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ABSTRACT

The spatiotemporal development of impulsively excited two-dimensional linear disturbances in acceleration-skewed and velocity-skewed
Stokes layers is investigated using numerical simulations of the linearized Navier–Stokes equations. This study focuses on the long-term
behavior of linearly unstable disturbances within these skewed flows. The onset of linear instability in the symmetric Stokes layer is known to
coincide with absolute instability, with disturbances forming family tree structures, characterized by multiple wavepackets spread across the
spatiotemporal plane, coupled with pointwise subharmonic temporal growth [Ramage et al., “Numerical simulation of the spatiotemporal
development of linear disturbances in Stokes layers: Absolute instability and the effects of high-frequency harmonics,” Phys. Rev. Fluids 5,
103901 (2020)]. However, the introduction of acceleration and velocity skewness disrupts the formation of the family tree structure. Instead,
the onset of linearly unstable behavior is matched to convective instability, with disturbances predominantly propagating in the direction of
the maximum acceleration or maximum velocity. As the Reynolds number increases, absolute instability emerges, albeit with pointwise tem-
poral growth less than the growth obtained by the disturbance maximum.

VC 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0249527

I. INTRODUCTION

Time-periodic flows are commonly observed in various physio-
logical, environmental, and industrial processes. Examples include the
pulsatile blood flow in arteries, the respiratory system in the lungs, and
the propagation of waves in near-shore seas. Understanding the
dynamics of these oscillating flows and their stability characteristics
holds practical and theoretical significance for the field of fluid
dynamics.

The Stokes layer represents a fundamental example of a time-
periodic flow. It occurs when an infinite flat plate oscillates sinusoidally
along the streamwise direction with a velocity U0 cosðxtÞ, beneath a
stationary semi-infinite layer of incompressible fluid. This oscillatory
flow is characterized by a boundary layer thickness d ¼ ffiffiffiffiffiffiffiffiffiffiffi

2�=x
p

, for
the kinematic viscosity of the fluid, �, and frequency of wall oscillation,
x. The Reynolds number of the flow is defined as Re ¼ U0=

ffiffiffiffiffiffiffiffiffi
2�x

p
and specifies regions of linear stability and instability as well as the
transition to turbulence.

An early review of the Stokes layer and other related time-
periodic flows was undertaken by Davis.2 Since then, the Stokes layer
has been the subject of numerous theoretical investigations relating to

the linear stability of the flow, including quasi-steady instability the-
ory,3–5 Floquet theory,6–9 and spatiotemporal disturbance develop-
ment.1,10,11 In addition, the effects of wall roughness have been
considered12–14 and several experimental studies modeled oscillatory
motion in a channel and pipe.15–18 More recently, investigations of
oscillatory and pulsatile flows have focused on linear and nonlinear
dynamics of the Floquet modal instability19 and non-modal transient
behavior.20–22

This paper is concerned with the spatiotemporal development of
linear disturbances in a skewed Stokes layer, following the approach of
Thomas et al.10 and Ramage et al.,1 for both acceleration-skewed23 and
velocity-skewed24 oscillatory motion.

A. Floquet theory

The linear stability of both finite and semi-infinite geometries
was initially investigated by Von Kerczek and Davis6 and Hall,7 respec-
tively, using Floquet theory. This theory assumes that perturbations to
the base flow can be expressed as the product of a time-periodic func-
tion, f ðsÞ, and an exponential function, expðlsÞ, where s denotes the
non-dimensional time and the real part of the Floquet exponent, l,
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encapsulates the net growth of the linear disturbance. Due to the com-
putational demands associated with the linear stability problem, these
early investigations were limited to relatively low Reynolds numbers,
Re. Hall7 observed only decaying disturbances for Reynolds numbers
Re< 160 in the semi-infinite Stokes layer, while Von Kerczek and
Davis6 found no linearly unstable modes for Re< 400 in the finite
channel model they considered. Nevertheless, following significant
improvements in computational resources, Blennerhassett and
Bassom8 identified linearly unstable behavior in the Stokes layer for a
critical Reynolds number Res;c � 708. Their observations were later
confirmed by Luo and Wu5 and Thomas et al.25 Moreover, similar
methods were used to compute linear instability in related flows,
including the finite Stokes layer in channels and pipes.26–29

B. Spatiotemporal disturbance development

While Floquet theory can identify the onset of linear instability, it
cannot determine the nature of the instability, specifically whether it
corresponds to convective or absolute instability. However, numerical
simulations can be employed to analyze disturbance development by
constructing wavepackets in the spatiotemporal plane. Convective
instability arises when an unstable disturbance propagates away from
the point of excitation (decaying at fixed spatial locations). On the
other hand, a disturbance is absolutely unstable if it grows at every spa-
tial location.30

The spatiotemporal development of two-dimensional linear dis-
turbances in the semi-infinite Stokes layer was first considered by
Thomas et al.10 using numerical simulations of the linearized Navier–
Stokes (LNS) equations. Using a velocity–vorticity form of the LNS
equations,31 Thomas and coworkers observed a so-called family tree
structure within the spatiotemporal plane, characterized by the succes-
sive birthing of individual wavepackets. Although numerical computa-
tions were restricted to the first three periods of wall motion, excellent
agreement was observed with the earlier Floquet analysis of
Blennerhassett and Bassom.8 Subsequent studies by Ramage1,11 suc-
cessfully simulated linear disturbance development for a longer dura-
tion for both the classical Stokes layer and the flow generated when the
wall motion incorporates a form of low-amplitude, high-frequency
noise.32 The family tree structure was shown to be characterized by
both harmonic and subharmonic phenomena. In addition, the longer-
time simulations indicated that the onset of linear instability in the
Stokes layer coincides with absolute instability instead of convective
instability. Indeed, this was confirmed by Pretty et al.9 using a modified
form of the Briggs33 method based on the formulation of Brevdo and
Bridges.34

C. Skewed oscillatory flow

Wave propagation in near-shore seas is characterized by skew-
ness, including wave depth, wave height, and wave period. Velocity
skewness generates a wave with a narrow, sharp crest and a broad flat
trough, whereas acceleration skewness establishes wave asymmetry
[examples of each are depicted in Figs. 2(a) and 2(b)]. In coastal hydro-
dynamics, much of the focus is aimed at understanding how accelera-
tion and velocity skewness affect the net transport of sediment.35–41

For instance, experiments undertaken by Watanabe and Sato40 and
Abreu et al.42 showed that in an acceleration-skewed oscillatory flow,
the net sand transport is non-zero and propagates along the direction

of maximum acceleration. In addition, acceleration skewness affects
turbulent flows, including the emergence of streaky structures43 and
enhancing turbulent intensities in the flow over a rough surface.44

In the context of laminar flow, Thomas23,24 undertook a linear
stability analysis of the acceleration-skewed and velocity-skewed
Stokes layers using Floquet theory. Modeling skewness via the methods
developed by van der A et al.44 and Scandura et al.43 Thomas showed
that acceleration skewness destabilizes the Stokes layer and reduces the
critical Reynolds number for linear instability. On the other hand,
velocity skewness increases the critical Reynolds number for linearly
unstable behavior and stabilizes the flow.

D. The current investigation

In the following study, we consider the spatiotemporal develop-
ment of two-dimensional linear disturbances in acceleration-skewed
and velocity-skewed Stokes layers, using the numerical approach
developed by Ramage et al.1 The aim is to determine the nature of line-
arly unstable disturbances in these skewed flows, i.e., are disturbances
matched to convective or absolute instability. Our investigation reveals
that acceleration and velocity skewness alter the development of the
family tree structure, with disturbances primarily propagating in one
streamwise direction only, either to the right or the left, depending on
the skewness specifications. Moreover, the onset of linear instability
coincides with a convective form of instability rather than the absolute
instability observed for the symmetric Stokes layer.1,9,10 The latter
form of instability is subsequently found to emerge at higher Reynolds
numbers.

The remainder of this paper is structured as follows: in Sec. II,
acceleration-skewed and velocity-skewed oscillatory wall motion are
modeled, and the equations governing the development of linear dis-
turbances are described. In Secs. III and IV, the results and conclusions
of our study are presented.

II. FORMULATION
A. Base flow

Consider the two-dimensional flow that develops in a semi-
infinite layer of viscous incompressible fluid that is bounded by a flat
plate located in the plane y� ¼ 0. The wall oscillates back and forth
along the streamwise x�-direction with a skewed velocity
U0 ¼ U0ðtÞ.23,24,43,44 For an acceleration-skewed flow, the wall velocity
is defined as

U0ðtÞ ¼ U0;max

XN
n¼1

cn sin n xt þ /ð Þð Þ; (1a)

for a phase shift, /, and coefficients

cn ¼
að2b� 1Þn�1

n
; (1b)

that establishes asymmetric sinusoidal motion. On the other hand, for
a velocity-skewed flow, the wall velocity is given as

U0ðtÞ ¼ U0;max

XN
n¼1

dn cos n xt þ /ð Þð Þ; (2a)

for d1 ¼ 1 and
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dn ¼ a 2j� 1ð Þn�1 for n � 2; (2b)

that establishes oscillatory motion with a narrow sharp crest and a
broad flat trough. Here, U0;max is the maximum wall velocity, N is the
total number of harmonics used to represent the wall motion, x is the
frequency of oscillation, and the coefficient, a, ensures
maxðU0Þ ¼ U0;max. Figure 1 displays the relative sizes of a for both
acceleration-skewed and velocity-skewed flows.

Acceleration skewness is quantified by the parameter

b ¼
_U 0;max

_U 0;max � _U 0;min
2 0; 1½ �; (3)

where _U 0 represents the acceleration of the wall motion. (Here, a dot
denotes differentiation with respect to time, s.) Whereas velocity skew-
ness is quantified by the parameter

j ¼ U0;max

U0;max � U0;min
2 0; 1½ �: (4)

The classical Stokes layer is recovered in each instance by setting b ¼
0:5 or j ¼ 0:5 for N¼ 1 harmonics. In the instance b 6¼ 0:5 or
j 6¼ 0:5, the number of harmonics, N, must be sufficiently large to
achieve the desired skewed wall motion. Moreover, those flows gener-
ated for b 2 ½0; 0:5� are the mirror images of those flows established for
b 2 ½0:5; 1�. Similarly for j 2 ½0; 0:5� and j 2 ½0:5; 1�. Consequently,
the subsequent analysis is limited to those acceleration-skewed flows
with b 2 ½0:5; 1� and velocity-skewed flows with j 2 ½0:5; 1�.

The dimensionless base flow is obtained by scaling the velocity
and length on the respective scales U0;max and

ffiffiffiffiffiffiffiffiffiffiffi
2�=x

p
, where � is the

kinematic viscosity of the fluid. In addition, on setting s ¼ xt, the
non-dimensional base flow is given as

UB ¼ UB y; s; b; jð Þ; 0ð Þ; (5a)

and for the acceleration-skewed flow

UBðy; s; bÞ ¼
XN
n¼1

cne
� ffiffi

n
p

y sin n sþ /ð Þ � ffiffiffi
n

p
y

� �
; (5b)

while for the velocity-skewed flow

UBðy; s; jÞ ¼
XN
n¼1

dne
� ffiffi

n
p

y cos n sþ /ð Þ � ffiffiffi
n

p
y

� �
: (5c)

Moreover, the Reynolds number of both acceleration-skewed and
velocity-skewed flows is defined as

Re ¼ U0;maxffiffiffiffiffiffiffiffiffi
2�x

p : (6)

Figure 2 illustrates the base flow, UB, acceleration, _UB, and shear stress,
U 0

B, at the wall y¼ 0, for acceleration-skewed flows b ¼ 0:6 and
b ¼ 0:75, and velocity-skewed flows j ¼ 0:6 and j ¼ 0:75. (Here, a
prime denotes differentiation with respect to the wall-normal y-direc-
tion.) The wall motion of the classical Stokes layer (i.e., b ¼ j ¼ 0:5)
is included for comparison (solid blue lines).

B. Governing equations for linear disturbances

1. Velocity–vorticity formulation

The development of linear disturbances to the skewed base flow
(5) is investigated using a two-dimensional version of the velocity–
vorticity formulation developed by Davies and Carpenter.31 This study
focuses on the long-term behavior of linearly unstable disturbances,
and since Squire’s theorem has been extended to temporally periodic
flows,6 we limit our analysis to two-dimensional disturbances. Total
velocity and vorticity fields are defined as

U;Vð Þ ¼ UB; 0ð Þ þ u; vð Þ; (7a)

and

X ¼ XB þ f; (7b)

where XB ¼ U 0
B is the vorticity field associated with the base flow (5).

Here, u and v denote the respective streamwise and wall-normal veloc-
ity perturbations, and f represents the vorticity perturbation.

Following the approach of Ramage,1,11 a spectral treatment is
implemented along the streamwise x-direction by decomposing linear
disturbances into the following Fourier form:

u; v; ff gðx; y; sÞ ¼ uj; vj; fj
� �ðy; sÞeiajx þ c:c:; (8)

where c.c. denotes the complex conjugate and aj ¼ jDa specifies a dis-
crete set of streamwise wavenumbers for j ¼ 0;…; J , and the wave-
number increment, Da. The governing system of equations for each aj
comprises a vorticity transport equation for fj and the Poisson equa-
tion for vj

1
Re

@fj
@s

þ iajUBfj þ U 00
Bvj ¼

1
2Re

@2

@y2
� a2j

 !
fj; (9a)

@2

@y2
� a2j

 !
vj ¼ �iajfj: (9b)

In addition, the streamwise uj-velocity perturbation is given by the
integral expression

uj ¼ �
ð1
y
ðfj þ iajvjÞ dy: (10)

Perturbations are impulsively excited by a small temporally and
spatially localized vertical wall displacement, g. The linearized bound-
ary conditions are then implemented through the no-slip and no-
penetration conditions

ujð0; sÞ ¼ �U 0
Bð0; sÞgjðsÞ; (11a)FIG. 1. Relative sizes of the coefficient a, as a function of the acceleration skew-

ness, b, and velocity skewness, j, that ensure maxðU0Þ ¼ U0;max.
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vjð0; sÞ ¼
@gj
@s

; (11b)

where gj represents a Fourier j-component of the decomposed vertical
wall displacement, g. The localized impulsive forcing is defined by
setting

gðx; sÞ ¼ e�bðx�xf Þ2 1� e�rs2ð Þe�rs2 ’ 1
J þ 1

XJ
j¼0

gj sð Þei jDað Þx; (12)

where r prescribes the time duration of the impulse, b is a scale factor
that determines the spread of the forcing along the streamwise x-direc-
tion, and xf (set to zero here) denotes the location about which the

FIG. 2. Base flow, UB, acceleration, _UB, and shear stress, U0
B, at the wall, as a function of time, s. (a), (c), and (e) Acceleration-skewed flow for variable b. (b), (d), and (f)

Velocity-skewed flow for variable j. The phase shift, /, is chosen to ensure UBð0; 0Þ ¼ 1.
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impulse is centered. The parameter r is chosen to ensure that for
s > 0:1, the wall displacement, g, is essentially zero, while the scale fac-
tor, b, is chosen such that Fourier coefficients, gj, have equal weighting.
Finally, an integral constraint on the vorticity perturbation, fj, is
derived by coupling the definition for the streamwise uj-velocity in Eq.
(10) with the no-slip condition (11a) to giveð1

0
fj dy ¼ U 0

Bð0; sÞgjðsÞ �
ð1
0
iajvj dy: (13)

The temporal evolution of each Fourier j-component of the total
linear disturbance (8) is computed independently; a decoupling arises
due to the spatial homogeneity of the base flow and the linearity of the
governing equations. The full spatiotemporal disturbance development
established by the localized impulsive wall forcing, g, can be recon-
structed by superimposing all Fourier j-components. Key to this recon-
struction is the size of the wavenumber increment, Da, which naturally
establishes a spatial periodicity of 2p=Da. To ensure the spatial devel-
opment of disturbances is captured in full detail, Da is chosen to be
sufficiently small. In addition, the range of streamwise wavenumbers
aj 2 ½0; amax� for amax ¼ JDa, has to be large enough to ensure that
both large and small stability characteristics are resolved accurately.

In the subsequent study, Da ¼ 2:5� 10�4 ensured that the peri-
odic box was sufficiently large that the disturbance remained far from the
periodic boundaries for the ten periods of wallmotion simulated. A choice
of amax ¼ 0:6 was sufficient to achieve accurate results since Fourier j-
components at larger wavenumbers were subject to rapid temporal decay.

2. Numerical methods

The governing system of Eq. (9) is solved using the numerical
scheme developed by Davies and Carpenter31 that implements a spec-
tral discretization along the wall-normal y-direction. The wall-normal
velocity and vorticity perturbations, qj ¼ vj; fj

� �
, are expanded in

terms of an odd Chebyshev series

qjðy; sÞ ¼
XM
k¼1

qj;kðsÞT2k�1ðnÞ; (14)

where Tk is the kth Chebyshev polynomial of the first kind, M is the
number of Chebyshev polynomials, and n denotes the mapped wall-
normal coordinate. Here, the semi-infinite physical domain y 2
½0;1Þ is mapped onto n 2 ð0; 1� via the transformation

n ¼ L
Lþ y

; (15)

where L is a stretching parameter that fixes the spread of data points
along the Stokes layer. A similar expansion is implemented for the
streamwise uj-velocity in terms of even Chebyshev polynomials in n.
Equations (9) are integrated twice with respect to the mapped wall-
normal coordinate, n, and the evolution of the linear perturbation is
numerically simulated using a semi-implicit procedure.

3. Reconstructing the physical disturbance
development

The full spatiotemporal disturbance development can be recon-
structed by taking a superposition of all Fourier j-components of the
linear disturbance (8), for each streamwise wavenumber, aj 2 ½0; 0:6�.

(Recall aj ¼ jDa for j ¼ 0;…; J , and Da ¼ 2:5� 10�4.) For instance,
the vorticity perturbation, f, at each streamwise x-position, can be
determined by setting

fðx; y; sÞ ¼
XJ
j¼0

fjðy; sÞeiajx: (16)

The streamwise domain was chosen to be sufficiently large to satisfy
the previously described natural spatial periodicity of 2p=Da. In addi-
tion, perturbation fields were computed at the streamwise locations
x ¼ xj ¼ jDx, for Dx ¼ 2p=ððJ þ 1ÞDaÞ.

In addition to selecting a sufficiently small wavenumber incre-
ment, Da, to capture the linear disturbance development in full, the
number of Chebyshevs, M, and the mapping parameter, L, were cho-
sen based on previous experience with this numerical approach.1,11,25

In this study, settingM¼ 96 and L¼ 4 produced accurate solutions, as
further increases inM or varying L did not alter the results. Moreover,
the time step in the time-marching procedure was defined as
Ds ¼ 0:1=Re, which allowed Oð104Þ time steps per period of
oscillation.

III. RESULTS
A. Stokes layer

To better understand the observations of Thomas et al.10 and
Ramage et al.1 on the development of linear disturbances in the Stokes
layer, and the relation to the current investigation, we first reproduce
the stability characteristics of the family tree structure. The Stokes layer
is established by setting j ¼ 0:5 in Eq. (5c) for the velocity-skewed
flow. Alternatively, setting b ¼ 0:5 in Eq. (5b) establishes the Stokes
layer but with a phase shift of p=2. (Recall the formula for the
acceleration-skewed and velocity-skewed flows in Sec. II A.) Figure 3
illustrates the spatiotemporal development of two linear disturbances,
impulsively excited at xf¼ 0, with Reynolds number Re¼ 715, which
corresponds to linearly unstable conditions.8 (Recall the critical
Reynolds number for linear instability is Res;c � 708.) Contours are
based on the logarithm of the absolute valued wall vorticity perturba-
tion, ln jfj, and solutions are plotted in the non-dimensional
ðx; s=2pÞ-plane, where s=2p denotes the number of wall oscillations.
In addition, each solution is normalized on the maximum absolute
value attained during the first period of wall motion, s 2 ½0; 2p�.

In Fig. 3(a), the impulse is imposed at time s¼ 0 for a phase shift
/ ¼ 0, while in Fig. 3(b), a phase shift of half a period is implemented
with / ¼ p. The phase shift, /, is chosen to ensure the wall velocity at
time s¼ 0 is UBð0; 0Þ ¼ 1 in Fig. 3(a) and UBð0; 0Þ ¼ �1 in Fig. 3(b).
Initially, the acceleration of the oscillating wall is zero in both cases but
then passes into the deceleration phase for the former case and the
acceleration phase for the latter case. Due to the symmetry of the
Stokes layer, the half-period phase-shift between these cases results in
an exact reversal of the direction of the flow at any point in space and
time. The disturbance development presented in Fig. 3(b) is therefore
the mirror image of that shown in Fig. 3(a), reflected about a vertical
line at x¼ 0.

Focusing on the behavior illustrated in Fig. 3(a), the initial
impulse excites a disturbance wavepacket that propagates to the right.
[The behavior is reversed in Fig. 3(b).] Subsequently, this initial parent
wavepacket births two child wavepackets during each period of wall
oscillation: one convects to the left and one to the right of the parent
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wavepacket. The birthing of each child wavepacket coincides with the
wall shear stress, U 0

B, changing sign. A negative to positive change in
the wall shear stress excites the wavepacket that convects to the right.
On the other hand, the left convecting wavepacket is brought about by
a positive to negative reversal in the wall shear stress. Each child wave-
packet births two further grandchild wavepackets, and so on, leading
to the formation of the family tree structure.

The disturbance maximum convects along those wavepackets
found on the right-hand side of the family tree formation [and the
left-hand side in Fig. 3(b)], with the temporal development of the
maximum wall vorticity, maxxjfj, plotted in Fig. 4(a). There is a
small increase in the disturbance amplitude from one period of
wall oscillation to the next, which is a clear indication of linear
instability.

Assuming that disturbances display behavior consistent with
Floquet stability theory, we can derive expressions for computing tem-
poral growth rates. Disturbances have the form FðsÞ ¼ expðlsÞf ðsÞ,
where F represents a disturbance field such as the wall vorticity, f, f is
2p-periodic in s, and the real part of the complex Floquet exponent, l,
denotes the temporal growth rate. The temporal growth rate associated
with the disturbance maximum was computed using the formula

lmðsÞ ¼
1
2p

ln
maxxjfðx; y ¼ 0; sþ 2pÞj

maxxjfðx; y ¼ 0; sÞj
� �

: (17)

Here, maxxjfðx; 0; sÞj was measured about the mid-point of each cycle
of wall motion. The corresponding growth rate, lm, plotted in
Fig. 4(d) (solid blue line), approaches a positive value for large time, s,
indicating linear instability. Indeed, as time increases, lm approaches
the value of the real part of the Floquet exponent, l, obtained via the
Floquet theory.8 For larger Reynolds numbers, Re, larger temporal
growth rates and stronger linearly unstable behavior ensue.

The streamwise location, xmax, of the disturbance maximum is
plotted as a function of time in Fig. 4(b). Here, blue star markers indi-
cate the corresponding x-location as measured at the mid-point of
each wall cycle and the solid line represents the line of best fit. There is
a distinct, fixed spacing between successive disturbance wavepackets,
with the maximum amplitude propagating a streamwise distance K
� 850 units from one period of wall oscillation to the next. Moreover,
it was shown by Ramage et al.1 that the streamwise spacing, K,
between all neighboring parent and child wavepackets is proportional
to the Reynolds number, Re.

In addition to the K-spacing between adjacent wavepackets, the
distance 2K corresponds to the spacing between disturbance wave-
packets of commensurate size. For instance, at time s=2p ¼ 4 in
Fig. 3(a), there are three distinct wavepackets with amplitudes of the
order ln jfj � �5 (green-turquoise contours) located about the
streamwise positions x � �2000; x � �300, and x � 1400, separated
by a streamwise distance of 2K. Similarly, at the same point in time, a
second set of smaller-sized wavepackets, of the order ln jfj � �7,
develop about the mid-point between the first set of larger-sized wave-
packets, i.e., at x � �1200; x � 500, and x � 2200. Analogous behav-
ior is observed at other points in time. Thus, aside from the
wavepacket containing the disturbance maximum that is convected
along the outermost right wavepackets, the family tree structure is
symmetric about x¼ 0 and characterized by a 2K-spatial periodicity.

Finally, at fixed streamwise x-locations, the disturbance exhibits
subharmonic temporal growth. This particular observation is best
demonstrated in Fig. 4(c), with the temporal development of the abso-
lute valued wall vorticity, jfj, plotted at the two fixed streamwise
x-positions, x¼ 500 and x¼ 1400. On ignoring the first two cycles of
wall motion (due to transient behavior), a peak amplitude is realized
about odd-valued s=2p at x¼ 500, whereas a maximum amplitude is
attained for even-valued s=2p at x¼ 1400. Moreover, at both stream-
wise x-locations, the amplitude increases in size every two periods.
Hence, subharmonic behavior with periodicity twice that of the basic
state emerges. Remarkably, the pointwise growth rate, l0, at these fixed
x-positions is comparable with the growth rate of the disturbance max-
imum, lm. Indeed, computing the pointwise growth rate using

l0ðsÞ ¼
1
4p

ln
jfðx; y ¼ 0; sþ 4pÞj

jfðx; y ¼ 0; sÞj
� �

; (18)

FIG. 3. Spatiotemporal contour plots of the linear disturbance in the Stokes layer
with Reynolds number Re¼ 715. Contours are based on the logarithm of the abso-
lute valued wall vorticity perturbation, ln jfj. Disturbances are impulsively excited at
xf¼ 0 for the base flow given in Eq. (5c) with j ¼ 0:5 and a phase shift (a) / ¼ 0
and (b) / ¼ p. Solutions are normalized on maxx;s2½0;2p�jfj.
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at x¼ 500 and x¼ 1400, establishes the dashed red line (for x¼ 500)
and chain yellow line (for x¼ 1400) shown in Fig. 4(d). As time
increases, the pointwise growth rate, l0, at each location approaches a
similar (positive) value to the growth of the disturbance maximum,
lm. Thus, the disturbance displays absolutely unstable behavior, as
confirmed separately by Pretty, Davies, and Thomas9 using a modified
Briggs33 and Brevdo and Bridges34 approach.

B. Acceleration-skewed Stokes layer

1. Disturbance development in the flow b50:6

Linear disturbance development in an acceleration-skewed
Stokes layer is established for the acceleration skewness parameter
b ¼ 0:6. (Setting b ¼ 0:4 generates the same resulting behavior as that
presented here but with the direction of disturbance development
flipped due to a reversal of the acceleration and deceleration phases of
the oscillatory wall motion.) In addition, the number of harmonics, N,
in the definition of the acceleration-skewed base flow (5b), was chosen
to be sufficiently large to ensure the asymmetric wall motion was
smooth and disturbance development unchanged by further increases

in N. Following the Floquet stability analysis undertaken by
Thomas,23,24 N¼ 20 harmonics were used here and for all subsequent
skewness configurations modeled.

The impulse response of two linear disturbances, excited about
xf¼ 0, is depicted in Fig. 5 for the unstable Reynolds number
Re¼ 635; Floquet theory23 predicts the critical Reynolds number
Rec � 630 for b ¼ 0:6. In Fig. 5(a), the phase shift, /, is chosen to
ensure the base flow at the wall at time s¼ 0 is UBð0; 0Þ ¼ 1, and in
Fig. 5(b), / is set soUBð0; 0Þ ¼ �1, i.e., the wall acceleration is initially
zero in both cases, but with the flow transitioning into the decelerating
phase in the former case and the accelerating phase in the latter case
(recall Fig. 2). Like those contour plots presented in Fig. 3, disturbance
development is again based on the logarithm of the absolute valued
wall vorticity, ln jfj, and normalized on the maximum absolute value
attained during the first period of wall motion.

The initial response to the impulsive forcing is similar to that pre-
sented in Fig. 3 for the Stokes layer. A parent wavepacket is established
that propagates to the right in Fig. 5(a) and the left in Fig. 5(b).
Similarly, two child wavepackets are birthed by the parent that propa-
gate a spatial distance, K, to the left and right, with the birthing event

FIG. 4. Disturbance characteristics of the family tree structure presented in Fig. 3(a). (a) Temporal development of the maximum amplitude of the wall vorticity perturbation,
maxx jfj. (b) Streamwise location, xmax, at which the maximum occurs at the mid-point of each wall cycle (blue star markers) and line of best fit (solid blue line). (c) Temporal
development of the absolute valued wall vorticity perturbation, jfj, at two fixed streamwise x-locations: x¼ 500 (solid blue) and x¼ 1400 (dashed red). (d) Temporal growth
rate, lm, of the disturbance maximum in (a) (solid blue) and pointwise growth rate, l0, at the fixed x-locations in (c).
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again coinciding with a reversal of the wall shear stress, U 0
B. However,

beyond these initial, comparable wavepacket formations, disturbance
development is distinctly different from that found for the Stokes layer.
Left propagating wavepackets dissipate and, except for two small-sized
wavepackets (one in each subplot), develop at magnitudes below the
low-amplitude cutoff, i.e., ln jfj < �10. In addition, despite the two
disturbances being excited at different phases of the acceleration-
skewed wall motion, only the right propagating wavepackets remain,
with the disturbance maximum passing through the right-most wave-
packets in Fig. 5(a) (dark red contours) and the second to right-most
wavepackets in Fig. 5(b) (yellow contours). Thus, disturbance develop-
ment is predominantly directed to the right. Indeed, this particular
disturbance feature was observed for other phase shifts / 2 ½0; 2pÞ.

In the case depicted in Fig. 5(b), the smaller magnitude of the distur-
bance maximum and the fact that this occurs in the second rightmost
wavepacket is a consequence of the disturbance initially propagating to
the left in the spatiotemporal plane.

Acceleration skewness, for b > 0:5, increases the amplitude of
acceleration, _UB, during the accelerating phase of wall motion and
reduces the amplitude of _UB during the decelerating phase.
Furthermore, acceleration skewness establishes a longer period of posi-
tive shear stress, U 0

B, at the wall [see Fig. 2(e)]. Consequently, the dis-
turbance is characterized by large-sized right propagating wavepackets
only. The reverse is true for b < 0:5. In addition, while the K-spacing
between neighboring wavepackets persists, the 2K-spatial periodicity
has vanished since all wavepackets at a given time are of different sizes.
Moreover, at fixed streamwise x-locations, the magnitude of the distur-
bance decreases, attaining values below the low-amplitude cutoff
within 5–6 periods of wall motion. Thus, the disturbance does not
exhibit pointwise temporal growth, nor the subharmonic phenomenon
previously observed for the symmetrical Stokes layer. Therefore, the
symmetry of the family tree structure is lost, and the onset of linear
instability is characterized by convective behavior rather than the abso-
lute form of instability found for the Stokes layer.

Figure 6 displays the temporal development of the disturbance
maximum, maxxjfj, and the corresponding streamwise location, xmax,
of the two disturbances plotted in Fig. 5. Similar to Fig. 4(b), the
streamwise location, xmax, in Fig. 6(b) is plotted at the mid-point of
each wall cycle, along with the line of best fit. With the notable excep-
tion of the respective size differences in maxxjfj and xmax, due to the
phase at which each disturbance is initially excited, the long-term
trends are similar. Each disturbance maximum, maxxjfj, exhibits a
marginal increase in amplitude from one period to the next, and the
corresponding location, xmax, increases by K � 750 after each succes-
sive period of wall motion.

Figure 5 demonstrates that the asymmetry brought about by
acceleration skewness results in the breakdown of the family tree struc-
ture. Notably, the onset of linear instability now aligns with convective
instability rather than absolute instability. To further illustrate this
behavior, additional stability characteristics are presented in Fig. 7.
Figure 7(a) displays instantaneous snapshots of the absolute valued
wall vorticity, jfj, at four successive points in time. The plot demon-
strates the propagation of the disturbance to the right with increasing
time, s. In addition, results illustrate the pointwise decay observed at
fixed streamwise x-locations. For instance, a considerable reduction in
jfj is observed at x � 1250. Similarly, at x � 2000 and x � 2750.

The wavenumber power spectra, P, of the wall vorticity, f, are
plotted in Fig. 7(b). Here, P is computed by taking a Fast Fourier
Transform of the reconstructed, physical vorticity perturbation at the
wall, fðx; 0; sÞ, at those four times shown in Fig. 7(a). The distributions
of P are all centered about a narrowing range of wavenumbers, a, with
the peaks located about a � 0:385, which is consistent with the
Floquet stability calculations of Thomas.23 This corresponds to a wave-
length k ¼ 2p=0:385 � 16 and is comparable with that observed for
the Stokes layer,10 with each of the larger-sized wavepackets extending
over a distance of approximately 20 wavelengths, k.

In Fig. 7(c), the temporal development of the disturbance is plot-
ted at three streamwise locations, which coincide with the center of the
parent, child, and grandchild wavepackets to the immediate right of the
impulsive forcing. The plot demonstrates pointwise temporal decay,

FIG. 5. Spatiotemporal contour plots of the linear disturbance in an acceleration-
skewed Stokes layer with b ¼ 0:6 and Reynolds number Re¼ 635. Contours are
based on the logarithm of the absolute valued wall vorticity perturbation, ln jfj.
Disturbances are impulsively excited at xf¼ 0 for a phase shift (a) / ¼ 1:37 and
(b) / ¼ 4:91. Solutions normalized on maxx;s2½0;2p�jfj and the phase shift, /, is
chosen to ensure UBð0; 0Þ ¼ 1 in (a) and UBð0; 0Þ ¼ �1 in (b).
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with the amplitude of the disturbance decreasing by several orders of
magnitude over the time interval shown. Moreover, the pointwise tem-
poral growth rate, l0, at these fixed streamwise locations, approaches a
negative value of l0 � �0:1 for large time, s=2p, compared with the
positive-valued temporal growth rate, lm, obtained for the disturbance
maximum [see Fig. 7(d)]. In addition, the subharmonic behavior
observed for the Stokes layer is replaced with periodic decay at
x¼ 1250 and x¼ 2000, and a half-periodic decay at x¼ 500.

Further disturbance development was simulated for b ¼ 0:6 at
higher, linearly unstable Reynolds numbers. The aim being to deter-
mine whether absolute instability emerges at larger Reynolds numbers
or if the convective behavior persists. Figure 8 depicts the wavepacket
formations for the Reynolds numbers Re¼ 650 and Re¼ 675, with the
phase shift, /, again set to 1.37 to ensure UBð0; 0Þ ¼ 1. In both instan-
ces, the disturbance exhibits convectively unstable behavior, as each
parent wavepacket gives rise to larger-sized right-propagating wave-
packets, indicating strong temporal growth. As before, left propagating
wavepackets develop at magnitudes below the low-amplitude cutoff.
Moreover, the disturbance is similarly diminished at fixed streamwise
x-locations, with the size of the disturbance less than the low-
amplitude cutoff within one or two periods of wall motion. Thus, dis-
turbances are again characterized by pointwise temporal decay and
convective instability, even at these relatively large Reynolds numbers.

2. Onset of linear instability

The temporal development of the disturbance maximum is illus-
trated in Fig. 9 for four Reynolds numbers, from Re¼ 600 through to
Re¼ 675, with the acceleration skewness parameter again given as
b ¼ 0:6. A noticeable reduction in the disturbance amplitude emerges
at Re¼ 600 and a notable growth at Re¼ 650 and Re¼ 675. The tem-
poral growth rate, lm, associated with each disturbance maximum was
computed via Eq. (17). The large time asymptotic values of lm (as
measured at time s=2p ¼ 10) for b ¼ 0:6 are indicated by red circular
markers in Fig. 10(a), with the red dashed line representing the line
of best fit. In addition, similar results are shown for the Stokes layer
b ¼ 0:5 (blue solid line and star markers) and the stronger
acceleration-skewed flow b ¼ 0:75 (yellow chain line and square

markers). In each case, the temporal growth rate exhibits an almost lin-
ear increase with the Reynolds number, Re, like that shown in
Blennerhassett and Bassom8 and Thomas et al.,25 with the onset of lin-
ear instability (i.e., lm ¼ 0) consistent with the Floquet stability calcu-
lations.23 Furthermore, Fig. 10(a) highlights the significant
destabilizing effect due to acceleration skewness, with the critical
Reynolds number, Rec, decreasing as b increases.

Table I compares the critical Reynolds numbers, Rec, as computed
from Fig. 10(a), with the results of the Floquet theory.23 The Rec values
are consistent across both methods, providing validation for the cur-
rent numerical approach. The minor differences in Rec can be attrib-
uted to the finite simulation time for disturbance development, and
with longer numerical simulations, we would expect these differences
to diminish.

Figure 10(b) displays the streamwise distance, K, between neigh-
boring disturbance wavepackets in the spatiotemporal plane, as a func-
tion of the Reynolds number. Solutions are given for those acceleration
skewness, b, and Reynolds numbers, Re, modeled in Fig. 10(a). In each
instance, K increases linearly with Re, with nearly identical gradients.
However, at fixed Reynolds numbers, the distance K between adjacent
wavepackets decreases as b increases. Specifically, K is approximately
20 and 60 streamwise units greater in the case of the Stokes layer,
b ¼ 0:5, compared to the acceleration-skewed flows b ¼ 0:6 and
b ¼ 0:75, respectively. Thus, as the acceleration skewness of the oscil-
latory flow increases, the distance between adjacent wavepackets
decreases.

3. Disturbance development for flows b‰½0:5;0:54�
The above results indicate that the onset of linear instability in

acceleration-skewed Stokes layers corresponds to convective instability.
However, it is unclear whether this behavior persists for all Reynolds
numbers, Re, or if absolute instability eventually sets in. In the case
b ¼ 0:6, the analysis was limited to Reynolds numbers Re 	 675 due
to the considerable temporal growth rate, lm, observed at large Re.
Indeed, in Fig. 8(b), wavepackets attained amplitudes large enough to
induce significant round-off errors that limited the analysis to the first
six periods of wall motion. Thus, extending disturbance development

FIG. 6. Characteristics of the linear disturbance plotted in Fig. 5, with b ¼ 0:6 and Re¼ 635. (a) Temporal development of the maximum amplitude of the wall vorticity pertur-
bation, maxx jfj. (b) Streamwise location, xmax, at which the maximum occurs at the mid-point of each wall cycle (star and diamond markers) and the lines of best fit (solid and
dashed lines).
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beyond that illustrated above proved very difficult. Moreover, it was
impossible to establish distinct wavepacket structures in the spatiotem-
poral plane at Re> 675 or accurately trace the pointwise evolution of
the disturbance.

In an attempt to predict the behavior of disturbances at large
Reynolds numbers, Re, and ascertain whether the loss of the family
tree structure occurs immediately following the introduction of accel-
eration skewness, further disturbances were simulated for acceleration-
skewed flows b 2 ½0:5; 0:54�. Figure 11 depicts spatiotemporal contour
plots for b ¼ 0:5 (i.e., the Stokes layer), b ¼ 0:52, and b ¼ 0:54.
Solutions on the left correspond to Re¼ 700, and the right to
Re¼ 715. Contour plots reaffirm several stability features brought
about by acceleration skewness. First, acceleration skewness induces a
significant destabilizing effect, with disturbances for b ¼ 0:54 [see
Figs. 11(e) and 11(f)] attaining considerably larger amplitudes than
those realized for b ¼ 0:5 [see Figs. 11(a) and 11(b)]. Second, the sym-
metry of the family tree structure, including the 2K-spatial periodicity
between similar-sized wavepackets, disappears following the applica-
tion of acceleration skewness, with disturbance development predomi-
nantly directed to the right and along the positive x-direction. This is
especially true for those cases plotted on the left of Fig. 11. For
Re¼ 700 and b ¼ 0:52 and b ¼ 0:54 [see Figs. 11(c) and 11(e)], the
left propagating wavepackets diminish in size and shrink below the
low-amplitude cutoff. In addition, these disturbances exhibit pointwise
temporal decay.

A significant change in behavior occurs at the larger Reynolds
number Re¼ 715 [see Figs. 11(d) and 11(f)]. Wavepackets propagating
to the left no longer diminish but instead grow in size, albeit at ampli-
tudes less than those wavepackets propagating to the right. Moreover,
solutions exhibit a pointwise temporal growth at fixed streamwise
x-locations. For instance, in Fig. 11(f), the disturbance amplitude at
x¼�360 grows every two periods of wall motion. Similarly, at
x¼�1250 and x¼ 500. Thus, subharmonic pointwise temporal
growth emerges.

Further evidence of the subharmonic phenomenon and pointwise
temporal growth for b > 0:5 is presented in Fig. 12. The temporal
development of the disturbance maximum, maxxjfj, and the size of jfj
at the fixed streamwise locations x¼ 500 and x¼�360, are plotted for
those acceleration skewness, b, and Reynolds numbers, Re, modeled in
Fig. 11. The evolution of the disturbance maxima, as depicted in
Figs. 12(a) and 12(b), further demonstrates the destabilizing effect due
to acceleration skewness. At the streamwise location x¼ 500, the tem-
poral evolution of the disturbance is shown to be almost identical in all
cases considered [see Figs. 12(c) and 12(d)]. On the time interval
shown, disturbances exhibit comparable amplitudes and subharmonic
behavior, with pointwise temporal growth observed at Re¼ 715.
Moreover, similar behavior emerges at x¼ – 360 [see Figs. 12(e) and
12(f)], albeit with a reduction in the disturbance amplitude as the
acceleration skewness parameter, b, increases. However, in contrast to
the behavior shown for the Stokes layer, notable differences emerge
between the pointwise growth rate, l0, and the temporal growth rate
along the disturbance maximum, lm, for the acceleration-skewed flows
b ¼ 0:52 and b ¼ 0:54. As shown in Fig. 13, the size of lm (measured
at large time, s) associated with these two acceleration-skewed flows is
significantly greater than the corresponding l0, with the latter positive
for Re¼ 715. Hence, disturbances associated with flows b ¼ 0:52 and
b ¼ 0:54 are absolutely unstable for the Reynolds number Re¼ 715,
albeit with a pointwise temporal growth rate less than that associated
with the disturbance maximum.

Thus, acceleration-skewed flows b 2 ð0:5; 0:54� display both
convective and absolute instability. The onset of linear instability

FIG. 7. Characteristics of the linear disturbance plotted in Fig. 5(a), with b ¼ 0:6,
Re¼ 635, and / ¼ 1:37. (a) Instantaneous snapshots of the absolute valued wall vor-
ticity perturbation, jfj, at time s ¼ 4p (solid blue line), s ¼ 8p (dashed red), s ¼ 12p
(chain yellow), and s ¼ 16p (dotted purple). (b) Wavenumber power spectra, P, plotted
at those times given in (a). (c) Temporal development of jfj at three fixed streamwise x-
locations: x¼ 500 (solid blue line), x¼ 1250 (dashed red), and x¼ 2000 (chain yellow).
(d) Temporal growth rate, lm, along the disturbance maximum (solid blue line), and point-
wise growth rate, l0, at the three fixed x-locations given in (c).
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coincides with convective instability at a Reynolds number, Rec, less
than that found for the Stokes layer, i.e., Rec < Res;c � 708.
Convectively, unstable behavior prevails on a finite interval of
Reynolds numbers before absolute instability emerges for Re � Res;c.
Whether the latter observation holds for acceleration-skewed flows
b > 0:54 is difficult to quantify due to the significant numerical diffi-
culties outlined earlier. However, given the form of the base flow (5b),
we predict that absolute instability will occur for a Reynolds number
Re > Res;c � 708 > Rec. The acceleration-skewed base flow (5b) can
be decomposed as

UBðy; s; bÞ ¼ c1e
�y sin sþ /� yð Þ

þ
XN
n¼2

cne
� ffiffi

n
p

y sin n sþ /ð Þ � ffiffiffi
n

p
y

� �
; (19)

where c1 ¼ a < 1, i.e., the base flow is a linear combination of the
scaled Stokes layer (which exhibits absolute instability for Re ¼ Res;c)
and higher-order frequency oscillations. Consequently, due to the line-
arity of the problem, we might anticipate the emergence of absolute
instability for all acceleration-skewed flows at sufficiently high

Reynolds numbers. Indeed, we might expect absolute instability to
develop for Reynolds numbers, Re, near Res;c=a. Given the slow
variation in a for acceleration-skewed flows (see Fig. 1), this would
explain why absolutely unstable behavior emerges for flows b ¼ 0:52
and b ¼ 0:54 at Reynolds numbers Re � Res;c.

Figure 14(a) plots the critical Reynolds number, Rec, for the
onset of linear instability and convectively unstable behavior
(solid blue line), along with the predicted Reynolds number Re
¼ Res;c=a for the emergence of absolute instability (dashed red),
as a function of the acceleration skewness parameter, b. The dot-
ted horizontal line marks the onset of linear instability in the
Stokes layer. [Figure 14(b) depicts equivalent behavior for the
velocity-skewed base flow (5c), which is discussed in more detail
in Sec. III C.]

FIG. 8. Spatiotemporal contour plots of the linear disturbance in an acceleration-skewed Stokes layer with b ¼ 0:6 and / ¼ 1:37 and Reynolds number (a) Re¼ 650 and (b)
Re¼ 675. Contours are based on the logarithm of the absolute valued wall vorticity perturbation, ln jfj, and normalized on maxx;s2½0;2p�jfj.

FIG. 9. Temporal development of the maximum amplitude of the wall vorticity per-
turbation, maxx jfj, with b ¼ 0:6 and / ¼ 1:37.

FIG. 10. (a) Large time asymptotic values of the temporal growth rate, lm, along
the disturbance maximum and (b) streamwise distance, K, between neighboring
wavepackets as a function of Re. The acceleration skewness parameter b ¼ 0:5
(solid blue line), b ¼ 0:6 (dashed red), and b ¼ 0:75 (chain yellow).
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TABLE I. Critical Reynolds numbers, Rec, for linear instability, with the equivalent Floquet stability calculations given in brackets.
23,24

b ¼ j ¼ 0:5 b ¼ 0:6 b ¼ 0:75 j ¼ 0:6 j ¼ 0:75

Rec 708.3 (707.8) 631.5 (630.1) 550.2 (548.7) 747.8 (746.1) 881.5 (879.6)

FIG. 11. Spatiotemporal contour plots of linear disturbances in acceleration-skewed Stokes layers b 2 ½0:5; 0:54� with Reynolds number (a), (c), and (e) Re¼ 700 and (b), (d),
and (f) Re¼ 715. Contours are based on the logarithm of the absolute valued wall vorticity perturbation, ln jfj, and normalized on maxx;s2½0;2p�jfj. Disturbances are impulsively
excited at xf¼ 0 and the phase shift, /, is chosen to ensure UBð0; 0Þ ¼ 1. (a) and (b) ðb;/Þ ¼ ð0:5;p=2Þ, (c) and (d) ðb;/Þ ¼ ð0:52; 1:49Þ, and (e) and (f)
ðb;/Þ ¼ ð0:54; 1:41Þ.
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4. Discussion

The above analysis demonstrates the disruptive impact of acceler-
ation skewness on the symmetry of the family tree structure. Pointwise
temporal growth is negated, and the onset of linear instability coincides
with convective instability, with absolute instability emerging at larger
Reynolds numbers. Such observations are expected, given that acceler-
ation skewness establishes asymmetric oscillatory motion and thereby
eliminates the antiperiodic nature of the flow. In the absence of

acceleration skewness, the Stokes layer is periodic with period 2p and
antiperiodic with period p, meaning UBðy; sþ 2pÞ ¼ UBðy; sÞ and
UBðy; sþ pÞ ¼ �UBðy; sÞ, which implies there is no distinction
between the negative (i.e., motion to the left) and positive (i.e., motion
to the right) x-directions. Conversely, acceleration-skewed flows
are not antiperiodic, with UBðy; sþ pÞ 6¼ �UBðy; sÞ. Thus, the
behavior along the negative and positive x-directions is no longer
equivalent.

FIG. 12. Temporal development of (a) and (b) the maximum amplitude of the wall vorticity, maxx jfj, (c) and (d) jfj at the fixed streamwise location x¼ 500, and (e) and (f) jfj
at x¼ – 360. The Reynolds number Re¼ 700 in (a), (c), and (e) and Re¼ 715 in (b), (d), and (f). The acceleration skewness and phase shift ðb;/Þ ¼ ð0:5;p=2) (solid blue
lines), ðb;/Þ ¼ ð0:52; 1:49) (dashed red), and ðb;/Þ ¼ ð0:54; 1:41) (dotted yellow).
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In acceleration-skewed flows b > 0:5, disturbance development
is predominantly directed to the right and along the positive x-direc-
tion. For this family of flows, acceleration skewness induces a flow
characterized by short periods of strong accelerating flow with long
periods of weak decelerating flow, as illustrated in Fig. 2(c). Moreover,
acceleration-skewed flows feature longer and shorter intervals of posi-
tive and negative shear stress, respectively [see Fig. 2(e)].
Consequently, regardless of the timing of the impulsive forcing, distur-
bance development is primarily directed along the positive x-direction
for acceleration-skewed Stokes layers b > 0:5. The reverse is true for
b < 0:5.

C. Velocity-skewed Stokes layer

The analysis of Sec. III B is extended to velocity-skewed flows (5c)
specified by the velocity skewness parameter, j. For j > 0:5, this

family of oscillatory flows is characterized by short intervals of high,
positive velocity and extended intervals of low, negative velocity.
Moreover, much like the acceleration-skewed flows b > 0:5, the
velocity-skewed flow experiences longer intervals of positive-valued
shear stress (see Fig. 2). The reverse is true for j < 0:5. Figure 15 dis-
plays the spatiotemporal development of two disturbances impulsively
excited at xf¼ 0 for j ¼ 0:6 and the unstable Reynolds number
Re¼ 746. (Recall that velocity skewness is stabilizing and raises the
critical Reynolds number, Rec, for linear instability.

24) The phase shift,
/, in Eq. (5c), is again chosen to ensure UBð0; 0Þ ¼ 1 in Fig. 15(a) and
UBð0; 0Þ ¼ �1 in Fig. 15(b). Much like those acceleration-skewed
flows modeled above, disturbance development is directed to the right,
corresponding to the direction that the velocity attains a peak value.
Although each disturbance displays unstable behavior, with the distur-
bance maximum passing through the right-most wavepackets in
Fig. 15(a) and second to right in Fig. 15(b), each disturbance exhibits
pointwise temporal decay at fixed streamwise x-locations.
Consequently, similar to the acceleration-skewed flows, the onset of
linear instability coincides with convective instability.

Additional disturbances (not shown here) were simulated at
higher Reynolds numbers (750 	 Re 	 800) for j ¼ 0:6. However, in
each case, convectively unstable behavior prevailed. Like the study into
acceleration-skewed flows, establishing disturbance development at
higher Reynolds numbers was difficult due to the considerable tempo-
ral growth observed along the disturbance maximum. Nevertheless,
recognizing that velocity-skewed flows (5c) can be decomposed into a
form comprising a scaled Stokes layer with higher-order frequency
oscillations akin to Eq. (19), we predict that absolute instability is likely
to emerge for a Reynolds number Re near Res;c=a, where
Res;c=a > Rec > Res;c � 708. (See the solid blue and dashed red lines
in Fig. 14(b) for Rec and Res;c=a, respectively.) Given the rapid varia-
tion in a for velocity-skewed flows (see Fig. 1), we might expect abso-
lute instability to appear for Re ¼ Res;c=a � 885 for j ¼ 0:6. A
significantly higher Reynolds number than what we could accurately
simulate for this velocity-skewed flow.

For the weaker velocity-skewed flow j ¼ 0:52, disturbances were
established for Reynolds numbers Re ¼ ð700; 725; 750Þ to test the via-
bility of our approach in predicting the onset of absolute instability.
Figure 16 plots the large time asymptotic temporal growth rate, lm, of
the disturbance maximum (star markers), along with the large time
asymptotic pointwise growth rate, l0, at fixed x-locations (square
markers). A line of best fit connects each set of markers. The two verti-
cal chain lines indicate the critical Reynolds number, Rec, for linearly
unstable behavior (as computed via Floquet theory24) and the pre-
dicted Reynolds number, Res;c=a, for absolute instability. The point-
wise growth rate, l0, increases linearly with the Reynolds number, Re,
with a positive-valued l0 realized for Re � Res;c=a. Thus, Re � Res;c=a
gives a reasonable estimate for absolute instability, at least for weak
velocity-skewed flows.

Figure 17 displays the variation in the large time asymptotic tem-
poral growth rate, lm, and the corresponding streamwise distance, K,
between neighboring wavepackets in the spatiotemporal plane, as a
function of the Reynolds number, Re. Solutions are matched to the
velocity-skewed flows j ¼ 0:5 (i.e., Stokes layer), j ¼ 0:6, and
j ¼ 0:75. Results demonstrate the significant stabilizing effect due to
velocity skewness, with the critical Reynolds numbers, Rec, agreeing
with Floquet stability calculations24 (see Table I). In addition, similar

FIG. 13. Large time asymptotic values of the temporal growth rate, lm, along the
disturbance maximum (solid lines and star markers), and large time asymptotic
pointwise growth rate, l0, at fixed streamwise locations (dashed lines and square
markers), for acceleration-skewed flows b ¼ ð0:5; 0:52; 0:54Þ and Reynolds num-
bers Re¼ 700 (blue) and Re¼ 715 (red).

FIG. 14. Critical Reynolds numbers, Rec, for linear instability
23,24 (solid blue lines),

predicted Reynolds number Re ¼ Res;c=a for the onset of absolute instability
(dashed red), and Res;c ¼ 708 for the Stokes layer (dotted black). (a) Acceleration-
skewed flows, b, and (b) velocity-skewed flows, j.
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to the acceleration-skewed flow, the distance K increases linearly with
Re and decreases with j. However, the reduction in K is far more pro-
nounced for these velocity-skewed flows compared with those
acceleration-skewed flows plotted in Fig. 10.

IV. CONCLUSIONS

A numerical study has been undertaken on the evolution of
two-dimensional, linear disturbances impulsively excited in
acceleration-skewed and velocity-skewed Stokes layers. This extends
earlier investigations based on Floquet theory,23,24 with the aim to
determine whether linearly unstable behavior corresponds to convec-
tive or absolute instability. It is well-established that linear disturbances
in the symmetric Stokes layer are characterized by a family tree wave-
packet structure and subharmonic phenomena, with the onset of linear
instability coinciding with absolute instability.1,10

Following the methodology of Ramage et al.,1 we numerically
simulated disturbance development and analyzed the effects of skew-
ness. Both acceleration and velocity skewness were found to disrupt
the family tree wavepacket formation, with disturbances primarily con-
vecting in the direction of the highest acceleration or highest velocity.
For acceleration-skewed flows characterized by the skewness

parameter b, linear disturbances in flows b > 0:5 were directed to the
right, regardless of the phase that disturbances were initially excited.
The same was true for velocity-skewed flows j > 0:5, with disturban-
ces propagating to the left for flows matched to b < 0:5 or j < 0:5.

At the onset of linear instability, the pointwise, subharmonic
temporal growth observed for the Stokes layer1 was replaced by point-
wise temporal decay. In contrast to the symmetric Stokes layer, where
critical linear instability coincides with absolute instability, disturban-
ces in acceleration-skewed and velocity-skewed oscillating flows exhib-
ited convectively unstable behavior. Nonetheless, results suggest that
convective instability is only prevalent on a finite interval of Reynolds
numbers, and absolute instability eventually emerges at sufficiently
large Reynolds numbers. However, the pointwise temporal growth
is significantly less than that associated with the disturbance
maximum.

FIG. 15. Spatiotemporal contour plots of the linear disturbance in a velocity-skewed Stokes layer with j ¼ 0:6 and Reynolds number Re¼ 746 and phase shift (a) / ¼ 0 and
(b) / ¼ p=2. Contours are based on the logarithm of the absolute valued wall vorticity perturbation, ln jfj, and normalized on maxx;s2½0;2p�jfj.

FIG. 16. Large time asymptotic temporal growth rate, lm, along the disturbance
maximum (solid line and star markers), and large time asymptotic pointwise growth
rate, l0, at fixed streamwise locations (dashed line and square markers), for the
velocity-skewed flow j ¼ 0:52 and Reynolds numbers Re¼ 700, Re¼ 725, and
Re¼ 750. The vertical chain lines indicate the critical Reynolds number, Rec, for
the onset of linear instability24 and the predicted Reynolds number, Res;c=a, for
absolute instability.

FIG. 17. (a) Large time asymptotic temporal growth rate, lm, along the disturbance
maximum, and (b) streamwise distance, K, between neighboring wavepackets as a
function of Re. The velocity skewness parameter j ¼ 0:5 (solid blue line), j ¼ 0:6
(dashed red), and j ¼ 0:75 (chain yellow).
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The above study focused on two-dimensional linear disturbances,
neglecting three-dimensional and nonlinear effects. In addition to
growing or decaying over one period of oscillation (as determined by
the Floquet exponent, l), linear disturbances can experience intervals
of substantial growth during the wall motion, leading to large varia-
tions in magnitude. Consequently, maintaining disturbances at a level
small enough to prevent nonlinearity poses a significant challenge.
Indeed, experimental investigations on the symmetric Stokes layer
show that transition to turbulence occurs at Reynolds numbers consid-
erably lower than those associated with the onset of linear instabil-
ity.15–18

Vittori and co-workers12–14 demonstrated that transition to tur-
bulence can be initiated by a resonance mechanism, where wall imper-
fections amplify disturbance growth during certain phases of the wall
motion. They identified four flow regimes, with each occurring before
the onset of the Floquet linear instability: a laminar regime and a dis-
turbed laminar regime where the flow is locally unstable during parts
of the oscillatory cycle, followed by an intermittently turbulent regime
and a fully developed turbulent regime. Using a momentary stability
criterion (or quasi-steady flow approximation),45 Blondeaux and
Vittori46 determined the Reynolds number range in which the Stokes
layer experiences these four regimes.

Thomas et al.32 proposed an alternative strategy to model the
oscillatory flow by superimposing the Stokes layer with a low-
amplitude, high-frequency harmonic. This approach aimed to rep-
licate experimental imperfections that introduce low-level noise
into an otherwise purely sinusoidal oscillatory motion. A Floquet
analysis based on this modulated oscillatory flow revealed that the
critical Reynolds number for linear instability was reduced by half,
aligning the theoretical predictions with experimental
observations.

Future investigations of skewed oscillatory flows could build
upon the results of this study and the aforementioned earlier works by
exploring three-dimensional and nonlinear effects and high-frequency
modulation.
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