node:

* One daemon runs 1cd.py (for temperature display).

* Another daemon runs buzzerRanger . py.
Simply link or unlink each daemon to a debug node as needed. u

27. Observe Node-RED Debug.
Open the Debug panel in Node-RED:
* The console should show ultrasonic distance values in centimeters.
* If the distance reading drops below 10 cm, the buzzer will start beeping.
* Wave an object (e.g., your hand) closer or farther to test the buzzer’s activation threshold.

— Why do this?. Visualizing distance in Node-RED while simultaneously hearing
buzzer feedback offers a clear demonstration of how sensor data can trigger immediate
real-world actions. This pattern—reading a sensor, applying logic, and activating an
actuator—is fundamental to most IoT applications.

E. Use Case Scenario (Optional): “Cat in the Kitchen”

28. Scenario Overview:
You’re cooking dinner, and your curious cat keeps approaching the oven. To prevent accidents,
you want an alert that escalates as the cat gets closer:

* Discrete Buzzer Tone: If the cat is within a moderate range (e.g., 20-30 cm), the

buzzer beeps briefly every 2 seconds.

* Continuous or Rapid Beep: If the distance is below 10 cm, the buzzer stays on or

beeps rapidly.

* LCD Display: Show both temperature and distance values in real time.

— Why do this?. This scenario ties together sensors (ultrasonic ranger for distance
and DHT for temperature) and actuators (buzzer, LCD). It simulates a safety or alert
mechanism often found in real-world IoT systems—providing visual and audible feedback
based on sensor thresholds.

29. Modify buzzerRanger.py:
* Integrate new logic to read the ultrasonic distance. Use conditional statements to:
— Beep Interval: If distance is, say, 20-30 cm, play a short beep every 2 seconds
using time.sleep(2).
— Rapid Beep/Continuous Tone: If distance < 10cm, run the buzzer in a loop
without delay or with a very short pause (e.g., 0.1 s).



43

* Print/log the distance so Node-RED’s debug tab displays how close the cat (or your
hand) is.

* Optional: Incorporate the temperature reading (from dht . py or a combined script) so
that your script can display and react to temperature as well.

Tips:
¢ If you need both temperature and distance simultaneously, merge buzzerRanger . py
and 1cd.py into one script. Read both sensors, then decide on buzzer behavior and
LCD output within the same Python file.
* Use non-blocking techniques (e.g., time.time () checks or threading) if you need
the buzzer to beep repeatedly while still reading new sensor data.

30. (Optional) Additional Features:
Feel free to extend this scenario with even more IoT functionality:

* Notifications: In Node-RED, add an email or SMS node to send you a warning if the
distance remains too close for a prolonged period (e.g., 30 seconds).

* Complex Triggers: Combine temperature readings with distance thresholds. For
instance, if the oven temperature is above a certain level and the cat is under 10 cm
away, trigger a louder alarm or flash an LED.

» Data Logging: Send distance and temperature data to a database or cloud platform so
you can analyze patterns over time.

Measuring Success

* Sensor Data in Node-RED: You can see output from your Python scripts (e.g., dht . py,
buzzerRanger . py) in the Node-RED debug tab.

¢ LCD Updates: The 1cd.py (or your hardware-specific script) displays temperature (and
humidity, if configured) on the LCD screen.

* Buzzer Behavior: The buzzer rings when the ultrasonic reading is below 10 cm. Adjust
thresholds in your script to see different beep patterns.

* Optional Use-Case Logic: In the “Cat in the Kitchen” scenario, your code should produce
a discrete or continuous beep based on the distance, and display the distance on the LCD.

— Further Reading
* Node-RED Docs:
https://nodered.org/docs/
* Raspberry Pi:
https://www.raspberrypi.org/

Theory Deep Dive: Underlying Principles and Concepts

This section explores additional theoretical underpinnings of the hardware and software
used in this lab. By understanding these fundamentals, you will build a stronger foundation
in single-board computer (SBC) projects and gain insight into how operating systems, digital
interfaces, sensors, and actuators come together in the Internet of Things (IoT).



https://nodered.org/docs/
https://www.raspberrypi.org/

44

Chapter 2. Single-board Computer Programming @

A. Single-Board Computer (SBC) Basics

A Single-Board Computer (SBC), such as the Raspberry Pi, is a full computer built on
a single circuit board. Unlike a simpler microcontroller (e.g., Arduino), an SBC typically
offers:
* More powerful CPU: Often an ARM processor capable of running Linux or other
full operating systems.
* Larger RAM: Raspberry Pi 4B can have 2 GB, 4 GB, or even 8 GB of RAM.
* Storage via SD card or eMMC: SBCs rely on microSD cards (or built-in eMMC) as
their “hard drive.”
¢ Ports and Connectivity: USB, HDMI, Ethernet, Wi-Fi, and Bluetooth for versatile
peripherals and network access.

A.1 Comparing SBCs and Microcontrollers

It is useful to understand how SBCs differ from traditional microcontrollers:

* Operating System: SBCs typically run a full OS (e.g., Linux), while microcontrollers
run “bare metal” or a lightweight RTOS.

* Development Environment: You can program an SBC using Python, Node.js,
C++, etc., directly on the board. Microcontrollers often require cross-compilers and
specialized toolchains.

* Performance vs. Real-Time: SBCs have higher processing power and memory, but
microcontrollers sometimes offer more predictable timing for hard real-time tasks.

A.1.1 Boot Process and System Resources
When you power on a Raspberry Pi:

1. The GPU firmware (stored on the SD card) initializes basic hardware.

2. The bootloader loads the Linux kernel into memory.

3. Linux starts system services and user programs (e.g., desktop, Node-RED).
This multi-stage boot is more complex than a microcontroller, which typically jumps directly
to user code after a simple reset routine. However, the OS on an SBC provides advanced
features like multitasking, file systems, and networking that ease IoT development.

B. Linux OS and Node-RED Basics

A Raspberry Pi typically runs a Linux-based operating system (e.g., Raspberry Pi OS). Basic
Linux skills are crucial for:
* Package Management: Installing or updating software using apt-get or apt.
* File System Hierarchy: Familiar directories like /home/pi, /etc, /usr, etc.
* Processes and Permissions: Linux manages multiple programs (processes) simulta-
neously; sudo grants administrative privileges.

B.1 Node-RED Overview

Node-RED is a flow-based tool for visually wiring together hardware devices, APIs, and
online services:
* Based on Node.js: Written in JavaScript, installable via npm.
* Browser-Based Editor: Accessed at http://localhost: 1880 on the Pi.
* Palette of Nodes: Includes input nodes (e.g., daemon), output nodes (debug), and
function nodes for custom logic.

N



http://localhost:1880

45

B.1.1 Event-Driven vs. Polling Approaches
Many Node-RED flows are event-driven, meaning nodes react to incoming messages
(events) rather than constantly polling hardware in a tight loop. This is especially useful
when integrating multiple sensors and actuators:
* Efficiency: The flow remains idle until new data arrives.
* Scalability: Additional sensors can be added as new event-driven nodes without
drastically changing the rest of the system.

C. Digital Communication and 12C

I2C (Inter-Integrated Circuit) is a two-wire interface commonly used in SBC and microcon-
troller projects:
¢ SDA (Data) and SCL (Clock): These two lines allow communication between a
master (Raspberry Pi) and multiple slaves (sensors, displays).
* Addresses: Each I12C device has a unique 7-bit address (e.g., 0x04 for Grove Pi+).
* Bus Speeds: Standard mode (100 kHz), Fast mode (400 kHz), among others.

C.1 Sensor Interfacing: Temperature & Humidity, Ultrasonic

Temperature & Humidity Sensors (DHT11, DHT20):
* DHT11: Uses a single-wire protocol. Typically connected to a digital port (e.g., D4
on Grove Pi+).
* DHT20: Communicates via I2C. Plugged into an 12C port (I2C-1 or 12C-2).
* Measurement Principle: Often use a humidity-sensitive capacitor and an NTC
thermistor, converting analog changes into a digital signal.
Ultrasonic Ranger:
* Sends out a 40 kHz pulse and measures the echo return time.
* Distance = (speed of sound) x %2“”‘6
» Environmental factors (temperature, humidity) can slightly affect the speed of sound.

C.1.1 Practical Considerations
¢ Minimum Ranges: Ultrasonic sensors often cannot detect objects closer than 2-3 cm
accurately.
* Max Range & Cone Angle: The beam spreads out with distance, so small objects
might not always reflect properly.
* Noise or Interference: Multiple ultrasonic sensors used simultaneously may interfere
with each other’s signals.

D. Actuators: Buzzer and LCD

Actuators convert electrical signals into physical outputs. In this lab, you used:
* Buzzer: A piezo element that emits a tone when driven with a digital or PWM signal.
* LCD Display: An I2C-driven screen (e.g., Grove-LCD) for showing sensor values or
status messages.

D.1 Buzzer Basics

A simple piezo buzzer typically:
* Generates an audible beep when a voltage is applied.
* Allows for varying beep patterns by toggling HIGH/LOW with short delays or using
PWM for different tones.




46

Chapter 2. Single-board Computer Programming @

D.1.1 Why Use a Buzzer?
* Alerts and Alarms: Quickly notifies the user if a threshold is exceeded (e.g., distance
< 10cm).
* Immediate Feedback: Helps catch attention even if the user isn’t looking at the
screen.

D.2 LCD Display Basics

An LCD (Liquid Crystal Display) with an I2C interface:
* Receives text commands (e.g., “Temp: 25 °C”) via the 12C bus.
* Some models have RGB backlights allowing color changes (alert modes, neutral
modes, etc.).
* Only requires two main wires (SDA, SCL) plus power pins, freeing up GPIO for other
uses.

E. Automating Logic: Event-Driven Scripts in Python and Node-RED

While the Raspberry Pi can directly run Python scripts, combining Python with Node-RED
offers a more robust event-driven system:
* Daemon Node: Launch Python scripts from Node-RED and capture output in real
time (stdout).
* Flow Logic: Connect different nodes (e.g., debug, switch, function) to handle
sensor data or implement complex conditions.
* Integration: Link your scripts to web services, mobile notifications, or local displays
for a complete [oT pipeline.

E.1 Python Essentials for Sensor/Actuator Control

* Libraries: Many Pi projects use RPi.GPIO or custom libraries (like GrovePi) to
read/write pins.

* Time Module: time.sleep() for delays in beeps or reading intervals.

* Exception Handling: Use try/except to gracefully handle sensor read errors or
missing hardware.

E.1.1 Example Workflow
* 1) Daemon Node: Calls python3 dht.py every time it’s deployed or continuously
runs in the background.
* 2) Debug Node: Displays temperature/humidity in Node-RED’s debug console.
* 3) Additional Logic: A switch node triggers the buzzer if humidity or distance
exceeds a set threshold.

F. Calibration and Thresholding

Sensors may need calibration to account for hardware tolerances or environmental varia-
tions:
* Ultrasonic Ranger: Verify the minimum reliable distance. Adjust your threshold if
readings are inconsistent.
* Temperature/Humidity: Some DHT sensors might read slightly off; you can apply
an offset (e.g., +1 °C) in code.
Thresholding Strategies:

N




47

» Hysteresis: Introduce a small gap between ON and OFF thresholds (e.g., beep on
<10 cm, stop beeping if >12 cm) to avoid rapid toggles.

* Averaging/Smoothing: For noisy signals, implement a moving average to stabilize
readings.

F.1 Debugging Tips
* Serial Prints/Debug Logs: Print raw sensor readings to Node-RED’s debug window
to spot anomalies.
» Physical Inspection: Loose wires, reversed connectors, or power supply issues can
lead to erratic readings.

G. Further Extensions & Use Cases

* Data Logging: Store sensor readings in a file or database (SQLite, InfluxDB) for
trend analysis over time.
* Remote Monitoring: Create a Node-RED dashboard to display temperature, distance,
or beep states over Wi-Fi.
* Automation Rules: Combine multiple sensors (e.g., humidity + distance) to trigger
multi-stage alerts or control a fan/buzzer automatically.
* Edge AI: The Pi’s CPU can run advanced frameworks (TensorFlow Lite, OpenCV)
for tasks like object detection or machine learning on sensor data.
By adding these features, you can transform a basic sensor-actuator setup into a robust,
real-world IoT solution that reacts intelligently to its environment.

Final Note.

Understanding SBC architecture, Linux fundamentals, Node-RED flow-based programming,
12C communication, sensor principles, and event-driven scripting sets you on a path to
building more sophisticated IoT projects. Experimentation, careful calibration, and iterative
testing are key as you progress toward fully polished, real-world solutions.







4\3’111/")19
2 e ALY g 7
._..:nmu'_u.‘
‘]“Av \3%13‘5‘),
RUTCLLANG )
Sl Rq

aspberryPi

ThingsBoard

[3. Posting Data to an loT Cloud Platform e

Obijectives

* Learn how to post IoT data to a cloud IoT platform (ThingsBoard).
* Learn how to configure MQTT in Node-RED for reliable data communication.
* Learn how to create and customize widgets on ThingsBoard dashboards.

Lab Plan

Single-board Computer
(Edge | Gateway Node)

Sensor

(Temperature é;?;gg;
& Humidity)
a )
GrovePit | Cloud Platform (Server Node)
‘ ‘@ThingsBoard
Raspberry Pi 4

In this lab, we will:
1. Set up a ThingsBoard device and copy its access token.



50 Chapter 3. Posting Data to an loT Cloud Platform @

2. Use Node-RED on a Raspberry Pi to publish sensor data via MQTT.
3. Visualize real-time readings on a custom ThingsBoard dashboard.

4. Optionally create an alarm condition or scenario (e.g., “meteor approaching!”).

Required Hardware Components

* Raspberry Pi (with an SD card that has Raspberry Pi OS)
* Display and HDMI cable
* Keyboard and mouse
* Power supply
Additionally, for sensor data:
* Grove Pi+
* Temperature & Humidity Sensor (DHT)
* LCD Backlight Display (optional display output)

A. Preparing the Raspberry Pi

1. Prerequisite: Lab 2 Completed.

Before starting this lab, make sure you followed Lab 2 up to step 20, verifying that your

Raspberry Pi is correctly reading data from the Temperature & Humidity sensor in Node-

RED.

— Why do this?. Each lab builds on the previous one. Successfully completing Lab

2 ensures that Node-RED is installed and configured, and that you understand how to
connect and read basic sensor data. If you skipped any steps or encountered errors, you
may face issues in this lab.

2. Check Node-RED Installation.
Confirm Node-RED is still installed and functional on your Raspberry Pi. If you need to
reinstall or update:
* Refer back to Lab 2’s detailed steps on installing Node-RED.
* Optionally, in a terminal, run:

1 node-red

to see if it starts without errors.

Tips: If Node-RED fails to launch or shows “command not found,” re-run the Node-RED
install/update script from Lab 2. Also, verify you have an internet connection before
reinstalling, since the script downloads required packages. u

3. Verify Sensor Data in Node-RED.
Make sure your dht.py (or dht20.py, if using DHT20) script continues to send valid
temperature/humidity readings to a debug node in Node-RED. Observe the debug panel:
* If data appears regularly (e.g., every second or so), you’re good to proceed.
* If you see no messages, re-check sensor connections or re-deploy the flow.

— Why do this?. The sensor data is the foundation for this lab. Without verified tem-
perature/humidity readings, the subsequent tasks (e.g., sending data to a cloud platform)
won’t function correctly. Confirming the baseline now saves troubleshooting time later.



51

B. ThingsBoard Device Setup

4. Login to ThingsBoard.
Open a web browser and navigate to https://thingsboard.cs.cf.ac.uk/login. Log
in using the group credentials provided by your instructor (e.g., a shared username and
password).

— Why do this?. ThingsBoard is the [oT platform you’ll use for device management
and data visualization. Logging in with group credentials ensures everyone can view and
manipulate the same devices and dashboards.

5. Create a New Device.
In the left-hand menu, click on Devices [E1.
* At the top-right corner, click the + icon labeled Add new device.
* Provide a clear, descriptive name (e.g., GroupX_GatewayDevice) in the “Device
Name” field.
* Optionally, add a short description (e.g., “Raspberry Pi acting as IoT gateway”).

Tips:
* Avoid using spaces or special characters in the device name to keep things simpler
when referencing the device via APIs.
* If you plan to create multiple devices for different lab tasks, add descriptive details
to differentiate them easily.

6. Configure as Gateway.
In the device creation form, you’ll see a toggle or dropdown for Device type. Select Gateway,
as shown in Figure 3.1. This instructs ThingsBoard to treat your Raspberry Pi as a gateway
that can manage and forward data from multiple sensors or other edge devices.

Add new device @ X

@ vevice details Q" @ o

Raspberry_Pi

@® Select existing device profile defau\tix

O Create new device profile

Is gateway [] Overwrite activity time for connected device

Next: Credentials

Cancel Add

Figure 3.1: Adding New Device


https://thingsboard.cs.cf.ac.uk/login

52 Chapter 3. Posting Data to an loT Cloud Platform @

— Why do this?. A gateway device in ThingsBoard can handle data from many
sensors, bundling or preprocessing it before sending to the cloud. Marking the device
as a “Gateway” enables advanced features like telemetry forwarding and sub-device

management.

7. Next: Credentials.
After naming and configuring the device, click the Next: Credentials button to set up

authentication. Provide an Access Token:
* Either generate a random token by clicking a button, or
* Manually enter a custom token (use a unique string with letters and numbers).

Refer to Figure 3.2 for an example of this screen.

Add new device 9 x

@ oevice cetails @ Crecentals @ o

Add credentials

Access token

Access token

myRandomAccessToken

Back Next: Customer

gancel m

Figure 3.2: Random Access Token

Tips: Using a random token helps avoid accidental collisions. If you choose a custom
token, store it somewhere secure. You’ll need this value when configuring MQTT or
HTTP clients in Node-RED. u

8. Copy the Access Token.
Once the device is created, you’ll see it listed in your device table. Click its name to open the

device details. Under Credentials, click Show token to reveal the Access Token, as shown in
Figure 3.3. Copy this token.

DETAILS ATTRIBUTES LATEST TELEMETRY ALARMS EVENTS RELATIONS

MAKE DEVICE PUBLIC ASSIGN TO CUSTOMER MANAGE CREDENTIALS DELETE DEVICE

u COPY DEVICE ID u COPY ACCESS TOKEN

&
Figure 3.3: Copy Access Token



53

— Why do this?. The access token is how ThingsBoard authenticates data sent from
your gateway. You’ll configure Node-RED to include this token in MQTT or HTTP
requests so your Pi can securely post telemetry.

C. Publishing Data via Node-RED (MQITT)

9. Add MQTT Out Node.
In the Node-RED editor (left sidebar), locate and drag an mqtt out node onto your workspace
(Figure 3.4). Connect its input to the daemon node (or any node) that outputs your tempera-
ture/humidity data, as illustrated in Figure 3.5.

mgtt out

Figure 3.4: MQTT out node.

]
msg.payload

python3 AD
mgtt

Figure 3.5: Node-RED setup: daemon node — mqtt out

— Why do this?. The mqtt out node publishes messages to an MQTT broker—in
this case, ThingsBoard. By wiring it directly after your daemon node, you send the
temperature/humidity data straight to the cloud in real time.

10. Configure the MQTT Node.

* Double-click on the newly added mqtt out node.
* Next to “Server,” click the pen icon to add a new MQTT broker configuration.
* When the modal appears (Figure 3.6), fill in:
— Server: thingsboard.cs.cf.ac.uk
— Port: 1883
These settings point Node-RED to the ThingsBoard MQTT broker on port 1883.

{ Properties - BRNE
¥ Name
Connection Security Messages

@ Server thingsboard.cs.cf.ac.uk Port 1883

Connect automatically

[J Use TLS
£ Protocol MQTT V311 v
% Client ID

P Keep Alive 60

i Session Use clean session

Figure 3.6: MQTT Configuration



54 Chapter 3. Posting Data to an loT Cloud Platform @

Tips: If you encounter connection errors, ensure your Pi’s internet is stable. Some

networks block port 1883, so try alternative networks or check firewall settings if you

cannot connect. =

11. Add Security Credentials (Access Token).

* Switch to the Security tab in the MQTT broker settings (Figure 3.7).
* For “Username,” paste the access token you copied from your ThingsBoard device.

You do not need a password.
* Click Update to save the credentials, then click Done.

Connection Security Messages
& Usemame myRandomAccessToken
& Password

Figure 3.7: Providing the Access Token as Username

— Why do this?. ThingsBoard uses the access token as the MQTT username to
authenticate your device. Without these credentials, the broker won’t let your Pi publish
telemetry. Think of it like a key that proves you’re allowed to send data to your device’s
channel on ThingsBoard.

12. Set the Topic.
In the main properties window of the MQTT out node:
* Enter vl/devices/me/telemetry in the Topic field (Figure 3.8).
 This topic tells ThingsBoard to treat published messages as telemetry data for the

current device (me).
* Click Done, then Deploy (top-right corner of Node-RED) to activate your changes.

= Topic vi/devices/me/telemetry
Figure 3.8: Specifying the MQTT Topic

Tips: If you have multiple ThingsBoard devices, each will have its own access token.
But the topic v1/devices/me/telemetry stays the same for each device—just be sure
to use the correct token for the device you want to publish to. u

D. Observing Live Data in ThingsBoard

14. Create a Dashboard.
In the ThingsBoard left-hand menu, select Dashboards E
¢ Click the + icon labeled Create a new dashboard.
* Provide a descriptive name (e.g., RaspPiDashboard) and an optional description.



55

— Why do this?. A dashboard is where you can visually monitor and analyze your data.
It can display charts, gauges, tables, or other widgets that update in real time with sensor
readings or device status.

15. Select Your Device & Data Fields.
Open the newly created dashboard to configure your widgets:
* Choose your target device from the available list.
* Click Latest telemetry to view all recent data points published by that device.
* Check the boxes for temperature and humidity (Figure 3.9).

Details Attributes Latest telemetry Alarms Events Relations Audit Logs v
2 telemetry units selected B2 show on widget
Last update time Key Value

2021-09-06 15:43:42 humidity 50.0

2021-09-06 15:43:42 temperature 26.0

Figure 3.9: Latest Telemetry

Tips: If you don’t see temperature or humidity listed, verify that your Node-RED flow
is sending telemetry in JSON format (e.g., {"temperature":25.3, "humidity":60}).
Also confirm your device’s access token and MQTT topic are correct. u

16. Show on Widget & Add to Dashboard.

¢ Click Show on widget next to each telemetry field you want to visualize.

* By default, the widget type may be Cards, but you can pick from a variety of widget
options (gauges, charts, etc.).

* Click Add to dashboard and configure your widget settings as shown in Figure 3.10.

Add widget to dashboard X

@ E_Select existing dashboard

RaspPiDashboard x

(O Create new dashboard

New dashboard title

ks

Open dashboard cancel m

Figure 3.10: Dashboard Settings

— Why do this?. Widgets let you transform raw sensor data into intuitive, visual
representations—graphs, numeric cards, or even maps. Exploring different widget styles
helps you find the best fit for your monitoring or analysis needs.

17. Observe Live Data.



56 Chapter 3. Posting Data to an loT Cloud Platform @

* After clicking Add, the widget appears on your dashboard.

* The dashboard (Figure 3.11) updates in real time with incoming sensor readings.

 Try different widget types (e.g., Time series charts or Gauge) to see how your data can
be presented.

RaspPiDashboard

Timeseries table (S

(O Realtime - last minute

Timestamp J humidity temperature

2021-09-06 17:13:15 48.0 27.0

2021-09-06 17:13:12 48.0 27.0

2021-09-06 17:13:09 48.0 27.0

2021-09-06 17:13:05 480 27.0

2021-09-06 17:13:02 48.0 27.0

2021-09-06 17:12:59 48.0 27.0 .
tems per page: 10 - -100f 18 > >

Figure 3.11: Observing Live Data on ThingsBoard

Tips:
* Customize Layout: You can drag and resize widgets on the dashboard for a
personalized layout.
* Historical Data: For time-series analysis, configure the widget to display past data
over minutes/hours/days.
* Multiple Devices: If you have multiple devices sending data, you can add more
widgets or create separate dashboards to monitor each device individually.

Measuring Success
* Node-RED to Cloud: You see temperature/humidity logs arrive in your ThingsBoard
dashboard’s “Latest Telemetry” or “Cards” widgets.
* MQTT Config: The MQTT out node is connected with your correct device token and
topic (vl/devices/me/telemetry), enabling data flow.
* Dashboard Display: Your chosen widget(s) show real-time updates (e.g., 22°C, 55%
humidity) that match Node-RED debug outputs.

F. Use-Case Scenario and Shutdown

18. Optional Final Task (Meteor Approach).
Imagine a scenario where a meteor is approaching Earth, causing temperature rises. If it
exceeds a certain threshold, a buzzer should ring. Meanwhile, you visualize the temperature
changes on your ThingsBoard dashboard.
* Hint: Warm the DHT sensor with your hand to simulate temperature spikes.



57

* Add Logic: Node-RED function node or Python script can trigger a buzzer if temp >
X.

19. Shutting Down Safely.
If you’re done, remove all nodes from the workspace and click Deploy to stop sending data.
In a terminal:

I node—red—-stop
> sudo shutdown now

Wait 5 seconds, then unplug your Pi if you won’t continue to the final task.

— Further Reading
» ThingsBoard IoT Use Cases:
https://thingsboard.io/iot-use-cases/

Theory Deep Dive: Underlying Principles and Concepts

This section explores the theoretical concepts behind sending IoT data to a cloud platform
(ThingsBoard), using MQTT in Node-RED for real-time communication, and visualizing
sensor data on dynamic dashboards. Understanding these principles will enable you to
design robust, scalable, and interactive loT solutions.

A. loT Cloud Platforms

An IoT cloud platform like ThingsBoard serves as a centralized hub for:

* Device Management: Each device or gateway has an identity (access token) for
secure data exchange.

* Data Ingestion & Storage: Large volumes of time-series sensor data are stored and
can be queried or analyzed later.

* Visualization & Dashboards: Interactive widgets (charts, gauges, tables) display
real-time readings or historical trends.

* Rule Engine & Alarms: Configurable logic that can trigger notifications, RPC
commands, or external APIs if certain conditions are met.

A.1 Why Use a Cloud Platform?

* Scalability: You can manage tens, hundreds, or thousands of devices in one place.

* Remote Access: View device data and dashboards from any browser, enabling
distributed collaboration.

* Integrations: Many IoT platforms include connectors for email, SMS, databases, or
webhooks to facilitate complex workflows.

A.1.1 ThingsBoard as an Example
* Open-Source Core: ThingsBoard’s community edition is freely available, while
advanced features exist in commercial editions.
* Multi-Protocol Support: MQTT, HTTP, CoAP for data ingestion.
* Widget Library: Customizable widgets (charts, switches, maps) for a variety of use
cases.



https://thingsboard.io/iot-use-cases/

58 Chapter 3. Posting Data to an loT Cloud Platform @

7

B. MQTT (Message Queuing Telemetry Transport)

MQTT is a lightweight publish/subscribe messaging protocol often used in [oT:

* Broker-Based Architecture: A central broker (in this case, ThingsBoard’s MQTT
service) handles all message routing between publishers and subscribers.

* Topics: Each message is published to a topic string (e.g.,
vl/devices/me/telemetry). Any client subscribed to that topic receives
the message.

* QoS (Quality of Service) Levels: Control message delivery guarantees (e.g., at most
once, at least once, exactly once).

B.1 MQIT in Node-RED

* mqtt out Node: Publishes messages to a specified broker at a chosen topic.

* mqtt in Node: Subscribes to a topic, receiving messages published by other clients
or devices.

* Authentication: When connecting to a secure MQTT broker, a username and/or
password (or token) is often required.

B.1.1 Common MQIT Use Cases
* Telemetry Upload: IoT devices (sensors) periodically publish their readings.
¢ Command/Control: The cloud can publish a command (e.g., “turn on LED”) to
which the device is subscribed.

C. Node-RED as Edge/Fog Middleware

Node-RED is a flow-based programming tool allowing rapid prototyping of IoT applica-
tions:
* Visual Flows: Nodes represent devices or functions; wires connect them to define
data paths.
* Integration Hub: Easily integrate Python scripts, web APIs, and MQTT brokers in a
single flow.
* Debug Panel: Real-time visibility into data payloads helps with quick troubleshoot-
ing.

C.1 Data Path in Node-RED for This Lab

* Sensor Reads: A Python script (dht . py) outputs temperature/humidity data to Node-
RED (via daemon node).

* MQTT Publish: The mqtt out node takes those readings and publishes them to
ThingsBoard.

* Debug & Logging: An optional debug node can print the sensor data in Node-RED
for local verification.

C.1.1 Handling Errors or Connection Loss
* MQTT Node Status: Node-RED shows a status indicator (green or red) for the mqtt
out node, reflecting connection success or failure.
* Retries: If ThingsBoard becomes temporarily unreachable, the MQTT client may
keep retrying, buffering messages in Node-RED’s queue.

N




59

D. ThingsBoard Device Model and Dashboarding

ThingsBoard organizes [oT infrastructure via devices. Each device has:
* Access Token: A secret token used to authenticate MQTT or HTTP requests.
* Telemetry & Attributes: Time-series data (telemetry) and key-value pairs (attributes)
for device properties.
* RPC Endpoints (Optional): Allows remote control or command invocation on the
device.

D.1 Dashboards and Widgets

* Dashboard: A collection of widgets (charts, gauges, maps, switches) that visualize

real-time or historical device data.

Latest Telemetry vs. Historical: “Latest” widgets display only the most recent value;

“Charts” or “Tables” show time-series data spanning minutes to months.

* Customization: You can rename widgets, choose update intervals, define color
thresholds (e.g., red if temp > 25).

D.1.1 Data Flow to Widgets
* Device Selection: Widgets typically must be linked to a specific device entity or
device group.
» Key Mapping: The widget looks for the data key (e.g., temperature, humidity) in the
incoming telemetry stream.

E. Real-Time loT Scenarios and Advanced Logic

Once you can post sensor data to the cloud and visualize it, you can add more sophisticated
behaviors:
» Alerting/Notifications: If temperature exceeds a threshold, ThingsBoard can trigger
an email, Slack message, or SMS.
* Device Control (RPC): A switch widget on the dashboard can send commands back
to the Pi or an Arduino, toggling actuators (buzzers, LEDs, motors).
* Machine Learning Pipelines: Data stored in the cloud can be used to train anomaly
detection models or predictive maintenance routines.

E.1 Example: “Meteor Approaching”

* Temperature Rising: Node-RED function checks if temp > 30.

* Buzzer Alarm: If condition met, send a HIGH signal to a digital pin or via the daemon
node to a Python script controlling the buzzer.

* Dashboard Indicator: A widget on ThingsBoard shows a “Meteor Approaching!”
message and changes color to red.

F. Security and Reliability Concerns

* Access Token Protection: Anyone with your token can publish false data or spam
the broker; keep it private.

* TLS Encryption (Optional): MQTT over TLS can encrypt data in transit, though
additional configuration is required.

* Connection Monitoring: Watch for “disconnected” or “reconnected” events in Node-
RED or the ThingsBoard device logs to ensure data is flowing continuously.




60 Chapter 3. Posting Data to an loT Cloud Platform @

7

F.1 Scaling Up
* Multiple Devices: Each device has a unique token. Node-RED flows can handle
sending different sets of telemetry to multiple devices or a single gateway device with
sub-ids.
* Edge Caching: If the Pi goes offline, data can be cached locally and re-sent when
connectivity returns (using an offline-first approach).

G. Best Practices and Future Exploration

* Organized Node-RED Flows: Keep sensor input, transformation logic, and MQTT
output well-labeled for easier debugging.

* Widget Variety: Experiment with various widget types (line charts, bar charts, digital
gauges) to find the clearest representation of your data.

» Historical Analysis: Enable time-series data storage in ThingsBoard to observe
patterns or to conduct post-hoc analysis of sensor trends.

* Event Triggers: Explore ThingsBoard’s “Rule Engine” to route device data to
external services or to invoke custom scripts when certain conditions are detected.

Final Note.

By integrating Node-RED with ThingsBoard via MQTT, you gain a powerful framework
for visualizing sensor data and orchestrating complex [oT workflows. Whether you’re
monitoring temperatures for a greenhouse or sounding alarms for hypothetical meteors, these
fundamentals pave the way for more advanced solutions—automated alerting, predictive
analytics, and robust multi-device ecosystems. Experimentation and incremental refinements
will help you master this real-time, data-driven approach to IoT development.

=~




« \Qﬂil'/u))g
AN |
e WD) (5 7
T YA - R PRY. & Ty,
.:.E..‘%_v-v.-::;‘ By g ;::N.‘\CA!'NMAHIHBZ“‘

aspberryPi

ThingsBoard

4. Connecting an loT Gateway to an loT Cloud ¢

Obijectives

* Learn how to configure an 10T cloud platform (ThingsBoard)

» Learn how to connect a gateway (Raspberry Pi) to an IoT cloud (ThingsBoard)
* Learn how to send data from an edge gateway to the cloud

* Learn how to receive commands/data from cloud back to edge

Lab Plan

Single-board Computer

(Edge | Gateway Node)

ST Actuator
(Temperature

& Humidy)  u7Zen

O
[

GrovePi+ | Cloud Platform (Server Node)
‘ '@ThingsBoard
Raspberry Pi 4

In this lab, you will:
1. Create a new device in ThingsBoard to represent your gateway.



62 Chapter 4. Connecting an loT Gateway to an loT Cloud @

2. Write a Python script on the Raspberry Pi to send sensor data (Temperature & Humidity) to
the cloud and receive remote commands (e.g., turning a buzzer on/off).

3. Use the MQTT library (paho-mqtt) to exchange messages with ThingsBoard.

4. Observe sensor telemetry in real time and add a switch widget to control the buzzer from the
cloud.

Required Hardware Components

* Raspberry Pi 4
* SD Card with Raspberry Pi OS
* Display and HDMI cable
* Keyboard and mouse
* Power supply
Additionally, for sensors/actuators:
* GrovePi+
* Temperature & Humidity Sensor (DHT11 or DHT20)
* Buzzer

A. Prerequisites and Setup

1. Lab 3 Completion Required:

You must have finished Lab ??, where you configured Node-RED to publish temperature/hu-

midity data to ThingsBoard. Ensure you have a stable connection and your data consistently

reaches the cloud.

— Why do this?. This lab builds directly on the MQTT publishing setup from Lab ??.

If your Node-RED flows and device credentials are not properly configured, subsequent
steps involving new Python scripts or data handling will fail or produce incomplete data
on ThingsBoard.

2. Check Sensor Wiring:
Make sure your hardware connections match the following:
* DHT Sensor connected to port D4.
* Buzzer connected to port D8.
If Node-RED is currently running, stop it before proceeding to avoid conflicts:

I node—red—stop

Tips:
* Double-check that the Grove cables are firmly inserted. A loose connection can
result in no data or sporadic sensor readings.
* If you receive errors about the port being unavailable, ensure Node-RED or other
background services that use the same port (e.g., D4 for DHT sensor) are fully
stopped.

3. Install Python Scripts:
Download cloud. py from the GitLab repository and place it into your /home/pi directory.


https://gitlab.com/IOTGarage/iot-lab-book/-/tree/master/LAB%2003%20-%20Connecting%20an%20IoT%20Gateway%20to%20an%20IoT%20Cloud

63

— Why do this?. cloud.py is a Python script that establishes MQTT communication
with ThingsBoard. It reads sensor data (temperature/humidity) and controls actuators
(buzzer) while acting as a gateway. Keeping it in /home/pi standardizes script paths,
making it easier to reference in commands.

4. Set Permissions:
Run:

sudo chmod 755 cloud.py

so that the script is executable by any user or service.

Tips: If you rename the file or store it elsewhere, be sure to adjust the path accordingly
when running the script (e.g., . /cloud.py or python3 /projects/cloud.py). =

5. Install the Python MQTT Package:
The paho-mqtt library allows Python to communicate over MQTT with ThingsBoard:

pip3 install paho-mgqtt

— Why do this?. Without paho-mqtt, cloud.py cannot connect to the ThingsBoard
MQTT broker. This library provides all necessary functions to publish messages and
subscribe to topics. Once installed, your script can transmit sensor data and listen for
server-side commands.

B. ThingsBoard Device Creation

6. Create New Device (Non-Gateway).
Loginto https://thingsboard.cs.cf.ac.uk/ using your group credentials or account
details. In the Devices section:
* Click the + icon to add a new device.
¢ Name it something like Buzzer Demo Device.
* Important: Do not select the “Gateway” option this time; let ThingsBoard automati-
cally generate the device’s token.

— Why do this?. Previously, you created a device configured as a gateway for collecting
data from multiple sensors. Now you’ll set up a simpler, standard device to which you’ll
directly send telemetry (and potentially receive commands for controlling the buzzer).

7. Update cloud.py with Your Access Token.
After creating the device, copy its auto-generated token from the ThingsBoard UI:
* Go to Devices and locate your new “Buzzer Demo Device.”
* Click the device name to view its details.
* Find Credentials or Access Token, and copy the token string.
In cloud.py, locate the line that reads:

I ACCESS_TOKEN = ’KV8ua9VXNu9cOQ80p4DS’ # <== Insert your own token

Paste your actual token in place of KV8ua9VXNu9c0Q80p4Ds.


https://thingsboard.cs.cf.ac.uk/

64 Chapter 4. Connecting an loT Gateway to an loT Cloud @

Tips: If you rename the variable or file, be sure to keep references consistent in your
script. Also, double-check you have no extra spaces or quotes around the token. u

8. Run the Python Script:
In a terminal on your Raspberry Pi, navigate to the directory containing cloud.py (usually

/home/pi), and run:
I python3 cloud.py

e If successful, you should see messages like Session present: O and Success

temperature/humidity publishing in your console.
* Check ThingsBoard Latest Telemetry to confirm data (temperature, humidity, and

buzzer state) is being received.

— Which DHT sensor are you using?. DHT20 instead of DHT11?
Download cloud_dht20.py from GitLab if you have the DHT20 sensor (which com-

municates via I2C).
Run Replace cloud.py with cloud_dht20.py in the above command, for example:

I python3 cloud_dht20.py

(a) DHT11 (Digital Signal) (b) DHT20 (12C)

C. Sending & Receiving Cloud Data

9. Verify Python Output.
After running cloud. py, look for a console output similar to Figure 4.2:

i ) python3 cloud.py
Connected with result code {'session present': @}

Temperature: 24°C, Humidity: 64%
Success
Success

Figure 4.2: cloud.py Output

* {’session present’: 0} indicates your Raspberry Pi successfully established an

MQTT connection to ThingsBoard.
* "Success <...> publishing" lines confirm each piece of telemetry (temperature,

humidity, and buzzer state) is being transmitted.
— Why do this?. Monitoring the script’s console output helps confirm both MQTT

connection status (’session present’: 0) and the success of each publish event.
If you see errors or no messages, it’s easier to troubleshoot now—before checking

ThingsBoard’s console.

10. Observe Data in ThingsBoard.
Return to ThingsBoard and open your device’s details. In the Latest Telemetry tab (Fig-

ure 4.3), verify that:



65

Details

* The temperature and humidity fields are updating.
» The buzzer state (true/false or on/off) also appears if cloud.py publishes it.

You can visualize this data by adding time-series charts or gauge widgets (similar to Lab 6).
This way, you’ll see how temperature/humidity change over time and whether the buzzer was
triggered.

Latest telemetry

O
O
O
O

Last update time

2021-09-09 13:37:56

2021-09-09 13:37:56

2021-09-09 13:37:56

Tips:

Latest telemetry Alarms EVENTS

humidity
State

temperature

Figure 4.3: ThingsBoard Device Telemetry

Value

25.0

e If telemetry data isn’t showing up, re-check your cloud.py ACCESS_TOKEN,
MQTT broker address, and port.
* Set up a Card or Gauge widget to see real-time numeric values, or a Chart widget
for historical trends.
» Expand your usage by exploring the “Attributes” feature for static device properties
(e.g., device location or model).

D. Controlling the Buzzer via RPC (Server to Edge)

11. Add a Widget for Buzzer Control.
Before making changes to your device’s behavior, stop the Python script with Ctrl + C.
This ensures the device is not actively sending or receiving data while we configure the
dashboard.
In your ThingsBoard dashboard:

* Click the pen icon (bottom right) to enter edit mode.

¢ Click the + icon to create a new widget.

* Click the file icon to choose from various widget bundles.

Since we’ll be using Remote Procedure Calls (RPC), we need to pick a widget type that

can send commands from the cloud to our buzzer.

— Why do this?. RPC allows two-way communication. So far, you’ve been sending
telemetry from edge to cloud. With RPC, the cloud (ThingsBoard) can instruct the edge
device (Raspberry Pi) to change actuator states—Ilike toggling the buzzer.

12. Select Control Widgets.



66 Chapter 4. Connecting an loT Gateway to an loT Cloud ®

In the widget creation menu (Figure 4.4), choose a “control widget” suitable for sending
RPC. This category includes switches, sliders, and other interactive elements that dispatch
requests to your device.

Rewnd suich control widgets

@ 7 System
\
\ 0 Send commands to devices.

Knob

s> .

Figure 4.4: Choosing a Control Widget

Tips:
* If you don’t see control widgets listed, ensure you are in the right widget bundle or
have installed all default ThingsBoard widgets.
* You can experiment with different control widgets—such as a button, switch, or
slider—depending on how you want the buzzer to behave.

13. Add the Switch Control Widget.
As shown in Figure 4.5, select the swirch widget. This widget sends a simple boolean
true/false or on/off to your device.

Switch Control
Control widget

p
Allows to send the RPC call to
device when user toggle the switch

\ Advanced widget settings allow you

to configure how to fetch the initial
value of the switch.

Switch control

Figure 4.5: Switch Control

14. Target Your Device.

* Choose Buzzer Demo Device as the device you want to control.

* Set the “type” or “device type” to Device Type.

Add the widget to your dashboard.

* If you see a “Request Timeout” error, that’s normal if your device script (cloud.py) is
not currently running to accept the RPC call.

Tips: If you have multiple devices, ensure you select the exact device associated with your
cloud.py script. Mismatched devices/tokens can lead to silent failures when sending
RPC commands. u

15. Re-run the Python Script.
In a terminal on the Pi, restart the script:



67

I python3 cloud.py

)

This time, watch both the ThingsBoard dashboard and the script’s console output. The
buzzer is connected to D8 by default in cloud. py; toggling the switch widget should now
send an RPC command to your Pi to activate or deactivate the buzzer.

Timeseries Line Chart e Switch control

= humidity 60
= temperature 26 L\\)

Figure 4.6: Dashboard with Buzzer Switch

— Why do this?. Seeing the switch widget on your dashboard and hearing the buzzer
respond on the Pi side confirms two-way IoT interaction. Your device isn’t just sending
data (telemetry) to the cloud—it’s also receiving commands (RPC) and updating actuators
in real time.

Optional Final Task (Humidity Concern): Imagine you’re worried about mold in your home.
You can’t constantly monitor humidity, so push humidity data to ThingsBoard. Have a switch
widget or slider widget control some edge device (e.g., a fan) or an LED backlight. Your friend
can log in from another computer to see humidity or turn on an alert.

You can now finalize your setup or close it out:

 Stop the script with Ctrl + C.

* Remove any Node-RED flows if you were testing it, or just leave them.

* Shut down the Pi if you’re finished:

i sudo shutdown now

Measuring Success
* Cloud Telemetry: Temperature/humidity data from cloud.py appear in the device’s
Latest Telemetry.
* RPC Control: Switch widget toggles the buzzer state in real time (BEEP or silent).
e Python Output: The script logs successful MQTT session, plus “Success” for sending/re-
ceiving data.

Further Reading
* JoT Cloud and RPC in ThingsBoard: https://thingsboard.io/docs/user-guide/
rpc/


https://thingsboard.io/docs/user-guide/rpc/
https://thingsboard.io/docs/user-guide/rpc/

68 Chapter 4. Connecting an loT Gateway to an loT Cloud ®

Theory Deep Dive: Underlying Principles and Concepts

This section explores the theoretical underpinnings of connecting an edge gateway (e.g.,
Raspberry Pi) to an IoT cloud platform (e.g., ThingsBoard). By understanding these
fundamentals, you will gain deeper insight into how data flows between local devices and
the cloud, how MQTT publish/subscribe works, and how remote commands (RPC) facilitate
two-way interactions in loT systems.

A. loT Gateway Concepts

An IoT gateway is a device or service that bridges local sensors/actuators to remote cloud
platforms:
* Local Connectivity: Often communicates with sensors using protocols like I12C, SPI,
or GPIO for reading data (e.g., temperature, humidity).
* Network/Internet Connectivity: Uses TCP/IP networking (Ethernet, Wi-Fi) to send
data upstream to the cloud.
* Transformation & Routing: Translates raw sensor readings into a protocol like
MQTT, then publishes these messages to an IoT cloud.

A.1 Why Use a Gateway?

* Resource Management: A Raspberry Pi can handle more complex processing or run
multiple scripts compared to simpler microcontrollers.

* Security Layer: Gateways can locally encrypt or authenticate data before sending to
the cloud.

* Offline Processing: If the cloud is unreachable, the gateway can store data locally or
make local decisions temporarily.

A.1.1 Edge vs. Cloud Responsibilities
* Edge Computing: Filtering, preprocessing, or quick reactions (e.g., buzzer on/off).
* Cloud Computing: Long-term data storage, analytics, dashboards, or machine
learning tasks.

B. Cloud Platforms (ThingsBoard)

ThingsBoard is an IoT platform that manages devices, telemetry, and visualizations:
* Device Management: Each device has a unique token and can send telemetry, receive
commands, or store historical data.
* Dashboard Widgets: Graphs, gauges, switches, or sliders that provide real-time
monitoring and control.
* API/Protocol Support: Typically supports MQTT, HTTP, and CoAP for data ex-
change.

B.1 Cloud Device Model

* Non-Gateway Devices: Directly connect to the cloud and represent a single physical
device (like your Raspberry Pi with a single sensor).

* Gateway Devices: Aggregate data from multiple sensors or other devices, then pass
them to the cloud under individual device “profiles.”




69

B.1.1 Access Tokens

* Token-Based Authentication: ThingsBoard auto-generates a token for each device.

Your scripts must include this token to publish data successfully.
* Security Best Practices: Keep tokens private. If exposed, someone could spoof your
device’s identity on the cloud.

C. MQIT and Publish/Subscribe

MQTT (Message Queuing Telemetry Transport) is a lightweight messaging protocol
widely used in IoT:
* Broker-Based Architecture: A central broker (ThingsBoard in this scenario) receives
messages from publishers (your gateway) and distributes them to subscribers.
e Topic Hierarchy: Messages are sent to specific “topics” (e.g.,
vl/devices/me/telemetry for sending data to ThingsBoard).
* QoS Levels: MQTT can ensure at-least-once or exactly-once delivery, although many
IoT scenarios use QoS 0 for reduced overhead.

C.1 Edge Publish/Cloud Subscribe

* Publish Telemetry: Your Python script uses the paho-mqtt library to send JSON
data (temperature, humidity).

* Subscribe to Commands: The gateway can listen for incoming messages on a
command topic (e.g., rpc/request/+) to control local actuators.

C.1.1 Data Format (JSON)
* Key-Value Pairs: E.g., {"temperature": 24.5, "humidity": 60}.
» Extendable: You can add fields like "buzzerState": true without changing the
entire infrastructure.

D. Remote Procedure Calls (RPC)

RPC in IoT context allows the server (cloud) to invoke actions on the client (gateway):
* Two-Way Communication: Instead of just pushing data up, the gateway can receive
commands to toggle a buzzer or update a local display.
* Control Widgets in ThingsBoard: A switch or slider widget can trigger an RPC to
the gateway’s topic, instructing it to perform an action.

D.1 Example: Buzzer Control

* Cloud to Device: When you click a switch in the ThingsBoard dashboard, a message
is published to the device’s RPC topic with the new “buzzer state.”

* Device Implementation: Your Python script listens for RPC messages and, upon
receiving them, sets a digital pin HIGH or LOW.

D.1.1 Handling Timeouts or Failures
* Disconnects: If the gateway loses connection, RPC calls will fail until reconnected.
* Fallback Logic: The script can handle unexpected values or default to a safe state
(buzzer off, etc.).




70 Chapter 4. Connecting an loT Gateway to an loT Cloud @

E. Security and Access Control

* TLS Encryption (Optional): MQTT can be secured with SSL/TLS to protect data in
transit.

» Token Rotation: If tokens are compromised, you can regenerate them in the Things-
Board UI.

* Network Security: Gateways often sit behind firewalls or NAT; ensure inbound and
outbound ports (e.g., 1883 for MQTT) are open or correctly forwarded.

E.1 Edge Device Hardening

* Regular Updates: Keep your Pi’s OS and packages updated (sudo apt-get
update && sudo apt-get upgrade).

* Secure SSH or Passwords: If connecting remotely, ensure strong credentials or
disable password authentication in favor of SSH keys.

F. Potential Extensions and Use Cases

» Data Visualization: Build