
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/175234/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Corcoran, Padraig and Lewis, Rhydian 2025. An analysis of the correctness and computational complexity
of path planning in Payment Channel Networks. The Journal of Financial Technology

Publishers page:

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.

An Analysis of the Correctness and Computational
Complexity of Path Planning in Payment Channel

Networks

Padraig Corcoran
School of Computer Science & Informatics, Cardiff University, Cardiff, Wales, UK.

corcoranp@cardiff.ac.uk

Rhyd Lewis
School of Mathematics, Cardiff University, Cardiff, Wales, UK.

lewisr9@cardiff.ac.uk

Abstract

Payment Channel Networks (PCNs) are a method for improving the scaling and
latency of cryptocurrency transactions. For a payment to be made between two peers
in a PCN, a feasible low-fee path in the network must be planned. Many PCN path
planning algorithms use a search algorithm that is a variant of Dijkstra’s algorithm.
In this article, we prove the correctness and computational complexity of this algo-
rithm. Specifically, we show that, if the PCN satisfies a consistency property relating
to the fees charged by payment channels, the algorithm is correct and has polynomial
computational complexity. However, in the general case, the algorithm is not correct
and the path planning problem is NP-hard. These newly developed results can be used
to inform the development of new or existing PCNs amenable to path planning. For
example, we show that the Lightning Network, which is the most widely used PCN and
is built on the Bitcoin cryptocurrency, currently satisfies the above consistency prop-
erty. As a second contribution, we demonstrate that a small modification to the above
path planning algorithm which, although having the same asymptotic computational
complexity, empirically shows better performance. This modification involves the use
of a bidirectional search and is empirically evaluated by simulating transactions on the
Lightning Network.

Keywords. payment channel networks; path planning; lightning network.

Vol. \jvolume No. \jnumber \jyear
\journalname

Corcoran & Lewis

1 Introduction

A cryptocurrency is a digital currency that is decentralised in nature and not issued or con-
trolled by a central authority. The most famous and successful example of a cryptocurrency
is Bitcoin, invented by Satoshi Nakamoto [1]. Cryptocurrencies are enabled by the use of
blockchain systems, which are a type of distributed system that maintains a ledger or database
of digital currency transactions. A necessary component of any blockchain system is a con-
sensus algorithm. This is an algorithm that allows all peers in the system to achieve agreement
regarding the state of the ledger [2]. As a consequence of the need to ensure decentralisation
and security, many consensus algorithms exhibit scalability issues relating to low transaction
throughput (the number of transactions per second) and transaction confirmation latency
(the time until a transaction can be considered settled). The former property can, in turn,
lead to high transaction fees when large sets of transactions are competing to get into the
blockchain. For example, Bitcoin can currently only process seven transactions per second
and has a transaction confirmation latency of approximately ten minutes. This is assuming
that the transaction is actually included in the very next block and is considered confirmed
immediately when this happens. In contrast, the VISA payment system can process 65,000
transactions per second and has a transaction confirmation latency of just a few seconds. The
low transaction throughput of Bitcoin means that, in times of high demand, transaction fees
can be expensive and greatly exceed the cost of many everyday purchases.

To overcome the above scaling challenge, several potential solutions have been proposed
[3]. One promising direction of research is payment channel networks (PCNs) that allow the
consolidation of a larger set of transactions into a smaller set, where individual transactions
can be confirmed almost instantly. The Lightning Network (LN) is the most widely used PCN
and is designed to work with Bitcoin [4]. To illustrate the potential benefits of PCNs, consider
the case where Alice is a merchant and Bob is a customer. Alice makes regular small payments
to Bob, and sometimes Bob makes refunds to Alice. Instead of submitting each transaction to
be processed immediately by the consensus algorithm, Alice and Bob can establish a payment
channel between them that maintains a balance that is updated after each transaction. When
Alice and Bob have completed their transactions, they submit the final balance to be processed
by the consensus algorithm. Since only a single transaction is processed by the consensus
algorithm, this can increase transaction throughput significantly. Furthermore, since each
transaction is only processed locally, the transaction latency is reduced to the time required to
send a small number of network messages between Alice and Bob. By establishing a network
of payment channels, individuals can also make payments to others who they do not share a
direct payment channel with. For example, consider the case where Alice wants to make a
payment to Charlie but has not established a corresponding payment channel. If Alice has an
existing payment channel to Bob, and Bob has an existing payment channel to Charlie, then
Alice can make the payment to Bob and Bob can, in turn, forward the payment to Charlie.

2

An Analysis of the Correctness and Computational Complexity

PCNs are typically implemented using smart contracts, which are pieces of code executed on
a blockchain that ensure the security of the payments.

Despite the potential of PCNs, the technology still faces several challenges. This work
focuses on path planning which concerns finding a useful path in the network of payment
channels for making a given payment. There exists no universal method for performing path
planning in most PCNs including the LN. Instead, different implementations use different
methods for solving this problem [5]. Given that the size of PCNs can be very large, it
is important that path planning is performed in a correct and computationally efficient
manner. Most current path planning algorithms use a variant of Dijkstra’s algorithm. Dijkstra’s
algorithm assumes that the network in question contains arcs with constant and non-negative
weights. This assumption does not hold in the LN where arc weights correspond to fees
charged for forwarding payments and vary as a function of the payment amount. Hence,
existing correctness and computational complexity results for Dijkstra’s algorithm do not
generalise to this variant. In fact, to the authors’ knowledge, there exists no analysis of this
algorithm’s correctness and computational complexity in this setting. In this work, we address
this research gap. These new results tell us that, if the PCN in question satisfies a consistency
property relating to the fee charged for forwarding payments, the algorithm is correct and has
polynomial computational complexity. Otherwise, in the general case, the algorithm is not
correct and the path planning problem is NP-hard. In turn, we show that the LN satisfies this
property. A second contribution made in this article is the proposal of a small modification to
the above path planning algorithm which, though having the same asymptotic computational
complexity, empirically shows better performance. This modification involves the use of a
bidirectional search.

The remainder of this paper is structured as follows. In Section 2 we review related
works on path planning in PCNs. In Section 3 we formally define the problem of path
planning in the LN. This section also identifies a connection between LN path planning and
a specific recurrence relation, which we solve. In Sections 4 and 5 we formally describe the
variant of Dijkstra’s algorithm mentioned above and provide an analysis of its correctness
and computational complexity. In Section 6 we then describe the proposed modification to
this algorithm that uses bidirectional search and prove its correctness and computational
complexity. In Section 7 we then demonstrate the computational benefits of this method
empirically. Finally, in Section 8 we conclude this work.

2 Related Works

As discussed in the introduction to this article, a variant of Dijkstra’s algorithm is a path
planning algorithm frequently used with PCNs. Given the importance of path planning,
several other algorithms have also been proposed. The remainder of this section presents

3

Corcoran & Lewis

a review of these algorithms followed by a survey of other relevant related topics. A more
in-depth review can be found in [6].

Solutions to the path planning problem can broadly be categorised as centralised methods
and decentralised methods. In centralised methods, a single peer independently computes
the entire payment path. An application of centralised methods, commonly known as source-
based routing, involves the payment sender computing a payment path and using onion routing
to make the payment using this path. Onion routing ensures that each peer in the path only
learns the identity of the peer immediately before and the peer immediately after them in
the path. They do not learn the payment sender, receiver or amount. However, since the path
planning task is performed exclusively by the payment sender, source-based routing requires
that the sender has significant computational resources and knowledge of the current state of
the network. A variant of Dijkstra’s algorithm is the most commonly used centralised path
planning method. In fact, this method is used by most LN node implementations including
LND and Core Lightning which are the most commonly used implementations. Several
authors have also proposed centralised path planning methods that compute a set of distinct
paths between the source and destination vertices in PCNs [7, 8, 9]. This allows multi-part
payments to be made, whereby a single payment is split into a set of smaller payments, and
each is routed using a distinct path. The main motivations for multi-part payments are to
allow larger payments to be made given the finite capacity of individual payment channels
and to obfuscate the total amount being transferred.

In decentralised path planning methods, each peer that the payment passes through learns
the payment receiver and uses this information to independently decide the next peer to
forward the payment to until it is eventually arrives at the receiver. Decentralised methods do
not require the payment sender to have significant computational resources or knowledge of the
current state of the network. However, since each peer in the payment path learns the identity
of the payment receiver, they provide relatively poor privacy. Hence decentralised methods are
not used by most LN node implementations. Roos et al. [10] proposed a greedy decentralised
path planning algorithm entitled SpeedyMurmurs. This algorithm assigns coordinates to
each vertex in the network such that a path from a given source vertex can be obtained
by iteratively selecting arcs to vertices closer to the destination vertex. Similarly, Prihodko
et al. [11] proposed a decentralised path planning algorithm called Flare. In this method,
each peer maintains a routing table that contains payment paths to both peers in their local
neighbourhood and a small subset of other peers known as beacons. To determine a payment
path, the routing tables corresponding to both the sender and receiver are considered. If both
routing tables contain a common peer, a payment path is constructed by combining payment
paths to and from this peer. Lin et al. [12] proposed a path planning method that partitions the
PCN in a set of regions and elects a peer in each region to be a corresponding beacon. Using
this method, path planning is performed by forwarding the payment in question to a beacon.
This beacon then forwards the payment to the receiver if the receiver is contained in their

4

An Analysis of the Correctness and Computational Complexity

respective region. Otherwise, the beacon forwards the payment to the beacon corresponding
to the region within which the receiver is contained.

To transfer a given amount along a given path in a PCN, all the channels in question
must have sufficient balance or liquidity in the direction in question. To help overcome this
challenge, several rebalancing methods have been proposed to adjust channel balances to
make paths feasible. Broadly speaking, these methods involve peers making cyclic payments
to themselves that move a portion of the balance on one of their channels to another of their
channels [13]. For privacy reasons, the channel balances are not shared among peers in a
PCN because by monitoring changes in channel balances, an adversary can infer the source,
destination and amount of all payments. A consequence of this is that path planning reduces
to a trial and error process whereby different paths are attempted until a feasible one with
sufficient balance to perform the payment in question is found. Tang et al. [14] considered
whether it is possible for channels to share noisy balances while still maintaining privacy and
found this to be challenging. Dotan et al. [15] proposed a method that is robust to balance
probing attacks that attempt to determine arc balances. This is achieved by adding noise to a
channel’s response to a request to forward a payment.

In a PCN, when a channel forwards a payment intended for a third party, they charge a fee
for providing this service. Several methods have been proposed to automatically determine
a suitable fee to charge, considering objectives such as maximising profit or maintaining a
desired channel balance [16, 17, 18]. However, by monitoring changes in fees charged and
combining this with knowledge of how fees are determined, an adversary can potentially
infer information about the transactions being processed by different channels. Tochner et
al. [19] demonstrated that, by exploiting the fact that most path planning algorithms select
paths with the lowest fees, an adversary can establish channels with low fees that a significant
percentage of payments use. These channels can then be used to perform several attacks,
including a denial-of-service (DoS) attack.

Several works have also analysed the topological structure of PCNs. Martinazzi et al. [20]
and Seres et al. [21] demonstrated that the LN tends to exhibit small-world network properties
with a small proportion of nodes with high centrality that act as hubs. Rohrer et al. [22]
examined the resilience of the LN with respect to random failures and targeted attacks. The
authors also demonstrated that the LN exhibits small-world and scale-free network properties.
Zabka et al. [23] performed a centrality analysis of the LN. Similarly, Kotzer et al. [24]
demonstrated that Braess’s paradox may exist in a PCN, whereby adding additional channels
may negatively impact the ability to successfully make payments.

5

Corcoran & Lewis

3 Problem Definition

In this work, we model a snapshot of the Lightning Network (LN) at a given moment in time
as a directed graph G = (V, E). We use the term “snapshot” because both the topology and
channel properties of the LN are dynamic. The topology is dynamic in the sense that, over
time, new channels can be created and existing ones can be deleted. LN channel properties are
also dynamic in the sense that, over time, the properties described below of a given channel
can change.

In our model, each LN peer is modelled as a vertex v ∈ V . Since LN channels are
bidirectional, each LN channel between the vertices vi and vj is modelled as a pair of arcs
(vi, vj) ∈ E and (vj , vi) ∈ E. Each arc has a balance that equals the maximum payment
amount that can be transferred along that arc and is modelled as a map b : E → Z≥. For a
given LN channel, the sum of the corresponding pair of arc balances is known as the capacity
of the channel in question. Although the capacity of a given channel remains constant, the
corresponding arc balances change as amounts are transferred between the vertices in question.
As an example, consider the pair of arcs (vi, vj) ∈ E and (vj , vi) ∈ E corresponding to a
channel between the vertices vi and vj . If the amount a ∈ Z> is transferred from vi to vj

using this channel, the balance b(vi, vj) reduces by a while the balance b(vj , vi) increases by
a. To transfer the amount a along the arc (vi, vj), the condition a ≤ b(vi, vj) must therefore
be satisfied. That is, the arc in question must have a sufficient balance.

If one wishes to transfer an amount a along an arc (vi, vj) ∈ E, the arc will also charge a
fee for this service. This fee is charged by the arc operator, which is the source vertex vi, and
is parameterised by two values: a base fee and a fee rate. The base fee is a fixed value, while
the fee rate is a proportion of the amount being transferred. We model the base fees and fee
rates as maps fb : E → Z≥ and fr : E → R≥ respectively. In turn, we model the total fee
charged by an arc e ∈ E to transfer an amount a ∈ Z as the map fbr : E × Z≥ → Z≥:

fbr(e, a) = fb(e) + fr(e) × a. (1)

To illustrate the above features of the LN, consider the toy LN displayed in Figure 1. This
graph contains a single arc (vi, vj) that has a base fee of 2, a fee rate of 0.1 and a balance of
20. Consider the case where we wish to transfer an amount 10 from vi to vj along this arc.
This amount is less than or equal to the arc balance making the transfer feasible. To perform
this transfer, vertex vi charges a fee of 2 + 0.1 × 10 = 3. An important point to highlight is
that, to transfer an amount a from a vertex vi to a vertex vj using an arc (vi, vj), we must
first transfer a plus the fee in question to vi. In this case, a value of 10 + 3 = 13 is therefore
transferred to vi.

At any given time, the LN will typically be a sparse graph with only a small proportion
of vertex pairs being connected by an arc. If we wish to transfer an amount from a source
vertex s to a destination vertex t it may be the case that no arc exists from s to t, or that this

6

An Analysis of the Correctness and Computational Complexity

Figure 1: An example LN containing two vertices and a single arc is displayed. The arc is
labelled with a tuple containing the corresponding base fee, fee rate, and balance respectively.

Figure 2: An example LN containing three vertices and two arcs is displayed. Each arc is
labelled with a tuple containing the corresponding base fee, fee rate and balance.

arc has an insufficient balance. On the other hand, it may be possible to transfer the amount
along a sequence of arcs (v1, v2), (v2, v3), . . . , (vn−1, vn) where s = v1 and t = vn. Such a
sequence is known as a path from s to t. For example, consider the toy LN snapshot displayed
in Figure 2 and the case where we wish to transfer a given amount from vi to vj . Here, there
exists no arc from vi to vj but the path (vi, vk), (vk, vj) may potentially be used to perform
the transfer in question.

To transfer an amount a from vertex s to vertex t along a path, one must transfer to each
vertex in that path the amount a plus the sum of fees for subsequent arcs in the path. Consider
again the LN displayed in Figure 2 and the case where we wish to transfer an amount a
from vi to vj along the path e1, e2 where e1 = (vi, vk) and e2 = (vk, vj). To successfully
transfer the amount a to vj , we must transfer the amount a + fbr(e2, a) to vk and the amount
a + fbr(e2, a) + fbr(e1, a + fbr(e2, a)) to vi. Furthermore, the balance of the arc e2 must
be greater than or equal to a, and the balance of the arc e1 must be greater than or equal to
a + fbr(e2, a).

Let e1, e2, . . . , en be a path from s to t and let v1, v2, . . . , vn+1 be the sequence of
n + 1 vertices in this path. Also, let ai be the amount that must be transferred to vertex vi

such that, ultimately, the amount a is successfully transferred to t. The sequence of values
an+1, an, . . . , a1 is defined by the recurrence relation in Equation (2) with the condition
an+1 = a [25, Chapter 7]. In the appendix of this article, we solve this recurrence relation to
give a closed-form expression for each ai value.

ai−1 = ai + fbr(ei, ai). (2)

We refer to the problem of finding a path from s to t that minimises the total arc fees while
satisfying the necessary balance constraints as the path planning problem. Most solutions
to the path planning problem use source-based path planning whereby the payment source

7

Corcoran & Lewis

performs the path planning task. Note that, many implementations of path planning in the LN
consider factors relating to both arc fees and arc reputation [26, 27]. However, in this work,
we do not consider factors relating to arc reputation because these cannot be determined
without access to historical transaction data.

4 Variant of Dijkstra’s algorithm

Dijkstra’s algorithm is a well-known path planning algorithm that constructs a lowest cost
path from a source vertex s to a destination vertex t [28]. It achieves this by maintaining a
map c : V → R that stores an upper bound on the cost from s to the vertex in question. The
algorithm visits vertices in the order of their cost from the vertex s such that when a vertex
is visited the above bound becomes tight. Dijkstra’s algorithm terminates when the vertex t
is visited. When this happens, we obtain a path of lowest cost from s to t by backtracking
through the exploration steps.

In its basic form, Dijkstra’s algorithm cannot be directly applied to solve the LN path
planning problem. This is because, to make a payment of amount a from s to t, it is first
necessary to know the amount a′ ≥ a that must be transferred initially to s such that the
amount a is transferred to t after all fees have been subtracted. Let av be the amount transferred
to vertex v so that a can, in turn, be transferred to t using a lowest-fee path from v to t. Note
that, at = a. If there exists no path from v to t, then av is set to ∞. Given an arc (v, v′), the
value av′ is related to the value av by the following, which is derived from Equation (2):

av′ = av − fbr((v, v′), av′). (3)

Initially, av is unknown for all v ∈ V apart from t. However, applying Dijkstra’s algorithm
to the graph G to construct a lowest-fee path from s to t requires knowledge of as. To illustrate
this, consider the LN displayed in Figure 3(a) and the case where we wish to make a payment
of amount a = 10 from s and to t. The vertex s has two adjacent arcs (s, i) and (s, j) which
have equal base fees but different fee rates. The value at = 10; however, the value as is
initially unknown and, therefore, it is initially not possible to compute the values ai and aj by
applying Equation (3) to the arcs (s, i) and (s, j) respectively. Using a calculation described
later, it turns out that ai = 13 and aj = 30. The higher latter value is a consequence of the
high base fee and fee rate of the arc (j, t) which means that a large amount would need to be
transferred to the vertex j.

This challenge can be overcome by constructing a lowest-fee path in the opposite direction
from t to s instead of from s to t. This approach is motivated by the fact that we initially
only know the value at. Given an arc (v, v′), the value av is related to the value av′ by the
following:

av = av′ + fbr((v, v′), av′). (4)

8

An Analysis of the Correctness and Computational Complexity

(a) (b)

Figure 3: An example LN is displayed in (a) and the corresponding transpose, where arc
directions are reversed, is displayed in (b).

By applying this equation recursively from the vertex t, we can now compute the value av

for all vertices v where there exists a feasible path from v to t. For example, consider again
the LN displayed in Figure 3(a). Using the fact that at = 10, we can compute the values
ai and aj by applying Equation (4) to the arcs (i, t) and (j, t) respectively. These values in
question are 10 + 2 + 0.1 × 10 = 13 and 10 + 15 + 0.5 × 10 = 30 respectively. Applying
Equation (4) recursively to the arcs (s, i) and (s, j), the value of as is computed to be the
minimum of 13 + 2 + 0.2 × 13 = 17.6 and 30 + 2 + 0.1 × 30 = 35, which equals 17.6.
Since the vertex s has now been encountered, we have discovered a lowest-fee path from s to
t which involves transferring a value of 17.6 to vertex s, next transferring a value of 13 to
vertex i and finally transferring a value of 10 to vertex t.

The above path planning process corresponds to searching for a lowest-fee path from t to
s in the transpose of the graph G, denoted by GT . The transpose of a graph G equals the graph
G in which arc directions have been reversed. Figure 3(b), for example, shows the transpose
of the graph from Figure 3(a). In the following theorem, we prove that a lowest-fee path
from t to s in GT corresponds to a lowest-fee path from s to t in G. Hence, the problem of
determining a path with the latter property can be reformulated as the problem of determining
a path with the former property. In turn, searching for a lowest-fee path from t to s in GT

represents a correct approach.

Theorem 1. Let G be a graph representation of the LN and let GT be its transpose. Let
(v1, v2), (v2, v3), . . . , (vn−1, vn) be a lowest-fee path in GT from t to s, where the amount
transferred to t is a. The transpose path (vn, vn−1), (vn−1, vn−2), . . . , (v2, v1) in G is a
lowest-fee path from s to t where the amount transferred to t is a.

Proof. Let (v, v′) be an arc in GT and (v′, v) be the corresponding transposed arc in G. Also,
consider the path (v, v′) in GT and the path (v′, v) in G where both paths contain a single

9

Corcoran & Lewis

arc. Consider the fee for the path (v, v′) in GT in the case where the amount transferred to v
is a and fees are added to the amount transferred. This equals the fee for the path (v′, v) in G
where the amount transferred to v is a and fees are subtracted from the amount transferred.
This result generalises from paths containing a single arc to paths containing multiple arcs
and, in turn, proves the theorem.

Algorithm 1 provides a pseudocode description of the above path planning process. It uses
a map c : V → R to model the total fee for the current lowest-fee path from t to each vertex
in GT . Initially, all vertices are determined to have an infinite fee apart from t. A priority
queue Q is also used to order vertices by increasing values of c(v). Initially, only t is present
in Q. As shown, the algorithm processes vertices in order of increasing fee by removing the
minimum element from Q at each step (lines 4 and 5). When the selected vertex v is explored,
the algorithm considers each neighbouring vertex v′ of v. The fee corresponding to the path
from t to v′ is the sum of the lowest-fee path from t to v plus the fee of the arc (v, v′). This
is computed at line 9. If this fee is less than the fee of the current lowest-fee path from t to
v′ and the arc (v, v′) has a sufficient balance (line 10), then the maps and priority queue are
updated on lines 11 and 12. If v′ is not yet present in Q, it is added to Q with a fee of cv′ .
The algorithm terminates either when Q becomes empty (indicating that no path from t to s
in GT exists) or when a lowest-fee path from t to s in GT is found (line 7). At termination, p
can be used to determine the lowest-fee path from t to each vertex in GT .

Observe that Algorithm 1 is a variant of Dijkstra’s original algorithm due to the presence
of two features. Firstly, in this case, the computed cost of an arc fbr((v, v′), a) (line 9) is
dependent on the amount a being transferred and is therefore not a constant. In contrast,
Dijkstra’s original algorithm assumes that all arc costs are non-negative constants. Secondly,
in the above algorithm, an arc is only explored if it has a balance greater than or equal to the
amount being transferred (line 10). On the other hand, Dijkstra’s original algorithm contains
no such condition. These differing features mean that existing correctness and computational
complexity results for Dijkstra’s original algorithm are insufficient here.

5 Correctness and Computational Complexity Analysis

In this section, we present proofs of the correctness and computational complexity of the LN
path planning process in Algorithm 1. We first introduce the definition of a consistent fee
map. This is a generalisation of the definition of a consistent travel time map introduced by
Kaufman et al. [29].

Definition 1. For a given LN graph G = (V, E), a fee map f : E × Z≥ → Z≥ is consistent
if for all e ∈ E, a ∈ Z and a′ ∈ Z where a ≤ a′, the following condition holds:

a + f(e, a) ≤ a′ + f(e, a′). (5)

10

An Analysis of the Correctness and Computational Complexity

Algorithm 1: Variant of Dijkstra’s algorithm for LN
Input: A graph GT = (V, E) that equals the transpose of the LN graph G; a

payment source s ∈ V ; a payment destination t ∈ V ; and a payment amount
a ∈ Z> to be transferred to t.

Output: A map c : V → R that, for each vertex v, returns the fee for a lowest-fee
path from t to v in GT where the amount transferred to t is a; a map
p : V → V that, for each vertex v, returns the previous vertex in a
lowest-fee path from t to v in GT .

1 For all v ∈ V , set c(v) = ∞
2 Set c(t) = 0 and insert the ordered pair (c(t), t) into a priority queue Q
3 while |Q| > 0 do
4 Let (c(v), v) be the element in Q with the minimum value for c(v)
5 Remove the element (c(v), v) from Q
6 if v = s then
7 break
8 forall v′ ∈ {u : (v, u) ∈ E} do
9 cv′ = c(v) + fbr((v, v′), a)

10 if cv′ < c(v′) ∧ c(v) + a ≤ b(v, v′) then
11 Add the element (cv′ , v′) to Q and, if present, remove element (c(v′), v′)

from Q
12 Set c(v′) = cv′ and set p(v′) = v

Broadly speaking, this means that if a smaller amount is transferred along a given arc,
the corresponding amount received will also be smaller. In the following theorem, we prove
that the fee map fbr defined in Equation (1) and used within the LN is consistent.

Theorem 2. The fee map fbr defined in Equation 1 is a consistent fee map.

Proof. As noted by Kaufman et al. [29], it follows from the definition of a consistent fee map
that, a fee map is consistent if and only if its derivative with respect to a is greater than or
equal to −1. The derivative of fbr(e, a) = fb(e) + fr(e) × a with respect to a is fr(e). Since
this value is constrained to be greater than or equal to 0, the result follows.

Consider the fee map f∞
br : E ×Z≥ → Z≥ defined below. For a given arc e and payment

amount a, this map returns the value fbr(e, a) if e has a sufficient balance to transfer the
amount a. Otherwise, this map returns ∞. This map is related to the concept of a barrier
function in the field of optimisation [30]. In the following lemma, we prove that the fee map

11

Corcoran & Lewis

f∞
br is consistent.

f∞
br (e, a) =

{
fbr(e, a) if a ≤ b(e).
∞ otherwise.

(6)

Lemma 3. The fee map f∞
br defined in Equation 6 is a consistent fee map.

Proof. To prove that the map f∞
br is consistent we must prove that the statement a+f∞

br (e, a) ≤
a′ + f∞

br (e, a′) is true for all e ∈ E, a ∈ Z and a′ ∈ Z where a ≤ a′. The space of all vari-
able combinations can be partitioned into two sets: a ≤ b(e) and a > b(e). On the first
set a ≤ b(e), f∞

br (e, a) evaluates to fbr(e, a). In this case, from Theorem 2, the statement
a + f∞

br (e, a) ≤ a′ + f∞
br (e, a′) is true. On the second set a > b(e), f∞

br (e, a) evaluates to
∞. In this case, the statement a + f∞

br (e, a) ≤ a′ + f∞
br (e, a′) evaluates to ∞ ≤ ∞ and is

also true.

Toward proving the correctness and computational complexity of Algorithm 1, we first
show that the problem of determining a lowest-fee path in an LN with fee map f∞

br is equivalent
to the problem of determining a lowest time path in a time-dependent network (TDN). A
TDN is a type of network where the time it takes to traverse a given connection is a function
of the time this action is performed [29, 31]. For example, a street network can be modelled
as a TDN, since the time it takes an agent to traverse a given street is a function of the time
this action is performed. In general, a TDN is modelled as a directed graph, where arcs model
transportation connections, plus a travel time map from arc and time pairs to travel times.
Consider a TDN G = (V, E) with travel time map fd : E × Z≥ → Z≥. Now consider the
path e1, e2 in this TDN where e1 = (vi, vk), e2 = (vk, vj) and the agent in question departs
vi at time a. The agent arrives at vk at time a + fd(e1, a). The agent in turn arrives at vj at
time a + fd(e1, a) + fd(e2, a + fd(e1, a)). This computation is analogous to the LN payment
computations described earlier in the previous section. We formalise this relationship in the
following lemma.

Lemma 4. Consider a LN graph G = (V, E) with fee map f∞
br : E ×Z≥ → Z≥ and a TDN

graph G′ = (V ′, E′) with time map fd : E′ × Z≥ → Z≥. The problem of determining a
lowest-fee path in G from s to t (where the amount transferred to t is a) is equivalent to the
problem of determining a minimum time path in G′ from t′ to s′ (where the time the agent
departs t′ is a′).

Proof. The problem of determining a lowest-fee path in G from vertex s to vertex t where
the amount transferred to t is a is equivalent to the problem of determining a lowest-fee
path in GT from vertex t to vertex s where the amount transferred to t is a (see Theorem 1).
By equating GT with G′, s with s′, t with t′, a with a′ and f∞

br with fd, the path planning
problems in the graphs G′ and GT are equivalent. In turn, the path planning problems in the
graphs G and G′ are equivalent.

12

An Analysis of the Correctness and Computational Complexity

The equivalence established in Lemma 4 means that several results for path planning
in TDNs generalise to path planning in an LN. This is a useful property, because it allows
us to leverage existing research on the topic of TDNs that has been developed over several
decades [29, 31]. Toward this goal, we define an algorithm denoted by Algorithm 1′. This
algorithm modifies Algorithm 1 by replacing the fee map fbr with f∞

br and modifying the
condition used to determine if a given arc is explored in the search for a lowest fee path. We
subsequently prove the correctness and computational complexity of Algorithm 1′ before
generalising these results to Algorithm 1.

Definition 2. Replace in Algorithm 1 the fee map fbr with f∞
br on line 9 and replace the

statement cv′ < c(v′) ∧ c(v) + a ≤ b(v, v′) with cv′ < c(v′) on line 10. We denote this
modified algorithm as Algorithm 1′.

Lemma 5. Algorithm 1′ for computing a lowest-fee path in the LN graph G = (V, E) with
fee map f∞

br is correct.

Proof. Algorithm 1′ is a variant of Dijkstra’s algorithm. Kaufman et al. [29] prove that
using this this type of algorithm variant to determine a minimum time path in a TDN with
a consistent travel time map is correct (see Theorem 4 in the original paper by Kaufman et
al.). Lemma 3 proves that the fee map f∞

br is a consistent fee map. Lemma 4 proves that the
problem of determining a lowest-fee path in an LN with fee map f∞

br is equivalent to the
problem of determining a minimum time path in a TDN with travel time map fd. Combining
the above three results, implies that Algorithm 1′ is correct.

Lemma 6. The computational complexity of applying the path planning algorithm Algo-
rithm 1′ to the LN graph G = (V, E) with fee map f∞

br is O(|E| + |V | log |V |).

Proof. It was proved by Kaufman et al. (see Theorem 4 in [29]) that applying Dijkstra’s
algorithm to a TDN has equal computational complexity to applying Dijkstra’s algorithm to
a TDN where each arc has a constant and non-negative travel time. Hence, computational
complexity results for applying Dijkstra’s algorithm to graphs with constant and non-negative
weights generalise to Algorithm 1′. The algorithm is applied to the transpose of the graph G
which contains an equal number of vertices and arcs. Using a Fibonacci heap data structure for
the priority queue Q, an application of Dijkstra’s algorithm to this graph has computational
complexity O(|E| + |V | log |V |).

The above results prove the correctness and computational complexity respectively of
Algorithm 1′. If the following, we prove that these results generalise to Algorithm 1. These
proofs are based on the insight that Algorithm 1 prunes the search space of Algorithm 1′ to
only consider feasible payment paths.

13

Corcoran & Lewis

Theorem 7. Algorithm 1 for computing a lowest-fee path in the LN graph G = (V, E) with
fee map fbr is correct.

Proof. In the following, we prove that Algorithms 1 and 1′ compute equivalent results. The
search space of Algorithm 1 is a pruned search space relative to Algorithm 1′. Specifically,
the search space of Algorithm 1 is the space of feasible payment paths. The search space
of Algorithm 1′ is the space of both feasible and infeasible payment paths. We assume that
the range of fbr is bounded and therefore all feasible payment paths have a finite fee. On
the other hand, all infeasible payment paths will contain an arc where f∞

br evaluates to ∞
and therefore have an infinite fee. If a feasible lowest fee path exists, since Algorithm 1′ is
correct from Lemma 5, Algorithm 1′ will return it. On the other hand, since it is feasible, this
payment path will exist in the pruned search space and will also be returned by Algorithm 1.
If no feasible payment path exists, Algorithm 1′ will return an infeasible payment path with
an infinite fee. On the other hand, Algorithm 1 will not return a payment path. If we equate
returning an infeasible payment path with not returning a payment path, then Algorithms 1
and 1′ compute equivalent results. Therefore, the correctness of Algorithm 1′ implies the
correctness of Algorithm 1.

Theorem 8. The computational complexity of applying the path planning algorithm presented
in Algorithm 1 to the LN graph G = (V, E) with fee map fbr is O(|E| + |V | log |V |).

Proof. Since Algorithm 1 searches a pruned search space relative to Algorithm 1′, it will
have computational complexity less than or equal to Algorithm 1′. We assume that payment
amounts and the range of fbr are both bounded. Therefore, the amount that one may wish to
forward along an arc is bounded. In a worst case where each arc has a balance greater than
or equal to this bound, the search spaces of Algorithm 1 and Algorithm 1′ are equal. Hence
Algorithm 1 and Algorithm 1′ have equal computational complexity. Given this, the proof
follows from Lemma 6.

The above proofs of correctness and computational complexity for Algorithm 1 assume
that the fee map in question is consistent. If this were not the case, the algorithm would not be
correct. To demonstrate this, consider the LN graph G and corresponding transpose graph GT

displayed in Figures 4(a) and 4(b) respectively. Furthermore, let the fee map fbr corresponding
to the transpose graph GT have the properties fbr((t, i), 100) = 10, fbr((i, j), 110) = 10,
fbr((j, s), 120) = 5, fbr((t, j), 100) = 10 and fbr((j, s), 110) = 20. This fee map is not
consistent because the following inequality is not satisfied 110+fbr((j, s), 110) = 110+20 =
130 ≤ 120 + fbr((j, s), 120) = 120 + 5 = 125.

Consider the problem of making a payment from s to t in G where the amount transferred
to t is 100. Applying Algorithm 1 to GT to determine a path from t to s returns the path
(t, j), (j, s) which has a fee of fbr((t, j), 100) + fbr((j, s), 110) = 10 + 20 = 30. However,

14

An Analysis of the Correctness and Computational Complexity

(a)

(b)

Figure 4: An LN graph G and corresponding transpose graph GT displayed in (a) and (b)
respectively. The fee map fbr corresponding to GT has the properties fbr((t, i), 100) = 10,
fbr((i, j), 110) = 10, fbr((j, s), 120) = 5, fbr((t, j), 100) = 10 and fbr((j, s), 110) = 20.

the lowest fee path from t to s is in fact (t, i), (i, j), (j, s), which has a fee of fbr((t, i), 100)
+ fbr((i, j), 110) + fbr((j, s), 120) = 10 + 10 + 5 = 25. This is because when the algorithm
processes the arc (t, j) it will insert the element (110, j) into the queue Q and consider the
path (t, j) as the lowest fee path from t to j. When the algorithm later processes the arc
(i, j) it will observe that 120 ≰ 110 and, consequently will not insert the element (120, i)
into the queue Q nor consider the path (t, i), (i, j) as the lowest fee path from t to j. Hence,
Algorithm 1 does not return the lowest fee path and is therefore incorrect in this case.

If the fee map for a LN graph is an arbitrary map that is not consistent, the corresponding
path planning can be NP-hard. We present a proof of this fact in the following theorem.

Theorem 9. Consider a LN graph G = (V, E) with fee map f : E × Z≥ → Z≥. If f is an
arbitrary map that is not consistent, the problem of determining a lowest-fee path in G from
s to t, where the amount transferred to t is a, can be NP-hard.

Proof. In Lemma 4 we proved an equivalence between the path planning problem in question
and a specific type of path planning problem in a TDN. The latter problem is denoted forbidden
waiting by Orda et al. [32], and Zeitz [33] proved that this problem is NP-hard. This implies
the path planning problem in question is also NP-hard.

15

Corcoran & Lewis

6 Bidirectional Variant of Dijkstra’s algorithm

The path planning algorithm described in the previous section can be considered unidirectional
in that it searches for a path in a single direction from the destination vertex to the source
vertex. On the other hand, bidirectional path planning algorithms search for a path in two
directions simultaneously. The first search takes place from the destination vertex towards the
source vertex, the second search takes place from the source vertex towards the destination
vertex. A path is then established when both searches intersect [34]. If applicable to the
LN, bidirectional path planning has the potential to reduce the time and space requirements
relative to unidirectional path planning. This has been demonstrated empirically in many
types of real-world networks including street networks [35].

To illustrate how bidirectional path planning can reduce the computational effort needed
for path planning in the LN, consider the example LN displayed in Figure 5 which has a
hub-and-spoke topology. Although this is not an accurate representation of the real LN,
the LN is known to exhibit topologies with hub-and-spoke structures [20]. In this context,
vertices on the spokes likely correspond to customers and merchants, while vertices in the hub
correspond to routing vertices. In this example, consider the case where we wish to transfer
an amount a from vertex s to vertex t and let us assume that all arcs have sufficient balance
to transfer this amount plus any necessary fees. There is a single path (s, r), (r, t) from s to t
which contains a single intermediate vertex r. If we apply the unidirectional path planning
algorithm described in the previous section, this algorithm will explore every vertex adjacent
to r before finding the lowest-fee path. On the other hand, if we could apply a bidirectional
path planning algorithm, this algorithm would only need to explore the three vertices s, r
and t to find the lowest-fee path. This is because both searches intersect when they explore
the vertex r and therefore do not need to explore any other vertices on the spokes.

The asymptotic computational complexity of both the unidirectional and bidirectional
path planning algorithms are both O(|E| + |V | log |V |). The former corresponds to applying
Dijkstra’s algorithm once, while the latter corresponds to applying Dijkstra’s algorithm twice.
However, the empirical benefits of the bidirectional algorithm can be explained by considering
the branching factor b of the searches and the number of arcs d in the lowest-fee path. In graph
searching algorithms such as Dijkstra’s algorithm, the branching factor equals the average
number of branching paths the search can explore from a given vertex [34, Chapter 3]. This
approximately equals the average vertex degree. If a path planning algorithm is applied, the
number of vertices explored will be approximately O(bd). This follows from the fact that
the search will explore a search tree to a depth d before the lowest-fee path is found and at
each step, the search tree will expand by a factor of b. On the other hand, if a bidirectional
path planning algorithm is applied, the number of vertices explored will be approximately
2 × O(bd/2) which is less than O(bd) [34, Chapter 3]. Here, the multiple 2 represents the
fact that two searches are applied. The d/2 exponent represents the fact that each of these

16

An Analysis of the Correctness and Computational Complexity

Figure 5: An example LN with a hub-and-spoke topology is displayed.

searches will explore a search tree to a depth of d/2 before the lowest-fee path is found. The
above analysis implies that, if bidirectional path planning could be successfully applied to the
LN, this would reduce the number of vertices explored. As discussed in the previous section,
applying a path planning algorithm from the destination vertex t to the source vertex s is
possible using Algorithm 1. However, applying a path planning algorithm in the opposite
direction is challenging.

To partially overcome this challenge, we can use the fact that fees charged by outgoing arcs
adjacent to the vertex s are paid to s. That is, any fees paid by the vertex s will automatically
be refunded and therefore can be considered to be zero. This fact can be modelled as a
transformation of the LN such that fb(s, v) = 0 and fr(s, v) = 0.0 for all v ∈ {u : (s, u) ∈
E}. For example, applying this transformation to the LN in Figure 3(a) gives the LN displayed
in Figure 6. Note that the transformation does not alter arc balances. As a consequence of the
fact that the LN does not support negative fees, the value 0.0 is a tight lower bound for the fees
charged for transferring any amount. Therefore, when a vertex v in the set {u : (s, u) ∈ E}
has been explored in a unidirectional search from t and the arc (s, v) has sufficient balance,
a lowest cost path from t to s can be inferred by appending the arc (s, v) to the lowest-fee
path from v to t. In this case, the search can be terminated before exploring the vertex s. For
example, consider again the LN in Figure 3(a). When the vertex i has been explored in a
unidirectional search from t, a lowest cost path from t to s can be inferred by appending the
arc (s, i) to the lowest cost path from i to t.

Using this insight, we can extend the termination condition used in the unidirectional path
planning method shown in Algorithm 1. Specifically, instead of just terminating when the

17

Corcoran & Lewis

Figure 6: An example LN is displayed.

next vertex v to be explored is the source s (line 6), we can also terminate when v belongs to
the set {u : (u, s) ∈ E} and the arc in question has a sufficient balance (line 8). Algorithm 2
provides a full description of this new algorithm. This is the same as Algorithm 1 except for
the additional termination condition at line 8. We now prove the correctness of this algorithm.

Theorem 10. Algorithm 2 for computing a lowest-fee path in the LN is correct.

Proof. It follows from Theorem 5 that the algorithm computes a lowest-fee path from the
vertex t to the vertex s or a vertex in the set v ∈ {u : (u, s) ∈ E}. When either of these
events occurs, the algorithm, in turn, computes a lowest-fee path from t to s in GT . Hence,
Algorithm 2 is correct.

Algorithm 2 is a variant on bidirectional path planning in which a full search is initiated
from t and only a partial search, consisting of a single step, is initiated from s. Hence, we
refer to this path planning algorithm as a partial bidirectional path planning algorithm. As
discussed earlier, a bidirectional path planning algorithm explores fewer vertices than a unidi-
rectional path planning algorithm. Since the partial bidirectional path planning terminates the
search one step earlier, it will explore approximately O(bd−1) where b is the branching factor
and d is the number of arcs in the lowest-fee path. This is less than that of the unidirectional
path planning algorithm equals O(bd) but greater than that of the bidirectional path planning
algorithm, which equals 2 O(bd/2). The number of vertices explored by the partial bidirec-
tional algorithm is not significantly less than that for unidirectional path planning. However,
as discussed in the results section below, we find in practice that partial bidirectional path
planning exhibits better performance. This can be attributed to the hub and spoke topology
of the LN described earlier.

18

An Analysis of the Correctness and Computational Complexity

Algorithm 2: Bidirectional Variant of Dijkstra’s algorithm
Input: A graph GT = (V, E) that equals the transpose of the LN graph G; a

payment source s ∈ V ; a payment destination t ∈ V ; and a payment amount
a ∈ Z> to be transferred to t.

Output: A map c : V → R that, for each vertex v, returns the fee for a lowest-fee
path from t to v in GT where the amount transferred to t is a; a map
p : V → V that, for each vertex v, returns the previous vertex in a
lowest-fee path from t to v in GT .

1 For all v ∈ V , set c(v) = ∞
2 Set c(t) = 0 and insert the ordered pair (c(t), t) into a priority queue Q
3 while |Q| > 0 do
4 Let (c(v), v) be the element in Q with the minimum value for c(v)
5 Remove the element (c(v), v) from Q
6 if v = s then
7 break
8 if v ∈ {u : (u, s) ∈ E} ∧ c(v) + a ≤ b(v, s) then
9 Set c(s) = c(v), set p(s) = v, and break

10 forall v′ ∈ {u : (v, u) ∈ E} do
11 cv′ = c(v) + fbr((v, v′), a)
12 if cv′ < c(v′) ∧ c(v) + a ≤ b(v, v′) then
13 Add the element (cv′ , v′) to Q and, if present, remove element (c(v′), v′)

from Q
14 Set c(v′) = cv′ and set p(v′) = v

7 Experimental Results

In this section, we present an empirical evaluation of the unidirectional and partial bidirec-
tional path planning algorithms described in Sections 4 and 6 respectively. As discussed in
the Related Works section, existing path planning algorithms can broadly be categorised as
centralised algorithms and decentralised algorithms. The unidirectional algorithm is the most
commonly used centralised algorithm and therefore is a suitable benchmark to compare the
partial bidirectional algorithm against. On the other hand, decentralised algorithms are not
commonly used due to the lack of payment privacy they provide. In turn, implementations
of these methods are difficult to obtain. Therefore, we do not consider any decentralised
algorithms in our comparison.

In our trials, we used a real snapshot of the LN captured on 22 February 2024 using

19

Corcoran & Lewis

the Lightning Network Daemon (lnd) implementation of an LN node.1 On this same date,
one Satoshi (the unit of currency used by the LN) had a value of approximately 0.0004
GBP. The graph representation of the above snapshot contains 9,420 vertices and 32,202
arcs; however, many of these arcs had no fee information making them unusable for routing
and were therefore removed. Furthermore, many vertices were isolated with no adjacent
arcs and these were also removed. Following these steps, the resulting graph contained
2,453 vertices and 26,000 arcs. The mean and median LN snapshot channel capacities were
10,490,032 Satoshis and 4,000,000 Satoshis respectively. The 10th and 90th percentiles of
LN snapshot channel capacities were 500,000 Satoshis and 17,137,075 Satoshis respectively.
To help maintain privacy and reduce communication bandwidth, individual arc balances
are not shared. We therefore assumed that all channels were balanced. That is, to each of
the two arcs corresponding to a given channel, we assigned a balance equal to half of the
corresponding channel capacity. Currently, there is no historical transaction data for the
LN and such data is difficult to infer by design. Therefore, to test the two path planning
algorithms, we constructed three sets of simulated payments on the LN snapshot described
above. The first set of payments contained 10,000 elements and was constructed using the
following rejection sampling-based approach. We first sampled without replacement the
payment source and destination vertices from the set of graph vertices V . This ensures that
the pair of vertices is distinct. Next, we sampled the payment amount uniformly at random
from the set {1, 2, . . . , 1000000}. A recent report by the cryptocurrency company River
indicates that most LN payment amounts lie in this interval [36]. Given the above payment
source, destination, and amount, we then determined if the payment in question was feasible;
that is, whether there existed a path from the source to the destination that could transfer the
amount. If the payment was feasible, it was added to the set of payments. Otherwise, it was
discarded. This process was repeated until the set of payments contained 10,000 elements.

For each simulated payment, we computed the number of vertices explored by the uni-
directional and partial bidirectional algorithms by counting the number of corresponding
for-loop iterations. (The loops in question start at lines 8 and 10 of Algorithms 1 and 2
respectively). For the unidirectional algorithm, the mean and standard deviation of the num-
ber of vertices explored was 7, 452 ± 3, 190. For the partial bidirectional algorithm, the
corresponding figures were 4, 069 ± 3, 594, equating to a 45% reduction in the mean. Next,
for each payment, we computed the percentage reduction in vertices explored by the partial
bidirectional algorithm. That is, the number explored by unidirectional minus the number
explored bidirectional divided by the number explored by unidirectional. This percentage
represents the reduction in computation provided by the proposed bidirectional algorithm
for the path planning task in question. Figure 7(a) displays a histogram of these percentage
values. The mean and standard deviation of these percentages are 47% and 35% respectively.

1https://docs.lightning.engineering/

20

An Analysis of the Correctness and Computational Complexity

(a) (b)

Figure 7: For two sets of simulated payments, the corresponding histograms of the percentage
reduction in the number of vertices explored by the partial bidirectional algorithm relative
to the unidirectional algorithm are displayed. The vertical axis is the number of payments,
while the horizontal axis gives the percentage reduction.

Our second set of simulated payments also contained 10,000 elements. This set was
constructed using an approach similar to the previous though, in this case, we sampled the
source and destination vertices from the set of all graph vertices with out-degrees of less than
four. The motivation for considering these low-degree vertices is that they tend to correspond
to merchants and customers instead of routing peers. Similarly to before, we then computed
the percentage reduction in the number of vertices explored by the partial bidirectional
algorithm. In this case, the mean number of vertices explored by the unidirectional algorithm
was 8, 102 ± 2, 882 whereas, for the partial bidirectional algorithm, these figures were
5, 491 ± 3, 574, giving a 32% reduction in the mean. For each payment, we then computed
the percentage reduction in vertices explored by the partial bidirectional algorithm. Figure 7(b)
displays a histogram of these values. The mean and standard deviation of these percentage
values are 33% and 32% respectively.

Our final set of simulated payments contained 100,000 elements. This set was constructed
using the same approach as the first set. We then used this set of payments to measure the
wall-clock running time of both path planning algorithms. Both algorithms were implemented
as single-thread computer programs using the Rust programming language and executed on a
PC with an Inter i9-14900K CPU and 32GB of RAM. We computed the set of payments using
each algorithm and measured the corresponding wall-clock running times. We then repeated
this step ten times and computed the corresponding mean wall-clock running times. The
mean wall-clock running times for the unidirectional and partial bidirectional path planning
algorithms were 66 and 48 seconds respectively. This equates to a mean wall-clock running

21

Corcoran & Lewis

time for an individual payment of 0.00066 and 0.00048 seconds respectively. The latter
algorithm therefore provides a 27% reduction in mean wall-clock running time.

In summary, for all three sets of simulated payments considered, the partial bidirectional
path planning algorithm explores significantly fewer vertices than the unidirectional path
planning algorithm and, in turn, provides improved computational performance.

8 Conclusions

In this article, we have considered the problem of path planning in PCNs. We have provided
correctness and computational complexity results for a variant of Dijkstra’s algorithm, which
is the most cited algorithm for solving this problem. These results show that if the PCN
fee function has a consistency property, the path planning algorithm is correct and has
polynomial computational complexity. This finding therefore has the potential to inform the
development of new or existing PCN fee functions. In this article, we have also proposed a
slight modification to the above algorithm based on the concept of bidirectional search. We
demonstrate empirically that this proposed modification provides improved computational
performance.

These findings notwithstanding, solving the path planning problem is only one of many
challenges that must be overcome before PCNs can fully deliver on their potential to solve
the scaling challenges of cryptocurrencies [37]. Other challenges include mitigating security
attacks such as denial-of-service [38] and griefing [39] attacks, ensuring the privacy of users
[40], ensuring network topologies that allow efficient payments [41], and allowing users with
edge devices such as mobile phones to make and receive payments. In future work, we hope
to help address some of these other challenges.

Acknowledgements

This work was supported by the Security, Crime and Intelligence Innovation Institute at
Cardiff University through their Kickstarter Funding scheme.

References
[1] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized business

review, page 21260, 2008.
[2] Yang Xiao, Ning Zhang, Wenjing Lou, and Y Thomas Hou. A survey of distributed consensus

protocols for blockchain networks. IEEE Communications Surveys & Tutorials, 22(2):1432–
1465, 2020.

22

An Analysis of the Correctness and Computational Complexity

[3] Abdelatif Hafid, Abdelhakim Senhaji Hafid, and Mustapha Samih. Scaling blockchains: A
comprehensive survey. IEEE Access, 8:125244–125262, 2020.

[4] Andreas M Antonopoulos, Olaoluwa Osuntokun, and René Pickhardt. Mastering the Lightning
Network. O’Reilly Media, Inc., 2021.

[5] Christian Decker, Rusty Russell, and Olaoluwa Osuntokun. Eltoo: A simple layer2 protocol for
bitcoin. White paper: https://blockstream.com/eltoo.pdf, 2018.

[6] Gabriel Antonio F Rebello, Gustavo F Camilo, Lucas Airam C de Souza, Maria Potop-Butucaru,
Marcelo Dias de Amorim, Miguel Elias M Campista, and Luís Henrique MK Costa. A survey
on blockchain scalability: From hardware to layer-two protocols. IEEE Communications Surveys
& Tutorials, 2024.

[7] Vibhaalakshmi Sivaraman, Shaileshh Bojja Venkatakrishnan, Kathleen Ruan, Parimarjan Negi,
Lei Yang, Radhika Mittal, Giulia Fanti, and Mohammad Alizadeh. High throughput cryptocur-
rency routing in payment channel networks. In USENIX Symposium on Networked Systems
Design and Implementation, 2020.

[8] Vivek Bagaria, Joachim Neu, and David Tse. Boomerang: Redundancy improves latency and
throughput in payment-channel networks. In Financial Cryptography and Data Security, Kota
Kinabalu, Malaysia, pages 304–324. Springer, 2020.

[9] Rene Pickhardt and Stefan Richter. Optimally reliable & cheap payment flows on the lightning
network. arXiv preprint arXiv:2107.05322, 2021.

[10] Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and Ian Goldberg. Settling payments
fast and private: Efficient decentralized routing for path-based transactions. arXiv preprint
arXiv:1709.05748, 2017.

[11] Pavel Prihodko, Slava Zhigulin, Mykola Sahno, Aleksei Ostrovskiy, and Olaoluwa Osuntokun.
Flare: An approach to routing in lightning network. White Paper, 144, 2016.

[12] Changting Lin, Ning Ma, Xun Wang, and Jianhai Chen. Rapido: Scaling blockchain with
multi-path payment channels. Neurocomputing, 406:322–332, 2020.

[13] Rene Pickhardt and Mariusz Nowostawski. Imbalance measure and proactive channel rebalancing
algorithm for the lightning network. In IEEE International Conference on Blockchain and
Cryptocurrency, pages 1–5, 2020.

[14] Weizhao Tang, Weina Wang, Giulia Fanti, and Sewoong Oh. Privacy-utility tradeoffs in routing
cryptocurrency over payment channel networks. Proceedings of the ACM on Measurement and
Analysis of Computing Systems, 4(2):1–39, 2020.

[15] Maya Dotan, Saar Tochner, Aviv Zohar, and Yossi Gilad. Twilight: A differentially private
payment channel network. In USENIX Security Symposium, pages 555–570, 2022.

[16] Giovanni Di Stasi, Stefano Avallone, Roberto Canonico, and Giorgio Ventre. Routing payments
on the lightning network. In IEEE international conference on internet of things and IEEE green
computing and communications and IEEE cyber, physical and social computing and IEEE smart
data, pages 1161–1170, 2018.

[17] Oğuzhan Ersoy, Stefanie Roos, and Zekeriya Erkin. How to profit from payments channels. In
Financial Cryptography and Data Security, pages 284–303. Springer, 2020.

[18] Yuup Van Engelshoven and Stefanie Roos. The merchant: Avoiding payment channel depletion

23

Corcoran & Lewis

through incentives. In IEEE International Conference on Decentralized Applications and
Infrastructures, pages 59–68, 2021.

[19] Saar Tochner, Stefan Schmid, and Aviv Zohar. Hijacking routes in payment channel networks:
A predictability tradeoff. arXiv preprint arXiv:1909.06890, 2019.

[20] Stefano Martinazzi and Andrea Flori. The evolving topology of the lightning network: Central-
ization, efficiency, robustness, synchronization, and anonymity. PlOS ONE, 15(1):e0225966,
2020.

[21] István András Seres, László Gulyás, Dániel A Nagy, and Péter Burcsi. Topological analysis
of bitcoin’s lightning network. In International Conference on Mathematical Research for
Blockchain Economy, Santorini, Greece, pages 1–12, 2020.

[22] Elias Rohrer, Julian Malliaris, and Florian Tschorsch. Discharged payment channels: Quantifying
the lightning network’s resilience to topology-based attacks. In IEEE European symposium on
security and privacy, pages 347–356, 2019.

[23] Philipp Zabka, Klaus-T Förster, Christian Decker, and Stefan Schmid. A centrality analysis of
the lightning network. Telecommunications Policy, 48(2):102696, 2024.

[24] Arad Kotzer and Ori Rottenstreich. Braess paradox in layer-2 blockchain payment networks.
In IEEE International Conference on Blockchain and Cryptocurrency, Dubai, United Arab
Emirates, 2023.

[25] Charalambos A Charalambides. Enumerative combinatorics. CRC Press, 2002.
[26] Satwik Prabhu Kumble, Dick Epema, and Stefanie Roos. How lightning’s routing diminishes its

anonymity. In International Conference on Availability, Reliability and Security, pages 1–10,
2021.

[27] Dan Andreescu. Comparing lightning routing protocols to routing protocols with splitting.
bachelor thesis, 2021.

[28] Peter Sanders, Kurt Mehlhorn, Martin Dietzfelbinger, and Roman Dementiev. Sequential and
Parallel Algorithms and Data Structures. Springer, 2019.

[29] David E Kaufman and Robert L Smith. Fastest paths in time-dependent networks for intelligent
vehicle-highway systems application. Journal of Intelligent Transportation Systems, 1(1):1–11,
1993.

[30] Jorge Nocedal and Stephen J Wright. Nonlinear equations. Numerical Optimization, pages
270–302, 2006.

[31] Michel Gendreau, Gianpaolo Ghiani, and Emanuela Guerriero. Time-dependent routing prob-
lems: A review. Computers & operations research, 64:189–197, 2015.

[32] Ariel Orda and Raphael Rom. Shortest-path and minimum-delay algorithms in networks with
time-dependent edge-length. Journal of the ACM, 37(3):607–625, 1990.

[33] Tim Zeitz. NP-hardness of shortest path problems in networks with non-fifo time-dependent
travel times. Information Processing Letters, 179:106287, 2023.

[34] Stuart J. Russell and Peter Norvig. Artificial Intelligence: a modern approach. Pearson, 4 edition,
2021.

[35] Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann, Thomas Pajor,
Peter Sanders, Dorothea Wagner, and Renato F Werneck. Route planning in transportation

24

An Analysis of the Correctness and Computational Complexity

networks. Algorithm engineering: Selected results and surveys, pages 19–80, 2016.
[36] River. Research report: The lightning network grew by 1212% in 2 years, why it’s important to

pay attention. Technical report, River, 2023.
[37] Maya Dotan, Yvonne-Anne Pignolet, Stefan Schmid, Saar Tochner, and Aviv Zohar. Survey

on blockchain networking: Context, state-of-the-art, challenges. ACM Computing Surveys,
54(5):1–34, 2021.

[38] Clara Shikhelman and Sergei Tikhomirov. Unjamming lightning: A systematic approach. Cryp-
tology ePrint Archive, 2022.

[39] Subhra Mazumdar, Prabal Banerjee, Abhinandan Sinha, Sushmita Ruj, and Bimal Kumar Roy.
Strategic analysis of griefing attack in lightning network. IEEE Transactions on Network and
Service Management, 2022.

[40] George Kappos, Haaroon Yousaf, Ania Piotrowska, Sanket Kanjalkar, Sergi Delgado-Segura,
Andrew Miller, and Sarah Meiklejohn. An empirical analysis of privacy in the lightning network.
In Financial Cryptography and Data Security, pages 167–186. Springer, 2021.

[41] Paolo Guasoni, Gur Huberman, and Clara Shikhelman. Lightning network economics: Topology.
Available at SSRN 4439190, 2023.

A Recurrence Relation

In the following theorem, we solve the recurrence relation defined in Equation (2) to give a
closed-form expression for each ai value.

Theorem 11. The solution of the recurrence relation in Equation (2) with the condition
an+1 = a is

ai =

 n+1∏
k=i+1

(1 + fr(ek))

an+1 +
n+1∑

m=i+1

fb(em)∏n+1
k=m 1 + fr(ek)

 . (7)

Proof. Let e′
1, e′

2, . . . , e′
n be the sequence of arcs where e′

i = en+1−i, and let a′
1, a′

2, . . . , a′
n+1

be the sequence of values where a′
i = an+2−i. That is, we reverse the order of both sequences.

By performing this change of variables, Equation (2) can be rewritten as the following
recurrence relation with the initial condition a′

1 = a:

a′
i+1 = a′

i + fb(e′
i) + fr(e′

i)a′
i. (8)

The recurrence relation in Equation (8) can be refactored as

a′
i+1 = a′

i + fb(e′
i) + fr(e′

i)a′
i (9a)

= (1 + fr(e′
i))a′

i + fb(e′
i). (9b)

25

Corcoran & Lewis

The recurrence relation in Equation (9b) has the properties of being linear, first-order, non-
homogeneous and having variable coefficients [25]. First-order refers to the fact that the term
a′

i+1 is a function of only the previous term a′
i in the sequence. Non-homogeneous means

that the term fb(e′
i) is not a multiple of a′

i−1 or a′
i. Finally, having variable coefficients refers

to the fact that the coefficients fb(e′
i) and (1 + fr(e′

i)) are a function of i. A direct application
of Theorem 7.1 in [25] solves this recurrence relation, where the solution is defined as

a′
i =

(
i−1∏
k=1

(
1 + fr(e′

k)
))(

a′
1 +

i−1∑
m=1

fb(e′
m)∏m

k=1 1 + fr(e′
k)

)
. (10)

Performing an inverse of the change of variables previously performed gives the following
solution with the initial condition an+1 = a:

an+2−i =

n+1−i∏
k=n+1

(1 + fr(ek))

(an+1 +
n+1−i∑

m=n+1

fb(em)∏m
k=n+1 1 + fr(ek)

)
(11)

implying that

ai =

 i+1∏
k=n+1

(1 + fr(ek))

(an+1 +
i+1∑

m=n+1

fb(em)∏m
k=n+1 1 + fr(ek)

)
(12)

=

 n+1∏
k=i+1

(1 + fr(ek))

an+1 +
n+1∑

m=i+1

fb(em)∏n+1
k=m 1 + fr(ek)

 (13)

as required.

The following Python code listing implements the above method for directly solving
the recurrence relation in question. By comparing solutions computed using the recursive
and direct methods defined in Equations (2) and (7) respectively, this code can be used to
empirically verify the correctness of the above theorem.

1 import numpy
2
3 a = 102 # Amount a
4 b = [10, 5, 3.4, 11, 7] # path arc base fees
5 r = [0.1 , 0.211 , 0.15 , 0.12 , 0.11] # path arc fee rates
6 n = len(b) -1
7
8 # Compute the sequence of values recursively using Equation (2)
9 ai = a

10 print("a[", n+1, "]: ", ai)
11 for i in range(len(b) -1, -1, -1):

26

An Analysis of the Correctness and Computational Complexity

12 ai += b[i] + ai*r[i]
13 print("a[", i, "]: ", ai)
14 print ()
15
16 # Compute the sequence of values directly using Equation (6)
17 for i in range(n+1, -1, -1):
18 ai = numpy.prod ([(1+r[k]) for k in range(i,n+1)]) * (a + numpy.sum

([(b[m]/ numpy.prod ([(1+r[k]) for k in range(m,n+1)])) for m in
range(i,n+1)]))

19 print("a[", i, "]: ", ai)

Listing 1: Solving the recurrence relation recursively and directly.

27 Received \jreceived

	Introduction
	Related Works
	Problem Definition
	Variant of Dijkstra’s algorithm
	Correctness and Computational Complexity Analysis
	Bidirectional Variant of Dijkstra’s algorithm
	Experimental Results
	Conclusions
	Recurrence Relation

