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Abstract

In this thesis we look at R-matrix representations of the BMW algebra and the

Bloop group, a new group arising from the quandalisation process of racks. Both

the BMW algebra and the Bloop group have diagrammatic presentations involv-

ing adding loops to the braid group, although the structures of these loops are

different.

We define the contractive R-matrices, a restriction of which form a represen-

tation of the BMW algebra, and show that they are stable under equivalence. We

show that they have a maximum of 3 eigenvalues and we classify all 2-dimensional

examples. Then we utilise a Markov trace to deduce restrictions on the possible

values of the contraction constant c. In particular, we show that |c|−2 is the

Jones Index [ρR(B∞) : φ(ρR(B∞))] and we deduce the form of the contractive

R-matrices for each value in the discrete range of the Jones Index.

The rack-induced R-matrices are shown to be closely tied with the racks from

which they are derived. In particular, isomorphic racks induce equivalent R-

matrices (though the opposite is not necessarily true), and if two rack-induced

R-matrices are equivalent then the quandalisations of their underlying racks also

produce equivalent R-matrices. We show that quandle-induced R-matrices are

equivalent if and only if their coloring numbers are equal for all oriented links.

The quandalisation process of racks is the inspiration for the Bloop Group devel-

oped in this thesis, and we develop an R-matrix representation of this new group.

These developments contribute to ongoing area of research of the classification

of unitary R-matrices, which has applications in many areas including quantum

groups, knot theory and topological quantum computing. Further research in this

area would include the analysis of R-matrix representations of other structures.
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Conventions and Notation

Here we denote conventions and notations used throughout this thesis.

Chapter 1:

• R will denote an R-matrix, i.e. a solution to the quantum Yang-Baxter

equation (1.2).

• We are only considering unitary R-matrices, as defined in Equation (1.5).

• R(d) will denote the set of all unitary R-matrices.

• V will denote a finite-dimensional vector space of dimension d.

• 1V will denote the identity of V .

• We are working over the complex numbers C.

• All diagrams are to be read top-to-bottom.

• A∗ will denote the adjoint of an operator A.

• When dealing with multiple tensor copies of kets we use the short-hand

notation R|x1, x2⟩ := R(|x1⟩ ⊗ |x2⟩).

• Bn will denote the Braid group on n strands, defined in Section 1.2.

• φ(R) will denote the canonical shift endomorphism, as defined in Equation

(1.9).

• Rk will denote the shift endomorphism being applied k − 1 times, i.e.

Rk = φk−1(R).
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• ρR will denote the representation of the Braid group induced by R, as de-

fined in (1.12).

• τ(R) will denote the normalised trace of R, defined by (1.14).

• When taking partial traces we can take the left or right partial trace, as for

unitary R-matrices these are equivalent [13].

• τR will denote the character of R, as defined in Definition 18.

• R ∼ S will denote the equivalence of R and S. Our notion of equivalence

is defined in Definition 20.

• B(H ) will denote the set of bounded operators on a Hilbert space H .

• F ′ will denote the commutant of a set F ⊂ B(H ) of bounded operators,

as defined in (1.18).

• [N : M ] will denote the Jones index of a type II1 subfactor N ⊆ M , as

defined in Equation (1.19).

Chapter 2:

• Cn(r, q) will denote the BMW algebra, as defined in Definition 27.

• C(d) will denote the set of all contractive R-matrices with contractive eigen-

value α, as defined in Definition 29.

• TLn(δ) will denote the Temperley-Lieb algebra, defined in Definition 33.

Chapter 3:

• r will denote a solution to the set-theoretic Yang Baxter equation, as de-

fined in Definition 2.

x



• (X,λ) and (X, ▷) will both denote a rack. Both notations are used as some-

times one notation is clearer than the other. Racks are defined in Definition

37.

• Rack tables are to be read as the element in the ith row and jth column

denoting i ▷ j.
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Chapter 1

Introduction

The Yang-Baxter equation is deceptively simplistic, defined on V ⊗V ⊗V , where

V is a vector space with identity 1V , for some R ∈ End(V ⊗ V ):

(R⊗ 1V )(1V ⊗R)(R⊗ 1V ) = (1V ⊗R)(R⊗ 1V )(1V ⊗R) (1.1)

It was first introduced by Yang in 1967 [34] in the context of studying 1-

dimensional Bose gas. Baxter later independently developed the equation in

1972 [5] whilst working on the eight-vertex lattice model in statistical mechanics.

Since then it has seen applications in quantum groups developed by Drinfeld and

Jimbo in 1988 [15], in the representation theory of braids by Wenzl in 1990 [33],

and more recently in the field of topological quantum computing by Kauffman

[23] to name but a few applications.

Although it may appear on the surface to be a straightforward equation, the

solutions to the Yang-Baxter equation (known as R-matrices) are notoriously

difficult to find. Recent development in the literature has looked at finding and

classifying solutions of the Yang-Baxter equation up to various notions of equiv-

alence. In 2019 Lechner, Pennig and Wood [25] classified all involutive (R2 = 1)

solutions up to an equivalence where two R-matrices are equivalent iff they have

the same character and dimension.

In this thesis we explore the braid group Bn, the BMW algebra Cn(r, q), and
the Bloop group Bℓn - a new group inspired by the quandalisation of racks. In par-

ticular we analyse the R-matrix representations of these structures and examine

their properties to advance the ongoing effort to classify all unitary R-matrices

up to equivalence (in terms of having the same dimension and character).

In Chapter 1 we define the Yang-Baxter equation and its solutions, known as

R-matrices. We then look at the braid group and how these R-matrices form a

1



representation of it. We examine the traces and partial traces of these matrices,

and detail the notions of equivalence we use in this thesis. Finally, we discuss

how R-matrices can be used to induce a type II1 von-Neumann factor, which is

utilised in Chapter 2 by considering a Jones Index.

In Chapter 2 we look at the BMW algebra in detail, and we define a new

class of R-matrices named contractive R-matrices, a restriction upon whom form

a representation of the BMW algebra. We then analyse the properties of con-

tractive R-matrices, including showing that they have at most 3 eigenvalues, are

stable under equivalence, and that they satisfy a number of relations. We discuss

when the normalised trace is a Markov trace, and utilise this to form restrictions

on the possible values of the contraction constant. In particular, we show that

|c|−2 is equal to the Jones Index of a factor and subfactor induced from a con-

tractive R-matrix, and classify examples of contractive R-matrices by the value

of its related Jones Index in the discrete range.

In Chapter 3 we look at the set-theoretic Yang-Baxter equation and anal-

yse R-matrices that arise from linearising its non-degenerate solutions. These

R-matrices are shown in the literature to be equivalent to those derived from

racks. We analyse these rack-derived R-matrices and consider their various prop-

erties. In particular, we look at quandles (a particular type of rack that has a

trivial square map), and analyse the quandalisation process through the lens of

R-matrices. This analysis led to the development of the Bloop group, for which

we create an R-matrix representation. We restrict even further to Alexander

quandles, a type of quandle extremely useful in knot theory, and analyse when

Alexander-quandle-induced R-matrices are equivalent. Finally, we show that,

given 2 racks with equivalent R-matrices, the quandle-induced R-matrices aris-

ing from the quandalisations of the racks are equivalent.

In Chapter 4 we conclude the thesis, highlighting the main results and dis-

cussing future implications of this body of work.
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1.1 The Yang-Baxter Equation

In this section we discuss the Yang-Baxter equation (YBE) and its solutions,

known as R−matrices. We restrict ourselves to considering unitary (RR∗ =

R∗R = 1) R−matrices and denote this subset of solutions by R(d), where d is

the dimension of the underlying vector space V .

1.1.1 The Yang-Baxter Equations

The most significant form of the Yang-Baxter Equation (YBE) is the Quantum

YBE.

Definition 1. The Quantum Yang-Baxter Equation (QYBE): Let V be

a finite-dimensional vector space of dimension d with identity operator 1V , and

let R ∈ End(V ⊗ V ). Then the Quantum YBE is given by

(R⊗ 1V )(1V ⊗R)(R⊗ 1V ) = (1V ⊗R)(R⊗ 1V )(1V ⊗R) (1.2)

The solutions to the Quantum YBE are called R-matrices.

Example 1. The following matrix is an R-matrix.
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


The calculation to show this is long but elementary, so it is left out here.

There are several forms of the YBE. It can also be defined on copies of a set

X ×X ×X as opposed to a vector space - this is the set-theoretic YBE.

Definition 2. The Set-Theoretic Yang-Baxter Equation. The set-

theoretic YBE is defined on X ×X ×X, where X is a set, and is given by

(r × 1X)(1X × r)(r × 1X) = (1X × r)(r × 1X)(1X × r) (1.3)

where 1X is the identity map on X.

Throughout this thesis we will describe the R-matrix solutions to the Quan-

tum YBE by utilising “Dirac” notation, also known as “bra-ket” notation.

3



1.1.2 Dirac Notation

An R-matrix can be considered as a bounded operator acting on a Hilbert Space,

R ∈ B(H ). In this subsection we briefly define Hilbert spaces, bounded opera-

tors and give an overview of the Dirac (AKA “bra-ket”) notation used throughout

this thesis to describe R-matrices.

Definition 3. Hilbert Space: A Hilbert space H is a complete1 inner product

space.

A “ket” |x⟩ represents a column vector in a Hilbert space. For example, in a

2-dimensional space,

|x⟩ =
(
x1
x2

)
A “bra” ⟨x| is the Hermitian conjugate of a ket. For example, for the above

ket the corresponding bra is given by

⟨x| = (|x⟩)† = (x∗1 x∗2)

where x∗1 and x∗2 are the complex conjugates of x1 and x2 respectively.

The inner product of a bra and a ket is a complex number defined by

⟨x|y⟩ :=
∑
i

x∗i yi

The norm of an inner product space, in particular a Hilbert space, is defined

by

||x|| := ⟨x|x⟩

An operator R acts on kets |x⟩ and can be represented as a matrix in Dirac

notation. This action is denoted by A|x⟩.

The adjoint of an operator A is denoted A∗ and is defined by

⟨Ax|y⟩ = ⟨x|A∗y⟩

Example 2. Let A be any matrix with real coefficients, i.e.

A ∈Md×d, aij ∈ R ∀i, j

Then the adjoint A∗ is given by the transpose AT .

1The limit of every Cauchy sequence is contained in the space.
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When we are dealing with multiple tensor copies of kets, such as an R-matrix

which operates on End (V ⊗ V ), we use the following short-hand notation

R|x1, x2⟩ := R(|x1⟩ ⊗ |x2⟩)

Definition 4. Bounded operators on a Hilbert space: The bounded Hilbert

Space, B(H ), is the set of all bounded operators on the Hilbert space H . When

paired with the norm (B(H ), ∥ · ∥) it forms a C*-algebra

∥A∥ = sup
ψ∈H

∥Aψ∥
∥ψ∥

Any R-matrix is a bounded operator on a Hilbert space.

1.1.3 Types of Solution To The Yang-Baxter Equation

There are various special cases ofR-matrices, whose classifications we will explore

further in this thesis.

Definition 5. Involutive R-matrix: An involutive R−matrix is a matrix R ∈
End(V ⊗ V ) that satisfies the YBE (1.2) and has the following property

R2 = 1V (1.4)

where 1V is the identity of the underlying vector space V .

The involutive R-matrices were completely classified by Lechner, Pennig and

Wood [25] in 2019 under the notion of equivalence defined by R ∼ S if and only

if they have the same dimension and character.

In this thesis we consider the special case of unitary R-matrices, R ∈ R(d),

where d := dim V is the dimension of R. These are a particularly useful subset

of Yang-Baxter solutions - for example, the braiding of anyons for the construc-

tion of quantum gates in topological quantum computing requires the describing

R-matrices to be unitary [11].

Definition 6. Unitary R-matrix: A unitary R−matrix is a matrix R ∈
End(V ⊗ V ) that satisfies the YBE (1.2) and has the following property

RR∗ = R∗R = 1V (1.5)

where R∗ is the adjoint of R. The set of all unitary R-matrices is denoted

R(d), where d :=dimV is defined to be the dimension of the R−matrix.

5



For d <∞, one can clearly see that anR-matrix R|x⟩ is unitary iff, ∀x,y ∈ V ,

⟨Rx|Ry⟩ = ⟨x|y⟩

Example 3. Define the Flip matrix F |x1, x2⟩ := |x2, x1⟩. This is a classic exam-

ple of a unitary R−matrix. We see that it satisfies the YBE:

(F ⊗ 1V )(1V ⊗ F )(F ⊗ 1V )|x, y, z⟩ = (F ⊗ 1V )(1V ⊗ F )|y, x, z⟩

= (F ⊗ 1V )|y, z, x⟩

= |z, y, x⟩

= (1V ⊗ F )|z, x, y⟩

= (1V ⊗ F )(F ⊗ 1V )|x, z, y⟩

= (1V ⊗ F )(F ⊗ 1V )(1V ⊗ F )|x, y, z⟩

As for unitarity, we see that

⟨Fx1, x2|Fy1, y2⟩ = ⟨x2, x1|y2, y1⟩

= ⟨x1, x2|y1, y2⟩

Hence, F ∈ R(d).

1.2 The Braid Group

In this section we define the braid group Bn on n strands and consider its presenta-

tion in terms of generators and relations as well as its diagrammatic presentation

established by Artin [3]. We examine how any braid σ ∈ Bn induces a permuta-

tion ψσ ∈ Sn. Finally, we recall how R-matrices form a representation of Bn.

1.2.1 Defining the Braid Group

We now define the braid group.

Definition 7. Braid Group Bn: The braid group on n strands (n ∈ N, n ≥ 2),

denoted Bn, is the group generated by the elementary braids2 bi, i ∈ 1, ..., n − 1,

with the following relations

2The elementary braids are the “building blocks” of braid concatenations, i.e. a single
overlap.
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bibj = bjbi ∀|i− j| ≥ 2 (1.6)

bibi+1bi = bi+1bibi+1 (1.7)

In [3] Artin showed that Bn has an equivalent presentation in terms of dia-

grams of n strands. A generator bj is presented by an overlap of the jth strand

over the j + 1th strand, as in Figure 1.1. Its inverse b−1
j is presented as the over-

lap of the j + 1th strand over the jth strand, as in Figure 1.2. Elements of Bn
are presented as concatenations of generator diagrams, an example of which is

demonstrated in Figure 1.3. Note that in this thesis we use the convention of

reading diagrams top-to-bottom.

· · · · · ·

1 j − 1 j j + 1 j + 2 n

Figure 1.1: Diagrammatic representation of bj, generator of Bn.

· · · · · ·

1 j − 1 j j + 1 j + 2 n

Figure 1.2: Diagrammatic representation of b−1
j , generator of Bn.

Example 4. The braid b1b
−1
2 ∈ B4 is presented diagrammatically as in Figure

1.3.

Figure 1.3: Diagrammatic presentation of b1b
−1
2 ∈ B4

The braid Relations (1.6) and (1.7) are presented in Figures 1.4 and 1.5 re-

spectively as elements of B5. Note that these diagrammatic equations can be

seen to hold by allowing the strands to be manipulated by pulling on them in 2
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=

Figure 1.4: Diagrammatic presentation of equation (1.6) in B5

=

Figure 1.5: Diagrammatic presentation of equation (1.7) in B5

dimensions, with the end points on the top and bottom being fixed.

Any braid σ ∈ Bn can be considered as a braid in a larger braid group Bn+1

by adding an additional identity strand to the right hand side, as in Figure 1.6.

Figure 1.6: Left: b1 ∈ B3. Right: b1 ∈ B4.

In this way, any braid can be considered as an element in any larger braid

group. In particular, we may consider the infinite braid group B∞ with a count-

ably infinite number of strands, to which every braid belongs.

Definition 8. Infinite braid group B∞: The infinite braid group is the braid

group Bn with an infinite amount of strands, n→ ∞. It is denoted B∞.

Example 5. Figure 1.7 denotes b1 as an element in the infinite braid group B∞.

. . .

Figure 1.7: b1 ∈ B∞.
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The braid group has many interesting applications across mathematics, in-

cluding modeling non-abelian anyons in topological quantum computing [11],

braid cryptography [16], and a basis for knot theory (see Section 1.2.3).

1.2.2 Inducing Permutations from Braids

Any braid induces a permutation via the following surjective group homomor-

phism

ψ : Bn → Sn

bi 7→ τi (1.8)

where τi ∈ Sn is the permutation (i, i + 1), i.e. swaps i and i + 1 only. Note

that τ−1
i = τi, so bi and b

−1
i both map to τi. Also, clearly every permutation can

be written as the image of some braid under ψ. Hence this is a surjective but not

injective map.

We denote the permutation induced by a braid σ ∈ Bn as ψσ ∈ Sn.

Diagrammatically this can be seen by “flattening”3 the braid diagram and

reading it in the opposite direction. For example:

Example 6. Let σ = b3b
−1
2 ∈ B5.

Then ψσ = τ3τ2 ∈ S5, as demonstrated in Figure 1.9.

Explicitly this map is given by:

ψσ(1) = 1

ψσ(2) = 4

ψσ(3) = 2

ψσ(4) = 3

ψσ(5) = 5

3I.e. ignoring the over/under-strands and only considering which element each element is
mappted to.
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1 2 3 4 5

Figure 1.8: Diagrammatic representation of b3b2 ∈ B5.

1 2 3 4 5

1 2 3 4 5

Figure 1.9: Diagrammatic representation of ψb3b2(= τ3τ2) ∈ S5.

1.2.3 Closing braids

Braids can undergo “closure” to transform into links. In fact, it was shown by

Alexander in 1923 that all links can be represented as a closed braid [1].

Definition 9. Closure of a braid: The closure of a braid b ∈ Bn, denoted b̂, is
an oriented link obtained by joining the top strands of a braid b to their respective

bottom strands, as demonstrated in Figure 1.10. The orientation of the link arises

from the braid being oriented top-to-bottom.

...

...

b 7→
...

...

b

Figure 1.10: Closure of a braid b ∈ Bn to b̂
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Example 7. The closure of σ = b1b2b1 ∈ B3 is given in Figure 1.11. This is a

so-called Hopf4 link.

Figure 1.11: Closure of the braid b1b2b1 to an oriented link.

Note that the correspondence between braids and links is not one-to-one;

braids that can be transformed to each other under a sequence of the following

Markov moves close to the same link [6].

Definition 10. Markov moves: Let A,B ∈ Bn. The Markov moves are given

by

Markov move I (conjugation): A 7→ BAB−1

Markov move II (stabilization): A 7→ Ab±1
n

Note that the stabilisation results in a braid in Bn+1.

Diagrammatically these moves are given by Figure 1.12.

1.2.4 Representation of Bn with R-matrices

Any invertible R-matrix R ∈ End (V ⊗V ) forms a representation of Bn by using

the canonical shift endomorphism to operate on n tensor factors in the same

pattern as a braid’s overlaps on n strands.

4A link consisting of two circles linked together exactly once.
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A 7→
I

B

A

B−1

A 7→
II

A

Figure 1.12: Markov moves I and II

Definition 11. Canonical shift endomorphism φ: Let R ∈ End (V ⊗ V )

and consider it acting in V ⊗n (by considering R ⊗ 1V ⊗ ... ⊗ 1V ). Then the

canonical shift endomorphism is defined by

φ : V ⊗n → V ⊗n

R⊗1V ⊗ 1V ⊗ ...⊗ 1V︸ ︷︷ ︸
n− 2 times

7→ 1V ⊗R⊗1V ⊗ ...⊗ 1V︸ ︷︷ ︸
n− 3 times

(1.9)

We sometimes use the following shorthand notation for R ∈ R(d) operating

on V ⊗n:

Rk := φk−1(R) = 1V ⊗ ...⊗ 1V︸ ︷︷ ︸
k−1 times

⊗R⊗1V ⊗ ...⊗ 1V︸ ︷︷ ︸
n− k − 1 times

The Yang-Baxter endomorphism was defined by Cuntz [14] to be

λR : V ⊗∞ → V ⊗∞

X 7→ lim
n→∞

Rφ(R)φ2(R)...φn(R)Xφn(R∗)...φ2(R∗)φ(R∗)R∗ (1.10)
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Using the fact that R satisfies the YBE and commutes with any operator that

does not operate on the tensor factors it is itself operating on, we have that

λR(R) = lim
n→∞

Rφ(R)φ2(R)...φn(R)Xφn(R∗)...φ2(R∗)φ(R∗)R∗

= Rφ(R)Rφ(R∗)R∗

= φ(R)Rφ(R)φ(R∗)R∗

= φ(R)

It is important to highlight the following equation from the above:

φ(R) = φ(R)Rφ(R)φ(R∗)R∗ (1.11)

This result will be particularly useful later on in this thesis. Note that this

equation also holds for the adjoint R∗ and for spectral projections of R, since

they can be expressed as linear combinations of R.

We now recall how R-matrices form a representation of the braid group.

Proposition 1. Let R ∈ End(V ⊗V ) and let φ : R 7→ 1V ⊗R define the canonical

shift endomorphism on V ⊗∞. Then the following map defines a representation of

the braid group

ρR : Bn → GL(V ⊗n)

bj 7→ φj−1(R) (1.12)

Proof. It is trivial to see that, for all |i− j| ≥ 2,

φi(R)φj(R) = φj(R)φi(R)

This is because φi(R) operates on tensor factors i and i + 1, and thus will

commute with any operator that does not operate on these factors.

It is clear to see that the representation of the second braid equation is the

Yang-Baxter equation, which is satisfied by the definition of an R-matrix.

This representation allows us to diagrammatically represent equations of R-

matrices.

Using R-matrices to represent groups and algebras is the main technique used

throughout this thesis, as it allows us to analyse the original structure as well as

to classify types of R-matrices by the structure that they arise from.
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=

Figure 1.13: Diagrammatic presentation of the Yang-Baxter equation (1.2)

1.3 Traces and Equivalence of R-Matrices

In this section we examine traces and partial traces, and explore various notions

of equivalence of R-matrices.

1.3.1 Traces and Partial Traces of R-Matrices

We first define traces on a general matrix, then examine the various types of

traces used in analysing R-matrices.

Definition 12. Trace of a matrix: Let V be a finite-dimensional vector space

with basis BV and M ∈ End (V ⊗n). Taking the trace in the xthk tensor space is

defined by

Trxk(M) :=
∑
xk∈BV

⟨x1, ..., xk, ..., xn|M |x1, ..., xk, ..., xn⟩

where ⟨i|j⟩ = δi,j, where δ is the Kronecker delta.

Taking the full trace is defined by

Trx1,...,xn(M) := (Tr ⊗ Tr ⊗ ...⊗ Tr︸ ︷︷ ︸
n times

)(M) =
∑

x1,...,xn∈BV

⟨x1, ..., xn|M |x1, ..., xn⟩

Therefore the trace of an R-matrix R ∈ R(d) that operates over the vector

space V is given by:

Tr(R) :=
∑
x,y∈V

⟨x, y|R|x, y⟩ (1.13)

since R ∈ End (V ⊗ V ).

When dealing with R-matrices it is often useful to normalise this trace with

the dimension of the R-matrix.
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Definition 13. Normalised trace of an R-matrix: Let R ∈ R(d) operate

over the vector space V , which has dimension d. Then the normalised trace of R

is defined by:

τ(R) :=
1

d2
Tr(R) =

1

d2

∑
x,y∈BV

⟨x, y|R|x, y⟩ (1.14)

The normalised trace τ is the main trace used in this thesis, but given a space

such as a von-Neumann algebra (see section 1.5) there could be many different

notions of a trace. We now define what it is to be a trace in a general von-

Neumann algebra.

Definition 14. Trace: A trace trA on a von Neumannn algebra A , is a map

trA : A → C such that

trA (AB) = trA (BA) ∀A,B ∈ A

This is known as the “tracial property”,

Note that the trace on a given von Neumann algebra is always unique [13].

A trace may also have additional properties, such as positivity and faithful-

ness.

Definition 15. Positive Trace: A trace trA on a von Neumannn algebra A

is said to be positive iff the trace of any positive operator A ∈ A , such that

A∗A ≥ 0), is positive, i.e.

trA (A∗A) ≥ 0 ∀A ∈ A

Definition 16. Faithful Trace: A trace trA on a von Neumannn algebra A is

said to be faithful iff the trace is only 0 when the operator is 0, i.e.

trA (A) = 0 =⇒ A = 0 ∀A ∈ A

These two properties of traces can be combined into one equation. We say

that trA is positive and faithful iff

trA (A∗A) = 0 ⇐⇒ A = 0 ∀A ∈ A

It is clear that our R-matrix trace is positive and faithful. Indeed, for any

A ∈ Rd, we have that:
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Tr(A∗A) = 0 =⇒
∑
x,y

⟨x, y|A∗A|x, y⟩ = 0

=⇒
∑
x,y

⟨A(x, y)|A(x, y)⟩ = 0

=⇒ A = 0

And:

A = 0 =⇒ Tr(A∗A) = Tr(0∗0)

=
∑
x,y

⟨x, y|0|x, y⟩

=
∑
x,y

⟨x, y|0⟩

= 0

This is especially obvious for unitary R-matrices, as we have that RR∗ =

1V ̸= 0 unless R = 0.

On R-matrices an important concept is considering the trace on only one

tensor factor. Taking the trace on only the left or right tensor factor of an R-

matrix is referred to as taking the partial trace.

Definition 17. Partial traces of an R-matrix: The left partial trace of an

R-matrix R ∈ End (V ⊗ V ) is given by

Lptr(R) = (Tr ⊗ 1V )(R)

The right partial trace is defined by

Rptr = (1V ⊗ Tr)(R) (1.15)

In [13] it is proven that for all unitary R-matrices the left and right partial

traces coincide. Since in this thesis we solely focus on unitary R-matrices, we

simply write ptr to mean either.

The trace of a product of R-matrices can be considered diagrammatically by

looking at the closure of the related braid diagram and summing over all labels in

the underlying vector space. The partial trace can be considered by only closing

the left or right strand, depending upon if you are considering the left or right
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partial trace.

For example, if we label ρR(b1) in the following way we see that its trace is

given by the closure of the braid and its right partial trace is given by the closure

of the right strand.

Example 8. Let R|x, y⟩ := |r1(x, y), r2(x, y)⟩ ∈ R(d). Its trace and (right)

partial trace are given by

Tr(R) =
∑
x,y

⟨x, y|r1(x, y), r2(x, y)⟩

ptr(R) =
∑
y

|r2(x, y)⟩⟨y|

Now look at the conditions imposed from the closure of b1 in Figure 1.14.

x y

r1(x, y) r2(x, y)

= =

x y

r1(x, y) r2(x, y)

=

Figure 1.14: Top: closure of both strands of b1 (diagrammatic presentation of
taking the trace). Bottom: closure of the right strand of b1 (diagrammatic pre-
sentation of taking the right partial trace).

By summing over all x, y ∈ V , we see that closing the braid is exactly taking

the trace and closing one strand is exactly taking the partial trace of the R-matrix.

The above notion holds true in general and is particularly useful for products

of R-matrices.

The normalised trace τ of an R-matrix arising from a representation of a brad

group is called the character.
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Definition 18. Character: Let R ∈ R(d) and let ρR denote the braid group

representation induced by R. Then, the character of R, denoted τR, is defined by:

τR := τ ◦ ρR (1.16)

1.3.2 Notions of Equivalence of R-Matrices

The classification of R-matrices up to equivalence is a large ongoing area of

research. There are various notions of equivalence of R-matrices, some of which

have stronger conditions than others.

Definition 19. Unitary Equivalence: Two R-matrices R, S ∈ R(d) are said

to be unitarily equivalent, denoted R ≈ S, iff ∃ some unitary U ∈ End (V ⊗ V )

such that

R = USU∗

Here, U is called a (unitary) “intertwiner”.

The following notion of equivalence, that of equivalence of braid represen-

tations, is one of the strongest notions of equivalence. This is the notion of

equivalence we consider in this thesis. In [13] it is shown that equivalence of

braid representations can be defined as follows.

Definition 20. Equivalence of R-matrices: Two R-matrices R, S ∈ R(d)

are said to be equivalent iff they have the same dimension and character, i.e.

R ∼ S ⇐⇒ dim (R) = dim (S) and τR = τS

where τR is defined in Definition 18.

Equivalence is a stronger condition than unitary equivalence. In fact, equiv-

alence implies unitary equivalence. Below we state and prove a proposition re-

garding notions of equivalence.

Proposition 2. Let R ∈ R(d) be a unitary R-matrix of dimension d, and let U

be a unitary d× d matrix.

Suppose R commutes with U ⊗ U . Then S ∈ R(d) and R ∼ S, where

S = (1⊗ U)R(1⊗ U∗)
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Proof. This statement is equivalent to stating that the representations ρnR and ρnS
of the braid Group Bn are unitarily equivalent for all n ∈ N [25]. Explicitly, this

means finding a unitary matrix Vn ∈ End(V ⊗n) such that

Vnρ
n
R(bi)V

∗
n = ρnS(bi) for i = 1, ..., n− 1

where bi are the generators of Bn.

We claim that an appropriate intertwiner is given by

Vn := 1⊗ U ⊗ U2 ⊗ ...⊗ Un−1

Indeed,

VnρR(bi)V
∗
n = (1⊗ U ⊗ ...⊗ Un−1)(1⊗ ...⊗R⊗ ...⊗ 1)(1⊗ U∗ ⊗ ...⊗ U∗n−1)

= 1⊗ ...⊗ 1⊗
(
(U i−1 ⊗ U i)R(U∗i−1 ⊗ U∗i)

)
⊗ 1⊗ ...⊗ 1

The centre section can be re-written as

(U i−1 ⊗ U i)R(U∗i−1 ⊗ U∗i) = (1⊗ U)(U ⊗ U)i−1R(U∗ ⊗ U∗)i−1(1⊗ U∗)

= (1⊗ U)R(1⊗ U∗)

= S

Thus,

VnρR(bi)V
∗
n = ρS(bi)

And so Vn intertwines ρnR and ρnS as required.

As for S satisfying the YBE, it is clear from the definition of S, the unitarity

of U and the fact that R satisfies the YBE that this is the case.

1.4 Spectral Projections of R-Matrices

In this section we briefly define spectral projection of matrices.

Let R ∈ Md be a d× d matrix with spectrum σ(R) = {β0, β1, β2, ..., βn−1} so

that R has precisely n distinct eigenvalues, where n ≤ d. Then we may decompose

R in terms of its spectral projections in the following way
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R =
n−1∑
m=0

βmQm

where Qm is the spectral projection associated to eigenvalue βm, for all

m = 0, 1, ..., n− 1.

Recall that all spectral projections satisfy the following equations for all i.

Q2
i = Q∗

i = Qi

QiQj = δijQi

QiR = RQi = βiQi∑
i

Qi = 1V⊗V

where ∗ denotes the adjoint and δij is the Kronecker delta.

Using these properties we may derive a formula for any spectral projection Qi

of R in terms of a polynomial in R:

Qi =
∏

m=0,...,n=1(̸=i)

1

βi − βm
(R− βm · 1) (1.17)

This polynomial will become relevant in Chapter 2.

1.5 Inducing Factors from R-Matrices

In this section we introduce Hilbert spaces, von Neumann algebras, factors, sub-

factors and the Jones Index [18]. We introduce LR := ρR(B∞)′′, which is a type

II1 factor induced from an R-matrix.

Let B(H ) denote the set of bounded operators on a Hilbert space H . We

now define some concepts on this space.

Definition 21. von Neumann algebra: A von Neumann algebra is a unital *-

subalgebra of B(H ) that is closed in the weak operator topology, i.e. for every net

sequence ⟨Anψ, ϕ⟩, where An is a sequence operator and ψ, ϕ are vectors in H ,

its limit limn→∞⟨Anψ, ϕ⟩ = ⟨Aψ, ϕ⟩ is contained in the von Neumann algebra.

Definition 22. (Von Neumann) Factor: A factor is a von Neumann algebra

with trivial centre
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There are four main types of factor, In, II1, II∞ and IIIλ. The most impor-

tant type of factors for this area of research is the II1 factor.

Definition 23. Type II1 factor: a type II1 factor is an infinite-dimensional

von Neumann factor that has a unique trace that is positive, normalised and

faithful.

Definition 24. Subfactor: A subfactor is a factor that is fully contained in

another factor. i.e. a subfactor is a subalgebra that is also a factor.

The commutant, in particular the bicommutant F ′′ := (F ′)′, is especially

important in the theory of von Neumann algebras as it allows us to construct a

von Neumann algebra from any unital ∗-subalgebra of B(H ) using the bicom-

mutant theorem.

Definition 25. Commutant: The commutant of a set F ⊂ B(H ) of bounded

operators is the set of all bounded operators that commute with every element in

the subset F . The commutant is denoted F ′ and is defined by

F ′ := {T ∈ B(H ) : TS = ST ∀S ∈ F} (1.18)

We now state the Bicommutant theorem.

Theorem 1. Bicommutant theorem: Let F ⊂ B(H ) be a unital ∗-subalgebra
of B(H ). Then

F ′′ = F̄WOT

Where WOT is the weak operator topology.[4]

Thus, the bicommutant of a subset of bounded Hilbert operators is a von

Neumann algebra.

Example 9. Let R ∈ R(d) and define LR := ρR(B∞)′′. This is a von Neumann

algebra by the bicommutant theorem. It is a type II1 factor as it is infinite-

dimensional and τ satisfies the necessary tracial conditions.

Note that this is clearly a subfactor of φ(LR).

Given a factor and a subfactor one can consider their Jones Index, which was

originally intended to be a type of measure of the relative size of the subfactor in

the factor.
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Definition 26. Jones Index: The Jones index of a type II1 subfactor N ⊆ M

is defined by

[N : M ] := dimN (L2(M )) (1.19)

i.e. the dimension of M considered as an N -module.

The Jones Index is used as a way of differentiating different subfactors, and

its values have some interesting restrictions.

It is shown in [21] that the Jones index can only take the following values for

type II1 factors

[N : M ] = {4cos2(π/n) : n = 3, 4, 5...} ∪ [4,∞) (1.20)

The lowest value the Jones index can take is 1, but this only occurs if M = N .

This result, along with the other restrictions on the Jones Index in [13], will

be utilised in Section 2.6.3 to form restrictions on the contraction constant.
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Chapter 2

R-matrix Representations of the
BMW Algebra

In this chapter we explore the BMW algebra Cn(r, q) and define the “contractive”

R-matrices, of which a restriction forms a representation of the BMW algebra.

We then discuss examples and properties of the contractiveR-matrices, especially

looking at restrictions on the possible values the contraction constant c can take.

The BMW algebra Cn(r, q) is a deformation of the Brauer algebra established

in the 1980s [7]. It has various applications, most notably in knot theory as it

has strong connections to the Kauffmann polynomial, as well as quantum groups,

statistical mechanics, and topological quantum field theory.

Some exploration of R-matrix representations has appeared in the literature

[19], but this has focused on the skew-invertible BMW -type R-matrices and

follows a different line of inquiry as in this thesis, as it does not focus on the

classification of examples of unitary R-matrices up to equivalence.

2.1 The BMW Algebra

In this section we describe the BMW algebra in terms of generators and relations

as well as its diagrammatic presentation.

Definition 27. The BMW Algebra Cn(r, q): The BMW algebra (Birman-

Murakami-Wenzl algebra) Cn(r, q), where n ∈ N and r, q ∈ T1, q ̸= q−1 is gener-

ated by g1, g2, ..., gn−1 with the relations

1T is used to denote the unit circle
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gigi+1gi = gi+1gigi+1 (2.1)

gigj = gjgi if |i− j| ≥ 2 (2.2)

eigi = r−1ei (2.3)

eig
±1
i−1ei = r±1ei (2.4)

where ei is defined by

ei = 1− 1

q − q−1

(
gi − g−1

i

)
(2.5)

In [7] it is shown that Cn(r, q) has a diagrammatic presentation. The diagrams

of its generators are shown in Figure 2.1 and Figure 2.2.

· · · · · ·

1 j − 1 j j + 1 j + 2 n

Figure 2.1: Diagrammatic representation of gj in Cn(r, q)

· · · · · ·

1 j − 1 j j + 1 j + 2 n

Figure 2.2: Diagrammatic representation of ej in Cn(r, q)

Example 10. Let us look at an example in C3(r, q). By Equation (2.4), we have

that

e2g1e2 = re2

Diagrammatically this is presented by Figure 2.3.

We now make some observations that will later motivate our choices in the

representation of this algebra.

Note that the first two equations of the definition of the BMW algebra, (2.1)

and (2.2), are precisely the braid equations.
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r·=

Figure 2.3: Diagrammatic presentation of e2g1e2 = re2 in C3(r, q), the BMW
algebra on 3 strands

Remark 1. See also that Equation (2.3) is an eigenvalue equation for ei.

Also, note that multiplying Equation (2.5) (the defining equation for ei) by ei

yields

e2i = ei −
1

q − 1−1
(eigi − eig

−1
i )

= ei −
1

q − 1−1
(r−1ei − rei)

= ei

(
1 +

r − r−1

q − q−1

)
= xei (2.6)

where x := (1 + r−r−1

q−q−1 ).

This has interesting implications in the diagrammatic presentation of the

BMW algebra, as laid out in the following example. This will form part of the

motivation of considering the Temperley-Lieb algebra in Section 2.2.3.

Example 11. Consider e21 ∈ C3(r, q). By equation (2.6), we have that

e21 = xe1

Diagrammatically this is shown in Figure 2.4. This shows that x is analogous

to the loop parameter in the Temperley-Lieb algebra, which we explore in more

detail in Section 2.2.3.
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= x·

Figure 2.4: Diagrammatic presentation of e21 = xe1 in C3(r, q).

Equation (2.6) means that ei is a multiple of the characteristic idempotent

pi belonging to the characteristic value r−1 of gi. Since equation (2.3) is exactly

an eigenvalue equation, we see that ei operates analogously to a multiple of a

spectral projection.

Recall that we assume that r and q lie on the unit circle, i.e. r, q ∈ T. This is in
order to force a trace to be positive by ensuring its weight-vector components are

non-negative. This will then induce a well-defined inner product ⟨a, b⟩ := tr(b∗a)

on a C∗-algebra.

These observations motivate us to form an R-matrix representation of Cn(r, q)
in Section 2.2.4. First, we define a class ofR-matrices that satisfy the Contraction

Relation, inspired by equation (2.4).

2.2 Contractive R-Matrices

In this section we define contractive R-matrices and define a restriction on them

to form a representation of the BMW algebra. We show that contractive R-

matrices must have 3 eigenvalues and we explore some examples.

2.2.1 The Contraction Relation

In this section we define the Contraction Relation, which we then use to define

contractive R-matrices. The contraction relation is a generalisation of Equation

(2.4) in terms of R-matrices.

Definition 28. Contraction relation: The contraction relation is an equation

in terms of a d-dimensional R-matrix R and a spectral projection of R denoted

by P . The contraction relation is defined by:
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φ(P )Rφ(P ) = c · φ(P ) (2.7)

where φ is the canonical shift endomorphism φ : R⊗ 1 7→ 1⊗R and c ∈ C.

Restrictions of the possible values of c are explored in Section 2.6.

We now define a set of R-matrices defined by whether or not they are a

solution to the contraction relation.

Definition 29. Contractive R-matrix: A contractive R-matrix is a unitary

R-matrix R ∈ R(d) that has a spectral projection P such that R and P satisfy

the contraction relation.

We define the set of all d-dimensional contractive R-matrices as Cα(d), where
α is the contractive eigenvalue.

The set of all contractive R-matrices with arbitrary eigenvalues is defined to

be C(d) = ∪αCα(d).2

We formally define the projection P , its associated eigenvalue α and the con-

stant c in the contraction relation below.

Definition 30. Contractive Projection: A contractive projection P of a con-

tractive R-matrix R ∈ R(d) is a spectral projection of R such that R and P

satisfy the contraction relation φ(P )Rφ(P ) = c · φ(P ) for some c ∈ C.

Definition 31. Contractive Eigenvalue: A contractive eigenvalue α of a

contractive R-matrix R ∈ R(d) is an eigenvalue of R such that its associated

spectral projection P is a contractive projection of R.

Definition 32. Contractive Constant: A contractive constant c of a con-

tractive R-matrix R ∈ R(d) is a complex number c ∈ C such that, for some

contractive projection P of R, the contraction relation φ(P )Rφ(P ) = c · φ(P ) is
satisfied.

2.2.2 Eigenvalue Properties of Contractive R-Matrices

Before forming a representation of the BMW algebra, we first show that the

spectrum of a contractive R-matrix must have the following spectrum structure:

σ(R) = {α, β, γ} α, β, γ ∈ T ∀R ∈ C(d)
2We note that this has the structure of a vector space.
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Consider the following representation map of the BMW algebra.

πR : Cn(r, q) → End(V ⊗n)

πR(gi) := φi−1(R)

πR(ei) := φi−1(xP )

where

x =
(
1 +

r − r−1

q − q−1

)
It is shown in Theorem 3 that this does indeed form a representation of the

BMW algebra with some restrictions.

For πR(gi) := φi−1(R), we show that R will have at most 3 eigenvalues. This

is because gi has a maximum of 3 characteristic values. We can clearly see that

r−1 is a characteristic value from equation (2.3). We claim that the other 2

characteristic values are q and −q−1. This can be seen by inputting the defining

equation for ei (2.5) into the characteristic equation for r (2.3):

eigi = r−1ei(
1− gi − g−1

i

q − q−1

)
gi = r−1

(
1− gi − g−1

i

q − q−1

)
gi(q − q−1)− g2i + 1 = r−1(q − q−1)− r−1gi + r−1g−1

i

qg2i − q−1g2i − g3i + gi = r−1qgi − r−1q−1gi − r−1g2i + r−1

0 = g3i + g2i (−r−1 + q−1 − q) + gi(−1 + r−1q − r−1q−1) + r−1

= (gi − r−1)(gi − q)(gi + q−1)

Therefore there are at most 3 characteristic values on gi, namely r−1, q, and

−q−1. We thus require |σ(R)| ≤ 3.

Clearly |σ(R)| = 1 is the trivial case of the identity, so we do not consider

this possibility.

As for |σ(R)|=2, all unitary R-matrices of spectrum size 2 have already been

classified. These matrices form a representative of the Temperley-Lieb algebra.

We give a brief overview of Temperley-Lieb R-matrices below in Section 2.2.3.

We consider the spectrum of size 3 thereafter.
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2.2.3 Temperley-Lieb

The Temperley-Lieb algebra is defined as follows.

Definition 33. Temperley-Lieb Algebra: The Temperley-Lieb algebra TLn(δ)

is a unital algebra over C with generators T1, ..., Tn−1 and relations

T 2
i = δ · Ti

TiTi+1Ti = Ti

TiTj = TjTi ∀|i− j| ≥ 2

where n ∈ N, n ≥ 2 is the number of strands and δ ∈ C.

This has a diagrammatic presentation as in Figure 2.5.

· · · · · ·

1 j − 1 j j + 1 j + 2 n

Figure 2.5: Diagrammatic presentation of Tj in the Temperley-Lieb algebra
TLn(δ).

Let us consider the element S ∈ TLn(δ) defined by Ti = δSi for all i =

1, 2, ..., n− 1. Then we have that

T 2
i = δ · Ti =⇒ δ2S2

i = δ · δSi =⇒ S2
i = Si

TiTi+1Ti = Ti =⇒ δ3SiSi+1Si = δSi =⇒ SiSi+1Si = δ−2Si

TiTj = TjTi ∀|i− j| ≥ 2 =⇒ SiSj = SjSi ∀|i− j| ≥ 2

Hence, the defining relations of the Temperley-Lieb algebra may be rewritten

as

S2
i = Si

SiSi+1Si = δ′Si (2.8)

SiSj = SjSi ∀|i− j| ≥ 2

where δ′ := δ−2. We henceforth refer to δ′ as the loop parameter, and Equa-

tion (2.8) as the Temperley-Lieb equation.
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We consider a contractive R-matrix R with precisely two eigenvalues3 and

denote the spectrum without loss of generality4 to be

σ(R) = {−1, q}

Thus, the spectral decomposition of R is given by

R = −P + q(1V − P ) (2.9)

Where 1V is the unit of the vector space V on which R ∈ V ⊗ V .

By the Yang-Baxter equation we have that

(−P + q(1V − P )) · φ(−P + q(1V − P )) · (−P + q(1V − P )) =

φ(−P + q(1V − P )) · (−P + q(1V − P )) · φ(−P + q(1V − P ))

=⇒ Pφ(P )P − q

(1 + q)2
P = φ(P )Pφ(P )− q

(1 + q)2
φ(P )

By Theorem 7, P satisfies the Temperley-Lieb equations, i.e.

Pφ(P )P = δ′P

φ(P )Pφ(P ) = δ′φ(P )

Hence, we have that

δ′ =
q

(1 + q)2
(2.10)

We will now use restrictions on the possible values of the loop parameter to

limit the possible eigenvalues a contractive R-matrix with |σ(R)| = 2 can have.

Theorem 2. Let R be a contractive R-matrix with contractive projection P .

Suppose R has the following spectral decomposition:

R = −P + q(1V − P )

Then we must have that

3This is sometimes referred to as the “Hecke” R-matrices as these form a representation of
the Hecke algebra, which is closely related to the Temperley-Lieb algebra.

4For a spectrum σ(R) = {p, q} one can always multiply with −p−1 to obtain this form of
spectrum.
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q ∈ {eiα : α = 2 cos−1
( d

2
√
n

)
}

where d = dim(V ) and n = TrV⊗V (P ).

Proof. Recall Equation (2.10):

δ′ =
q

(1 + q)2

We shall use restrictions of this loop parameter to impose restrictions on q.

Firstly, note that δ′ ∈ R. This is because

P projection =⇒ Pφ(P )P = P ∗φ(P ∗)P ∗

=⇒ δ′P = δ̄′P ∗ = δ̄′P

=⇒ δ′ = δ̄′

Secondly, |δ′| ≤ 1, since

∥Pφ(P )P∥ = |δ′| · ∥P∥

=⇒ ∥P∥∥φ(P )∥∥P∥ ≥ |δ′|∥P∥

=⇒ 1 ≥ |δ′|

We also see that δ is positive, as for any vector ψ ∈ V ,

⟨ψ, Pφ(P )Pψ⟩ = δ⟨ψ, Pψ⟩

= ⟨Pψ, Pψ⟩

= ∥Pψ∥2 ≥ 0

Since q ∈ T, we re-write this eigenvalue in polar notation

q = eiα

Where α ∈ [0, 2π). We will go on to show the required restrictions of α.

So we may rewrite Equation (2.10) as
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δ′ =
eiα

(1 + eiα)2

=
1

(e−iα/2 + eiα/2)2

=
1

4 cos2(α
2
)

Since the largest value cos can take is 1, we have that

δ′ ≥ 1

4

Finally, note that q ̸= −1 means that we do not have an opposite pair of

eigenvalues, and so τR is a Markov trace (see Section 2.5). We will utilise the

Markov trace to show that δ′ = τ(P ), but first we write a rearrangement of

Equation (2.9)

P = − 1

1 + q
(R− q1V ) (2.11)

Now we consider taking the Markov trace of the Temperley-Lieb equation

δ′τ(P ) = τ(Pφ(P )P )

= τ(Pφ(P )) (Tracial)

=
−1

1 + q
τ(Rφ(P )) +

1

1 + q
τ(φ(P )) (By (2.11))

=
−1

1 + q
τ(R)τ(P ) +

1

1 + q
τ(φ(P )) (Markov trace)

= τ
( −1

1 + q
(R− q1V )

)
τ(P )

= τ(P )τ(P )

= τ(P )2

Hence, we have that

δ′ = τ(P ) :=
TrV⊗V

d2
∈ Q

So, we have that

δ′ =
1

4 cos2(α
2
)
∈ Q

We denote n = TrV⊗V (P ) and recall that d =dim(V ). Then we have that
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1

4 cos2(α
2
)
=

n

d2

=⇒ d2

4n
= cos2(

α

2
)

=⇒ α = 2 cos−1
(√ d2

4n

)
= 2 cos−1

( d

2
√
n

)
as required.

We do not delve into the classification of these R-matrices as all Temperley-

Lieb R-matrices5 are classified in [25].

2.2.4 Representing the BMW Algebra with R-matrices

Now that we have defined contractive R-matrices, we can show that a restriction

on this class of R-matrices does indeed induce a representation of the BMW

algebra. Having already considered the case of |σ(R)| = 2, we henceforth assume

|σ(R)| = 3 and denote this spectrum to be

σ(R) = {α, β, γ}

where α, β, γ ∈ T, since the characteristic values r−1, q,−q−1 ∈ T.

Theorem 3. Let R ∈ C(d), with contractive projection P and contractive eigen-

value α. Let the spectrum of R be σ(R) := {α, β, γ} such that β + γ ̸= α− α−1.

Then there exists a unique representation of the BMW algebra Cn(r, q) that is
given by the representation map πR, defined by:

πR : Cn(r, q) → End(V ⊗n)

πR(gi) := φi−1(R)

πR(ei) := φi−1(xP )

When

5R-matrices with 2 eigenvalues and a spectral projection that satisfies the Temperley-Lieb
equation.
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c =
β + γ

1 + α(β + γ − α)

Recalling that x = (1 + r−r−1

q−q−1 ).

Proof. For πR to be a representation of the BMW algebra, it must satisfy the

defining relations of the BMW algebra, namely

(1) πR(gi)πR(gi+1)πR(gi) = πR(gi+1)πR(gi)πR(gi+1)

(2) πR(gi)πR(gj) = πR(gj)πR(gi) for |i− j| ≥ 2

(3) πR(ei)πR(gi) =
1

r
πr(ei)

(4) πR(ei)πR(gi−1)πR(ei) = rπR(ei)

Notice that (1) and (2) are immediately satisfied, since these are the braid

equations. The use of R−matrices to represent the braid group has been very

extensively studied, so I do not replicate a proof here.

As for (3);

πR(ei)πR(gi) = φi−1(xP )φi−1(R)

= φi−1(xPR)

= φi−1(αxP )

= αφi−1(xP )

= απR(ei)

Thus, we require

α = r−1

As for (4);

πR(ei)πR(gi−1)πR(ei) = φi−1(xP )φi−2(R)φi−1(xP )

= x2φi−2(φ(P )Rφ(P ))

= x2φi−2(xφ(P ))

= xcφi−1(xP )

= xcπR(ei)
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Thus, we require

xc = r (2.12)

In [33], Wenzl’s defining equation for ei is given by

(q − q−1)(1− ei) = gi − g−1
i

Applying πR yields

(q − q−1)(1− xP ) = R−R∗

=⇒ (q − q−1)(R− xαP ) = R2 − 1

=⇒ xαP = R− 1

q − q−1
(R2 − 1)

=⇒ 0 = βQ− 1

q − q−1
(β2Q−Q)

= Q(β − β2 − 1

q − q−1
)

=⇒ 0 = β2 − (q − q−1)β − 1

This gives solutions β = q,−q−1. An exactly analogous calculation yields

γ = q,−q−1. It is interesting to note that there are no distinguishable features of

β, γ and their relative spectral projections.

This was to be expected as 1
r
, q,−q−1 are the characteristic values of gi and

α, β, γ are the eigenvalues of R. Thus, we have:

α = r−1 β, γ = q,−q−1

Plugging these into equation (2.12) yields:

(
1 +

α−1 − α

β + γ

)
c = α−1

=⇒ c =
1

α + 1−α2

β+γ

=
β + γ

1 + α(β + γ − α)

Therefore, πR is a representation of the BMW algebra with the above restric-

tion on the constant factors.
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2.3 Equivalence of Contractive R-Matrices

In this section, we show that contractive R-matrices are stable under equivalence.

We then provide some 2-dimensional examples of contractive R-matrices.

Firstly, we show that unit scalar multiples of contractive R-matrices are con-

tractive R-matrices.

Proposition 3. Let R ∈ Cα(d). Then, for all λ ∈ T, λR ∈ Cα(d).

Proof. Since R := αP + βQ+ γQ′, we have that λR = λαP + λβQ+ λγQ′, and

so if P is a spectral projection of R then it is a spectral projection of λR.

Now, in order to show that R ∈ Cα(d) =⇒ λR ∈ Cα(d) we simply need to

show how λ interacts with the contraction relation.

φ(P )λRφ(P ) = λφ(P )Rφ(P )

= λc · φ(P )

Since λ ∈ T, the contraction constant remains of the same magnitude, so it

will still satisfy the same requirements. Thus, λR is a contractive R-matrix.

We now show a brief proposition that will be used to show that contractivity

is stable under equivalence in Theorem 4. Note that we describe this proposition

in terms of R-matrices, but it does hold true for matrices in general.

Proposition 4. Let R ∈ R(d) be unitarily equivalent to S, i.e. R = USU∗.

Then PR
λ = UP S

λ U
∗ where PR

λ is the spectral projection of eigenvalue λ in R and

P S
λ is the spectral projection of eigenvalue λ in S.

Proof. Firstly, recall that PR
λ := fλ(R) is a spectral projection of R iff

fλ(λ) = 1

fλ(γ) = 0 for all γ ∈ σ(R) , γ ̸= λ

Thus, each spectral projection can be expressed as

PR
λ =

∏
γ∈σ(R)
γ ̸=λ

R− γ1

λ− γ
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Thus, R ∼ S implies

PR
λ =

∏
γ∈σ(R)
γ ̸=λ

R− γ1

λ− γ

=
∏

γ∈σ(S)
γ ̸=λ

USU∗ − γ1

λ− γ

= U
( ∏
γ∈σ(S)
γ ̸=λ

S − γ1

λ− γ

)
U∗

= UP S
λ U

∗

We now show that contractive R-matrices are stable under equivalence.

Theorem 4. Let R ∈ Cα(d) and R ∼ S. Then, S ∈ Cα(d).

Proof. To begin, we recall that two equivalent matrices have the same spectrum.

To show that the contraction relation holds, recall that if R ∼ S then there

exists some unitary intertwiner U ∈ End(V ⊗ V ⊗ V ) such that

S ⊗ 1V = U(R⊗ 1V )U
∗

1V ⊗ S = U(1V ⊗R)U∗

By Proposition 4, this also means that

1V ⊗ PS = U(1V ⊗ PR)U
∗

where PS, PR is the contractive projection in the spectral decomposition of S

and R respectively.

Now consider the LHS of the contraction relation for S:

φ(PS)Sφ(PS) = (1V ⊗ PS)⊗ (S ⊗ 1V )(1⊗ PS)

= U(1V ⊗ PR)U
∗U(R⊗ 1V )U

∗U(1v ⊗ PR)U
∗

= U(1V ⊗ PR)(R⊗ 1V )(1V ⊗ PR)U
∗

= c · U(1V ⊗ PR)U
∗

= c · (1V ⊗ PS)

= c · φ(PS)
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Thus, S satisfies the contraction relation, and so S is a contractive matrix.

Now that we have shown being contractive is stable under our notion of equiva-

lence, we may classify all 2-dimensional contractiveR-matrices, utilising the work

of Conti and Lechner [13].

Theorem 5. Let R ∈ Cα(2), i.e. a contractive unitary R-matrix with d = 2.

Then R is equivalent to a multiple of one of the three following R-matrices:

14
x

1
1

x

 where x ∈ T


z

y
y

1
z

 where y, z ∈ T

Proof. In [13], Conti and Lechner classify all unitary R(2) matrices to be equiv-

alent to one of the following four forms:

R1 = a · 1 a ∈ T

R2 =


a

b
c

d

 a, b, c, d ∈ T

R3 =


a

b
b

c

 b, a · c ∈ T

R4 =
a√
2


1 1
−1 1

1 −1
1 1

 a ∈ T

The spectra of these matrices are:
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σ(R1) = {a}

σ(R2) = {a, d,±
√
bc}

σ(R3) = {b,±
√
ac}

σ(R4) = { a√
2
(1− i),

a√
2
(1 + i)}

Recall that we insist on having a maximum of 3 eigenvalues. We begin by

looking at R1 and R3, then provide a restriction of R2 to reduce its number of

eigenvalues to 3.

R1

It is clear that the identity satisfies the contraction relation.

R3

We begin by rescaling R3 via multiplication of a factor 1√
ac

to be in the form

R3 =


z

y
y

1
z


where y, z ∈ T.

This rescales the spectrum to be

σ(R3) = {y, 1,−1}

The spectral projection of eigenvalue 1 of R is given by

P1 =
1

2


1 z

0
0

z 1


Then
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(1⊗ P1)(R3 ⊗ 1)(1⊗ P1) =
1

4



1 z
0

0
z 1

1 z
0

0
z 1


=

1

2
(1⊗ P1)

Using the “right into left” tensor product convention.

Therefore R3 ∈ C1(2). Note that we can also take −1 to be the contractive

eigenvalue but not y, since this would mean that q is associated to 1 or −1, mean-

ing that q − q−1 = 0, which we cannot have by the definition of a BMW matrix.

R4

The spectral decomposition of R4 is

R4 =
a√
2


1 1
−1 1

1 −1
1 1



+
a2

2
(1− i)


1− i

1− i
1 + i

1 + i


Testing the contraction equation for each spectral projection shows that nei-

ther are contractive projections. Therefore R4 /∈ C(2).

R2

Now for R2. Firstly, we show that the sub-family of R2 whereby b = c is

equivalent to the case when b ̸= c. Using Proposition 2, notice R2 commutes

with U ⊗ U , where

U =

(√
b √

c

)
and
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(1⊗ U)R2(1⊗ U∗) =


a √

bc√
bc

d


Thus, by Therorem 2, the 2 cases are equivalent and we may continue to just

work with the subfamily of R2 matrices where b = c.

We rescale R2 to be in the form

R2 =


w

1
1

x


This re-scales the spectrum to be

σ(R2) = {w, x, 1,−1}

There are 3 distinct ways to restrict R2 to have precisely 3 eigenvalues;

w = x(̸= ±1) w = 1 w = −1

Note that x = ±1 is equivalent to w = ±1.

We restrict by letting w = x (see remarks below for further details) so that

our final R2 matrix becomes

R2 =


x

1
1

x

 |x| = 1, x ̸= ±1

The spectral projection of eigenvalue 1 of R2 is given by

Q1 =
1

2


0

1 1
1 1

0


Then
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(1⊗Q1)(R2 ⊗ 1)(1⊗Q1) =
x

2



0
1 1
1 1

0
0

1 1
1 1

0


=
y

2
(1⊗Q1)

Thus, R2 in this restricted form satisfies the contraction relation.

Since we have exhausted all possibilities of matrices in R(2), all C(2) matrices

must be in one of the forms we have shown above.

Some remarks about the C(2) matrices:

1. The only possible contractive eigenvalues for both R2 and R3 are ±1. The

spectral projections associated to x and y in R2 and R3 respectively do not

satisfy the contraction relation.

2. The restriction we make of R2 (namely w = x) is in fact the only restriction

of R2 that results in a matrix which satisfies the contraction relation with

any of its eigenvalues’ spectral projections.

3. All of these spectra contain 1 and −1, i.e. have an opposite pair of eigen-

values. A further area of research would be to search for examples in higher

dimensions without opposite pairs of eigenvalues to ensure the normalised

trace is Markov (see Section 2.5).

2.4 Results for Contractive R-matrices

In this section we prove some interesting results relating to R,P and their shifted

versions.

Firstly, we prove a couple of useful results that hold for general R-matrices.
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Proposition 5. Let R be an R-matrix. Then for any n ∈ N the following

equations hold.

φ(Rn)Rφ(R) = Rφ(R)Rn (2.13)

Rnφ(R)R = φ(R)Rφ(Rn) (2.14)

Proof. The proofs of these 2 statements are analogous, so we just show (2.13).

The result is clear for n = 1 as this is simply the YBE. Thus, let n ≥ 2 and

consider the following, noting that we underline the places where the Yang-Baxter

equation is being used for clarity:

φ(Rn)Rφ(R) = φ(Rn−1)φ(R)Rφ(R)

= φ(Rn−1)Rφ(R)R

= φ(Rn−2)φ(R)Rφ(R)R

= φ(Rn−2)Rφ(R)R2

= φ(Rn−3)φ(R)Rφ(R)R2

= φ(Rn−3)Rφ(R)R3

= ...

= Rφ(R)Rn

as required.

Theorem 6. Let R be an R-matrix and Q be any of its spectral projections6.

Then the following equations hold.

φ(Q)Rφ(R) = Rφ(R)Q (2.15)

Qφ(R)R = φ(R)Rφ(Q) (2.16)

Proof. Firstly we show (2.15).

6Note that the following equations do hold for Q = P but they do not require the selection
of any particular spectral projection.
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φ(Q)Rφ(R) = φ(
∑
j

ajR
j)Rφ(R) Using equation (1.17)

=
∑
j

ajφ(R
j)Rφ(R)

=
∑
j

ajRφ(R)R
j

= Rφ(R)
∑
j

ajR
j

= Rφ(R)Q

The proof for (2.16) is analogous to the above proof.

We now look at relations of contractive R-matrices.

Theorem 7. Let R ∈ Cα(d) and let P be the spectral projection of R associated

to the eigenvalue α. Then the following equations hold.

φ(R)Pφ(P ) = αc ·R−1φ(P ) (2.17)

Pφ(R)P = c · P (2.18)

Rφ(P )P = αc · φ(R−1)P (2.19)

αc · Pφ(R)R = Pφ(P ) (2.20)

Pφ(P )P = |c|2P (2.21)

φ(P )Pφ(P ) = |c|2φ(P ) (2.22)

P =
1

α + αβγ − (β + γ)
R + βγR−1 − (β + γ)1 (2.23)

Proof. To show (2.17) we prove the equivalent relation

Rφ(R)Pφ(P ) = αc · φ(P )
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Rφ(R)Pφ(P ) = φ(P )Rφ(R)φ(P ) by (2.15)

= φ(P )Rφ(RP )

= α · φ(P )Rφ(P )

= αc · φ(P )

as required.

We will shortly show (2.18), which we note is similar to the contraction rela-

tion. We first state a re-arrangement of (2.16).

Pφ(R)R = φ(R)Rφ(P )

=⇒ φ(R∗)Pφ(R)R = Rφ(P )

=⇒ φ(R∗)Pφ(R) = Rφ(P )R∗

=⇒ φ(R∗)P = Rφ(P )R∗φ(R∗)

Using the contraction relation (1.11) and the above re-arrangement of (2.16),

we have that

Pφ(R)P = P{Rφ(R)Rφ(R∗)R∗}P by (1.11)

= ααPφ(R)Rφ(R∗)P

= Pφ(R)R2φ(P )R∗φ(R∗)

= φ(R)Rφ(P )Rφ(P )R∗φ(R∗)

= c · φ(R)Rφ(P )R∗φ(R∗)

= c · Pφ(R)RR∗φ(R∗)

= c · P

Now for (2.19), we show the equivalent equation φ(R)Rφ(P )P = αc · P .

φ(R)Rφ(P )P = Pφ(R)RP

= αPφ(R)P

= αc · P

Next we look at (2.20). Consider the Yang-Baxter endomorphism defined in

Equation (1.10). We have that
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λR∗(P ) = φ(P ) = R∗φ(R∗)Pφ(R)R

Also, P being a spectral projection of R implies that it is also a spectral

projection of R∗ since the adjoint simply conjugates the eigenvalues. Therefore

if the contraction relation holds for R and P then it holds for R∗ and P with

conjugation of the constant, i.e.

Pφ(R∗)P = cP

Now to show (2.20)

Pφ(P ) = P (R∗φ(R∗)Pφ(R)R)

= αPφ(R∗)Pφ(R)R

= αcPφ(R)R

Finally we look at the Temperley-Lieb equations (2.21) and (2.22).

We use (1.11) and both the contraction relation and its adjoint equivalent to

show (2.21):

Pφ(P )P = PRφ(R)Pφ(R∗)R∗P

= αα(Pφ(R)P )φ(R∗)P

= cPφ(R∗)P

= ccP

= |c|2P

To show (2.22) we first rearrange the equation for φ(P ), equation (1.11):

φ(P ) = Rφ(R)Pφ(R∗)R∗

=⇒ R∗φ(P )R = φ(R)Pφ(R∗)

=⇒ φ(R∗)R∗φ(P )Rφ(R) = P

Now, using this and both the contraction relation and its adjoint equation,

we show (2.22):
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φ(P )Pφ(P ) = φ(P )(φ(R∗)R∗φ(P )Rφ(R))φ(P )

= αα(φ(P )R∗φ(P ))Rφ(P )

= cφ(P )Rφ(P )

= ccφ(P )

= |c|2φ(P )

Finally, we show the equation for expanding P in terms of R, R−1, and 1.

Recall

R = αP + βQ+ γQ′

R−1 = αP + βQ+ γQ′

Now, consider

R + βγR−1 = (α + αβγ)P + (β + γ)(Q+Q′)

= (α + αβγ)P + (β + γ)(1− P )

= (α + αβγ − (β + γ)P + (β + γ)1

A simple rearrangement gives us our required equation.

These last 2 equations are the Temperley-Lieb equations. These were utilised

in Section 2.2.3 and we analyse these in further detail in Section 2.6 where we

explore the significance of |c|2 as the loop parameter.

2.5 Markov Traces

The normalised trace τ having the Markov trace property is utilised in this thesis

to derive restrictions on the contractive constant c. In this section we define a

Markov trace, discuss some results from the literature regarding when the nor-

malised trace is Markov, and show that if a positive faithful normalised Markov

trace exists on ρR(B∞) then it is unique.
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Definition 34. Markov Trace: A Markov trace in the representation of the

braid group is defined as a trace m : ρR(CB∞) → C such that

m(xφn(R)) = m(x)m(R) (2.24)

for any x ∈ ρR(CB∞), n ∈ N.[17]

It is shown in [24] that for any R ∈ R(d) with no pair of opposite eigenvalues7,

the normalised trace τR is a Markov trace. In Proposition 7 we also show that

for the discrete range of a certain Jones Index, defined by Equation (2.34), the

normalised trace is Markov.

Throughout this thesis we assume that τR has the Markov property by either

enforcing no pairs of opposite eigenvalues or the Jones Index defined in Equation

(2.34) being 2 or 3. Further research could entail analysing exactly when else the

normalised trace is Markov, which could perhaps generalise the results laid out

in this thesis to include further cases.

We show now that if there exists a positive faithful normalised trace on

ρR(CB∞), then it is unique.8 We first show a short proposition that will be

used in our uniqueness proof later, adapted from an analogous proof shown for

the BMW algebra in [8].

Proposition 6. Any element of ρR(CBn) may be written as linear combinations

of elements of the form

w = aχb (2.25)

where a, b ∈ ρR(CBn−1) and χ ∈ {φn−2(R), φn−2(P ),1}.

Proof. We will use the method of proof by induction.

Firstly we look at n = 2. In this case, our algebra is ρR(CB2), which simply

consists of polynomials in R. Thus, for this base case, we need only to show that

any power of R may be written as linear combinations of 1, R, and P . To do this,

recall equation (2.23)

7By “opposite pair” we mean σi = −σj for any i, j in the spectrum σ(R) = {σ1, ..., σn}.
8This does follow from the fact that a trace on any II1 factor is unique [13], but we still

state an explicit proof.
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R = (α + αβγ − (β + γ))P − βγR∗ + (β + γ)1

=⇒ R2 = α(α + αβγ − (β + γ))P − βγ1+ (β + γ)R

=⇒ R3 = α2(α + αβγ − (β + γ))P − βγR + (β + γ)R2

= α2(α + αβγ − (β + γ))P − βγR + (β + γ)(α(α + αβγ − (β + γ))P

− βγ1+ (β + γ)R)

etc.

This gives a recursion relation for any power of R, namely

Ri = αi−1(α + αβγ − (β + γ))P − βγR + (β + γ)Ri−1

where

R = (α + αβγ − (β + γ))P − βγR∗ + (β + γ)1

So, n = 2 is shown, and we move on to the induction.

We note that any element of ρR(CBn) can be written as linear combinations

of elements of the form

w = w0y0w1y1...wryr

= w0y0w1y1z (z = w2y2...wryr)

where wi ∈ ρR(CBn−1) and yi ∈ {φn−2(R), φn−2(P )}.

Note that yi is not assumed to be able to take the value 1, since if this were

the case one would have wj1wj+1 = wjwj+1, which we can combine to make w̃j.

Now, by induction on n, we have that

w1 = v0sv1

where v0, v1 ∈ ρR(CBn−2) and s ∈ {φn−3(R), φn−3(P )}

Since v0 and v1 only operate on n − 2 strings, and y0 and y1 operate on the

n− 1th and nth strings, our v’s must commute with our y’s. So, w becomes

w = w0y0(v0sv1)y1z

= w0v0y0sy1v1z
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Induction shows that we can always “push” the braids on n−1 or less strands

to the outside of w. Now all that remains to show is that the middle part, y0sy1,

is always in the set {φn−2(R), φn−2(P ),1}.

Let A,B,C ∈ {R,P}. Note that y0sy1 = φn−2(A)φn−3(B)φn−2(C) =

φn−3(φ(A)Bφ(C)), so equivalently we need to show that φ(A)Bφ(C) reduces

to something in the form A′φ(B′)C ′ where B′ ∈ {R,P,1}.

There are precisely 8 possibilities for A,B, and C. Namely

A B C
R R R
R R P
R P R
R P P
P R R
P P R
P R P
P P P

φ(R)Rφ(R)

By Yang-Baxter,

φ(R)Rφ(R) = Rφ(R)R

φ(R)Rφ(P )

By (2.17),

φ(R)Rφ(P ) = αc ·R−1φ(P )

φ(R)Pφ(R)

Since we are dealing with linear combinations anyway, it is enough to show

that φ(R)Pφ(1), φ(R)Pφ(R∗) and φ(R)Pφ(P ) can be reduced to the required

form, as φ(R) can be written as a linear combination of 1.R∗, and P by (2.23).

φ(R)Pφ(1) is already in the required form

φ(R)Pφ(P ) = αcR−1φ(P ) by (2.17)

As for φ(R)Pφ(R∗), recall the equation for the shift endomorphism
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φ(P ) = Rφ(R)Pφ(R∗)R∗

=⇒ φ(R)Pφ(R∗) = R∗φ(P )R

φ(R)Pφ(P )

Similarly, P can be expressed in terms of linear combinations of R,R∗, and 1.

φ(R)Pφ(1) is already in the required form

φ(R)Pφ(R) is shown above

φ(R)Pφ(R∗) is shown above

φ(P )Rφ(R)

Using linear combinations again, this time on φ(P ),

φ(R)Rφ(R) shown above

φ(1)Rφ(R) is already in the required form

φ(R∗)Rφ(R) = Rφ(R)R∗ is clear from the YBE (1.2)

φ(P )Pφ(R)

Expanding φ(P ) in terms of its linear combinations,

φ(1)Pφ(R) is already in the required form

φ(R)Pφ(P ) is shown above

φ(R∗)Pφ(P ) = φ(R∗)αcRφ(R)Pφ(P )Pφ(P ) by (2.17)

= αcRφ(R)R∗P 2φ(P )P by Temperley-Lieb (2.21) and Yang-Baxter (1.2)

= α2cRφ(R)Pφ(P )P

and φ(R)Pφ(P ) is shown above

φ(P )Rφ(P )

φ(P )Pφ(P ) = c · φ(P ) by the contraction relation (2.7)

φ(P )Pφ(P )

φ(P )Pφ(P ) = Pφ(P )P by Temperley-Lieb (2.21)

Thus, by induction, we have shown that every element of ρR(CBn) may be

written as linear combinations of elements of the form w = AχB where A,B ∈
ρR(CBn−1) and χ ∈ {φn−2(R), φn−2(P ),1}.
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We now show a theorem about the uniqueness of positive faithful normalised

Markov traces.

Theorem 8. If there exists a positive faithful normalised Markov trace on

ρR(CB∞), then it is unique.

Proof. Assume m : ρR(CB∞) → C to be a positive faithful normalised Markov

trace, i.e.

Normalised: m(1) = 1

Linear: m is linear

Positive and faithful: m(a∗a) = 0 ⇐⇒ a = 0 for all a ∈ ρR(CB∞)

Markov: m(xφn−1(R)) = m(x)m(R) for all x ∈ ρR(CBn)

Tracial: m(ab) = m(ba) for all a, b ∈ ρR(CB∞)

Note that m being Markov for R immediately implies that it is Markov for

R∗, i.e. m(xφn−1(R∗)) = m(x)m(R∗) for all x ∈ ρR(CBn). We can see this by

taking the conjugate of the Markov equation:

m(xφ(R∗) = m(xφ(R)) = m(x)m(R) = m(x)m(φ(R∗))

To show thatm, if it exists, is unique on ρR(CB∞), we show that it is uniquely

fixed on

1, R,Rn, φl(R) for all n ∈ Z, l ∈ N

Note that we need not show it is fixed on R∗ as ρR(CB∞) = ρR∗(CB∞)

Applying m to the contraction relation yields

m(φ(P )Rφ(P )) = m(c · φ(P ))

=⇒ m(φ(P )2R) = cm(φ(P ))

=⇒ m(φ(P ))m(R) = cm(φ(P ))

=⇒ m(R) = c (2.26)

Note that m(φ(P )) ̸= 0 since m is faithful and P is positive.

By assumption m is Hermitian, so this implies
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m(R∗) = c

To show that m is uniquely fixed on all powers (positive and negative) of R,

recall that

Rn =
∑
i

(λi)
nPλi

where i = 1, ..., |spec(R)|, λi are the eigenvalues of R and Pλi is the spectral

projection associated to the eigenvalue λi.

Therefore, since m is linear, we may show that m is fixed for all powers of R

by showing that it is fixed for all spectral projections of R.

Applying m to the Temperley-Lieb relation yields

m(φ(P )Pφ(P )) = m(|c|2φ(P ))

=⇒ m(P )m(φ(P )) = |c|2m(φ(P ))

=⇒ m(P ) = |c|2 (2.27)

As for the other spectral projections, recall that the sum of spectral projections

equal the identity. Applying m to this yields

m(P +Q+Q′) = m(1)

=⇒ |c|2 +m(Q) +m(Q′) = 1

Also, applying m to the spectral decomposition of R gives us

m(αP + βQ+ γQ′) = m(R)

=⇒ α|c|2 + βm(Q) + γm(Q′) = c

Solving the above 2 equations as a system of simultaneous equations gives

m(Q) =
(γ − α)|c|2 + c− γ

β − γ
(2.28)

m(Q′) = 1− |c|2 − (γ − α)|c|2 + c− γ

β − γ
(2.29)

Thus we have shown that if m exists, it is uniquely fixed on all Rn, n ∈ Z.
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Now all that is left is to show that it exists on shifts of R, i.e. φm(R) for all

m ∈ N. We do this by using induction on ρR(CB2) to show that if m exists here,

it will also exist on any higher number of strings.

We have already shown that m is uniquely fixed on 1 (by assumption) and

all powers of R. This covers every element of ρR(CB2), giving us the base step of

our induction.

As we have shown in equation (2.25), any element w of ρR(CBn) may be

written as linear combinations of elements of the form

w = aχb

where a, b ∈ ρR(CBn−1) and χ ∈ {φn−2(R), φn−2(P ),1}.

Applying m to this gives

m(w) = m(aχb)

= m(baχ)

= m(ba)m(χ)

This last step holds regardless of which value χ takes, since it’s true by defi-

nition if χ = φn−2(R) and since m is linear and P can be expressed as a linear

combination of R and R∗ it also must hold for χ = P . It is trivial if χ = 1.

Thus, if m exists, it is uniquely fixed for all elements of ρR(CB∞) as we have

defined above.

2.6 Contraction Constant

In this section, we use various properties, including the Markov trace, the

Temperley-Lieb equation, and the Jones index, to find restrictions on the possible

values of the contraction constant c.

Throughout this section we assume τ : ρR(B∞) → C is a normalised Markov

trace. To enforce a Markov trace we assume that we do not have an opposite pair

of eigenvalues, i.e.
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α ̸= −β

α ̸= −γ

β ̸= −γ

2.6.1 Rationality of the Loop Parameter

Recall that τ is the normalised Markov trace. Then

|c|2 = τ(P ) =
TrV⊗V (P )

d2
∈ Q

Also, note that |c|2 being the loop parameter in the Temperley-Lieb relation,

which in our case consists of spectral projections, automatically implies 0 ≤ |c|2 ≤
1, since

∥Pφ(P )P∥ = ∥|c|2P∥

=⇒ ∥P∥∥φ(P )∥∥P∥ ≥ |c|2∥P∥

=⇒ 1 ≥ |c|2 (∥P∥ = 1 for spectral projections)

Actually, we cannot have |c|2 = τ(P ) = 1 since this occurs iff P ≡ 1 which is

a special case that can be considered seperately. Thus,

1 > |c|2 ∈ Q (2.30)

2.6.2 Skein Relations

In this section we investigate the restrictions induced from a Skein-type relation.

A Skein relation is an equation of the form

R +R∗ = z(E + 1) (2.31)

where E = 1
|c|P satisfies the following relations that form an equivalence class

on “hooks” on the diagram monoid Dn [22]

E2 =
1

|c|2
E = E

1

|c|2

Eφ(E)E = E

Calculating the LHS of the Skein relation in our 3-eigenvalue setting yields
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R +R∗ = (α + α)P + (β + β)Q+ (γ + γ)Q′

We make the simplifying assumption that βγ = 1, i.e. γ = β (since they lie

on the unit circle), since as discussed before we can rotate the spectrum of R.

We calculate

R + βγR∗ = (α + βγα)P + (β + γ)(Q+Q′)

⇐⇒ R +R∗ = (α + α− (β + β)|c|E + (β + β)1

This becomes of Skein form when

|c|(α + α− (β + β) = β + β

⇐⇒ |c| = β + β

α + α− (β + β)

Note that this denominator ̸= 0, as

α + α− (β + β) = 0 =⇒ α + α = β + β

=⇒ α1 + α2i+ α1 − α2i = β1 + β2i+ β1 − β2i

=⇒ 2α1 = 2β1

=⇒ α1 = β1

where α := α1 + α2i and β = β1 + β2i (α1, α2, β1, β2 ∈ R).

If α1 = β1 (i.e. Re(α) = Re(β)) then we would have α = β as all eigenvalues

lie on the unit circle. However, we have already rotated the spectrum so that

β = γ, so α = β =⇒ α = γ which contradicts our assumption of having distinct

eigenvalues. Therefore the above denominator ̸= 0.

Now, since α and β are on the unit circle, they may be re-written as

α = eia β = eib

where a, b ∈ [0, 2π].

Then this becomes
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|c| = eib + e−ib

eia + e−ia − (eib + e−ib)

=
cos(b)

cos(a)− cos(b)
(2.32)

This denominator is never 0 since we have distinct eigenvalues. There are 2

possibilities to make cos(a) = cos(b): either a = b, which does not occur since

α ̸= β, or a = 2π − b, which does not occur since α ̸= β.

We divide top and bottom by cos(b), which is not 0 since this would give

β = 1, making γ = β = 1 = β which cannot occur as we have distinct eigenvalues.

Thus,

|c| = 1
cos(a)
cos(b)

− 1

This is a strong restriction on the values that c can take. In particular we can

use it to restrict the values of β.

Recall that 0 < |c| < 1. This means that there are 2 possible cases:

(1)cos(a) > cos(b) =⇒ 0 < 2cos(b) < cos(a)

(2)cos(b) > cos(a) =⇒ 0 > 2cos(b) > cos(a)

Since cos ∈ [−1,−1] we must therefore have that

|cos(b)| ≤ 1/2

On the unit circle, this means that β (and γ since β = γ) can only exist in

the range highlighted in Figure 2.6.

2.6.3 Jones Index

In this section we discuss the relationship between the contraction constant and

the Jones index.

Recall the following type II1 factor

LR := ρR(B∞)′′ (2.33)
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−0.5 0.5

Figure 2.6: Range of possible values of β

We consider the following Jones index

IR := [LR : φ(LR)] (2.34)

Theorem 9. Let IR be the Jones Index as above and let E be the (unique) trace-

preserving conditional expectation. Then the following relation holds [27]

IR := [LR : φ(LR)] =
(
inf{||E(P )|| : P ( ̸= 0) is a projection on LR}

)−1
(2.35)

Let us suppose that τ : LR → C, the normalised trace, has the Markov

property.

Proposition 7. Let R be a contractive R-matrix. Suppose IR < 4. Then the

τ -preserving conditional expectation coincides with τ on R and all Pλ (spectral

projections of R), i.e.

E(R) = τ(R) · 1 and E(Pλ) = τ(Pλ) · 1 (2.36)

Proof. Let IR < 4. Then by Jones [21], we must have that the relative commutant

is trivial, i.e.

LR ∩ φ(LR)
′ = C · 1

In [13] Equation (3.17), Conti and Lechner show that the conditional expec-

tation must always be in the relative commutant, i.e.

58



E(R) ∈ LR ∩ φ(LR)
′ = C · 1

Since the conditional expectation is trace-preserving, we therefore must have

that

E(R) = τ(R) · 1

In particular, since Pλ can be expressed as a polynomial in R (1.17), we have

that

E(Pλ) = τ(Pλ) · 1

As required.

We now show a key lemma demonstrating the connection between the con-

tractive constant and the Jones Index.

Lemma 1. Let IR be the Jones Index relating to the contractive R−matrix R as

above, and let c be the contractive constant of R. Then,

IR = |c|−2

Proof. Note that in [13] it is shown that

E(R) = φ ◦ ϕR(R)

and that τ is a Markov trace ⇐⇒ ϕR(R) = τ(R) · 1. Hence, by the above

theorem, we have that for IR < 4 the normalised trace τ is Markov.

From (2.35) we have the follwing, where Pλ is any spectral projection of R:

I−1
R ≤ τ(Pλ)

Taking in particular Pλ = P (i.e. choosing the contractive spectral projec-

tion), for which τ(P ) = |c|2, we therefore have

|c|−2 ≤ IR

Also recall from [13] that

IR ≤ |τ(R)|−2(= |c|−2)
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Therefore |c|−2 ≤ IR ≤ |c|−2, and so

IR = |c|−2

The above equation is an extremely important result, as it allows us to restrict

the possible values of c in many ways.

There are a number of inequalities already known about IR [13]:

IR ≤ d2 (where d is the dimension of the base space)

IR ≤ |τ(R)|−2

|σ(RI)| ≤ IR

|σ(ptr(R))|2 ≤ IR

1/τ(Pλ) ≤ IR for any spectral projection Pλ of R

where Pλ is any spectral projection of R.

Therefore we have that

|c|−2 ≤ d2

|σ(R)| ≤ |c|−2

|σ(ptr(R))|2 ≤ |c|−2

|c|−2 ≤ τ(Pλ)

where Pλ is any spectral projection of R.

Note that this final inequality has equality for Pλ = P , so all “other” spectral

projections have a Markov trace greater than or equal to the contractive projec-

tion.

Recall that in the case of type II1 factors, the Jones index can only take

specific values [20], namely

IR = {4cos2(π/n) : n = 3, 4, 5...} ∪ [4,∞) (1.20)

Since IR = |c|−2, there are further restrictions on the value the Jones Index

can take - in the discrete range, it may only take integer values.
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Theorem 10. Let IR = [LR : φ(LR)]. Then

IR ∈ {2, 3} ∪ [4,∞)

Proof. Recall that |c|2 = τ(P ) ∈ Q. Therefore we must have that IR = |c|−2 ∈
Q. Focusing on the discrete range of IR, this is equivalent to asking when

4cos2(π/n) ∈ Q for n ∈ N.

Firstly, note that

cos2(π/n) =
(eiπ/n + e−iπ/n

2

)2

=
e2iπ/n + e−2iπ/n + 2

4

=
1

2

(e2iπ/n + e−2iπ/n

2
+ 1

)
=

1

2

(
cos(

2π

n
) + 1

)
For this to be rational, we need to consider when cos(2π

n
) is rational.

By Niven’s Theorem [26] 9 we have that

4cos2(
π

n
) ∈ {4, 3, 2}

As required.

The lowest value the Jones index can take is 1, but this only occurs if M = N .

The next value it can take is 2, so we therefore must have

2 ≤ [LR : φ(LR)] ≤ |τ(R)|−2

Now recall that in our contraction setting τ(R) = c, so this becomes

2 ≤ |c|−2 =⇒ |c| ≤ 1√
2

This is a strong restriction on the possible values that c can take.

9If θ/π and cos(θ) are rational, then θ ∈ {0, π/3, π/2}.
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In the previous subsections we have shown the following restrictions on the

value of c:

0 ≤ |c| ≤ 1√
2

|c|2 = τ(P ) ∈ Q

Now, let us look at specific values of IR(= |c|−2) in the discrete range and

deduce information about R.

2.7 Contractive R-Matrices Classified By Their

(Discrete) Jones Index

In this section we use the fact that IR = |c|−2 to deduce the form of a contractive

R-matrix for each discrete integer value of the Jones Index.

2.7.1 IR = 2

For this case, we have that |σ(R)| ≤ 2 as IR ≤ |σ(R)|. Note that the case

|σ(R)| = 1 is trivial, so we only consider |σ(R)| = 2, which is the Temperley-Lieb

case discussed in Section 2.2.3. We now state a formal theorem showing the exact

form of a contractive R-matrix of this type.

Theorem 11. Let R be a contractive R-matrix with IR = 2. Then R is of the

form

tR = −P ± i(1− P )

where t ∈ T.

Proof. Since |σ(R)| ≤ IR, we must have that |σ(R)| = 2 (as |σ(R)| = 1 ⇐⇒
IR = 1) since this only occurs for R being a multiple of the identity matrix).

Thus, we know R must be of the form

R = −P + β(1− P )

Recall
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τ(R) = c

τ(P ) = |c|2

IR = |c|−2

Thus, in our situation we have that τ(P ) = 1/2. Consider

c = τ(R)

= τ(−P + β(1− P )

= (1 + β)|c|2 + β

=
β − 1

2

Since here we have that |c| = 1√
2
, so

|β − 1

2
| = 1√

2

Equivalently,

|β − 1| =
√
2

Now, as |β| = 1, we consider where the unit circle and the circle centred

at 1 with radius
√
2 intersect by solving the following as a set of simultaneous

equations:

x2 + y2 = 1

(x− 1)2 + y2 = 2

which have intersection (0,±1), i.e. β = ±i.

This shows that for IR = 2, we always have that R is of the form

R = −P + i(1− P )

We have already shown that any matrix equivalent to a contractive R-matrix

must also be contractive, so any scalar multiple will also be permitted.

This is indeed unsurprising, as in [24], Lechner fully classifies Temperley-Lieb

matrices in terms of, in his notation, τR(e1). This is exactly our τ(P ), and Lechner

states all unitary R-matrices such that τR(e1) = 1/2, i.e. IR = 2, are equivalent

to
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R = −e
−iπ
4 G2 ⊠ 1k or R = (−e

−iπ
4 G2 ⊠ 1k)

∗

where G2 is the Gaussian R-matrix of dimension 2.

These R-matrices have spectra {1, i} and {1,−i} respectively, and thus are

equivalent to the form stated in the theorem above.

2.7.2 IR = 3

The case for IR = 3 is a little more complicated, since we can have |σ(R)| = 2 or

|σ(R)| = 3.

2.7.2.1 IR = 3, |σ(R)| = 2

In an analogous calculation to the proof of Theorem 6, R must be of the form

R = −P +
1 + i

√
3

2
(1− P )

Again, Lechner [24] showed that all Temperley-Lieb matrices such that

τR(e1) = 1/3 are equivalent to

R = iG3 ⊠ 1k or R = (iG3 ⊠ 1k)
∗

where k = dimV .

These R-matrices have spectra {1, e iπ
3 } and {1, e− iπ

3 } respectively, and thus

are equivalent to the form stated above.

2.7.2.2 IR = 3, |σ(R)| = 3

This case seems to be difficult to find examples for. In this subsection we show

that we cannot extend the IR = 3, |σ(R)| = 2 case to have 3 eigenvalues as it

results in contradiction. Future research could entail continuing to search for

examples of this type.

Let R′ be the IR = 3, |σ(R)| = 2 solution, i.e.

R′ := iG3 ⊠ 1k = −PR′ +
1 + i

√
3

2
(1− PR′)

where
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G3 :=
1√
3

2∑
k=0

ξk
2

Uk

U is a unitary operator defined by

U |k, l⟩ := (ξ)l−k|k + 1, l + 1⟩

and ξ := e
2πi
3 is a third root of unity.

This operator applied to some basis vectors ek, el,
10 yields:

U(ek ⊗ el) = ξl−k(ek+1 ⊗ el+1)

In 3 dimensions U can be expressed explicitly as:

0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 −ξ2 0 0
0 0 0 0 0 0 0 −ξ 0
0 0 −ξ 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 ξ2 0 0 0 0 0 0 0
0 0 0 0 0 ξ 0 0 0
0 0 0 −ξ 0 0 0 0 0
0 0 0 0 1 0 0 0 0


We aim to construct an R from R′ by using its spectral projection PR′ and

using other equations around R to solve for the other unknowns in the spectral

decomposition of R, i.e. construct

R = λ1P + λ2Q+ λ3(1− P −Q)

where P := PR′ .

Since P is a spectral projection of iG3, which is a linear combination of powers

of U ’s, it follows that there must be a way to write P as a linear combination of

U ’s. Indeed, we find that any spectral projection with Markov trace 1
3
that can

be written in terms of U as defined above must be in the form described in the

following theorem.

Theorem 12. Let U be defined as U |k, l⟩ := (ξ)l−k|k + 1, l + 1⟩.

Let Q be a spectral projection such that τ(Q) = 1
3
, and suppose Q can be

written as a linear combination of 1, U, U2.

10where ek operates as a 1 in the kth space and 0’s everywhere else.
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Then, we must have that

Q = γ · 1
3

2∑
i=0

ξikU ik

where γ ∈ T.

Proof. We begin by supposing that Q can be written as a linear combination of

1, U, U2, i.e. is in the form

Q = a1+ bU + cU2

Firstly, note that τ(Q) = 1
3
& τ(U) = 0 immediately implies that a = 1

3
.

Secondly, Q is a projection. By definition this gives us 2 relations:

1. Q = Q∗

2. Q = Q2

We now see how these relations impact a, b, and c.

1. Q = Q∗

Q = Q∗ =⇒ 1

3
1+ bU + cU2 =

1

3
1+ bU∗ + c(U∗)2

=
1

3
1+ bU2 + cU

Since U3 = 1, and so U∗ = U2 and (U2)∗ = U .

Therefore

b = cc = b

2. Q = Q2

Q = Q2 =⇒ 1

3
1+ bU + cU2 = (

1

3
1+ bU + cU2)2

= (
1

9
+ 2bc)1+ (

2

3
b+ c2)U + (

2

3
c+ b2)U2

By equating coefficients in the above 2 equations we get that

|b| = 1

3
and |c| = 1

3
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This gives precisely 3 possible scenarios (up to multiplication of a normed

scalar):

b =
1

3
, c =

1

3

b =
1

3
ξ, c =

1

3
ξ2

b =
1

3
ξ2, c =

1

3
ξ

Therefore Q must be in the above form.

We insist on the following labeling convention for the 3 possible projections:

Qk =
2∑
i=0

ξikU i

Or, explicitly,

Q0 = 1+ U + U2

Q1 = 1+ ξU + ξ2U2

Q2 = 1+ ξ2U + ξU2

Note that P ′
R = Q0. Recall that we wish to express R in terms of 3 spectral

projections, one of which being P ′
R. We claim that Qk, k ∈ {0, 1, 2} is the set of

spectral projections of R, i.e.

R =
2∑
i=0

λiQi

Theorem 13. Let Qk, k = 0, 1, 2 be as described above. Then {Q0, Q1, Q2} is a

complete set of spectral projections.

Proof. For {Qk : k = 0, 1, 2} to be a complete set of spectral projections, the

Qk’s must satisfy 3 properties:

1. Qk = Q∗
k = Q2

k for all k
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2.
∑2

k=0Qk = 1

3. QjQk = δjkQk where δjk is the Kronecker delta.

Property 1 is automatically satisfied by the construction of Q.

For property 2, recall that the sum of all roots of unity is 0 and consider

2∑
k=0

Qk =
2∑

k=0

1

3

2∑
i=0

ξikU i

=
2∑
i,k

1

3
(ξk)iU i

this can only be non-zero for i = 0

=
2∑

k=0

1

3
1k1

= 1

As for property 3:

9QjQk =
∑
n=0

ξnjUn ·
2∑

m=0

ξmkUm

=
2∑
n,m

ξnj+mkUn+m

we do an index change of s = n+m

=
2∑

s=0,n

ξnj+(s−n)kU s

=
2∑
s,n

(ξn)j−kξskU s

this is only non-zero for j=k since the sum of roots of unity is 0

=
2∑
s=0

δjkξ
skU s

= 3δjkQk

So, we consider

R = λ0Q0 + λ1Q1 + λ2Q2
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Before we continue we state a list of helpful equations:

Theorem 14. Let ξ be a 3rd root of unity and consider U,Qk and R as above.

We restate these definitions for ease:

U |k, l⟩ := ξl−k|k + 1, l + 1⟩

Qk :=
1

3

2∑
i=0

ξikU i

R :=
2∑
i=0

λiQi

Then, the following equations hold:

U iφ(U j) = ξ2ijφ(U j)U i

U jφ(Qk) = φ(Qk+2j)U
j

U jQk = ξ−kjQk = QkU
j

Qkφ(U
j) = φ(U j)Qk+2j

φ(U j)Qk = Qk−2jφ(U
j)

φ(Qi)Qjφ(Qk) =
1

3
ξ(k−i)jφ(Qi)U

k−i

Qiφ(Qj)Qk =
1

3
ξ−(k−i)jQiφ(U

−(k−i)

RU = UR =
2∑
i=0

ξ−iλiQi

φ(Qk)Rφ(Qk) =
1

3

∑
i

λiQk

Proof. 1. By definition,

U i|k, l,m⟩ := U i(ek ⊗ el ⊗ em)

= ξl−k(ek+1 ⊗ el+1 ⊗ em)

φ(U j)|k, l,m⟩ := φ(U j)(ek ⊗ el ⊗ em)

= ξm−l(ek ⊗ el+1 ⊗ em+1)

Thus, consider

U iφ(U j)(ek ⊗ el ⊗ em) = U i · ξj(m−l)(ek ⊗ el+j ⊗ em+j)

= ξj(m−l)ξi(l+j−k(ek+i ⊗ el+i+j ⊗ em+j)

= ξ−ki+l(i−j)+mj+ij(ek+i ⊗ el+i+j ⊗ em+j)
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Compare this with

φ(U j)U i(ek ⊗ el ⊗ em) = φ(U j)ξj(l−k)(ek+i ⊗ el+i ⊗ em)

= ξi(l−k)ξj(m−(l+i))(ek+i ⊗ el+i+j ⊗ em+j)

= ξ−ki+l(i−j)+mj−ij(ek+i ⊗ el+i+j ⊗ em+j)

Thus,

U iφ(U j) = ξ2ijφ(U j)U i

2.

U iφ(Qk) =
1

3
U i

2∑
n=0

ξknφ(Un)

=
1

3

2∑
n=0

ξknU iφ(Un)

=
1

3

2∑
n=0

ξkn+2inφ(Un)U i

=
1

3

2∑
n=0

ξn(k+2i)φ(Un) · U i

= φ(Qk+2i)U
i

3.

U iQk =
1

3
U i

2∑
n=0

ξknUn

=
1

3

2∑
n=0

ξknU i+n

We shift this index by i and use the new summation index m = i+ n

=
1

3

2∑
m=0

ξk(m−i)Um

= ξ−ki · 1
3

2∑
m=0

ξkmUm

= ξ−kiQk

4. and 5.
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Qkφ(U
j) =

1

3

2∑
n=0

ξknUnφ(U j)

=
1

3

2∑
n=0

ξknξ2njφ(U j)Un

= φ(U j) · 1
3

2∑
n=0

ξn(k+2j)Un

= φ(U j)Qk+2j

6.

φ(Qi)Qjφ(Qk) =
1

3
φ(Qi)

2∑
n=0

ξnjUnφ(Qk)

=
1

3
φ(Qi)

2∑
n=0

ξnjφ(Qk+2n)U
n

=
1

3

2∑
n=0

ξnjφ(Qi)φ(Qk+2n)U
n

Since the Qk’s are spectral projections, this can only be non-zero

for i = k − n, i.e. n = k − i

=
1

3
ξ(k−i)jφ(Qi)U

k−i

7.

Qiφ(Qj)Qk =
1

3
Qi

2∑
n=0

ξnjφ(Un)Qk

=
1

3
Qi

2∑
n=0

ξnjQk−2nφ(U
n)

=
1

3

2∑
n=0

ξnjQiQk+nφ(U
n)

Since the Qk’s are spectral projections, this can only be non-zero

for i = k + n, i.e. n = i− k

=
1

3
ξ(i−k)jQiφ(U

i−k)

8.

RU =
2∑
i=0

λiQiU

=
2∑
i=0

λiξ
−iQi
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9.

φ(Qk)Rφ(Qk) =
2∑
i=0

λiφ(Qk)Qiφ(Qk)

=
1

3

2∑
i=0

λi ·Qk

We now explore if R =
∑2

i=0

∑2
j=0 λiξ

ijU j is indeed an R-matrix, as it does

not necessarily follow that it would be from the current construction, and our

ultimate goal is to seek R-matrices.

For R to satisfy the Yang-Baxter equation, we must have that for any spectral

projections Qk, Ql of R, the following equation is satisfied:

QkRφ(R)Uφ(R
∗)R∗Ql = Qkφ(U)Ql

In particular this must be true for k + 2 = l. In this case, we have that

QkRφ(R)Uφ(R
∗)R∗Qk+2 = Qkφ(U)Qk+2

=⇒ λkλk+2Qkφ(R)Uφ(R
∗)Qk+2 = φ(U)Qk+2

Looking at the left hand side we have

LHS = λkλk+2

2∑
i=0,j=0

xixjQkφ(U
i)Uφ(U−j)Qk+2

=
∑
i,j

λkλk+2xixjφ(U
i)Qk+2iUQk+2+2jφ(U

−j)

=
∑
i,j

λkλk+2xixjξ
−(k+2i)φ(U i)Qk+2iQk+2+2jφ(U

−j)

This can only be non-zero for k + 2i = k + 2 + 2k ⇐⇒ i = 1 + j

=
∑
j

λkλk+2xj+1xjξ
−(k+2j+2)φ(U j+1)Qk+2+2jφ(U

−j)

=
∑
j

λkλk+2xj+1xjξ
−(k+2+2j)Qkφ(U

j+1)φ(U−j)

=
∑
j

λkλk+2xj+1xjξ
−(k+2+2j)Qkφ(U)

Equating this with the RHS yields
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∑
j

λkλk+2xj+1xjξ
−(k+2+2j)Qkφ(U) = Qkφ(U)

Therefore we must have that

λkλk+2ξ
−(k+2+2j)

2∑
j=0

xj+1xj = 1

Regardless of the choice of k this equation must always hold if R satisfies the

Yang-Baxter equation. Since the summation does not depend on k, we must have

that λkλk+2ξ
−(k+2+2j) must always be equal regardless of the choice of k, i.e.

λ0λ2 = λ1λ0ξ
−1 = λ2λ1ξ

−2

If we rotate the spectrum such that λ0 = 1, which we may do as we have not

made any restriction thus far on the spectrum, then we have that

λ1 = λ21λ2ξ
2 = λ22ξ

The first equality yields λ2 = ξλ1, which when substituted into the second

equality gives

λ21(ξλ1)ξ
2 = (ξλ1)

2ξ

=⇒ λ1 = λ1
2

=⇒ λ31 = 1

Therefore λ1 is a 3rd root of unity. This gives 2 possibilities for the values of

the eigenvalues:

λ0 = 1 λ1 = ξ =⇒ λ2 = ξλ1 = 1

λ0 = 1 λ1 = ξ2 =⇒ λ2 = ξλ1 = ξ2

Both of these possibilities lead to contradictions, as the first case would mean

that λ2 = λ0 and the second case would mean that λ2 = λ1. Therefore it is not

possible to construct an R−matrix in this way.
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2.8 Summary

In this section we briefly summarize the results in Chapter 2.

We defined the BMW algebra Cn(r, q) and used one of its defining relations

(2.4) to define the contraction relation (2.7) in terms of R-matrices and spectral

projections. We then showed that any R-matrix that forms a representation of

the BMW algebra must have at most 3 eigenvalues.

After forming a restriction on c in terms of the eigenvalues of R, we show that

the class of R-matrices that satisfy the contraction relation with this restriction

on c forms a representation of the BMW algebra. All examples in 2 dimensions

are explored, utilising Conti and Lechner’s classification [13].

We then prove some results for contractive R-matrices, drawing on [7], and

show that for any contractive R-matrix, any equivalent R-matrix is also contrac-

tive.

We go on to define Markov traces and and show that if there exists a positive,

faithful and normalised Markov trace on ρ(CB∞) then it is unique. We then

utilize the Markov trace to form restrictions on the possible values of c.

Continuing with the search for restrictions on the contraction constant, we

utilise the fact that |c|2 is a Temperley-Lieb loop parameter to show that it must

be rational and less than 1. We then use Skein relations to restrict the values of

an eigenvalue β, which in turn limits the possible values of c.

Finally, we define a Jones index IR such that IR = |c|−2. There are many

known results about the restriction of a Jones index, which can then be applied

to the contraction constant. We then show that for a contractive R-matrix this

Jones index can only take integer values in this discrete range. The chapter

finishes with an attempt to classify all examples of contractive R-matrices with

Jones indices 2 and 3.
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Chapter 3

Linearisation of the Set-Theoretic
Yang-Baxter Equation

In this chapter we examine racks and show how they form solutions to the set-

theoretic Yang-Baxter equation. In fact, all solutions to the set-theoretic Yang-

Baxter equation are equivalent to a rack-derived solution, which motivates us to

explore rack-derived solutions further.

These rack-derived solutions are linearised to solutions of the Quantum Yang-

Baxter equation, and we establish a relationship between isomorphisms of racks

and equivalence of their linearised R-matrices.

We go on to define a new group called the Bloop group, inspired by a dia-

grammatic representation of the quandalisation process of racks. We establish a

representation of this group and utilise this to prove a relationship between the

equivalence of rack-induced R-matrices and the equivalence of the R-matrices

induced from the quandalisations of these racks.

We delve into a special type of rack called an Alexander quandle, which has

close ties to knot theory. We explore the concept of coloring a braid with a quandle

and show that the coloring invariant presents a notion of equivalence of quandle-

derived R-matrices. We use this to show that the equivalence of Alexander-

quandle-derived R-matrices is entirely dependant upon the k-parameter of the

Alexander quandles being equal or being inverses of one another.

3.1 The Set-Theoretic Yang-Baxter Equation

In this section we recall the definition of the set-theoretic YBE and define its

non-degenerate solutions.
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Recall Definition 2:

The Set-Theoretic Yang-Baxter Equation. The set-theoretic YBE is

defined on X ×X ×X, where X is a set, and is given by

(r × 1X)(1X × r)(r × 1X) = (1X × r)(r × 1X)(1X × r)

where 1X is the identity map on X.

We define solutions to the set-theoretic YBE in the following way.

Definition 35. Non-degenerate solution: A non-degenerate solution to the

set-theoretic YBE is a map r : X ×X → X ×X defined by

r(x, y) = (λx(y), ρy(x))

such that r solves the set-theoretic Yang-Baxter equation, where λx and ρy are

bijective functions on X for all x, y ∈ X.

Example 12. Let G be a group. The “Venkov” solution is given by

r(x, y) = (x, y−1xy)

It is elementary to show that this is indeed a solution to the Set-Theoretic

YBE.

3.2 The Bloop Group

In this section we define the Bloop group Bℓn in terms of a semi-direct product

of groups as well as its presentation in terms of braid and loop generators and

their relations. We also give its diagrammatic presentation and highlight a key

relation arising from pulling a loop under a strand.

Definition 36. Bloop Group Bℓn: The Bloop Group Bℓn is the group defined

by the semi-direct product of tuples of integers and the Braid group:

Bℓn = Zn ⋊ Bn

with the following group law for all zi, zj ∈ Zn and σi, σj ∈ Bn

(zi, σi) · (zj, σj) = (zi + αψσi
(zj), σiσj)

where ⋊ denotes the semi-direct product, ψσi ∈ Sn is the permutation induced

by the braid σi as in equation (1.8) and αψσi
is defined by
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αψσi
: Zn → Zn

(z1, ..., zn) 7→ (zψ−1
σi

(1), ..., zψ−1
σi

(n))

The αψσi
map essentially swaps the ith and (i+ 1)th entries of the element of

Zn.

Example 13. We show an example calculation in the Bloop group.

((0, 0, 1), b1) · ((0, 1, 0), b2) = ((0, 0, 1) + αψb1
((0, 1, 0)), b1b2)

= ((0, 0, 1) + (1, 0, 0), b1b2)

= ((1, 0, 1), b1b2)

One can derive a presentation of Bℓn with generators bj from the braid group

and lj having a diagrammatic representation as a loop on strand j as in Figures

3.1 and 3.2 respectively.

These generators relate to the semi-direct product presentation in the follow-

ing way.

lj = (zj, e) = ((0, ...0, 1︸︷︷︸
jth position

, 0, ...0), e)

bj = (0, bj) = ((0, ..., 0), bj)

where e is the identity element of the braid group. We see that

(li, e) · (0, bj) = (li + αψe(0), ebj) = (li, bj)

The group relations are given by:

bkbk+1bk = bk+1bkbk+1 (3.1)

bjbk = bkbj ∀|j − k| ≥ 2 (3.2)

lklj = ljlk ∀j, k (3.3)

lkbk = bklk+1 ∀k (3.4)

lk+1bk = bklk ∀k (3.5)

lkbj = bjlk ∀|j − k| ≥ 2 (3.6)

A key relation in Bℓn is the ability to pull a loop under a strand:
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· · · · · ·

1 j − 1 j j + 1 j + 2 n

Figure 3.1: Diagrammatic representation of bj, the “braid” generator of the Bloop
group Bℓn

· · · · · ·

1 j − 1 j j + 1 j + 2 n

Figure 3.2: Diagrammatic representation of lj, the “loop” generator of the Bloop
group Bℓn.

lk = b−1
k lk+1bk (3.7)

This equation arises from applying b−1
k on the left of both sides of equation

(3.5). It is demonstrated in Figure 3.3.

=

Figure 3.3: Diagrammatic presentation of equation (3.7)

The Bloop group was inspired by the quandalisation process of racks (see Sec-

tion 3.4.3).

We may use R-matrices to form a representation of Bℓn as follows:

Proposition 8. Let Bℓn be the Bloop group on n strands, R be an R-matrix in

End(V ⊗n) and T := ptr(R) be the partial trace of R. Then the following map is

a representation of Bℓn.
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πR,n : Bℓn → End(V ⊗n)

bj 7→ φj−1(R)

lj 7→ φj−1(T ∗)

Proof. We show that this forms a representation by considering the generators

and relations. Recall the following relations of the Bloop group (??)

bkbk+1bk = bk+1bkbk+1

bjbk = bkbj ∀|j − k| ≥ 2

lklj = ljlk ∀j, k

lkbk = bklk+1 ∀k

lk+1bk = bklk ∀k

lkbj = bjlk ∀|j − k| ≥ 2

The first two equations (3.1) and (3.2) are the relations for the braid group,

and this representation is already well-established.

The third equation (3.3) is obvious as T operates on a single tensor factor.

The next two equations (3.4) and (3.5) are already proven in Lemma 2.

Finally, the last equation (3.6) is obvious by the properties of V ⊗n.

3.3 Racks and Quandles

In this section we introduce racks, the square map Sq of a rack, and quandles -

a subset of racks that have a trivial square map.

3.3.1 Racks

Definition 37. Racks: A rack is a pair (X,λ) where X is a set and λi, i ∈
X, are bijective maps λi : X → X, j 7→ λi(j) that satisfy the following self-

distributive property

λiλjλ
−1
i = λλi(j) ∀i, j ∈ X (3.8)
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An alternative notation for λi(j) is the “triangle operator”, defined by

i ▷ j := λi(j)

This notation is sometimes clearer, for example we re-write the self-

distributive property as

i ▷ (j ▷ k) = (i ▷ j) ▷ (i ▷ k) (3.9)

Although racks do not need to be finite, we restrict to finite racks in order to

have finite-dimensional linearisations (see Section 3.3.4).

Example 14. Let X be a finite set and define i ▷ j = j ∀i ∈ X. Then (X, ▷) is

a rack.

Proof. Clearly λi = idX is bijective. As for the self-distributive property (3.9),

we show it is satisfied ∀i, j, k ∈ X

i ▷ (j ▷ k) = i ▷ k = k = j ▷ k = (i ▷ j) ▷ (i ▷ k)

Example 15. Let G be a finite group and let λi(j) = iji−1, where i−1 is the

inverse of i with respect to the group operation of G. Then (G, λ) is a rack.

Proof. Since G is a group, λi is clearly bijective. As for the self-distributive

property (3.8),

(λλi(j) ◦ λi(k)) = λiji−1(iki−1)

= (iji−1)(iki−1)(iji−1)−1

= (iji−1)(iki−1)(ij−1i−1)

= i(jkj−1)i−1

= λi(jkj
−1)

= λi ◦ λj(k)

Example 16. Let X be a finite set and define λi(j) = f(j), where f : X → X is

a bijective map. Since all λ maps are the same, this clearly satisfies the required

properties to be a rack. This is known as the permutation rack.

Given a rack it is natural to consider its subracks. Subracks are explored in

detail in Section 3.4.2.
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3.3.2 The Sq Map

The square Map, denoted Sq, arises from considering λx(x), x ∈ (X, ▷). In par-

ticular it is used to define quandles (see Section 3.3.3) and its linearisation is the

partial trace of a rack-derived R-matrix (see Section 3.3.4). Deceptively simplis-

tic, the Sq map has many interesting properties that are of use to us in this thesis.

Definition 38. The Square Map Sq : (X, ▷) → (X, ▷) is the map defined by:

Sq(x) := x ▷ x = λx(x)

The Sq map is in the centralizer of the rack, which induces several interesting

properties as seen below. Firstly, to show that Sq is in the centralizer, we intro-

duce a few definitions.

Definition 39. Automorphism: An automorphism α ∈ SX of a rack (X, ▷) is

a map such that

α(x ▷ y) = α(x) ▷ α(y)

The set of all automorphisms of a rack is defined as

Autλ(X) := {α ∈ SX : α(x ▷ y) = α(x) ▷ α(y)}

where SX is the symmetric group on X.

Note that all λx in a rack are automatically automorphisms by their self-

distributive property.

We see that Sq ∈ Autλ(X), as

Sq(x ▷ y) = Sq(λx(y))

= λλx(y)λx(y)

= λxλyλ
−1
x λx(y) (By definition of a rack)

= λxλy(y)

= λxλxλ
−1
x λy(y)

= λλx(x)λy(y)

= Sq(x) ▷ Sq(y)
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Note that Sq ∈ SX (the symmetric group of X) and so is bijective and, in

particular, invertible.

The centralizer is made up of automorphisms of a rack that commute with

the maps of the rack.

Definition 40. Centralizer: The centralizer Cλ(X) of a rack (X,λx) is the set

of all automorphisms that commute with all inner automorphisms, i.e.

Cλ(X) := {α ∈ AutX : αλx = λxα ∀x ∈ X}

Note that for all central automorphisms α ∈ Cλ(X), the following equations

must hold for all x, y ∈ X. We repeat the equations in triangle and λ notations

for clarity:

x ▷ α(y) = α(x ▷ y) = α(x) ▷ α(y)

λxα(y) = αλx(y) = λα(x)α(y)

Since the centralizer also contains all inverses, the above equations will apply

when we consider y = α−1(z), which implies the following equations. Once again

we repeat the equations in both notations for clarity:

x ▷ z = α−1(x) ▷ z = α(x) ▷ z

λx(z) = λα−1(x)(z) = λα(x)(z)

We now prove that the Sq map is in the centralizer of the rack.

Proposition 9. Let (X, ▷) be a rack, and let Sq : (X, ▷) → (X, ▷) be the square

mapping on this rack. Then Sq is in the centralizer of the rack, Sq ∈ C▷(X).

Proof. For the Sq map to be in the centralizer, we must have that for all x, y ∈ X:

λx · Sq(y) = Sq · λx(y) ∀x ∈ X

By the self-distributive property we have that

λx · Sq(y) = x ▷ (y ▷ y)

= (x ▷ y) ▷ (x ▷ y)

= Sq · λx(y)

Therefore the Sq map of a rack is always in its centralizer.
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Hence, the following equations hold ∀x ∈ (X,λ) by equation (??).

λx = λSq(x) (3.10)

λx = λSq−1(x) (3.11)

The Sq map plays a particularly important role in the representation theory

of racks, as its linearisation is the partial trace of a rack-derived R-matrix - see

Section 3.3.4.

Racks that have trivial Sq map are an important class of racks called quandles.

3.3.3 Quandles

Quandles are a special type of rack that play an important role in knot theory

(see Section 3.5). The process of transforming a rack into a quandle, called quan-

dalisation, is the inspiration for the Bloop group (see Section 3.4.3). We now

define quandles and explain the process of transforming a rack into a quandle,

called “quandalisation”.

Definition 41. Quandles: A quandle is a rack (X,λ) with the additional prop-

erty

λx(x) = x ∀x ∈ X

This property may be re-written as

x ▷ x = x ∀x ∈ X

Sq(x) = x ∀x ∈ X

Example 17. Examples 14 and 15 are quandles.

Example 18. Let G be an abelian group and let x ▷ y = y + y − x for x, y ∈ G.

Then (G, ▷) is a clearly a quandle, since x + x − x = x. This is known as the

Takasaki quandle.

From any rack we can produce a quandle via a process called “quandalisa-

tion”. This process was first described by Brieskorn [9], and entails the following.

83



Proposition 10. Let (X,λ) be a rack and define the following map for all x ∈ X:

λ̃x := λx ◦ Sq−1(x)

Then (X, λ̃) is a quandle.

Proof. We first prove that (X, λ̃) is a rack, then we show that its Sq map is trivial.

Recall that (X, λ̃) is a rack if and only if the following equation holds.

λ̃x ◦ λ̃y ◦ λ̃x
−1

= λ̃λ̃x(y)

We have that

λ̃x ◦ λ̃y ◦ λ̃−1
x = λxSq

−1 ◦ λySq−1 ◦ (λxSq−1)−1

= λxSq
−1 ◦ λySq−1 ◦ Sqλ−1

x

= λxλyλ
−1
x Sq−1

= λλx(y)Sq
−1

= λSq(λx(y))Sq
−1

= λλx◦Sq(y)Sq
−1

= λλ̃x(y)Sq
−1

= λ̃λ̃x(y)

Using the fact that Sq is in the centralizer.

Therefore (X, λ̃) is a rack. We now show that its Sq map is trivial.

S̃q(x) = λ̃x(x)

= λx ◦ Sq−1(x)

= Sq−1 ◦ λx(x)

= Sq−1 ◦ Sq(x)

= x

Hence, (X, λ̃) is a quandle.

Quandles, and racks in general, can be used to define R-matrices.
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3.3.4 Rack-Derived R-Matrices and Linearisations of
Non-Degenerate YBE Solutions

Given a rack (X,λ) one can produce a set-theoretic Yang-Baxter solution

r(x, y) = (λx(y), x) (3.12)

Indeed, we see that

r1r2r1(x, y, z) = r1r2(λx(y), x, z)

= r1(λx(y), λx(z), x)

= (λλx(y) ◦ λx(z), λx(y), x)

= (λx ◦ λy(z),x (y), x)

= r2(x◦λy(z), x, y)

= r2r1(x, λy(z), y)

= r1r2r2(x, y, z)

Utilising the rack property (3.8).

Given a set-theoretic Yang-Baxter solution we may linearise it to a quantum

Yang-Baxter solution by defining the quantum solution as follows.

Definition 42. Linearised Solution: A linearised solution to the quantum

Yang-Baxter equation is defined by the following equation, where r(x, y) is a non-

degenerate solution to the set-theoretic Yang-Baxter equation:

R|x, y⟩ := |r(x, y)⟩ = |λx(y), x⟩

The trace of a rack-derived R-matrix R|x, y⟩ = |x ▷ y, x⟩ is given by

Tr(R) =
∑
x,y

⟨x, y|R|x, y⟩

=
∑
x,y

⟨x, y|x ▷ y, x⟩

=
∑
x,y

⟨x|x ▷ y⟩⟨y|x⟩

=
∑
x

⟨x|x ▷ x⟩

=
∑
x

⟨x|Sq(x)⟩
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The (right) partial trace is given by

ptr(R) =
∑
x,y

⟨x, y⟩|x ▷ y⟩⟨x|

=
∑
x

|x ▷ x⟩⟨x|

=
∑
x

|Sq(x)⟩⟨x|

We denote this partial trace, the linearisation of the Sq map, by T .

T := ptr(R) =
∑
x

|Sq(x)⟩⟨x| (3.13)

Since Sq ∈ SX , i.e. is a permutation, this shows that the partial trace of a

rack-derived R−matrix is always a permutation matrix.

We note that R ∈ End(V ⊗ V ), where V is the vector space spanned by X.

This vector space must have an orthonormal basis (by having a suitable scalar

product), and this ensures R is unitary. Indeed, we see that

⟨Rx1x2|Ry1y2⟩ = ⟨λx1(x2), x1|λy1(y2), y1⟩

= ⟨λx1(x2), x1|λx1(y2), y1⟩

= ⟨x2, x1|y2, y1⟩

= ⟨x1, x2|y1, y2⟩

As λx1(x2) = λx1(y2) ⇐⇒ x2 = y2, as λx is a bijective function for all x ∈ X

by the definition of a rack.

Since any rack can produce a solution to the set-theoretic Yang-Baxter equa-

tion, we have that any rack can produce a solution to the quantum Yang-Baxter

equation:

R|x, y⟩ = |λx(y), x⟩

Indeed, any linearised set-theoretic solution is equivalent to a rack-derived

solution as above.

Proposition 11. Let r(x, y) := (λx(y), ρy(x)), where λx and ρy are bijective

functions for all x, y in a set X, be a non-degenerate solution to the set-theoretic
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Yang-Baxter equation with linearisation R|x, y⟩ = |λx(y), ρy(x)⟩.

Then there exists a rack (X,λ′) which induces the quantum YBE solution

R′|x, y⟩ = |λ′x(y), x⟩ such that R ∼ R′.

Proof. In order to show that R ∼ S we show that there is a unitary intertwiner

Un such that UnRi = SiU
n.

We define the following intertwiner Un, called the “guitar map”, as in [2] Prop

5.4. Define

Qn|x1, ..., xn+1⟩ := |ρxn+1(x1), ..., ρxn+1(xn), xn+1⟩

U2|x1, x2⟩ := |ρx2(x1), x2⟩

Un|x1, ...xn⟩ := Qn−1(Un−1 × id)|x1, ..., xn⟩

Note that since Un does not rearrange any tensor factors, we can re-write it

in the form

Un|x1, ..., xn⟩ = |Un
1 (x1), ..., U

n
i (xi), ..., U

n
n−1(xn−1), xn⟩ (3.14)

We complete this proof by induction. Firstly, see that for n = 2, the LHS is

U2R|x, y⟩ = U2|λx(y), ρy(x)⟩

= |ρρy(x) ◦ λx(y), ρy(x)⟩

For the RHS we have

SU2|x, y⟩ = S|ρy(x), y⟩

= |ρy(x) ▷ y, ρy(x)⟩

= |ρρy(x) ◦ λρ−1
y ◦ρy(x)(y)⟩ by the previous proposition

= |ρρy(x) ◦ λx(y), ρy(x)⟩

As required.

Therefore we can assume for any n(≥ 2) ∈ N that UnRi = SiU
n,1 i.e.

1Where Ri = φi−1(R), Si = φi−1(S)
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LHS

UnRi|x1, ..., xn⟩ = Un|x1, ..., xi−1, λxi(xi+1), ρxi+1
(xi), xi+2, ..., xn⟩

= |Un
1 (x1), ..., U

n
i ◦ λxi(xi+1), U

n
i+1 ◦ ρxi+1

(xi), ..., xn⟩

RHS

SiU
n|x1, ..., xn⟩ = Si|Un

1 (x1), ..., xn⟩

= |Un
1 (x1), ..., U

n
i−1(xi−1), U

n
i (xi) ▷ U

n
i+1(xi+1), U

n
i (xi), ..., xn⟩

Looking at the ith and i+ 1th positions yields the following two equations:

Un
i ◦ λxi(xi+1) = Un

i (xi) ▷ U
n
i+1(xi+1) (3.15)

Un
i+1 ◦ ρxi+1

(xi) = Un
i (xi) (3.16)

(3.17)

Now for the induction. Calculating the LHS and RHS of Un+1Ri = SiU
n+1

yields

LHS

Un+1Ri|x1, ..., xn+1⟩ = Un+1|x1, ..., λxi(xi+1), ρxi+1
(xi), ..., xn+1⟩

= Qn−1(Un ⊗ id)|x1, ..., λxi(xi+1), ρxi+1
(xi), ..., xn+1⟩

= Qn−1|Un
1 (x1), ..., U

n
i ◦ λxi(xi+1), U

n
i+1) ◦ ρxi+1

(xi), ..., xn+1⟩

= |ρxn+1 ◦ Un
1 (x1), ..., ρxn+1 ◦ Un

i ◦ λxi(xi+1), ρxn+1 ◦ Un
i+1)

◦ ρxi+1
(xi), ..., xn+1⟩

RHS

SiU
n+1|x1, ..., xn+1⟩ = SiQ

n−1(Un × id)|x1, ..., xn+1⟩

= SiQ
n−1|Un

1 (x1), ..., U
n
n (xn), xn+1⟩

= Si|ρxn+1 ◦ Un
1 (x1), ..., ρxn+1 ◦ Un

n (xn), xn+1⟩

= |ρxn+1 ◦ Un
1 (x1), ..., (ρxn+1 ◦ Un

i (xi)) ▷ (ρxn+1 ◦ Un
i+1(xi+1)), ρxn+1

◦ Un
i (xi), ..., xn+1⟩

Looking at the ith position we require

ρxn+1 ◦ Un
i ◦ λxi = (ρxn+1 ◦ Un

i (xi)) ▷ (ρxn+1 ◦ Un
i+1(xi+1))

Consider the RHS:
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(ρxn+1 ◦ Un
i (xi)) ▷ (ρxn+1 ◦ Un

i+1(xi+1)) = ρxn+1(U
n
i (xi) ▷ U

n
i+1(xi+1)

= ρxn+1 ◦ Un
i ◦ λxi(xi+1) by equation (3.15)

As required. Now for the i+ 1th position, for which we require

ρxn+1 ◦ Un
i+1 ◦ ρxi+1

(xi) = ρxn+1 ◦ Un
i (xi)

Note that this is immediate from applying ρxn+1 on the left to both sides of

equation (3.16).

Therefore we have shown that UnRi = SiU
n for any n ∈ N, i.e. that R ∼ S.

Rack-derived R-matrices are very closely tied to their originating racks. We

now explore some of these properties.

3.4 Properties of Racks and Rack-Derived R-

Matrices

In this section we define what it means for two racks to be isomorphic. We show

that the disjoint union of all subracks of a rack does satisfy the rack proper-

ties but is not isomorphic to the original rack. We show that isomorphic racks

induce equivalent R-matrices. We then examine the quandalisation process in

terms of rack-induced R-matrices. Finally, we show that given two racks that

induce equivalent R-matrices, their quandalisations must also produce equivalent

R-matrices.

3.4.1 Isomorphisms of Racks

We now define isomorphisms of racks, give examples, and show that if two racks

are isomorphic then their linearisations are equivalent as R-matrices.

Definition 43. Isomorphic racks: Two racks (X,λ), (Y, µ) are said to be

isomorphic if they are of the same size and their permutations are conjugate i.e.

(X,λ) ≃ (Y, µ) ⇐⇒ |X| = |Y | and ∃ π ∈ SX such that (3.18)

λi = π ◦ µπ−1(i) ◦ π−1 ∀i = 1, ..., |X|

89



All racks of size 3 are classified up to isomorphism in Appendix A.

If two racks are isomorphic, then their linearisations are equivalent as R-

matrices.

Theorem 15. Let (X, ▷) and (X ′, ▷′) be racks such that |X| = |X ′| = n with

linearisations RX |x, y⟩ := |x ▷ y, x⟩ and RX′|x, y⟩ := |x ▷′ y, x⟩ respectively. Then

(X, ▷) ≃ (X ′, ▷′) =⇒ RX ∼ RX′

Proof. By definition of the isomorphism (X, ▷) ≃ (X ′, ▷′), there must exist some

π ∈ SX such that, for all i ∈ 1, 2, ..., n

λi = π ◦ µπ−1(i) ◦ π−1

Recall that

RX ∼ RY ⇐⇒ ∃Vn : ρnRX
(bi) = Vnρ

n
RY

(bi)V
∗
n ∀bi ∈ Bn

where ρnRX
(bi) here is the representation of the generator bi ∈ Bn induced by

the R-matrix RX |x, y⟩ := |λx(y), x⟩.

Let us define the unitary intertwiner Vn as the linearisation of the π map

above, i.e.

Vn|x1, ..., xn⟩ := |π(x1), ..., π(xn)⟩

Since π is a permutation this is clearly unitary with its adjoint given by

V ∗
n |x1, ..., xn⟩ := |π−1(x1), ..., π

−1(xn)⟩

We now show that ρnRX
(bi) = Vnρ

n
RY

(bi)V
∗
n ∀bi ∈ Bn.

Vn ◦ ρnRY
(bi) ◦ V ∗

n |x1, ..., xn⟩ = |Vn ◦ ρnRY
(bi)|π−1(x1), ..., π

−1(xn)⟩

= Vn|π−1(x1), ..., π
−1(xi−1), µπ−1(xi) ◦ π−1(xi+1),

π−1(xi), π
−1(xi+2, ..., π

−1(xn)⟩

= |x1, ..., xi−1, π ◦ µπ−1(xi) ◦ π−1(xi+1), π
−1(xi), xi+2, ..., xn⟩

=: ρnRX
(bi)|x1, ..., xn⟩

Hence, the required equation is satisfied for all i ∈ 1, ..., n and so RX ∼
RY .
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3.4.2 Decomposability of Racks

We can create new racks from a given rack. For example, we can create subracks

or consider the union of two racks.

Definition 44. Subrack: A subrack is a rack (S, λ′) that arises from another

rack (X,λ) such that X = S ∪ S⊥ and the rack action λ′ on S satisfies the

self-distributive condition as in Equation (3.8) and is defined by:

λ′i(j) :=

{
λi(j) when i ∼ j

j else

where we denote i ∼ j ⇐⇒ i, j ∈ S or i, j ∈ S⊥.

Not every subset of the defining set of a rack will produce a subrack.

Example 19. Consider the rack (X,λ) where X = {1, 2, 3} and the rack opera-

tion is given by the table below. The entry Xi,j in this table is to be read as i ▷ j,

where i is the row and j is the column of the entry. More details of this rack can

be found in Appendix A.

1 2 3

1 1 2 3
2 3 2 1
3 1 2 3

Consider the subset S = {1, 2}. Then λ′2(1) = 3 /∈ S. Hence S cannot be a

subrack as it is not closed.

A rack is said to be decomposable if it contains any subracks.

Definition 45. Decomposable rack: A rack (X,λ) is decomposable if ∃ a

subset S ⊂ X such that (S, λ′) is a rack.

One can always create a new rack from two existing racks by forming their

disjoint union.

Proposition 12. Let (X,λ) and (Y, η) be racks. Let X ⊔Y be the disjoint union

of X and Y and define the following function for all i, j ∈ X ⊔ Y

µi(j) :=


λi(j) when i, j ∈ X

ηi(j) when i, j ∈ Y

j else

Then (X ⊔ Y, µ) is a rack.
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Proof. Clearly µi is bijective for all i ∈ X ⊔ Y as it is a piece-wise function made

up solely of bijective functions whose conditions cover the entire domain of µi.

It only remains to show that the self-distributive property holds, i.e.

µiµj(k) = µµi(j)µi(k) ∀i, j, k ∈ X ⊔ Y

There are four possibilities to consider:

1. i, j, k ∈ X

2. j, k ∈ X, i ∈ Y

3. i, k ∈ X, j ∈ Y

4. i, j ∈ X, k ∈ Y

Although one might consider the further cases of replacing X with Y in the

above list, there is no material difference between the racks (X,λ) and (Y, η) so

to consider these cases explicitly would simply be repeating the below proof and

replacing λ with η.

Case 1

µµi(j)µi(k) = λλi(j)λi(k)

= λiλj(k)

Case 2

µµi(j)µi(k) = µµi(j)(k)

= µj(k)

= λj(k)

= µiλj(k)

= µiµj(k)

Case 3
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µµi(j)µi(k) = µjλi(k)

= λi(k)

= µi(k)

= µiµj(k)

Case 4

µµi(j)µi(k) = k

= µiµj(k)

Therefore the self-distributive property holds for all elements in the set, and

so (X ⊔ Y, µ) is a rack.

Given a decomposable rack (X,λ) such that the subsets S and S⊥ both form

subracks (S, ν) and (S⊥, η), it is not the case that the disjoint union of the sub-

racks (S ⊔ S⊥, µ) as defined in the above Proposition 12 is isomorphic to the

original rack (X,λ). We provide a counter-example below.

Example 20. Consider the rack (X,λ) where X = {1, 2, 3} and λ is given by

the table below

X 1 2 3

1 1 3 2
2 1 3 2
3 1 3 2

Consider the subsets S = {1} and S⊥ = {2, 3}. Their tables are given by

S 1 2 3

1 1 2 3
2 1 2 3
3 1 2 3

S⊥ 1 2 3

1 1 2 3
2 1 3 2
3 1 3 2

Their disjoint union is given by

S ⊔ S⊥ 1 2 3

1 1 2 3
2 1 3 2
3 1 3 2

By the table in Appendix A, this is not isomorphic to (X,λ).
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3.4.3 Quandalisation in terms of R-matrices

Recall that if (X,λ) is a rack, then (X,λ ◦ Sq−1) is its quandalisation. Let us

consider this in terms of R-matrices by considering the linearisation of this pro-

cess.

Let (X,λ) be a rack and let (X, λ̃) be its quandalisation, where λ̃x := λx◦Sq−1

for all x ∈ X.

The set-theoretic solution derived from this rack is given by

r(x, y) = (λx(y), x)

The set-theoretic solution for the quandalisation of this rack is thus given by

r̃(x, y) := (λ̃x(y), x) (3.19)

= (λx ◦ Sq−1(y), x) (3.20)

= (r ◦ (1× Sq−1))(x, y) (3.21)

We now consider the linearisation of this.

Let us define the following operator T , which acts as the partial trace (notably

it is the linearisation of the Sq map of a rack) on a single tensor factor.

Definition 46. T : Let (X,λ) be a rack with a square map Sq(x) := λx(x) for

all x ∈ X. Then the T map is defined by:

(T ⊗ 1)|x, y⟩ := |Sq(x), y⟩

(1⊗ T )|x, y⟩ := |x, Sq(y)⟩

It is clear that its adjoint (inverse) is given by

(T ∗ ⊗ 1)|x, y⟩ := |Sq−1(x), y⟩

Hence, we have that the linearisation of equation (3.21) is given by

R̃|x, y⟩ := RT ∗|x, y⟩ (3.22)

Recalling that the partial trace is seen as closing a single strand of a braid,

the quandalisation process is expressed in diagram form as in Figure 3.4.
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7→

Figure 3.4: Diagrammatic presentation of quandalisation of a rack-induced R-
matrix

Note that this diagram is also the diagram of an element in the Bloop group,

specifically b1l2 ∈ Bℓ2 - see Section 3.2.

3.4.4 Equivalence of Quandalisations

In this section we show that if two racks have equivalent linearisations then the

linearisations of their quandalisations must also be equivalent. To do this we

utilise our R-matrix representation of the Bloop group (see Section 3.2).

Recall Equation (3.22), which describes the quandalisation process. We see

that diagrammatically, as seen in Figure 3.4, this is simply adding a loop to the

braid generator.

Two R-matrices are equivalent iff their dimensions and characters are the

same. In the quandalisation process the size of the rack does not change, so we

need only check that the characters remain the same.

We aim to show that the quandalisations are equivalent by adding a loop

after each braid generator to produce the quandle, pulling that loop to the far

right, and “stretching” it out by cutting it open, pulling and then closing the

braid. A simplified diagram of this can be seen in Figure 3.8. We then see that

considering the character of the braid over the quandalisation of the rack is equal

to considering the character of the quandalisation-deformed braid over the rack.

We begin by adding a loop to braid generators by mapping the braid group

to the Bloop group with the “add-loop” map:

Definition 47. The add-loop function: δn : Bn → Bℓn is defined by
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δn : Bn → Bℓn
bj 7→ (lj+1, bj) (3.23)

where we extend to the whole Braid group as a group homomorphism.

We show that this satisfies the braid conditions.

Firstly, we consider

bkbk+1bk = bk+1bkbk+1

We have that

δn(bkbk+1bk) = (lk+1, bk) · (lk+2, bk+1) · (lk+1, bk)

= (lk+1, bk) · (lk+2 + αψbk+1
(lk+1), bk+1bk)

= (lk+1, bk) · (lk+2 + lk+2, bk+1bk)

= (lk+1 + αψbk
(lk+2 + lk+2), bkbk+1bk)

= (lk+1 + lk+2 + lk+2, bkbk+1bk)

= (lk+2 + lk+2 + lk+1, bk+1bkbk+1)

= (lk+2 + αψbk+1
(lk+1 + lk+2), bk+1bkbk+1)

= (lk+2, bk+1) · (lk+1 + lk+2, bkbk+1)

= (lk+2, bk+1) · (lk+1 + αψbk
(lk+2), bkbk+1)

= (lk+2, bk+1) · (lk+1, bk) · (lk+2, bk+1)

= δn(bk+1bkbk+1)

We now see that

bkbj = bjbk ∀|j − k| ≥ 2

This is quite clear, as:

δn(bkbj) = (lk+1, bk) · (lj+1, bj)

= (lk+1 + αψbk
(lj+1), bkbj)

= (lk+1 + lj+1, bkbj) (As |j − k| ≥ 2)

= (lj+1 + lk+1, bjbk)

= (lj+1 + αψbj
(lk+1), bjbk)

= (lj+1, bj) · (lk+1, bk)

= δn(bjbk)
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The loop function takes an element of the braid group b ∈ Bn and maps it to

the Bloop group Bℓn by adding a loop after every braid generator.

7→

Figure 3.5: Add-loop function δn, as in equation (3.23)

Example 21. The add-loop function δn adds a loop after every generator. For

example

δn(b1b2b1) = (l2, b1)(l3, b2)(l2b1)

If we consider Bℓn in terms of generators and relations as opposed to a semi-

direct product, this can be re-written as

δn(b1b2b1) = b1l2b2l3b1l2

Diagrammatically this can be seen as in Figure 3.6.

7→

Figure 3.6: Diagrammatic presentation of δ3(b1b2b1)

We now define un-twisting the loop.
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Definition 48. The loop-untwist function θ′n : Zn → B∞ is defined on a

single loop by

θ′n : Zn → Bn+1

lk 7→ b−1
k b−1

k+1...b
−1
n−1b

−1
n bn−1...bk

Products of uniquely ordered2 loops lk1lk2 ...lkm, where k1 ≥ k2 ≥ ... ≥ km, are

mapped by

θ′n(lk1lk2 ...lkm) := θ′n(lk1)θ
′
n+1(lk2)...θ

′
n+m−1(lkm)

The loop-untwist function is extended to take Bℓn as its domain by perform-

ing the identity map on braid elements.

Definition 49. The bloop-untwist function θn : Bℓn → Bn+m is defined on a

generic bloop element by

θn : Bℓn → B∞

(l, b) 7→ b · θ′n(l)

Remark 2. Essentially, this function takes a bloop element, orders it to be in the

form σlq1k1 ...i
qm
km

where k1 ≥ k2 ≥ ... ≥ km and σ ∈ Bn and qj ∈ N (any bloop can

be re-written in this form using the exchange relations ??), then pulls the loop

generators under any strands to the right using 3.7 and untwists them. Note that

each untwist creates a new strand.

This is demonstrated in Figure 3.7.

Definition 50. The quandler function Φn : Bn → B∞ is defined by

Φn := θn ◦ δn (3.24)

2Since all loops commute you can always manipulate a concatenation of loops to be ordered
this way.
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7→ 7→

Figure 3.7: Bloop untwist of (l2, b1).

We now prove some lemmas of exchange relations, which will be used in prov-

ing a proposition about characters of quandles, and subsequently be used to prove

the main theorem of this section. Note that these results holds in general for uni-

tary R-matrices.

Lemma 2. Let R ∈ V ⊗V be an R- matrix arising from the linearisation of a set-

theoretic Yang-Baxter solution and let T be its normalised partial trace. Denote

by 1 the identity in End(V ). Then

(T ⊗ 1)R = R(1⊗ T ) (3.25)

(1⊗ T )R = R(T ⊗ 1) (3.26)

Proof. Recall that Sq, which linearises to T , has the following property

Sq(x ▷ y) = Sq(x) ▷ Sq(y) = x ▷ Sq(y)

Now consider

((Sq × idX) ◦ r)(a, b) = (Sq × idX)(a ▷ b, a)

= (Sq(a ▷ b), a)

= (a ▷ Sq(b), a)

= (r ◦ (idX × Sq)(a, b)

Therefore

(Sq × idX) ◦ r = r ◦ (idX × Sq)
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This linearises to the claimed result. Equation (3.26) is derived in an analo-

gous manner.

Lemma 3. Let R ∈ V ⊗ V be an R-matrix and let T be its normalised partial

trace. Then

R−1
j R−1

j+1...R
−1
n−1T

∗
nRn−1...Rj = T ∗

j

Proof. Recall (T ⊗ 1)R = R(1⊗ T ), i.e. TjRj = RjTj+1.

R−1
j ...R−1

n−1T
∗
nRn−1...Rj = R−1

j ...R−1
n−2T

∗
n−1R

−1
n−1Rn−1Rn−2...Rj

= R−1
j ...R−1

n−2T
∗
n−1Rn−2...Rj

= R−1
j ...R−1

n−3T
∗
n−2R

−1
n−2Rn−2...Rj

= ...

= R−1
j T ∗

j+1Rj

= T ∗
j R

−1
j Rj

= T ∗
j

We now consider the R-matrix representation of the Bloop group Bℓn. The

following lemma shows that when we consider the closure of a Bloop, the loops

can be pulled to the far right and then “unlooped”, and this will not affect the

closure of the Bloop. A simplified diagram of this process is shown in Figure 3.8.

X = X

Figure 3.8: A simplified depiction of the equation proven in Lemma 4.
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Lemma 4. Let X ∈ End( V ⊗ V ) and T
∗qj
kj

be the normalised partial trace of a

derived3 R-matrix R, where kj ∈ N and qj ∈ {±1} for all j. Let ρ be the Yang-

Baxter representation of the Bloop group and let θn be the bloop-untwist function

as described above. Let X ∈ Bℓn be an arbitrary Bloop. Then, for all m ∈ N:

tr1...n(XT
∗q1
k1
...T ∗qm

kn
) = tr1...n+m(Xρn(θn(l

q1
k1
...lqmkm))

where k1 ≥ k2 ≥ km.

Proof. We show this statement with a proof by induction in m.

m = 1:

tr1...n+1(Xρ(θn(l
q1
k1
)) = tr1...n+1(XR

−1
k1
R−1
k2
...R−1

kn−1
·R−q1

n ·Rkn−1 ...Rk2Rk1)

= tr1...n(XR
−1
k1
R−1
k2
...R−1

kn−1
· trn+1(R

−q1
n ) ·Rkn−1 ...Rk2Rk1)

= tr1...n(XR
−1
k1
R−1
k2
...R−1

kn−1
· T ∗q1

n ·Rkn−1 ...Rk2Rk1)

= tr1...n(XT
∗q1
k1

)

m = j

Hence, we may assume that

tr1...n(XT
∗q1
k1
...T

∗qj
kj

) = tr1...(n+j)(Xρ(θn(l
q1
k1
...l

qj
kj
)))

Now the for inductive step

m = j + 1

tr1...(n+j+1)(Xρ(θn(l
q1
k1
...l

qj
kj
l
qj+1

kj+1
)))

= tr1...(n+j+1)(Xρ(θn(l
q1
k1
...l

qj
kj
)θn+j(l

qj+1

kj+1
)))

= tr1...(n+j+1)(Xρ(θn(l
q1
k1
...l

qj
kj
))R−1

kj+1
...Rkn+j−1

·R−qj+1

kn+j
·Rkn+j−1

...Rkj+1
)

= tr1...(n+j)(Xρ(θn(l
q1
k1
...l

qj
kj
))R−1

kj+1
...Rkn+j−1

· trn+j+1(R
−qj+1

kn+j
) ·Rkn+j−1

...Rkj+1
)

= tr1...(n+j)(Xρ(θn(l
q1
k1
...l

qj
kj
))R−1

kj+1
...Rkn+j−1

· T ∗−qj+1

kn+j
·Rkn+j−1

...Rkj+1
)

= tr1...(n+j)(Xρ(θn(l
q1
k1
...l

qj
kj
))T

∗−qj+1

kj+1
)

= tr1...(n+j)(X
′ρ(θn(l

q1
k1
...l

qj
kj
))

= tr1...n(X
′T ∗q1
k1
...Tkj

∗qj)

= tr1...n(XT
∗q1
k1
...Tkj

∗qjT
∗qj+1

kj+1
)

where X ′ = T
∗−qj+1

kj+1
X.

3i.e. Derived from a rack.
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Now for the key part of the proof - we show that considering the character of

a braid over a quandlisation of a rack is equal to considering the character over

the rack of the quandler-deformed braid - i.e. taking the normalized trace of the

R-matrix representation of the braid deformed by Φn (3.24) is the same as taking

the normalized trace of the R-matrix induced from a quandle.

Lemma 5. Let (X,λ) be a rack and let Q(X,λ) be its quandalisation. Then, for

all b ∈ Bn,

χQ(X,λ)(b) = χ(X,λ)(Φn(b)) (3.27)

Proof. By linearising the quandalisation process, we see that if R is the lineari-

sation of a solution of the set-theoretic Yang-Baxter equation from a rack, the

linearisation of the solution derived from the quandalisation of that rack is given

by

RQ := R(1⊗ T ∗)

where T is the partial trace of R.

Let b = bp1j1 ...b
pm
jm

be a generic element of Bn. Then

χQ(X,λ)(b) = tr(Rp1
j1
T

∗p′1
j′1
...Rpm

jm
T

∗p′m
j′m

)

= tr(Rp1
j1
...Rpm

jm
T ∗q1
k1
T ∗qm
km

)

= tr(Rp1
i1
...Rpn

in
ρn(θn(l

q1
k1
...lqnkn)))

= χ(X,λ)(Φn(b))

By the previous lemma.

Finally, we show the main result of this thesis using the above results.

Theorem 16. Let (X,λ) and (X,µ) be racks such that their linearisations are

equivalent as R-matrices, i.e. R(X,λ) ∼ R(X,µ)

Let Q(X,λ) and Q(X,µ) be the quandalisations of of (X,λ) and (X,µ) re-

spectively.

Then the linearisations of these quandles are also equivalent as R-matrices,

i.e.
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RQ(X,λ) ∼ RQ(X,µ)

Proof. By our assumptions and lemma 16, we have that

χ(X,λ)(b) = χ(X,µ)(b)

=⇒ χ(X,λ)(ϕn(b)) = χ(X,µ)(ϕn(b))

=⇒ χQ(X,λ)(b) = χQ(X,µ)(b)

We conjecture that the opposite case is not true, as the quandalisation process

inherently “forgets” the rack map λ. Further research could entail searching for

a counter-example.

We now consider a special case of a quandle, namely the Alexander quandle,

and deduce when Alexander-quandle-derived R-matrices are equivalent.

3.5 Alexander Quandles

In this section we introduce Alexander quandles - a special type of quandle that

has close ties to knot theory. We examine how the quandle coloring of knots

is linked to the Alexander matrix, and show that two rack-derived R-matrices

are equivalent iff their dimension and coloring invariants are equal. Finally, we

show that given two Alexander quandles Q(p, k) and Q(p′, k′), their induced R-

matrices are equivalent iff k = k′ or k = k′−1.

Definition 51. Alexander quandle: The Alexander quandle Q(p, k), where p

is prime and k ∈ Z/pZ, is the quandle that consists of the set X = Z/pZ and the

operation

x ▷ y := λx(y) := x− k · x+ k · y

We see that this is a rack. Clearly λx is bijective, in fact its inverse is given

by

λ−1
x (y) := x− k−1x+ k−1y

It clearly satisfies the self-distributive property:

103



(x ▷ y) ▷ (x ▷ z) = (x− kx+ ky) ▷ (x− kx+ kz)

= (x− kx+ ky)− k(x− kx+ ky) + k(x− kx+ kz)

= (1− k)x+ (k − k2)y + k2z

= (x− kx+ ky)− k2y + k2z

= x− kx+ k(y − ky + kz)

= x ▷ (y − ky + kz)

= x ▷ (y ▷ z)

It also clearly satisfies the quandle condition:

x ▷ x = x− kx+ kx = x

3.5.1 Linking Number and Seifert Surfaces

We now briefly define the linking number and the process of producing a Seifert

Surface, which are later used to define a Seifert matrix in Definition 54.

Definition 52. Linking number: The linking number lk(L) of an oriented link

is defined by

lk(L) = number of positive crossings− number of negative crossings

where by convention we define a positive crossing and negative crossing as in

Figure 3.9.

Figure 3.9: Left: Positive crossing in an oriented link. Right: Negative crossing
in an oriented link

We now look at the Seifert surface of an oriented link.

The Seifert surface of a knot was first described by Seifert [29] and is produced

with the following algorithm [30]. This algorithm is depicted in Figure 3.10.
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1. Assign an orientation to all components of a link

2. Eliminate all crossings by connecting the incoming over-strand to the out-

going under-strand and the incoming under-strand to the outgoing under-

strand. This will give a set of non-intersecting topological circles known as

Seifert circles. Fill in these circles to create disks.

3. Connect the disks with twisted bands. Each twisted band corresponds to a

crossing and twists in the opposite direction of the crossing.

7→ 7→

Figure 3.10: Seifert’s algorithm for a band projection

Note that not all surfaces bounded by a knot arise from Seifert’s algorithm.

This algorithm was initially created to define the genus of a knot, an important

invariant in knot theory. For our purposes, we need only to consider the linking

number of the upside and downside curves that form the boundary of the Seifert

surface, as this is what is used to define a Seifert Matrix in Definition 54.

3.5.2 Quandle Coloring of Knots and the Alexander Ma-
trix

In this section we explore the quandle coloring of knots and define the Alexander

matrix.

In [12] the following process for coloring knots by quandles is described.

Given a link, choose an orientation and label each arc with an element from

the quandle. At each crossing perform the triangle operation as in Figure 3.11.

In order to get a consistent coloring one must have that each strand’s labels

are equal before and after each crossing, i.e. the following “coloring conditions”

are satisfied.

105



a

a

b

a ▷ b

b

a ▷−1 b

a

a

Figure 3.11: Creation of quandle-coloring conditions

a

a

a

a ▷ a
= a

Figure 3.12: Reidemeister Move I

red: b = a ▷ b

green: b = a ▷−1 b

Quandle-coloring of a knot is well-defined as it produces consistent colorings

under the Reidemeister moves, as seen in Figure 3.12, Figure 3.13 and Figure 3.14.

Reidemeister move I (Figure 3.12) demonstrates that one can only color with

quandles and not racks in general, as a self-crossings of a strand will always have

the same color, i.e. we must have that a ▷ a = a .

For each knot and quandle there may be many possibilities for the number of

ways the knot can be colored.

Definition 53. Coloring number: Given an oriented link L and a quandle Q

the coloring number ColQ(L) is the number of non-trivial4 ways a knot can be

colored with a quandle.

4Here by trivial we mean labeling every strand with the same element of the quandle.
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a b

a b

a b

a ▷ b

a a ▷−1 (a ▷ b)
= λ−1

a (λa(b)) = b

Figure 3.13: Reidemeister Move II

a b

c

c ▷ a c ▷ b

(c ▷ a) ▷ (c ▷ b)
= c ▷ (a ▷ b)

c ▷ a

a b

c

a ▷ b

c ▷ (a ▷ b) c ▷ a

Figure 3.14: Reidemeister Move III
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It is well-known that ColQ(K) is an invariant of knots [12]. In Section 3.5.3

we will show that the coloring invariant can be used as a definition of equivalence

of R-matrices.

Given an oriented link L and an Alexander quandle Q(p, k), one can formulate

the coloring conditions as a matrix in terms of k. This is the Alexander matrix,

denoted AL(k). The Alexander matrix is defined in terms of the link’s Seifert

matrix, as defined below.

Definition 54. Seifert matrix: The Seifert matrix S(L) of an oriented link L

is given by

S(L) = (vjk) = (lk(a−j , ak))

where lk is the linking number and a−j , ak are curves in S−, S+ respectively,

where S+ is the upside and S− is the downside5 of the Seifert surface of the knot.

[10]

The Seifert matrix is not a knot invariant [28], but it does distinguish between

different Seifert surfaces of a knot.

In [10] proposition 8.7 it is shown that all Seifert matrices V have the following

form and all square matrices with even order of the following form are Seifert

matrices:

V − V T = Fl (3.28)

where Fl is the “Flip”6, given by

Fl =



0 1
−1 0

0 1
−1 0

. . .

0 1
−1 0



The details of the Seifert matrix are not central to this thesis. We introduced

the Seifert matrix and its form in order to properly define the Alexander matrix

as follows.
5I.e. S+ and S− together form the boundary of the Seifert surface of the knot.
6Note that this is not the same “Flip” as in Example 3.
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Definition 55. Alexander matrix: The Alexander matrix of an oriented link

L, that is colored by an Alexander quandle Q(p, k) with Seifert matrix S(L), is

given by

AL(k) = k · S(L)− S(L)T (3.29)

where S(L)T is the transpose of S(L).

We now give a detailed example of how one can derive an Alexander matrix

from an oriented link.

Example 22. Consider the trefoil knot. We orient the knot and label each arc

with elements of an Alexander quandle and each crossing as in the diagram below.

3

21

a

bc

The coloring conditions induce the following equations

1○ a ▷ c = b =⇒ a− ka+ kc− b = 0

2○ b ▷ a = c =⇒ b− kb+ ka− c = 0

3○ c ▷ b = a =⇒ c− kc+ kb− a = 0

We re-write this system of equations in matrix form:1− k −1 k
k 1− k −1
−1 k 1− k

ab
c

 =

0
0
0


Since this system still counts the monochromatic colorings (a = b = c) we

delete one column. We choose the c column.
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1− k −1
k 1− k
−1 k


We see that the rows of this matrix are linearly dependant since

−
(
−1 k

)
=

(
1− k −1

)
+
(
k 1− k

)
We therefore delete row 3 to yield.(

1− k −1
k 1− k

)
This is an7 Alexander matrix for the trefoil knot.

The Alexander matrix has strong applications in knot theory, as its determi-

nant yields the Alexander polynomial, denoted ∆(k) [28].

Example 23. The Alexander polynomial of the trefoil knot is

∆(k) = det

(
1− k −1
k 1− k

)
= (1− k)2 + k = k2 − k + 1

Since by construction the Alexander matrix is the matrix form of the system

of equations that are the coloring conditions, we have that for any oriented link

L and Alexander quandle Q = Q(p, k),

ColQ(L) = |ker(AL(k))|+ p (3.30)

i.e. The number of colorings is the number of solutions to the system of

equations plus the trivial colorings.

3.5.3 Equivalence of Quandle-Derived Solutions

In this section we describe how the coloring invariant can be used to define equiva-

lence of quandle-derived solutions by showing that two quandle-derived solutions

have the same character iff their coloring invariants are equal.

Recall that the trace of a rack-derived R-matrix R|x, y⟩ = |x ▷ y, x⟩ is given
by (3.13)

7As we made a choice about what row and column to delete the Alexander matrix is not
unique. This is just because this system is over-determined and does not affect the kernel (the
importance of which will be clear shortly).
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Tr(R) =
∑
x

⟨x|Sq(x)⟩

Recall also that the partial trace of a rack-derived R-matrix, which we denote

by T , is the linearisation of the square map

T := ptr(R) =
∑
x

|Sq(x)⟩⟨x|

Since Rk1 ...Rkn may be considered as a representation of the braid bk1 ...bkn ,

traces of R−matrices may be considered diagrammatically as closing the rep-

resented braid and summing when the conditions induced by the closure are

satisfied.

Example 24. Let (X, ▷) be a rack and R|x, y⟩ = |x ▷ y, x⟩ be an R−matrix on

V ⊗n.

The trace of R1R2R1 is given by

∑
x,y,z

⟨x, y, z|R1R2R1|x, y, z⟩ =
∑
x,y,z

⟨x, y, z|R1R2|x ▷ y, x, z⟩

=
∑
x,y,z

⟨x, y, z|R1|x ▷ y, x ▷ z, x⟩

=
∑
x,y,z

⟨x, y, z|(x ▷ y) ▷ (x ▷ z), x ▷ y, x⟩

=
∑
x,y,z

⟨x|(x ▷ y) ▷ (x ▷ z)⟩⟨y|x ▷ y⟩⟨z|x⟩

Diagrammatically this trace is presented by Figure 3.15.

As demonstrated by Example 24 it is clear that the conditions induced by

closing the braid are exactly those in the bra-kets that contribute to the trace. If

we sum up all the instances over the quandle in which the conditions are satisfied,

i.e. we calculate the coloring number ColQ(b̂) (where b̂ is the closure of the braid

b), we see that this is exactly the trace.

This motivates the following theorem.

Theorem 17. Let b ∈ Bn be an arbitrary braid, let Q = Q(X, ▷) be a quandle

such that |X| = n, and let R|x, y⟩ = |x ▷ y, x⟩ be the R−matrix induced by Q.

Then
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x y z

x ▷ y
x

z

x ▷ y x
x ▷ z

x
x ▷ y

(x ▷ y) ▷ (x ▷ z)

Figure 3.15: Diagrammatic presentation of Tr(R1R2R1).

Tr(ρR(b)) = ColQ(b̂) (3.31)

where b̂ is the closure of the braid b to an oriented link.

Proof. Let b = bq1j1 ...b
qm
jm

∈ Bn be an arbitrary braid.

The coloring conditions of the closure of the braid are deduced in the following

way. The top of every strand is labelled xj. For every crossing bj in the braid

b, one maps (xj, xj+1) 7→ (xj ▷ xj+1, xj). The strands are labelled at the bottom

with xkj , which is equal to the result of applying the above mapping throughout

the braid.

...

x1 x2 xn

...

xk1 xk2 xkn

b

The coloring conditions are then given by

xj = xkj ∀j ∈ {1, ..., n}
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where kj is dependent upon the braid b.

The coloring invariant can be considered as the number of ways the link can

be colored by the quandle such that all of these conditions are satisfied, i.e.

ColQ(b̂) =
∑

x1,...,xn

δx1,xk1 ...δxn,xkn

Now, let RQ|x, y⟩ = R|x, y⟩ = |x ▷ y, x⟩ be a rack-derived R−matrix from the

quandle Q. We now represent the braid b with R and calculate its trace

Tr(ρR(b)) =
∑
1...n

⟨x1, ..., xn|Rq1
j1
...Rqm

jm
|x1, ..., xn⟩

=
∑
1...n

⟨x1, ..., xn|Rq1
j1
...R

qm−1

jm−1
|x1, ..., xm−1, xm ▷ xm+1, xm, xm+2, ...xn⟩

=
∑
1...n

⟨x1, ..., xn|xk1 , ..., xkn⟩

=
∑
1..n

δx1,xk1 ...δxn,xkn

clearly ρR(b)|x1...xj...xn⟩ = |xk1 ...xkj ...xkn⟩ since the mapping is the same as

described with the coloring conditions.

Hence, for all b ∈ Bn,

Tr(ρR(b)) = ColQ(b̂)

Recall the following definition of equivalence, Definition 20:

Two R-matrices R, S ∈ R(d) are said to be equivalent iff they have the same

dimension and character, i.e.

R ∼ S ⇐⇒ dim (R) = dim (S) and τR = τS

where τR := Tr ◦ ρR, i.e. the trace of the braid representation induced by R.

Hence, by Theorem 17, two quandle-derived quantum YBE solutions are

equivalent iff they define the same coloring number. Note that having the same

coloring number will automatically imply the R-matrices have the same dimen-

sion, as in particular they will have the same coloring number of a trivial link,

whose coloring number will always be the number of elements of the quandle.
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Definition 56. Equivalence of derived solutions: Let R, S be quandle-

derived R-matrices. They are said to be equivalent, denoted R ∼ S, iff their

related quandles produce the same number of colorings for an arbitrary link, i.e.

RQ(X,▷) ∼ SQ′(X,▷′) ⇐⇒ ColQ(K) = ColQ′(K) for all links K

We now show that two Alexander quandles Q(p, k) and Q′(p′, k′) are equiva-

lent if and only if k′ = k or k′ = k−1 .

Note that we must have p = p′ for the size of these two R-matrices to be the

same, which is necessary for them to have the same dimension and thus to be

equivalent.

Theorem 18. Let Q(p, k) and Q′(p, k′) be Alexander quandles with p prime.

Let RQ(p,k), RQ′(p,k′) be the Q(p, k)- and Q′(p, k′)-derived R-matrices respectively.

Then

RQ(p,k) ∼ RQ′(p,k′) ⇐⇒ k = (k′)−1 or k = k′

Proof. We begin by showing ⇐= .

Let S = S(L) be a Seifert matrix of an arbitrary knot L. Then, by equation

(3.29) we have that

|ker(AL(k))| = |ker(kS − ST )| by definition

= |ker(k(S − k−1ST ))| factoring out k

= |ker(−k(k−1ST − S))| times by factor

= |ker(k−1ST − S)| simplifying

= |ker(k−1S − ST )T | transposition doesn’t affect size of kernel

= |ker(k−1S − ST )| applying the transposition

= |ker(AL(k′)| by definition

Therefore the cardinality of the kernel of AL(k) is always equal to that of

AL(k
′). By equation (3.30) and the definition of equivalence, we have shown that

if k = k′ or k = (k′)−1 then we must have that RQ(p,k) ∼ RQ′(p,k′).

Now, to show =⇒ .

To show this direction, we show the equivalent logic statement
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k /∈ {k′, (k′)−1} =⇒ RQ(p,k) ≁ RQ′(p,k′)

To show this we find an Alexander matrix such that, when the knot is

quandle-colored by the quandles, the size of the matrix’s kernels are different

when k ̸= k′, (k′)−1.

Suppose we have a 2× 2 Seifert matrix, i.e. V ∈M2 such that

V − V T =

(
0 1
−1 0

)
In particular, we consider the following specific example and show that k ̸= k′

or (k′)−1 =⇒ RQ(p,k) ∼ RQ′(p,k′).

V =

(
c2 + 1 c+ 1
c 1

)
Note that this is a Seifert matrix since(

c2 + 1 c+ 1
c 1

)
−
(
c2 + 1 c
c+ 1 1

)
=

(
0 1
−1 0

)
The Alexander matrix induced from this Seifert matrix is given by

A(k) = kV − V T

= k

(
c2 + 1 c+ 1
c 1

)
−
(
c2 + 1 c
c+ 1 1

)
= (k − 1)

(
c2 + 1 c+ k

k−1

c− 1
k−1

1

)
We consider when the kernel is non-trivial, i.e. when it is not invertible.

det(A(k)) = (k − 1)2
(
c2 + 1−

(
c+

k

k − 1

)(
c− 1

k − 1

))
= 0

We may divide by (k− 1) since the case k = 1 is the Flip and this is a special

case that can be considered separately. This gives us

0 =
(
c2 + 1−

(
c+

k

k − 1

)(
c− 1

k − 1

))
= 1− c

k − 1
− ck

k − 1
+

k

(k − 1)2

= 1− c+
k

(k − 1)2
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Re-written in terms of c yields

c = 1 +
k

(k − 1)2

Now, one can work through the same process simply replacing k with k′ to

get

c = 1 +
k′

(k′ − 1)2

The c-value is the same in both cases since we are examining the same Seifert

matrix of the same knot (in particular for this c value we will only have trivial

colorings) so we may set the above two equations to be equal to one another.

1 +
k

(k − 1)2
= 1 +

k′

(k′ − 1)2

k

(k − 1)2
=

k′

(k′ − 1)2

k(k′ − 1)2 = k′(k − 1)2

0 = k(k′ − 1)2 − k′(k − 1)2

= k(k′2 − 2k′ + 1)− k′(k2 − 2k + 1)

= k′2 − 2k′ + 1− k′(k − 2 +
1

k
))

= k′2 − 2k′ + 1− k′k + 2k′ − k′

k

= k′2− k′k − k′

k
+ 1

0 = (k − k′)(
1

k
− k′)

Thus, when k = k′ or k = (k′)−1 the determinant is 0 and we have a non-

trivial kernel. If k ̸= k′, (k′)−1 then the determinant is non-zero and thus the

kernel is non-trivial.

By equation (3.31) we have that two R−matrices cannot be equivalent if their

respective Alexander matrices do not have the same size kernel. Hence, we have

shown

k ̸= k′ or (k′)−1 =⇒ RQ(p,k) ≁ RQ′(p,k′)

i.e.

RQ(p,k) ∼ RQ′(p,k′) =⇒ k = k′ or k = (k′)−1
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3.6 Summary

In Chapter 3 we began by defining the set-theoretic YBE and a new construction

called the Bloop Group, denoted Bℓn. We formed a representation of the Bloop

group and later linked this to the quandalisation process of racks.

We then defined racks, quandles, and their linearisations to R-matrices. We

showed that any linearised non-degenerate YBE solution is equivalent to some

rack-derived R-matrix.

We examined the relationship between isomorphisms of racks and equivalence

of their rack-derived R-matrices, showing that isomorphic racks induce equiva-

lent R-matrices.

We analysed the decomposability of racks and showed that the union of a sub-

rack and its compliment is indeed a rack but is not isomorphic to its original rack.

We utilised our representation of the Bloop group to show that given two racks

with equivalent induced R-matrices, the R-matrices induced from their quandal-

isations must also be equivalent.

Finally, we look at a particular type of quandle called an Alexander quandle.

This quandle is linked to knot theory and we utilise the coloring invariant of the

closure of a braid as a notion of equivalence of rack-derived R-matrices. In par-

ticular, we show that for Alexander quandles Q(p, k) and Q(p, k′), their relative

R-matrices are equivalent iff k = k′ or k = k′−1.
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Chapter 4

Conclusion

In this thesis we focus on the furthering the research area of classification of uni-

tary R-matrices by looking at R-matrix representations of algebraic structures.

We look at the BMW algebra and define contractive R-matrices as an R-

matrix R that satisfies the following contraction relation with one of its spectral

projections P .

φ(P )Rφ(P ) = c · φ(P )

where φ is the canonical shift endomorphism and c is dubbed the contractive

constant.

A restriction on the contractive R-matrices is shown to represent the BMW

algebra.

We show that contractive R matrices must have at most 3 eigenvalues. The

1-eigenvalue situation is trivial and the 2-eigenvalue situation is a Temperley-Lieb

R-matrix, which has already been fully classified, so we mainly consider the 3-

eigenvalue situation.

We show that contractive R-matrices are stable under equivalence and clas-

sify all 2-dimensional examples of contractive R-matrices. We then show various

relations for contractive R-matrices inspired by Wenzl’s work.

We rely on the concept of the normalised trace being Markov, which has been

shown to always be the case when the spectrum does not contain a pair of op-

posite eigenvalues. It has also been shown that the normalised trace is Markov

in the discrete range of the Jones Index. Further research could entail analysing
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other cases in which the normalised trace is Markov.

We show that the following relations hold for the contraction constant c:

τ(R) = c

τ(P ) = |c|2

when τ is Markov.

These results, along with other avenues of analysis, induce the following re-

strictions of the possible values that the contraction constant c can take

0 ≤ |c| ≤ 1√
2

|c|2 = τ(P ) ∈ Q

Further research could entail additional restrictions on the possible values of c.

In this analysis we also see that |c|−2 = [ρR(B∞) : φ(ρR(B∞))] where [· : ·]
denotes the Jones Index. We go on to deduce the form of contractive R-matrices

corresponding to each discrete value of the Jones Index. We are unable to find an

example for IR = 3 and |σ(R)| = 3, but we do show that extending the IR = 3,

|σ(R)| = 2 case does not provide a required example. Finding an example of this

case presents an opportunity for possible future research.

In Chapter 3 we look at racks, how they can be used to create solutions to the

set-theoretic Yang-Baxter equation and how these can be linearised to solutions

of the quantum Yang-Baxter equation (i.e. to R-matrices). We show that iso-

morphic racks induce equivalent R-matrices. A further avenue of research could

entail finding a counter example to show that equivalent rack-derived R-matrices

do not necessarily come from isomorphic racks. We also examine the decom-

posability of racks, and show that the union of the subracks of a rack is not

necessarily isomorphic to the original rack.

We examine the quandalisations of racks, in particular developing the Bloop

group that is inspired by this process. We define an R-matrix representation

of the Bloop group and show that the quandalisation process translates to R-

matrices by the following map
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R̃ := RT ∗

where R is a rack-derived R-matrix, T ∗ is the adjoint of the partial trace of R

and R̃ is the R-matrix induced from the quandalisation of the rack that induced

R.

The main result of this chapter is that for any two racks whose associated

R-matrices are equivalent, the R-matrices produced from their quandalisations

are also equivalent.

Finally, we consider a special case of quandle called an Alexander quandle. We

consider quandle colorings of oriented links and show that two quandle-derived

R-matrices are equivalent if and only if their coloring numbers are equal for any

oriented link. We then utilise this result to show that any two Alexander-quandle

derived R-matrices are equivalent if and only if their Alexander constants k are

equal or inverses of one another.
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Appendix A

Classification of all racks of size 3

Let X = 1, 2, 3 and consider the racks (X,λi), where λi is a bijective map for all

i ∈ X that satisfies the self-distributive property (3.8). Since they are bijective

maps they can be considered to be permutations.

Every rack can be encoded in a table in the following way

1 2 3

1 λ1(1) λ1(2) λ1(3)
2 λ2(1) λ2(2) λ2(3)
3 λ3(1) λ3(2) λ3(3)

Table A.1: Tabulation of racks of size 3

Below we list all possible racks with |X| = 3, classifying by the notion of

isomorphism as in Definition 43. Tables in the same row are in the same isomor-

phism class.
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1 2 3

1 1 2 3
2 1 2 3
3 1 2 3

1 2 3

1 2 3 1
2 2 3 1
3 2 3 1

1 2 3

1 3 1 2
2 3 1 2
3 3 1 2

1 2 3

1 1 3 2
2 1 3 2
3 1 3 2

1 2 3

1 2 1 3
2 2 1 3
3 2 1 3

1 2 3

1 3 2 1
2 3 2 1
3 3 2 1

1 2 3

1 1 2 3
2 1 2 3
3 2 1 3

1 2 3

1 1 2 3
2 3 2 1
3 1 2 3

1 2 3

1 1 3 2
2 1 2 3
3 1 2 3

1 2 3

1 1 2 3
2 1 3 2
3 1 3 2

1 2 3

1 3 2 1
2 1 2 3
3 3 2 1

1 2 3

1 2 1 3
2 2 1 3
3 1 2 3

This table was produced in Python by a brute force approach.

This work builds off of existing numerical approaches, including the GAP

libraries for the Yang-Baxter equation [32] and racks [31].
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