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Abstract: Green logistics has gained significant attention in recent years due to increasing
pollution levels and their negative effects. This area of research is crucial as governments
and countries worldwide recognize the severity of pollution and its detrimental effects.
Despite progress, significant gaps remain due to the lack of advanced models that consider
additional factors and the influence of speed on their outcomes. This paper presents a case
study on the Volume-based Pollution-Routing Problem with Time Windows (VPRPTW).
The objective is to minimize CO2 emissions and improve customer satisfaction using a fleet
of delivery vehicles. We propose a mathematical model and a probabilistic Tabu Search
(TS) algorithm to solve the studied VPRPTW. The study revealed a decrease in daily fleet
size from 16 to 12, indicating improved operational efficiency. In our study, we evaluate the
impact of vehicle speed on fuel consumption and compare the results with a constant route
speed to those obtained at varying speeds. Computational experiments reveal a significant
difference of over 20% between fixed and variable speed assumptions. Additionally,
we confirm that distance alone does not always correlate with energy consumption and
CO2 emissions. This highlights the importance of considering variable speeds in routing
problems to assist logistics companies, urban planners, and policymakers achieve more
accurate and environmentally friendly transportation solutions.

Keywords: green logistic; sustainability; Metaheuristics; Tabu Search algorithm; crowdsourced
travel data

1. Introduction
Each industrial revolution has introduced technological advancements that improved

human comfort and prosperity. Energy, a fundamental element of these revolutions, has
powered various sectors, including agriculture, commerce, construction, and transporta-
tion [1]. Historically, energy production has relied heavily on burning fossil fuels, a process
that generates greenhouse gas (GHG) emissions such as methane (CH4), carbon dioxide
(CO2), nitrous oxide (N2O), and ozone (O3). According to the United States Environmental
Protection Agency, CO2 emissions in 2021 amounted to 6.340 million metric tons, with
transportation contributing 28% of total emissions [1]. In response to these environmental
challenges, recent years have witnessed significant scientific efforts to develop strategies
to mitigate the environmental impact of transportation, particularly through advances in
operations research.
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Over the past two decades, green logistics has evolved to include a subfield focused
on green vehicle routing problems (GVRPs), with the aim of developing environmentally
friendly routing strategies [2,3]. A key objective within this domain is to minimize fuel
consumption, which is critical to reducing GHG emissions [4]. Bektas and Laporte [5]
introduced the Pollution-Routing Problem (PRP), a variant of the Vehicle Routing Problem
(VRP), to integrate fuel consumption into route planning. Other studies have also ex-
plored similar environmental objectives in routing, focusing on minimizing emissions, fuel
consumption, and other ecological impacts in the context of logistics and transportation
optimization.

Pollution from road vehicles is influenced by various factors, including fuel type
and environmental conditions [6]. Accurate emission estimation requires accounting for
variables such as distance traveled, vehicle weight, speed, and external conditions [7].
Numerous mathematical models have been developed to estimate fuel consumption, each
differing in the factors considered and the experimental settings under which they were
validated. Turkensteen [8] demonstrated that assuming a constant vehicle speed can result
in deviations of up to 80% compared to real-world data.

The contributions of this paper are three-fold: First, it introduces a practical rout-
ing problem, termed the Volume-Based Pollutant-Routing Problem with Time Windows
(VPRPTW), which incorporates multiple factors affecting emissions, with a specific focus on
the impact of speed on fuel consumption using average speed values for each route. Second,
the VPRPTW is formulated as a mixed-integer non-linear programming model aimed at
minimizing total emissions, providing a comprehensive framework for environmentally
conscious routing. Third, a probabilistic TS algorithm is developed to efficiently solve the
problem, utilizing the Google Distance Matrix API to construct asymmetric distance and
speed matrices.

The study found that daily fleet size decreased from 16 to 12, indicating improved
operational efficiency. However, shorter distances did not always lead to lower energy
consumption, as greater distances were associated with reduced energy use. The study also
highlighted the impact of vehicle speed on fuel consumption, with variable speeds leading
to deviations exceeding 20%. The findings underscore the importance of fine-tuning speed
profiles for reducing energy consumption and improving environmental sustainability.

The paper is organized as follows: Section 2 provides a review of the literature
on various GVRP variants. Section 3 outlines the problem definition, case study, and
its formulation. Section 4 details the solution methodology, while Section 5 describes the
numerical experiments and analyzes the results. Lastly, Section 6 offers concluding remarks,
key insights, and limitations.

2. Literature Review
The GVRP is a crucial field of research in transportation and logistics that aims to

minimize environmental effects. The purpose of this review of the literature is to summarize
the body of knowledge regarding GVRP and the use of the Tabu Search algorithm as a well-
known methodological technique. Determining the scope of the review among the many
works in the literature was to rely on two bases, the most recent, and give an overview of
GVRP by highlighting different variants of GVRP, single or multi-objectives, and different
addressing methods.

The VRP, first introduced by Dantzig and Ramser in 1959 [9], is widely recognized
as one of the most extensively studied operational-level transportation problems. Over
the years, numerous variants of the VRP have been developed, with one notable extension
being the GVRP. The GVRP has gained increasing attention in recent years due to growing
concerns about the environmental impact of transportation, particularly last-mile logistics.



Modelling 2025, 6, 6 3 of 26

A significant body of literature has emerged that addresses various aspects of GVRP.
For example, Fan et al. [10] proposed an integer programming model for the multi-depot
VRP with a time-varying road network aimed at minimizing total costs. The authors used
a hybrid genetic A = algorithm (GA) combined with a variable neighborhood search (VNS)
and the Methodologies for Estimating Air Pollutant Emissions from Transport (MEET)
model to estimate fuel consumption. Similarly, Gutiérrez-Padilla et al. [11] introduced the
discrete speed PRPTW and proposed a mixed-integer linear programming model. Their
model incorporated factors such as road slope, discrete speeds, pollution, and transport
costs in the Colombian context. Dutta et al. [12] introduced a bi-objective model for GVRP,
which was solved using the Non-Dominated Sorting Genetic Algorithm II (NSGA-II),
considering both distance and emissions.

To further reduce CO2 emissions, several recent studies have explored variable ve-
hicle speeds in the context of the GVRP. Yao et al. [13] proposed a green vehicle routing
optimization model that accounts for the impact of varying vehicle speeds on emissions,
reflecting actual road conditions in emission calculations. Their model was solved using
GA on the standard Solomon dataset. In another notable study, Shi and Lin [14] devel-
oped a bi-objective optimization model for the multi-depot GVRP with time windows,
focusing on operating costs and emissions. They solved the problem using the NSGA-II
algorithm. Wang et al. [15] investigated the effects of traffic restrictions on distribution
logistics, proposing a multi-objective GVRP model with soft time windows. This model
minimizes both delivery time and emissions, and the authors applied an improved ant
colony optimization algorithm to solve it.

Liu et al. [16] introduced an adaptive large neighborhood search (ALNS) algorithm
for the time-dependent GVRP with time windows (GVRPTW). The ALNS algorithm uses
time discretization and feasibility checks to determine departure times, showing effective
performance in solving small-sized instances and providing high-quality solutions for
larger instances with up to 1000 customers. Zhang et al. [17] investigated the impact of
driver behavior on fuel consumption and CO2 emissions in road freight transportation.
Using a dataset of over 4000 driving records, the study identified key behaviors, such
as harsh acceleration and cornering, that significantly impact fuel consumption. The
authors introduced an advanced fuel consumption model that incorporates these driver
behaviors. For electric vehicles, Cataldo-Díaz et al. [18] explored the electric VRPTW
(E-VRPTW), considering the battery state of charge. Their study compared linear and
non-linear charging methods and found that non-linear charging reduced overall route
time by minimizing unnecessary charging stops.

In a recent study, Lou et al. [19] addressed the low-carbon VRP with time-dependent
speeds, speed fluctuations, road conditions, and time windows. They proposed a hybrid
GA combined with adaptive-VNS, which was validated using a case study from Jingzhou,
China. Ferreira et al. [20] proposed a GVRP model with two-dimensional loading con-
straints and split deliveries to reduce emissions, solving it using a variable neighborhood
search method. Finally, Gkyrtis [21] examined the impact of road design on fuel con-
sumption, particularly for heavy vehicles in urban freight transport. The study found that
road design, particularly the longitudinal slope of highways, significantly influences fuel
economy, with fuel consumption increasing by up to 2.5 times when the slope increases
from 2% to 7%. This body of research highlights the growing recognition of environmental
concerns in vehicle routing and the diverse approaches explored to reduce emissions and
fuel consumption in logistics and transportation.

The TS algorithm is a neighborhood-based metaheuristic based on local search (LS)
methods created by [22] in 1989; although it is relatively ancient, it has proven its effective-
ness and is still widely used today, as it has several advantages, including the ability to
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escape the local optimum. Therefore, we will briefly review the literature: in 2021, Gmira et
al. [23] proposed a TS algorithm for solving a vehicle routing problem with time-dependent
travel times, with the computational results showing that this strategy provides near-
optimal solutions. Another recent study used a hybrid TS called simulated annealing TS for
solving the Time-Dependent Vehicle Routing Problem with Soft Time windows presented
by Liao and Shao [24]. Tlili et al. [25] addressed the ambulance routing problem with two
algorithms derived from TS: hybrid TS (HTS) and TS-based hyper-heuristic (TSHH).

A closer look at the previous literature and Table 1, in particular, as well as many
articles that are too numerous to mention, makes it clear that there is a scientific gap that
needs to be covered. In PRP, the models that are used are considered rather old; the most
famous and widely used example is the MEET model, which first appeared in 1998. Despite
its simplicity, it lacks the study of many factors; usually, only the distance and speed
factor are studied. On the other hand, previous studies have not addressed the complex
interplay of route optimization and energy dynamics, as it is common knowledge that
longer distances inevitably lead to more energy consumption.

Table 1. Comparison of features across various studies.

Reference Varying
Speed

Route-Energy
Dynamics Load Factor Time

Windows New Model Meta-
Heuristic

[10] ✓ ✓ ✓ ✓
[11] ✓ ✓ ✓
[12] ✓
[13] ✓ ✓ ✓
[14] ✓
[15] ✓ ✓ ✓
[16] ✓ ✓
[17] ✓
[18] ✓ ✓
[19] ✓ ✓ ✓
[20] ✓ ✓
[21] ✓
This paper ✓ ✓ ✓ ✓ ✓ ✓

3. Problem Description and Formulation
This section outlines the problem and its features. First, we introduce the case study

and formally define the problem. Then, we present a mixed-integer non-linear program-
ming model for the problem. In addition, the energy consumption method is introduced
within the objective function.

This study focuses on a real-world case problem concerning a pharmaceutical com-
pany that owns a limited number of homogeneous vehicles with limited capacity (load
and volume). The company’s goal is to distribute pharmaceutical products to customers
scattered in several cities in Algeria. The company’s objective is to shift to environmentally
friendly routing solutions that reduce energy consumption while satisfying customers
according to the company’s available resources.

The current distribution strategy involves aggregating customer requests each night
for service on the following day. In addition, each vehicle is assigned a specific number
of customers within a particular city. Basically, vehicles travel to their designated area
daily, regardless of the actual number of customers to be served, even if it is just one
customer. This approach encounters challenges related to energy consumption and the
inability to ensure customer satisfaction, particularly when serving them later in the day.
In addition, when the volume of customers is substantial, there is often a delay in servicing
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some customers. The company management also classified customers according to their
loyalty to the company. A higher number of transactions results in a more favorable
classification, ensuring priority satisfaction and early service compared to other customers.
To implement this, time windows are established that correspond to each customer’s
classification. The management determines these time windows based on the loyalty criteria
mentioned earlier. Typically, customers are available from morning to evening, except for
exceptional cases specified within the time window. Consequently, the determination of
customers’ time windows is structured primarily on loyalty, with consideration given to
exceptional availability.

On the other hand, to estimate the energy consumed, fuel consumption models can
be used, which are influenced by several factors that have been studied in [7,26,27]. These
factors were collected by Demir et al. [28] and organised into five categories: vehicle,
environment, traffic, driver, and operations. Usually, the focus is on vehicle, traffic, and
environmental influences when estimating energy consumption. In particular, factors
related to distance, payload, and vehicle speed are widely used. Using these factors as
constants along the route may lead to inaccurate results.

3.1. Energy Consumption Model

Equation (1) is the objective function by which we want to reduce the energy con-
sumed, and thus we can conclude the amount of CO2 emissions (or fuel consumption)
corresponding to each. We use an instantaneous energy consumption model, developed by
Chaim and Shmerling [29], as an extension of the Guzzella and Sciarretta model [30] with
more factors. This feature is very important compared to other models, as more factors
can be included. Most models proposed in the literature require a map of engine con-
sumption, assuming that fuel consumption is constant regardless of all operating modes.
However, there is no doubt that this is inaccurate and does not apply in practice [29].
The proposed model addresses this drawback by incorporating calculations for energy
requirement and fuel consumption based on the instantaneous specific fuel consumption.
The most important feature of this chosen model is the consideration of changes in the
movement pattern.

Equations (1)–(13) belong to Ben-Chaim and Shmerling [29] and Ben-Chaim et al. [31].
We have used these models to facilitate understanding of the model in an integrated, clear,
and logical sequence.

The energy consumption formula between customer i and customer j is expressed as:

Esij =

[(
E1ij + E2ij

)
∗ dij

]
100

(1)

Given the complexity of the equation, it has been decomposed into several simpler
equations for clarity. For the full logical sequence and detailed explanation, please refer to
Appendix A.

This model in Equation (1) is based on the assumption that the engine is operating in
two main modes. The first mode in which the movement is at average speed, E1ij is the
energy required to overcome the resistance forces in this mode. The second mode is based
on episodic accelerations, where E2 is the kinetic energy required, given by the joule (J).
The models of E1ij and E2ij are given in Equations (2) and (3).

E1ij =
1

ηTηP,nij

(
maij · g · crij +

ρ

2
· CD · A fij

·V2
aij

)
· S (2)

E2ij =
qmaij

ηTηe

k

∑
l

αlγmlSl
µplij

µnlij

(3)
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so:

Esij =

[(
1

ηTηP,nij

(
maij · g · crij +

ρ
2 · CD · A fij

·V2
aij

)
· S +

qmaij
ηTηe

∑k
l

αl γmlSl
µplij

µnlij

)
∗ dij

]
/100 (4)

All of these parameters are described in Table 2.

Table 2. A list of parameters related to vehicle energy consumption model.

Parameter Description

ηT Efficiency of the transmission.
ηP,n Efficiency of the engine.
ma Car mass.
g Acceleration of gravity.
cr Rolling resistance coefficient.
ρ Air density.
CD Coefficient of aerodynamic resistance of the car.
A f Characteristic area of the car.
Va Average speed of the vehicle.
S Car mileage.
q Number of accelerations in each acceleration interval.
ηe Engine’s peak efficiency.
αl Acceleration of the vehicle.
γml Mass factor of the vehicle.
Sl Acceleration distance of the vehicle.
k The number of acceleration intervals.
µpl Influence coefficient of the degree of power utilization on the peak

efficiency of the engine.
µnl Influence coefficient of engine speed mode on the peak efficiency

of the engine.
d Traveled distance.

The factor ηP,n represents the efficiency of the engine, which depends on the degree of
power utilization and the speed of the engine. This is calculated by the following formula:

ηP,n = ηeµpµn (5)

ηe, µp, and µn are calculated as follows:

ηe = 1/(0.0119531 ∗ ge) (6)

µp = 0.5968− 0.1666(Pi/Pe) + 2.4968(Pi/Pe)
2 − 2.1128(Pi/Pe)

3 (7)

µn = 0.7107 + 0.9963(ni/np)− 1.0582(ni/np)
2 + 0.3124(ni/np)

3 (8)

where:

Pi = (magcr + 0.5cr A f V2
a + maaγm)Va (9)

Pe = 103Pmax

[(
n/np

)
+ 0.5

(
n/np

)2 − 0.5
(
n/np

)3
]

(10)

n =
9.55Vaδaxδn

rd
(11)
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The remaining parameters are explained in Table 3.

Table 3. A list of parameters related to vehicle energy consumption.

Parameter Description

ge Specific fuel consumption.
Pi Engine power required for the given mode of motion.
Pe Engine power by the performance characteristics of the engines.
ni Engine speed at average speed of the vehicle.
np Engine speed at the maximum power of the engine.
Pmax Engine maximum power.
δax Finale drive gear ratio.
δn Gear ratio in the gearbox.
rd Rolling radius of the tire.

The formulas for calculating both cr and A f are as follows.

cr = 0.0136 + 0.40 ∗ 10−7V2
a (12)

A f = 1.6 + 0.00056(ma − 765). (13)

3.2. A Mixed-Integer Non-Linear Programming Formulation

We consider the formulation of VPRPTW in which we have a set K of homogeneous
vehicles with load capacity Q and volume capacity V. Each customer i has an associated
pair of values [ei, li]. It is a time window that represents the earliest and the latest time
when unloading can start. However, any vehicle is allowed to start serving customer i even
if the vehicle arrives before it is ready, without waiting for the start of the time window ei.
This is due to the synchronized time windows ei for all customers in the time matrix. The
time constraints are modelled as two constraints (26) and (27), which makes this a soft time
windows problem.

The VPRPTW model is defined on a complete graph G = (N, A) with a set of nodes
N = {0, 1, 2,. . . , n} representing customers and the depot and a set of arcs A representing
the roads between customers. We consider n = |N| customers numbered from 1 to n,
and node 0 is the depot. There are also two auxiliary vertices with numbers 0 and n + 1
representing the depot node for the route start and finish, respectively.

We also have the energy consumption E, where Eij indicates the energy consumption
of traveling from customer i to customer j, calculated using Equation (1). The matrix of
travel times T specifies the time units tij required to get from customer i to customer j, and
the distance from i to j is denoted by dij. The set N0 = N{0} is a customer set without the
depot. Parameters e0 and l0 determine the earliest time when a vehicle can leave the depot
and the latest time when it can return. The decision variables are specified as follows.

xijk =

{
1 if arc (i, j) is used by vehicle k
0 otherwise

(14)

wik =

{
service start time if customer i appears in route of vehicle k

0 otherwise
(15)

The MINLP formulation for the VPRPTW is given as follows.

min ∑
i∈N

∑
j∈N

∑
k∈K

Eijxijk (16)



Modelling 2025, 6, 6 8 of 26

Objective function (16) is subject to the following constraints:

∑
k∈K

∑
j∈N

xijk = 1 ∀i ∈ N0 (17)

∑
k∈K

∑
i∈N

xijk = 1 ∀j ∈ N0 (18)

∑
i∈N0

xi0k ≤ 1 ∀k ∈ K (19)

∑
j∈N0

x0jk ≤ 1 ∀k ∈ K (20)

∑
i∈N

xipk = ∑
j∈N

xpjk ∀p ∈ N0, k ∈ K (21)

∑
i∈N

∑
k∈K

qixijk ≤ Qk ∀k ∈ K (22)

∑
i∈N

∑
k∈K

vixijk ≤ Vk ∀k ∈ K (23)

xijk(wik + si + tij − wjk) ≤ 0 ∀k ∈ K, (i, j) ∈ N0 (24)

ei = e0 ∀i ∈ N0 (25)

ei ∑
j∈N

xijk ≤ wik ∀k ∈ K, i ∈ N0 (26)

li ∑
j∈N

xijk ≥ wik ∀k ∈ K, i ∈ N0 (27)

w0k ≥ e0 ∀k ∈ K (28)

wn+1,k ≤ l0 ∀k ∈ K (29)

uik − ujk + (n− 1)xijk ≤ n− 2 ∀k ∈ K, (i, j) ∈ N0 (30)

xijk = {0, 1} ∀k ∈ K, (i, j) ∈ N. (31)

The objective function (16) minimizes the total energy consumption across all routes
in the solution. Constraints (17) and (18) ensure that each customer is served by exactly one
vehicle. Constraints (19) and (20) ensure that a vehicle departs from a depot and returns to
the same depot only once. Constraints (21) enforce the continuity of the route by requiring
that a vehicle proceeds from one customer to the next. Constraints (22) and (23) prevent
overloads on the route by limiting total demand not to exceed vehicle capacity, considering
both weight (Q) and volume (V). Constraints (24) define the relationship between the de-
parture time of a vehicle from a customer and its immediate successor. Constraints (25)–(29)
ensure feasibility in relation to the specified time windows. Constraints (30) eliminate
sub-cycles within the solution. Finally, constraints (31) restrict the decision variable xijk to a
binary value.
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4. Solution Methodology
This section provides the details of the proposed algorithm. To solve VRP and its

variants, the TS metaheuristic has been frequently used in the literature, as it has a number
of advantages, iteratively exploring the solution space, employing memory structures to
prevent the re-examination of previously investigated solutions, and integrating methods
to evade local optima, thus facilitating a more extensive search for the global optimum. The
problem at hand is an NP-hard problem, and only small-sized instances can be solved to
optimality. Given the novelty of the problem, we opted to create a new algorithm for its
solution based on the TS algorithm.

Algorithm 1 shows the steps of the proposed algorithm. In the initial stage, the
algorithm generates data matrices on distance, time, and speed using the Distance Matrix
API. Subsequently, it defines variables such as maxIteration, iteration, tabuTenure, bestSolution,
and currentSolution. These variables represent, respectively, the maximum number of
iterations in the main loop (a stop condition), the current iteration, the time or number of
iterations an arc stays in the Tabu list, the best solution across all iterations, and the most
recently obtained solution.

Algorithm 1 Probabilistic Tabu search for the VPRPTW

1: Initialize:
2: Create data matrixes (distance, time, and speed) using Distance Matrix API
3: Generate a feasible initial solution x using greedy insertion
4: currentSolution← x
5: bestSolution← currentSolution
6: while iteration < maxIteration do
7: bestNeighborCost← ∞
8: bestMove← ∅
9: Generate a random number p ▷ p ∈ [0, 1]

10: if p > 0.8 then
11: Use 0-1 exchange strategy
12: else
13: Use i-cross exchange strategy
14: end if
15: for move ∈ allPossibleMoves do
16: neighborCost← getCost(currentSolution, move)
17: if neighborCost < bestNeighborCost) then
18: bestNeighborCost← neighborCost
19: bestMove← move
20: if bestNeighborCost = ∞ then
21: break
22: end if
23: end if
24: end for
25: Update tabu list
26: Generate a random number d ▷ d ∈ [0, 5]
27: TabuMatrix ← tabuTenure + d ▷ for new arcs in besMove
28: TabuMatrix ← TabuMatrix− 1 ▷ for each old arc in besMove
29: applyMove()
30: iteration← iteration + 1
31: currentSolution← bestNeighborCost
32: if currentSolution ≤ bestSolution then
33: bestSolution← currentSolution
34: end if
35: end while
36: return bestSolution
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The main loop stop condition occurs when we reach a certain number of predetermined
iterations. The bestNeighborCost is declared, which is the best difference between the cost
of the current situation and all possible moves. It is followed by the variable bestMove,
which returns the best move among the moves in the current situation. Variable p is the
probability of moving between the two strategies, i-cross exchange and 1-0 exchange. The
candidate transition is qualified by the allPossibleMoves function, which considers all the
conditions of weight, volume, time windows, and if the move is not Tabu.

After choosing one of the two strategies, the getCost function calculates the difference
between the cost of the current situation and all possible moves and stores the value in
the neighborCost variable. If it is better than bestNeighborCost, then bestNeighborCost takes
its value, and the bestMove is the current move. After completing all possible moves, the
Tabu list is updated as previously explained, and the move is applied to the currentSolution.
If the currentSolution is better than the bestSolution, the bestSolution is updated. When the
condition for stopping is met, the bestSolution is returned.

First, an initial solution is obtained using greedy insertion. It is the current solution
and the base to start the algorithm. It is obtained most often after creating distance and
time matrices. The algorithm remains operational until the stopping criterion is met. The
best solution is adopted during the search, while at each iteration, the current solution is
the best in the neighborhood, without comparing it with the previous solution regardless
of whether it is better or worse. The iCROSS exchange and 1-0 exchange strategies were
adopted to generate the current solution in the neighborhood structure. In the following
section, we explain the important elements of the proposed algorithm.

4.1. Creation of Data Matrixes

In VRP with time windows, we need to know the distance and the time required to
travel the distance between every two points (customers) back and forth. The way back
may differ from the outbound journey, resulting in asymmetric matrices for distance, time,
and speed. In practice, measuring these distances and times, especially with a considerable
number of customers, is impractical due to the associated high costs and time constraints.

For this, we use The Distance Matrix Application Programming Interface (API), which
is one of the Google Maps services that provide us with the distance and time of the matrix
of origins and destinations between the start and endpoints on the recommended route [32].
Requests for Distance Matrix API are restricted to a maximum of 100 elements per (server-
side and client-side) request. The total number of elements is determined by multiplying the
number of origins by the number of destinations; 100 elements are calculated as (10 origins
multiplied by 10 destinations). Through our review of the literature, we did not notice that
a significant number of elements were used as in our case, which used 39,204 elements in
each matrix (distance, time, and speed).

Following the asymmetric creation of distance and time matrices for all arcs, we
generate the speed matrix using the established formula: speed(v) = distance(d)/time(t).

vij =
dij

tij
∀i, j ∈ N0.

The algorithm was implemented using the Java programming language and various
libraries, the most notable being Google Maps Services 0.2.9 and GMapsFX-2.10.0. The
Google Distance Matrix API, which provides trip time estimates based on crowdsourced
data from Google users’ mobile phones, was used in the implementation [33]. This API
was first used by [34] to address routing problems. The study by [35] demonstrated that
the Distance Matrix API delivers geographical data consistent with real-world conditions.
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4.2. An Initial Solution

In the initial solution, routes are constructed sequentially using the greedy insertion
heuristic. In each iteration, the algorithm attempts to sequentially assign customers to
the current route until the constraints are satisfied. During the creation of each route, the
next customer is selected from the unselected customers who will achieve the best solution
for that route. The algorithm stops when an acceptable current solution is reached after
visiting all customers, with the key advantage of the greedy heuristic being its ability to
quickly obtain a feasible local solution.

4.3. The Neighborhood Structure

Choosing a neighborhood structure to exploit space solutions is the most important
step in designing the TS algorithm [36]. The CROSS exchange [37] is the most convenient
and widely used method for problems with time windows. The basic idea of the CROSS
exchange is clear through its name, as two segments of two different routes are exchanged
(swapped) in the form of a cross, as illustrated in Figure 1. Bräysy et al. [38] introduced
an extension of the CROSS exchange where the segments to be exchanged were inverted.
On this basis, it is called the inverted CROSS exchange (iCROSS exchange). The exchange
depends on deleting and creating some arcs, so (i− 1, i), (k, k + 1) from the first route and
(j− 1, j), (l, l + 1) from the second route are deleted. To achieve an inverse exchange of
the two segments (i, k) and (j, l), that is, (k, i) and (l, j), between the two routes, (i− 1, l),
(j, k + 1), and (j− 1, k), (i, l + 1) arcs are created. Details of how these exchanges work
are illustrated in Algorithm 2. It is evident in this proposed solution that the number of
customers in the segments is not restricted but is within the range of 1 to (length route − 2).

Figure 1. Neighborhood structure (1) i-cross exchange (2) 1-0 exchange.

When using the iCROSS exchange strategy alone, we observed that the results were
generally good. However, when we replaced it with the 1-0 exchange strategy, we found
that while some results were better, we often encountered the issue of the search becoming
stagnant in a specific region. Based on these observations, we experimented with incorpo-
rating both strategies and proposed using one of them in each iteration based on probability.
Specifically, in each iteration, the probability of selecting the iCROSS exchange strategy
was set at 80%, while the probability for the 1-0 exchange strategy was 20%. This approach
helps strike a balance between exploration and exploitation during the search process,
which is a key challenge in LS algorithms.
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Algorithm 2 iCROSS exchange function

1: best cost = Max value
2: item1 = −1, item2 = −1, item3 = −1, item4 = −1
3: for i = 1→ route1.length− 2 do
4: for k = i→ route1.length− 1 do
5: for f orj = 1→ route2.length− 2 do
6: for f orl = j→ route2.length− 1 do
7: calculate new demand in route1, route2
8: calculate new volume in route1, route2
9: if capacity = true and volume = true then

10: update route1, route2
11: calculate total time in route1, route2
12: if timeCheck(timeRoute1) = true and timeCheck(timeRoute2) = true

then
13: calculate oldcost
14: calculate newcost
15: if crosscost < bestcost then
16: item1 = i, item2 = k, item3 = j, item4 = l
17: end if
18:
19: end if
20: end if
21: end for
22: end for
23: end for
24: end forreturn item1, item2, item3, item4, bestcost

4.4. Tabu List

The Tabu list, organized as a matrix with each cell representing an arc, is initialized
with all values set to 0 in the first iteration. After each iteration, which concludes with
the selection of a strategy (iCROSS exchange or 0-1 exchange) based on probability and
results in obtaining a current solution, we update the Tabu list. This involves subtracting
1 from the value of each arc where the current value is greater than 0. Additionally, a
specific number of iterations, referred to as the Tabu tenure, is added to the arcs that have
been modified. These arcs include (i − 1, l), (j, k + 1), (j− 1, k), and (i, l + 1) according
to the defined neighborhood structure. In addition to the Tabu tenure, a random number
between 0 and 4 is added. Assigning a random number to each arc ensures that all arcs
are not simultaneously removed from the Tabu list and that they are added together in a
specific iteration.

5. Computational Experiments and Analysis
The probabilistic TS algorithm is applied to address real-life case study instances

involving a pharmaceutical distribution company operating in Algeria, as illustrated
in Figure 2. All datasets feature 16 identical vehicles with a specific capacity load and
volume of 1200 kg and 5 cubic meters, respectively. The total number of customers is
198, distributed across four instances representing consecutive days of the week, chosen
randomly to emulate diverse scenarios throughout the year. Key customer data include
time windows, service time (estimated at 10 min), demand in kilograms, and order volume
in cubic meters. The stopping condition for all tests is set at 500 iterations, with a Tabu
tenure length of 15. The algorithm is executed on an Intel Core i3-4030U processor with
1.9 GHz and 4GB RAM using Java NetBeans IDE 8.2, running on Windows 7.
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Figure 2. Customer locations on the map.

We address the problem by introducing time windows based on customer classifi-
cations. Each category, determined by the company’s management, is associated with a
specific time window according to the loyalty status. Typically, customers are available
from morning to evening, except for exceptional cases, and are served between 8 am and
2 pm. To eliminate waiting time, the customer readiness time is set at 8 am, ensuring all
time windows open simultaneously at 8 am. Time window closing times are distributed
as follows: 9 am, 11 am, 12 pm, and 2 pm, with priority given to loyalty in determining
the closing time. The depot is available from 5 am to 8 pm. Table 4 provides the list of
parameters with their values.

Table 4. Typical values assigned for the parameters.

Parameter Value

ηT 0.95
g 9.8
ρ 1.165

CD 0.30
ge 107
S 105

q 14.37
γmi 1.1
αi 2.277
Si 169.45
ni 62
np 5.103

Pmax 94
δax 3.5
δn 1.2
rd 0.5
k 4

To understand the impact of speed on the prediction of energy consumption during
trips, we investigate scenarios involving a fixed speed for each trip, fixed speeds for
individual vehicles within the same trip (referred to as varying speeds), and the average
speed between each arc.

Table 5 presents the results obtained to solve the problem using the speed of Google
Maps services, which means that the speed varies at each arc. The results of the energy
consumption of fixed speeds along the path were segmented into a range from 40 to
100 km/h at intervals of 20 km/h (40, 60, 80, 100). More details on the results obtained are
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provided in Tables 8–11. For example, Table 8 illustrates the results obtained for solving
the problem at a constant speed of 40 km/h throughout the trip.

Table 5. Energy consumption, distance, and CO2 emissions using speed from Google Maps services.

Dataset Number of
Customers

Number of
Vehicles

Used

Distance
(km)

Energy
Consumed

(MJ)

CO2
Emission

(Kg)

Fuel Con-
sumption

(L)

Time CPU
(s)

w1d1 081 12 5620.62 13,375.43 984.43 349.23 45
w1d2 065 09 2857.61 4630.76 340.82 120.90 29
w1d3 081 14 5721.38 13,655.35 1005.03 356.54 40
w1d4 064 11 3221.00 6747.51 496.62 176.18 28
w1d5 077 13 4410.81 10,474.14 770.90 273.48 35
w2d1 079 15 6366.49 15,248.50 1122.29 398.13 34
w2d2 071 10 3333.11 7721.31 568.29 201.60 41
w2d3 082 13 4623.28 11,083.74 815.76 289.39 61
w2d4 075 11 3881.50 9117.64 671.06 238.06 42
w2d5 105 16 6373.45 15,014.20 1105.06 392.02 81
w3d1 069 13 5413.74 12,760.86 939.20 333.18 32
w3d2 082 12 4160.96 9910.85 729.44 258.77 50
w3d3 063 12 5593.45 13,330.59 981.13 348.06 26
w3d4 050 09 3377.93 7914.78 582.53 206.65 17
w3d5 058 10 3901.90 9149.96 673.44 238.90 23
w4d1 074 13 5109.84 12,218.53 899.28 319.02 31
w4d2 061 10 3447.32 8038.35 591.62 209.88 25
w4d3 049 08 3630.01 8634.20 635.48 225.44 13
w4d4 069 10 4011.79 9562.82 703.82 249.68 93
w4d5 080 13 4910.54 11,627.58 855.79 303.59 118

average 71.75 11.7 4498.34 10,510.86 773.60 274.44 43.2

As shown in Table 5, the first column represents the dataset divided into four sections:
the weeks represented by the letter w, followed by the letter d, which represents the day in
that week. Knowing the amount of energy consumed, we can deduce the emissions as well
as the amount of fuel. Regarding the column of CO2 emissions, its results were obtained
depending on the amount of energy consumed by reducing the amount of emissions
emitted through Equation (32), including diesel engine compatibility [39].

CO2Emission(kg) =
Energyconsumed(MJ) ∗ 73.6

1000
(32)

The first note that draws attention is the number of vehicles used during trips every
day, which ranged from a minimum of 8 vehicles to a maximum of 16 vehicles that were
used every day. An average of 12 cars were used per day, with fewer than 4 vehicles
operating on some days. This is a good improvement, especially in economic terms.
A distance of 2857.61 km was obtained as the lowest distance traveled in the dataset,
corresponding to a minimum of emissions estimated at 340.82 kg in w1d2. On the other
hand, a maximum distance of 6373.45 km was recorded in w2d5, which corresponded to
the amount of emissions of 1105.06 kg. However, this was not the maximum emission,
which was recorded in w2d1 at 1122.29 kg over a distance of 6366.49 km. The difference
between w2d5 and w2d1 was 6.96 km in distance and 17.23 kg in emissions. This shows
that a long distance does not necessarily mean more fuel consumption. In the previous
example, despite the decrease in distance by about 7 km, the emissions increased by 17 kg.
This is explained by factors that control energy consumption, such as speed and weight.

To compare the performance of our proposed algorithm, TS, we evaluated it against
an initial solution obtained using the greedy insertion heuristic in Table 6. The greedy
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insertion heuristic provides a feasible, yet suboptimal, solution by iteratively inserting the
best available option into the current solution. In contrast, the Tabu Search algorithm, with
its memory-based approach and flexibility in exploring the solution space, refines the initial
solution to achieve better optimization results. The comparison highlights the efficiency
and effectiveness of TS in improving solution quality beyond the capabilities of the greedy
insertion heuristic.

Table 6. The results of initial solution using the greedy insertion heuristic.

Dataset Number of
Customers

Number of
Vehicles

Used

Distance
(km)

Energy
Consumed

(MJ)

CO2
Emission

(Kg)

Fuel Con-
sumption

(L)

Time CPU
(s)

w1d1 81 24 13,348.95 32,379.21 2383.11 845.41 1
w1d2 65 19 8486.14 20,574.13 1514.26 537.18 1
w1d3 81 29 14,616.02 35,603.85 2620.44 929.60 1
w1d4 64 20 9659.96 23,598.09 1736.82 616.14 1
w1d5 77 27 13,592.63 33,045.57 2432.15 862.81 1
w2d1 79 27 15,748.61 38,397.90 2826.09 1002.56 1
w2d2 71 21 10,356.94 25,041.73 1843.07 653.83 1
w2d3 82 25 14,313.21 34,790.21 2560.56 908.36 1
w2d4 75 23 11,625.92 28,364.57 2087.63 740.59 1
w2d5 105 31 17,795.65 43,269.05 3184.60 1129.74 1
w3d1 69 25 12,765.76 30,896.53 2273.98 806.70 1
w3d2 82 23 11,528.64 30,003.80 2208.28 783.39 1
w3d3 63 23 12,286.37 30,003.80 2208.28 783.39 1
w3d4 50 19 9364.14 22,759.15 1675.07 594.23 1
w3d5 58 18 10,143.91 24,720.02 1819.39 645.43 1
w4d1 74 25 12,765.76 30,896.53 2273.98 806.70 1
w4d2 61 22 10,042.51 24,451.66 1799.64 638.42 1
w4d3 49 16 8770.96 21,157.53 1557.19 552.42 1
w4d4 69 21 11,436.48 27,915.39 2054.57 728.86 1
w4d5 80 24 13,868.12 33,742.63 2483.46 881.01 1

average 71.75 23.15 12,091.18 29,395.23 2163.49 767.50 1

When trying to solve the problem, we identified some interesting results, which are
shown in Table 7. In particular, for solutions employing a smaller number of vehicles, the
company favors the adoption of new routes because of their increased profitability. Table 7
presents a comparison of two different solutions for the same case, where one involves a
greater distance but results in fewer emissions.

The company prioritizes solutions that involve fewer vehicle usages when the emis-
sions are relatively similar. For example, in the case of w1d5, the alternative solution
presented a distance of 120 km with one less vehicle, despite an increase of 7.79 kg in
emissions. Similarly, in w3d2, an alternative solution suggested using one less vehicle but
resulted in a 10.66 kg increase in emissions. In the remaining cases, the number of vehicles
remained the same.

Concerning the discrepancy between distance and emissions, we note the lowest
distance difference with an increase of 5.77 km in w1d1 in contrast to 7.23 kg less emissions,
while an increase in distance of 197 km with 13.7 kg of emission reduction was recorded in
w2d1. The bottom line is that the distance length does not always indicate the amount of
CO2 emissions. There are exceptional cases where the distance is longer, but the amount of
emissions is lower, as shown in Figure 3, where path A is the longest compared to path B,
but the emissions in path A are lower than in path B.
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Table 7. Cases with longer distance and lower emissions.

Dataset Distance (km) Number of
Vehicles Used

CO2 Emission
(Kg)

Fuel Consumption
(L)

Difference
Distance (km)

w1d1 5620.62 12 984.43 349.23 +5.77
5614.85 12 991.66 351.79

w1d2 2857.61 09 340.82 120.90 +87.41
2770.20 09 472.84 167.74

w1d5 4410.81 13 770.90 273.48 +120.47
4290.34 12 778.69 276.24

w2d1 6563.49 15 1108.59 393.27 +197
6366.49 15 1122.29 398.13

w3d2 4243.08 14 718.78 254.99 +82.12
4160.96 12 729.44 258.76

w4d2 3447.32 10 591.62 209.87 +6.73
3440.59 10 595.94 211.41

This outcome highlights the critical role of route optimization in reducing fuel con-
sumption and emissions. Optimized routes often involve smoother driving patterns with
fewer stops, less idling, and reduced speed fluctuations, all of which contribute to improved
fuel efficiency. Furthermore, optimized routes tend to bypass high-traffic or congested
areas, where vehicles are prone to burning excess fuel due to frequent braking and accel-
eration. This suggests that route characteristics, such as traffic flow, terrain, and driving
conditions, can have a significant impact on emissions, sometimes outweighing the effect
of distance alone.

Moreover, fleet management efficiency plays a role in cases like w1d5 and w3d2, where
fewer vehicles are used despite a longer distance, leading to a lower overall carbon footprint.
This emphasizes the need for logistics systems to focus not only on minimizing distance but
also on optimizing other variables like traffic avoidance, load balancing, and fuel economy
to achieve sustainable outcomes. Therefore, the results provide strong evidence that route
optimization strategies can deliver environmental and economic benefits by decoupling
emissions from the distance traveled.

Figure 3. Long distance with lower CO2 emissions.

To assess the impact of speed on the prediction of energy consumption or emissions,
we analyze the variations in results at different speeds using both Google Maps services
and fixed speeds in the study. The speed obtained from Google Maps services is called the
real speed in our investigation.

The results of constant speeds along the route are shown in Tables 8–11 and the
corresponding Figure 4a–d. In this experiment, each proposed solution is generated based
on a constant speed along the path, simulating the optimization scenario with a constant
speed. The algorithm’s results are correlated to the objective function, where speed is one
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of its components. This approach contrasts with proposing a single solution and deducing
the corresponding emission results at constant speeds.

To determine the difference between the emissions, the constant speed and the real
speed are calculated as the percentage deviation. We define it as the difference between the
corresponding real emissions CO2 and the obtained CO2 emissions divided by the obtained
CO2 emissions and all multiplied by 100.

Table 8. Energy consumption at constant speed 40 km/h.

Dataset Distance
(km)

Number
of

Vehicles
Used

Energy
Con-

sumed
(MJ)

CO2
Emission

(Kg)

Fuel Con-
sumption

(L)

Time
CPU (s)

Real
Energy

Con-
sumed
(MJ)

Real CO2
Emission

(Kg)

Real Fuel
Con-

sumption

Percentage
Devia-

tion

w1d1 5642.71 12 11,838.95 871.35 309.11 46 13,473.69 991.66 351.79 −13.81
w1d2 2783.96 9 5855.80 430.99 152.89 32 2783.96 481.03 170.65 −11.61
w1d3 5731.49 14 11,973.54 881.25 312.63 42 13,703.32 1008.56 357.79 −14.45
w1d4 3107.87 10 6531.20 480.70 170.53 28 6610.35 486.52 172.59 −1.21
w1d5 4418.20 13 9264.00 681.83 241.88 37 10,433.15 767.88 272.41 −12.62
w2d1 6525.39 14 13,663.22 1005.61 356.74 34 15,531.40 1143.11 405.51 −13.67
w2d2 3573.22 10 7477.35 550.33 195.23 33 8299.67 610.85 216.70 −11.00
w2d3 4627.46 11 9664.85 711.33 252.35 51 10,964.87 807.01 286.29 −13.45
w2d4 3838.31 11 8074.71 594.30 210.83 39 8926.19 656.97 233.06 −10.55
w2d5 6381.20 15 13,345.55 982.23 348.45 87 15,049.28 1107.63 392.93 −12.77
w3d1 5449.92 13 11,399.69 839.02 297.64 25 12,842.20 945.19 335.31 −12.65
w3d2 4168.20 13 8733.31 642.77 228.02 49 9778.21 719.68 255.31 −11.97
w3d3 5587.20 12 11,650.14 857.45 304.18 26 13,222.87 973.20 345.24 −13.50
w3d4 3382.73 9 7076.37 520.82 184.76 16 7943.63 584.65 207.41 −12.26
w3d5 3872.83 9 8092.68 595.62 211.30 24 9149.52 673.40 238.89 −13.06
w4d1 4952.59 12 10,392.00 764.85 271.33 36 11,752.32 864.97 306.85 −13.09
w4d2 3443.30 10 7208.84 530.57 188.22 25 8072.29 594.12 210.76 −11.98
w4d3 3615.53 9 7566.71 556.91 197.56 15 8509.64 626.31 222.18 −12.46
w4d4 4079.69 11 8536.02 628.25 222.87 27 9664.53 711.31 252.34 −13.22
w4d5 4984.64 12 10,429.24 767.59 272.30 43 11,807.56 869.04 308.29 −13.22

average 4508.32 11.45 9438.71 694.69 246.44 35.75 10,425.93 781.15 292.63 −12.13

Table 9. Energy consumption at constant speed 60 km/h.

Dataset Distance
(km)

Number
of

Vehicles
Used

Energy
Con-

sumed
(MJ)

CO2
Emission

(Kg)

Fuel Con-
sumption

(L)

Time
CPU (s)

Real
Energy

Con-
sumed
(MJ)

Real CO2
Emission

(Kg)

Real Fuel
Con-

sumption

Percentage
Devia-

tion

w1d1 5636.35 12 13,237.69 974.29 345.63 46 13,476.19 991.85 351.86 −1.77
w1d2 2826.25 9 6648.30 489.31 173.58 31 6648.95 489.36 173.60 −0.01
w1d3 5788.16 14 13,550.65 997.33 353.80 40 13,937.85 1025.83 363.91 −2.78
w1d4 3163.70 10 7438.79 547.49 194.22 27 7143.73 525.78 186.52 4.13
w1d5 4290.34 12 10,075.37 741.55 263.06 39 10,580.08 778.69 276.24 −4.77
w2d1 6466.96 14 15,166.28 1116.24 395.99 33 15,400.13 1133.45 402.09 −1.52
w2d2 3402.77 10 7983.10 587.56 208.44 34 7969.26 586.54 208.07 0.17
w2d3 4661.77 12 10,910.65 803.02 284.87 54 11,128.57 819.06 290.56 −1.96
w2d4 3832.75 11 9021.43 663.98 235.55 38 9126.58 671.72 238.29 −1.15
w2d5 6318.48 15 14,803.72 1089.55 386.52 81 14,847.04 1092.74 387.65 −0.29
w3d1 5422.55 13 12,705.61 935.13 331.74 23 12,782.41 940.79 333.74 −0.60
w3d2 4223.01 13 9905.50 729.04 258.63 50 9678.40 712.33 252.70 2.35
w3d3 5593.45 12 13,074.27 962.27 341.36 27 13,330.59 981.13 348.06 −1.92
w3d4 3359.40 9 7875.72 579.65 205.63 16 7897.77 581.28 206.20 −0.28
w3d5 3858.41 10 9034.79 664.96 235.90 25 8997.78 662.24 234.93 0.41
w4d1 5027.43 13 11,808.95 869.14 308.33 35 12,095.83 890.25 315.82 −2.37
w4d2 3444.04 10 8074.00 594.25 210.81 23 8092.21 595.59 211.28 −0.22
w4d3 3622.06 9 8489.77 624.85 221.66 14 8586.17 631.94 224.18 −1.12
w4d4 4092.52 12 9594.97 706.19 250.52 33 9521.35 700.77 248.60 0.77
w4d5 5037.8 13 11,802.06 868.63 308.15 53 11,949.69 879.50 312.00 −1.24

average 4503.41 11.65 10,560.08 777.22 275.72 36.10 10,659.53 784.54 278.32 −0.71

The results revealed significant variations for each speed setting. At 40 km/h, the
average deviation reached 12.13%, with the highest deviation at 14.45% and the lowest
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at 1.21%, as detailed in Table 8. This variance in deviation is evident on all days, as
shown in Figure 4a. For the fixed speed of 60 km/h (Table 9), the highest and lowest
deviation rates were 4.77% and 0.01%, respectively, averaging at 0.71%—a relatively weak
but non-negligible deviation. In particular, in w1d3, the emission difference at the highest
deviation rate was 37.14 kg, yet Figure 4b indicates that the constant speed and the real
speed are nearly identical. There is a direct relationship between constant speed and
deviation percentage, with deviations increasing at speeds of 80 km/h and 100 km/h
(Tables 10 and 11). The highest deviation rates were recorded at 12.86% and 20.34%,
respectively, with the lowest deviation rates at 7.29% and 12.32%, averaging at 8.71%
and 17.26%, respectively. In particular, in w3d2 at 100 km/h, there was a significant
emission difference of 142.21 kg, surpassing the deviation of 20%. Figure 4c,d illustrates the
substantial differences between the real speed results for speeds of 80 km/h and 100 km/h.

Table 10. Energy consumption at constant speed 80 km/h.

Dataset Distance
(km)

Number
of

Vehicles
Used

Energy
Con-

sumed
(MJ)

CO2
Emission

(Kg)

Fuel Con-
sumption

(L)

Time
CPU (s)

Real
Energy

Con-
sumed
(MJ)

Real CO2
Emission

(Kg)

Real Fuel
Con-

sumption

Percentage
Devia-

tion

w1d1 5638.27 12 14,494.39 1066.79 378.44 53 13,500.26 993.62 352.49 7.36
w1d2 2783.87 9 7169.01 527.64 187.18 32 6537.91 481.19 170.70 9.65
w1d3 5755.86 14 14,746.59 1085.35 385.03 37 13,744.99 1011.63 358.88 7.29
w1d4 3217.73 11 8278.39 609.29 216.15 26 7668.76 564.42 200.28 7.95
w1d5 4401.29 12 11,309.85 832.41 295.30 36 10,473.98 770.88 273.47 7.98
w2d1 6666.64 15 17,106.44 1259.03 446.64 34 15,913.02 1171.20 415.48 7.50
w2d2 3461.20 11 8884.82 653.92 231.98 42 8144.48 599.43 212.65 9.09
w2d3 4694.28 12 12,022.79 884.87 313.91 52 11,131.76 819.30 290.65 8.00
w2d4 3994.40 12 10,289.88 757.34 268.67 36 9343.91 687.71 243.97 10.12
w2d5 6359.29 16 16,305.50 1200.08 425.73 80 14,447.91 1063.37 377.23 12.86
w3d1 5479.71 13 14,048.39 1033.96 366.80 33 12,862.23 946.66 335.83 9.22
w3d2 4216.18 12 10,827.00 796.87 282.69 47 9957.02 732.84 259.97 8.74
w3d3 5539.75 11 14,174.27 1043.23 370.09 29 13,211.42 972.36 344.95 7.29
w3d4 3302.28 9 8471.18 623.48 221.18 15 7794.55 573.68 203.51 8.68
w3d5 3861.92 10 9895.98 728.34 258.38 22 9115.11 670.87 237.99 8.57
w4d1 5108.06 13 13,126.64 966.12 342.73 30 12,111.83 891.43 316.24 8.38
w4d2 3443.30 10 8836.64 650.38 230.72 22 8016.82 590.04 209.32 10.23
w4d3 3615.51 9 9275.60 682.68 242.18 14 8508.41 626.22 222.15 9.02
w4d4 4029.88 11 10,339.62 761.00 269.96 30 9570.52 704.39 249.88 8.04
w4d5 5061.95 14 12,979.81 955.31 338.90 41 11,998.52 883.09 313.28 8.18

average 4531.57 11.80 11,629.14 855.90 303.63 35.55 10,702.67 787.72 279.45 8.71

Table 11. Energy consumption at constant speed 100 km/h.

Dataset Distance
(km)

Number
of

Vehicles
Used

Energy
Con-

sumed
(MJ)

CO2
Emission

(Kg)

Fuel Con-
sumption

(L)

Time
CPU (s)

Real
Energy

Con-
sumed
(MJ)

Real CO2
Emission

(Kg)

Real Fuel
Con-

sumption

Percentage
Devia-

tion

w1d1 5646.87 12 15,640.35 1151.13 408.36 52 13,434.97 988.81 350.78 16.42
w1d2 2821.28 9 7823.56 575.81 204.27 32 6651.44 489.55 173.67 17.62
w1d3 5772.04 14 15,932.02 1172.60 415.98 36 13,765.96 1013.17 359.42 15.74
w1d4 3203.10 10 8882.53 653.75 231.92 23 7576.33 557.62 97.82 17.24
w1d5 4290.09 12 11,881.63 874.49 310.23 34 10,578.36 778.57 276.20 12.32
w2d1 6247.80 14 17,286.02 1272.25 451.33 33 14,863.36 1093.94 388.08 16.30
w2d2 3443.10 11 9521.98 700.82 248.62 36 7952.05 585.27 207.63 19.74
w2d3 4644.49 12 12,820.13 943.56 334.73 49 11,049.71 813.26 288.50 16.02
w2d4 3904.82 11 10,841.24 797.92 283.06 35 9032.30 664.78 235.83 20.03
w2d5 6334.36 16 17,501.08 1288.08 456.95 88 14,887.27 1095.70 388.70 17.56
w3d1 5426.04 13 14,992.27 1103.43 391.44 26 12,788.83 941.26 333.91 17.23
w3d2 4131.23 13 11,430.76 841.30 298.45 49 9498.48 699.09 248.00 20.34
w3d3 5698.75 13 5709.08 1156.19 410.16 34 13,486.00 992.57 352.11 16.48
w3d4 3345.07 9 9247.55 680.62 241.45 15 7872.77 579.44 205.56 17.46
w3d5 3875.85 10 10,701.97 787.67 279.42 23 9130.76 672.02 238.40 17.21
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Table 11. Cont.

Dataset Distance
(km)

Number
of

Vehicles
Used

Energy
Con-

sumed
(MJ)

CO2
Emission

(Kg)

Fuel Con-
sumption

(L)

Time
CPU (s)

Real
Energy

Con-
sumed
(MJ)

Real CO2
Emission

(Kg)

Real Fuel
Con-

sumption

Percentage
Devia-

tion

w4d1 5043.38 13 13,967.21 1027.99 364.68 31 11,932.35 878.22 311.55 17.05
w4d2 3448.26 10 9535.22 701.79 248.96 24 7982.79 587.53 208.43 19.45
w4d3 3615.53 9 9995.48 735.67 260.98 14 8509.64 626.31 222.18 17.46
w4d4 4136.49 12 11,437.47 841.80 298.63 30 9891.91 728.04 258.27 15.63
w4d5 5087.65 13 14,055.24 1034.47 366.98 64 11,918.60 877.21 311.19 17.93

average 4505.81 11.80 11,960.14 917.07 325.33 36.40 10,640.19 783.12 272.81 17.26

(a) (b)

(c) (d)

Figure 4. CO2 emissions for actual speed vs. fixed speed: (a) fixed speed at 40 km/h; (b) fixed speed
at 60 km/h; (c) fixed speed at 80 km/h; (d) fixed speed at 100 km/h.

Using the results of Tables 5 and 8–11, we have created the graph represented in
Figure 5, which represents a comparison between emissions for the real speed in Table 5
with the rest of the fixed speeds in Tables 8–11. We note that the emissions are almost
identical at a speed of 60 km/h. Compared with the rest of the results, the difference in
value can reach proportions that cannot be discounted, as the farther the speed is from the
value within 60 km/h, the greater the variance. Therefore, the increase or decrease in speed
from the previous value leads to a variance with positive or negative values, respectively.

Statistical Analysis and Validation

An analysis of variance (one-way ANOVA) test was conducted to validate the observed
differences in emissions and energy consumption across various speed profiles. The one-
way ANOVA method is used to determine if there are statistically significant differences
between the means of multiple groups. The speed profiles here represent the different
groups being compared. Using one-way ANOVA, we can determine whether the observed
variations in emissions and energy consumption are due to changes in speed profiles or
if they are simply random. One-way ANOVA test results are considered significant if the
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p-value is less than 0.05 and the F-statistic values are high. By using this rigorous statistical
approach, the observed differences are not only noticeable but also statistically significant.

To check if the mean emissions and energy consumption significantly differ across
the four speed profiles (40 km/h, 60 km/h, 80 km/h, and 100 km/h), we perform a
one-way ANOVA.

Figure 5. CO2 emissions for real speed vs constant speeds conditions.

• Null hypothesis (H0): there is no significant difference in emissions or energy con-
sumption between speed profiles.

• Alternative hypothesis (H1): there is a significant difference in emissions or energy
consumption between at least two speed profiles.

The probabilities of p-values :

• If p-value < 0.05, we reject the null hypothesis and conclude that there are significant
differences in emissions across the speed profiles.

• If p-value≥ 0.05, we fail to reject the null hypothesis, indicating no significant differences.

The results of the one-way ANOVA tests are as follows in Table 12.

Table 12. Statistical comparison of CO2 emissions and energy consumption across speed profiles.

Parameter F-Statistic p-Value

CO2 emissions (kg) 4.75 0.0043
Energy consumption (MJ) 3.41 0.0216

The results indicate significant variations in both CO2 emissions and energy consump-
tion between the speed profiles, highlighting the impact of vehicle speed on environmental
and energy-related factors. The findings suggest that vehicle speed plays a critical role in
determining emissions and energy usage, with higher speeds generally corresponding to
increased values.

To evaluate the proposed algorithm, we performed 10 independent runs using dif-
ferent random number generator seeds at real speeds to assess the robustness of our
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non-deterministic approach. The results were analyzed by computing the average and
standard deviation “S D” of the objective function, which is the energy consumed, across
these runs, as shown in the Tables 13–16. The percentage of the standard deviation “% S D”,
ranging from 1.06% to 4.04%, highlights the stability of the method in optimizing energy
consumption. These relatively small variations demonstrate consistent performance across
different runs, underscoring the reliability of the proposed approach under varying conditions.

Table 13. Performance statistics for the first week.

Dataset Statistics Distance
Number of

Vehicles
Used (km)

Energy
Consumed

(MJ)

CO2
Emission

(Kg)

Fuel Con-
sumption (L) Time CPU (s)

w1d1

Average 5761.03 12.50 13,427.78 988.28 350.59 69.70
S D 119.16 0.50 277.74 20.44 7.25 3.63

% S D 2.07 4.00 2.07 2.07 2.07 5.21

w1d2

Average 2898.26 9.20 6755.25 497.18 176.37 42.80
S D 99.81 0.42 232.64 17.12 6.07 1.75

% S D 3.44 4.58 3.44 3.44 3.44 4.09

w1d3

Average 5858.84 14.60 13,655.77 1005.06 356.54 58.90
S D 82.36 0.92 191.97 14.13 5.01 2.66

% S D 1.41 6.28 1.41 1.41 1.41 4.52

w1d4

Average 3400.53 11.10 7925.94 583.35 206.94 38.60
S D 125.09 0.70 291.56 21.46 7.61 2.46

% S D 3.68 6.31 3.68 3.68 3.68 6.37

w1d5

Average 4673.25 14.20 10,892.38 333.51 284.40 54.10
S D 183.96 0.75 428.77 142.90 11.19 4.09

% S D 3.94 5.27 3.94 3.94 3.94 7.55

Table 14. Performance statistics for the second week.

Dataset Statistics Distance
Number of

Vehicles
Used (km)

Energy
Consumed

(MJ)

CO2
Emission

(Kg)

Fuel Con-
sumption (L) Time CPU (s)

w2d1

Average 6823.90 15.30 15,905.12 1170.62 415.28 50.70
S D 267.10 1.35 622.56 45.82 16.25 4.82

% S D 3.91 8.79 3.91 3.91 3.91 9.50

w2d2

Average 3571.91 11.10 8325.39 612.74 217.37 53.70
S D 75.61 0.70 176.25 12.97 4.60 3.16

% S D 2.12 6.31 2.12 2.12 2.12 5.89

w2d3

Average 4772.45 12.30 11,123.61 818.69 290.43 74.60
S D 50.36 0.46 117.37 8.64 3.07 4.92

% S D 1.06 3.73 1.06 1.06 1.06 6.60

w2d4

Average 3864.91 10.90 9008.33 663.01 235.20 57.00
S D 109.94 0.54 256.24 18.86 6.69 1.90

% S D 2.84 4.94 2.84 2.84 2.84 3.33

w2d5

Average 6629.84 17.00 15,452.80 1137.32 403.46 129.00
S D 138.77 0.89 323.44 23.81 8.45 9.82

% S D 2.09 5.26 2.09 2.09 2.09 7.61
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Table 15. Performance statistics for the third week.

Dataset Statistics Distance
Number of

Vehicles
Used (km)

Energy
Consumed

(MJ)

CO2
Emission

(Kg)

Fuel Con-
sumption (L) Time CPU (s)

w3d1

Average 5536.61 13.30 12,904.70 949.78 336.93 35.00
S D 100.16 0.64 233.44 17.18 6.09 1.41

% S D 1.81 4.81 4.04 1.81 1.81 4.04

w3d2

Average 4251.63 13.20 9909.69 729.35 305.21 72.30
S D 102.76 0.98 239.52 17.63 138.50 4.65

% S D 2.42 7.42 2.42 2.42 2.42 6.43

w3d3

Average 5695.89 12.40 13,275.97 977.11 346.63 36.30
S D 108.42 0.49 252.70 18.60 6.60 2.41

% S D 1.90 3.95 1.90 1.90 1.90 6.64

w3d1

Average 5536.61 13.30 12,904.70 949.78 336.93 35.00

w3d4

Average 3450.15 9.90 8041.59 591.86 209.96 21.20
S D 89.10 0.70 207.67 15.28 5.42 1.40

% S D 2.58 7.07 2.58 2.58 2.58 6.60

w3d5

Average 3976.47 9.90 9268.35 682.15 241.99 31.60
S D 68.72 0.54 160.18 11.79 4.18 1.91

% S D 1.73 5.44 1.73 1.73 1.73 6.04

Table 16. Performance statistics for the fourth week.

Dataset Statistics Distance
Number of

Vehicles
Used (km)

Energy
Consumed

(MJ)

CO2
Emission

(Kg)

Fuel Con-
sumption (L) Time CPU (s)

w4d1

Average 5166.98 13.40 12,043.18 886.38 314.44 49.90
S D 205.11 0.80 478.07 35.19 12.48 1.58

% S D 3.97 5.97 3.16 3.97 3.97 3.16

w4d2

Average 3506.75 10.40 8173.53 601.57 213.40 31.00
S D 35.05 0.49 81.69 6.01 2.13 1.84

% S D 1.00 4.71 1.00 1.00 1.00 5.95

w4d3

Average 3666.00 9.50 8544.70 628.89 223.10 20.70
S D 48.59 0.50 113.26 8.34 2.96 1.10

% S D 1.33 5.26 1.33 1.33 1.33 5.31

w4d4

Average 4123.14 11.80 9610.20 707.31 250.91 44.20
S D 98.42 0.75 229.39 16.88 5.99 3.74

% S D 2.39 6.34 2.39 2.39 2.39 8.45

w4d5

Average 5186.20 15.20 12087.97 889.67 315.61 63.70
S D 77.98 1.17 181.75 13.38 4.74 2.83

% S D 1.50 7.67 1.50 1.50 1.50 4.44

6. Conclusions
Reducing the environmental impact of transport operations through sustainable prac-

tices has been an urgent priority. To address this challenge, our research has introduced a
variant of VRP that considers different types of customer groups. Specifically, we exam-
ined a fleet of homogeneous vehicles, constrained by both volume and weight capacities,
tasked with distributing pharmaceuticals to pharmacies located across Algeria. Aiming
to minimize GHG emissions, we developed an MINLP model tailored to this problem. In
this research, we defined a so-called VPRPTW and proposed a probabilistic TS algorithm
utilizing the Google Distance Matrix API. The algorithm incorporates a probabilistic neigh-
borhood structure to alternate between the iCROSS exchange and 0-1 exchange methods
and integrates customer loyalty-based time windows. We also formulated an MINLP model
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to consider both vehicle volume and weight constraints, integrating an energy consumption
equation to account for various operational factors.

Our results revealed significant insights. The daily fleet size was reduced from an
average of 16 vehicles to 12, demonstrating improved operational efficiency. Interestingly,
while distance is a critical factor in energy consumption, shorter distances do not always
result in lower energy use. In some scenarios, greater distances were associated with
reduced energy consumption, underscoring the complex interplay of route optimization
and energy dynamics. In addition, the findings highlighted the influence of vehicle speed
on fuel consumption. Specifically, maintaining variable speeds, as opposed to constant
speeds, led to deviations in energy consumption exceeding 20%, as observed through API
data. These results emphasize the critical role of fine-tuning speed profiles in reducing
energy consumption and improving environmental sustainability. The results of this study
were consistent with some results in the literature regarding the effect of the speed factor
on energy consumption. However, the results on the distance factor were interesting; while
it was prevalent in the logistics field that cost is related to distance, the studied model
showed that the opposite can happen.

This study provides managers and policymakers with actionable insights to improve
transport fleet operations, reduce emissions, and achieve sustainability goals. By reducing
the number of vehicles in use, it enables managers to reduce both fixed costs (vehicle main-
tenance) and variable costs (fuel and employment). By addressing the trade-off between
distance and energy use, the companies’ goal is to minimize costs; therefore, these mod-
els can be adopted to reduce energy consumption, and they can verify that each route
consumes less energy by conducting several experiments on alternative routes since the pro-
posed model integrates real data from Google services. Moreover, the results of the study
confirm the necessity of speed regulation to reduce fuel consumption, so decision-makers
can guide and train drivers to travel at speeds that achieve environmental goals.

While this study provides valuable insights into green logistics, several limitations
should be acknowledged. First, we did not study the problem with several algorithms
to compare and find the most appropriate algorithm for the problem. Second, although
the most important feature of the study is the multi-factor model, it does not include an
important factor, which is the road gradient. Finally, the results of this study are within the
framework of the proposed model, which limits the generalizability of the results.

Despite these limitations, the findings contribute to the growing body of evidence
on green logistics and offer a foundation for future investigation. Future research should
focus on refining vehicle speed management strategies to further optimize operational
efficiency and minimize the environmental footprint of transport operations. To ensure that
the proposed approach produces a stable and ideal solution, it will be essential to evaluate
its convergence in further research. This evaluation will assist in verifying whether the
selected parameter values are suitable and whether they improve the efficacy and efficiency
of the algorithm. The no free lunch theorem (NFL), which states that no single algorithm
performs well on all problem types, should also be considered. This emphasizes the
necessity of researching and contrasting different metaheuristic strategies to determine
which is most suited for the given problem. These assessments will provide a more
thorough understanding of the effectiveness of the approach and areas for improvement.
It is interesting to compare the results of the proposed model with other models when it
relates to energy consumption amounts.
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Appendix A
To simplify the mathematical model to make it clearer, we include the logical sequence.

The general formula for calculating energy Esij is shown in (1) and is in terms of E1ij , E2ij ,
and distance dij. Equations E1ij and E2ij were then incorporated into (2) and (3). The general
equation Esij is formed after equating equations E1ij and E2ij in (4). All of the above factors
and variables are explained in Table 2.

In Equation (5), the coefficient ηP,n, consisting of ηe, µp and µn, was discussed, and
how to calculate them is shown in Equations (6)–(8). When calculating µp, we need the
equation for Pi and Pe, which is shown in (9) and (10), and when calculating µn, we also
need the equation for calculating n , which is shown in (11). All these factors and variables
are explained in Table 3.

Finally, the mathematical formulas for calculating all the factors from cr and A f

in (12) and (13) were provided.
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