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Summary 

High-frequency stock price dynamics are conventionally modelled by three 

components: volatility, drift, and jumps. Volatility depicts how greatly an asset’s 

prices swing around the mean price. Drift describes the movement of the mean price. 

Jumps refer to rare, significant, and sudden price changes that are too large to be 

explained by volatility alone. This thesis investigates the econometrics of volatility, 

jumps, and drift in high-frequency stock prices and the implications of these 

components for the stock markets. 

Chapter 1 contains the introduction of this thesis. Chapter 2 reveals non-

negligible drift-related finite sample biases in the estimation of good volatility, bad 

volatility, and signed jumps. This chapter suggests a modified estimation method that 

significantly reduces these biases. The empirical evidence indicates that the 

asymmetric impacts of good and bad volatility and the asymmetric effects of signed 

jumps in volatility forecasting, as found in the literature, are almost exclusively due to 

the influence of the measurement bias of these variables on future volatility. 

Chapter 3 is subdivided into two parts. The first part focuses on the measurement 

of the occurrence, size, and intensity of drift bursts. The empirical results reported in 

the second part imply that drift bursts do not impact realized variance but explain the 

implied variance and variance risk premium. 

Chapter 4 first demonstrates that applying a coexceedance criterion to a univariate 

drift test proposed by recent studies is feasible for detecting stock codrift variations. I 

show stock codrift variations are significantly associated with market drift bursts. I 

also find stock codrift variations have a significant and positive impact on market 

volatility. Models exploiting this effect lead to significantly better in-sample and out-

of-sample market volatility forecasts. Chapter 5 is the conclusion of this thesis.
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Chapter 1. Introduction 

 

The availability of high-frequency data has triggered the rapid development of 

financial econometrics over the past two decades. In the high-frequency literature, 

asset prices are typically modelled as an Ito semi-martingale process with three 

components: volatility; drift; and jumps. These components play distinct roles in 

governing high-frequency asset price dynamics. Volatility describes how an asset’s 

prices fluctuate around the mean price. Drift depicts the price trend, reflecting the 

move of the mean price. Price jumps refer to rare, significant, and sudden price 

changes that are too large to be explained by the volatility. 

Volatility is a crucial concept in finance, serving as the key form of market risk. It 

is essential for determining asset prices, making portfolio decisions, and regulating 

financial markets. Earlier literature measures the volatility over a trading day by the 

squared daily return. However, as argued by Andersen and Bollerslev (1998), this 

estimator may be subject to large measurement error. To improve the estimation 

accuracy of volatility, they suggest using an alternative estimator, realized variance, 

which is defined as the sum of squared intraday high-frequency price returns of that 

day. They find that realized variance contains much smaller measurement errors than 

the squared daily return in estimating daily volatility. 

However, Barndorff-Nielsen and Shephard (2004) argue that realized variance 

may erroneously include jumps as the volatility, exaggerating the volatility level. 

They propose using a bipower variation, which extends the idea of realized variance 

by incorporating products of high-frequency absolute returns of different times, 

making it more robust to jumps in the price process. 
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The impact of drift on the estimation consistency of realized variance and 

bipower variation diminishes with the time interval of the returns going to zero. 

However, in practice, it is not possible to sample prices continuously, and financial 

econometricians rely on finite sample price data for computing the volatility 

estimators. In particular, the 5-minute sampling frequencies of asset price returns are 

preferred to calculate realized variance and bipower variation to mitigate the impact 

of microstructure noise (Andersen et al. 2007b; Bollerslev et al. 2009; Corsi 2009; 

Park and Linton 2012; Patton and Sheppard 2015; Bollerslev et al. 2016). Laurent and 

Shi (2020) observe that drift is not ignorable in 5-minute returns, especially when drift 

is large (e.g., the early 2000s the dot-com bubble burst and the subprime mortgage 

crisis periods). And they find that the non-negligibility of drift in 5-minute returns can 

significantly deteriorate the estimation accuracy of realized variance and bipower 

variation estimators. To alleviate such biases, Laurent and Shi (2020) purpose 

computing these two estimators on the high-frequency returns that are centred by their 

median and show significant improvement in the volatility estimation accuracy in the 

presence of nonnegligible drift. 

The good and bad volatilities allow one to disentangle the downside from the 

upside risk, which is important to asset pricing, asset allocation, and portfolio risk 

management (Harlow 1991; Hyung and De Vries 2005; Ang et al. 2006; Lettau et al. 

2014; Klebaner et al. 2017; Farago and Tédongap 2018). Another popular application 

of the good and bad volatilities is to measure signed jumps. Signed jumps, which 

indicate whether positive or negative jumps dominate the price variation of the day, 

are also important factors in asset pricing and volatility forecasting (Patton and 

Sheppard 2015; Mizrach et al. 2018; Bollerslev et al. 2020). In the above literature 

related to the decomposition of the upside and downside risk, good and bad 

volatilities are typically estimated by the positive and negative realized semivariances 
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proposed by Barndorff-Nielsen et al. (2008), with positive and negative realized 

semivariances calculated by the sums of positive and negative using 5-minute squared 

returns, respectively. However, this computation ignores the impact of nonzero drifts 

for a small sample. A nonzero drift should affect semivariances in two respects. First, 

since semivariances are computed by cumulative 5-minute squared returns, the 

estimation accuracy of semivariances is inevitably affected by the existence of drift 

these returns. Second, the presence of drift can result in uneven numbers of positive 

and negative returns within a finite sample, causing further biases in the measurement 

of semivariances. 

Chapter 2 investigates the finite sample impact of nonzero drifts on the positive 

and negative semivariances, with the log prices assumed to follow a constant drift-

diffusion process or an Ornstein-Uhlenbeck process. My finite sample theory, together 

with extensive simulations, uncovers that the drift can have a larger impact on the 

measurement performance of semivariances than on that of realized variance and 

bipower variation estimators. I demonstrate that the estimation inaccuracy of 

semivariances due to a nonzero drift leads to bias in the estimation of signed jumps. I 

find that the bias in the signed jump measurement is even greater than that in both 

positive and negative semivariances in the presence of a nonzero drift. 

To reduce these drift-related biases, I modify the positive and negative 

semivariances, together with the signed jump estimator, by applying the same 

approach proposed by Laurent and Shi (2020) for alleviating the impact of drift on the 

estimation performance of realized variance and bipower variation. My analytical and 

simulation results suggest that the drift’s impact on the measurement performance of 

modified semivariances and modified signed jump estimators is omittable relative to 

the respective original estimators, especially if the drift deviates far from zero. 



4 

 

Importantly, my results show that in the presence of a nonzero drift, the estimation 

accuracy of the modified semivariances and modified signed jump estimator is as 

good as those of the modified realized variance and bipower variation found in 

Laurent and Shi (2020). 

Forecasting asset return volatility is key to financial economics, including risk 

management (Barone‐Adesi et al. 1999; Christoffersen and Diebold 2000; Berkowitz 

and O'Brien 2002; Pritsker 2006; Andersen et al. 2007a), asset pricing (Black and 

Scholes 1973; Duffie et al. 2000; Cochrane 2009; Johannes et al. 2009), asset 

allocation (Fleming et al. 2001; Fleming and Kirby 2003; Fleming et al. 2003), and 

option valuation (Melino and Turnbull 1990; Bates 1996; Bakshi et al. 1997; Chernov 

and Ghysels 2000; Pan 2002; Eraker 2004).  

The volatility persistence and the asymmetric effect of good and bad volatility on 

volatility forecasting have been well established in the literature (Corsi 2009; Patton 

and Sheppard 2015; Bollerslev et al. 2016). Chapter 2 reveals that the original and 

modified versions of realized variance or bipower variation exhibit similar effect of 

volatility persistence on volatility forecasting, suggesting that the volatility 

dependence effect is not influenced by the impact of drift on the estimation of 

volatility. The results for the original positive and negative semivariances corroborate 

the asymmetric impact of good and bad volatility on future volatility, with a stronger 

effect from the bad volatility. However, the modified signed semivariances indicate 

that the impacts of good and bad volatility are not significantly different from each 

other. This implies that good and bad volatilities may not differ in impacting volatility 

forecasting after their estimation are adjusted for alleviating the biases due to a 

nonzero drift. Additionally, I show that the asymmetric impacts of the original signed 

semivariances for volatility forecasting may be mostly because of the finite sample 
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bias in these estimators in the presence of a nonzero drift. This indicates that the 

asymmetric effects of good and bad volatility on volatility prediction found in existing 

studies may be almost exclusively due to the drift biases in the signed semivariances. 

Using the original signed jump estimator, the literature finds the significance of 

signed jumps in stock volatility forecasting, with positive and negative jumps 

affecting future volatility asymmetrically (Patton and Sheppard 2015; Audrino and Hu 

2016; Wang et al. 2016). Consistent with the literature, Chapter 2 also finds the 

asymmetric impacts of the signed jumps for volatility forecasting based on the 

original signed jump estimator. However, the modified signed jump estimator has 

almost no impact on future volatility. This leads to the conclusion that the signed 

jumps may be not important for volatility forecasting, which is quite different from 

the findings in the existing literature. Additionally, I show that the asymmetric effect 

demonstrated by the original signed jump estimator for volatility forecasting may be 

mainly due to the finite sample bias in this estimator due to a nonzero drift. This 

suggests that the significance of signed jumps found in existing studies may be almost 

exclusively attributed to the drift bias in the signed jump estimator. 

The constant drift-diffusion and Ornstein-Uhlenbeck processes in Chapter 2 

assume drift to be constant or linearly correlated with the prices, which does not 

explain the episodes of intraday price movements associated with an explosive trend. 

To model this price pattern, Christensen et al. (2022), Laurent et al. (2024), and Shi 

and Phillips (2024) argue that drift could burst in some intraday intervals of stock 

prices. Andersen et al. (2023) also find pockets of drift bursts for S&P 500 E-mini 

futures and large-cap stocks over intraday periods. The drift bursts have been utilized 

in several studies to model intraday price bubbles and crashes in financial markets 

(Jagannathan et al. 2019; Flora and Renò 2020; Christensen et al. 2022; Jagannathan 
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et al. 2022; Andersen et al. 2023; Bellia et al. 2023; Laurent et al. 2024; Shi and 

Phillips 2024). 

Since drift bursts are associated with bubbles and crashes, understanding their 

time series properties has important implications for risk management and asset 

pricing. Chapter 3 discovers that both positive and negative drift bursts exhibit self-

exciting behaviours. Self-exciting means that the presence of an event increases the 

probability of the arrival of this event in the future. This chapter also shows that 

negative drift bursts can excite positive drift bursts, but not vice versa. As far as I am 

aware, I am the first to discover these time series characteristics of drift bursts. Given 

the forecasting significance of drift found in Chapter 2, Chapter 3 also investigates the 

impacts of drift bursts on future volatility, with volatility estimated by realized 

variance. Since realized variance is computed on high-frequency returns, it is 

inevitably subject to the bias due to microstructure noise. As suggested by Andersen 

and Bollerslev (1998), the option-implied variance is not affected by microstructure 

noise in high-frequency return as it is extracted from daily options prices. Therefore, I 

also consider forecasting implied variance. 

The empirical results of Chapter 3 show that the impacts of positive drift bursts 

on both realized and implied variance are not significant. Negative drift bursts have an 

insignificant impact on realized variance but significantly increase implied variance. 

To the best of my knowledge, only very recently have Laurent et al. (2024) 

investigated the impact of drift bursts on volatility forecasting, but they have not yet 

investigated the effect of the sign of drift bursts, which is studied extensively in 

Chapter 3. Additionally, Chapter 3 also demonstrates a significant and positive impact 

of negative drift bursts on variance risk premium, which gauges the investors’ risk 

aversion via the willingness of investors to pay more for options or variance swaps to 
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hedge against potential increase in stock market volatility. Although consistent with 

the findings documented in the existing literature that large downside price moves 

raise risk aversion (Todorov 2010; Caporin et al. 2017), I am the first to document this 

for drift bursts. 

Although the drift bursts for various financial assets are well documented in the 

literature, little research has studied the contemporaneous occurrence of drift variation 

(codrift variations) across these assets. Codrift variation could indicate common 

bubbles and crashes, which cannot be diversified away and thus have important 

implications for portfolio risk management and asset allocation (Longin and Solnik 

2001; Kole et al. 2006; Anderson and Brooks 2014; Malceniece et al. 2019; 

Boninsegna and Candelon 2024). 

Chapter 4 explores codrift variation among the underlying stocks of the US stock 

market. There is no codrift variation detection method in the previous studies. I 

contribute to the literature by demonstrating that applying a coexceedance criterion to 

a univariate drift test by Shi and Phillips (2024) is feasible to detect codrift variations 

among stocks. My empirical results show that stock codrift variations are partly 

associated with the drift bursts in the market portfolio, suggesting that some of the 

stock codrift variations are hard to diversify. Laurent et al. (2024) show that drift 

variation of the market portfolio positively predicts market volatility. Given the 

relationship between market portfolio drift variation and underlying stock codrift 

variations, stock codrift variations might also lead to higher market volatility. As 

expected, my results suggest that codrift variations among underlying stocks have a 

significant and positive impact on market volatility. Importantly, Chapter 4 shows that 

models exploiting the effects of stock codrift variations lead to significantly better in-
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sample and out-of-sample market volatility forecasts compared to using the 

information from market drift bursts. 

The rest of this thesis is organized as follows. Chapter 2 examines the impact of a 

nonzero drift on the estimation of good and bad volatility, along with the signed 

jumps, and the influence of these volatility and jump components on volatility 

forecasting. Chapter 3 investigates self-and mutual excitation behaviours of drift 

bursts and the power of drift bursts in predicting volatility and the variance risk 

premium. Chapter 4 explores methods for detecting stock codrift variations, the links 

between stock codrift variation with market codrift variation, and the impact of stock 

codrift variation on market volatility forecasting. Chapter 5 concludes.
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Chapter 2. Good and bad volatility estimation for drift-

diffusion process and the impact of signed jumps on 

volatility forecasting 
 

Abstract 

The logarithmic prices of financial assets are conventionally assumed to follow a 

drift-diffusion process. The finite sample theory provided in recent studies shows a 

significant impact of drift on volatility estimation accuracy. However, these studies 

have not yet investigated the influence of drift on the measurement precision of good 

and bad volatility, which are important for distinguishing upside from downside risks. 

This chapter examines the effect of drift on the estimation of good and bad volatility. 

My finite sample theory and extensive simulations reveal that the impact of drift on 

the estimation precision of good and bad volatility is even stronger than its impact on 

the measurement accuracy of overall volatility. I demonstrate that this unsatisfactory 

estimation of good and bad volatility leads to a dramatic bias in the signed jump 

estimation. This chapter then suggests an alternative construction of the estimators of 

good volatility, bad volatility, and signed jumps, showing significant improvement in 

the estimation accuracy in the presence of non-negligible drift. 

Empirical results for the S&P 500 SPDR ETF indicate that both the original and 

modified volatility estimators consistently exhibit volatility persistence effects. The 

impact of the original good and bad volatility estimators on future volatility is 

asymmetric, with a stronger effect from the bad volatility. This contrasts with similar 

effects of modified good and bad volatility estimators on future volatility. While the 

original signed jump estimator affects volatility asymmetrically, with its negative sign 

exhibiting a stronger impact, the predictive value of the modified signed jump 

estimator on volatility is minor. Given the robustness of modified estimators in the 

presence of a nonzero drift, I conclude that good and bad volatility may closely 

impact future volatility, and signed jumps have little power in predicting volatility. 

My findings also suggest that the asymmetric impacts of the original semivariances 

and the original signed jump estimators on volatility forecasting, as found in the 

existing literature, are almost exclusively attributed to the biases in these measures 

due to a nonzero drift.
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2.1. Introduction 

It is widely believed that asset prices obey an Ito semi-martingale process. In the 

high-frequency financial econometrics literature, asset returns are typically modelled 

as an Ito semi-martingale process with two main components: drift and diffusion.1 

With locally bounded coefficients of drift and volatility as in the volatility estimation 

literature, diffusion dominates the returns as the time interval of returns becomes 

small, and the drift component is ignorable even if the drift is nonzero. According to 

this asymptotic theory, the estimation of volatility, based on aggregate functions of 

intraday returns over an estimation window, is unaffected by the presence of a 

nonzero drift. Typical volatility estimators include the realized variance (𝑅𝑉) of 

Andersen and Bollerslev (1998) and the bipower variation (𝐵𝑉) introduced by 

Barndorff-Nielsen and Shephard (2004). 

For the volatility estimation for real financial markets, there is often only a finite 

sample of return observations. For example, studies tend to take 78 returns per day for 

the official trading session of the US stock markets based on a 5-minute grid, for 

balancing the trade-off between getting as close as possible to asymptotic properties 

and protecting against market microstructure impacts (Anderson et al. 2003; Hansen 

and Lunde 2006; Andersen et al. 2007b; Bollerslev et al. 2009; Corsi 2009; Corsi and 

Renò 2012; Liu et al. 2015; Patton and Sheppard 2015; Bollerslev et al. 2016; 

Bollerslev et al. 2020; Bollerslev et al. 2021; Buccheri and Corsi 2021; Bollerslev 

2022). Recently, Laurent and Shi (2020) have argued that for finite samples, the drift 

component in returns is not ignorable relative to the volatility. They show that due to 

 
1 As in literature, the log prices are also occasionally driven by jumps. Jumps are rare thus log 

prices are mainly driven by drift and diffusion. 
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this reason 𝑅𝑉 and 𝐵𝑉, which are computed on the returns, will capture significant 

drift components and thus can be upwardly biased in estimating the volatility.  

However, Laurent and Shi (2020) and other existing studies have not yet 

investigated the finite sample impact of nonzero drifts on the estimation of volatility 

associated with upside and downside price moves (also known as good and bad 

volatility) in the high-frequency setting, although previous literature has addressed the 

negative effect of price drift on the measurement precision of good and bad volatility 

in a low-frequency setting e.g., monthly data (Markowitz 1959; Porter 1974; 

Markowitz 1991). The literature on such volatility estimation focuses on the 

asymptotic properties (Barndorff-Nielsen et al. 2008; Patton and Sheppard 2015; 

Bollerslev et al. 2020; Bollerslev 2022), as opposed to its finite sample properties. 

The estimation of the good and bad volatility is important as this helps investors 

disentangle the risk of the price moving up from the risk of the price falling. It has 

been long recognized that up and downside risks are not treated the same by investors. 

Agents who assign a larger weight to downside risk require additional compensation 

for holding financial assets with high sensitivity to downside market movements. In 

the asset pricing literature, downside volatility is also introduced as an explanatory 

variable to price the cross-section of equity, equity index options, commodity, 

sovereign bond, and currency returns (Ang et al. 2006; Lettau et al. 2014; Farago and 

Tédongap 2018).  

This chapter studies the finite sample influence of nonzero drifts on the 

measurement of good and bad volatility based on high-frequency data. I consider 

popular good and bad volatility estimates defined by Barndorff-Nielsen et al. (2008), 

indicated by the positive and negative realized semivariances, respectively. These two 

signed semivariances have been applied to estimate good and bad volatility in a broad 
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range of research related to forecasting stock price returns and volatility, predicting 

cross-sectional stock returns, and option pricing  (Barndorff-Nielsen et al. 2008; 

Patton and Sheppard 2015; Bollerslev et al. 2016; Feunou and Okou 2019; Bollerslev 

et al. 2020; Bollerslev et al. 2021; Bollerslev 2022).  

For studying the finite sample performance of the semivariance in the presence of 

nonzero drifts, I consider two popular drift-diffusion models: a constant drift-diffusion 

process and a linear drift-diffusion process, with the latter also named the Ornstein-

Uhlenbeck process. The two processes contain the important dynamic of nonzero 

drifts and are important to option pricing, value-at-risk assessments, and volatility 

forecasting in the literature  (Barndorff‐Nielsen and Shephard 2001; Aalen and 

Gjessing 2004; Wang and Yu 2016; Laurent and Shi 2020; Laurent et al. 2022b). My 

finite sample theory, together with extensive simulations, uncovers that a nonzero 

drift has opposite impacts on the estimation accuracy of signed semivariances: a 

positive drift can result in a positive bias in positive semivariance and a negative bias 

in negative semivariance, and a negative drift causes a negative bias in positive 

semivariance and a positive bias in negative semivariance. Importantly, the proportion 

of the bias in the semivariances can be even larger than that in 𝑅𝑉 and 𝐵𝑉 estimators 

found by Laurent and Shi (2020). 

Evidence of stochastic skewness and kurtosis of asset return distributions has led 

to the development of models with jumps to better capture these dynamics. Jumps are 

rare and larger events than what can be explained by the classic drift-diffusion 

process. Under various cases of jumps, my simulation results show that a nonzero 

drift can still be not ignorable to the estimation performance of the semivariances, 

with a positive bias in positive semivariance and a negative bias in negative 
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semivariance again due to a positive drift, and a negative bias in positive semivariance 

and a positive bias in negative semivariance again because of a negative drift.  

Based on the limiting results of semivariances under jump cases, Barndorff-

Nielsen et al. (2008) discover that the difference between two semivariances can 

estimate the signed jumps. 2 Compared to good and bad volatility, signed jumps, 

perhaps due to their association with good and bad news (Evans 2011; Lahaye et al. 

2011; Gilder et al. 2014), exhibit even broader applications in the literature. Signed 

jumps are utilized as an important risk factor in forecasting equity risk premium 

(Feunou et al. 2018), help explain credit default swap spreads (Lee and Hyun 2019), 

contribute to the predictability of the cross-section of expected stock returns (Mizrach 

et al. 2018; Bollerslev et al. 2020), and is particularly found important in volatility 

forecasting (Sévi 2014; Patton and Sheppard 2015; Bee et al. 2016; Lyócsa and 

Molnár 2016; Wang et al. 2016; Todorova 2017; Gong and Lin 2021; Özbekler et al. 

2021; Slim et al. 2023; Zhu et al. 2023).  

However, my analytical and simulative results show the estimation accuracy of 

signed jump estimator based on the difference between signed semivariances can also 

be impacted by a nonzero drift. The sign of this bias aligns with that of drift. Since the 

sign of the bias in positive and negative semivariances is opposite for a nonzero drift, 

the size of the bias of this signed jump estimator can assemble the magnitude of the 

biases in both semivariances. Therefore, the bias in the signed jump estimator is even 

greater than those in the signed semivariances. 

To reduce the impact of nonzero drifts on the estimation of good and bad 

volatility and signed jumps, I suggest calculating the positive and negative realized 

 
2 This chapter uses the terms signed jump variation and signed jumps interchangeably. 
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semivariances on returns centred by the median of these returns over the volatility 

estimation window. This centred-return approach is proposed by Laurent and Shi 

(2020), and the intuition is that centring returns removes the drift, which is estimated 

by the daily median of the returns, from each of the intraday returns. To the best of my 

knowledge, I am the first to apply the centred-return approach to realized 

semivariances under high-frequency data. My analytical and simulation results of the 

constant and linear drift-diffusion models indicate that the modified semivariances 

and signed jump estimator leads to a dramatic improvement in the estimation 

precision of good and bad volatility and signed jumps, especially if the drift deviates 

far from zero. Importantly, my results show that the impact of a nonzero drift on the 

estimation performance of the modified semivariances and signed jump estimator is 

equal or even smaller than on the performance of the modified realized variance and 

bipower variation found in Laurent and Shi (2020).  

For illustration purposes, I apply the modified positive semivariance, negative 

semivariance, and signed jump estimator, along with their original versions, to the 

returns of SPDR S&P 500 ETF (SPY) from 1997 to 2021, sampled at the most 

popular 5-minute frequency. When drift is positive (drift is estimated by the daily 

median of intraday returns), the positive semivariance tend to overestimate good 

volatility by 18% and negative semivariance underestimates bad volatility by 15% on 

average. In the presence of a negative drift, the positive semivariance deflates good 

volatility by about 15% on average and negative semivariance inflates bad volatility 

by 18% on average. The signed jump estimator excessively estimates signed jumps by 

101% on average if the drift is positive, and commonly underestimates signed jumps 

by 107% if the drift is negative. These biases, especially the one in the signed jump 
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estimation, are much greater than those in 𝐵𝑉 as proposed by Laurent and Shi (2020), 

which typically exaggerates volatility by 1.2%. 

Signed jumps play an important role in finance. Observers of financial markets 

have long noted that financial asset prices exhibit unusual upside and downside large 

moves, compared to what would be expected from a random walk. Recent financial 

research has suggested the importance of explicitly allowing for signed jumps in the 

prediction of price volatility option pricing, credit spread interpretation, and pricing of 

cross-sectional returns and options (Patton and Sheppard 2015; Feunou and Okou 

2019; Bollerslev et al. 2020; Bollerslev 2022; Caporin 2023). The improvement in the 

estimation of signed jumps thus has important implications for these financial 

applications.  

As mentioned, volatility, semivariances, and signed jumps have a wide financial 

application. More accurate estimation of volatility and signed jump estimation 

indicated in this chapter therefore may provide value to these applications. As an 

example, I investigate in this chapter if the finite sample bias of the estimation of 

these variables could affect the previous conclusions in the literature related to the 

impacts on volatility forecasting of the volatility persistence, the asymmetric effect of 

good and bad volatility, and the asymmetric impact of signed jumps. As noted in the 

introduction of this thesis, volatility forecasting is important to risk management, 

portfolio optimization, and pricing derivatives. 

The literature concludes significantly persistent volatility dependence using the 

realized variance and bipower variation as the estimators of volatility (Andersen et al. 

2007b; Corsi 2009). My results show that both original and modified versions of 

realized variance and bipower variation exhibit very similar volatility persistence 
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effect, which indicates that the persistent volatility dependence effect is robust when 

realized variance and bipower variation are modified for reducing drift biases. 

Relying on the signed realized semivariance estimators, previous studies 

demonstrate that good and bad volatilities asymmetrically impact future volatility, 

with a stronger effect from bad volatility (Sévi 2014; Patton and Sheppard 2015; 

Audrino and Hu 2016; Wang et al. 2016; Slim et al. 2023). I obtain similar findings 

using the original signed semivariance. However, I find that the effects of the 

modified positive and negative semivariance on future volatility are not different from 

each other.  

Using the signed jump estimator built on the semivariance difference, previous 

studies demonstrate that both positive and negative jumps are important to predicting 

future volatility, with positive jumps decreasing volatility and negative jumps 

increasing volatility more strongly (Sévi 2014; Patton and Sheppard 2015; Audrino 

and Hu 2016; Wang et al. 2016; Slim et al. 2023). As in the literature, I also observe 

an asymmetric impact of signed jumps according to the forecasting results related to 

the original signed jump estimator. However, my findings of the modified signed 

jump estimator tell a story completely different from the existing literature: neither 

positive jumps nor negative jumps can help forecast volatility.  

My analysis also suggests that the asymmetric impacts of original signed 

semivariances for future volatility may be mostly due to their biases related to a 

nonzero drift. This implies that the asymmetric effects of good and bad volatility on 

volatility forecasting found in previous research may be almost exclusively attributed 

to the drift bias in the semivariance estimators. I show that the asymmetric effects of 

the original signed jump estimator for volatility forecasting may also be caused by the 
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drift-driven bias in this estimator, which implies that the importance of signed jumps 

found in existing studies may be almost exclusively attributed to the estimation bias 

of signed jumps given the impact of a nonzero drift. 

The rest of this chapter is structured as follows. Section 2.2 introduces the good 

and bad volatility measurement using positive and negative realized semivariances. 

The impact of a nonzero drift on semivariances for the constant drift diffusion model 

and the Ornstein-Uhlenbeck process are reported in Sections 2.3 and 2.4, respectively. 

Section 2.5 studies the influence of a nonzero drift on the signed jump estimation. 

Section 2.6 reports stock market evidence of the effect of a nonzero drift on the 

measurement performance of the semivariances and signed jump estimator in the 

presence of a nonzero drift. Section 2.7 contains the results for the impact of both the 

original and modified versions of signed semivariances and signed jump estimator on 

volatility forecasting. Section 2.8 concludes. All the mathematical proofs of the 

lemmas, propositions, and corollaries in this chapter are reported in the Appendix 

A.1..
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2.2. Theoretical framework 

Let 𝑝𝑡 denote a logarithmic asset price at time 𝑡. The process for 𝑝𝑡 is 

conventionally expressed in stochastic differential equation form, 

 

𝑑𝑝𝑡 = 𝜇𝑡𝑑𝑡 + 𝜎𝑡d𝑊𝑡 + 𝐽𝑡𝑑𝑁𝑡, 0 ≤ 𝑡 ≤ 𝑇, (2.2.1) 

where the drift coefficient is a linear function of the log price 𝜇𝑡 = 𝜃𝑝𝑡 thus is time-

varying, with 𝜃 constant. The diffusion coefficient 𝜎𝑡 denotes a stochastic volatility 

process, 𝑊𝑡 is a standard Brownian motion, and 𝐽𝑡 represents the random jump size at 

time 𝑡, and 𝑁𝑡 is an independent Poisson counting process with a time-varying 

intensity, indicating that the arrival of jumps is also random. 

The Quadratic Variation for the cumulative return process 𝑟𝑡 = 𝑝𝑡 − 𝑝0, is then  

 

QV(0, t) = ∫ 𝜎s
2𝑑𝑠

𝑡

0

+ ∑ 𝜅𝑠
2

0<𝑠≤𝑇

, (2.2.2) 

where 𝑄𝑉𝑡 indicates the quadratic variation, ∫ 𝜎𝑠
2𝑡

0
, which is termed the continuous 

variation or integrated variation, denotes the component of quadratic variation due to 

the continuous price process, and ∑ 𝜅𝑠
2

0<𝑠≤𝑇  is the remaining jump variation, 

computed on the summation of squared jumps, with 𝜅𝑠 capturing the size of a jump. 

When jumps are absent, the summation vanishes, and the quadratic variation simply 

equals the integrated volatility of the continuous variation. 

Let log prices 𝑝𝑡𝑖 be observed at 𝑀 equally spaced intervals 0 = 𝑡0 < 𝑡1 < 

𝑡2… < 𝑡𝑀 < 1 spanning one trading day 𝑡, where I normalized the daily time interval 

to unity for ease of notation.  The distance between two consecutive observation times 

is then denoted by Δ = 𝑡𝑖 − 𝑡𝑖−1 = 1 𝑀⁄ . The returns computed using log prices at 
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equally spanned observation times may be written as 𝑟𝑡𝑖 = 𝑝𝑡𝑖 − 𝑝𝑡𝑖−1, with 𝑖 =

1,2, … ,𝑀. Then, the Quadratic Variation of the log prices for day 𝑡 is 𝑄𝑉𝑡 =

∫ 𝜎s
2𝑑𝑠

𝑡

𝑡−1
+ ∑ 𝜅𝑠

2
(𝑡−1)≤𝑠≤𝑡 . To estimate this quadratic variation, Andersen and 

Bollerslev (1998) suggest a realized variance (RV) estimator, which is defined by the 

aggregation of all 𝑀 squared intraday returns within day 𝑡,  

 

𝑅𝑉𝑡 =∑𝑟𝑡𝑖
2

𝑀

𝑖=1

. (2.2.3) 

Andersen and Bollerslev (1998) show that 𝑅𝑉 converges to the volatility and jump 

components as the interval between observations gets smaller, 

 

𝑅𝑉𝑡 =∑𝑟𝑡𝑖
2

𝑀

𝑖=1

𝑝
→∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

+ ∑ 𝜅𝑠
2

(𝑡−1)≤𝑠≤𝑡

,   as Δ → 0. (2.2.4) 

The above equation shows that in the presence of jumps, 𝑅𝑉 also captures the jump 

component and thus is not robust enough to estimate the continuous variation. For 

volatility estimation robust to jumps, Barndorff-Nielsen and Shephard (2006) 

proposed bipower variation (𝐵𝑉), defined by the summation of appropriately scaled 

cross-products of adjacent high-frequency absolute returns,  

 

𝐵𝑉𝑡 =
𝜋

2
∑|𝑟𝑡𝑖−1||𝑟𝑡𝑖|

𝑀

𝑖=2

 (2.2.5) 

As noted by Barndorff-Nielsen and Shephard (2006), 𝐵𝑉 only converges in 

probability to the continuous variation if the time gap between observations becomes 

small, 
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𝐵𝑉𝑡 =
𝜋

2
∑|𝑟𝑡𝑖−1||𝑟𝑡𝑖|

𝑀

𝑖=2

𝑝
→∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

,   as Δ → 0. (2.2.6) 

Both 𝑅𝑉 and 𝐵𝑉 estimate the volatility as a whole and do not differentiate the 

upside and downside price variation. On the other hand, pioneering researchers have 

argued that investors are primarily concerned about negative returns and downside 

risks (Roy 1952; Markowitz 1959). Accordingly, the fundamental mean-variance 

trade-off arguments that form the foundation of many widely applied asset pricing 

models and predictions, including the classic Capital Asset Pricing Model, should 

instead depend upon the downside part of the variation only (Hogan and Warren 1972; 

Bawa and Lindenberg 1977). Many studies in behavioural finance, supported by 

empirical evidence and more formal theoretical arguments rooted in prospect theory 

and loss aversion, also indicate that investors treat up and downside differently 

(Kahneman and Tversky, 1979).  

Motivated by these studies and the idea that downside and upside risk are treated 

differently, Barndorff-Nielsen et al. (2008) first proposed decomposing the original 

realized variance (𝑅𝑉) measure into separate up and downside proportions, according 

to the summation of the squared positive and squared negative intraday returns, 

respectively. Specifically, the positive component of 𝑅𝑉 is termed realized positive 

semivariance (𝑅𝑆+), defined by, 

 

𝑅𝑆𝑡
+ =∑𝑟𝑡𝑖

2

𝑀

𝑖=1

𝐼𝑟𝑡𝑖>0
, (2.2.7) 

and the remaining negative part of 𝑅𝑉 is called realized negative semivariance (𝑅𝑆−), 
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𝑅𝑆𝑡
− =∑𝑟𝑡𝑖

2

𝑀

𝑖=1

𝐼𝑟𝑡𝑖<0
. (2.2.8) 

Additionally, Barndorff-Nielsen et al. (2008) investigate the asymptotic properties 

of realized semivariances. They show that as the size of the intervals gets smaller, the 

positive realized semivariance converges to one-half of the continuous variation plus 

the jump variation only due to positive jumps, 

 

𝑅𝑆𝑡
+
𝑝
→
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

+ ∑ 𝜅𝑠
2𝐼𝜅𝑠>0

(𝑡−1)≤𝑠≤𝑡

,   as Δ → 0. (2.2.9) 

This summation of one-half integrated variation and positive jumps is defined as the 

good volatility in this chapter, following the literature. Barndorff-Nielsen et al. (2008)  

also demonstrate that the negative realized semivariance converges to one-half of the 

continuous variation plus the jump variation only attributed to negative jumps, 

 

𝑅𝑆𝑡
−
𝑝
→
1

2
∫ 𝜎𝑠

2𝑑𝑠
𝑡

𝑡−1

+ ∑ 𝜅𝑠
2𝐼𝜅𝑠<0

(𝑡−1)≤𝑠≤𝑡

,   as Δ → 0. (2.2.10) 

And this summation of one-half integrated variation and negative jumps is defined as 

the bad volatility as in the literature. In the absence of jumps, both good volatility and 

bad volatility are equal to the one-half continuous variation.
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2.3. Realized Semivariance estimation for a constant drift-diffusion 

process 

From previous Equations (2.2.4), (2.2.6), (2.2.9) and (2.2.10), it is important to 

note that the above volatility estimators do not contain the variation due to the drift 

𝜇𝑡, although the process of log prices indeed contains the drift component, as in 

Equation (2.2.1). This can be explained by noting that as the time gap between log 

prices becomes small Δ → 0, the continuous volatility or jumps always dominate the 

drift term in high-frequency returns even if the drift is not zero (Laurent and Shi 2020; 

Christensen et al. 2022; Laurent et al. 2022b). However, empirical research tends to 

use a finite sample of data where the interval between returns is not infinitesimally 

small, either because ultra-high-frequency data is not always available, or to balance 

the trade-off between the distortion from market microstructure noise in the higher 

frequency data versus aiming to reach the asymptotic property of the volatility 

estimators. Laurent and Shi (2020) show that drift may not necessarily be ignorable in 

the returns for a finite sample under a constant drift-diffusion model. They show that 

realized variance and bipower variation estimators, consequently, may be biased and 

their bias increases with the magnitude of drift. However, as far as I am aware, 

Laurent and Shi (2020) and existing research have not yet considered this finite 

sample bias in the positive and negative semivariances, although these measures, as 

mentioned in the introduction, are important estimators of upside and downside risk 

and widely applied in economic forecasting in the literature.  
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2.3.1.  The bias of realized semivariances  

For expositional purposes, I begin the investigation of the estimation bias of 

signed semivariances under a simple constant drift-diffusion model. This model 

assumes that both the drift and volatility of the log prices are constant, 

 

𝑑𝑝𝑡 = 𝜇𝑑𝑡 + 𝜎d𝑊𝑡. (2.3.1) 

Although the constant drift-diffusion model has simple assumptions for the volatility 

and drift processes, it provides ease of exposition for the beginning of my analysis of 

the biases of realized semivariances. For robustness purposes, the next section 2.4 will 

also study the biases of realized semivariances when the log prices follow a linear 

drift-diffusion model, which contains more general assumptions for drift and volatility 

as in the literature. For the constant drift-diffusion model, I begin the analysis by 

considering the case of no jumps and then introduce the scenarios with additive jumps 

in the following section 2.3.3. When jumps do not occur, the probability limit of 

positive and negative realized semivariances uniformly converge to the one-half 

integrated variance 
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1
 as the sampling interval becomes small, as in 

Equations (2.2.9) and (2.2.10). Note that under the constant drift-diffusion model, the 

daily integrated variance equals the constant volatility, ∫ 𝜎s
2𝑑𝑠

𝑡

𝑡−1
= 𝜎2 as the 

volatility is assumed constant.  

The log prices of the above constant drift-diffusion model, Equation (2.3.1) 

(computed using log prices at equally spaced observation times) may be written as, 

 

𝑝𝑡𝑖 = 𝑝𝑡𝑖−1 + 𝜇Δ + 𝜎√Δℇ𝑡𝑖  with ℇ𝑡𝑖~𝑁(0,1) and Δ = 1 M⁄ . (2.3.2) 
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The returns for day 𝑡 are defined by 𝑟𝑡𝑖 = 𝑝𝑡𝑖 − 𝑝𝑡𝑖−1, and the number of returns is 𝑀. 

For example, 𝑀 = 78 for the popular five-minute frequency sampling for the US 

stock market main trading session from 9:30 to 16:00 EST while 𝑀 = 390 for the 1-

minute frequency. When the log prices follow Equation (2.3.2) with a nonzero drift 𝜇, 

the expected number, or frequency, of positive and negative returns may not be equal, 

which is illustrated in the Lemma 2.3.1 below, 

Lemma 2.3.1. For 𝑀 returns 𝑟𝑡𝑖 obtained from the drift-diffusion 

process, Equation (2.3.2), for 𝑡 = 𝑡1, 𝑡2, … , 𝑡𝑀 of day 𝑡. 

(i) The expected frequency of positive returns and negative returns for 

day 𝑡 are 

 

𝑀ℙ(𝑟𝑡𝑖 > 0) = 𝑀 [1 −Φ(
−𝜇√Δ

𝜎
)], 

(2.3.3) 

And 

 

𝑀ℙ(𝑟𝑡𝑖 < 0) = 𝑀 × 𝛷 (
−𝜇√𝛥

𝜎
), 

(2.3.4) 

respectively, where ℙ(∙) denotes the probability of an argument and 

Φ(∙) is the cumulative function of the standard normal distribution. 

(ii) if 𝜇 = 0, the expected frequencies of positive and negative returns 

for day 𝑡 are identical and equal to 𝑀/2, with 𝑀ℙ(𝑟𝑡𝑖 > 0) =

𝑀ℙ(𝑟𝑡𝑖 < 0) = 𝑀/2.  

The statement (i) of Lemma 2.3.1 indicates that for the constant drift-diffusion 

process and a finite number, 𝑀, of returns observed on day 𝑡, the returns on day 𝑡 may 

be overwhelmed by positive or negative returns if the drift is much larger in 
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magnitude than the volatility. For example, given that Δ is fixed and 𝜇/𝜎 → −∞, the 

expected frequency of the negative return within day 𝑡 is 𝑀ℙ(𝑟𝑡𝑖 < 0) =

𝑀Φ(−𝜇√Δ 𝜎⁄ ) ≈ 𝑀 while the expected frequency of positive returns is 

𝑀[1 − Φ(−𝜇√Δ 𝜎⁄ )] ≈ 0. This indicates that when 𝜇/𝜎 → −∞, almost all 𝑀 returns 

at day 𝑡 are expected to be negative, indicating an extreme persistence of returns.  

Literature has addressed the possibility of 𝜇 𝜎⁄ → ±∞, which implies a volitation 

of the no-arbitrage principle of asset pricing theory (Laurent and Shi 2020; Bollerslev 

2022; Christensen et al. 2022; Laurent et al. 2022b; Andersen et al. 2023), and these 

studies argue that the extreme return persistence caused by 𝜇 𝜎⁄ → ±∞ is a stylized 

fact in the stock markets. Since all intraday returns at day 𝑡 are expected to be 

negative for 𝜇 𝜎⁄ → −∞, the negative semivariance is expected to be identical to 

realized variance, which equals the volatility plus a positive bias due to the negative 

𝜇. Then negative semivariance overestimate one-half integrated variation by sum of 

one-half integrated variation and this positive drift bias, suggesting the impact of a 

large negative drift on the estimation accuracy of negative realized semivariance can 

be even greater than its impact on the measurement precision of realized variance. At 

the same time, since there is almost no positive return due to this extremely negative 

drift, the positive realized semivariance, which is calculated on positive returns, is 

close to zero. As a result, the positive realized semivariance underestimates the one-

half integrated variation by nearly 100%.  

When the returns of day 𝑡 are overwhelmingly positive by a large, positive drift, 

the positive realized semivariance can be close to realized variance. For this case of 

the drift, analogously, the bias ratio of positive realized semivariance is much larger 

than that of realized variance, and the negative realized semivariance underestimates 
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the one-half integrated variation by 100%. These findings under the extreme cases of 

the drift in the constant drift-diffusion model suggest that the proportion of the bias in 

semivariances can be larger than that in realized variance or close to 100% when drift 

is extremely large. Therefore, the existence of a nonzero drift may raise a concern in 

the estimation performance of the realized semivariances. 

The above intuition on the impact of a nonzero drift on the estimation of realized 

semivariances depends on the extreme cases of drift. To highlight the generality of the 

result, I derive the exact bias of realized semivariances as a function of drift, 𝜇, as 

shown by the following Proposition 2.3.1. The bias, defined by the difference between 

signed semivariances with a-half integrated variance, explores how signed 

semivariances deviate from estimating the one-half integrated variance based on the 

asymptotic theory. This measure allows us to identify the size and the sign of the bias 

contained in semivariances. Analogously, the bias in the realized variance and 

bipower variation can also be derived by comparing these two estimators with 

integrated variance, and these two biases have been derived by Laurent and Shi 

(2020).  

Semivariances attempt to estimate one-half integrated variance, which is a 

different (smaller) amount of volatility compared to that realized variance and 

bipower variation aim to measure. For a fair comparison of the impact of a nonzero 

drift on the estimation accuracy of these three estimators, I also consider a ratio 

measure of the bias. For semivariances, the bias ratio is defined by the proportion of 

the bias relative to the a-half integrated variance. For realized variance and bipower 

variation, their bias ratios are defined by the proportion of their biases relative to full 

integrated variance. The bias ratio measure will also be key to ensure the fairness of 

comparing the impacts of a nonzero drift on the estimation performance of 
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semivariances, realized variance and bipower variation for the cases of jumps, 

discussed in the next section. This is because in the presence of jumps, positive 

semivariance, negative semivariance realized variance, and bipower variation estimate 

different price variations from each other, according to the asymptotic theories as in 

Equations (2.2.4), (2.2.6), (2.2.9), and (2.2.10).  

Proposition 2.3.1. Under the drift-diffusion process, Equation (2.3.2).  

(i) The bias in positive realized semivariance is 

 

𝔼(𝑅𝑆𝑡
+ −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

) 

= 𝜇2Δ [1 −Φ(
−𝜇√Δ
𝜎

)]+𝜇𝜎√Δ𝜑(
−𝜇√Δ
𝜎

)+𝜎2 [1−Φ(
−𝜇√Δ
𝜎

)]−
1
2
𝜎2, (2.3.5) 

where 𝜑(𝑥) is the probability density function of the standard normal 

distribution and 𝛷(𝑥) is the respective cumulative distribution 

function. 

(ii) The bias ratio of positive realized semivariance is  

 

𝔼 [(𝑅𝑆𝑡
+ −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

)
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

⁄ ] 

2𝜇2Δ

𝜎2
[1 − Φ(

−𝜇√Δ

𝜎
)] +

2𝜇√Δ

𝜎
𝜑 (
−𝜇√Δ

𝜎
) − 2Φ(

−𝜇√Δ

𝜎
) + 1. (2.3.6) 

(iii) The bias in negative realized semivariance is  

 

𝔼(𝑅𝑆𝑡
− −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

) 
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= 𝜇2ΔΦ(
−𝜇√Δ

𝜎
) − 𝜇𝜎√Δ𝜑 (

−𝜇√Δ

𝜎
) + 𝜎2Φ(

−𝜇√Δ

𝜎
)

−
1

2
𝜎2. 

(2.3.7) 

(iv) The bias ratio of negative realized semivariance is  

 

𝔼 [(𝑅𝑆𝑡
− −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

)
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

⁄ ] 

=
2𝜇2Δ

𝜎2
Φ(
−𝜇√Δ

𝜎
)−

2𝜇√Δ

𝜎
𝜑(
−𝜇√Δ

𝜎
)+ 2Φ(

−𝜇√Δ

𝜎
)− 1. (2.3.8) 

Proposition 2.3.1 shows that the bias and the bias ratio of realized semivariances are 

related to values of Δ, 𝜇, and 𝜎. For studying the properties of the bias and bias ratio 

of realized semivariances, several corollaries are deduced from Proposition 2.3.1. 

Corollary 2.3.1 When drift is zero, 𝜇 = 0, the bias and the bias ratio 

of both positive and negative realized semivariance are zero. 

Corollary 2.3.2 For any positive drifts, 𝜇 > 0, the bias ratio of the 

positive realized semivariance is larger than that of realized variance, 

 

 

𝔼 [(𝑅𝑆𝑡
+ −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

)
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

⁄ ] > 𝔼 [(𝑅𝑉𝑡 −∫ 𝜎s
2𝑑𝑠

𝑡

𝑡−1

) ∫ 𝜎s
2𝑑𝑠

𝑡

𝑡−1

⁄ ], (2.3.9) 

 

where 

𝔼 [(𝑅𝑉𝑡 −∫ 𝜎s
2𝑑𝑠

𝑡

𝑡−1

) ∫ 𝜎s
2𝑑𝑠

𝑡

𝑡−1

⁄ ] =
𝜇2Δ

𝜎2
,  

denotes the bias ratio of realized variance, according to Proposition 2.1 of 

Laurent and Shi (2020). For any negative drifts 𝜇 < 0, the bias ratio of 
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positive realized semivariance is more negative than that of realized variance, 

indicated by 

 

[(𝑅𝑆𝑡
+ −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

)
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

⁄ ] < 𝔼 [(𝑅𝑉𝑡 −∫ 𝜎s
2𝑑𝑠

𝑡

𝑡−1

) ∫ 𝜎s
2𝑑𝑠

𝑡

𝑡−1

⁄ ]. (2.3.10) 

 

Corollary 2.3.3 For any negative drifts 𝜇 < 0, the bias ratio of negative 

realized semivariance is more positive than that of realized variance, indicated 

by 

 

[(𝑅𝑆𝑡
− −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

)
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

⁄ ] > 𝔼 [(𝑅𝑉𝑡 −∫ 𝜎s
2𝑑𝑠

𝑡

𝑡−1

) ∫ 𝜎s
2𝑑𝑠

𝑡

𝑡−1

⁄ ]. (2.3.11) 

 

For any positive drifts 𝜇 > 0, the bias ratio of negative realized semivariance 

is more negative than that of realized variance, 

 

[(𝑅𝑆𝑡
− −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

)
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

⁄ ] < 𝔼 [(𝑅𝑉𝑡 −∫ 𝜎s
2𝑑𝑠

𝑡

𝑡−1

) ∫ 𝜎s
2𝑑𝑠

𝑡

𝑡−1

⁄ ]. (2.3.12) 

 

Corollary 2.3.2 and 2.3.3 help identify how impactful the bias contained in 

realized semivariance is, via its comparison to that of realized variance found by 

Laurent and Shi (2020). These two corollaries imply that whenever the signs of drift 

and semivariance are equal, the impact of the drift is stronger on the semivariance 

than on realized variance. Note that this result holds for any sampling frequencies, 

magnitudes of the drift and volatility levels. However, if the signs of drift and 

semivariance are not equal, whether the bias ratio of semivariance is larger or smaller 
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relative to that of realized variance is unknown, and we only know the bias proportion 

of realized semivariance is more negative than that of realized variance. For 

comparing the bias of the realized semivariance with that of the realized variance 

when the signs of drift and semivariance differ, the next sub-section 2.3.2 will 

calculate the biases of realized semivariances on some realistic and empirically 

important ranges of drift, volatility, and sampling intervals.  

Corollary 2.3.4 The bias in positive realized semivariance in the 

presence of a nonzero drift 𝜇 = 𝜇∗ with 𝜇∗ ≠ 0 is identical to that in 

negative realized semivariance due to the same magnitude drift with 

the opposite sign  𝜇 = −𝜇∗. This holds for the bias ratio measure. 

Corollary 2.3.4 indicates that the bias in positive and negative realized semivariances 

are symmetrical across the signs of drifts, and this symmetric pattern holds for the 

bias ratio measure. 

To reduce the effect of drift on the estimation performance of realized variance 

and bipower variation, Laurent and Shi (2020) suggest modifying these two 

estimators by replacing the return 𝑟𝑡𝑖 with its centred version 𝑟𝑡𝑖 − 𝜇, where 𝜇 denotes 

the constant drift in the returns on day 𝑡, 𝑟𝑡1 …𝑟𝑡𝑀. Since the centred returns no longer 

contain drift in 𝑡1…𝑡𝑀, their summations within this estimation window are robust to 

drift. This removes the bias in realized variance and bipower variation due to a 

nonzero drift. The drift 𝜇 in returns in Equation (2.3.2) is a latent variable and thus 

needs to be estimated. Laurent and Shi (2020) suggest measuring the drift by the 

median of 𝑀 returns of day 𝑡, �̂�𝑡 = median(𝑟𝑡1 …𝑟𝑡𝑀), where �̂�𝑡 indicates the 

median estimator. They show that the median is an unbiased estimator of drift. 

Moreover, Laurent and Shi (2020) find that the median empirically perform well in 
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capturing large price drift in the stock market during the dot-com bubble period in the 

late 1990s (Phillips et al. 2011; Phillips et al. 2015; Shi and Song 2016) and the 

commodity markets over the preceding decade (Phillips and Yu 2011; Gutierrez 2013; 

Etienne et al. 2014). Based on this median estimator, the modified realized variance 

and bipower variation (indicated by RV∗ and BV∗, respectively) are defined by, 

 

𝑅𝑉𝑡
∗ =∑(𝑟𝑡𝑖 − �̂�𝑡)

2
𝑀

𝑖=1

, (2.3.13) 

 

𝐵𝑉𝑡
∗ =

𝜋

2
∑|𝑟𝑡𝑖−1 − �̂�𝑡||𝑟𝑡𝑖 − �̂�𝑡|

𝑀

𝑖=2

, (2.3.14) 

where �̂�𝑡 = median(𝑟𝑡1 …𝑟𝑡𝑀) denotes the median of 𝑀 returns for day 𝑡 that are 

involved in the computation of the volatilities for that day. The theoretical and 

simulative results of Laurent and Shi (2020) show that the finite sample biases of the 

modified realized variance and bipower variation in estimating the volatility are much 

smaller than their original versions. 

It is straightforward to apply the centred returns idea to construct modified 

realized semivariances if the interest is to alleviate the impact of nonzero drifts on 

semivariances. This approach removes drift and thus reduces the effect of drift on the 

estimation precision, which is also in the spirit of Porter (1974) who applies the de-

averaged monthly returns to semivariances to reduce the bias due to the price drift in 

the long run.3 The algebraic expression of these two modified realized semivariances 

is defined by, 

 

 
3 As in Laurent and Shi (2020), I do not assume drift to be nonzero over a long time span but 

do so only during the period over which the volatility estimators are computed. 
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𝑅𝑆𝑡
+ ∗ =∑(𝑟𝑡𝑖 − �̂�𝑡)

2
𝑀

𝑖=1

𝐼𝑟𝑡𝑖−�̂�𝑡>0
, (2.3.15) 

 

𝑅𝑆𝑡
− ∗ =∑(𝑟𝑡𝑖 − �̂�𝑡)

2
𝑀

𝑖=1

𝐼𝑟𝑡𝑖−�̂�𝑡<0
. (2.3.16) 

where 𝑅𝑆+ ∗ and 𝑅𝑆− ∗ indicate the modified positive and negative realized 

semivariances, respectively, and obviously, the sum of 𝑅𝑆+ ∗ and 𝑅𝑆− ∗ equals the 

modified realized variance, 𝑅𝑉𝑡
∗ = 𝑅𝑆𝑡

+ ∗ + 𝑅𝑆𝑡
− ∗.  Note that using centred returns 

does not change the asymptotic property of realized measures as the median (�̂�𝑡) is 

negligible relative to volatility when the sampling interval becomes small. This 

modification aims to increase their estimation accuracy for a finite sample. The 

impact of drift on the modified realized semivariances is expected to be smaller 

compared to their original version as the drift component is treated in the centred 

returns. I begin the exact derivation of the bias of the modified realized semivariances 

by introducing the following Lemma 2.3.2.  

Lemma 2.3.2. For the returns 𝑟𝑡𝑖 obtained from the drift-diffusion 

process, Equation (2.3.2) for 𝑡 = 𝑡1…𝑡𝑀 on day 𝑡, the expected 

number of the positive centred returns 𝑟𝑡𝑖 − �̂�𝑡 > 0 and that of 

negative centred returns 𝑟𝑡𝑖 − �̂�𝑡 < 0 are uniformly equal to 𝑀/2 for 

any drift 𝜇. 

According to Lemma 2.3.2, for 𝑀 returns under the constant drift-diffusion 

process, Equation (2.3.2), the expected numbers of positive and negative centred 

returns 𝑟𝑡𝑖 − �̂�𝑡 are equal. In the presence of a large price drift across a day, the 

centred returns will not be overwhelmed by positive or negative returns and the 

modified realized semivariances 𝑅𝑆+ ∗ and 𝑅𝑆− ∗ are calculated using 𝑀/2 number of 
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positive and negative centred returns each. Using this result, the exact bias of the 

𝑅𝑆+ ∗ and 𝑅𝑆− ∗ can be given by Proposition 2.3.2 below. 

Proposition 2.3.2. Under the drift-diffusion process, Equation 

(2.3.2), 

(i) The bias in both the modified positive and negative realized 

semivariances equals one-half of the bias in the modified realized 

variance, 

 

𝔼(𝑅𝑆+ ∗ −
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

) = 𝔼(𝑅𝑆− ∗ −
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

) 

=
1

2
𝔼(𝑅𝑉∗ −∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

), 

(2.3.17) 

where 𝔼(𝑅𝑉∗ − ∫ 𝜎s
2𝑑𝑠

𝑡

𝑡−1
) is the bias in the modified realized 

variance and is given by 

 

M[𝕧(�̂�𝑡) − 2𝑐𝑜𝑣 (
1

𝑀
∑𝑟𝑡𝑖

𝑀

1

, �̂�𝑡)], 

as proposed by Laurent and Shi (2020), with 𝕧 denoting the variance 

of the argument and 𝑐𝑜𝑣 indicating the covariance between the two 

arguments. 

(ii) The bias ratio of both the modified positive and negative 

realized semivariances equals that of the modified realized variance, 

 

𝔼 [(𝑅𝑆+ ∗ −
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

)
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

 ⁄ ] (2.3.18) 
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= 𝔼 [(𝑅𝑆− ∗ −
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

)
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

 ⁄ ] 

= 𝔼 [(𝑅𝑉∗ −∫ 𝜎s
2𝑑𝑠

𝑡

𝑡−1

) ∫ 𝜎s
2𝑑𝑠

𝑡

𝑡−1

 ⁄ ]. 

Proposition 2.3.2 suggests that the bias in 𝑅𝑆+ ∗ and 𝑅𝑆− ∗ are identical and this 

bias is only half of that of 𝑅𝑉∗, which does not depend on drift 𝜇 but relies on the 

variance of the median and the covariance between the sample mean and the median. 

The bias ratio of 𝑅𝑆+ ∗ and 𝑅𝑆− ∗ are identical and equal to that of 𝑅𝑉∗, which 

indicates that the bias is equally impactful to the estimation precision of 𝑅𝑆+ ∗, 𝑅𝑆− ∗, 

and 𝑅𝑉∗. As suggested by Laurent and Shi (2020), the exact variance of the median 

can be obtained from the formula of Gupta and Nadarajah (2005) while the 

covariance between the median and mean can be proxied based on their asymptotic 

joint distribution in Ferguson (1999).  

 

 

 

 

2.3.2.  Visualization of the bias 

To illustrate the bias in original and modified realized semivariances derived 

above, this section calculates these biases on some realistic parameter settings of the 

constant drift-diffusion model, Equation (2.3.2), for the sampling interval Δ, the 

volatility 𝜎, and drift 𝜇. The settings of these three parameters are as follows. The 

sampling frequency is 5 minutes, motivated by the fact that realized semivariances are 

generally computed on 5-minute log prices in financial studies (Patton and Sheppard 
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2015; Feunou and Okou 2019; Bollerslev et al. 2020; Bollerslev 2022). For this 

sampling grid, the sampling interval of the returns is Δ = 1/𝑀 = 1/78 to be 

consistent with main trading session 9:30 to 16:00 EST of the SPDR S&P 500 ETF 

(SPY). SPY have been widely utilized to approximate the overall US stock market in 

the literature, and full details on SPY will be introduced in later section 2.6. The 

overnight returns are not considered, following an extensive body of volatility 

estimation literature (Andersen et al. 2007b; Corsi 2009; Duong and Swanson 2015; 

Patton and Sheppard 2015; Bollerslev et al. 2016; Bollerslev et al. 2021; Andersen et 

al. 2023; Caporin 2023). The level of the constant volatility is set to 𝜎 = 0.01, 

identical to around 0.159 annualized volatility, a realistic value for equity returns. The 

drift 𝜇 is allowed to change from −0.1  to 0.1 with increments of 0.01. This range of 

𝜇 is consistent with Laurent and Shi (2020) but further truncated to better fit into my 

SPY data.  

Figure 2.3.1 compares the constant drift of the 5-minute frequency return (left 

panel) with the empirical estimate of such drift of the SPY data (right panel). The 

sample length of SPY data is from 1997 to 2021. As depicted in the left panel, the 

range of drift from −0.1  to 0.1 corresponds to between ±1.5 ×  10−3 at the 5-minute 

frequency. The right panel shows that my setting of drift in the 5-minute return aligns 

with the empirical range of the drift of the 5-minute returns of SPY data, with the drift 

estimated via the daily median of 5-minute returns.  
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Figure 2.3.1. Constant drift and the daily median of returns 

 

Notes: The left panel is the drift in 5-minute returns as a function of my settings of 𝜇 

in Equation (2.3.2) The right panel is the empirical drift in 5-minute returns, with the 

drift estimated by the daily median of 5-minute returns of SPDR S&P 500 ETF 

(SPY). 

 

Using these realistic settings of the parameters Δ, 𝜎, and 𝜇, the biases in the 

positive and negative semivariances are calculated by Proposition 2.3.1. With the 

same settings of parameters, the biases in the modified realized variance and modified 

realized semivariances are computed via Proposition 2.3.2, with the quantities 𝕧(�̂�𝑡) 

and 2𝑐𝑜𝑣 (
1

𝑀
∑ 𝑟𝑡𝑖
𝑀
1 , �̂�𝑡) obtained from Monte Carlo Simulations following Laurent 

and Shi (2020). The simulations of the 5-minute frequency log prices observed for 6.5 

hours are obtained by the following procedures. I first generate the 1-second log price 

based on Equation (2.3.2) for replicating the 6.5h trading session of SPY from 9:30 to 

16:30 EST. Then, I obtain the 5-minute log prices by skipping every 300 observations. 

Finally, a set containing 𝑀 = 78 5-minute returns is obtained by calculating the 

difference between the log prices for the day. The expectation 𝔼 of the argument is 

realized by averaging the estimators computed on 104 repetitions of Monte Carlo 

simulation. 

Figure 2.3.2 depicts the biases in positive and negative realized semivariances, 

𝑅𝑆𝑡
+ and 𝑅𝑆𝑡

−, along with their modified forms 𝑅𝑆𝑡
+ ∗ and 𝑅𝑆𝑡

− ∗, when these 
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estimators are computed on 5-minute returns from the discretized constant drift-

diffusion model, Equation (2.3.2). The upper panels present the biases in 𝑅𝑆𝑡
+, 𝑅𝑆𝑡

−, 

𝑅𝑆𝑡
+ ∗, and 𝑅𝑆𝑡

− ∗, and the biases in the two modified semivariance estimators are 

displayed in the bottom panel for more details. The upper panels visualize the biases 

in the original semivariances 𝑅𝑆𝑡
+ and 𝑅𝑆𝑡

−, along with their modified versions 𝑅𝑆𝑡
+ ∗ 

and 𝑅𝑆𝑡
− ∗.  

Figure 2.3.2. The finite sample bias in positive realized semivariance, negative 

realized semivariance, modified positive realized semivariance, and modified negative 

realized semivariance under the constant drift-diffusion process 

 

Notes: This figure depicts the finite sample bias in the positive realized semivariance 

(𝑅𝑆𝑡
+), negative realized semivariance (𝑅𝑆𝑡

−), modified positive realized semivariance 

(𝑅𝑆𝑡
+ ∗), and modified negative realized semivariance (𝑅𝑆𝑡

− ∗) under the constant drift-

diffusion process, Equation (2.3.2). The biases of 𝑅𝑆𝑡
+ and 𝑅𝑆𝑡

− are calculated by 

Proposition 2.3.1 with parameter settings introduced in the earlier paragraphs of 

section 2.3.2 while the biases in 𝑅𝑆𝑡
+ ∗ and 𝑅𝑆𝑡

− ∗ are computed by Proposition 2.3.2 

with these parameters using simulated log prices from the constant drift-diffusion 

model, Equation (2.3.2). 
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As in Corollary 2.3.2, the bias in the original semivariance is positive when the 

semivariance and drift share the same sign. When the signs of the drift and 

semivariance differ, the biases in both semivariances are negative. As the drift moves 

away from zero, the bias of the semivariances becomes larger in size, but this increase 

is of a sharper slope when the sign of the drift is the same with that of the 

semivariance. The upper two panels of Figure 2.3.2 also show that the biases in the 

modified semivariances 𝑅𝑆𝑡
+ ∗ and 𝑅𝑆𝑡

− ∗, displayed as the dashed lines, are 

indistinguishable from zero. These biases are again presented in the lower two panels 

for more details. As the results show, the biases of 𝑅𝑆𝑡
+ ∗ and 𝑅𝑆𝑡

− ∗ are negative. The 

order of magnitude is 10−7, which is much smaller than that of the bias of the original 

semivariances (10−4), suggesting a significantly better estimation performance of the 

modified semivariances in the presence of a nonzero drift.  

The results shown in Figure 2.3.2 are based on the sampling frequency of 5 

minutes, with 𝛥 = 1/78. As shown by Propositions 2.3.1 and 2.3.2, the biases of 

semivariances are also a function of 𝛥. How do the biases vary with 𝛥? To explore the 

relationship between 𝛥 with the biases of the semivariances, Figure 2.3.3 calculates 

the biases in 𝑅𝑆𝑡
+, 𝑅𝑆𝑡

−, 𝑅𝑆𝑡
+ ∗, and 𝑅𝑆𝑡

− ∗ for a smaller sampling frequency 𝛥 =

1/390, consistent with the 1-minute resolution for the main trading session 9:30 to 

16:00 EST of SPY, with all other parameters in the constant drift-diffusion model 

unchanged. To facilitate comparison, the Y-axis of the four panels of Figure 2.3.3 is 

the same as that of the panels of Figure 2.3.2. As the results show, the biases in 𝑅𝑆𝑡
+, 

𝑅𝑆𝑡
−, 𝑅𝑆𝑡

+ ∗, and 𝑅𝑆𝑡
− ∗  for 𝛥 = 1/390 is systematically smaller in size than those for 

𝛥 = 1/78 in Figure 2.3.2, respectively, suggesting that the biases in both 

semivariances and modified semivariances may be positively correlated with the 
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sampling frequency. Laurent and Shi (2020) also find a positive relationship between 

the sampling frequency with the biases in realized variance and bipower variation, 

together with their modified versions. 

 

Figure 2.3.3. The finite sample bias in positive realized semivariance, negative 

realized semivariance, modified positive realized semivariance, and modified negative 

realized semivariance under the constant drift-diffusion process for 1-minute 

frequency 𝛥 = 1/390 

 

 

Notes: This figure depicts the finite sample bias in the positive realized semivariance 

(𝑅𝑆𝑡
+), negative realized semivariance (𝑅𝑆𝑡

−), modified positive realized semivariance 

(𝑅𝑆𝑡
+ ∗), and modified negative realized semivariance (𝑅𝑆𝑡

− ∗) under the constant drift-

diffusion process, Equation (2.3.2). The biases of 𝑅𝑆𝑡
+ and 𝑅𝑆𝑡

− are calculated by 

Proposition 2.3.1 with parameter settings introduced in the earlier paragraphs of 

section 2.3.2, except that 𝛥 = 1/390, and the biases in 𝑅𝑆𝑡
+ ∗ and 𝑅𝑆𝑡

− ∗ are computed 

by Proposition 2.3.2 with these parameters using simulated log prices from the 

constant drift-diffusion model, Equation (2.3.2).  
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As mentioned, the literature has investigated the impact of a nonzero drift on the 

estimation performance of other volatility estimators including realized variance and 

bipower variation, together with their modified versions (Laurent and Shi 2020). To 

help assess the inaccuracy of semivariances due to nonzero drifts and the 

effectiveness of the modified semivariances more broadly, I therefore also consider 

how impactful the bias in these semivariances is compared to that in those realized 

variance and bipower variations. As discussed previously in section 2.2, the 

asymptotic theories show that the semivariances converges to the different amounts of 

volatility from realized variance and bipower variations. For fairness purposes, all 

comparisons are based on the bias ratio measure, which describes the proportion of 

the bias in each estimator due to a nonzero drift.  

The bias ratio of semivariances, realized variance, and bipower variations under 

the constant drift-diffusion model, Equation (2.3.2), is described as follows. The bias 

ratio of the positive and negative semivariances is obtained by Proposition 2.3.1. The 

bias ratio of the realized variance is computed by Equation (2.3.9) while the bias ratio 

of the realized semivariances is from Proposition 2.3.1. The bias ratio of the bipower 

variation is calculated via the following Equation (2.3.16), proposed by Laurent and 

Shi (2020), 

 

𝔼{[𝐵𝑉𝑡 −∫ 𝜎s
2𝑑𝑠

𝑡

𝑡−1

] ∫ 𝜎s
2𝑑𝑠

𝑡

𝑡−1

 ⁄ }

= exp (−
𝜇2𝛥

𝜎2
) +

𝜋

2

𝜇2𝛥

𝜎2
[1 − 2Φ(−

𝜇√Δ

𝜎
)]

2

+
𝜇√2𝜋√Δ

𝜎
exp (−

𝜇2𝛥

2𝜎2
) [1 − 2Φ(−

𝜇√Δ

𝜎
)] − 1. 

(2.3.19) 
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Since there is no exact formula for the bias ratio of the modified bipower variation 

(Laurent and Shi 2020), I obtain it from the above Monte Carlo simulations. The bias 

ratios of the modified realized variance and modified realized semivariances are 

calculated by Proposition 2.3.2 using simulations. For comparison purposes, all these 

different volatility estimators are calculated or simulated under the same settings of 

the parameters including the sampling interval Δ, the level of volatility 𝜎, and the 

range of drift 𝜇.   

The following Figure 2.3.4 depicts the bias ratios of realized semivariances, 

realized variance, and bipower variation, along with their modified forms for 5-

minute returns from the discretized constant drift-diffusion model, Equation (2.3.2). 

The upper panels visualize the bias ratios of the original semivariances 𝑅𝑆+ and 𝑅𝑆−, 

and the modified semivariances 𝑅𝑆+ ∗ and 𝑅𝑆− ∗. The lower panels show the bias 

ratios of 𝑅𝑉 and 𝐵𝑉, along with their modified versions 𝑅𝑉∗ and 𝐵𝑉∗. The bias ratio 

of these semivariances equals the bias relative to one-half integrated variation 

(0.5𝜎2 = 0.5 × 0.012), suggesting the bias ratio is just a scaled version of the bias. 

Thus, it is not surprising that the bias ratio of semivariances exhibits the same pattern 

as the bias in semivariances reported in the upper panels of Figure 2.3.1. The bias 

ratios of 𝑅𝑉, 𝐵𝑉, 𝑅𝑉∗ and 𝐵𝑉∗ estimators are consistent with the results by Laurent 

and Shi (2020): when drift deviates from zero, both 𝑅𝑉 and 𝐵𝑉 are upward biased, 

and the bias ratio of 𝑅𝑉∗ and 𝐵𝑉∗ are much smaller than that of 𝑅𝑉 and 𝐵𝑉, 

respectively. I also find that the bias ratio of 𝐵𝑉 due to a nonzero drift appears to be 

slightly larger than that of the 𝑅𝑉, which is similar to Laurent and Shi (2020). 
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Figure 2.3.4. The finite sample bias ratio of realized semivariances, realized variance, 

bipower variation, and their modified versions under the constant drift-diffusion process 

 

Notes: This figure depicts the finite sample bias ratio of the realized measures under a 

constant drift-diffusion process, Equation (2.3.2). The realized measures include positive 

realized semivariance (𝑅𝑆𝑡
+), and negative realized semivariance (𝑅𝑆𝑡

−), realized variance 

(𝑅𝑉𝑡,) and bipower variation (𝐵𝑉𝑡), along with the modified estimators, indicated by 𝑅𝑉𝑡
∗, 

𝐵𝑉𝑡
∗, 𝑅𝑆𝑡

+ ∗, 𝑅𝑆𝑡
− ∗. The bias ratios of 𝑅𝑉𝑡 and 𝐵𝑉𝑡 are calculated by Equations (2.3.9) and 

(2.3.19) while the bias ratios of 𝑅𝑆𝑡
+ and 𝑅𝑆𝑡

− are computed by Proposition 2.3.1. The bias 

ratios of 𝑅𝑉𝑡
∗, 𝑅𝑆𝑡

+ ∗, and 𝑅𝑆𝑡
− ∗ are obtained by Proposition 2.3.2, using simulating the log 

prices from the constant drift-diffusion model, Equation (2.3.2). The bias ratio of 𝐵𝑉𝑡
∗ is 

calculated on simulated log prices from the constant drift-diffusion model, Equation (2.3.2). 

 

As in Corollary 2.3.2, the bias ratio of the semivariance is greater than zero if the 

semivariance and drift 𝜇 are equal in sign. For example, when 𝜇 is positive the bias 

ratio of the positive semivariance 𝑅𝑆+ is larger than zero, and when 𝜇 is negative the 

bias ratio of the negative semivariance 𝑅𝑆𝑡
− is larger than zero. When 𝜇 reaches its 

maximum (𝜇 = 0.1), the bias ratio of 𝑅𝑆𝑡
+ is larger than those of 𝑅𝑉𝑡 and 𝐵𝑉𝑡, and 

when 𝜇 equals its minimum the bias ratio of 𝑅𝑆𝑡
− is larger than those of 𝑅𝑉𝑡 and 𝐵𝑉𝑡. 
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This corroborates my former intuition that when the signs of semivariance and drift 

are the same and the drift size is large, the semivariance is almost identical to 𝑅𝑉𝑡 thus 

overestimating the one-half integrated variation by a greater ratio than 𝑅𝑉𝑡. 

Additionally, it can also be observed that when the semivariance and drift differ in 

signs, the bias of semivariance is negative. The bias ratio of 𝑅𝑆𝑡
+ and 𝑅𝑆𝑡

− approaches 

−100% when 𝜇 reaches its most negative and positive magnitudes, respectively, 

which supports my previous intuition that when the signs of semivariance and drift 

are not equal, the semivariance can be close to zero when the drift is large thus 

underestimating the one-half integrated variation by almost one hundred percent. 

However, when the bias ratio of 𝑅𝑆𝑡
+ and 𝑅𝑆𝑡

− is getting −100%, the bias ratio of 

both 𝑅𝑉𝑡 and 𝐵𝑉𝑡 exceed 100%, suggesting that when the signs of the drift and 

semivariance are equal and the drift size is large, the biases in realized variance and 

bipower variation can be more impactful than in semivariances. Comparing the 

positive semivariance 𝑅𝑆𝑡
+ with the negative counterpart 𝑅𝑆𝑡

−, the biases of these two 

estimators appear to be symmetric, which is consistent with Corollary 2.3.4.  

From the visual observation of Figure 2.3.4, it is not straightforward to rank the 

impacts of drifts on different estimators for all magnitude of drift considered. To 

highlight the generality, I compare the bias ratio of the original semivariances (𝑅𝑆𝑡
+ 

and 𝑅𝑆𝑡
−) with those of the original realized variance and bipower variation (𝑅𝑉𝑡 and 

𝐵𝑉𝑡) across all drift levels considered. The bias ratio of 𝑅𝑆𝑡
+ and 𝑅𝑆𝑡

− can be negative 

and positive while the bias ratio of 𝑅𝑉𝑡 or 𝐵𝑉𝑡 are non-negative. To facilitate 

comparison, I consider the absolute bias ratios of 𝑅𝑆𝑡
+ and 𝑅𝑆𝑡

− and calculate the 

difference between the absolute bias ratio of that semivariance with the bias ratio of 

𝑅𝑉𝑡 or 𝐵𝑉𝑡. A positive difference indicates that the drift has a greater impact on the 

semivariance than 𝑅𝑉𝑡 or 𝐵𝑉𝑡.  
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Figure 2.3.5 presents the difference between semivariances with 𝑅𝑉𝑡 or 𝐵𝑉𝑡 in 

terms of the bias ratio. Panel (1) shows the bias ratio difference between 𝑅𝑆𝑡
+ and 

𝑅𝑉𝑡, indicated by |𝔼 [(𝑅𝑆𝑡
+ −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1
)
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1
⁄ ]| −

𝔼 [(𝑅𝑉𝑡 − ∫ 𝜎s
2𝑑𝑠

𝑡

𝑡−1
) ∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1
⁄ ]. Panel (2) depicts the difference between 𝑅𝑆− and 

𝑅𝑉, indicated by |𝔼 [(𝑅𝑆𝑡
− −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1
)
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1
⁄ ]| −

𝔼 [(𝑅𝑉𝑡 − ∫ 𝜎s
2𝑑𝑠

𝑡

𝑡−1
) ∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1
⁄ ]. Panel (3) reports the difference in bias ratio size 

between the 𝑅𝑆+ and 𝐵𝑉, denoted by |𝔼 [(𝑅𝑆𝑡
+ −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1
)
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1
⁄ ]| −

𝔼 [(𝐵𝑉𝑡 − ∫ 𝜎s
2𝑑𝑠

𝑡

𝑡−1
) ∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1
⁄ ]. Panel (4) presents the difference in bias ratio size 

between the 𝑅𝑆− and 𝐵𝑉, denoted by |𝔼 [(𝑅𝑆𝑡
− −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1
)
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1
⁄ ]| −

𝔼 [(𝐵𝑉𝑡 − ∫ 𝜎s
2𝑑𝑠

𝑡

𝑡−1
) ∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1
⁄ ]. When the drift 𝜇 > 0, the bias ratio difference 

between 𝑅𝑆+ and 𝑅𝑉 is systematically positive, which is consistent with Corollary 

2.3.2 that the bias ratio of semivariance exceeds that of 𝑅𝑉𝑡 if the sign of the 

semivariance and drift is positive. When 𝜇 < 0, this bias ratio difference is positive 

except for some extreme negative drifts. The extreme cases of the drift are not 

common as can be seen in the right panel of Figure 2.3.1, indicating that for the 

realistic range of negative drift considered, the drift’s impact on the positive 

semivariance 𝑅𝑆𝑡
+ tends to be larger than that of 𝑅𝑉𝑡. For 𝜇 < 0, the bias ratio 

difference between 𝑅𝑆𝑡
− and 𝑅𝑉𝑡 is systematically positive, which corroborates 

Corollary 2.3.3, which states that the drift has a greater impact on negative 

semivariance than realized variance if the drift is negative. For 𝜇 > 0, this difference, 

for some exceptions in the existence of the extremely positive 𝜇, is overwhelmingly 

larger than zero, and extremely positive 𝜇 is rare as can be observed from the right 

panel of Figure 2.3.1. This suggests that the bias in the negative semivariance due to 
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nonzero drift is often more influential than that in realized variance even when the 

drift is positive. 

Figure 2.3.5. Comparison of bias ratios between realized semivariances and realized variance 

under the constant drift-diffusion model 

 
Notes: Panel (1) of Figure 2.3.3 shows the difference between the absolute bias ratio of 𝑅𝑆+ 

and the bias ratio of 𝑅𝑉, |𝔼 [(𝑅𝑆𝑡
+ −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1
)
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1
⁄ ]| −

𝔼 [(𝑅𝑉𝑡 − ∫ 𝜎s
2𝑑𝑠

𝑡

𝑡−1
) ∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1
⁄ ]. Panel (2) depicts the difference between 𝑅𝑆− and 𝑅𝑉 for 

the bias ratio size, |𝔼 [(𝑅𝑆𝑡
− −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1
)
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1
⁄ ]| −

𝔼 [(𝑅𝑉𝑡 − ∫ 𝜎s
2𝑑𝑠

𝑡

𝑡−1
) ∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1
⁄ ]. Panel (3) reports the difference in bias ratio size between 

the 𝑅𝑆+ and 𝐵𝑉, |𝔼 [(𝑅𝑆𝑡
+ −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1
)
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1
⁄ ]| −

𝔼 [(𝐵𝑉𝑡 − ∫ 𝜎s
2𝑑𝑠

𝑡

𝑡−1
) ∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1
⁄ ]. Panel (4) presents the difference in bias ratio size between 

the 𝑅𝑆− and 𝐵𝑉 |𝔼 [(𝑅𝑆𝑡
− −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1
)
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1
⁄ ]| −

𝔼 [(𝐵𝑉𝑡 − ∫ 𝜎s
2𝑑𝑠

𝑡

𝑡−1
) ∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1
⁄ ]. 

 

The lower two panels show the bias ratio differences between semivariances and 

bipower variation (𝐵𝑉𝑡). The patterns of these bias ratio discrepancies are very similar 

to those reported in the upper panels. Again, when drift and semivariance have the 

same sign (e.g. 𝑅𝑆𝑡
− in the presence of 𝜇 < 0), the bias ratio difference is 

systematically positive. If the signs of the drift and the semivariance are not equal 
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(e.g. 𝑅𝑆𝑡
− with 𝜇 > 0), the bias ratio is also positive, except for the extreme values of 

the drift. These results imply that a nonzero drift generally influences the estimation 

of semivariances more dramatically than that of bipower variation. 

The bias ratios of the modified estimators reported in Figure 2.3.4 are visually 

indistinguishable from zero, and these measures include the modified realized 

variance 𝑅𝑉𝑡
∗, modified bipower variation 𝐵𝑉𝑡

∗, modified positive realized 

semivariance 𝑅𝑆𝑡
+ ∗, and modified negative realized semivariance 𝑅𝑆𝑡

− ∗. To see these 

biases in more detail, I plot them in the separate Figure 2.3.6 with appropriate scales 

of the Y-axis. The bias ratios of 𝑅𝑉𝑡
∗, 𝑅𝑆𝑡

+ ∗, and 𝑅𝑆𝑡
− ∗ are equal according to 

Proposition 2.3.2 and thus are reported together in Panel (1) while the bias of 𝐵𝑉𝑡
∗ is 

presented in Panel (2). Consistent with Laurent and Shi (2020), the bias ratios of 𝑅𝑉𝑡
∗ 

and 𝐵𝑉𝑡
∗ are systemically negative and the sizes of both bias ratios are below 0.01 for 

almost all of these drift levels. The order of magnitude of the bias ratio (1 × 10−2) of 

𝑅𝑆𝑡
+ ∗ and 𝑅𝑆𝑡

− ∗ estimators are much smaller relative to the order of magnitude of the 

bias ratio of their original versions (1 × 100) reported in Figure 2.3.4, indicating that 

the estimation performance of the modified semivariances is much better than their 

original versions. 

Turning to the results of the modified realized semivariances reported as the blue 

dashed line in the lower Panels (3) and (4), I observe that the bias ratio of the 

modified semivariances is much smaller than that of their original versions for all of 

these nonzero drifts. This indicates that the modified realized semivariance has much 

better estimation performance. 
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Figure 2.3.6. The bias ratios of modified semivariances, realized variance, and 

bipower variation under the constant drift-diffusion process 

 

 

Notes: This figure reports the bias ratio of the modified realized variance (𝑅𝑉𝑡
∗), 

modified positive realized semivariance (𝑅𝑆𝑡
+ ∗), and modified negative realized 

semivariance (𝑅𝑆𝑡
− ∗) are equal and thus are reported together in Panel (1), with the 

bias of the modified Bipower variation (𝐵𝑉𝑡
∗) separately reported in Panel (2). The 

bias ratio of 𝑅𝑆𝑡
+ ∗, 𝑅𝑆𝑡

− ∗, and 𝑅𝑉𝑡
∗ is calculated by Proposition 2.3.2 while the bias of 

𝐵𝑉𝑡
∗ is obtained by the simulations, with the parameters setting of the calculations and 

simulations introduced in the earlier paragraphs of section 2.3.2. 

 

 

2.3.3.  The bias of realized semivariances in the presence of jumps 

Evidence of stochastic skewness and kurtosis of asset return distributions has led 

to the development of models with jumps to better capture these dynamics. Jumps are 

larger events than what can be explained by the classic drift-diffusion process, and 

jumps are found to be rare but a stylized fact of asset prices in financial markets 

(Huang and Tauchen 2005; Andersen et al. 2007b; Tauchen and Zhou 2011; 

Christensen et al. 2014; Bajgrowicz et al. 2016; Kolokolov and Renò 2023). The 

limiting results of Barndorff-Nielsen et al. (2008) show that the positive and negative 

semivariance estimators also capture the sum of the squared positive and negative 

jumps, respectively, in addition to one-half of the integrated variation. In the presence 

of jumps, is the impact of nonzero drift still a problem for the estimation performance 

of semivariances? Laurent and Shi (2020) show that the median of intraday returns 
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could be biased due to the presence of jumps although they show that this bias is 

small. This suggests that the estimation accuracy of the modified semivariances, 

which depends on the median estimator, could be influenced. For this case, do the 

modified semivariances still exhibit more satisfactory estimation performance than 

the original semivariances for a nonzero drift?  

To explore these research questions, I consider the constant drift-diffusion model, 

Equation (2.3.1) with 𝑘 additive jumps, 

 

𝑝𝑡𝑖 = 𝑝𝑡𝑖−1 + 𝜇Δ + 𝜎√Δℇ𝑡𝑖 +∑𝜙𝑡𝑖
𝑗
𝐼𝑡𝑖
𝑗

𝑘

𝑗=1

 , 
(2.3.20) 

where 𝐼𝑡𝑖
𝑗
 is a dummy variable that randomly assigns the occurrence of the 𝑗th jump 

with corresponding jump size 𝜙𝑡𝑖
𝑗

, and 𝑘 indicates the number of jumps. Incorporating 

additive jumps into the drift-diffusion model is first proposed by Merton (1976) and 

has been widely applied in the recent literature (Huang and Tauchen 2005; Barndorff-

Nielsen and Shephard 2006; Corsi et al. 2010; Andersen et al. 2012; Gilder et al. 

2014; Laurent and Shi 2020). I consider five scenarios of jumps for Equation (2.3.14), 

including (1) one positive jump with 𝜙𝑡𝑖
1 = 0.6𝜎; (2) one negative jump with 𝜙𝑡𝑖

1 =

−0.6𝜎; (3) two jumps with 𝜙𝑡𝑖
𝑗
= 0.6𝜎 for 𝑗 = 1,2; (4) two jumps with 𝜙𝑡𝑖

𝑗
= −0.6𝜎 

for 𝑗 = 1,2; (5) two jumps with 𝜙𝑡𝑖
1 = 0.6𝜎 and 𝜙𝑡𝑖

2 = −0.6𝜎. For these five cases, 

the size of all jumps is fixed at 0.6 of the constant volatility as in Laurent and Shi 

(2020). This magnitude of jumps indicates that jumps contribute approximately 26% 

to the Quadratic Variation on the day of a jump arrival.  

To check the robustness of my results to the changes in the jump size, I also allow 

the jump magnitude to vary, with the results discussed in the latter parts of this 
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section, and this has not yet been done by Laurent and Shi (2020). Since 

semivariances capture jumps, the component (one-half integrated variation plus 

squared positive or negative jumps) that semivariances attempt to estimate varies over 

these different jump scenarios. For the fairness of comparing the estimation accuracy 

of semivariances across these different jump cases, I consider the bias ratio measure, 

which describes the proportion of the bias in semivariances. The bias ratio also allows 

us to quickly compare the impacts of drift on the estimation performance between 

original and modified semivariances, which is the primary interest of this chapter. 

Given various cases of additive jumps discussed, in this section the bias ratios of 

original and modified realized semivariances (𝑅𝑆𝑡
+, 𝑅𝑆𝑡

−, 𝑅𝑆𝑡
+ ∗ and 𝑅𝑆𝑡

− ∗) are 

calculated by Monte Carlo simulations of Equation (2.3.14), with the same parameters 

as section 2.3.2. 

Table 2.3.1 reports the estimation biases of the positive realized semivariance 

𝑅𝑆𝑡
+ and its modified version 𝑅𝑆𝑡

+ ∗ for the five scenarios of jumps, along with the 

results for a no jump case attached to the top of the table for comparison. The biases 

of semivariances in the absence of jumps are copied from those reported in Figure 

2.3.3. Within each jump scenario, the drift 𝜇 is allowed to change from -0.1 to 0.1. 

The top panel reports the bias ratios of 𝑅𝑆𝑡
+ in the absence of jumps, which have been 

depicted in Figure 2.3.3. But additional findings could be obtained from the number 

of presentations here. The bias ratio of 𝑅𝑆𝑡
+ is larger in degree in the presence of 

positive drift than that in the presence of equal-sized negative drift. A positive drift 

and an equal-sized negative drift result in identical drift bias in each 5-minute return, 

thus shaping the same drift bias in 𝑅𝑉𝑡.  
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Table 2.3.1. The estimation biases of the positive realized semivariances for different sizes 

of drifts and across various cases of jumps. 

 

Notes: This table compares the bias ratio between positive realized semivariance 𝑅𝑆𝑡
+ with 

its modified version 𝑅𝑆𝑡
+ ∗ for a range of drifts and under five scenarios of jumps. The bias 

ratios of 𝑅𝑆𝑡
+ and 𝑅𝑆𝑡

+ ∗ are defined by, 

{[𝑅𝑆𝑡
+ −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

− ∑ 𝜅𝑠
2𝐼𝜅𝑠>0

(𝑡−1)≤𝑠≤𝑡

] [
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

+ ∑ 𝜅𝑠
2𝐼𝜅𝑠>0

(𝑡−1)≤𝑠≤𝑡

]⁄ } 

{[𝑅𝑆𝑡
+ ∗ −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

− ∑ 𝜅𝑠
2𝐼𝜅𝑠>0

(𝑡−1)≤𝑠≤𝑡

] [
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

+ ∑ 𝜅𝑠
2𝐼𝜅𝑠>0

(𝑡−1)≤𝑠≤𝑡

]⁄ }, 

respectively. The biases are calculated on the log prices simulated from the constant drift-

diffusion model with additive jumps, Equation (2.3.20).  
 Drift 𝜇 -0.1 -0.075 -0.05 -0.025 0 0.025 0.05 0.075 0.1 

No jump 

 𝑅𝑆𝑡
+ -0.888 -0.791 -0.630 -0.378 0.000 0.538 1.271 2.234 3.452 

 𝑅𝑆𝑡
+ ∗ -0.006 -0.006 -0.006 -0.006 0.000 -0.006 -0.006 -0.006 -0.006 

(1) One jump with 𝜙𝑡𝑖
1 = 0.6𝜎 

 𝑅𝑆𝑡
+ -0.663 -0.571 -0.440 -0.254 0.006 0.360 0.829 1.432 2.184 

 𝑅𝑆𝑡
+ ∗ -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 

(2) One jump with 𝜙𝑡𝑖
1 = −0.6𝜎         

 𝑅𝑆𝑡
+ -0.890 -0.795 -0.636 -0.387 -0.015 0.515 1.239 2.188 3.390 

 𝑅𝑆𝑡
+ ∗ 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 

(3) Two jumps with 𝜙𝑡𝑖
𝑗
= 0.6𝜎 for 𝑗 = 1,2 

 𝑅𝑆𝑡
+ -0.563 -0.473 -0.354 -0.195 0.017 0.296 0.657 1.112 1.673 

 𝑅𝑆𝑡
+ ∗ -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 

(4) Two jumps with 𝜙𝑡𝑖
𝑗
= −0.6𝜎 for 𝑗 = 1,2 

 𝑅𝑆𝑡
+ -0.892 -0.797 -0.641 -0.395 -0.027 0.496 1.211 2.147 3.334 

 𝑅𝑆𝑡
+ ∗ 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 

(5) Two jumps with 𝜙𝑡𝑖
1 = 0.6𝜎 and 𝜙𝑡𝑖

2 = −0.6𝜎 

 𝑅𝑆𝑡
+ -0.667 -0.576 -0.447 -0.264 -0.007 0.343 0.806 1.401 2.143 

 𝑅𝑆𝑡
+ ∗ -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 

 

But why is it the drift with the same size and with opposite signs causes 

asymmetric bias in 𝑅𝑆𝑡
+?  The intuition behind this asymmetry is mainly due to the 

finite sample restriction. For the 5-minute frequency finite sample, the overall number 

of returns of one trading day is 𝑀 = 78. For both positive and negative drift, 𝑅𝑉𝑡 is 

always calculated on all intraday returns. But a positive linear drift makes us pick up 

more than one-half of the overall number of returns 𝑀 2⁄ = 39 for calculating 𝑅𝑆𝑡
+ 
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while a negative linear drift lets us use less 𝑀 2⁄ . Even if the positive and negative 

drift have the same size, the positive drift causes a larger bias in 𝑅𝑆𝑡
+ as it includes 

more returns for calculating 𝑅𝑆𝑡
+. It is the unbalanced use of the number of intraday 

returns (due to a nonzero drift) that causes the asymmetric bias in 𝑅𝑆𝑡
+. 

Scenario (1) reports the bias ratios of 𝑅𝑆𝑡
+ and 𝑅𝑆𝑡

+ ∗ in the presence of a positive 

jump. As Panel (1) shows, 𝑅𝑆𝑡
+ is negatively biased when 𝜇 < 0 and is positively 

biased when 𝜇 > 0. Comparing 𝑅𝑆𝑡
+ with 𝑅𝑆𝑡

+ ∗, the bias ratio of the latter is 

systematically much smaller in size for a nonzero drift. It should also be noted that the 

bias of 𝑅𝑆𝑡
+ ∗ is -0.013 for all of these drifts, which is a remarkably small ratio and 

thus suggests the impact of drift on the estimation accuracy of 𝑅𝑆𝑡
+ ∗ is very minor.  

Comparing the scenario (1) of jumps with that of no jump, in the presence of a 

nonzero drift, the bias ratio of 𝑅𝑆𝑡
+ with no jump is systematically larger in size than 

that of 𝑅𝑆𝑡
+ with one positive jump, scenario (1). This may be because the presence of 

a positive jump increases the component that 𝑅𝑆𝑡
+ attempts to measure, thus reducing 

the proportion of the bias. When drift deviates from zero, the bias ratio of 𝑅𝑆𝑡
+ ∗ with 

one positive jump is systematically more negative than that of 𝑅𝑆𝑡
+ ∗ without jumps, 

which may be because the median is no longer an unbiased estimator of drift but 

upward biased by the positive jump (Laurent and Shi 2020). Using an upwardly 

biased drift estimator indicates that we remove an amount that is larger than the actual 

drift size from each intraday return when drift is positive, and we reduce an amount 

that is smaller than the actual drift size when drift is negative. This implies that 

whenever drift is positive or negative, there will remain a negative drift for every 

intraday return. This negative drift in the returns might cause additional negative bias 

in 𝑅𝑆𝑡
+ ∗ (recall from Figure 2.3.2 that the bias in 𝑅𝑆𝑡

+ ∗ is already negative when there 

is no jump for both positive and negative drift). However, this additional negative 
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drift bias is very small, comparing 𝑅𝑆𝑡
+ ∗ without jumps and with one positive jump, 

the bias ratio only becomes slightly more negative, with 0.7% difference. 

Scenario (2) assesses the biases of the positive semivariances 𝑅𝑆𝑡
+ in the presence 

of a negative jump. With one negative jump, both 𝑅𝑆𝑡
+ and 𝑅𝑆𝑡

+ ∗ attempt to estimate 

one-half integrated variation only. 𝑅𝑆𝑡
+ again, contains a downward bias if drift is 

negative, and an upward bias if drift is positive. Compared to 𝑅𝑆𝑡
+, the bias of 𝑅𝑆𝑡

+ ∗ 

again has a much lower size across all of these nonzero drifts. Comparing scenario (2) 

with the scenario of no jumps, the bias ratios of 𝑅𝑆𝑡
+ are very similar, which may be 

explained by noting that 𝑅𝑆𝑡
+ consistently attempts to estimate one-half integrated 

variation for both cases. A difference is that the sign of the bias ratio of 𝑅𝑆𝑡
+ ∗ in 

scenario (2) tends to be positive while that in the top case is negative.  

The reason why 𝑅𝑆𝑡
+ ∗ in scenario (2) overestimates the one-half integrated 

variation when this negative jump occurs may be because the median underestimates 

the drift by negative jumps (Laurent and Shi 2020). Applying a downward biased drift 

estimator implies that we remove an amount that is smaller than the actual size of drift 

from each return when the drift is positive, and we over-remove the negative drift in 

each return. Consequently, there will always be a positive drift left, thus resulting in 

an expected positive bias in 𝑅𝑆𝑡
+ ∗. However, this positive drift bias is minor as the 

bias ratio of 𝑅𝑆𝑡
+ ∗ in scenario (2) is only 0.7%, indicating a very high level of the 

estimation accuracy of 𝑅𝑆𝑡
+ ∗. Panels (3), (4) and (5) compare the biases between 𝑅𝑆𝑡

+ 

and 𝑅𝑆𝑡
+ ∗ for two positive small jumps, two negative small jumps, and two small 

jumps with opposite signs, respectively. Similar to the results in above (2) and (3), the 

bias ratio of 𝑅𝑆𝑡
+ for any cases related to positive jump(s) becomes smaller in size 

compared to that without jumps, and the bias ratio of 𝑅𝑆𝑡
+ in the presence of two 

negative jumps are comparable to that without jumps. Still, the bias ratio of 𝑅𝑆𝑡
+ ∗ is 
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much smaller than that of 𝑅𝑆𝑡
+ when drift is not zero. Also, the bias of 𝑅𝑆𝑡

+ ∗ has only 

an ignorable impact on its estimation accuracy for all drifts considered, although the 

median overestimates drift in the presence of positive jumps and underestimates drift 

when negative jumps occur.   

Table 2.3.2 evaluates the bias ratios of negative realized semivariances 𝑅𝑆𝑡
− and 

𝑅𝑆𝑡
− ∗, which attempts to estimate the one-half integrated variation plus the sum of 

squared negative jumps. Panels (1) to (5) of this table contain the same five scenarios 

of jumps as those in Table 2.3.1 above. 

Table 2.3.2. The estimation bias ratios of negative realized semivariances for different sizes 

of drifts across various cases of jumps. 

 

Notes: This table compares the estimation bias ratios of negative realized semivariance 

𝑅𝑆𝑡
− with its modified version 𝑅𝑆𝑡

− ∗ for the same scenarios of drifts and jumps as in Table 

2.3.1. The biases are calculated on the log prices simulated from the constant drift-diffusion 

model with additive jumps, Equation (2.3.20).  
 Drift 𝜇 -0.1 -0.075 -0.05 -0.025 0 0.025 0.05 0.075 0.1 

(1) One jump with 𝜙𝑡𝑖
1 = 0.6𝜎 

 𝑅𝑆𝑡
− 3.398 2.195 1.244 0.519 -0.012 -0.385 -0.635 -0.794 -0.890 

 𝑅𝑆𝑡
− ∗ 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 

(2) One jump with 𝜙𝑡𝑖
1 = −0.6𝜎 

 𝑅𝑆𝑡
− 2.189 1.436 0.832 0.363 0.008 -0.253 -0.439 -0.570 -0.662 

 𝑅𝑆𝑡
− ∗ -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 

(3) Two jumps with 𝜙𝑡𝑖
𝑗
= 0.6𝜎 for 𝑗 = 1,2 

 𝑅𝑆𝑡
− 3.342 2.153 1.215 0.500 -0.025 -0.393 -0.640 -0.797 -0.891 

 𝑅𝑆𝑡
− ∗ 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 

(4) Two jumps with 𝜙𝑡𝑖
𝑗
= −0.6𝜎 for 𝑗 = 1,2 

 𝑅𝑆𝑡
− 1.679 1.117 0.661 0.299 0.020 -0.193 -0.352 -0.471 -0.561 

 𝑅𝑆𝑡
− ∗ -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 

(5) Two jumps with 𝜙𝑡𝑖
1 = 0.6𝜎 and 𝜙𝑡𝑖

2 = −0.6𝜎 

 𝑅𝑆𝑡
− 2.149 1.406 0.810 0.346 -0.004 -0.261 -0.445 -0.575 -0.666 

 𝑅𝑆𝑡
− ∗ -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 

 

Panel (1) of Table 2.3.2 compares the negative semivariance 𝑅𝑆𝑡
− with its 

modified version 𝑅𝑆− ∗ for their estimation biases in the case of a positive jump. As 
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the panel shows, 𝑅𝑆𝑡
− is substantially biased for these nonzero drifts in my 

simulations, with a positive bias ratio when 𝜇 < 0 and a negative bias ratio when 𝜇 >

0.  In contrast, the modified estimator 𝑅𝑆𝑡
− ∗ is systematically much more accurate and 

does not vary with these different drift values. The bias of 𝑅𝑆𝑡
− ∗ is positive as the 

median is slightly upwardly biased by the positive jump. This may be interpreted as 

follows. Since the median is upward distorted by the positive jump, the centring 

modification thus overreduces the actual drift from each intraday return. This leaves a 

negative drift and causes a positive bias of 𝑅𝑆𝑡
− ∗ (recall from Figure 2.3.2 that the 

bias of the negative semivariance is positive when the drift is negative). However, this 

bias is small (0.7%) such that it has little influence on the estimation performance of 

𝑅𝑆𝑡
− ∗. For the remaining four jump cases reported in Panels (2)-(5), the bias ratio of 

𝑅𝑆𝑡
− ∗ is always much lower compared to 𝑅𝑆𝑡

− in the presence of the nonzero drifts in 

my simulations. While the median is no longer an unbiased estimator of the drift due 

to the presence of jumps, the size of the bias of 𝑅𝑆𝑡
− ∗ is consistently very small thus 

the bias of the median due to nonzero jumps only has a little effect on the estimation 

precision of 𝑅𝑆𝑡
− ∗. 

The results in Tables 2.3.1 and 2.3.2 for comparing the bias ratios of the original 

realized semivariance estimators with their modified versions rely on one certain size 

of jumps, which equals 0.6 of volatility. To assess the robustness of the results to a 

broader range of jump sizes, I calculate the bias ratios of realized semivariances on 

taking one positive or negative jump in Equation (2.3.20), with its size |𝜙𝑡𝑖
1 | changing 

from √1/19𝜎 ≈ 0.2294𝜎 to √2/3𝜎 ≈ 0.8165𝜎 with an increment of 0.02𝜎. The 

minimum and maximum values in this range correspond to jumps contributing 

approximately 5% (very small jumps) and 40% (very large jumps) to the Quadratic 

Variation on the day of a jump arrival. Allowing one positive or negative jump for one 
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day is motivated by the findings from recent studies that jumps are not common 

(Christensen et al. 2014; Bajgrowicz et al. 2016; Li et al. 2022; Kolokolov and Renò 

2023). For each jump size, I allow drift 𝜇 to vary from -0.1 to 0.1. The remaining 

parameters in Equation (2.3.20) are those used for computing the results in Tables 

2.3.1 and 2.3.2.  

Figure 2.3.7 reports the bias ratio of the realized semivariances and their modified 

versions for various combinations of drift 𝜇 and jump 𝜙𝑡𝑖
1 .  

 

Figure 2.3.7. The bias ratio of realized semivariances for various combinations of drift 

and jump 

  

Notes: Panels (1) and (2) present the bias ratios of positive semivariances (𝑅𝑆𝑡
+ and 𝑅𝑆𝑡

+ ∗) 

for various combinations of the drift 𝜇 and a jump with its size and sign indicated by 𝜙𝑡𝑖
1 . 

Panels (3) and (4) present the bias ratios of negative semivariances (𝑅𝑆𝑡
− and 𝑅𝑆𝑡

− ∗)  for 

various combinations of the drift 𝜇 and a jump with its size equal to 𝜙𝑡𝑖
1 . The biases are 

calculated on the log prices simulated by the constant drift-diffusion model, Equation 

(2.3.20). 

 

The upper panels compare the bias ratio of the positive semivariance 𝑅𝑆𝑡
+ with 

that of its modified version 𝑅𝑆𝑡
+ ∗, with Panel (1) for the case of a positive jump and 
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Panel (2) for the case of a negative jump. Panels (3) and (4) report the comparative 

result between the negative semivariance 𝑅𝑆𝑡
− and its modified form 𝑅𝑆𝑡

− ∗ for a 

positive jump and a negative jump, respectively. The upper two panels show that 

across all of these 𝜙𝑡𝑖
1 > 0 and 𝜙𝑡𝑖

1 < 0, the 𝑅𝑆𝑡
+ is upward biased for 𝜇 > 0 and is 

downward for 𝜇 < 0. In these two panels, throughout the different sizes of the jump 

𝜙𝑡𝑖
1 , the bias ratio of 𝑅𝑆𝑡

+ increases in size nonlinearly as 𝜇 deviates from zero and is 

consistently substantial, especially when 𝜇 is large and positive. The bias ratio of 𝑅𝑆𝑡
+ 

increase with 𝜇 in a deeper slope when 𝜇 > 0 than when 𝜇 < 0. 

It can be observed from Panel (1) that the bias proportion of 𝑅𝑆𝑡
+ for these 

nonzero 𝜇 systematically decreases in magnitude as 𝜙𝑡𝑖
1  increases. This can be 

explained by noting that 𝑅𝑆𝑡
+ estimates the one-half integrated variation plus the sum 

of all squared positive jumps, which increases with the size of the positive jumps. The 

proportion of bias in 𝑅𝑆+ is thus smaller. Meanwhile in Panel (2), the bias of 𝑅𝑆𝑡
+ is 

not sensitive to the changes of the negative 𝜙𝑡𝑖
1  (e.g., the line of 𝜇 = 0.1 is parallel to 

the 𝜙𝑡𝑖
1  axis). This is because 𝑅𝑆𝑡

+ asymptotically converges to the half volatility plus 

the sum of squared positive jumps, which is not related to negative jumps. Comparing 

𝑅𝑆𝑡
+ with the modified estimator 𝑅𝑆𝑡

+ ∗ in Panels (1) and (2), the bias of 𝑅𝑆𝑡
+ ∗ due to 

the existence of a nonzero 𝜇 is much smaller for all of these sizes of the positive 

jump. 

Panels (3) and (4) of Figure 2.3.6 compare the negative realized semivariance 

𝑅𝑆𝑡
− with its modified form 𝑅𝑆𝑡

− ∗ for the same ranges of a drift and a jump (𝜇 and 

𝜙𝑡𝑖
1 ) as those reported in Panels (1) and (2), respectively. As can be seen from Panels 

(3) and (4), the sign of the bias of 𝑅𝑆𝑡
− is opposite to that of 𝜇 for all of these 𝜙𝑡𝑖

1 , and 

the size of the bias of 𝑅𝑆𝑡
− is large, especially if 𝜇 is far below zero. The lower two 
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panels show that the bias ratio of 𝑅𝑆𝑡
− does not change with 𝜙𝑡𝑖

1 > 0 but declines in 

size as 𝜙𝑡𝑖
1  moves from −0.2294𝜎 to −0.8165𝜎. This can be explained by noting that 

the component of 𝑅𝑆𝑡
− attempt to estimate is not affected by positive jumps but grows 

with the magnitude of negative jumps. Comparing the 𝑅𝑆𝑡
− with 𝑅𝑆𝑡

− ∗ in Panels (3) 

and (4), the bias of the latter estimator for nonzero 𝜇 is systematically lower for all 

these 𝜙𝑡𝑖
1 . Overall, based on the findings of Panels (1)-(4) of Figure 2.3.6, it can be 

concluded that the estimation superiority of my modified semivariances over the 

original semivariances in the presence of nonzero drifts and jumps is robust for a 

broad range of the jump sizes, from 5% of Quadratic Variation (very small) to 40% of 

Quadratic Variation (very large).
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2.4. Realized Semivariance estimation for the Ornstein Uhlenbeck 

processes 

The constant drift-diffusion model introduced in section 2.3 is a simplified model 

of returns for facilitating exposition. This model is a special case of the Ornstein 

Uhlenbeck process and follows the same model used by Laurent and Shi (2020). To 

highlight the generality of results of the bias in realized semivariances, this section 

investigates the bias of the semivariances for the log prices that follow the Ornstein 

Uhlenbeck process, which contains more realistic assumptions on the drift and 

volatility processes. I start the analysis in section 2.4.1 without considering a jump 

component in the Ornstein Uhlenbeck model. Then I introduce the estimation 

analyses including jump cases in the subsequent section 2.4.2.  

The linear drift-diffusion process is defined by, 

 

𝑑𝑝𝑡 = 𝜇𝑡𝑑𝑡 + 𝜎𝑡d𝑊𝑡, 0 ≤ 𝑡 ≤ 1,  (2.4.1) 

where the drift coefficient is a linear function of the log prices 𝜇𝑡 = 𝜃𝑝𝑡 with 𝜃 

constant, thus the  drift is time-varying. The diffusion coefficient 𝜎𝑡 follows the 

GARCH(1,1) process of Nelson (Nelson 1991), and 𝑊𝑡 is a standard Brownian 

motion. Since 𝜇𝑡 = 𝜃𝑝𝑡, the drift is not zero on day 𝑡 if both 𝜃 and the initial value of 

the log price of day 𝑡 denoted by 𝑝𝑡0 deviate from zero. Since drift is a linear function 

of the log prices, the Ornstein-Uhlenbeck process can be seen as a linear drift-

diffusion model. The Ornstein-Uhlenbeck process has also been applied extensively 

for volatility estimation and option pricing in the literature (Barndorff‐Nielsen and 

Shephard 2001; Wang and Yu 2016; Laurent and Shi 2020; Laurent et al. 2022). 
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2.4.1.  The bias of realized semivariances 

Laurent and Shi (2020) show that under the Ornstein Uhlenbeck model, the non-

zero linear drift in returns has a similar effect as the constant drift-diffusion model on 

the estimation of both realized variance (𝑅𝑉𝑡) and bipower variation (𝐵𝑉𝑡) estimators: 

both 𝑅𝑉𝑡 and 𝐵𝑉𝑡  are upward biased with if 𝜃 and 𝑝𝑡0 deviates from zero for the 

finite sample data. To mitigate these biases, Laurent and Shi (2020) again suggest 

using the modified realized variance (𝑅𝑉𝑡
∗) and modified bipower variation (𝐵𝑉𝑡

∗) 

defined by Equations (2.3.8) and (2.3.9), which are computed on the intraday returns 

centred by their daily median, �̂�𝑡 = median(𝑟𝑡1 …𝑟𝑡𝑀). They find that for the 

Ornstein-Uhlenbeck process, using the de-median technique reduces the average drift 

over 𝑀 returns of day 𝑡, and this average drift is defined by, 

 

�̅�𝑡 =
1

𝑀
𝑝𝑡0(𝑒

𝜃 − 1), 
(2.4.2) 

where �̅�𝑡 indicates that the average linear drift over day 𝑡, and how �̅�𝑡 changes with 𝜃 

and 𝑝𝑡0, which will be discussed later. The theoretical and simulation results of 

Laurent and Shi (2020) show that 𝑅𝑉𝑡
∗ and 𝐵𝑉𝑡

∗ are much more immune to the 

changes in 𝜃 and 𝑝𝑡0  than their original versions.  

Does a nonzero linear drift have a similar effect to the nonzero constant drift on 

the estimation of realized semivariances? If the bias in realized semivariances for the 

Ornstein-Uhlenbeck process is large, will the modified semivariances have a reduced 

magnitude of bias? This section investigates the impact of a nonzero linear drift on the 

measurement precision of positive and negative semivariances and their modified 

versions, denoted by 𝑅𝑆𝑡
+, 𝑅𝑆𝑡

−, 𝑅𝑆𝑡
+ ∗, and 𝑅𝑆𝑡

− ∗. The exact derivation of the finite 
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sample biases of these semivariances under the linear drift-diffusion process, 

however, is rather complicated and left for future research. This section computes 

these biases via a Monte Carlo simulation study. There is a precedent for this 

approach in the literature. The Monte Carlo approach without technical derivation 

follows Laurent and Shi (2020) to gauge the bias of bipower variations under the 

Ornstein-Uhlenbeck process since the derivation of such bias is also not available due 

to its complexity.  

Additionally, I also replicate the bias of 𝑅𝑉𝑡, 𝑅𝑉𝑡
∗, 𝐵𝑉𝑡, and 𝐵𝑉𝑡

∗ in Laurent and 

Shi (2020). Since the derivation of the biases of 𝐵𝑉𝑡 and 𝐵𝑉𝑡
∗ are unknown, I also 

calculate these biases via simulations. Although the biases of 𝑅𝑉𝑡 and 𝑅𝑉𝑡
∗ are derived 

analytically in Laurent and Shi (2020), I also compute these biases by simulations for 

fair comparison. Furthermore, the simulation results in the chapter are not intended to 

be comprehensive, but rather to reflect a realistic application of the linear drift-

diffusion models. 

As proposed by Laurent and Shi (2020), the simulation of the Ornstein-Uhlenbeck 

process can be conducted by a discrete version of Equation (2.4.1), 

 

𝑝𝑡𝑖 = exp(𝜃Δ𝑀)𝑝𝑡𝑖−1 + 𝜂𝑡𝑖 , (2.4.3) 

where 𝑝𝑡𝑖 is the log price and 𝜂𝑡𝑖  is the diffusive volatility process, which is obtained 

by the Euler discretization of the continuous GARCH(1,1) process of Nelson (1990), 

 

𝜂𝑡𝑖 = 𝜎𝑡𝑖√Δ𝑀𝜖𝑡𝑖 , (2.4.4) 

where 

𝜎𝑡𝑖
2 = 𝜅(𝜔 − 𝜎𝑡𝑖−1

2 )Δ𝑀 + √2𝜆𝜅𝜎𝑡𝑖−1
2 √Δ𝑀𝑣𝑡𝑖 , 



61 

 

with 𝜅 > 0, 𝜔 > 0, and 0 < 𝜆 < 1, and 𝜖 and 𝑣 are two independent standard normal 

random variables. As shown by Andersen and Bollerslev (1998), the unconditional 

variance of this discretized GARCH(1,1) model is 𝔼(𝜎𝑡
2) = 𝜔. Then the expected 

integrated variance or continuous variation from 𝑡 − 1 to 𝑡 is   

 

𝔼(∫ 𝜎s
2

𝑡

𝑡−1

𝑑𝑠) = ∫ 𝔼(𝜎s
2)

𝑡

𝑡−1

𝑑𝑠 = 𝜔. (2.4.5) 

This expected integrated variance will be used for evaluating the estimation accuracy 

of all realized measures in the simulation analysis, including 𝑅𝑆𝑡
+, 𝑅𝑆𝑡

−, 𝑅𝑉𝑡, 𝐵𝑉𝑡, and 

their modified versions, 𝑅𝑆𝑡
+ ∗, 𝑅𝑆𝑡

− ∗, 𝑅𝑉𝑡
∗, and 𝐵𝑉𝑡

∗. 

The parameter settings in Equation (2.4.4) are the same as in Andersen and 

Bollerslev (1998) and Laurent and Shi (2020): 𝜅 = 0.035, 𝜆 = 0.296, 𝜔 = 10−4, the 

initial volatility for the GARCH(1,1) process is set as the unconditional volatility of 

this process (√𝜔), and 𝑊 and 𝐵 are independent standard Brownian motions. I allow 

𝜃 to vary from -0.02 to 0.02 and the initial log price 𝑝𝑡0 to change from 2 to 6. For 

checking if these ranges of 𝑝𝑡0 and 𝜃 are realistic, the left panel of Figure 2.4.1 

depicts the average drift calculated on these 𝑝𝑡0 and 𝜃 based on Equation (2.4.2) 

under 5-minute sampling frequency (𝑀 = 78) while the right panel reports the 

empirical average drift (estimated by the daily median) of the 5-minute returns of the 

real SPY data. Comparing these two panels, the average drifts decided by the 

combinations of 𝑝𝑡0  and 𝜃 defined in my simulation are consistent with the empirical 

average drift observed from the SPY data. This indicates that my simulation settings 

of 𝑝𝑡0 and 𝜃 are practical and realistic for the US stock market. Additionally, similar 

to the simulation of the constant drift-diffusion model in section 2.3, I first simulate 

23,401 (6.5 hours duration) 1-second log prices from Equation (2.4.3), then obtain the 
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5-minute log prices by skipping every 300 observations of the 1-second log prices. 

The simulations are repeated 104 times and the expectation (𝔼) is computed by 

averaging across these repetitions. 

 

Figure 2.4.1. Comparing average drift in the simulation with the daily median of the return of 

SPY 

 

Notes: The left panel shows the range of the average drift �̅�𝑡 of 5-minute returns over one day 

under my simulation settings of 𝜃 and 𝑝𝑡0. This average drift �̅�𝑡 is calculated by Equation 

(2.4.2). The right panel shows the daily median of the 5-minute returns on the SPDR S&P 500 

ETF (SPY) from 1997 to 2021, which estimates a realistic range of the average drift of the 5-

minute returns over a day. 

 

Figure 2.4.2 compares the finite sample bias ratio of realized variance, bipower 

variation, positive semivariance, and negative semivariance 𝑅𝑉𝑡, 𝐵𝑉𝑡, 𝑅𝑆𝑡
+, and 𝑅𝑆𝑡

−, 

along with their modified versions, 𝑅𝑉𝑡
∗, 𝐵𝑉𝑡

∗, 𝑅𝑆𝑡
+ ∗, and 𝑅𝑆𝑡

− ∗,  under various 

combinations of parameter 𝜃 and initial log price 𝑝𝑡0. Panel (1) depicts the 

comparative result for 𝑅𝑉𝑡 and 𝑅𝑉𝑡
∗, Panel (2) compares 𝐵𝑉𝑡 with 𝐵𝑉𝑡

∗, and Panels (3) 

and (4) contain the bias ratios of and 𝑅𝑆𝑡
+, 𝑅𝑆𝑡

−, 𝑅𝑆𝑡
+ ∗ and 𝑅𝑆𝑡

− ∗. The figures for the 

bias of the realized variance and bipower variation measures exhibit a consistent 

pattern with  Laurent and Shi (2020): the biases of the original estimators 𝑅𝑉𝑡 and 𝐵𝑉𝑡 

increase with |𝜃| and 𝑝𝑡0, and both biases are symmetric around 𝜃 = 0. The biases of 
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𝑅𝑉𝑡 and 𝐵𝑉𝑡 can be influential, especially if 𝜃 and 𝑝𝑡0 deviates far from zero. For 

example, 𝐵𝑉𝑡 overestimates the volatility by 200% for 𝜃 = 0.02 and 𝑝𝑡0 = 6. 

Compared to 𝑅𝑉𝑡 and 𝐵𝑉𝑡, the biases of the modified volatility estimators 𝑅𝑉𝑡
∗ and 

𝐵𝑉𝑡
∗ are not distinguishable from zero for all combinations of nonzero 𝜃 and 𝑝𝑡0. The 

much better estimation performance of 𝑅𝑉𝑡
∗ and 𝐵𝑉𝑡

∗ relative to 𝑅𝑉𝑡 and 𝐵𝑉𝑡 is also 

consistent with the findings of Laurent and Shi (2020).  

 

Figure 2.4.2. The finite sample bias ratio of realized semivariances, realized variance, 

bipower variation, and their modified versions under the Ornstein-Uhlenbeck process 

 

Notes: Each panel of this figure compares the bias ratios of a realized variation measure with 

its modified version for various combinations of the initial log prices 𝑝𝑡0 and parameter 𝜃. 

The realized measures include realized variance (𝑅𝑉𝑡), Bipower variation (𝐵𝑉𝑡), positive 

realized semivariance (𝑅𝑆𝑡
+), and negative realized semivariance (𝑅𝑆𝑡

−) while their modified 

counterparts are indicated by 𝑅𝑉𝑡
∗, 𝐵𝑉𝑡

∗, 𝑅𝑆𝑡
+ ∗, 𝑅𝑆𝑡

− ∗. The biases of all of these eight realized 

measures in this figure are calculated on the log prices simulated from the linear drift-

diffusion model, Equation (2.4.3), with the parameter settings introduced in section 2.4.1.  

 

Panel (3) contains the bias ratios of positive realized semivariance 𝑅𝑆𝑡
+ and its 

respective modified measure 𝑅𝑆𝑡
+ ∗. As the panel shows, 𝑅𝑆𝑡

+ is upward biased for 
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𝜃 > 0 and is downward biased for 𝜃 < 0, across 𝑝𝑡0. Recall that the magnitude of the 

(average) linear drift over day 𝑡 is positively related to both |𝜃| and 𝑝𝑡0 and the sign 

of the linear drift is consistent with the sign of 𝜃. Therefore, 𝑅𝑆+ is upward biased for 

a positive linear drift and is downward biased for a negative linear drift, suggesting 

that the effect of a nonzero linear drift on the estimation of 𝑅𝑆𝑡
+ is similar to that of a 

nonzero constant drift. Given the consistency inherent in the price dynamic between 

the constant and linear drift models (Laurent et al. 2022b), it is hardly surprising that 

the constant and linear drift have a similar impact on semivariances from an 

estimation perspective. The size of the bias ratio of 𝑅𝑆𝑡
+ can be very large. For 

example, when 𝜃 = 0.02 and 𝑝𝑡0 = 6, the bias ratio is about 4.5, indicating that 𝑅𝑆𝑡
+ 

overestimates the one-half integrated variation by around 450%. In contrast to the 

imprecision of 𝑅𝑆𝑡
+ in the presence of a nonzero drift, the bias ratio of 𝑅𝑆𝑡

+ ∗ appears 

much smaller for all of these 𝑝𝑡0 and nonzero 𝜃. This implies that 𝑅𝑆𝑡
+ ∗ performs 

much better in estimating the one-half integrated variation.  

Panel 4 exhibits the biases of negative realized semivariance 𝑅𝑆𝑡
−. The sign of the 

bias ratio of 𝑅𝑆𝑡
− and that of 𝜃 are always opposite for all of 𝑝𝑡0, suggesting that a 

positive linear drift leads to negative bias in 𝑅𝑆𝑡
− and a negative linear drift results in 

positive bias in 𝑅𝑆−. This is consistent with the effect of a nonzero constant drift on 

the estimation bias of 𝑅𝑆𝑡
−. Similar to 𝑅𝑆𝑡

+, the bias ratio of 𝑅𝑆𝑡
− can also be very 

influential, particularly when 𝜃 reaches its most negative value. While the bias ratio of 

𝑅𝑆𝑡
− is large, the bias ratio of 𝑅𝑆𝑡

− ∗ is much lower for all of these nonzero 𝜃 and 𝑝𝑡0. 

For a moderate linear drift (moderate values of 𝜃 and 𝑝𝑡0), it is not 

straightforward to compare the degree of the bias ratio of semivariances with that of 

realized variance and bipower variation from Figure 2.4.2. To illustrate further the 
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bias ratio of realized semivariances 𝑅𝑆𝑡
+ and 𝑅𝑆𝑡

−, Figure 2.4.3 compares the bias 

ratios of each of 𝑅𝑆𝑡
+ and 𝑅𝑆𝑡

− with that of realized variance 𝑅𝑉𝑡 and bipower 

variation 𝐵𝑉𝑡 under various combinations of parameter 𝜃 and initial log price 𝑝𝑡0. 

Panel (1) compares the bias ratio of 𝑅𝑆𝑡
+ with that of 𝑅𝑉𝑡 based on the difference 

between the bias ratio size of 𝑅𝑆𝑡
+ with that of 𝑅𝑉𝑡, while Panel (2) compares the bias 

ratio size between 𝑅𝑆𝑡
− and 𝑅𝑉𝑡. Panels (3) and (4) evaluate the size of the bias ratios 

of 𝑅𝑆𝑡
+ and 𝑅𝑆𝑡

− relative to 𝐵𝑉𝑡, based on the bias ratio difference.  

 

Figure 2.4.3. Comparison of the magnitude of the bias ratio between the realized 

semivariances and realized variance and the bipower variation under Ornstein-Uhlenbeck 

process 

 

Notes: Panel (1) reports the difference between the bias ratio magnitude of the positive 

realized semivariance (𝑅𝑆𝑡
+) with that of realized variance for various combinations of 

parameter 𝜃 and initial log price 𝑃𝑡0. Panel (2) reports the difference between the bias ratio 

magnitude of the negative realized semivariance (𝑅𝑆𝑡
−) with that of realized variance (𝑅𝑉𝑡) 

Panel (3) and Panel (4) contain the difference between the bias ratio size of 𝑅𝑆𝑡
+ and 𝑅𝑆𝑡

−  

with that of bipower variation (𝐵𝑉𝑡), respectively. The magnitude of the bias ratios of 𝑅𝑉𝑡, 

𝐵𝑉𝑡, 𝑅𝑆𝑡
+, and 𝑅𝑆𝑡

− are calculated on the simulated log prices from the linear drift-diffusion 

model, Equation (2.4.3), with the settings of the parameters introduced in section 2.4.1.  
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I observe that the discrepancy of the bias ratio between 𝑅𝑆𝑡
+ and 𝑅𝑉𝑡 and that 

between 𝑅𝑆𝑡
− and 𝑅𝑉𝑡 are positive for these 𝑝𝑡0 and nonzero 𝜃, with only exceptions 

due to some extreme values of |𝜃|, which are rare as observed from Figure 2.4.1. This 

implies that the biases of 𝑅𝑆𝑡
+ and 𝑅𝑆𝑡

− are generally larger in magnitude than that of 

𝑅𝑉𝑡, which does not alter my conclusions from the constant drift-diffusion model. 

Again, this consistency may be due to the similarity between the constant and linear 

drift-diffusion model. The results exhibit very similar patterns as Panels (1) and (2): 

the two differences in the discrepancy of the bias ratio between 𝑅𝑆𝑡
+ and 𝑅𝑉𝑡 and that 

between 𝑅𝑆𝑡
− and 𝑅𝑉𝑡 are larger than zero for these different combinations of nonzero 

𝜃 and 𝑝𝑡0, notwithstanding some very large |𝜃| and 𝑝𝑡0. This indicates that the bias 

ratios of 𝑅𝑆𝑡
+ and 𝑅𝑆𝑡

− also tend to be larger in size than that of 𝐵𝑉𝑡. 

The bias ratios of 𝑅𝑉𝑡
∗, 𝐵𝑉𝑡

∗,  𝑅𝑆𝑡
+ ∗ and 𝑅𝑆𝑡

− ∗ are indisguisable from zero 

reported in Figure 2.4.2. To see these bias ratios in more detail, Figure 2.4.4 depicts 

the bias ratios of 𝑅𝑉𝑡
∗, 𝐵𝑉𝑡

∗,  𝑅𝑆𝑡
+ ∗ and 𝑅𝑆𝑡

− ∗ in Panels (1), (2), (3), and (4), 

respectively. The biases of 𝑅𝑉𝑡
∗, 𝑅𝑆𝑡

+ ∗, and 𝑅𝑆𝑡
− ∗ are all around -0.6%, which is much 

smaller in magnitude than that of 𝐵𝑉𝑡
∗ at -3.3%, indicating that the impact of a 

nonzero drift considered on the estimation of modified positive and modified negative 

semivariance is as small as that on the estimation of realized variance and bipower 

variation. Comparing Figure 2.4.4 with Figure 2.4.2, the order of the magnitude of the 

bias ratios (10−3) of 𝑅𝑆𝑡
+ ∗ and 𝑅𝑆𝑡

− ∗ is much smaller than that (10−0) of their 

original counterparts 𝑅𝑆𝑡
+ and 𝑅𝑆𝑡

−, indicating a far more satisfactory estimation of 

the one-half integrated variation when the drift is not zero. 
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Figure 2.4.4. Bias ratio of modified realized semivariances, modified realized variance, and 

modified bipower variation under the Ornstein-Uhlenbeck process 

 

Notes: This figure reports the bias ratios of modified realized variance (𝑅𝑉𝑡
∗), modified 

bipower variation (𝐵𝑉𝑡
∗), the modified positive semivariance (𝑅𝑆𝑡

+ ∗), and modified negative 

semivariance (𝑅𝑆𝑡
− ∗), for various combinations of the initial log prices 𝑝𝑡0 and parameter 𝜃. 

The bias ratios of all of these four modified estimators in this figure are calculated on the log 

prices simulated from the discrete form of the Ornstein-Uhlenbeck process, Equation (2.4.3), 

with the parameter settings introduced in section 2.4.1.  

 

 

 

 

2.4.2.  The bias of realized semivariances in the presence of jumps 

As discussed in section 2.3.3, jumps are rare but an important stylized fact of 

asset prices in financial markets, therefore this section studies the impact of drift on 

the estimation of semivariances by augmenting the Ornstein-Uhlenbeck process to 

allow additive jumps. Recall that the positive and negative semivariance estimators 
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converge to the sum of the squared positive and negative jumps, respectively, together 

with the one-half integrated variation. This indicates that the component that the 

semivariances attempt to estimate when jumps occur is larger than that when jumps 

are absent. Therefore, the proportion of the drift-driven bias in the semivariances may 

become smaller on the arrival of jumps. 4 In other words, large jumps may imply less 

impact of a nonzero drift on the estimation of the semivariances. Additionally, the 

occurrence of jumps may influence the estimation bias of modified semivariances 

since the daily median of returns which estimate drift could be no longer unbiased due 

to jumps. How influential is the bias of the median to the measurement performance 

of modified semivariances? Do the modified semivariances still exhibit much less 

estimation bias than their original counterparts?  

The Ornstein-Uhlenbeck process with 𝑘 additive jumps is defined by, 

𝑝𝑡𝑖 = exp(𝜃Δ𝑀)𝑝𝑡𝑖−1 + 𝜂𝑡𝑖 +∑𝜙𝑡𝑖
𝑗
𝐼𝑡𝑖
𝑗

𝑘

𝑗=1

 , 
(2.4.6) 

with the jump parameters 𝐼𝑡𝑖
𝑗
 and 𝜙𝑡𝑖

𝑗
 defined as in section 2.3.3. Semivariances may 

estimate different sizes of components across various cases of jumps. To facilitate 

comparison, I again consider the bias ratio measure to explore the estimation 

performance of semivariances. The bias ratios of the original and modified 

semivariances, indicated by 𝑅𝑆𝑡
+, 𝑅𝑆𝑡

−, 𝑅𝑆𝑡
+ ∗, and 𝑅𝑆𝑡

− ∗, are calculated on the 104 

repeated simulations of the 5-minute log prices from Equation (2.4.6), with the 

parameter settings and simulation procedures the same as those introduced in section  

2.4.1. 

 
4 I assume drift is independent of jumps thus the drift bias itself is hardly influenced by jumps, 

but whether there is a relationship between jumps and drift is interesting and left for future 

research. 
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Table 2.4.1 compares the estimation biases of positive semivariance (𝑅𝑆𝑡
+), with 

its modified version (𝑅𝑆𝑡
+ ∗) for the same five scenarios of jumps, together with the 

cas scenario of no jump, as those in Table 2.3.1. The initial log price for the results in 

Table 2.4.1 is set as 𝑝𝑡0 = 6. The results are qualitatively very consistent for the initial 

log prices equal to 𝑝𝑡0 = 2 or 4. 

 

The top panel in Table 2.4.1 reports the bias ratio of 𝑅𝑆𝑡
+ and 𝑅𝑆𝑡

+ ∗ when no jump 

occurs, which replicates the results from Panel (3) of Figure 2.4.2. As in Figure 2.4.2, 

𝑅𝑆+ suffers an upward estimation bias if 𝜃 > 0 and a downward bias if 𝜃 < 0. This 

ratio deviates from zero as |𝜃| becomes larger and tends to be larger for a positive 𝜃 

than a negative, suggesting that the proportion of the bias in 𝑅𝑆+ is larger in the 

Table 2.4.1. The estimation bias of positive realized semivariance for different sizes of parameter 𝜃 and 

across various cases of jumps. 

Notes: This table compares the estimation biases of positive Realized Semivariance, 𝑅𝑆+, with its 

modified version, 𝑅𝑆+ ∗, for a range of drifts and under five scenarios of jumps. The biases are calculated 

on the log prices simulated from the linear drift-diffusion model with additive jumps, Equation (2.4.6). 

𝜃 -0.2 -0.16 -0.12 -0.08 -0.04 0 0.04 0.08 0.12 0.16 0.2 

No jump 

 𝑅𝑆+ -0.932 -0.873 -0.773 -0.613 -0.366 0.000 0.510 1.206 2.117 3.273 4.696 

 𝑅𝑆+ ∗ -0.006 -0.006 -0.006 -0.006 -0.006 0.000 -0.006 -0.006 -0.006 -0.006 -0.006 

(1) One jump with 𝜙𝑡𝑖
1 = 0.6𝜎 

 𝑅𝑆+ -0.713 -0.647 -0.555 -0.425 -0.244 0.006 0.344 0.790 1.362 2.077 2.949 

 𝑅𝑆+ ∗ -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 

(2) One jump with 𝜙𝑡𝑖
1 = −0.6𝜎 

 𝑅𝑆+ -0.933 -0.874 -0.776 -0.617 -0.374 -0.015 0.491 1.177 2.076 3.215 4.620 

 𝑅𝑆+ ∗ 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 

(3) Two jumps with 𝜙𝑡𝑖
𝑗
= 0.6𝜎 for 𝑗 = 1,2 

 𝑅𝑆+ -0.616 -0.547 -0.458 -0.342 -0.187 0.016 0.283 0.627 1.060 1.594 2.239 

 𝑅𝑆+ ∗ -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 

(4) Two jumps with 𝜙𝑡𝑖
𝑗
= −0.6𝜎 for 𝑗 = 1,2 

 𝑅𝑆+ -0.933 -0.876 -0.779 -0.622 -0.381 -0.028 0.471 1.149 2.035 3.159 4.544 

 𝑅𝑆+ ∗ 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 

(5) Two jumps with 𝜙𝑡𝑖
1 = 0.6𝜎 and 𝜙𝑡𝑖

2 = −0.6𝜎 

 𝑅𝑆+ -0.716 -0.651 -0.560 -0.432 -0.254 0.000 0.327 0.768 1.332 2.037 2.897 

 𝑅𝑆+ ∗ -0.007 -0.007 -0.007 -0.007 -0.007 0.000 -0.007 -0.007 -0.007 -0.007 -0.007 
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presence of positive linear drift than in the presence of an equally-sized negative drift, 

similar to the conclusions made in the constant drift-diffusion model. In contrast, the 

bias ratio of 𝑅𝑆𝑡
+ ∗ is much smaller in magnitude than that of 𝑅𝑆𝑡

+ for a nonzero drift. 

Panel (1) reports the bias ratios of 𝑅𝑆𝑡
+ and 𝑅𝑆𝑡

+ ∗ in the presence of a positive 

jump, with the size of this jump equal to 60% of the spot volatility. The sign of the 

bias ratio of 𝑅𝑆𝑡
+ aligns with that of 𝜃, with a larger proportion of bias when 𝜃 > 0, 

which is qualitatively consistent with the properties of the estimation bias in 𝑅𝑆𝑡
+ in 

the absence of jumps reported on the top. Note that the bias ratio of 𝑅𝑆𝑡
+ for case (1) 

is positive when 𝜃 = 0. This positive but small bias is due to the finite sample effect 

of that positive jump: the presence of positive jumps increases the expected frequency 

of positive returns thus causing an upward bias in 𝑅𝑆𝑡
+. However, this bias appears to 

be very minor (only 0.006). Comparing the bias ratio of 𝑅𝑆𝑡
+ in the absence of jumps 

on the top panel with that of 𝑅𝑆𝑡
+ in case (1), the latter is generally smaller in size. 

This may be explained as follows. The finite sample effect of this positive jump is 

very minor thus the bias in 𝑅𝑆𝑡
+ due to a nonzero drift (𝜃 ≠ 0) is dominated by the 

effect of the finite sample drift. This suggests that the bias in 𝑅𝑆𝑡
+ in the presence of 

this positive jump are very close to that in 𝑅𝑆𝑡
+ without jumps (I confirm that this is 

also evidenced by my simulations). However the estimation target of 𝑅𝑆𝑡
+ include 

positive jump variation, leading to a contraction of the proportion of that drift bias in 

𝑅𝑆𝑡
+ (recall that the bias ratio of 𝑅𝑆+ is defined by the bias in 𝑅𝑆𝑡

+ relative to the one-

half integrated variation and the sum of squared positive jumps).  

For Panel (1), the modified measure 𝑅𝑆𝑡
+ ∗ has a much lower magnitude of the 

bias ratio compared to 𝑅𝑆𝑡
+, for all of these nonzero 𝜃, indicating the estimation 

performance of 𝑅𝑆𝑡
+ ∗ in the presence of a nonzero linear drift is much better than 

𝑅𝑆𝑡
+. The bias ratio of 𝑅𝑆𝑡

+ ∗ for Panel (1) tends to be more negative than that of 𝑅𝑆𝑡
+ ∗ 
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in the top panel. The main reason may be that the median is upward biased due to the 

occurrence of a positive jump. The positively biased median over-reduces the drift 

when drift is positive and under-removes the drift when drift is negative, leaving a 

negative drift in each intraday return, which adds further negative bias in 𝑅𝑆𝑡
+ ∗. 

However, the bias of the median estimator does not largely change the estimation 

superiority of 𝑅𝑆𝑡
+ ∗ to 𝑅𝑆𝑡

+. The bias ratio of 𝑅𝑆𝑡
+ ∗ is still very small (1.3%) across 

nonzero 𝜃, much smaller than that of 𝑅𝑆𝑡
+. 

Panel (2) reports the bias ratios of 𝑅𝑆𝑡
+ and 𝑅𝑆𝑡

+ ∗ for a range of 𝜃, under the 

scenario of one negative jump. The bias ratios of 𝑅𝑆𝑡
+ are qualitatively very similar 

but slightly more negative than those of 𝑅𝑆𝑡
+ with no jump. The high degree of 

similarity is because 𝑅𝑆𝑡
+ always attempt to estimate the one-half integrated variation 

either in the presence of negative jumps or in the absence of jumps. The small 

difference is due to the finite sample effect from the presence of the negative jump: 

the occurrence of negative jumps decreases the expected frequency of positive returns 

thus causing a downward bias in 𝑅𝑆𝑡
+. Additionally, the sign of the bias ratio of 𝑅𝑆𝑡

+ ∗ 

for case (2) is positive, which is opposite to that of 𝑅𝑆𝑡
+ ∗ in the top panel. This is 

attributed to the negatively biased median estimator of drift due to the existence of 

negative jumps. The downside biased drift measure under-removes the drift when 

drift is positive and turns drift to positive when drift is negative, resulting in 

remaining positive drift, and thus causing a positive bias to 𝑅𝑆𝑡
+ ∗. However, the bias 

of the median due to this positive jump only has a little influence on the workings of 

𝑅𝑆𝑡
+ ∗. Compared to 𝑅𝑆𝑡

+, the bias ratio of 𝑅𝑆𝑡
+ ∗ is still much lower in size for all of 

these nonzero 𝜃. 

Panel (3) contains the drift-driven bias ratios of 𝑅𝑆𝑡
+ and 𝑅𝑆𝑡

+ ∗ for two positive 

jumps. The bias ratio of 𝑅𝑆𝑡
+ is further reduced compared to that of 𝑅𝑆𝑡

+ with one 
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positive jump, Panel (1), as 𝑅𝑆𝑡
+ of the Panel (3) estimate an even larger component 

due to more jumps. For Panel (3), 𝑅𝑆𝑡
+ ∗ still performs very well in estimation practice 

although the median is upwardly biased by two positive jumps. This shows that the 

median is resilient or little affected by outliers or jumps, consistent with the 

simulation by Laurent and Shi (2020) and the fact that it is widely recognized that the 

median is commonly applied to measure the central tendency (average) when there 

are outliers. 

Panel (4) presents the bias ratios of 𝑅𝑆𝑡
+ and 𝑅𝑆𝑡

+ ∗ in the presence of nonzero 

linear drift for two negative jumps. The bias ratio of 𝑅𝑆𝑡
+ is slightly reduced compared 

to that of 𝑅𝑆𝑡
+ with one positive jump, Panel (1), due to the finite sample effect of 

positive jumps. Relative to 𝑅𝑆𝑡
+, the bias of 𝑅𝑆𝑡

+ ∗ is much smaller for all of these 

nonzero linear drifts. Panel (5) which compares the bias ratios between 𝑅𝑆𝑡
+ and 

𝑅𝑆𝑡
+ ∗ also evidences the much more accurate estimation of 𝑅𝑆𝑡

+ ∗ than 𝑅𝑆𝑡
+, although 

the median is distorted by these two negative jumps. The bias ratio of 𝑅𝑆𝑡
+ ∗ between 

this case and the case of null jump is very similar, which may be explained by the 

inclusion of two symmetric jumps. 

Table 2.4.2 reports the bias ratio of negative semivariance (𝑅𝑆𝑡
−), with the 

respective modified estimator (𝑅𝑆𝑡
− ∗) for the same five cases of jumps as in Table 

2.4.1. The initial log price is set as 𝑝𝑡0 = 6 and the results are very similar for 𝑝𝑡0 = 2 

or 4. The top panel replicate the results from Panel (4) of Figure 2.4.2 for the bias 

ratio of 𝑅𝑆𝑡
− ∗ and 𝑅𝑆𝑡

− without jump occurrence. As in Figure 2.4.2, the bias ratio of 

𝑅𝑆𝑡
− increases nonlinearly with |𝜃|, and the sign of this bias ratio is opposite to that of 

𝜃. This ratio results also demonstrate that the bias ratio of 𝑅𝑆𝑡
− is larger in the 

presence of positive 𝜃 than in the presence of equally sized negative 𝜃, which is due 
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to the symmetry of the bias ratios of 𝑅𝑆𝑡
+ and 𝑅𝑆𝑡

− around zero 𝜃. In contrast, the bias 

ratio of 𝑅𝑆𝑡
− ∗ is much smaller in magnitude than that of 𝑅𝑆𝑡

− for a nonzero drift. 

Table 2.4.2. The estimation bias of negative realized semivariance for different sizes of parameter 𝜃 and 

across various cases of jumps. 

Notes: This table compares the estimation biases of negative Realized Semivariance, 𝑅𝑆𝑡
−, with its 

modified version, 𝑅𝑆𝑡
− ∗, for a range of drifts and under five scenarios of jumps. The biases are calculated 

on the log prices simulated from the linear drift-diffusion model with additive jumps, Equation (2.4.6). 

𝜃 -0.2 -0.16 -0.12 -0.08 -0.04 0 0.04 0.08 0.12 0.16 0.2 

No jump 

 𝑅𝑆𝑡
− 4.555 3.201 2.088 1.200 0.513 0.001 -0.364 -0.613 -0.776 -0.876 -0.935 

 𝑅𝑆𝑡
− ∗ -0.006 -0.006 -0.006 -0.006 -0.006 0.000 -0.006 -0.006 -0.006 -0.006 -0.006 

(1) One jump with 𝜙𝑡𝑖
1 = 0.6𝜎 

 𝑅𝑆𝑡
− 4.487 3.150 2.050 1.172 0.494 -0.012 -0.372 -0.619 -0.779 -0.878 -0.936 

 𝑅𝑆𝑡
− ∗ 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 

(2) One jump with 𝜙𝑡𝑖
1 = −0.6𝜎 

 𝑅𝑆𝑡
− 2.858 2.030 1.342 0.785 0.345 0.008 -0.243 -0.426 -0.557 -0.650 -0.717 

 𝑅𝑆𝑡
− ∗ -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 

(3) Two jumps with 𝜙𝑡𝑖
𝑗
= 0.6𝜎 for 𝑗 = 1,2 

 𝑅𝑆𝑡
− 4.421 3.100 2.013 1.146 0.475 -0.024 -0.380 -0.623 -0.782 -0.880 -0.937 

 𝑅𝑆𝑡
− ∗ 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 

(4) Two jumps with 𝜙𝑡𝑖
𝑗
= −0.6𝜎 for 𝑗 = 1,2 

 𝑅𝑆𝑡
− 2.169 1.557 1.043 0.622 0.284 0.018 -0.187 -0.342 -0.460 -0.551 -0.621 

 𝑅𝑆𝑡
− ∗ -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 

(5) Two jumps with 𝜙𝑡𝑖
1 = 0.6𝜎 and 𝜙𝑡𝑖

2 = −0.6𝜎 

 𝑅𝑆𝑡
− 4.493 3.154 2.053 1.173 0.494 0.000 -0.372 -0.619 -0.779 -0.878 -0.936 

 𝑅𝑆𝑡
− ∗ -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 

 

Panel (1) shows the bias ratios of 𝑅𝑆𝑡
− and 𝑅𝑆𝑡

− ∗ for one positive jump, with the 

size of this jump identical to 60% of the spot volatility. The bias ratio of 𝑅𝑆𝑡
− in this 

case, exhibits qualitatively consistent properties as that of 𝑅𝑆𝑡
− in the absence of 

jumps: 𝑅𝑆𝑡
− suffers an upward estimation bias if 𝜃 < 0 and a downward bias if 𝜃 > 0, 

with a greater ratio of bias if 𝜃 < 0. A difference is that the bias ratio of 𝑅𝑆𝑡
− with this 

positive jump is systematically more negative than that of 𝑅𝑆𝑡
− without jumps, which 

is due to the finite sample effect of this positive jump: the presence of this positive 

jump results in less often negative returns, contributing a downward bias in 𝑅𝑆𝑡
−. Of 

course, the finite sample impact of this positive jump on the estimation of 𝑅𝑆𝑡
− is 
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small thus the bias in 𝑅𝑆𝑡
− is mostly driven by the effect of the finite sample drift, 

which explains why the bias ratio of 𝑅𝑆𝑡
− in the presence of the positive jump in Panel 

(1) are qualitatively very similar to that of 𝑅𝑆𝑡
− in the absence of jumps. 

In contrast, the bias ratio of the modified measure 𝑅𝑆𝑡
− ∗ of Panel (1) is much 

lower in size compared to 𝑅𝑆𝑡
− in the presence of nonzero 𝜃 considered, indicating the 

estimation performance of 𝑅𝑆𝑡
− ∗ in the presence of nonzero linear drifts may be much 

better than 𝑅𝑆𝑡
−. The bias ratio of 𝑅𝑆𝑡

− ∗ for Panel (1) is generally more positive than 

that of 𝑅𝑆𝑡
− ∗ in the absence of jumps in the top panel. An intuition to explain this 

result may be that the positively biased median due to the occurrence of a positive 

jump over removes the drift when drift is positive and underreduces the drift when 

drift is negative, leaving a negative drift and thus causing extra positive bias in 𝑅𝑆𝑡
− ∗. 

However, the bias of the median estimator due to the positive jump considered has 

little influence on the estimation robustness of 𝑅𝑆𝑡
− ∗ to 𝑅𝑆𝑡

− in the presence of the 

nonzero linear drift. The bias ratio of 𝑅𝑆𝑡
− ∗ is still much smaller in size than that of 

𝑅𝑆𝑡
− for 𝜃 ≠ 0. 

Panel (2) contains the bias ratios of 𝑅𝑆𝑡
− and 𝑅𝑆𝑡

− ∗ for different 𝜃 and one 

negative jump. The bias ratios of 𝑅𝑆𝑡
− for 𝜃 ≠ 0 are qualitatively very similar in 

properties but smaller in size than those of 𝑅𝑆𝑡
+ with no jump. This difference is 

because the estimation target 𝑅𝑆𝑡
− include this negative jump, thus diluting the 

proportion of the bias. The sign of the bias ratio of 𝑅𝑆𝑡
− ∗ for Panel (2) is more 

negative than that of 𝑅𝑆𝑡
− ∗ in the top panel. This is because the downwardly biased 

drift measure (due to the existence of negative jumps) under-removes the drift when 

drift is positive and turns drift to positive when drift is negative, leaving a positive 

drift, causing additional negative bias to 𝑅𝑆𝑡
− ∗. However, this extra negative bias 
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appears to have little impact on the effectiveness of 𝑅𝑆𝑡
− ∗: the bias ratio of 𝑅𝑆𝑡

− ∗ is 

still much lower in size relative to 𝑅𝑆𝑡
− for all of these nonzero 𝜃. 

Panel (3) reports the bias ratios of 𝑅𝑆𝑡
− and 𝑅𝑆𝑡

− ∗ for various 𝜃 and two positive 

jumps. The bias ratio of 𝑅𝑆𝑡
− is more negative relative to that of 𝑅𝑆𝑡

− with one 

positive jump, Panel (1), because including more positive jumps further increases the 

chance of positive return in the finite sample. For case (3), 𝑅𝑆𝑡
− ∗ still performs much 

better than 𝑅𝑆𝑡
− in estimation practice when 𝜃 is not zero even though the median is 

upwardly biased by two positive jumps. Case (4) presents the bias ratios of 𝑅𝑆𝑡
− and 

𝑅𝑆𝑡
− ∗ across different 𝜃 for two negative jumps. The bias ratio of 𝑅𝑆𝑡

− is reduced 

compared to that of 𝑅𝑆𝑡
− with one positive jump, Panel (1), due to more negative 

jumps are included in the component that 𝑅𝑆𝑡
− attempts to estimate. Relative to 𝑅𝑆𝑡

−, 

the bias of 𝑅𝑆𝑡
− ∗ is much smaller for all of these nonzero linear drifts, regardless of 

the negative bias of the median by the two negative jumps. Panel (5) compares the 

bias ratios between 𝑅𝑆𝑡
− and 𝑅𝑆− ∗ in the presence of two symmetric jumps. The 

results again evidence the much more accurate estimation of 𝑅𝑆𝑡
− ∗ than 𝑅𝑆𝑡

−. The bias 

ratio of 𝑅𝑆𝑡
− ∗ between this case and the case of no jump is very similar, which may be 

interpreted by the inclusion of two symmetric jumps. 

Overall, the estimation performance of original and modified semivariances under 

different jump scenarios is shaped by the finite sample impact of jumps, the 

proportion of the jump size relative to drift size, the finite sample effect of linear drift, 

and the effect of the median when biased by the jumps. Notwithstanding the 

complexity of these factors that influence the result, the influence of a nonzero linear 

drift on the estimation accuracy of the modified positive realized semivariance can be 

always much smaller than that of the original positive realized semivariance across 
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different scenarios of jumps considered, especially when the linear drift is large 

(within the realistic range of 𝜃). 

The simulation results discussed so far rely on a fixed jump size, which equals 

60% of spot volatility. To highlight the generality of the results, I also check the bias 

ratio of semivariances to a broader range of jump sizes, I allow one positive jump in 

Equation (2.4.6) to vary from 𝜙𝑡𝑖
1 = √1/19𝜎 ≈ 0.2294𝜎 to 𝜙𝑡𝑖

1 = √2/3𝜎 ≈

0.8165𝜎 in 0.02 increments, corresponding to around 5% (a very small jump) to 40% 

proportion (a very large jump) of jumps relative to the Quadratic Variation on the day 

of a jump arrival. I also consider the case of one negative jump (𝜙𝑡𝑖
1 < 0), and the size 

of this negative jump ranges from 𝜙𝑡𝑖
1 = −√2 3⁄ 𝜎 ≈ −0.8165𝜎 to 𝜙𝑡𝑖

1 =

−√1/19𝜎 ≈ −0.2294𝜎. These ranges of the positive and negative jump are the same 

as those defined in section 2.3.3. As in Tables 2.4.1 and 2.4.2, I allow the parameter 𝜃 

to change from -0.02 to 0.02 for each jump size. The remaining parameters in 

Equation (2.4.6) are those used for Tables 2.4.1 and 2.4.2.  

Figure 2.4.5 reports the bias ratios of semivariances and the respective modified 

semivariance for various combinations of the drift parameter 𝜃 and the jump 

parameter 𝜙𝑡𝑖
1 . Panel (1) displays the bias ratio of 𝑅𝑆𝑡

+ and 𝑅𝑆𝑡
+ ∗ for √1/19𝜎 <

𝜙𝑡𝑖
1 < √2/3𝜎, Panel (2) presents the bias ratio of 𝑅𝑆𝑡

+ and 𝑅𝑆𝑡
+ ∗ for −√2/3𝜎 <

𝜙𝑡𝑖
1 < −√1 19⁄ 𝜎, and the lower panels depict the bias ratio of 𝑅𝑆𝑡

− and 𝑅𝑆𝑡
− ∗ for 

√1/19𝜎 < 𝜙𝑡𝑖
1 < √2/3𝜎 and −√2/3𝜎 < 𝜙𝑡𝑖

1 < −√1 19⁄ 𝜎, respectively. The upper 

panels show that 𝑅𝑆𝑡
+ is upward biased for 𝜃 > 0 and is downward for 𝜃 < 0 for all 

of these |𝜙𝑡𝑖
1 | > 0. In these two panels, the proportion of the bias in 𝑅𝑆𝑡

+ can be very 

large (up to 400%) especially when 𝜃 is largely positive, regardless of the different 
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values of 𝜙𝑡𝑖
1 . For both panels, the level of the bias of 𝑅𝑆𝑡

+ becomes larger as |𝜃| 

increases, for all of these values of 𝜙𝑡𝑖
1 . It can be seen from Panel (1) that the bias ratio 

of 𝑅𝑆𝑡
+ for all these nonzero 𝜃 is lower in degree as 𝜙𝑡𝑖

1  becomes more positive. This 

phenomenon can be explained as follows. The finite sample effect of one positive 

jump on 𝑅𝑆𝑡
+ is very minor and not sensitive to different sizes of this jump. Therefore, 

the bias in 𝑅𝑆𝑡
+ with one positive jump is almost driven by the nonzero drift and thus 

is consistent for different sizes of this jump. But in the presence of one positive jump, 

𝑅𝑆𝑡
+ capture the size of this positive jump, thus there is a contraction of the proportion 

of the drift bias in 𝑅𝑆𝑡
+ if the size of the positive jump becomes larger. 

Figure 2.4.5. Biases of semivariances for various combinations of the parameter 𝜃 and a 

jump with its size equal to 𝜙𝑡𝑖
1  

Notes: Panels (1) and (2) present the bias ratio of the positive realized semivariance and its 

modified version (𝑅𝑆𝑡
+) and their modified forms (𝑅𝑆𝑡

+ ∗) for various combinations of the 

parameter 𝜃 and a jump with its size equal to 𝜙𝑡𝑖
1 . Panels (3) and (4) present the bias ratio of 

negative semivariance (𝑅𝑆𝑡
−) and its modified form (𝑅𝑆𝑡

− ∗) for various combinations of the 

parameter 𝜃 and a jump with its size equal to 𝜙𝑡𝑖
1 . The bias ratios are calculated on the log 

prices simulated by the linear drift-diffusion model with additive jumps, Equation (2.4.6). 
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Panel (2) shows that the bias of 𝑅𝑆𝑡
+ almost does not change with the value of the 

negative 𝜙𝑡𝑖
1 . For instance, the line corresponding to 𝜃 = 0.01 is virtually parallel to 

the 𝜙𝑡𝑖
1  axis. I might give a reason for this. The finite sample impact of one negative 

jump on 𝑅𝑆𝑡
+ is also very small and similar across these jump sizes. This suggests that 

bias in 𝑅𝑆𝑡
+ with this negative jump is dominated by the finite sample bias due to a 

nonzero drift and thus is consistent across different jump sizes 𝜙𝑡𝑖
1 . For one negative 

jump, 𝑅𝑆𝑡
+ is defined only to estimate the one-half integrated variation, thus different 

sizes of the positive jump almost do not cause changes in the proportion of the drift 

bias. Comparing 𝑅𝑆𝑡
+ with the modified estimator 𝑅𝑆𝑡

+ ∗ in Panels (1) and (2), the bias 

of 𝑅𝑆+ ∗ due to the existence of nonzero 𝜃 is much smaller for all of these 𝜙𝑡𝑖
1 . This 

suggests that for a wider range of jump sizes the finite sample estimation performance 

of 𝑅𝑆𝑡
+ ∗ is consistently much better than the original 𝑅𝑆𝑡

+ estimator. 

Turning to Panel (3) of Figure 2.4.5, I find that the bias ratio of 𝑅𝑆𝑡
− almost does 

not change with the value of 𝜙𝑡𝑖
1 > 0. This may be interpreted by the following 

reasons. Due to the small finite sample impact of one positive jump on 𝑅𝑆𝑡
−, the bias 

in the 𝑅𝑆𝑡
− estimator in the presence of this positive jump is mainly due to the finite 

sample bias of drift therefore consistent across the different sizes of this jump. The 

estimation target of 𝑅𝑆𝑡
− does not contain the squared negative jump, and this implies 

that the ratio of the drift bias in 𝑅𝑆𝑡
− will also be similar across different sizes of one 

negative jump. As Panel (3) shows, the bias of 𝑅𝑆𝑡
− ∗ due to the existence of nonzero 

𝜃 is much smaller for all of these 𝜙𝑡𝑖
1 . This suggests that for a wider range of jump 

sizes the finite sample estimation performance of 𝑅𝑆𝑡
− ∗ is consistently much better 

than the original 𝑅𝑆+ estimator.  
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From Panel (4), I observe that the bias ratio of 𝑅𝑆𝑡
− for all these nonzero 𝜃 is 

lower in degree as 𝜙𝑡𝑖
1  becomes more positive. This is because the finite sample effect 

of one negative jump on 𝑅𝑆𝑡
− is minor and similar across different magnitudes of this 

jump, thus the bias in 𝑅𝑆𝑡
− with one negative jump is almost due to a nonzero drift 

thus similar over different sizes of this jump. For the scenario of one negative jump, 

the estimation target of 𝑅𝑆𝑡
− include the squared negative jump, thus explaining why 

there is a decrease in the proportion of the drift-driven bias ratio of 𝑅𝑆𝑡
− if the 

magnitude of the negative jump is greater. 

 

2.4.3.  The bias of a noise-robust version of realized semivariances 

Recent studies argue that the 5-minute frequency sampling is too sparse and thus 

associated with measurement error, which results in the estimation inefficiency of 

volatility (Jacod et al. 2009; Podolskij and Vetter 2009; Aït-Sahalia et al. 2012; Lee and 

Mykland 2012; Hautsch and Podolskij 2013; Christensen et al. 2014). As the estimation 

inefficiency tends to decrease in proportion to the observed increments of the process 

as the sampling frequency decreases, these studies suggest using the ultrahigh-

frequency sampling scheme (e.g., tick-by-tick) as a better alternative for estimating 

volatility. However, for the ultrahigh-frequency sampling, prices might be substantially 

contaminated by noise, induced by microstructure effects that arise from market 

imperfections such as bid-ask spreads and price discreteness (e.g., Niederhoffer and 

Osborne 1966; Roll 1984; Black 1986). These noise-contaminated prices invalidate the 

asymptotic properties of volatility estimators (see Bandi and Russell, 2008 and Hansen 

and Lunde, 2006 among others).  
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Assume that the log prices 𝑝𝑡𝑖 are contaminated by noise, such that observed noisy 

prices 𝑝𝑡𝑖
⋄  are expressed as 

 

𝑝𝑡𝑖
⋄ = 𝑝𝑡𝑖  + 𝑢𝑡𝑖 , with 0 < 𝑡𝑖 <  𝑇, (4.1) 

where 𝑢𝑡𝑖 is a white noise process with mean zero and variance 𝑞2 as in the literature 

(Barndorff-Nielsen et al. 2008; Christensen et al. 2014; Laurent and Shi 2020). 

Barndorff-Nielsen et al. (2008) show that the noise will dominate the positive and 

negative semivariance as the sampling interval becomes small. 

To make inferences about good and bad volatility using noisy ultrahigh-frequency 

prices, I follow the suggestion by Barndorff-Nielsen et al. (2008) to use the pre-

averaging approach of Jacod et al. (2009). This approach is also applied by Jacod et al. 

(2009), Podolskij and Vetter (2009), Christensen et al. (2014), and Bajgrowicz et al. 

(2016) to reduce the impact of the microstructure noise on the estimation performance 

of realized variance, bipower variation, and semivariances. Intuitively, this approach 

locally smooths the observed price series 𝑝𝑡𝑖
⋄  so that the microstructure component 𝑢𝑡𝑖 

(almost) disappears under averaging. Returns on this pre-averaged price series can then 

be used to construct noise consistent measures of the jump-variation components. To 

implement pre-averaging, returns are calculated on the log prices that are pre-averaged 

in a local neighbourhood of 𝐻 observations, 

 

𝑟𝑡𝑖
⋄ =

1

𝐻
( ∑ 𝑝𝑡𝑖+𝑗

⋄

𝐻−1

𝑗=𝐻 2⁄

− ∑ 𝑝𝑡𝑖+𝑗
⋄

𝐻/2−1

𝑗=0

), (2.4.7) 

where 𝐻 = ⌈𝜏√𝑀⌉ with the parameter 𝜏 = 2 following Christensen et al. (2014).  
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Based on the pre-averaged return 𝑟𝑡𝑖
⋄ , the noise-modified 𝑅𝑉𝑡 and 𝐵𝑉𝑡 (indicated by 

𝑁𝑅𝑉𝑡 and 𝑁𝐵𝑉𝑡, respectively) are calculated as follows,  

 

𝑁𝑅𝑉𝑡 =
𝑀

𝑀 −𝐻 + 2

1

𝐻𝜓𝐻
∑ |𝑟𝑡𝑖

⋄ |
2

𝑀−𝐻+2

𝑖=1

−
�̂�𝑡
2

𝜃2𝜓𝐻
, (2.4.8) 

 

 

 

𝑁𝐵𝑉𝑡 =
𝑀

𝑀 − 2𝐻 + 2

1

𝐻𝜓𝐻

𝜋

2
∑ |𝑟𝑡𝑖

⋄ ||𝑟𝑡𝑖+𝐻
⋄ |

𝑀−2𝐻+2

𝑖=1

−
�̂�𝑡
2

𝜃2𝜓𝐻
, 

 

(2.4.9) 

where 𝜓𝐻 = (1 + 2𝐻
−2)/12  and �̂�𝑡

2 𝜃2𝜓𝐻⁄   is a bias correction, which compensates 

for the residual microstructure noise that remains after pre-averaging, �̂�𝑡
2 denotes the 

estimator for the noise variance given by, 

 

�̂�𝑡
2 =

1

2(M − 1)
∑|𝑟𝑡𝑖

⋄ ||𝑟𝑡𝑖−1
⋄ |

𝑀

𝑖=2

. 
(2.4.10) 

Recall that 𝑅𝑉𝑡  can be decomposed into 𝑅𝑆𝑡
+  and 𝑅𝑆𝑡

− , respectively, based on 

decomposing the sign of returns. Analogously, based on splitting the sign of the pre-

averaged returns, 𝑁𝑅𝑉𝑡 may also be appropriately decomposed into the noise-modified 

𝑅𝑉𝑡
+ and 𝑅𝑉𝑡

− (indicated by 𝑁𝑅𝑉𝑡
+ and 𝑁𝑅𝑉𝑡

−),  

 

𝑁𝑅𝑉𝑡
+ =

𝑀

𝑀 −𝐻 + 2

1

𝐻𝜓𝐻
∑ |𝑟𝑡𝑖

⋄ |
2
𝐼(𝑟𝑡𝑖

⋄ > 0)

𝑀−𝐻+2

𝑖=1

−
�̂�𝑡
2

2𝜃2𝜓𝐻
, (2.4.11) 

 

 

 

𝑁𝑅𝑉𝑡
− =

𝑀

𝑀 −𝐻 + 2

1

𝐻𝜓𝐻
∑ |𝑟𝑡𝑖

⋄ |
2
𝐼(𝑟𝑡𝑖

⋄ < 0)

𝑀−𝐻+2

𝑖=1

−
�̂�𝑡
2

2𝜃2𝜓𝐻
, (2.4.13) 
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where for simplicity I assume equally half bias-correction (�̂�𝑡
2 2𝜃2𝜓𝐻⁄ ) for 𝑁𝑅𝑉𝑡

+ and 

𝑁𝐵𝑉𝑡
−  such that the bias correction drops out when making the difference between 

𝑁𝑅𝑉𝑡
+ and 𝑁𝑅𝑉𝑡

−. 

Laurent and Shi (2020) find that the bias of 𝑁𝑅𝑉𝑡 and 𝑁𝐵𝑉𝑡 may not be small due 

to the non-ignorable impact of a nonzero drift on the pre-average returns. To reduce 

such drift bias, they modify the 𝑁𝑅𝑉𝑡  and 𝑁𝐵𝑉𝑡  estimators (indicated by 𝑁𝑅𝑉𝑡
∗  and 

𝑁𝐵𝑉𝑡
∗) by computing 𝑁𝑅𝑉𝑡 and 𝑁𝐵𝑉𝑡 on centred pre-averaged returns, 

 

𝑁𝑅𝑉𝑡
∗ =

𝑀

𝑀 −𝐻 + 2

1

𝐻𝜓𝐻
∑ |𝑟𝑡𝑖

⋄ − �̂�𝑡
⋄|
2

𝑀−𝐻+2

𝑖=1

−
�̂�𝑡
2

𝜃2𝜓𝐻
, (2.4.14) 

 

 

 

𝑁𝐵𝑉𝑡
∗ =

𝑀

𝑀 − 2𝐻 + 2

1

𝐻𝜓𝐻

𝜋

2
∑ |𝑟𝑡𝑖

⋄ −𝑚𝑡
⋄||𝑟𝑡𝑖+𝐻

⋄ − �̂�𝑡
⋄|

𝑀−2𝐻+2

𝑖=1

−
�̂�𝑡
2

𝜃2𝜓𝐻
, 

 

(2.4.15) 

where �̂�𝑡
⋄ = median(𝑟𝑡1

⋄ …𝑟𝑡𝑀
⋄ )  denotes the median of 𝑀 −𝐻 + 2  pre-averaged 

returns involved in the computation of the volatilities for day 𝑡. Since the impact of a 

nonzero drift on the pre-average returns is not small, a nonzero drift might also violate 

the estimation performance of 𝑁𝑅𝑉𝑡
+  and 𝑁𝑅𝑉𝑡

− . Therefore, I also compute 𝑁𝑅𝑉𝑡
+ ∗ 

and 𝑁𝑅𝑉𝑡
− ∗ on centred pre-averaged returns, 

 

𝑁𝑅𝑉𝑡
∗,+ =

𝑀

𝑀 −𝐻 + 2

1

𝐻𝜓𝐻
∑ |𝑟𝑡𝑖

⋄ − �̂�𝑡
⋄|
2
𝐼(𝑟𝑡𝑖

⋄ − �̂�𝑡
⋄ > 0)

𝑀−𝐻+2

𝑖=1

−
�̂�𝑡
2

2𝜃2𝜓𝐻
, (2.4.16) 
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𝑁𝑅𝑉𝑡
∗,− =

𝑀

𝑀 −𝐻 + 2

1

𝐻𝜓𝐻
∑ |𝑟𝑡𝑖

⋄ − �̂�𝑡
⋄|
2
𝐼(𝑟𝑡𝑖

⋄ − �̂�𝑡
⋄ < 0)

𝑀−𝐻+2

𝑖=1

−
�̂�𝑡
2

2𝜃2𝜓𝐻
, (2.4.17) 

To evaluate the estimation accuracy of the above pre-averaging estimators and 

modified pre-averaging estimators I compute the bias of noise-modified volatility 

estimators and respective modified versions, via Monte Carlo simulations with 104 

replications of the Ornstein-Uhlenbeck process. I consider no jumps for simplicity. The 

sampling frequency is at 1 second and the volatility of the noise is set 𝑞 = 0.1%, as in 

Laurent and Shi (2020). 

The simulated bias ratios of pre-averaged realized variance, bipower variation, 

positive realized semivariance, and negative realized semivariance, along with their 

modified versions are reported in Figure 2.4.5. As |𝜃| and 𝑝𝑡0 deviate from zero, the 

original estimator, 𝑁𝑅𝑉𝑡 and 𝑁𝐵𝑉𝑡, are upwardly biased. In contrast, the bias ratios of 

the modified estimator, 𝑁𝑅𝑉𝑡
∗  and 𝑁𝐵𝑉𝑡

∗ , are not disguisable from zero. The gap 

between original and modified estimators increases with a larger magnitude of |𝜃| and 

𝑝𝑡0 . This finding is consistent with the pre-averaged realized variance and bipower 

variation presented in Figures 6 & 7 in Laurent and Shi (2020), implying that modified 

versions of the pre-averaged realized variance and pre-averaged bipower variation are 

much more accurate in the presence of a nonzero drift than their original versions. For 

the 𝑁𝑅𝑆𝑡
+ and 𝑁𝑅𝑆𝑡

− estimators, I observe patterns similar to Figure 3.1 in this chapter. 

While the estimation accuracy of the original semivariance deteriorates asymmetrically 

as 𝜃 and 𝑝𝑡0 deviate from zero, the modified estimator is much more accurate. These 

results suggest that a nonzero drift can also cause biases in the pre-averaging versions 

of the semivariances due to the non-ignorable impact of a nonzero drift on the pre-

averaged returns. Such biases are much smaller in modified semivariances. 
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Figure 2.4.5. The finite sample bias ratio of pre-averaging realized semivariances, realized 

variance, bipower variation, and their modified versions under the Ornstein-Uhlenbeck 

process 

 

Notes: Each panel of this figure compares the bias ratio of a pre-averaging realized variation 

measure with its modified version for various combinations of the initial log prices 𝑝𝑡0 and 

parameter 𝜃. The realized measures include pre-averaged versions of the realized variance 

(𝑁𝑅𝑉𝑡), Bipower variation (𝑁𝐵𝑉𝑡), positive realized semivariance (𝑁𝑅𝑆𝑡
+), and negative 

realized semivariance (𝑁𝑅𝑆𝑡
−) while their modified counterparts are indicated by 𝑁𝑅𝑉𝑡

∗, 

𝑁𝐵𝑉𝑡
∗, 𝑁𝑅𝑆𝑡

+ ∗, 𝑁𝑅𝑆𝑡
− ∗. The bias ratios of all eight realized measures in this figure are 

calculated on the log prices simulated from the Ornstein-Uhlenbeck model, Equation (2.4.3), 

with the parameter settings introduced in section 2.4.1.  
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2.5. Signed jump estimation  

With increasingly finer sampled intraday returns, the discrepancy between the 

realized positive and negative semivariance measures formally converges to the 

variation due to positive minus negative price discontinuities, and this variation is also 

termed the signed jumps. Intuitively, since the variation associated with Brownian 

price increments, is symmetric and thus the same for the positive and negative 

semivariance estimators, their difference only formally manifests variation stemming 

from jumps. Signed jumps help us know whether positive or negative jumps dominate 

large price moves of the day and thus might reveal information on the leverage effect 

and investor behaviours. Motivated by this, signed jumps are popular in recent 

financial forecasting studies, including option pricing (Feunou and Okou 2019), cross-

sectional stock return prediction (Bollerslev et al. 2020), and volatility forecasting 

(Patton and Sheppard 2015; Bollerslev 2022).  

The signed jumps in these studies are typically measured via an estimator defined 

by the gap between positive and negative realized semivariances, motivated by the 

asymptotic results of Barndorff-Nielsen et al. (2008) that the discrepancy between 

positive and negative realized semivariances converges to the signed jumps as the 

sampling interval becomes small, 

 

𝐽𝑡
Δ = 𝑅𝑆𝑡

+ − 𝑅𝑆𝑡
−
𝑝
→ ∑ 𝜅𝑠

2𝐼𝜅𝑠>0
1<𝑠≤𝑡

− ∑ 𝜅𝑠
2𝐼𝜅𝑠<0

1<𝑠≤𝑡

, as Δ → 0. (2.5.1) 

where 𝐽𝑡
Δ = 𝑅𝑆𝑡

+ − 𝑅𝑆𝑡
− denotes the signed jump estimator defined by the difference 

between positive and negative realized semivariances, ∑ 𝜅𝑠
2𝐼𝜅𝑠>01<𝑠≤𝑡  is the sum of all 

positive jumps, and ∑ 𝜅𝑠
2𝐼𝜅𝑠<01<𝑠≤𝑡  is the sum of all negative jumps. According to my 
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previous results, the modified positive and negative semivariances, denoted by 𝑅𝑆𝑡
+ ∗ 

and 𝑅𝑆𝑡
− ∗, can perform better in estimation than 𝑅𝑆𝑡

+ and 𝑅𝑆𝑡
−, respectively. 

Motivated by the possible benefits of this superiority of 𝑅𝑆𝑡
+ ∗ and 𝑅𝑆𝑡

− ∗, I define an 

alternative signed jump estimator based on the gap between 𝑅𝑆𝑡
+ ∗ and 𝑅𝑆𝑡

− ∗, 

 

𝐽𝑡
Δ ∗ = 𝑅𝑆𝑡

+ ∗ − 𝑅𝑆𝑡
− ∗, (2.5.2) 

where 𝐽𝑡
Δ ∗ indicates the modified signed jump estimator. For notational simplicity, I 

write 𝑅𝑆𝑡
+ − 𝑅𝑆𝑡

− as 𝐽𝑡
Δ and 𝑅𝑆𝑡

+ ∗ − 𝑅𝑆𝑡
− ∗ as 𝐽𝑡

Δ ∗ for the rest of this chapter.  

For a drift-diffusion process with jumps, Equation (2.2.1), the estimation bias in 

the signed jump estimator 𝐽𝑡
Δ is defined by 𝐽𝑡

Δ − (∑ 𝜅𝑠
2𝐼𝜅𝑠>01<𝑠≤𝑡 − ∑ 𝜅𝑠

2𝐼𝜅𝑠<01<𝑠≤𝑡 ), 

and the bias in the corresponding modified estimator 𝐽𝑡
Δ ∗ is defined by 𝐽𝑡

Δ ∗ −

(∑ 𝜅𝑠
2𝐼𝜅𝑠>01<𝑠≤𝑡 − ∑ 𝜅𝑠

2𝐼𝜅𝑠<01<𝑠≤𝑡 ).  My previous conclusions suggest that a nonzero 

drift can cause a substantial bias in both 𝑅𝑆𝑡
+ and 𝑅𝑆𝑡

− for the finite sample. Do the 

biases in 𝑅𝑆𝑡
+ and 𝑅𝑆𝑡

− also cause the estimation imprecision of 𝐽𝑡
Δ? If the bias in 𝐽𝑡

Δ is 

impactful to its estimation, does 𝐽𝑡
Δ ∗ do a better job? I begin the analysis by exploring 

the relationship between the bias in 𝐽𝑡
Δ, with those in 𝑅𝑆𝑡

+, and 𝑅𝑆𝑡
−. 

Lemma 2.5.1.  (1). According to the definition of 𝐽𝑡
𝛥, along with the 

definitions of the bias in 𝐽𝑡
𝛥, 𝑅𝑆𝑡

+, and 𝑅𝑆𝑡
− under a drift-diffusion 

process with jumps, Equation (2.2.1), the bias in 𝐽𝑡
𝛥 equals the 

difference between the bias in 𝑅𝑆𝑡
+ and that in 𝑅𝑆𝑡

−, 

 

𝐽𝑡
Δ − ( ∑ [𝜅𝑠𝐼(𝜅𝑠 > 0)]

2

1<𝑠≤𝑡

− ∑ [𝜅𝑠𝐼(𝜅𝑠 < 0)]
2

1<𝑠≤𝑡

) (2.5.3) 
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= [𝑅𝑆𝑡
+ − (

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

+ ∑ [𝜅𝑠𝐼(𝜅𝑠 > 0)]
2

1<𝑠≤𝑡

)] 

−[𝑅𝑆𝑡
− − (

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

+ ∑ [𝜅𝑠𝐼(𝜅𝑠 < 0)]
2

1<𝑠≤𝑡

)]. 

(2). According to the definition of 𝐽𝑡
𝛥∗, along with the definitions of 

the bias in 𝐽𝑡
𝛥∗, 𝑅𝑆𝑡

+ ∗, and 𝑅𝑆𝑡
− ∗, the bias in 𝐽𝑡

𝛥∗ equals the difference 

between the bias in 𝑅𝑆𝑡
+ ∗ and that in 𝑅𝑆𝑡

− ∗, 

 

𝐽𝑡
Δ ∗ − ( ∑ [𝜅𝑠𝐼(𝜅𝑠 > 0)]

2

1<𝑠≤𝑡

− ∑ [𝜅𝑠𝐼(𝜅𝑠 < 0)]
2

1<𝑠≤𝑡

) 

= [𝑅𝑆𝑡
+ ∗ − (

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

+ ∑ [𝜅𝑠𝐼(𝜅𝑠 > 0)]
2

1<𝑠≤𝑡

)] 

−[𝑅𝑆𝑡
− ∗ − (

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

+ ∑ [𝜅𝑠𝐼(𝜅𝑠 < 0)]
2

1<𝑠≤𝑡

)]. 

(2.5.4) 

Lemma 2.5.1 is important as it identifies the links between the bias in the signed 

jump estimator and those in semivariances, suggesting that the bias in the signed jump 

estimator is exclusively due to (the difference in) the biases in semivariances. Using 

Lemma 2.5.1, I first derive the biases in 𝐽𝑡
Δ and 𝐽𝑡

Δ∗ under the constant drift-diffusion 

model, Equation (2.3.2). 

Proposition 2.5.1. Under the drift-diffusion process, Equation (2.3.2). 

The expected bias in the semivariance-based signed jump estimator, 𝐽𝑡
Δ 

is 

 

𝔼(𝐽𝑡
Δ − 0) (2.5.5) 
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= 𝜇2Δ + 𝜎2 − 2𝜇2ΔΦ(
−𝜇√Δ

𝜎
) + 2𝜇𝜎√Δ𝜑(

−𝜇√Δ

𝜎
)

− 2𝜎2Φ(
−𝜇√Δ

𝜎
). 

For any 𝜇 > 0 and 𝜎 > 0, 𝔼(𝐽𝑡
Δ − 0) > 0 and the bias ratio of 𝐽𝑡

Δ is 

(𝐽𝑡
Δ − 0)/0 = +∞. For any 𝜇 < 0 and 𝜎 > 0, 𝔼(𝐽𝑡

Δ − 0) < 0 and the 

bias ratio of 𝐽𝑡
Δ is (𝐽𝑡

Δ − 0)/0 = −∞. 

 

Corollary 2.5.1 The bias in 𝐽𝑡
Δ when 𝜇 = 𝜇∗ with 𝜇∗ ≠ 0 is the same in 

magnitude as that in 𝐽𝑡
Δ when 𝜇 = −𝜇∗. 

 

Proposition 2.5.2. Under the drift-diffusion process, Equation (2.3.2), 

for any nonzero 𝜇, the expected bias in the semivariance-based 

modified signed jump estimator 𝐽𝑡
Δ ∗ is 

𝔼(𝐽𝑡
Δ ∗ − 0) = 0. (2.5.6) 

 

Proportion 2.5.1 suggests that for a constant drift-diffusion process, the bias in 𝐽𝑡
Δ 

is not zero in the presence of a nonzero drift, and the sign of the bias in 𝐽𝑡
Δ aligns with 

that of the drift. This bias can be much more impactful than that in 𝑅𝑆𝑡
+ or 𝑅𝑆𝑡

− as 

when jumps are absent the estimation target of 𝐽𝑡
Δ is zero while the estimation target 

of both 𝑅𝑆𝑡
+ or 𝑅𝑆𝑡

− is the one-half integrated variation. Corollary 2.5.1 shows that the 

magnitude of the bias in 𝐽𝑡
Δ is symmetric around zero drift. Proportion 2.5.2 implies 

that the drift has no impact on the estimation 𝐽𝑡
Δ ∗, with the bias expected to be zero. 

This indicates that 𝐽𝑡
Δ ∗ outperforms 𝐽𝑡

Δ in terms of the signed jump estimation 

performance under the constant drift-diffusion model (in the absence of jumps). 



89 

 

From Lemma 2.5.1 and Proportion 2.5.1, under the constant drift-diffusion model, 

we derive that the bias ratio of 𝐽𝑡
Δ is much greater than that of 𝑅𝑆𝑡

+ and 𝑅𝑆𝑡
− but we do 

not yet know how the bias in 𝐽𝑡
Δ compares to those in 𝑅𝑆𝑡

+ and 𝑅𝑆𝑡
−. For the latter 

comparison, I consider visualizing the biases in 𝐽𝑡
Δ, 𝑅𝑆𝑡

+ and 𝑅𝑆𝑡
− using the same 

realistic parameters (volatility 𝜎, drift 𝜇, and sampling frequency Δ) of the constant 

drift-diffusion model as in section 2.3.2. To illustrate further Proposition 2.5.2, I also 

use these parameters to calculate the biases in the corresponding modified estimators, 

including 𝐽𝑡
Δ ∗, 𝑅𝑆𝑡

+ ∗ and 𝑅𝑆𝑡
− ∗. 

I begin the analysis by reporting the bias in the estimators, with the bias ratio 

results reported later. Figure 2.5.1 depicts the biases in semivariances and signed jump 

estimators, denoted by 𝑅𝑆𝑡
+, 𝑅𝑆𝑡

−, and 𝐽𝑡
Δ, along with the biases in modified 

estimators, indicated by 𝐽𝑡
Δ ∗, 𝑅𝑆𝑡

+ ∗, and 𝑅𝑆𝑡
− ∗, which are attached in the lower panel 

for comparison. From the upper right panel, I observe that the sign of the bias in 𝐽𝑡
Δ is 

consistent with the sign of 𝜇 and the size of the bias is symmetric around 𝜇 = 0, 

which corroborates Proposition 2.5.1 and Corollary 2.5.1, respectively. The bias in 𝐽𝑡
Δ 

for any nonzero 𝜇 considered appears to be greater in magnitude than those in 𝑅𝑆𝑡
+ 

and 𝑅𝑆𝑡
−. This may be explained by noting that the bias in 𝑅𝑆𝑡

+ is always the opposite 

sign as that in 𝑅𝑆𝑡
− for the nonzero 𝜇 considered. The bias in 𝐽𝑡

Δ, which is the 

difference between the biases in 𝑅𝑆𝑡
+ and 𝑅𝑆𝑡

− (Lemma 2.5.1), thus captures all the 

biases in 𝑅𝑆𝑡
+ and 𝑅𝑆𝑡

−, with no offset for these nonzero 𝜇, resulting in the size of the 

bias in 𝐽𝑡
Δ is larger than that in 𝑅𝑆𝑡

+ and 𝑅𝑆𝑡
−.  
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Figure 2.5.1. The finite sample bias in positive realized semivariance, negative 

realized semivariance, and signed jump estimator, along with their modified versions 

under the constant drift-diffusion process 

Panel A

 

Panel B

 

Notes: This figure depicts the finite sample bias in the positive realized semivariance 

(𝑅𝑆𝑡
+), negative realized semivariance (𝑅𝑆𝑡

−), modified positive realized semivariance 

(𝑅𝑆𝑡
+ ∗), and modified negative realized semivariance (𝑅𝑆𝑡

− ∗) under the constant drift-

diffusion process, Equation (2.3.2). The biases of 𝑅𝑆𝑡
+ and 𝑅𝑆𝑡

− are calculated by 

Proposition 2.3.1 with parameter settings introduced in the earlier paragraphs of 

section 2.3.2 while the biases in 𝑅𝑆𝑡
+ ∗ and 𝑅𝑆𝑡

− ∗ are computed by Proposition 2.3.2 

with the same parameters using simulated log prices from the constant drift-diffusion 

model, Equation (2.3.2).  

 

The lower right panel reveals that the bias in the modified signed jump estimator 

(𝐽𝑡
Δ ∗) is zero, which corroborates Proposition 2.5.2. As shown by the first two plots of 

the lower panel, the bias in the modified semivariance 𝑅𝑆𝑡
+ ∗ and 𝑅𝑆𝑡

− ∗ are equal in 

size and sign at about −2.8 × 104 (Proposition 2.3.2). Recall that the bias in 𝐽𝑡
Δ ∗ 

equals the gap between the biases in 𝑅𝑆𝑡
+ ∗ and 𝑅𝑆𝑡

− ∗ (Lemma 2.5.1). As the biases 

are fully offset, the bias in 𝐽𝑡
Δ ∗ is zero, which is obviously smaller in size than that in 
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𝑅𝑆𝑡
+ ∗ and 𝑅𝑆𝑡

− ∗. In summary, for a constant drift-diffusion model with the parameters 

realistic for the stock market, I find that the bias in the semivariance-based signed 

jump estimator because of a nonzero drift can be larger in magnitude than that in 

positive and negative semivariances, and the bias in the modified signed jump 

estimator due to a nonzero drift can be smaller in magnitude than that in modified 

positive and negative semivariances. 

As in my previous analysis of the semivariance estimation, I study the biases 

performance of the signed jump estimator and its modified form (𝐽𝑡
Δ and 𝐽𝑡

Δ ∗) under 

constant or linear drift-diffusion model with additive jumps. Following my former 

methods, the bias ratios of 𝐽𝑡
Δ and 𝐽𝑡

Δ ∗ are calculated on the simulated 5-minute log 

prices from these two drift models, with the sampling frequency, volatility, drift, and 

jump parameters same as those used in sections 2.3.3 and 2.4.2. To assess the 

influence of bias in 𝐽𝑡
Δ and 𝐽𝑡

Δ∗ on its estimation accuracy, I consider the bias ratio 

measure, defined by the proportion of the bias relative to the actual signed jumps.  

Table 2.5.1 reports the calculated bias ratios of 𝐽𝑡
Δ and 𝐽𝑡

Δ ∗ for the five scenarios of 

jumps that are used for investigating the bias of semivariances as in Tables 2.3.1 and 

2.3.2. For each jump scenario, the bias ratios are computed by varying the drift 𝜇 from 

-0.1 to 0.1, with increments of 0.025. This range of 𝜇 is consistent with that 

considered in section 2.3.2 for studying the bias ratio of semivariances. Panel (1) of 

Table 2.5.1 reports the bias ratio of the original signed jump estimator 𝐽𝑡
Δ and its 

modified version 𝐽𝑡
Δ ∗ for nonzero drift 𝜇 and the case of one positive jump with its 

size 𝜙𝑡𝑖
1  equal to 0.6 of spot volatility 𝜎𝑡𝑖  . In the presence of one positive jump, both 

𝐽𝑡
Δ and  𝐽𝑡

Δ ∗ attempt to estimate the squared positive jump, 0.36𝜎𝑡𝑖
2. The result shows 

that the original estimator 𝐽𝑡
Δ is substantially biased, with the magnitude of the bias 
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ratio larger than 100% for all of these nonzero drifts 𝜇. Moreover, the bias ratio of 𝐽𝑡
Δ 

is much greater in magnitude than the biases of the original semivariances 𝑅𝑆𝑡
+ and 

𝑅𝑆𝑡
− reported in the same jump case (1) of Tables 2.3.1 and 2.3.2 for the same 

nonzero drifts. 𝐽𝑡
Δ ∗ underestimates the signed jumps by 4% for all levels of drift, due 

to the difference between the negative bias in 𝑅𝑆𝑡
+ ∗ and the positive bias in 𝑅𝑆𝑡

− ∗ as 

reported in Tables 2.3.1 and 2.3.2 is not zero. Compared to 𝐽𝑡
Δ, the bias ratio of the 

modified estimator 𝐽𝑡
Δ ∗ is much lower for all of these 𝜇, which indicates that 𝐽𝑡

Δ ∗ 

achieves a much higher level of estimation accuracy of the signed jumps than 𝐽𝑡
Δ. 

Table 2.5.1. The bias ratio of signed jump estimators across different scenarios of jumps 

for the constant drift-diffusion model  

 

Notes: This table presents the bias ratios of the signed jump estimator (𝐽𝑡
𝛥) and its modified 

version (𝐽𝑡
𝛥 ∗) across a range of drift 𝜇 and for different cases of jumps. The bias of 𝐽𝑡

𝛥 and 

𝐽𝑡
𝛥 ∗ is computed on the simulated 5-minute frequency log price from the constant drift-

diffusion model with additive jumps, Equation 2.3.14. Since the signed jumps equal zero 

for Panel (5), the bias reported in this panel is modified as the ratio relative to the overall 

size of two jumps 2 × (0.6𝜎)2. 

 𝜇 -0.1 -0.075 -0.05 -0.025 0 0.025 0.05 0.075 0.1 

(1) One jump with 𝜙𝑡𝑖
1 = 0.6𝜎𝑡𝑖 

 𝐽𝑡
𝛥 -6.303 -4.411 -2.779 -1.328 0.031 1.396 2.863 4.523 6.452 

 𝐽𝑡
𝛥∗ -0.041 -0.041 -0.041 -0.041 -0.041 -0.041 -0.041 -0.041 -0.041 

(2) One jump with 𝜙𝑡𝑖
1 = −0.6𝜎𝑡𝑖 

 𝐽𝑡
𝛥 -6.465 -4.534 -2.872 -1.404 -0.040 1.319 2.769 4.400 6.290 

 𝐽𝑡
𝛥∗ 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 

(3) Two jumps with 𝜙𝑡𝑖
𝑗
= 0.6𝜎𝑡𝑖 for 𝑗 = 1,2 

 𝐽𝑡
𝛥 -3.274 -2.297 -1.444 -0.678 0.045 0.774 1.557 2.437 3.454 

 𝐽𝑡
𝛥∗ -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 

(4) Two jumps with 𝜙𝑡𝑖
𝑗
= −0.6𝜎𝑡𝑖 for 𝑗 = 1,2 

 𝐽𝑡
𝛥 -3.274 -2.297 -1.444 -0.678 0.045 0.774 1.557 2.437 3.454 

 𝐽𝑡
𝛥∗ -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 

(5) Two jumps with 𝜙𝑡𝑖
1 = 0.6𝜎𝑡𝑖 and 𝜙𝑡𝑖

2 = −0.6𝜎𝑡𝑖 

 𝐽𝑡
𝛥 -3.364 -2.368 -1.502 -0.729 -0.003 0.721 1.494 2.359 3.355 

 𝐽𝑡
𝛥∗ -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 

 

Case (2) compares the biases of the original signed jump estimator 𝐽𝑡
Δ and the 

respective modified estimator 𝐽𝑡
Δ ∗ over different levels of drifts 𝜇 for the presence of 
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one negative jump with its size 𝜙𝑡𝑖
1 = −0.6𝜎𝑡𝑖. For this jump case, the goal of both 𝐽𝑡

Δ 

and  𝐽𝑡
Δ ∗ is to measure the negative sign of the squared negative jump, −0.36𝜎𝑡𝑖

2. The 

bias ratio of 𝐽𝑡
Δ here is systematically greater than 100% in magnitude across all of 

these nonzero 𝜇, indicating that a nonzero 𝜇 again causes unsatisfactory performance 

of 𝐽𝑡
Δ in measuring the negative jump variation. Relative to 𝐽𝑡

Δ, the bias of 𝐽𝑡
Δ ∗ is much 

smaller in size. The sign of the bias of 𝐽𝑡
Δ ∗ is negative since the median is slightly 

downward biased by the negative jump.  

Panels (3) and (4) report the biases of 𝐽𝑡
Δ and 𝐽𝑡

Δ ∗ in the presence of a nonzero 

drift 𝜇 for estimating the signed jump variation of two positive and two negative 

jumps, respectively. For these nonzero 𝜇, the bias of 𝐽𝑡
Δ in Panels (3) and (4) is 

approximately one-half of its bias in Panels (1) and (2). This is because the size of the 

signed jump variation doubles. But the (absolute) proportion of the bias ratio of 𝐽𝑡
Δ in 

Panels (3) and (4) are still largely greater than zero, especially if 𝜇 deviates far from 

zero. In these two panels, the bias of 𝐽𝑡
Δ ∗ is much smaller than that of 𝐽𝑡

Δ across all of 

these nonzero 𝜇. Panel (5) exhibits the biases of 𝐽𝑡
Δ and 𝐽𝑡

Δ ∗ as a function of 𝜇 for the 

scenario of two jumps with both sizes equal to 0.6 of volatility but with opposite 

signs. Since the signed jump variation equals zero for this jump case, I adjust the 

biases in this panel as the ratio relative to the overall size of two jumps 2 × (0.6𝜎)2. 

This adjustment also facilitates comparing the bias reported in Panel (5) with that in 

Panels (3) and (4), where the bias is also based on the ratio relative to the sum of two 

squared jumps 2 × (0.6𝜎)2. The bias of 𝐽𝑡
Δ in Panel (5) is close to those in Panel (3) 

and (4) for these nonzero 𝜇: the bias of 𝐽𝑡
Δ due to nonzero drift is considerable and the 

size of the bias increases with |𝜇|. Comparing of 𝐽𝑡
Δ and 𝐽𝑡

Δ ∗ in Panel (5), the latter 

systematically exhibits a much smaller magnitude of bias across these nonzero drifts.  
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The comparative results between 𝐽𝑡
Δ and 𝐽𝑡

Δ ∗ reported in Table 2.5.1 are based on 

the simple constant drift-diffusion models. To be consistent with the analysis of the 

semivariances, I also calculate the biases of 𝐽𝑡
Δ and 𝐽𝑡

Δ ∗ via simulating the 5-minute 

log prices from the more comprehensive linear drift-diffusion model with additive 

jumps, Equation (2.4.6), with identical parameter settings as in section 2.4.1. Table 

2.5.2 reports the bias ratios of 𝐽𝑡
Δ and 𝐽𝑡

Δ ∗ for the same five scenarios of jumps as in 

Tables 2.5.1. For each jump setting, the biases are computed for the 𝜃 varying from -

0.02 to 0.02 with the initial log price at 𝑝𝑡0 = 6. To avoid repetition, results for 

alternative initial log prices 𝑝𝑡0 = 2 or 4 are not reported here but are qualitatively 

very consistent with those reported here.  

 

Table 2.5.2. The bias ratio of signed jump estimators across different scenarios of jumps for the linear 

drift-diffusion model.  

 

Notes: This table presents the biases of the signed jump estimator (𝐽𝑡
𝛥) and its modified version (𝐽𝑡

𝛥 ∗) 

across a range of 𝜃 with the initial log price at 𝑝𝑡0 = 6 and for different cases of jumps. The bias of 𝐽𝑡
𝛥 and 

𝐽𝑡
𝛥 ∗ is computed on the simulated 5-minute frequency log price from the constant drift-diffusion model 

with additive jumps, Equation (2.4.6). Since the signed jumps equal zero for case (5), the bias reported in 

this panel is modified as the ratio relative to the overall size of two jumps 2 × (0.6𝜎)2 

 𝜃 -0.2 -0.16 -0.12 -0.08 -0.04 0 0.04 0.08 0.12 0.16 0.2 

(1) One jump with 𝜙𝑡𝑖
1 = 0.6𝜎𝑡𝑖 

 𝐽𝑡
𝛥 -7.930 -5.916 -4.170 -2.643 -1.269 0.030 1.339 2.746 4.334 6.179 8.341 

 𝐽𝑡
𝛥 ∗ -0.040 -0.040 -0.040 -0.040 -0.040 -0.040 -0.040 -0.040 -0.040 -0.040 -0.040 

(2) One jump with 𝜙𝑡𝑖
1 = −0.6𝜎𝑡𝑖 

 𝐽𝑡
𝛥 -8.119 -6.062 -4.283 -2.732 -1.343 -0.041 1.261 2.651 4.211 6.015 8.125 

 𝐽𝑡
𝛥 ∗ 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 

(3) Two jumps with 𝜙𝑡𝑖
𝑗
= 0.6𝜎𝑡𝑖 for 𝑗 = 1,2 

 𝐽𝑡
𝛥 -4.109 -3.075 -2.171 -1.373 -0.647 0.044 0.743 1.494 2.337 3.310 4.441 

 𝐽𝑡
𝛥 ∗ -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 

(4) Two jumps with 𝜙𝑡𝑖
𝑗
= −0.6𝜎𝑡𝑖 for 𝑗 = 1,2 

 𝐽𝑡
𝛥 -4.319 -3.243 -2.307 -1.484 -0.745 -0.050 0.643 1.376 2.190 3.123 4.203 

 𝐽𝑡
𝛥 ∗ 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 

(5) Two jumps with 𝜙𝑡𝑖
1 = 0.6𝜎𝑡𝑖 and 𝜙𝑡𝑖

2 = −0.6𝜎𝑡𝑖  

 𝐽𝑡
𝛥 -4.215 -3.160 -2.239 -1.429 -0.696 -0.003 0.693 1.434 2.263 3.216 4.322 

 𝐽𝑡
𝛥 ∗ 

<0.00

1 

<0.00

1 

<0.00

1 

<0.00

1 

<0.00

1 

<0.00

1 

<0.00

1 

<0.00

1 

<0.00

1 

<0.00

1 

<0.00

1 



95 

 

For all nonzero 𝜃 and all of these five cases of jumps in Table 2.5.1, the original 

estimator 𝐽𝑡
Δ is still largely biased while the bias ratio of the modified estimator, 𝐽𝑡

Δ ∗ is 

again much smaller in size. Although 𝐽𝑡
Δ ∗ either underestimate or overestimate the 

signed jumps due to the existence of jumps, the proportion of the bias in 𝐽𝑡
Δ ∗ is 

consistently very small (less than 5%). Overall, the estimation superiority of the 

modified signed jump estimator over the original counterpart in the presence of 

nonzero drifts is consistent when the log prices are simulated from the more 

sophisticated linear drift-diffusion model. 

The results of the bias of signed jump estimators 𝐽𝑡
Δ and 𝐽𝑡

Δ ∗ in the above Tables 

2.5.1 and 2.5.2 are investigated by assuming one size of jumps, which is 0.6 of 

volatility. For checking the robustness of my results in Tables 2.5.1 to different jump 

sizes, I allow one positive or negative jump in the constant drift-diffusion model, 

Equation (2.3.14) to vary from 0.2294𝜎 to 0.8165𝜎 or −0.8165𝜎 to −0.2294𝜎 as in 

section 2.3.3, with the remaining parameters of the model also consistent with those 

considered in section 2.3.3.  

Panel (1) of Figure 2.5.1 depicts the bias of 𝐽𝑡
Δ and 𝐽𝑡

Δ ∗ for different cases of the 

drift 𝜇 and a positive jump with size 𝜙𝑡𝑖
1 > 0, while Panel (2) presents the bias for 

various combinations of the drift and a negative jump with size 𝜙𝑡𝑖
1 < 0. As in Table 

2.5.1, for the 𝜙𝑡𝑖
1  considered, the original estimator 𝐽𝑡

Δ contains an upward bias for 

𝜇 > 0 and a downward bias for 𝜇 < 0. This is because for these 𝜙𝑡𝑖
1 , there is always a 

positive bias in 𝑅𝑆𝑡
+ and negative bias in 𝑅𝑆𝑡

− for 𝜇 > 0, and a negative bias in 𝑅𝑆𝑡
+ 

and positive bias in 𝑅𝑆𝑡
− for 𝜇 < 0, as reported in Figure 2.3.6.  The size of the bias of 

𝐽𝑡
Δ increases with |𝜇| and decreases with |𝜙𝑡𝑖

1 |, as larger jumps further dilute the 

proportion of the bias due to a nonzero 𝜇. In contrast to the unsatisfactory estimation 
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accuracy of 𝐽𝑡
Δ, the modified estimator 𝐽𝑡

Δ ∗ exhibits much lower sizes of the bias for 

all these combinations of nonzero 𝜇 and 𝜙𝑡𝑖
1 . 

 

Figure 2.5.1. Bias ratios of signed jump estimators as a function of the sizes of the drift and 

jump under the constant drift-diffusion model 

 

 

Notes: Panel (1) presents the bias ratios of the signed jump estimator (𝐽𝑡
𝛥) and its modified 

form (𝐽𝑡
𝛥 ∗) as a function of the sizes of the drift 𝜇 and a positive jump 𝜙𝑡𝑖

1 > 0. Panel (2) 

reports the biases of these two estimators as a function of the sizes of 𝜇 and a negative jump 

𝜙𝑡𝑖
1 < 0. The bias ratio of 𝐽𝑡

𝛥 is defined by the bias in 𝐽𝑡
𝛥 relative to the size of the signed 

jumps |𝜙𝑡𝑖
1 𝜎|, and the bias ratio of 𝐽𝑡

𝛥 ∗ is defined by the bias in 𝐽𝑡
𝛥 ∗ relative to |𝜙𝑡𝑖

1 𝜎|. The 

biases in 𝐽𝑡
𝛥 and 𝐽𝑡

𝛥 ∗ are calculated on the log prices simulated by the constant drift-diffusion 

model, Equation (2.3.14). 

 

Figure 2.5.2 depicts the bias ratio of 𝐽𝑡
Δ and 𝐽𝑡

Δ ∗ in the presence of one positive or 

negative jump in the linear drift-diffusion model, Equation (2.4.6), to change within 

the same range as Figure 2.5.1, with the remaining parameters of the model consistent 

with those in section 2.4.1. Panel (1) depicts the bias ratio of the original signed jump 

estimator 𝐽𝑡
Δ and its modified version 𝐽𝑡

Δ ∗ with different sizes of 𝜃 and a positive jump 

𝜙𝑡𝑖
1 > 0, while Panel (2) presents the bias results for the sizes of 𝜃 and a negative 

jump 𝜙𝑡𝑖
1 < 0.  
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Figure 2.5.2. Bias ratios of signed jump estimators as a function of the sizes of the drift and 

jump under the linear drift-diffusion model 

 

Notes: Panel (1) presents the bias ratios of the signed jump estimator (𝐽𝑡
𝛥) and its modified 

form (𝐽𝑡
𝛥 ∗) as a function of the sizes of the parameter 𝜃 and a positive jump 𝜙𝑡𝑖

1 > 0. Panel (2) 

reports the biases of these two estimators as a function of the sizes of 𝜃 and a negative jump 

𝜙𝑡𝑖
1 < 0. The biases are defined by the difference between the estimator and the signed jumps 

relative to the size of the signed jumps, and the biases are calculated on the log prices 

simulated by the linear drift-diffusion model, Equation (2.4.6). 

 

The results of the bias ratios reveal a similar pattern as those reported in Table 

2.5.2. For all of these 𝜙𝑡𝑖
1 , 𝐽𝑡

Δ always overestimates when 𝜃 > 0 and underestimates 

when 𝜃 < 0. The size of the bias ratio of 𝐽𝑡
Δ increasing as |𝜃| becomes larger and |𝜙𝑡𝑖

1 | 

gets smaller. Across these sizes of signed jump 𝜙𝑡𝑖
1  and 𝜃, the signed jump estimator 

𝐽𝑡
Δ often misestimate the actual signed jumps by over 100% and up to about 

30 × 100%, indicating that this bias is much more impactful than that in positive and 

negative semivariances reported in Figure 2.3.6. Comparing 𝐽𝑡
Δ with 𝐽𝑡

Δ ∗, the bias ratio 

of 𝐽𝑡
Δ ∗ is systematically much smaller for all of these different combinations of 𝜙𝑡𝑖

1  

and nonzero 𝜃, regardless of the sign of 𝜙𝑡𝑖
1 . 

In summary, theoretical and simulation results suggest that the bias ratio of the 

signed jump estimator is much higher than that of the volatility estimators. Can these 

findings of the biases also be evidenced from the real data in the stock markets? The 

next section will explore this research question using high-frequency SPY data. 
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2.6. Data Description 

I present the results for the SPDR S&P 500 Growth ETF (SPY) to investigate 

empirical evidence for the proportion of the bias in the signed jump estimator due to a 

nonzero drift, compared to those of the realized semivariances, bipower variation, and 

realized variance. This exchange-traded fund has been constructed to be a broad 

representation of the overall stock market and has been applied by previous literature 

as the market portfolio proxies (e.g., Barigozzi et al. 2014; Patton and Sheppard 2015; 

Fan et al. 2016; Gao et al. 2018). Therefore, this chapter uses SPY as the proxy for the 

S&P 500 index. I begin this section with a brief discussion of the data sources, 

followed by descriptive statistics of the resulting measures for volatility, signed jumps 

and drift bias. 

I obtain tick-by-tick SPY prices from Tick Data Inc. The sample period is from 

January 2, 1997, to September 21, 2021, with a total of 𝑛 = 6222 days. The SPY tick 

data is cleaned according to the standard rules used in the literature (Barndorff‐

Nielsen et al. 2009; Christensen et al. 2014; Patton and Sheppard 2015; Bollerslev et 

al. 2016; Jiang and Zhu 2017; Christensen et al. 2023): 

1. Transactions outside 9:30:00 to 16:00:00 were removed. 

2. Transactions with a 0 price or volume were removed. 

3. Only retain the transaction prices from the most active exchange of each day 

(the transaction prices from other exchanges were dropped). 

4. Only transaction prices from regular trades were retained (I removed prices 

with irregular trades that are highlighted by Tickdata.com). The classification 

details of regular and irregular trades can be found on the official website of 

Tick Data Inc., https://www.tickdata.com/. 



99 

 

5. If multiple transactions have the same timestamp, use the median price. 

6. Delete transaction prices related to corrected trades. The details of corrected 

trades can be found on the official website of Tick Data Inc. 

Following the common practise in the realized variance literature (Andersen et al. 

2007b; Corsi 2009; Patton and Sheppard 2015; Bollerslev et al. 2016; Bollerslev et al. 

2020; Laurent and Shi 2020; Bollerslev 2022; Caporin 2023; Christensen et al. 2023), 

this chapter focuses on price volatility during the intraday session of a trading day, 

thus overnight returns are excluded. After cleaning, the tick-by-tick transaction prices 

of SPY are then sampled at the 5-minute frequency. The daily median of the 5-minute 

returns is applied to estimate the daily (average) price drift of these returns. The 5-

minute returns are also used for calculating the estimators that are defined in section 

2.3, including realized variance (𝑅𝑉𝑡), bipower variation (𝐵𝑉𝑡), positive realized 

semivariance (𝑅𝑆𝑡
+), negative realized semivariance (𝑅𝑆𝑡

−), and the signed jump 

estimator 𝐽𝑡
Δ, along with their modified versions, denoted by 𝑅𝑉𝑡

∗, 𝐵𝑉𝑡
∗, 𝑅𝑆𝑡

+ ∗, 𝑅𝑆𝑡
− ∗, 

and  𝐽𝑡
Δ ∗. Recall that the signed jump estimator is a function of the realized 

semivariances, defined as 𝐽𝑡
Δ = 𝑅𝑆𝑡

+ − 𝑅𝑆𝑡
− and  𝐽𝑡

Δ ∗ = 𝑅𝑆𝑡
+ ∗ − 𝑅𝑆𝑡

− ∗.  

Figure 2.6.1 depicts the daily time series of 𝑅𝑉𝑡, 𝐵𝑉𝑡, 𝑅𝑆𝑡
+, and 𝑅𝑆𝑡

−, reported in 

Panels (1) to (4), respectively. As can be seen from this figure, both 𝑅𝑉𝑡 and 𝐵𝑉𝑡 are 

larger for early 2000, the financial crisis and pandemic recessions, reflecting that the 

stock market is more volatile during those periods. 𝑅𝑉𝑡 is visually very similar as 𝐵𝑉𝑡, 

which suggests that the size of jumps may be generally very small relative to 𝑅𝑉𝑡. 

𝑅𝑆𝑡
+ and 𝑅𝑆𝑡

− are smaller than 𝑅𝑉𝑡 as they are decompositions of 𝑅𝑉𝑡. 𝑅𝑆𝑡
+ is 

generally very similar to 𝑅𝑆𝑡
−, except that 𝑅𝑆𝑡

+ has some much larger extreme values. 

This is surprising as an extremely negative price move is expected to be much sharper 

than a positive one. From my inspection of the price dynamic associated with 
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extremely large 𝑅𝑆𝑡
+, I find that there is generally an explosive upward price trend of 

the day, indicating a large positive drift may exist in the price dynamic. 

Figure 2.6.1. Daily realized variance, bipower variation, positive semivariance and 

negative semivariance 

 

 

Notes: Panel (1), (2), (3), (4) depicts the daily realized variance (𝑅𝑉𝑡), bipower 

variation (𝐵𝑉𝑡), positive semivariance (𝑅𝑆𝑡
+) and negative semivariance (𝑅𝑆𝑡

−). The 

sample is SPDR S&P 500 ETF from 1997 to 2021. 

 

Figure 2.6.2 depicts the daily time series of the original signed jump estimator, 

indicated by 𝐽𝑡
Δ, from January 2, 1997, to September 21, 2021. As the results show, 𝐽𝑡

Δ 

can be positive and negative over the sample length. Similar to 𝑅𝑉𝑡 and 𝐵𝑉𝑡, 𝐽𝑡
Δ is also 

much greater in size for economic depressions such as the subprime mortgage bubbles 

from 2008 to 2009 and the pandemic recession around 2020.  
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Figure 2.6.2. Daily signed jump estimator 

 

Notes: This figure depicts the daily signed jump estimator (𝐽𝑡
Δ) with 𝐽𝑡

Δ = 𝑅𝑆𝑡
+ −

𝑅𝑆𝑡
−. The sample is SPDR S&P 500 ETF from 1997 to 2021. 

 

Figure 2.6.3 compares realized variance (𝑅𝑉𝑡) and bipower variation (𝐵𝑉𝑡) with 

their modified versions, denoted by 𝑅𝑉𝑡
∗ and 𝐵𝑉𝑡

∗ for SPY. The first panel depicts the 

discrepancy between 𝑅𝑉𝑡 and 𝑅𝑉𝑡
∗, measured as (𝑅𝑉𝑡  −  𝑅𝑉𝑡

∗) /𝑅𝑉𝑡
∗, while the 

second panel reports (𝐵𝑉𝑡  −  𝐵𝑉𝑡
∗) /𝐵𝑉𝑡

∗. These two discrepancies may proxy the 

proportion of the bias in 𝑅𝑉𝑡 and 𝐵𝑉𝑡, as the biases in 𝑅𝑉𝑡
∗ and 𝐵𝑉𝑡

∗ are ignorable 

relative to 𝑅𝑉𝑡 and 𝐵𝑉𝑡. The latter discrepancy is also investigated by Laurent and Shi 

(2020) but (𝑅𝑉𝑡  −  𝑅𝑉𝑡
∗) /𝑅𝑉𝑡

∗ is somewhat not reported and discussed in the 

literature. Additionally, these two discrepancies deviate from zero when the daily 

median (drift) of returns is nonzero. I find that the median is not zero for 4544 out of 

6222 days, or 73% of the sample days, suggesting that a nonzero drift is prevalent 

across the SPY sample.  

 



102 

 

Figure 2.6.3. The discrepancy between realized variance and modified realized 

variance, and the discrepancy between bipower variation and modified bipower 

variation 

 

Notes: The first panel depicts the discrepancy between realized variance and modified 

realized variance, (𝑅𝑉𝑡 − 𝑅𝑉𝑡
∗)/𝑅𝑉𝑡

∗, and the second panel of, with 𝑅𝑉𝑡 and 𝑅𝑉𝑡
∗ 

calculated by Equations (2.2.4) and (2.3.10). The second panel shows (𝐵𝑉𝑡 − 𝐵𝑉𝑡
∗)/

𝐵𝑉𝑡
∗, where 𝐵𝑉𝑡

∗ is computed by Equations (2.6.2) and (2.6.3). The data is SPDR S&P 

500 ETF from 1997 to 2021. 

 

From Panel (1), I observe that 𝑅𝑉𝑡 tends to be larger than 𝑅𝑉𝑡
∗ with their gap 

more likely to be positive over the sample period. The positive discrepancy 

corroborates the finite sample theory of Laurent and Shi (2020) that 𝑅𝑉 can be subject 

to greater positive bias due to a nonzero drift than 𝑅𝑉𝑡
∗. The negative discrepancy 

might be due to the measurement error of 𝑅𝑉𝑡 and 𝑅𝑉𝑡
∗. From the second panel, I 

observe the gap between 𝐵𝑉𝑡 and 𝐵𝑉𝑡
∗ is substantially positive, consistent with 

Laurent and Shi (2020). This implies that the conventional 𝐵𝑉 very often 

overestimates the integrated variance. Compared to the results across two panels, the 

discrepancy between 𝐵𝑉 and 𝐵𝑉∗ is generally more positive than that between 𝑅𝑉𝑡 

and 𝑅𝑉𝑡
∗, suggesting that the impact of drift on 𝐵𝑉𝑡 may be stronger than that on 𝑅𝑉𝑡, 

consistent with the findings by Laurent and Shi (2020). 
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Figure 2.6.4 compares the bipower variation, realized semivariances and the 

signed jump estimator (𝐵𝑉𝑡, 𝑅𝑆𝑡
+, 𝑅𝑆𝑡

−, and 𝐽𝑡
Δ) with their modified versions (𝐵𝑉𝑡

∗, 

𝑅𝑆𝑡
+ ∗, 𝑅𝑆𝑡

− ∗, and 𝐽𝑡
Δ ∗) in the presence of nonzero drifts.  

Figure 2.6.4. The discrepancy between original and modified estimators when the daily 

median of log intraday returns is positive or negative 

 

Notes: Panel (1) depicts the discrepancy between bipower variation (𝐵𝑉𝑡) with modified 

bipower variation (𝐵𝑉𝑡
∗) by (𝐵𝑉𝑡 − 𝐵𝑉𝑡

∗)/𝐵𝑉𝑡
∗ when the daily median of log intraday returns 

is positive (�̂�𝑡 > 0). Panel (2) contains this discrepancy for �̂�𝑡 < 0. Panel (3) presents the 

gap between positive realized semivariance (𝑅𝑆𝑡
+) with modified positive realized 

semivariance (𝑅𝑆𝑡
+ ∗) by (𝑅𝑆𝑡

+ − 𝑅𝑆𝑡
+ ∗)/𝑅𝑆𝑡

+ ∗ for �̂�𝑡 > 0. Panel (4) shows this gap for 

�̂�𝑡 < 0. Panel (5) reports the discrepancy between negative realized semivariance (𝑅𝑆𝑡
−) with 

modified negative realized semivariance (𝑅𝑆𝑡
− ∗) by (𝑅𝑆𝑡

− − 𝑅𝑆𝑡
− ∗)/𝑅𝑆𝑡

− ∗ for �̂�𝑡 > 0. Panel 

(6) depicts this gap for �̂�𝑡 < 0. Panel (7) reports the discrepancy between the signed jump 

estimator (𝐽𝑡
Δ) with the modified signed jump estimator (𝐽𝑡

Δ ∗) by (𝐽𝑡
Δ − 𝐽𝑡

Δ ∗)/|𝐽𝑡
Δ ∗| for �̂�𝑡 >

0. Panels (8) reports this discrepancy for �̂�𝑡 < 0. The data sample is the 5-minute log prices 

of the SPDR S&P 500 ETF (SPY) from 1997 to 2021. 
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The comparisons are based on the discrepancy between the estimator with the 

modified estimator, relative to the modified estimator. Panels marked with odd 

numbers report the discrepancy results when the daily median of the log intraday 

returns (�̂�𝑡) is positive, �̂�𝑡 > 0 while the panels with even numbers contain the 

results for �̂�𝑡 < 0. The scale of the horizontal axis is fixed across all of these panels 

in the figure for ease of comparison. Panels (1) and (2) compare 𝐵𝑉𝑡 with 𝐵𝑉𝑡
∗ via 

(𝐵𝑉𝑡 − 𝐵𝑉𝑡
∗)/𝐵𝑉𝑡

∗ for �̂�𝑡 > 0 and �̂�𝑡 < 0, respectively. This discrepancy is positive 

and tends to be close in magnitude for �̂�𝑡 > 0 and �̂�𝑡 < 0, which is consistent with 

the theoretical and simulation findings by Laurent and Shi (2020) that the bias in 𝐵𝑉𝑡 

is symmetrically distributed around zero drift.  

Panels (3) and (4) compare 𝑅𝑆𝑡
+ with 𝑅𝑆𝑡

+ ∗ via (𝑅𝑆𝑡
+ − 𝑅𝑆𝑡

+ ∗)/𝑅𝑆𝑡
+ ∗ for �̂�𝑡 > 0 

and �̂�𝑡 < 0, respectively. As in my finite sample theories and simulations, the results 

from these two panels indicate that 𝑅𝑆𝑡
+ overestimates if �̂�𝑡 > 0 and underestimates 

if �̂�𝑡 < 0. The bias for �̂�𝑡 > 0 appears to be greater in magnitude than for �̂�𝑡 < 0. 

which is consistent with the asymmetry of the estimation bias of 𝑅𝑆𝑡
+ around positive 

and negative drifts found my previous theoretical and simulation results. Comparing 

Panels (1) and (2) with Panels (3) and (4), the discrepancies in the latter panels appear 

to be larger, implying that both positive and negative drift may be more impactful to 

the estimation of 𝑅𝑆𝑡
+ than 𝐵𝑉𝑡. This result corroborates my theoretical findings in 

Figures 2.3.5 and 2.4.3. 

Panels (5) and (6) present the difference between 𝑅𝑆𝑡
− and 𝑅𝑆𝑡

− ∗ (estimated as 

(𝑅𝑆𝑡
− − 𝑅𝑆𝑡

− ∗)/𝑅𝑆𝑡
− ∗) in the presence of the positive and negative �̂�𝑡, respectively. 

The results suggest that 𝑅𝑆𝑡
− systematically underestimates if �̂�𝑡 > 0 and 

overestimates more severely if �̂�𝑡 < 0, which is consistent with my theoretical and 

simulative findings. Compared to Panels (3) and (4), the discrepancy between 𝑅𝑆𝑡
− 
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and 𝑅𝑆𝑡
− ∗ seem to be close to that between 𝑅𝑆𝑡

+ and 𝑅𝑆𝑡
+ ∗ with opposite sign of �̂�𝑡. 

This empirical symmetric pattern of the positive and negative semivariances 

corroborates my Corollary 2.3.4 and simulation results. Comparing Panels (1) and (2) 

with Panels (5) and (6), the difference in the latter panels tends to be greater in size, 

suggesting that both positive and negative drift may be more influential to the 

estimation of 𝑅𝑆𝑡
− relative to 𝐵𝑉𝑡, thus supporting my theoretical findings in Figures 

2.3.5 and 2.4.3.  

Panels (7) and (8) report the bias of the signed jump estimator 𝐽𝑡
Δ. These two 

panels compare 𝐽𝑡
Δ with 𝐽𝑡

Δ ∗ according to the ratio (𝐽𝑡
Δ − 𝐽𝑡

Δ ∗)/|𝐽𝑡
Δ ∗|, for �̂�𝑡 > 0 and 

�̂�𝑡 < 0. The results indicate that the estimation bias of 𝐽𝑡
Δ seems to be symmetric 

around positive and negative �̂�𝑡, with the sign of the bias aligning with that of �̂�𝑡. 

This is consistent with my theoretical and simulation findings in section 2.5. By 

comparing the bottom panels with the other six panels, the results suggest that the 

proportion of the bias of 𝐽𝑡
Δ appears to be much larger than that of 𝑅𝑆𝑡

+ and 𝑅𝑆𝑡
−. This 

also evidences my findings in section 2.5 that the bias in 𝐽𝑡
Δ can account for a much 

larger proportion than that in 𝑅𝑆𝑡
+ and 𝑅𝑆𝑡

− estimators. 

Since the signed jump estimator 𝐽𝑡
Δ has positive and negative components, I also 

present the discrepancy (𝐽𝑡
Δ − 𝐽𝑡

Δ ∗)/|𝐽𝑡
Δ ∗| conditional on 𝐽𝑡

Δ > 0 or 𝐽𝑡
Δ < 0. This 

allows us to see the estimation bias of the positive and negative components of 𝐽Δ due 

to a nonzero drift. Figure 2.6.5 reports the discrepancy (𝐽𝑡
Δ − 𝐽𝑡

Δ ∗)/|𝐽𝑡
Δ ∗| conditional 

on the sign of 𝐽𝑡
Δ. Panel (1) reports (𝐽𝑡

Δ − 𝐽𝑡
Δ ∗)/|𝐽𝑡

Δ ∗| for 𝐽𝑡
Δ > 0, while Panel (2) 

contains this discrepancy for 𝐽𝑡
Δ < 0. When 𝐽𝑡

Δ > 0, the discrepancy can be positive or 

negative. Interestingly, the positive discrepancy appears to be much greater in size 

than its negative, with the size of the negative discrepancy no greater than 100%. This 
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suggests that 𝐽𝑡
Δ overestimate signed jumps much more dramatically than 

underestimate when 𝐽𝑡
Δ > 0. When 𝐽𝑡

Δ < 0, the result switches, 𝐽𝑡
Δ underestimate the 

signed jumps much more severely.  

Figure 2.6.5. The discrepancy between original and modified signed jump estimators when 

the original estimator is positive or negative 

 

Notes: Panel (1) reports the discrepancy between original and modified signed jump 

estimators, measured as (𝐽𝑡
Δ − 𝐽𝑡

Δ ∗)/|𝐽𝑡
Δ ∗|, when the original estimator is positive (𝐽𝑡

Δ > 0). 

Panel (2) shows the same discrepancy for 𝐽𝑡
Δ > 0. 

 

The exceedingly large positive and negative bias for 𝐽𝑡
Δ > 0 and 𝐽𝑡

Δ < 0 may be 

explained by noting the bias in 𝐽𝑡
Δ due to a nonzero drift can be much larger than the 

actual signed jumps thus dominate 𝐽𝑡
Δ. In this case, a positive drift can shape a positive 

𝐽𝑡
Δ no matter the sign of actual signed jumps, and a negative drift can cause a negative 

𝐽𝑡
Δ regardless of the sign of signed jumps. When the impact of a drift does not 

overwhelm the signed jumps, 𝐽𝑡
Δ could be positive or negative and its signs cannot be 

determined by the sign of the drift. This explains why the negative and positive 

discrepancy for 𝐽𝑡
Δ > 0 and 𝐽𝑡

Δ < 0 are much smaller. Additionally, by comparing the 

original and modified signed jump estimators, I find that for 𝐽𝑡
Δ > 0 and 𝐽𝑡

Δ < 0, the 

rates of misclassifying the sign of signed jumps are 24.5% and 22.1%, respectively, 
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and for overall 𝐽𝑡
Δ this rate equals 23.3%. This suggests that the impact of a nonzero 

drift on 𝐽𝑡
Δ causes that 𝐽𝑡

Δ frequently misidentifies the sign of the signed jump. 

The discrepancies of volatility and signed jump estimators reported in Figure 

2.6.4 contain some large spikes, therefore resulting in difficulties in making a general 

conclusion of the comparison between those discrepancies. For generality purposes, 

Table 2.6.1 produces quantile statistics for those discrepancies reported in Figure 

2.4.2, with the quantile set as 5%, 25%, 50%, 75%, and 95%.  

Table 2.6.1. Quantile statistics for the discrepancy between original and modified 

estimators when the daily median of log intraday return is positive or negative 

 

Notes: This table reports the quantile statistics for the discrepancy between original and 

modified estimators between bipower variation (𝐵𝑉𝑡) with modified bipower variation 

(𝐵𝑉𝑡
∗), (𝐵𝑉𝑡 − 𝐵𝑉𝑡

∗)/𝐵𝑉𝑡
∗, the discrepancy between positive realized semivariance (𝑅𝑆𝑡

+) 

and modified positive realized semivariance (𝑅𝑆𝑡
+ ∗), (𝑅𝑆𝑡

+ − 𝑅𝑆𝑡
+ ∗)/𝑅𝑆𝑡

+ ∗, the 

discrepancy between negative realized semivariance (𝑅𝑆𝑡
−) and modified negative realized 

semivariance (𝑅𝑆𝑡
− ∗), (𝑅𝑆𝑡

− − 𝑅𝑆𝑡
− ∗)/𝑅𝑆𝑡

− ∗, and the discrepancy between the signed jump 

estimator (𝐽𝑡
Δ) and the modified signed jump estimator (𝐽𝑡

Δ ∗), (𝐽𝑡
Δ − 𝐽𝑡

Δ ∗)/𝐽𝑡
Δ ∗. �̂�𝑡 denotes 

the daily median of returns.  
  5% 25% 50% 75% 95% 

(𝐵𝑉𝑡 − 𝐵𝑉𝑡)/𝐵𝑉𝑡
∗ for �̂�𝑡 > 0 -0.005 0.002 0.012 0.033 0.086 

for �̂�𝑡 < 0 -0.004 0.002 0.012 0.032 0.081 

(𝑅𝑆𝑡
+ − 𝑅𝑆𝑡

+ ∗)/𝑅𝑆𝑡
+ ∗ for �̂�𝑡 > 0 0.039 0.103 0.184 0.295 0.524 

for �̂�𝑡 < 0 -0.344 -0.229 -0.154 -0.093 -0.034 

(𝑅𝑆𝑡
− − 𝑅𝑆𝑡

− ∗)/𝑅𝑆𝑡
− ∗ for �̂�𝑡 > 0 -0.328 -0.224 -0.154 -0.094 -0.039 

for �̂�𝑡 < 0 0.032 0.102 0.179 0.296 0.572 

(𝐽𝑡
Δ − 𝐽𝑡

Δ ∗)/|𝐽𝑡
Δ ∗| for �̂�𝑡 > 0 0.165 0.491 1.012 2.229 11.09 

for �̂�𝑡 < 0 -12.70 -2.388 -1.072 -0.531 -0.161 

 

The discrepancy (𝐵𝑉𝑡 − 𝐵𝑉𝑡)/𝐵𝑉𝑡
∗ is systematically very similar for �̂�𝑡 > 0 and 

�̂�𝑡 < 0, indicating that the phenomenon of the bias in 𝐵𝑉𝑡 is symmetric around 

positive and negative drift generally exists across the quantiles considered. Both 

(𝑅𝑆𝑡
+ − 𝑅𝑆𝑡

+ ∗)/𝑅𝑆𝑡
+ ∗ and (𝑅𝑆𝑡

− − 𝑅𝑆𝑡
− ∗)/𝑅𝑆𝑡

− ∗ are asymmetric around �̂�𝑡 = 0: the 

magnitude of the discrepancy when the sign of �̂�𝑡 equals that of the semivariance, 

with few exceptions, is overwhelmingly greater than that when the sign of �̂�𝑡 is 

opposite to that of the semivariance. (𝑅𝑆𝑡
+ − 𝑅𝑆𝑡

+ ∗)/𝑅𝑆𝑡
+ ∗ is qualitatively very 
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similar to (𝑅𝑆𝑡
− − 𝑅𝑆𝑡

− ∗)/𝑅𝑆𝑡
− ∗ when their signs are equal. But there are still some 

differences, especially for the extreme quantiles: (𝑅𝑆𝑡
− − 𝑅𝑆𝑡

− ∗)/𝑅𝑆𝑡
− ∗ with �̂�𝑡 < 0 

is larger than (𝑅𝑆𝑡
+ − 𝑅𝑆𝑡

+ ∗)/𝑅𝑆𝑡
+ ∗ with �̂�𝑡 > 0 for the quantile 95%, and 

(𝑅𝑆𝑡
+ − 𝑅𝑆𝑡

+ ∗)/𝑅𝑆𝑡
+ ∗ with �̂�𝑡 < 0 is greater in size than (𝑅𝑆𝑡

+ − 𝑅𝑆𝑡
+ ∗)/𝑅𝑆𝑡

+ ∗ with 

�̂�𝑡 > 0 for the quantile 5%. This may be explained by noting that the downside drift 

is often larger than the upside drift for the stock market, especially during economic 

recessions.  

At least one-half of the discrepancy (𝐽𝑡
Δ − 𝐽𝑡

Δ ∗)/|𝐽𝑡
Δ ∗| is larger than 100% for 

�̂�𝑡 > 0 and �̂�𝑡 < 0, corroborates my simulations findings that 𝐽𝑡
Δ may often 

underestimate or overestimate the actual signed jumps by 100%. This discrepancy is 

overwhelmingly greater in size than those related to volatility estimators above across 

all of these quantiles, and in particular for 5% and 95% quantiles. Also, 

(𝐽𝑡
Δ − 𝐽𝑡

Δ ∗)/|𝐽𝑡
Δ ∗| exhibits a qualitatively symmetric pattern around zero �̂�𝑡 but is 

slightly larger in magnitude for �̂�𝑡 < 0, especially for quantiles 5%. This may be 

because of the larger size of the downside drift compared to the upside drift for the 

stock market over the crisis periods. 
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2.7. The impact of good volatility and bad volatility, and signed jumps 

on future volatility 

Forecasting price volatility allows us to predict how prices may vary in the future, 

which is important for investors and the financial industry involved with option 

pricing (Black and Scholes 1973), derivative pricing (Duffie et al. 2000), asset 

allocation (Merton 1969), and risk management (Christoffersen and Diebold 2000). A 

large volume of empirical studies has shown the predictive importance of long-

memory dependence in financial market volatility, which is typically characterized by 

the fact that daily realized variance can have autocorrelations which are significant for 

many lags. This stylized fact motivates the estimation of long-memory type 𝐴𝑅𝐹𝐼𝑀𝐴 

models for realized volatilities in Areal and Taylor (2002), Andersen et al. (2003), 

Thomakos and Wang (2003), Pong et al. (2004), Koopman et al. (2005), and Deo et 

al. (2006).  

Corsi (2009) proposed a Heterogeneous Autoregressive (𝐻𝐴𝑅) class of volatility 

models with one-day, one-week, and one-month lagged volatility averages. He finds 

that this mixing of relatively short-term lagged volatility components is capable of 

reproducing the remarkably slow volatility autocorrelation decay that is almost 

indistinguishable from that of a hyperbolic (long-memory) pattern over the most 

empirically relevant forecast horizon. Moreover, the 𝐻𝐴𝑅 model outperforms the 

𝐴𝑅𝐹𝐼𝑀𝐴 model in terms of out-of-sample volatility forecast (Corsi 2009). Due to its 

superiority in modelling the long memory effect of volatility, the 𝐻𝐴𝑅 model has been 

widely applied in key research on realized variance forecasting for the last two 

decades (Andersen et al. 2007b; Corsi et al. 2010; Corsi and Renò 2012; Duong and 

Swanson 2015; Patton and Sheppard 2015; Bollerslev et al. 2016; Buccheri and Corsi 

2021; Bollerslev 2022; Laurent et al. 2022b; Andersen et al. 2023; Caporin 2023). To 
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provide more evidence to the literature, I apply the 𝐻𝐴𝑅 model for forecasting 

volatility for my SPY data. Specifically, the 𝐻𝐴𝑅 model presented by Corsi (2009) is 

defined as follows: 

 

𝑉𝑡+1 = 𝛽0 + 𝛽𝑑 𝑉𝑡 + 𝛽𝑤 (
1

5
∑𝑉𝑡−𝑖

4

𝑖=0

) + 𝛽𝑚  (
1

22
∑𝑉𝑡−𝑖

21

𝑖=0

) + 𝜖𝑡+1, (2.7.1) 

where 𝑉𝑡+1 is the daily volatility measure being forecasted, typically 𝑅𝑉𝑡+1, and 𝑉𝑡 

denotes current volatility, which is the 1-day lagged value with respect to 𝑉𝑡+1. The 

remaining terms represent the average volatility over the past 5 days, 
1

5
∑ 𝑉𝑡−𝑖
4
𝑖=0 , and 

the past 22 days, 
1

22
∑ 𝑉𝑡−𝑖
21
𝑖=0 , and 𝜖𝑡+1 is the disturbance. The predictors in this 𝐻𝐴𝑅 

model have some overlapping lags. Specifically, the past 5-day average volatility 

1

5
∑ 𝑉𝑡−𝑖
4
𝑖=0  includes the past 1-day volatility 𝑉𝑡, and the past 22-day average volatility 

1

22
∑ 𝑉𝑡−𝑖
21
𝑖=0  includes the average from the shorter 5-day lagged volatility ∑ 𝑉𝑡−𝑖

4
𝑖=0 . 

To reduce the overlap between these predictors, this 𝐻𝐴𝑅 model used throughout this 

chapter adopts the non-overlapping reparameterization of the 𝐻𝐴𝑅 model suggested 

by Patton and Sheppard (2015), 

 

𝑉𝑡+1 = 𝛽0 + 𝛽𝑑 𝑉𝑡 + 𝛽𝑤 (
1

4
∑𝑉𝑡−𝑖

4

𝑖=1

) + 𝛽𝑚  (
1

17
∑𝑉𝑡−𝑖

21

𝑖=5

) + 𝜖𝑡+1, (2.7.2) 

where 
1

4
∑ 𝑉𝑡−𝑖
4
𝑖=1  excludes the past 1-day volatility 𝑉𝑡 and 

1

17
∑ 𝑉𝑡−𝑖
21
𝑖=5  removes the 

average volatility over lags 1 to 4. In the above Equation (2.7.2), both the forecast 

target, 𝑉𝑡+1, and predictors, measured by the lagged volatility, may be proxied by 

realized variance such that the 𝐻𝐴𝑅 model becomes 
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𝑅𝑉𝑡+1 = 𝛽0 + 𝛽𝑑 𝑅𝑉𝑡 + 𝛽𝑤 𝑅𝑉̅̅ ̅̅𝑤,𝑡 + 𝛽𝑚 𝑅𝑉̅̅ ̅̅𝑚,𝑡 + 𝜖𝑡+1, (2.7.3) 

where 𝑅𝑉̅̅ ̅̅𝑤,𝑡 =
1

4
∑ 𝑅𝑉𝑡−𝑖
4
𝑖=1  and 𝑅𝑉̅̅ ̅̅𝑚,𝑡 =

1

17
∑ 𝑅𝑉𝑡−𝑖
21
𝑖=5 . Of course, the volatility 

estimator, which measures the forecast target 𝑉𝑡+1 of Equation (2.7.7) need not 

necessarily be the same as the estimator used for measuring the lagged volatilities on 

the right-hand side. 

The good and bad volatility indicates the risk of prices going up and down. 

Motivated by the intuition that disentangling downside risk from upside risk may add 

more information beyond seeing these two risks as a whole, previous studies 

investigate whether dividing volatility into good and bad volatility improves volatility 

forecasting. The literature generally finds that this decomposition enhances volatility 

forecasts (Sévi 2014; Patton and Sheppard 2015; Todorova 2017; Gong and Lin 2021; 

Özbekler et al. 2021). To provide the literature with more evidence, I decompose 𝑅𝑉𝑡 

in Eqaution 2.7.3 into 𝑅𝑆𝑡
+, and 𝑅𝑆𝑡

−, following the same 𝑅𝑆 specification by Patton 

and Sheppard (2015), 

 

𝑅𝑉𝑡+1 = 𝛽0 + 𝛽d
+ 𝑅𝑆𝑡

+ + 𝛽d
− 𝑅𝑆𝑡

− + 𝛽𝑤 𝑅𝑉̅̅ ̅̅𝑤,𝑡 + 𝛽𝑚 𝑅𝑉̅̅ ̅̅𝑚,𝑡 + 𝜖𝑡+1. (2.7.4) 

Note that if this decomposition of volatility would add no information, we would see 

that the coefficients of 𝑅𝑉𝑡 in Equation (2.7.3), and those of 𝑅𝑆𝑡
+ and 𝑅𝑆𝑡

− are equal, 

as indicated by 𝛽𝑑 = 𝛽𝑑
− = 𝛽𝑑

+. 

Jumps are large moves in the asset prices, with the upside and downside jumps 

often associated with good and bad news (Evans 2011; Lahaye et al. 2011; Gilder et 

al. 2014). Signed jumps, which are the difference between positive and negative 

jumps, thus may indicate whether the day is dominated by positive or negative news. 
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Motivated by the intuition that good (bad) news reduces (increases) future volatility, a 

large volume of research applies signed jumps to forecast volatility and most studies 

find they are significant (Sévi 2014; Patton and Sheppard 2015; Bee et al. 2016; 

Lyócsa and Molnár 2016; Wang et al. 2016; Todorova 2017; Gong and Lin 2021; 

Özbekler et al. 2021; Caporin 2023; Slim et al. 2023; Zhu et al. 2023). To provide 

more evidence of the impact of signed jumps on volatility forecasting, I follow Patton 

and Sheppard (2015) and define a specification by including the signed jump 

estimator and bipower variation, 

 

𝑅𝑉𝑡+1 = 𝛽0 + 𝛽𝐽Δ  𝐽𝑡
𝛥 + 𝛽𝐶  𝐵𝑉𝑡 + 𝛽𝑤 𝑅𝑉̅̅ ̅̅𝑤,𝑡 + 𝛽𝑚 𝑅𝑉̅̅ ̅̅𝑚,𝑡 + 𝜖𝑡+1. (2.7.5) 

I term this regression the 𝐽𝛥 model in this chapter. If signed jumps are important, 𝛽𝐽Δ 

should be significantly different from zero. 

To determine whether the impact of positive jump variation on volatility 

forecasting differs from that of negative jump variation, and thus whether the impact 

of jumps is driven more by the positive or negative jump variation, I follow Patton 

and Sheppard (2015) and extend the 𝐽𝛥 model by replacing the independent signed 

jump variable 𝐽𝑡
𝛥 with its positive and negative components, indicated by 𝐽𝑡

𝛥 (𝐽𝑡
𝛥 > 0) 

and 𝐽𝑡
𝛥 (𝐽𝑡

𝛥 < 0), respectively. This leads to the following 𝐽± model, 

 

𝑅𝑉𝑡+1 = 𝛽0 + 𝛽𝐽+  𝐽𝑡
𝛥(𝐽𝑡

𝛥 > 0) + 𝛽𝐽−  𝐽𝑡
𝛥 (𝐽𝑡

𝛥 < 0) + 𝛽𝐶  𝐵𝑉𝑡 + 𝛽𝑤 𝑅𝑉̅̅ ̅̅𝑤,𝑡

+ 𝛽𝑚 𝑅𝑉̅̅ ̅̅𝑚,𝑡 + 𝜖𝑡+1. 
(2.7.6) 

If the two signed jump components have identical forecasting power, then we would 

expect to find 𝛽𝐽+ = 𝛽𝐽− = 𝛽𝐽Δ. 
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To help evaluate the forecasting significance of signed jumps, I consider a 

benchmark model (named by the 𝐵𝑉 model) that excludes the signed jump estimators, 

 

𝑅𝑉𝑡+1 = 𝛽0 + 𝛽𝐶  𝐵𝑉𝑡 + 𝛽𝑤 𝑅𝑉̅̅ ̅̅𝑤,𝑡 + 𝛽𝑚 𝑅𝑉̅̅ ̅̅𝑚,𝑡 + 𝜖𝑡+1. (2.7.7) 

If signed jumps add predictive power, we would expect that this 𝐵𝑉 model is 

outperformed by the 𝐽𝛥 and 𝐽± models explaining the variation of future volatility. 

The above models can be estimated by the Ordinary Least Squares method (OLS) 

if the errors, 𝜖𝑡, are independent, normally distributed, and have fixed volatility over 

sample days. However, the error term appears to exhibit a pattern of 

heteroscedasticity, changing across the sample period in accordance with the level of 

the volatility (Patton and Sheppard 2015), therefore, estimation by OLS has the 

disadvantage that the resulting estimates focus primarily on fitting periods of high 

volatility and place little weight on low volatility periods. Consequently, the OLS 

coefficient estimator is no longer efficient. This heteroscedasticity bias is also 

evidenced when applying OLS to the 𝐻𝐴𝑅 model for my SPY sample, with the details 

of the results stored in the Appendix A.2. for presentation purposes.  

To overcome this, I follow Patton and Sheppard (2015) and use a Weighted Least 

Squares (WLS) method to estimate the models in this chapter. The WLS method 

attempts to provide a more efficient alternative to OLS by putting different weights on 

errors. Specifically, the WLS method puts relatively less weight on errors which are 

likely to have a large variance and more weight on errors which are likely to have a 

small variance (note that the variances mentioned here indicate the variance of the 

errors, which is not the variance of the returns). As for the weights, I use the inverse 

of the fitted value of the 𝐻𝐴𝑅 model estimated by the OLS method as in Patton and 



114 

 

Sheppard (2015). This idea is motivated by the positive relationship between the 

variance of residuals and the level of the fitted values of the 𝐻𝐴𝑅 model estimated by 

the OLS method. The statistical inference on the coefficient estimates is based on the 

Newey–West Heteroskedasticity and Autocorrelation Consistent (HAC) standard 

errors proposed by Newey and West (1987a). The full technical details describing the 

calculations of the WLS model estimation are provided in the Appendix A.2..  

All estimators were calculated daily using returns sampled in business time 

instead of the more common calendar time. This means that instead of using prices 

spaced evenly in calendar time, I use prices spaced evenly in “event” time. 

Specifically, as opposed to applying SPY transaction prices every 5 minutes, I sample 

SPY prices every ten transactions. Consequently, I sample more frequently during 

high activity periods and less frequently during quieter times. Under certain 

conditions, business-time sampling can yield realized measures with better statistical 

properties (Oomen, 2005; Patton and Sheppard, 2015), and this method is now widely 

used in the literature (Bollerslev and Todorov, 2011). I sample prices 79 times a day, 

averaging an interval of 5 minutes. The first and last prices of the day are used as the 

initial and final observations, with the remaining 77 observations evenly spaced 

between them. The choice of an approximate 5-minute sampling window is standard 

and aims to avoid microstructure noise like bid-ask bounce. Since price observations 

are available more frequently than the approximate 5-minute sampling period, there 

are multiple possible grids of approximate 5-minute prices, depending on the initial 

sample observation.  

I employ ten distinct grids of 5-minute prices to generate ten different estimators. 

These estimators are correlated but not identical. I then average these estimators to 

derive our final one. This subsampling method, introduced by Zhang et al. (2005), is 
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expected to enhance precision compared to using a single estimator. Additionally, I 

find that the evidence of drift biases in realized variance, bipower variation, 

semivariances and signed jump estimators is qualitatively very consistent with that 

reported in Figures 2.6.4 and 2.6.5. This is expected as the sampling interval of the 

returns in each subsample is approximately 5 minutes.  

Table 2.7.1 reports the in-sample estimation results of the 𝐻𝐴𝑅 model introduced 

by Corsi (2009), Equation (2.7.3), 𝐵𝑉 model, Equation (2.7.7), and the 𝑅𝑆, 𝐽𝛥, and 𝐽± 

models proposed by Patton and Sheppard (2015), Equations (2.7.4) to (2.7.6), for 

daily realized variance forecast. Table 2.7.1 focuses on the daily volatility forecast. 

The forecast results associated with longer horizons are qualitatively very similar to 

the daily forecast results, with those results reported in the appendix A.3.. The first 

column reports the estimation results for the 𝐻𝐴𝑅 model that exploits the impacts of 

lagged daily, weekly, and monthly volatility on volatility forecasting. The coefficients 

on daily, weekly, and monthly volatilities, indicated by 𝛽𝑑, 𝛽𝑤, and 𝛽𝑚, are all 

positive and significant at the 5% level, with 𝛽𝑑 + 𝛽𝑤 + 𝛽𝑚 approximately 1. This 

result reveals substantial volatility persistence as found in the literature (Andersen et 

al. 2007b; Corsi 2009; Corsi et al. 2010; Corsi and Renò 2012; Patton and Sheppard 

2015; Bollerslev et al. 2016; Buccheri and Corsi 2021; Caporin 2023).  

The second column contains the estimation results of the 𝑅𝑆 model, which 

divides the most recent volatility component into signed semivariances. The 

coefficients on weekly and monthly volatility lags, denoted by 𝛽𝑤 and 𝛽𝑚, are 

significant at the 5% level. The very small, negative, and insignificant coefficient on 

positive semivariance, 𝛽𝑑
+ contrasts with the much larger, positive, and highly 

significant coefficient on negative semivariance, 𝛽𝑑
−. This estimation result suggests 
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that future volatility is more strongly related to recent bad volatility than to recent 

good volatility, which is consistent with the finding in Patton and Sheppard (2015). 

Table 2.7.1. In-sample estimation results of different volatility models for daily realized 

variance forecast 

 

Notes: The table provides in-sample parameter estimates and measures of fit for the 

volatility models with volatility and signed jump estimators for daily realized variance 

forecasts. The brackets report the Heteroskedasticity and Autocorrelation Consistent (HAC) 

𝑡-statistics. 𝐻𝐴𝑅 is a specification which uses the realized variance, Equation (2.7.3), 𝑅𝑆, 

Equation (2.7.4), is based on semivariances, 𝐵𝑉 is a model that depends on bipower 

variation, Equation (2.7.7), 𝐽𝛥 and 𝐽±, are the models where the signed jump estimators are 

applied, Equations (2.7.5) and (2.7.6). The intercept of the model is not reported. The 

sample is SPDR S&P 500 ETF prices from January 1997 to September 2021.  
   𝐻𝐴𝑅  𝑅𝑆  𝐵𝑉  𝐽Δ  𝐽± 

𝛽𝐽
Δ     -0.498  

    (-6.67)  

𝛽𝐽
+      -0.182 

     (-2.40) 

𝛽𝐽
−      -1.480 

     (-4.87) 

𝛽𝑑
+   -0.219    

  (-0.92)    

 𝛽𝑑
−  1.366    

  (15.80)    

 𝛽𝐶   0.586 0.573 0.479 

   (14.85) (16.10) (9.50) 

 𝛽𝑑 0.587     

 (14.23)     

𝛽𝑤  0.303 0.310 0.289 0.287 0.295 

 (6.48) (7.75) (6.14) (6.97) (7.49) 

𝛽𝑚  0.070 0.079 0.076 0.088 0.085 

 (2.72) (3.37) (2.98) (3.71) (3.80) 

R2 0.502 0.568 0.507 0.551 0.586 

 

Similar to Patton and Sheppard (2015), the semivariance model explains 13.2% 

more of the variation in future volatility than the model that includes only realized 

variance. The effect of lagged realized variance implied by this specification is 

(𝛽𝑑
+ + 𝛽𝑑

−) 2⁄ , and we see that it is similar in magnitude to the coefficient found in the 

reference specification, where I include only lagged realized variance, which indicates 

that models that use only realized variance are essentially averaging the vastly 
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different effects of positive and negative returns. Consistent with Patton and Sheppard 

(2015), my testing results, which are not reported here, show that the null hypothesis 

that the coefficients of 𝑅𝑉𝑡, 𝑅𝑆𝑡
+, and 𝑅𝑆𝑡

− are equal (𝛽𝑑 = 𝛽𝑑
− = 𝛽𝑑

+) is rejected, 

providing strong evidence that decomposing volatility into the good and bad 

volatilities significantly enhances the explanatory power of this model. 

The third column presents the results for the 𝐵𝑉 model, which forecasts volatility 

using recent bipower variation, 𝐵𝑉𝑡. The results are similar to the findings in the 

literature: the coefficient estimate on 𝐵𝑉𝑡 (𝛽𝑤) is positive and highly significant, again 

indicating the strongly persistent volatility dependence. The fourth column in Table 

2.7.1 contains the results for the 𝐽Δ model that evaluates if there is incremental 

information including the signed jump variable. As found in Patton and Sheppard 

(2015), the coefficient on 𝐽𝑡
Δ, denoted by 𝛽𝐽

Δ, is negative and significant at 1% level. 

This leads to the conclusion that negative jumps lead to higher future volatility, while 

positive jumps lead to lower future volatility. Comparing the 𝐵𝑉 model with 𝐽Δ, the 

latter model has an 8.7% larger adjusted 𝑅2, indicating that including signed jumps 

explains more future volatility variation, which is consistent with the conclusion of 

Patton and Sheppard (2015). 

The final column demonstrates the estimated coefficients of the 𝐽± model. This 

model uses the information from the decomposed components of 𝐽𝑡
Δ. The coefficient 

on bipower variation (𝛽𝐶) is positive and significant at the 5% level, again indicating 

a strong volatility persistence. The coefficient on negative jumps (𝛽𝐽
−) is significant at 

the 5% level and negative while that on the positive jumps (𝛽𝐽
+) is significant and 

negative, with 𝛽𝐽
− larger than 𝛽𝐽

+ in magnitude. This leads to the conclusion that the 

positive and negative jumps have different impacts on volatility forecasting, with the 
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negative (positive) jumps leading to higher (lower) future volatility. Compared to the 

𝐵𝑉 model which excludes any jump components, the 𝐽± model has a 15.6% larger 

adjusted 𝑅2, indicating that incorporating the signed decompositions of jumps 

explains more volatility variation, similar to the findings by Patton and Sheppard 

(2015). 

As in Patton and Sheppard (2015), the effects of volatility dependence and signed 

jumps on future volatility may help reconcile the forecasting impacts of good and bad 

volatility. The impact on future volatility of one-half integrated variation and positive 

jumps differs in signs, therefore the effect of the sum of these two components, which 

is the good volatility, may average out. The effects on future volatility of both one-

half integrated variation and negative jumps are positive, causing the positive impact 

of bad volatility on future volatility. 

The conclusions so far on the effects of the volatility persistence, asymmetric 

effect of good and bad volatility, and the effect of signed jumps made so far are 

entirely based on the realized variance, bipower variation, semivariances, and 

semivariance-based signed jump estimators. These estimators, however, as shown in 

my previous theoretical and simulation findings, may be subject to biases due to a 

nonzero drift. My earlier results also show that the modified versions of these 

estimators are much more robust to the impact of a nonzero drift. To explore the 

impact of drift on volatility persistence, the asymmetric effect of good and bad 

volatility, and the significance of signed jumps on volatility forecasting, I adjust all of 

these volatility models by substituting all estimators, including predictors, and 

forecast targets with their modified versions. 
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Table 2.7.2 shows the estimation results for the models associated with the 

modified volatility and signed jump estimators, termed 𝐻𝐴𝑅∗, 𝑅𝑆∗, 𝐵𝑉∗, 𝐽Δ ∗, and 𝐽± ∗ 

models.  

Table 2.7.2. In-sample estimation results of the modified volatility models for daily 

realized variance forecast 

 

Notes: The table provides in-sample parameter estimates and measures of fit for the 

volatility models with modified volatility and signed jump estimators for monthly forecasts. 

The brackets report the Heteroskedasticity and Autocorrelation Consistent (HAC) 𝑡-
statistics. 𝐻𝐴𝑅∗ is a specification which uses the modified realized variance for Equation 

(2.7.3), 𝑅𝑆∗ modifies Equation (2.7.4) based on the modified semivariances, 𝐵𝑉∗ is an 

alternative specification of Equation (2.7.7) which depends on modified bipower variation, 

𝐽𝛥∗ and 𝐽± ∗ are the modified versions of Equations (2.7.5) and (2.7.6), where the modified 

signed jump estimators are applied. The intercept of the model is not reported. The sample 

is SPDR S&P 500 ETF prices from January 1997 to September 2021.  
   𝐻𝐴𝑅∗  𝑅𝑆∗  𝐵𝑉∗  𝐽Δ ∗  𝐽± ∗ 

𝛽𝐽
Δ∗     -0.089  

    (-0.73)  

𝛽𝐽
+ ∗      -0.037 

     (-0.20) 

𝛽𝐽
− ∗      -0.064 

     (-0.25) 

𝛽𝑑
+ ∗   0.402    

  (2.50)    

 𝛽𝑑
− ∗  0.787    

  (3.98)    

 𝛽𝐶
∗   0.580 0.588 0.583 

   (14.21) (13.43) (10.95) 

 𝛽𝑑
∗ 0.578     

 (13.74)     

𝛽𝑤
∗   0.313 0.308 0.300 0.297 0.297 

 (6.45) (5.89) (6.07) (5.69) (5.52) 

𝛽𝑚
∗   0.070 0.066 0.075 0.073 0.076 

 (2.65) (2.66) (2.88) (2.91) (3.02) 

R2 0.496 0.500 0.499 0.500 0.500 

 

The 𝐻𝐴𝑅∗ model modifies the 𝐻𝐴𝑅 model by including the daily, weekly, and 

monthly lags of modified realized variance. 𝑅𝑆∗ is the model that decomposes the 

daily lag of the 𝐻𝐴𝑅∗ model into the modified positive and negative semivariances. 

𝐵𝑉∗ is the regression that uses the modified bipower variation. 𝐽Δ ∗ is the model that 
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explores the impact of modified signed jumps on volatility forecasting, and 𝐽± ∗ 

denotes the model that divides the modified signed jump estimator into positive and 

negative components. 

As the table shows, all estimated coefficients and their 𝑡-statistics in the 𝐻𝐴𝑅∗ 

and 𝐵𝑉∗ models are rather similar to those of 𝐻𝐴𝑅 and 𝐵𝑉 reported in Table 2.7.1. 

This suggests that the volatility persistence effect is not influenced by the estimation 

inaccuracy of realized variance and bipower variation because of a nonzero drift. Of 

course, given very small discrepancies between the original and modified volatility 

estimators (below 1.2% on average), it is hardly surprising that these two versions of 

estimators perform fairly similarly from a volatility forecasting perspective. 

From the estimation results of the 𝑅𝑆∗ model, I observe that the coefficient on 

modified positive semivariance, 𝛽𝑑
+ ∗ is positive and significant at the 5% level. Since 

the estimation of 𝑅𝑆𝑡
+ ∗ is much more accurate than 𝑅𝑆𝑡

+ in the presence of a nonzero 

drift, we can conclude that good volatility positively predicts volatility. The 

coefficient on the modified negative semivariance, 𝛽𝑑
− ∗ is positive and significant at 

the 5% level. Given that the measurement of 𝑅𝑆𝑡
− ∗ is much more satisfactory than 

𝑅𝑆𝑡
− when drift deviates from zero, it then can be concluded that bad volatility also 

leads to higher future volatility.  

From my testing results (not reported), the null hypothesis that the coefficients of 

𝑅𝑉𝑡
∗, 𝑅𝑆𝑡

+ ∗, and 𝑅𝑆𝑡
− ∗ are equal (𝛽𝑑

∗ = 𝛽𝑑
− ∗ = 𝛽𝑑

+ ∗) is not rejected a the 5% level. 

This result does not support the asymmetric effect of good and bad volatility. The 

modified semivariance model explains only 0.8% more of the variation in future 

volatility than the model that includes only modified realized variance, which 

indicates that the decomposition of volatility into good and bad components does not 
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add much information on volatility forecasting. This is quite different from the results 

of Patton and Sheppard (2015), who demonstrate that separating volatility into good 

and bad volatilities significantly improves volatility forecast. 

The penultimate column of Table 2.7.2 reports the estimation results of the 𝐽Δ ∗ 

model that includes the modified signed jump estimator. The coefficient on the 

modified signed jumps estimator (𝛽𝐽
Δ∗) is not significant at any reasonable level. Since 

𝐽𝑡
Δ ∗ is much more accurate in the presence of a nonzero drift, I conclude that signed 

jumps are not important to predict volatility. This result is very different from the 

previous studies, which conclude the significance of signed jumps in volatility 

forecasting based on the original signed jumps estimator (Patton and Sheppard 2015; 

Audrino and Hu 2016; Wang et al. 2016). By alleviating the drift-driven bias from this 

estimator, I find no significant impact for the signed jumps on future volatility.  

The last column contains the estimation results of the 𝐽± ∗ model that divides the 

modified signed jump estimator into its positive and negative components. The 

coefficients on both signed components (𝛽𝐽
+ ∗ and 𝛽𝐽

− ∗) are not significant, leading to 

the conclusion that neither positive nor negative jumps impact volatility, when the 

modified estimator is much less sensitive to a nonzero drift relative to its original 

counterpart. This finding is very different from Patton and Sheppard (2015), who find 

both positive and negative jumps are important, with positive and negative jumps 

decreasing and increasing volatility, respectively. By reducing the impact of drift on 

the measurement precision of signed jumps, I find that both signs of signed jumps 

have limited impacts on volatility forecasting.  

This lacking evidence on signed jumps may reconcile with my previous 

forecasting findings of good and bad volatility: the impacts of good and bad volatility 
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on future volatility are not statistically different from each other. Since both positive 

and negative jumps have insignificant impacts on future volatility, it is very unlikely 

that they perform very differently for volatility forecasting when they are added with a 

common one-half integrated variation component. 

The insignificant impact of signed jumps found in this chapter is quite counter-

intuitive. The positive and negative jumps are expected to decrease and increase 

volatility given that positive and negative jumps may be often associated with good 

and bad macroeconomic news, respectively (Evans 2011; Gilder et al. 2014; Caporin 

et al. 2017). For the weak evidence of signed jumps, I might give an interpretation, 

following Caporin (2023)’s arguments. Since the S&P 500 ETF is highly liquid, the 

information conveyed by negative jumps provides an increase in the intraday 

volatility just after the jump events and by the end of the day. Consequently, these 

negative jumps produce an increase in the continuous volatility component within the 

same day as this jump. Then, the persistence induced by the recent negative jumps on 

the future realized variance is partly absorbed by the recent volatility component, thus 

leading to a contraction of the role of the negative jumps. Analogously, positive jumps 

cause a decrease in the continuous volatility component within the same day of these 

jumps. Since volatility is persistent, lower recent volatility leads to lower future 

volatility, thus reducing the significance of the recent positive jumps.  

But, why does the original signed jump estimator have a negative impact on 

future volatility? The interpretation starts from the “leverage effect” theory by Black 

(1976). As the price of a stock drops, the value of the equity decreases while the debt 

remains constant. This increases the leverage ratio, which in turn raises the risk, and 

thus the volatility of the stock. When stock prices increase, the leverage ratio becomes 

smaller, leading to lower volatility. Therefore, we have a negative return-volatility 
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relationship, which has also been well-established in the finance literature. According 

to the definition of drift, a nonzero drift indicates the move of the mean of price. This 

suggests that drift can drive the daily return. Therefore, drift should also be negatively 

correlated with future volatility. Indeed, this relationship is empirically evidenced by 

my results (not reported) that the correlation between the daily median with the one-

step-ahead realized variance is -0.225 and significant at the 5% level. As shown in my 

theoretical and simulation findings, the drift bias in the original signed jump estimator 

is positively correlated with the drift. Therefore, this drift bias may also be negatively 

related to volatility. From my empirical results, drift biases often dominate the 

original signed jump estimator, thus explaining the negative impact of the original 

signed jump estimator on volatility forecasting. This indicates that the negative effect 

of signed jumps found in the literature may be almost exclusively due to the drift-

related bias of the signed jump estimator. 

Why do positive and negative components of the original signed jump estimator 

lead to lower and higher future volatility, respectively? Given the leverage effect of 

the drift bias in the original signed jump estimator, the positive drift bias decreases 

volatility while the negative bias increases volatility. As indicated by the results in 

Figure 2.6.5, the positive and negative parts of the original signed jump estimator are 

often dominated by the positive and negative drift bias of this estimator, respectively. 

This suggests that the volatility forecasting effects of the positive and negative 

components of the original signed jump estimator may be artificially influenced by 

the leverage effect of its positive and negative drift bias on volatility. 
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2.8. Conclusion 

Although the drift component is asymptotically ignorable in the log price 

dynamic, Laurent and Shi (2020) find that a nonzero drift can generate an influential 

estimation bias of realized variance and bipower variation for a realistic sample of 

high-frequency log prices. Good and bad volatility have important implications for 

investors to identify the upside and downside risks, but Laurent and Shi (2020) 

somehow have not yet investigated the finite sample estimation bias of good and bad 

volatility. This chapter investigates the effect of drift on the finite sample estimation 

of good and bad volatility. For studying the measurement of good and bad volatility in 

a high-frequency finite sample setting, I consider the most popular estimators in the 

literature: positive and negative realized semivariance. My finite sample theory, 

together with extensive simulations, show that the semivariance overestimates good 

or bad volatility if the signs of the drift and the semivariance are equal, and the 

semivariance underestimates the good or bad volatility if the signs of the drift and the 

semivariance differ. Importantly, I find that the drift component causes an even more 

severe estimation bias in realized semivariances than in realized variance and bipower 

variation as found by Laurent and Shi (2020). Moreover, these properties of the 

estimation bias of realized semivariances do not alter for a version of semivariances 

that is robust to contamination of the microstructure noise. 

An important application of the semivariances is to estimate signed jumps. The 

literature commonly estimates the signed jumps by the difference between the 

positive and negative semivariances. My theoretical and simulation analyses also 

show that this signed jump estimator overestimates signed jumps when drift is 

positive and underestimates when drift is negative. The results also show that this 

signed jump estimator aggregates the drift biases in positive and negative, thus 
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exhibiting even more unsatisfactory estimation performance in finite samples than the 

semivariances.  

To  alleviate the biases of the semivariances and signed jump estimators due to a 

nonzero drift, I modify these estimators by applying the returns centred by the daily 

median, with this centred-return approach proposed by Laurent and Shi (2020). My 

finite sample theory for the alternative semivariances along with simulations uncover 

significant improvements in the estimation performance of good and bad volatility 

and the signed jumps. The modified semivariance and signed jump estimators, 

together with their original versions, are applied to the 5-minute returns on the SPDR 

S&P 500 ETF for the period from 1997 to 2021. I observe a positive discrepancy 

between the original and modified semivariance when the signs of the drift and the 

semivariance are equal, and a negative discrepancy when the signs of the drift and the 

semivariance differ, which is consistent with my theory and simulations. Furthermore, 

the discrepancy between the original and modified signed jump estimator is positive if 

the drift is positive, and the discrepancy between the original and modified signed 

jump estimator is negative if the drift is negative.  

To provide more evidence on the effect of volatility persistence, good and bad 

volatility, and signed jumps on volatility forecasting, I applied the realized variance, 

bipower variation, semivariances, and signed jump estimators to predict future 

realized variance for the SPY sample. My results demonstrate that recent realized 

variance and bipower variation lags significantly increase future realized variance, 

which supports the well-known volatility dependence property. The results also reveal 

that the positive semivariance almost has no impact on volatility while the negative 

semivariance leads to significantly higher volatility, suggesting the asymmetric impact 

of good and bad volatility on volatility forecasting, similar to the findings of previous 
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studies. Finally, I show that positive jumps decrease volatility and negative jumps 

increase volatility, with the impact of negative jumps stronger, which is also 

consistent with the literature. 

As discussed in the earlier part of this chapter, the realized variance, bipower 

variation, semivariance, and signed jump estimators may be subject to the bias in the 

presence of a nonzero drift while their modified versions are much less sensitive to a 

nonzero drift. To investigate the impact of drift on the forecasting results, I also apply 

the modified estimators to volatility forecasting. The modified realized variance and 

bipower variation exhibit very similar volatility persistency effects as their original 

counterparts, indicating that the biases in these volatility estimators are not impactful 

from a volatility forecasting perspective.  

However, the results of the modified positive and negative semivariances do not 

suggest the asymmetric impact of good and bad volatility on volatility forecasting. 

This finding is further reconciled by the limited value of signed jumps and their 

positive and negative components in terms of predicting volatility, found in later 

analysis using the modified signed jump estimator. One possible explanation for the 

weak evidence of signed jumps is that the role of recent positive or negative jumps in 

forecasting volatility is absorbed by the recent volatility. Additionally, I also show that 

the asymmetric impact of the original signed semivariances and the significance of the 

original signed jump estimator on volatility forecasting may be artificially caused by 

the leverage effect on future volatility of the drift-driven bias in these estimators. 

suggesting that the asymmetric effect of good and bad volatility and signed jumps 

found in the existing literature is almost exclusively due to the impact of the drift 

biases in the estimators of these variables.
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Chapter 3. Drift bursts, volatility forecasting, and the 

variance risk premium 

Abstract 

The conventional semi-martingale process assumes that the price trend is indicated 

by the drift component. The constant drift and Ornstein–Uhlenbeck models defined in 

Chapter 2 assume that drifts are evenly distributed intraday and thus are unable to 

explain the undeniable stylized fact of occasional short-lived explosive price trends, 

also known as drift bursts, such as gradual jumps and flash crashes in the stock 

markets. Chapter 3 studies these intraday drift bursts. I discover a large contribution 

of approximately 20% from drift burst variation to daily price variation. Applying the 

mutually-exciting Hawkes process, I find that both positive and negative bursts 

exhibit self-exciting behaviours and that negative drift bursts impact positive drift 

bursts, but not vice versa. I observe that a lack of evidence of drift bursts on realized 

variance contrast with their importance in affecting implied variance, which leads to 

the role of drift bursts in explaining the variance risk premium. Although consistent 

with the findings documented in the previous literature that large downside price 

moves raise investors’ risk aversion, I am the first to document this for drift bursts.
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3.1. Introduction 

The conventional semi-martingale process assumes that the price trend is 

determined by the drift component. Recently, there has been growing consensus that 

intraday explosive drifts (trends) such as gradual jumps and flash crashes or spikes are 

stylized facts in financial markets. The gradual jumps denote that the price 

experienced a rapid descent or ascent, comprised of many small downward or upward 

moves, but no apparent price discontinuities, known as jumps. A flash crash is a 

downside and explosive trend in asset prices occurring within a few minutes followed 

by a quick recovery, which is also termed the “V” shape price pattern by Flora and 

Renò (2020). A flash spike is an inverse “V” shape price pattern with an upside and 

explosive trend followed by a quick price drop. One of the most infamous flash 

crashes occurred on May 6, 2010, in the US stock market, where the S&P 500 index 

collapsed for 5 minutes from 2:45 PM, resulting in a 4.5% loss, then the price 

persistently increased and regained most of the 450-point drop for the next 5 minutes.  

The very existence of flash crashes or spikes and gradual jumps casts doubt on the 

orderliness of the financial market architecture. This has an adverse impact on 

investor confidence and raises concerns of regulators, who view the orderly 

functioning of financial markets as their first and foremost objective (CFTC and SEC 

2010, 2011; SEC 2015). The constant drift and Ornstein–Uhlenbeck models defined 

in Chapter 2 are not sufficient to uncover these two classes of explosive drift or drift 

burst patterns as both models assume the price drifts are smoothly distributed in each 

interval over a whole trading session. To identify the existence of such price patterns, 

I follow the drift burst hypothesis proposed by Christensen et al. (2022). The drift 

burst hypothesis assumes that drift can be exceedingly large for a short intraday 
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interval, thus capturing the explosive trend behaviour of flash crashes and gradual 

jumps.  

I start the analysis by exploring three empirical research questions to better 

understand the drift bursts. How often do drift bursts occur? What are the price 

patterns that are related to drift bursts? Do drift bursts identify gradual jumps and 

flash crashes? My sample data is the S&P 500 E-mini future transaction prices from 

June 2, 2003, to December 30, 2020. To explore the frequency of the drift bursts, I use 

the test proposed by Christensen et al. (2022) to identify the occurrence of drift bursts. 

This drift burst statistic, to the best of my knowledge, is the only test that detects the 

drift bursts in the literature. This statistic has been shown by Christensen et al. (2022) 

to have good size and power properties in their simulation study. Moreover, the drift 

burst test statistic is robust to volatility spikes and broad forms of stochastic jumps 

defined in the literature (Christensen et al. 2022), thus, picking up neither random 

jumps nor large volatility episodes, but genuine explosive trends.  

My testing results of the E-mini futures data show that drift bursts are rare events, 

which occur about 1.5 times per month on average, which is consistent with 

Christensen et al. (2022). My results also show that drift bursts can be decomposed 

into positive and negative components, with the frequency of the negative burst 

occurrence approximately double that of the positive burst occurrence. I find almost 

all of these bursts are associated with gradual jumps: 99% of positive bursts and 98% 

of negative bursts are with positive and negative gradual jumps, respectively, and only 

1% of positive bursts and 2% of negative bursts are with flash crashes or flash spikes, 

according to the classification criteria defined in the literature (Nanex, 2010). My 

finding that only a small proportion of drift bursts are related to flash crashes and 

spikes does not indicate the unsatisfactory performance of drift burst tests in 
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identifying these two price patterns, but may be due to the extreme scarcity of flash 

crashes and spikes relative to gradual jumps as found in the literature (Christensen et 

al. 2022; Jagannathan et al. 2022; Andersen et al. 2023).  

Recent studies show that gradual jumps are often caused by economic news 

(Andersen et al. 2023; Bouamara et al. 2023). Since drift bursts are mostly related to 

gradual jumps, the main cause of drift bursts could be economic news. From my 

observations of the intraday price patterns that are identified as drift bursts, I observe 

that positive and negative bursts are associated with extremely large upside and 

downside price changes, respectively. For gauging the contribution of intraday drift 

bursts relative to the daily price variation, I propose a daily variation measure of drift 

bursts derived from the drift burst test statistic. Based on this measure, I find that 20% 

of daily price variation is attributed to drift bursts, on average, in the presence of drift 

bursts. My results also demonstrate that drift bursts differ in magnitude over the 

sample, and their level is much higher during the 2008 financial crisis and 2020 

pandemic recessions.  

According to my visual inspections of the distribution of the drift burst 

occurrences over my sample length, drift bursts exhibit clustering characteristics, 

especially during economic declines. I consider modelling the bursts’ clustering 

behaviours using the popular mutual-excitation Hawkes processes (HPs) proposed by 

Hawkes (1971). Because drift bursts may be associated with large price moves, 

modelling their dynamics has important implications for risk management, asset 

pricing, and understanding of the behaviour of markets. The HPs exploit the 

clustering effects of positive or negative bursts by allowing the occurrence 

probability, also termed the intensity, of positive or negative bursts to be positively 

affected by the past arrivals of both positive and negative bursts. In other words, the 
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HPs let the past positive and negative arrivals mutually “excite” the future positive or 

negative arrivals. Based on the estimation results of these HPs, I discover that both 

positive and negative bursts strongly self-excite. I also find that positive and negative 

bursts mutually excite each other in an asymmetric fashion: positive bursts are excited 

by the negative bursts, but not vice versa. 

Previous studies tend to apply mutual-excitation HPs to model the clustering 

effect of jumps but they have not yet investigated such modelling for the drift bursts 

(Bowsher 2007; Large 2007; Bauwens and Hautsch 2009; Aït-Sahalia et al. 2015; 

Clements and Liao 2017; Ma et al. 2019). My analysis applying HPs to drift bursts 

helps model the clustering behaviours of gradual jumps. As far as I am aware, my 

findings of the prominent self-excitation effect of both positive and negative bursts, 

along with the asymmetric mutual-excitation behaviour between positive and negative 

bursts are novel in the literature. 

Since drift bursts could be related to large price movements, they might exhibit 

the leverage effect on future volatility, with negative bursts increasing volatility and 

positive bursts lowering volatility. Anticipating the magnitude of volatility is 

important to asset pricing (Heston and Nandi 2000; Ghysels et al. 2005; Christensen 

and Nielsen 2007; Christoffersen et al. 2008; Goyal and Saretto 2009; Corsi et al. 

2013) and risk management (Christoffersen and Diebold 2000; Clements et al. 2008; 

Maheu and McCurdy 2011). Making precise volatility forecasts is of the utmost 

importance for many practitioners and regulators of the financial markets.  

I explore the effects on volatility forecasting of all three measures of positive and 

negative bursts investigated in this chapter including occurrence, variation and 

intensity. Surprisingly, the results show that both positive and negative bursts 

generally have little effects on future volatility across daily, weekly and monthly 
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forecast horizons and for these three burst measures. This weak evidence of bursts on 

volatility forecasting is virtually unchanged for the most popular ex-post volatility 

estimators including realized variance (𝑅𝑉) in Andersen and Bollerslev (1998), Bi-

power variation (𝐵𝑉) in Barndorff-Nielsen and Shephard (2004), and a drift burst-

robust Rice variance (𝑅𝑖𝑐𝑒𝑉) measure advocated by Laurent et al. (2022c). The 

results that the drift burst have an insignificant impact on future volatility are puzzling 

since positive and negative drift bursts, which are associated with positive and 

negative large returns, are expected to exhibit a negative and positive effect on 

volatility due to the leverage effect. 

As far as I am aware, my study on whether drift bursts help in predicting realized 

variance is related to Laurent et al. (2024). They find the significance of drift bursts in 

realized variance forecasting, which contrasts with my weak evidence of drift bursts 

in explaining future realized variance. However, they do not test for drift bursts, thus 

their results may be influenced by exposing to large false positives of drift burst 

testing or the probability that we incorrectly indicate the presence of drift bursts. This 

chapter focuses exclusively on the statistically significant drift bursts and finds weak 

evidence of drift bursts in predicting realized variance, which are quite different from 

their conclusions.    

Because realized variance is calculated on high-frequency returns, it is inevitably 

subject to the bias due to microstructure noise. As suggested by Andersen and 

Bollerslev (1998), the option-implied variance is not affected by microstructure noise 

in high-frequency return as it is derived from daily options prices. Therefore, I also 

consider forecasting implied variance. Implied variance is a measure of the stock 

market's expectation of volatility based on S&P 500 index options. Thus, implied 

variance is different from any of the above Ex-post 𝑅𝑉, 𝐵𝑉, and 𝑅𝑖𝑐𝑒𝑉 volatility 
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measures. Implied variance is an important indicator that measures the fear of the 

investors and is an essential factor for option pricing. This chapter studies whether 

drift bursts have an impact on implied variance estimate: the (squared) Chicago Board 

Options Exchange's Volatility Index, indicated by 𝑉𝐼𝑋2. 𝑉𝐼𝑋 is often referred to as 

the fear gauge as if something concerns the market, traders and investors tend to start 

buying OTM options, pushing up the option prices and thus 𝑉𝐼𝑋. My results show 

that for all three types of burst variables, negative bursts lead to a significantly higher 

𝑉𝐼𝑋 at the close of that day while the effect of positive bursts is limited. The 

significance of negative bursts is consistent with the intuition that a large price drop 

increases the concerns of investors thus increasing the 𝑉𝐼𝑋. 

The variance risk premium (𝑉𝑅𝑃) is defined by the difference between the 

implied variance and realized variance. 𝑉𝑅𝑃 is found to be positive, on average, in the 

literature, suggesting that investors are willing to pay extra money to hedge against 

the increase in future volatility. 𝑉𝑅𝑃 has been extensively studied in financial studies 

and has been found to have important implications for volatility prediction and asset 

return forecasting (Bollerslev et al. 2009; Carr and Wu 2009; Arisoy 2010; Bollerslev 

et al. 2014; Prokopczuk and Simen 2014; Feunou et al. 2018; Li and Zinna 2018; 

Kilic and Shaliastovich 2019; Pyun 2019). I investigate the impacts of all three drift 

burst measures on 𝑉𝑅𝑃, motivated by the intuition that large negative returns may 

increase investors’ risk aversion, causing a higher 𝑉𝑅𝑃. The results show that all 

variables of negative bursts significantly increase 𝑉𝑅𝑃 and the respective positive 

burst variables insignificantly affect 𝑉𝑅𝑃, which corroborates that larger negative 

returns increase risk aversion. Additionally, I also study the impacts of these burst 

variables on 𝑉𝑅𝑃 when the threshold of the drift burst test statistic increases. I find 

that positive drift burst variation significantly decreases 𝑉𝑅𝑃 at higher thresholds, 
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which contrasts with the insignificant impact of this variable on 𝑉𝑅𝑃 at lower 

thresholds. The significance of negative burst variation under stricter thresholds may 

be because extremely large negative returns can strongly reduce the risk aversion of 

investors.    

My results of the significance of drift bursts in explaining 𝑉𝑅𝑃 are close to the 

studies which find that 𝑉𝑅𝑃 is dominated by large price moves in the stock markets 

(Todorov 2010; Caporin et al. 2017). The literature also documents other factors that 

may influence 𝑉𝑅𝑃, including broker dealers’ funding liquidity (Adrian and Shin 

2010), monetary policy (Bekaert et al. 2013), certain macro variables (Bollerslev et al. 

2011), and business conditions (Corradi et al. 2013). A possible extension of this 

chapter could be to control these variables and see how drift bursts perform in 

predicting 𝑉𝑅𝑃. 

The remainder of this chapter is organized as follows. Section 3.2 introduces the 

theoretical background of drift bursts, and the drift burst test. Section 3.3 presents the 

descriptive analysis of drift bursts detected from my S&P 500 E-mini future price 

sample. Section 3.4 reports the results of modelling the clustering features of drift 

bursts via the mutual-excitation HPs. Section 3.5 presents the results of the impacts of 

drift bursts on realized and implied variance forecasting. Section 3.6 contains the 

analysis of the effects of drift bursts on the variance risk premium. Section 3.7 

concludes. 
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3.2. The econometrics of drift bursts 

To study the role of drift bursts in anticipating volatility for the stock markets, this 

section introduces the theoretical background of stock prices. Following the 

conventions of the literature, I assume the asset logarithmic prices 𝑝𝑡 follows the Itô 

semi-martingale process below, 

 

𝑑𝑝𝑡 = 𝜇𝑡𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡 + 𝐽𝑡 , 𝑡 ∈ [0, 𝑇], (3.2.1) 

where 𝑇 is the fixed time duration (e.g., 𝑇 = 1 for one day), 𝜇𝑡 is the drift, 𝜎𝑡 is a 

strictly positive cádlág process, 𝑊𝑡 is a standard Brownian motion, and 𝐽𝑡 are Poisson 

jumps process. I assume that the log price 𝑝𝑡𝑖 is recorded at times 0 = 𝑡0 < 𝑡1 < ⋯ <

𝑡𝑛 = 𝑇 for day 𝑡, with 𝑛 indicating the number of price observations, and that the 

interval between neighbouring time points is always equal.  

As mentioned in the introduction, flash crashes and gradual jumps in the stock 

markets reflect short-lived directional log price movements. Christensen et al. (2022) 

show that neither stochastic volatility, 𝜎𝑡𝑑𝑊𝑡, nor jumps, 𝐽𝑡, can explain short-lived 

locally explosive trends in the price paths of financial assets. An intuitive explanation 

is that stochastic volatility, 𝜎𝑡𝑑𝑊𝑡, or the jump process, 𝐽𝑡, due to their random 

natures, merely lead to wider price dispersion and thus are unable to reconcile the 

persistent direction of price evolution over episodes of locally explosive trends. To 

postulate the pattern of short-lived locally explosive price trends, Christensen et al. 

(2022) assume drift explodes locally, which they term drift bursts. More specifically, 

drift, 𝜇𝑡, is exceedingly large within a short intraday interval before a time point 𝜏𝑑𝑏. 

To model the explosion of drift, they assume 𝜇𝑡 follows an exponential function with 

time (𝑡) as the input:  
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𝜇𝑡 = 𝑎(𝜏𝑑𝑏 − 𝑡)
−𝛼 , 𝑡 ∈ [𝜏𝑑𝑏 − 𝑡𝜗, 𝜏𝑑𝑏], (3.2.2) 

where 𝑎 is a constant, 1 2⁄ < 𝛼 < 1, and [𝜏𝑑𝑏 − 𝑡𝜗 , 𝜏𝑑𝑏] denotes a short intraday 

interval. If 𝑎 > 0, the exponential function, Equation (3.2.2) allows drift to explode 

positively over the interval [𝜏𝑑𝑏 − 𝑡𝜗 , 𝜏𝑑𝑏] while if 𝑎 < 0, drift negatively explodes 

for this interval. Motivated by the fact that the strongly directional price move is also 

very volatile, Christensen et al. (2022) assume volatility exponentially explodes at the 

same time,  

 

𝜎𝑡 = 𝑏|𝜏𝑑𝑏 − 𝑡|
−𝛽 , 𝑡 ∈ [𝜏𝑑𝑏 − 𝑡𝜗, 𝜏𝑑𝑏], (3.2.3) 

with 𝑏 > 0, 0 < 𝛽 < 1/2. Christensen et al. (2022) suggest that the exponential 

function of spot volatility, as described in Equation (3.2.3), could have a smaller 

power than that of spot drift such that 𝛼 − 𝛽 > 1/2. In this scenario, volatility bursts 

less violently than the drift. The motivation behind this restriction is that the price 

movement of crashes or gradual jumps, although associated with a large level of 

volatility, is still highly directional, that is, dominated by the drift of the price. 

The dramatic importance of this setup is that the drift standardized by volatility 

(𝜇𝑡/𝜎𝑡) tends to infinity when approaching the time point 𝜏𝑑𝑏, allowing the 

construction of a statistical test for the presence of a drift burst. To exploit this 

convergence property of the drift-volatility ratio for drift burst detection in the log 

price process, Equation (3.2.1), Christensen et al. (2022) first propose the estimates of 

spot drift and volatility at time point 𝑡𝑖 based on the log prices 𝑝𝑡𝑖 recorded at times 

0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 = 𝑇 for day 𝑡. Specifically, they define the measure of spot 

drift at 𝑡𝑖 by, 
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where �̂�𝑡𝑖
𝑛  is the spot drift estimate with ℎ𝑛 indicating the bandwidth of this estimate, 

𝐾(∙) is a backwards-looking exponential kernel, 𝐾(𝑥)  =  e−|𝑥|, for 𝑥 ≤  0. And 

Christensen et al. (2022) define the spot volatility as,  
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, (3.2.5) 

where �̂�𝑡𝑖
𝑛 denotes the spot volatility estimate and ℎ𝑛

′  is the bandwidth for this 

volatility measure. Note that the notation of the bandwidth of volatility estimate, ℎ𝑛
′ , 

is different from that of the drift, indicated by ℎ𝑛 as these two bandwidths are not 

necessarily equal. Christensen et al. (2022) show that a test statistic calculated on the 

ratio of the spot drift and volatility estimates can detect whether there is a drift burst 

in the price process between the interval [𝑡𝑖−ℎ𝑛 , 𝑡𝑖], where ℎ𝑛 denotes the bandwidth 

of spot drift estimate as opposed to that of spot volatility measure, 

 

𝑍𝑡𝑖
𝑛 = √ℎ𝑛

�̂�𝑡𝑖
𝑛

�̂�𝑡𝑖
𝑛 . (3.2.6) 

Christensen et al. (2022) show that in the absence of drift bursts near 𝑡𝑖, the test 

statistic 𝑍𝑡𝑖
𝑛 will converge in probability to a standard normal distribution, 

 

𝑍𝑡𝑖
𝑛
𝑑
→𝑁(0,1). (3.2.7) 
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In the presence of positive (negative) drift bursts near 𝑡𝑖, the test statistic will 

converge almost surely to a positive (negative) infinite value, 

 

𝑍𝑡𝑖
𝑛
𝑎.𝑠.
→ ±∞. (3.2.8) 

Therefore, a positive intraday drift burst is identified within the interval [𝑡𝑖−ℎ𝑛 , 𝑡𝑖] if 

𝑍𝑡𝑖
𝑛 exceeds a positive threshold value, 𝑍𝑡𝑖

𝑛 > 𝛷, where 𝛷 is a threshold value that is 

obtained from the normal inverse cumulative distribution function and should ensure 

the false positives or the probability of detecting a drift burst using the test statistic 

when there is actually no drift burst, is extremely close to zero. A negative intraday 

drift burst is detected this interval if 𝑍𝑡𝑖
𝑛 < −𝛷. This chapter follows Christensen et al. 

(2022) for the parameter settings of bandwidths ℎ𝑛 and ℎ𝑛
′  and the threshold 𝛷: ℎ𝑛 =

5-minute, ℎ𝑛
′ = 25-minute, threshold value 𝛷 ≥ 4.This threshold 𝛷 = 4 is the 

minimum threshold found by Christensen et al. (2022) that can ensure the false 

positives of the burst detection are extremely close to zero. 

These settings of bandwidths imply that 𝑍𝑡𝑖
𝑛 detects 5-minute positive intraday 

drift bursts that last for [𝑡𝑖−5min, 𝑡𝑖] if 𝑍𝑡𝑖
𝑛 > 𝛷 while 𝑍𝑡𝑖

𝑛 detects a 5-minute length of 

negative intraday drift bursts for this interval if 𝑍𝑡𝑖
𝑛 < −𝛷. This suggests that I attempt 

to detect the drift bursts that last for 5 minutes but does not necessarily imply that my 

data is 5-minute frequency. 

Additionally, following the simulation study of Christensen et al. (2022), the test 

statistic 𝑍𝑡𝑖
𝑛 has satisfactory statistical performance in detecting the 5-minute length of 

the intraday drift bursts using 1-second frequency log price data. Therefore, I use 1-

second frequency log prices for computing the test statistic 𝑍𝑡𝑖
𝑛. Following Christensen 

et al. (2022), I record the calculated 𝑍𝑡𝑖
𝑛 every five-seconds for a trading day and allow 
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at most only one burst to be detected over a rolling 5-minute window that moves 

along by 5 seconds, where the test statistic 𝑍𝑡𝑖
𝑛 attains a local extremum and exceeds 

the threshold. 

For ultrahigh-frequency data (e.g., 1-second), the true, efficient log price 𝑝𝑡, 

Equation (3.2.1) is not available from the stock markets because transaction and 

quotation data are contaminated by multiple layers of ‘‘noise’’ or ‘‘friction’’ (Black 

1986; Stoll 2000). Only the noisy log price is observable from the data, 

 

𝑝𝑡𝑖
⋄ = 𝑝𝑡𝑖  + 𝑢𝑡𝑖 , with 0 < 𝑡𝑖 < 𝑇,  (3.2.9) 

where 𝑝𝑡𝑖
⋄  is the noisy price, 𝑢𝑡𝑖 is a 𝑞-dependent noise and 𝑞 ≥ 0 is a positive 

constant. The spot drift and volatility estimates calculated on the observed 1-second 

log price 𝑝𝑡𝑖
⋄  using Equations (3.2.4) and (3.2.5) are no longer accurate due to the 

existence of noise process 𝑢𝑡𝑖 in the log price 𝑝𝑡𝑖
⋄ . 

To mitigate the adverse impact of microstructure noise on the estimation precision 

of spot drift and volatility, I follow Christensen et al. (2022) and modify the spot drift 

and volatility estimators by applying the preaveraging technique. Intuitively, the 

preaveraging technique locally smooths the observed price series 𝑝𝑡𝑖
⋄  so that the 

microstructure noise component 𝑢𝑡𝑖  (almost) disappears under averaging. The 

modified spot drift measure is: 

 

�̂�𝑡𝑖
𝑛∗ =

1

ℎ𝑛
∑ 𝐾(

𝑡𝑗−1 − 𝑡𝑖

ℎ𝑛
) 𝑟𝑡𝑗−1,𝑘𝑛

∗

𝑛−𝑘𝑛+2

𝑗=1

, (3.2.10) 



140 

 

where �̂�𝑡𝑖
𝑛∗ is the modified spot drift and 𝑟𝑡𝑖,𝑘𝑛

∗  denotes the preaveraged return, 𝑟𝑡𝑖,𝑘𝑛
∗ =

1

𝑘𝑛
(∑ 𝑝(𝑡𝑖+𝑡𝑗)/𝑁

⋄𝑘𝑛−1
𝑗=𝑘𝑛/2

− ∑ 𝑝(𝑡𝑖+𝑡𝑗)/𝑁
⋄𝑘𝑛/2−1

𝑗=0 ) with the 𝑘𝑛 = 3 indicating the 

preaveraging window size. The modified spot volatility estimator is defined by:  

 

�̂�𝑡𝑖
𝑛∗ = [

1

ℎ𝑛
′ ∑ (𝐾 (

𝑡𝑗−1−𝑡𝑖

ℎ𝑛
′ ) 𝑟𝑡𝑗−1,𝑘𝑛

∗ )
2𝑛−𝑘𝑛+2

𝑗=1 +

2∑ 𝜔(
𝐿

𝐿𝑛
)∑ 𝐾 (

𝑡𝑗−1−𝑡𝑖

ℎ𝑛
′ )𝐾 (

𝑡𝑗+𝐿−1−𝑡𝑖

ℎ𝑛
′ ) 𝑟𝑡𝑗−1,𝑘𝑛

∗ 𝑟𝑡𝑗−1+𝐿,𝑘𝑛
∗𝑛−𝑘𝑛−𝐿+2

𝑗=1
𝐿𝑛
𝐿=1 ]

1/2

,  

(3.2.11) 

where �̂�𝑡𝑖
𝑛∗ is a heteroscedasticity and autocorrelation consistent (𝐻𝐴𝐶)-type estimate 

of spot volatility, the second term of �̂�𝑡𝑖
𝑛∗ is required to account for any noise 

dependence and the serial correlation induced by the preaveraging method. The lags 

for the 𝐻𝐴𝐶 𝐿𝑛 = 2(𝑘𝑛 − 1) + 10 following Christensen et al. (2022), and 𝜔(∙) is a 

Parzen kernel, 

 

𝜔(𝑥) = {
1 − 6𝑥2 + 6|𝑥|3, for 0 ≤ |𝑥| < 1/2,

2(1 − |𝑥|)3, for 1 2⁄ < |𝑥| ≤ 1,
0, otherwise.

 (3.2.12) 

As found by Christensen et al. (2022) and Bellia et al. (2023), the drift burst test 

statistic is robust to compound Poisson jumps, infinite activity small jumps, 

autocorrelated market microstructure noise and pre-announced jumps. The pre-

announced jumps typically refer to significant price movements in a stock or other 

financial instrument that are expected to occur due to pre-announced events. These 

events can include earnings reports, economic data releases, or other significant news 

that is scheduled to be released at a specific time. Further, the test is robust to 

volatility spikes (Christensen et al. 2022). Thus, the drift burst statistics measure is 



141 

 

picking up neither jumps nor large volatility episodes, but genuine directional price 

trends.  

Based on the detection of intraday drift bursts via the test statistics 𝑍𝑡𝑖
𝑛, I calculate 

the number of intraday positive drift bursts (𝑁𝐷𝐵𝑡
+) on day 𝑡: 

 

𝑁𝐷𝐵𝑡
+ = ∑ 𝐷𝐵𝑡𝑖

+

𝑛−𝑘𝑛+2

𝑖=1

, (3.2.13) 

where 𝐷𝐵𝑡𝑖
+ = 𝐼(𝑍𝑡𝑖

𝑛 > 𝛷) with 𝐼(𝑍𝑡𝑖
𝑛 > 𝛷) denoting the dummy which equals one if 

the statistic exceeds the positive threshold at the time point 𝑡𝑖. The number of intraday 

negative drift bursts on day 𝑡: 

 

𝑁𝐷𝐵𝑡
− = ∑ 𝐷𝐵𝑡𝑖

−

𝑛−𝑘𝑛+2

𝑖=1

, (3.2.14) 

where 𝐷𝐵𝑡𝑖
− = 𝐼(𝑍𝑡𝑖

𝑛 < −𝛷) with 𝐼(𝑍𝑡𝑖
𝑛 < −𝛷) indicating the dummy which equals 

one if the statistic is lower than the negative threshold at the time 𝑡𝑖.
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3.3. Drift burst detection results 

The data is based on the transaction prices of the S&P500 E-mini futures (ticker, 

ES), collected at the 1-second frequency, and is provided by Tick Data Inc. Applying 

the drift burst statistics to 1-second resolution data is consistent with the simulation 

study of Christensen et al. (2022), who show that the drift burst statistics have a 

satisfactory performance in detecting drift bursts in 1-second frequency data. The 

sample period length is 𝑇𝑁 = 4420 trading days over 17 years, from June 2, 2003, to 

December 30, 2020. To ensure that the sample consists of regular trading days, I 

remove all non-business days and days on which the exchange closed early. This 

chapter focuses on the active trading session of the US stock market, thus all trades 

before 9:30 EST or after 16:00 EST are discarded. 

The test detects a total of 313 bursts out of the SPY sample, with 207 negative 

bursts and 106 positive bursts. This corresponds to only 1.51 drift bursts per month on 

average, which indicates that drift bursts are rare events. To illustrate the distribution 

of the occurrence of drift bursts across my sample period, the first two panels of 

Figure 3.1 depict the daily number of intraday positive and negative bursts (𝑁𝐷𝐵𝑡
+ 

and 𝑁𝐷𝐵𝑡
−), respectively. The bottom panel of this figure contains the daily realized 

variance 𝑅𝑉𝑡, which is defined by the sum of 5-minute squared returns from 9:30 to 

16:00 EST. I report the square root version of 𝑅𝑉𝑡 for presentation purposes. From the 

top panel, I observe the clustering effects of positive bursts. For example, positive 

bursts are absent from 2010 to 2011 but occur 6 times for the sample period from 

2011 to 2012. I also observe some clusters of negative bursts in the middle panel. 

There are some days with multiple negative bursts around the 2008-2009 subprime 

mortgage crisis and 2020 pandemic periods, over which the level of realized variance 

is much higher than usual. 
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Figure 3.3.1. Daily time series of the number of intraday drift bursts and realized 

variance 

 

Notes: This figure reports the time series of the daily number of positive intraday drift bursts 

(𝑁𝐷𝐵𝑡
+), Equation (3.2.13), the daily number of negative intraday drift bursts (𝑁𝐷𝐵𝑡

−), 

Equation (3.2.14), and daily realized variance (𝑅𝑉𝑡), defined by the sum of 5-minute squared 

returns from 9:30 to 16:00 EST. The realized variance is in the square root form for 

presentation purposes. The sample data is S&P 500 E-mini prices from June 2, 2003, to 

December 30, 2020. 

 

Having investigated the daily dynamic of burst occurrences, it is also noteworthy 

to have a look at the details of the intraday price dynamic associated with bursts. This 

analysis allows us to observe how bursts influence price movements. Figure 3.3.2. 

depicts four randomly selected examples of intraday drift bursts. Panels (A) and (B) 

contain two examples of the prices related to positive bursts while the lower Panels 

(C) and (D) report two examples of the prices associated with negative bursts. In each 

panel, the left Y-axis is the drift burst statistics, the right Y-axis is the S&P 500 E-mini 

future prices, and the X-axis indicates the intraday times. The red thick line indicates 

the S&P 500 E-mini future prices while the blue bars indicate the drift burst statistics. 

The dashed horizontal line denotes the threshold of 4 for testing drift bursts.  
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Figure 3.3.2. Four example days of intraday price dynamics that experience drift bursts. 

 

Notes: This figure reports four randomly selected examples of intraday drift bursts. Panels 

(A) and (B) contain two examples of the prices related to the positive bursts while the lower 

Panels (C) and (D) report two examples of the prices associated with negative bursts. In each 

panel, the left Y-axis is the drift burst statistics, the right Y-axis is the S&P 500 E-mini future 

prices, and the X-axis is the intraday times. The red thick line denotes the S&P 500 E-mini 

future prices while the blue bars indicate the drift burst statistics. The dashed horizontal line 

denotes the threshold of 4 for testing drift bursts. 

 

Panel (A) illustrates that on July 27, 2012, within the intraday interval between 

13:24 and 13:28, there is a large upward trend of intraday prices that are detected to 

be significantly associated with a positive intraday burst as the test statistic exceeds 

the threshold. The stock price experienced a rapid ascent from a low point of 1373 to 

a high of 1379, comprised of many small upward moves, but no apparent jumps. This 

extreme, yet smooth, transition to a new price level is labelled a ‘‘gradual jump’’ by 

Barndorff‐Nielsen et al. (2009). On July 27, 2012, the pledge by the European Central 

Bank President to "do whatever it takes" to defend the euro sparked off a sharp rally 

in the US markets. Investors had been concerned about the new European debt, as 
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Spain’s borrowing costs surpassed the critical 7%. Mario Draghi’s comments thus 

boosted sentiment and the fear-gauge CBOE Volatility Index (𝑉𝐼𝑋) slumped 9.4%. 

Panel (B) shows that price gradually jumps from 13:40 to 13:45 on July 23, 2020, 

where a significant positive drift burst is detected. The price increase came after 

reports that U.S. officials would travel to China for face-to-face trade discussions, 

boosting equities further following stronger-than-expected earnings results earlier in 

the day. 

Turning to the lower panel (C), a negative burst is detected within the time 

interval from about 14:20 to 14:25 on January 28, 2004, over which there is a sharp 

downside price trend and price drops substantially by 8 points. This downside gradual 

jumps occurred after the Federal Reserve changed the language in its outlook for 

interest rates, sparking worry among investors about when the central bank might start 

raising rates. Panel (D) shows that there are two negative bursts detected from 11:00 

to 11:30 on February 20, 2020, with the drift burst statistic exceeding the critical 

value twice. The price over the period from 11:00 to 11:30 dropped about 50 points, 

which is much more dramatic than the negative price move reported in Panel (C). On 

20 February 2020, stock markets across the world suddenly plunged after growing 

concern due to the COVID-19 pandemic. 

The above four representative examples imply that drift bursts often indicate the 

gradual jump price pattern defined by Barndorff‐Nielsen et al. (2009), which is 

consistent with Christensen et al. (2022) and Andersen et al. (2023). Christensen et al. 

(2022) and Bellia et al. (2023) show that drift bursts may also detect flash crashes, 

which are “V” shape price moves with a downside and explosive trend in prices 

occurring within a few minutes followed by a price recovery. However, I find that 

only about 1% of those negative bursts detected are associated with flash crashes, 
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following Nanex (2010), Braun et al. (2018), Félez-Viñas (2017) and Laly and 

Petitjean (2020), who define a flash crash by the phenomenon that the stock has to 

reverse (recover) to at least 90% of the initial price within a time gap of maximum 5-

minute. Using the same approach, I observe that around 2% of positive bursts are 

flash spikes. These results imply that both positive and negative drift bursts are only 

very rarely related to flash crashes or spikes, but are dominated by gradual jumps. 

This may be interpreted by noting that the flash crashes themselves are extremely 

uncommon events in the financial markets. Andersen et al. (2023) and Jagannathan et 

al. (2022) also find that the majority of intraday drift bursts are related to gradual 

jumps with flash crashes very rare. Christensen et al. (2022) only link two flash crash 

events to drift bursts in a 7-year sample of S&P 500 E-mini future prices.  

The economic reasons that determine the gradual jumps is a very new research 

question in the literature. Recent studies tend to link the causality of gradual jumps 

with economic news. Andersen et al. (2023) show that gradual jumps reflect the 

investors’ concern regarding the lack of transparency of the monetary policies. 

Bouamara et al. (2023) argue that gradual jumps in the equity index can be caused by 

the heterogeneous reaction of the stock constituents to major economic news, such as 

pre-scheduled announcements, natural disasters, or geopolitical conflicts. They find 

that the stock constituents do not respond to the news at the same time, with less-

liquid individual stocks typically lagging their reaction. 

The different degrees of the gradual jumps found in Figure 3.3.1 imply that the 

drift burst might have different magnitudes. For example, in the negative burst 

reported in the left-bottom panel, the price associated with a negative burst decreases 

by 8 points while the negative burst in the right-bottom panel causes a much larger 

price drop, with the price decreasing over 50 points. Motivated by the possible 
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difference in the sizes of bursts, I constructed a variation measure to gauge the 

contribution of drift bursts to total price variation of that day.  

To obtain this measure, first let 𝑅𝑡𝑖
5min denote the return over the 5-minute interval 

[𝑡𝑖−5min, 𝑡𝑖], in which a 5-minute drift burst is detected. I assume that 𝑅𝑡𝑖
5min is 

dominated by that burst such that the size of that burst is proxied by the magnitude of 

𝑅𝑡𝑖
5min. This assumption is based on the observation that the price returns are almost 

exclusively due to the strong upward and downward drift burst. Then, the variation of 

bursts for day 𝑡 may be defined by the sum of squared 𝑅𝑡𝑖
5min: 

 

𝑉𝐷𝐵𝑡
+ = ∑ (𝑅𝑡𝑖

5min)
2
∙ 𝐷𝐵𝑡𝑖

+

𝑛−𝑘𝑛+2

𝑖=1

, (3.3.1) 

and  

𝑉𝐷𝐵𝑡
− = ∑ (𝑅𝑡𝑖

5min)
2
∙ 𝐷𝐵𝑡𝑖

−

𝑛−𝑘𝑛+2

𝑖=1

, (3.3.2) 

where 𝑉𝐷𝐵𝑡
+ is the variation of positive bursts on day 𝑡, 𝐷𝐵𝑡𝑖

+ is a dummy which 

equals one if a positive burst is detected at a time point 𝑡𝑖, 𝑛 denotes the overall 

number of price observations of day 𝑡, 𝑘𝑛 is the previously defined preaveraging 

window, 𝑉𝐷𝐵𝑡
− is the variation of negative bursts on that day, and 𝐷𝐵𝑡𝑖

− is the dummy 

that equals one when a negative burst is identified at 𝑡𝑖. Laurent et al. (2022c) recently 

proposed a realized drift measure which attempts to estimate the variation of drift 

bursts. However, their measure does not distinguish the large daily constant drift, or a 

linear drift from the intraday drift bursts, but captures them as a whole. 

Based on the calculated 𝑉𝐷𝐵𝑡
+ and 𝑉𝐷𝐵𝑡

−, I find that the average ratio of 𝑉𝐷𝐵𝑡
+ 

relative to 𝑅𝑉𝑡 is 18.77% while that of 𝑉𝐷𝐵𝑡
− to 𝑅𝑉𝑡 is 19.66%, suggesting that the 
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relative contribution of drift bursts to the daily price variation is about 20% on 

average, which suggests that drift bursts are associated with large price movements. 

Figure 3.3.3 presents the daily time series of drift burst variations and the realized 

variance. The top, middle, and bottom panels contain the positive and negative burst 

variations 𝑉𝐷𝐵𝑡
+ and 𝑉𝐷𝐵𝑡

−, and realized variance (𝑅𝑉𝑡), respectively. All measures 

are in square root form for presentation purposes. From the upper two panels, I 

observe that both 𝑉𝐷𝐵𝑡
+ and 𝑉𝐷𝐵𝑡

− are not constant but vary over the sample period. 

These two burst variations appear to be larger in the late 2008, early 2009, and 2020, 

during which the realized variance 𝑅𝑉𝑡, reported in the bottom panel, is also higher 

than normal. 

Figure 3.3.3. Daily time series of drift burst variations and realized variance 

 

Notes: The upper two panels of this figure contain the daily variation of positive drift burst 

(𝑉𝐷𝐵𝑡
+) and the daily variation of negative drift bursts (𝑉𝐷𝐵𝑡

−), respectively. The burst 

variation is defined by the sum of the squared 5-minute returns up to the intraday time points 

when bursts are detected. The bottom panel depicts the daily realized variance (𝑅𝑉𝑡), defined 

by the sum of 5-minute squared returns from 9:30 to 16:00 EST. The sample data is S&P 500 

E-mini prices from June 2, 2003, to December 30, 2020. All variables are in square root form.
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3.4. Modelling drift burst clustering effect using Hawkes processes  

Given the visual observation of the burst clusters in section 3.3, the burst arrivals 

may be a self-exciting process, which means that the intensity, or the probability, of 

the occurrence of positive or negative bursts is positively affected by their own past 

arrivals. The intensity of positive or negative bursts might be impacted by the past 

arrivals of their counterparts as well, resulting in mutually exciting behaviour. The 

visual inspection of burst clusters requires rigorous statistical modelling. To model 

bursts’ mutual-excitation characteristic, I consider the Hawkes (1971) processes 

(HPs). HPs exploit the mutual-excitation effects by allowing the intensity of an event 

to be determined by the past arrivals of this event and or other events. Previous 

studies tend to apply HPs to model the mutual-excitation effect of jumps (Bowsher 

2007; Large 2007; Bauwens and Hautsch 2009; Aït-Sahalia et al. 2015; Clements and 

Liao 2017; Ma et al. 2019). As far as I am aware, my analysis of fitting HPs to the 

clustering behaviours of bursts is novel. Drift bursts are associated with large price 

movements, and modelling their dynamics thus has important implications for risk 

management, asset pricing, and understanding of the behaviour of markets. 

To begin, let the arrivals of intraday positive and negative drift bursts be denoted 

by two sequences of increasing event times: {𝑡𝑞+
+ }

𝑞+∈1,…,𝑛+
, 0 < 𝑡1

+ < 𝑡2
+ < 𝑡3

+ <

⋯ < 𝑡𝑛+
+ < 𝑇𝑁; and {𝑡𝑞−

− }
𝑞−∈1,…,𝑛−

, 0 < 𝑡1
− < 𝑡2

− < 𝑡3
− < ⋯ < 𝑡𝑛−

− < 𝑇𝑁, where 

{𝑡𝑞+
+ }

𝑞+∈1,…,𝑛+
 indicates the time of positive burst arrivals, {𝑡𝑞−

− }
𝑞−∈1,…,𝑛−

 is the time 

per negative burst arrivals, 𝑛+ and 𝑛− denote the overall numbers of positive and 

negative bursts over the sample length (0, 𝑇𝑁), respectively. Let 𝑁+(𝑡) =

∑ 𝟏𝑡
𝑞+
+ ≤𝑡𝑞+≥1  and 𝑁−(𝑡) = ∑ 𝟏𝑡𝑞−

− ≤𝑡𝑞−≥1  be a counting process for recording the 
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number of positive bursts and negative bursts up to 𝑡, with corresponding intensities 

𝑃(𝑑𝑁+(𝑡) = 1) = 𝐼𝐷𝐵𝑡
+𝑑𝑡 and 𝑃(𝑑𝑁−(𝑡) = 1) = 𝐼𝐷𝐵𝑡

−𝑑𝑡.  

Then, the mutual-excitation HPs for the intensities of positive and negative bursts 

at time 𝑡 are defined by:  

 

𝐼𝐷𝐵𝑡
+ = 𝐶+,+ +∫ 𝛿+,+(𝑡 − 𝑠)𝑑𝑁+(𝑠)

𝑡

0

+∫ 𝛿+,−(𝑡 − 𝑠)𝑑𝑁−(𝑠)
𝑡

0

, (3.4.1) 

and 

𝐼𝐷𝐵𝑡
− = 𝐶−,− +∫ 𝛿−,+(𝑡 − 𝑠)𝑑𝑁+(𝑠)

𝑡

0

+∫ 𝛿−,−(𝑡 − 𝑠)𝑑𝑁−(𝑠)
𝑡

0

. (3.4.2) 

𝐼𝐷𝐵𝑡
+ is the intensity of positive bursts excited by both the arrivals of itself 𝑑𝑁+(𝑠) 

and its negative counterpart 𝑑𝑁−(𝑠), 𝐼𝐷𝐵𝑡
− denotes the intensity of negative burst 

excited by the arrivals of positive bursts 𝑑𝑁+(𝑠) and its own occurrence 𝑑𝑁−(𝑠), 

𝐶+,+ and 𝐶−,− denote the intensity of an underlying Poisson process and is a non-

negative constant, 𝛿+,+(𝑡 − 𝑠), 𝛿+,−(𝑡 − 𝑠), 𝛿−,+(𝑡 − 𝑠), and 𝛿−,−(𝑡 − 𝑠) are non-

negative decaying functions. The intuition is that the first intensity specification, 

Equation (3.4.1), allows the positive and negative drift burst before 𝑡, indicated by 

𝑑𝑁+(𝑠) and 𝑑𝑁−(𝑠), 0 < 𝑠 < 𝑡, to increase the intensity of positive bursts at time 𝑡, 

𝐼𝐷𝐵𝑡
+, by 𝛿+,+(𝑡 − 𝑠) + 𝛿+,−(𝑡 − 𝑠). The second intensity specification, Equation 

(3.4.2), is allowing all positive and negative drift bursts prior to 𝑡, indicated by 

𝑑𝑁+(𝑠) and 𝑑𝑁−(𝑠), 0 < 𝑠 < 𝑡, to increase the intensity of negative bursts at time 𝑡, 

𝐼𝐷𝐵𝑡
−, by 𝛿−,+(𝑡 − 𝑠) + 𝛿−,−(𝑡 − 𝑠).  

Following Aït-Sahalia et al. (2015) and Bormetti et al. (2015), I use the 

exponentially decaying functions to parametrize those decaying functions. Then the 

discretized versions of Equations (3.4.1) and (3.4.2) may be written as, 
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𝐼𝐷𝐵𝑡
+ = 𝐶+,+ + ∑ Α+,+𝑒

−𝐵+,+(𝑡−𝑡
𝑞+
+ )

𝑡
𝑞+
+  < 𝑡

+ ∑ Α+,−𝑒−𝐵
+,+(𝑡−𝑡𝑞−

− )

𝑡𝑞−
−  < 𝑡

, 
(3.4.3) 

and 

𝐼𝐷𝐵𝑡
− = 𝐶−,− + ∑ Α−,+𝑒

−𝐵−,−(𝑡−𝑡
𝑞+
+ )

𝑡
𝑞+
+  < 𝑡

+ ∑ Α−,−𝑒−𝐵
−,−(𝑡−𝑡𝑞−

− )

𝑡𝑞−
−  < 𝑡

, 
(3.4.4) 

where 𝐶+,+, 𝐶−,− are coefficients related to the underlying Poisson intensities, 

𝐴+,+, 𝐴−,− are self-excitation coefficients, 𝐴+,−, 𝐴−,+ are mutual-excitation 

coefficients, and 𝐵+,+, 𝐵−,− are decay rates. The coefficients 𝐴+,+, 𝐴−,−, 𝐴+,−, and 

𝐴−,+ are important to test the self- and mutual- excitation behaviours of positive and 

negative drift bursts. 𝐴+,+ summarise to what extent all arrivals (exponentially 

weighted) of positive bursts before day 𝑡 impact the probability of the occurrence of 

positive bursts on that day. 𝐴−,− describes the same effect for the negative bursts. 𝐴+,− 

denotes to what extent all arrivals (exponentially weighted) of negative bursts before 

day 𝑡 impact the probability of the occurrence of positive bursts on day 𝑡 while 𝐴−,+ 

indicates the impact of all arrivals of positive bursts before day 𝑡 on the chance of the 

presence of negative bursts on that day. Following Ogata (1981), the parameters in 

Equations (3.4.3) and (3.4.4) are estimated by maximizing the negative log-likelihood 

function below, 

 

log𝐿𝑇𝑁(𝐶
+,+, 𝐶−,−, 𝐴+,+, 𝐴+,−, 𝐴−,+, 𝐴−,−, 𝐵+,+, 𝐵−,−)

= log𝐿𝑇𝑁
+ (𝐶+,+, 𝐴+,+, 𝐴+,−, 𝐵+,+)

+ log𝐿𝑇𝑁
− (𝐶−,−, 𝐴−,+, 𝐴−,−, 𝐵−,−), 

(3.4.5) 

with the two log function components log𝐿𝑇𝑁
+ (𝐶+,+, 𝐴+,+, 𝐴+,−, 𝐵+,+) and 

𝑙og𝐿𝑇𝑁
− (𝐶−,−, 𝐴−,+, 𝐴−,−, 𝐵−,−) defined by, 
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log𝐿𝑇𝑁
+ (𝐶+,+, 𝐴+,+, 𝐴+,−, 𝐵+,+)

= −𝐶+,+𝑇𝑁 −
𝐴+,+

𝐵+,+
∑ [1 − 𝑒

−𝐵+,+(𝑇𝑁−𝑡𝑞+
+ )
]

𝑛+

𝑞+=1

−
𝐴+,−

𝐵+,+
∑ [1 − 𝑒−𝐵

+,+(𝑇𝑁−𝑡𝑞−
− )]

𝑛−

𝑞−=1

− ∑ log [𝐶+,+ + 𝐴+,+ ∙ 𝑅
𝑞+
+,+ + 𝐴+,− ∙ 𝑅

𝑞+
+,−]

𝑛+

𝑞+=1

, 

and 

log𝐿𝑇𝑁
− (𝐶−,−, 𝐴−,+, 𝐴−,−, 𝐵−,−)

= −𝐶−,−𝑇𝑁 −
𝐴−,+

𝐵−,−
∑ [1 − 𝑒

−𝐵−,−(𝑇𝑁−𝑡𝑞+
+ )
]

𝑛+

𝑞+=1

−
𝐴−,−

𝐵−,−
∑ [1 − 𝑒−𝐵

−,−(𝑇𝑁−𝑡𝑞−
− )]

𝑛−

𝑞−=1

− ∑ log[𝐶−,− + 𝐴−,+ ∙ 𝑅𝑞−
−,+ + 𝐴−,− ∙ 𝑅𝑞−

−,−]

𝑛−

𝑞−=1

 

where 𝑅
𝑞+
+,+

, 𝑅
𝑞+
+,−

, 𝑅𝑞−
−,+

, and 𝑅𝑞−
−,−

 are given recursively by 

𝑅1
+,+ = 𝑅1

+,− = 𝑅1
+,− = 𝑅1

−,− = 0, 

𝑅
𝑞+
+,+ = 𝑒

−𝐵+,+(𝑡
𝑞+
+ −𝑡

𝑞+−1
+ )

∙ (1 + 𝑅
𝑞+−1
+,+ ), 

𝑅
𝑞+
+,− = 𝑒

−𝐵+,+(𝑡
𝑞+
+ −𝑡

𝑞+−1
+ )

∙ 𝑅
𝑞+−1
+,− + ∑ 𝑒

−𝐵+,+(𝑡
𝑞+
+ −𝑡𝑞−

− )

{𝑞−: 𝑡
𝑞+−1
+ ≤𝑡𝑞−

− <𝑡
𝑞+
+ }

, 

𝑅𝑞−
−,+ = 𝑒−𝐵

−,−(𝑡𝑞−
− −𝑡𝑞−−1

− ) ∙ 𝑅𝑞−−1
−,+ + ∑ 𝑒

−𝐵−,−(𝑡𝑞−
− −𝑡

𝑞+
+ )

{𝑞+: 𝑡𝑞−−1
− ≤𝑡𝑞−

+ <𝑡𝑞−
− }

 

and 

𝑅𝑞−
−,− = 𝑒−𝐵

−,−(𝑡𝑞−
− −𝑡𝑞−−1

− ) ∙ (1 + 𝑅𝑞−−1
−,− ). 



153 

 

The statistical inference on the parameter estimates in Equations (3.4.3) and 

(3.4.4) is based on the variances of parameters that are estimated by the inverse of the 

diagonal of the Hessian matrix of the log-likelihood function. Table 3.4.1 presents the 

estimated parameters, along with the loglikelihood, Equation (3.4.5).  

Table 3.4.1. The maximum likelihood estimation results of the parameters in the intensity 

function of the mutual-excitation Hawkes processes.  

Notes: This table reports the maximum likelihood estimation results for the coefficients in 

the intensity function of the mutual-excitation Hawkes (1971) process, Equations (3.4.3) 

and (3.4.4). Log-like denotes the loglikelihood of the coefficient estimation, Equation 

(3.4.5). The coefficients 𝐶+,+, 𝐶−,− are the underlying Poisson intensities, 𝐴+,+, 𝐴−,− are 

self-excitation coefficients, 𝐴+,−, 𝐴−,+ are mutual-excitation coefficients, and 𝐵+,+, 𝐵−,− 

are decay rates. All the coefficients are scaled by 103 for presentation purposes. The 

parentheses below the coefficients show the 𝑡-statistics. 

𝐶+,+ 𝐵+,+ 𝐴+,+ 𝐴+,− 𝐶−,− 𝐵−,− 𝐴−,+ 𝐴−,− Log-like 

7.76 13.87 7.39 1.24 7.82 9.42 1.07 7.31 1340.52 

(3.66) (7.61) (5.32) (1.98) (3.04) (11.36) (0.95) (10.83)  

 

As can be seen from this table, the decay rate 𝐵+,+, 𝐵−,− and initial intensity 

𝐶+,+, 𝐶−,− are all positive and significant at the 5% level. The decay rate 𝐵+,+ and 

𝐵−,− are larger than the corresponding mutual-excitation factors 𝐴+,+, 𝐴+,− and 

𝐴−,+, 𝐴−,−, which meets the requirement of the stationarity of the intensity processes 

of the mutually-excitation HPs (Hawkes 1971; Bormetti et al. 2015). The coefficient 

estimates of the self-excitation factor 𝐴+,+ and 𝐴−,− are positive and significant at the 

5% significance level. This result suggests that both positive and negative bursts 

significantly self-excite. 

The mutual-excitation parameter 𝐴+,− is significant at the 5% level, and this 

indicates that the probability of a positive burst at day 𝑡 is significantly impacted by 

the arrivals of negative bursts before that day. Another mutual-excitation factor, 

denoted by 𝐴−,+, is not significant at the 10% level, implying that negative bursts are 
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not significantly excited by previous positive burst arrivals. The phenomenon that 

positive and negative bursts affect each other in an asymmetric fashion may be 

explained by noting that there could be some positive policies to restore the 

confidence of the stock market after a large price downturn. Governments and 

regulatory bodies can implement policies to improve the market, such as lowering 

interest rates, providing financial assistance to struggling sectors, or enacting 

measures to prevent market manipulation. These good policies may lead to a 

subsequent surge in the stock market prices. 

Based on estimated parameters and the arrival times of positive and negative 

bursts in advance to day 𝑡 (𝑡𝑞+
+  <  𝑡 and 𝑡𝑞−

−  <  𝑡), the mutual-excitation HP-based 

intensity of positive and negative bursts for day 𝑡, denoted by 𝐼𝐷𝐵𝑡
+ and 𝐼𝐷𝐵𝑡

−,  for all 

trading days of the sample can be constructed recursively from Equations (3.4.3) and 

(3.4.4). Figure 3.4.1 visualizes the mutual-excitation intensities of positive and 

negative bursts, 𝐼𝐷𝐵𝑡
+ and 𝐼𝐷𝐵𝑡

−, denoted by the dashed and solid lines. As the figure 

shows, 𝐼𝐷𝐵𝑡
+ and 𝐼𝐷𝐵𝑡

− fluctuate over the sample period and are at their higher levels 

during the 2008-2009 crisis and the 2020 pandemic periods. Both 𝐼𝐷𝐵𝑡
+ and 𝐼𝐷𝐵𝑡

− 

have an upward trend from 2010 to 2021, indicating that from 2010 there are 

increased probabilities of burst arrivals. This is consistent with Christensen et al. 

(2022), who find that the occurrence rate of drift bursts appears to have increased over 

time. The intensity of drift bursts has become relatively higher since 2018. The causes 

of this phenomenon are interesting and left for future research. Comparing 𝐼𝐷𝐵𝑡
+ with 

𝐼𝐷𝐵𝑡
−, the latter is overwhelmingly, with a few exceptions, greater in size across the 

sample period. This may be interpreted by noting that the unconditional probability of 

the occurrence of negative bursts is much greater than that of positive bursts in my 

sample under the threshold considered.  
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Figure 3.4.1. Time series of drift burst intensities 

 

Notes: This figure depicts daily intensities of positive and negative drift bursts based on the 

mutual-excitation Hawkes (1971) processes, indicated by 𝐼𝐷𝐵𝑡
+ and 𝐼𝐷𝐵𝑡

−, respectively (the 

dashed and solid lines). 𝐼𝐷𝐵𝑡
+ is defined by the probability of the occurrence of a positive 

burst at the close of day 𝑡 conditional on the arrivals of both positive and negative bursts. 

𝐼𝐷𝐵𝑡
− is defined by the probability of the occurrence of a negative burst at the close of day 𝑡 

conditional on the arrivals of both positive and negative bursts prior to day 𝑡. The sample 

period is from June 2, 2003, to December 30, 2020. All intensities are in percentages.
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3.5. Predicting volatility using drift bursts 

Chapter 2 shows that daily measures of constant drift and linear drift can forecast 

volatility. Laurent et al. (2024) also demonstrate that unsigned drift bursts can 

positively predict volatility. Intuitively, drift bursts are associated with large price 

movements relative to other intraday price variation, and thus could have an impact 

on future volatility. To rich empirical evidence, this section explores the effect of drift 

bursts on volatility forecasting. Anticipating the appropriate level of volatility has a 

significant impact on pricing financial assets such as stocks and options (Heston and 

Nandi 2000; Ghysels et al. 2005; Christensen and Nielsen 2007; Christoffersen et al. 

2008; Goyal and Saretto 2009; Corsi et al. 2013). Volatility forecasting also plays a 

critical role in financial risk management (Christoffersen and Diebold 2000; Clements 

et al. 2008; Maheu and McCurdy 2011). Making precise volatility forecasts is of the 

utmost importance for many practitioners and regulators of the financial markets.  

For the volatility proxy, I use the realized variance, which is defined by the sum 

of the squared returns over a period (e.g., one trading day). Realized variance is one 

of the most popular estimators in measuring the variance of asset returns in the 

volatility forecasting, asset pricing, and risk management literatures (Andersen et al. 

2000; Koopman et al. 2005; Andersen et al. 2007b; Bollerslev et al. 2009; Corsi 2009; 

Feunou and Okou 2019; Bollerslev et al. 2020). Consistent with Chapter 2, the 

volatility forecasting target is ℎ-day ahead cumulative realized variance, indicated by 

𝑅𝑉𝑡,𝑡+ℎ, where, 

 

𝑅𝑉𝑡,𝑡+ℎ = 𝑅𝑉𝑡+1 + 𝑅𝑉𝑡+2 +⋯+ 𝑅𝑉𝑡+ℎ, (3.5.1) 
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and 𝑅𝑉𝑡 is defined as the sum of the squared 5-minute returns of S&P 500 E-mini 

futures recorded on that day from 9:30 EST to 16:00 EST on day 𝑡. This frequency is 

consistent with that used in Chapter 2 for constructing realized variance. Many papers 

in the literature on realized variance prediction use “standard” 5-minute data as it 

balances the trade-off between the desire to use very finely sampled data to minimize 

the estimation error on the one hand, and not be overwhelmed by “noise” in the high-

frequency prices on the other (Andersen et al. 2007b; Corsi 2009; Duong and 

Swanson 2015; Liu et al. 2015; Patton and Sheppard 2015; Bollerslev et al. 2016; 

Buccheri and Corsi 2021; Clements and Preve 2021; Christensen et al. 2023; Laurent 

et al. 2024). Also, there is very limited evidence on the predictive superiority of a 

particular frequency versus another (Liu et al. 2015).  

I investigate the impacts on the ℎ-day ahead cumulative realized variance 

(𝑅𝑉𝑡,𝑡+ℎ) forecasting of all drift burst variables defined previously in this chapter, 

including burst occurrences 𝑁𝐷𝐵𝑡
+ and 𝑁𝐷𝐵𝑡

−, Equations (3.2.13) and (3.2.14), burst 

variation, 𝑉𝐷𝐵𝑡
+ and 𝑉𝐷𝐵𝑡

−, Equations (3.3.1) and (3.3.2), and mutual-excitation 

intensity of bursts, 𝐼𝐷𝐵𝑡
+ and 𝐼𝐷𝐵𝑡

−, Equations (3.4.3) and (3.4.4). To explore the 

impacts of these different burst variables on 𝑅𝑉𝑡,𝑡+ℎ, 𝑅𝑉𝑡,𝑡+ℎis regressed on each type 

of the variable of positive and negative bursts.  

All these regression models, in which drift burst measures are used, all control for 

lagged daily, weekly, and monthly cumulative realized variance, denoted by 𝑅𝑉𝑡, 

𝑅𝑉𝑡−5,𝑡, and 𝑅𝑉𝑡−22,𝑡, respectively, where, 

 

𝑅𝑉𝑡−ℎ′,𝑡 = 𝑅𝑉𝑡−ℎ′+1 + 𝑅𝑉𝑡−ℎ′+2 +⋯+ 𝑅𝑉𝑡, (3.5.2) 
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with 𝑅𝑉𝑡 denoting the same daily realized variance on day 𝑡. These 𝑅𝑉 lags are all 

annualized: 𝑅𝑉𝑡, 𝑅𝑉𝑡−5,𝑡, and 𝑅𝑉𝑡−22,𝑡 are multiplied by 252, 252/5, and 252/22, 

respectively. 5 These realized variance lags are the same predictors of the 

heterogeneous autoregressive (𝐻𝐴𝑅) model proposed by Corsi (2009), which is 

widely applied as the benchmark model in the volatility forecasting literature 

(Andersen et al. 2007b; Corsi et al. 2010; Busch et al. 2011; Corsi and Renò 2012; 

Duong and Swanson 2015; Bollerslev et al. 2016; Andersen et al. 2023). Therefore, 

my regression models which harness the information of drift burst variables are 

various extensions of the 𝐻𝐴𝑅 model.  

According to the previous literature, various extensions of the 𝐻𝐴𝑅 model have 

been proposed, for example, including jumps (Andersen et al. 2007b; Corsi et al. 

2010; Duong and Swanson 2015), leverage effects (Bollerslev et al. 2006; Corsi and 

Renò 2012; Patton and Sheppard 2015), or allowing for non-linearities in the 

volatility process (Andersen et al. 2007b; McAleer and Medeiros 2008; Fengler et al. 

2015; Clements and Preve 2021). However, several recent studies have argued the 

significance of drift in understanding and modelling asset prices: Christensen et al. 

(2022) emphasize that drift forms an integral part of price dynamics across currencies, 

fixed-income investments, equities, and commodities; Laurent and Shi (2020) show 

that neglecting drift can result in significant finite sample bias in realized variance and 

severe size distortion in jump testing; and Laurent et al. (2024) demonstrate the 

importance of drift bursts in volatility forecasting. My extensions of the 𝐻𝐴𝑅 model 

using various drift burst variables thus provide more evidence on the importance of 

drift bursts in the literature. 

 
5 For the 𝑅𝑉 lags in the right-hand side of the 𝐻𝐴𝑅 model, I again apply their non-overlapping 

versions, which is consistent with Chapter 2. 
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The details of these regression models are as follows. The first regression model 

is the standard 𝐻𝐴𝑅 model, which contains the lagged daily, weekly, and monthly 

cumulative realized variance, 𝑅𝑉𝑡, 𝑅𝑉𝑡−5,𝑡, and 𝑅𝑉𝑡−22,𝑡 as the explanatory variables 

and does not depend on any drift burst measures and used as a benchmark. The 

second model extends the 𝐻𝐴𝑅 model by exploiting the effects of the occurrences of 

positive and negative drift bursts, 𝑁𝐷𝐵𝑡
+ and 𝑁𝐷𝐵𝑡

−. The third regression augments 

the 𝐻𝐴𝑅 by including the information on the variation of drift bursts, 𝑉𝐷𝐵𝑡
+ and 

𝑉𝐷𝐵𝑡
−. The fourth model attempt to improve the 𝐻𝐴𝑅 using mutual-excitation 

intensity of bursts, 𝐼𝐷𝐵𝑡
+ and 𝐼𝐷𝐵𝑡

−. 6 

The level of realized variance changed substantially across our sample period. For 

example, Figure 3.3.3 exhibits that the level of realized variance is much larger from 

2008 to 2009 than during the period from 2004 to 2005. Financial econometricians 

find that residuals of the 𝐻𝐴𝑅 model estimated using Ordinary Least Square (OLS) 

are correlated with the level of the realized variance (Corsi et al. 2008; Patton and 

Sheppard 2015). In other words, the resulting OLS coefficient estimates focus 

primarily on fitting periods of high realized variance and place little weight on more 

tranquil periods. This may increase the variance of the coefficient estimate, resulting 

in efficiency of the coefficient estimation of the 𝐻𝐴𝑅 model. 

To alleviate this issue, I modify all the regression models by using the logarithmic 

realized variance as the forecast target. The logarithmic realized variance varies much 

less dramatically over my sample period than the realized variance, therefore 

 
6 The intensity of positive and negative bursts can also be calculated exclusively using self-excitation 

behaviours, without considering the mutual-excitation effects across positive and negative bursts. 

However, ignoring the mutual-excitation impacts may cause omitted-variable bias, leading to incorrect 

parameter estimates. Consequently, biased parameters may result in unsatisfactory estimations of the 

intensity of drift bursts. 
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producing less heteroskedastic residuals (Andersen et al. 2003; Thomakos and Wang 

2003; Clements and Preve 2021). Andersen et al. (2007b) and Caporin et al. (2017) 

also use the logarithmic converted 𝐻𝐴𝑅-style models for modeling and forecasting 

volatility. All variation predictors of the models including the lagged daily, weekly, 

and monthly average realized variance, together with the drift burst variations are also 

converted into their logarithmic form for consistency. An alternative method to 

improve the inefficiency due to heteroscedasticity is the weighted least square (WLS) 

estimation method introduced in Chapter 2. I observe that the conclusions related to 

the effects of drift burst variables on the future realized variance is not altered when 

the models are estimated by WLS. The results for WLS are attached in Appendix A.4. 

Table 3.5.1 reports the daily forecast results (ℎ = 1) including the coefficient 

estimates and goodness of fit for the four models that depend on the drift burst 

information, along with the benchmark model that is only based on the realized 

variance lags. The parentheses contain the Heteroskedasticity and Autocorrelation 

Consistent (𝐻𝐴𝐶) robust 𝑡-statistics according to Newey and West (1987b) with the 

number of the lags equal to 2 × (ℎ + 1). The 𝐻𝐴𝐶 adjustment corrects the impact of 

heteroskedasticity in the residuals on the accuracy of the standard errors of the model 

coefficient estimates. The first column of this table contains the variables that are used 

as predictors in the regressions. The second column shows the 𝐻𝐴𝑅 model suggested 

by Corsi (2009). As this column shows, daily, weekly, and monthly lagged averages 

of realized variance, denoted by 𝑅𝑉𝑡, 𝑅𝑉𝑡−5,𝑡, and 𝑅𝑉𝑡−22,𝑡, significantly increase the 

one-day ahead realized variance 𝑅𝑉𝑡,𝑡+1 at the 0.1% level of significance. This is 

consistent with the findings by Corsi (2009), indicating that the time series volatility 

is persistent. The third column of Table 3.5.1 shows the estimation results for the 

model that explores the impact of positive and negative drift burst occurrences, 
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indicated by 𝑁𝐷𝐵𝑡
+ and 𝑁𝐷𝐵𝑡

−, on the next day realized variance, 𝑅𝑉𝑡,𝑡+1. As shown 

by the results, 𝑁𝐷𝐵𝑡
+ significantly decreases 𝑅𝑉𝑡,𝑡+1. The significance of 𝑁𝐷𝐵𝑡

+ could 

be explained by noting that positive return reduces the future volatility. However, I 

find that 𝑁𝐷𝐵𝑡
− does not significantly affect 𝑅𝑉𝑡,𝑡+1 at the 5% level, which is puzzling 

as the presence of large negative price movements are expected to increase future 

volatility according to the negative return-volatility relationship.  

Table 3.5.1. The impact of drift bursts on daily realized variance forecasts 

 

This table reports the results of coefficient estimation and goodness of fit (adjusted 𝑅2) for 

the four models that investigate the impacts of different drift burst measures on daily 

realized variance 𝑅𝑉𝑡,𝑡+1 forecasts. The first column contains the variables used in these 

models. All regressions contain 𝑅𝑉𝑡, 𝑅𝑉𝑡−5,𝑡, and 𝑅𝑉𝑡−22,𝑡 as the independent variables, 

where 𝑅𝑉𝑡, 𝑅𝑉𝑡−5,𝑡, and 𝑅𝑉𝑡−22,𝑡 indicate the lagged daily, weekly, and monthly average 

realized variance, Equation (3.5.1). The second column is the model that depends on 𝑅𝑉𝑡, 
𝑅𝑉𝑡−5,𝑡, and 𝑅𝑉𝑡−22,𝑡. The third column contains the models that exploit the occurrence of 

drift bursts, 𝑁𝐷𝐵𝑡
+ and 𝑁𝐷𝐵𝑡

−, Equations (3.2.13) and (3.2.14). The fourth column is for 

the regression that uses the variation of bursts, 𝑉𝐷𝐵𝑡
+ and 𝑉𝐷𝐵𝑡

−, Equations (3.3.1) and 

(3.3.2). The fifth column reports the results of the specifications that are based on the 

mutual-exciting intensity of bursts, 𝐼𝐷𝐵𝑡
+ and 𝐼𝐷𝐵𝑡

−, Equations 3.4.3 and 3.4.4. The sample 

is 1-second S&P 500 E-mini future transaction prices from June 2003 to December 2020. 

 

Constant -0.012 -0.007 -0.010 -0.006 

 (-1.12) (-0.63) (-0.92) (-0.21) 

  𝑅𝑉𝑡 0.563 0.571 0.572 0.562 

 (30.51) (29.77) (29.99) (30.68) 

  𝑅𝑉𝑡−5,𝑡 0.273 0.270 0.271 0.273 

 (12.61) (12.38) (12.51) (12.60) 

 𝑅𝑉𝑡−22,𝑡 0.109 0.105 0.106 0.109 

 (6.22) (5.98) (6.04) (6.03) 

 𝑁𝐷𝐵𝑡
+   -0.177    

   (-3.28)    

 𝑁𝐷𝐵𝑡
−   -0.023    

    (-0.52)    

 𝑉𝐷𝐵𝑡
+    -0.156   

    (-2.03)   

 𝑉𝐷𝐵𝑡
−    -0.062   

    (-1.16)   

 𝐼𝐷𝐵𝑡
+     -0.020 

     (-1.84) 

 𝐼𝐷𝐵𝑡
−     0.009 

     (1.33) 

 𝑅2 0.748 0.749 0.749 0.748 
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The fourth column contains the estimation results of the model that anticipates 

𝑅𝑉𝑡,𝑡+1 using the variation information contained in positive and negative drift bursts, 

𝑉𝐷𝐵𝑡
+ and 𝑉𝐷𝐵𝑡

−. The results show that drift burst variation reveals a significant and 

negative effect of 𝑉𝐷𝐵𝑡
+ and an insignificant impact of 𝑉𝐷𝐵𝑡

− (at the 5% level), 

which is consistent with the effects of the occurrence measures in column 3. Turning 

to the fifth column pertaining to the results of the model using the HPs’ intensity of 

positive and negative drift bursts, 𝐼𝐷𝐵𝑡
+ and 𝐼𝐷𝐵𝑡

−, I observe that both 𝐼𝐷𝐵𝑡
− and  

𝐼𝐷𝐵𝑡
+ do not significantly affect 𝑅𝑉𝑡,𝑡+1 at the 5% level. The significance of 𝑁𝐷𝐵𝑡

+ 

and 𝑉𝐷𝐵𝑡
+ contrasts with the insignificance of 𝐼𝐷𝐵𝑡

+, even though 𝑁𝐷𝐵𝑡
+, 𝑉𝐷𝐵𝑡

+, and  

𝐼𝐷𝐵𝑡
+ may be expected to have similar impacts because they both depend on the 

occurrence information of positive drift bursts. The impact on future volatility of the 

measures related to the negative drift bursts, including 𝑁𝐷𝐵𝑡
−, 𝑉𝐷𝐵𝑡

−, and  𝐼𝐷𝐵𝑡
−, are 

always not significant.  

Table 3.5.2 presents the coefficient estimation and goodness of fit of the same 

four models reported in Table 3.5.1 for the 5-day ahead cumulative realized variance, 

or weekly realized variance forecast, 𝑅𝑉𝑡,𝑡+5. I again observe the significant effect of 

the volatility persistence, with the coefficients of the lags of daily, weekly, and 

monthly average realized variance, 𝑅𝑉𝑡, 𝑅𝑉𝑡−5,𝑡, and 𝑅𝑉𝑡−22,𝑡, significant at the 0.1% 

level. The results also show that none of the variables of negative drift bursts (𝑁𝐷𝐵𝑡
−, 

𝑉𝐷𝐵𝑡
−, 𝐼𝐷𝐵𝑡

−, and 𝐼𝐷𝐵𝑡
−) have a significant impact on 𝑅𝑉𝑡,𝑡+5, which is similar to 

Table 3.5.1. In Table 3.5.2, all variables related to the upside drift bursts including 

𝑁𝐷𝐵𝑡
+, 𝑉𝐷𝐵𝑡

+, 𝐼𝐷𝐵𝑡
+, and 𝐼𝐷𝐵𝑡

+ negatively predict 𝑅𝑉𝑡,𝑡+5, but only the impact of 

𝑁𝐷𝐵𝑡
+ is statistically significant, which is qualitatively consistent with the effects of 

these variables on the daily realized variance forecast.  
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Table 3.5.2. The impact of drift bursts on weekly realized variance forecasts 

 

Notes: This table reports the regression estimation results for investigating the impact of 

different drift burst measures on weekly realized variance, 𝑅𝑉𝑡,𝑡+5, forecasts. The detailed 

information of these models and the sample are as in the notes of Table 3.5.1. 

 

Constant 0.098 0.098 0.099 0.043 

 (5.05) (5.08) (5.10) (0.79) 

  𝑅𝑉𝑡 0.436 0.438 0.440 0.434 

 (20.73) (20.17) (20.45) (21.49) 

  𝑅𝑉𝑡−5,𝑡 0.292 0.293 0.291 0.288 

 (9.58) (9.61) (9.61) (9.56) 

 𝑅𝑉𝑡−22,𝑡 0.161 0.159 0.159 0.154 

 (5.07) (5.03) (5.05) (4.62) 

 𝑁𝐷𝐵𝑡
+   -0.109    

   (-2.12)    

 𝑁𝐷𝐵𝑡
−   0.036    

    (0.87)    

 𝑉𝐷𝐵𝑡
+    -0.064   

    (-0.78)   

 𝑉𝐷𝐵𝑡
−    -0.027   

    (-0.53)   

 𝐼𝐷𝐵𝑡
+     -0.023 

     (-1.18) 

 𝐼𝐷𝐵𝑡
−     0.026 

     (1.59) 

 𝑅2 0.741 0.742 0.741 0.743 

 

Table 3.5.3 contains the results of the monthly realized variance forecast, 𝑅𝑉𝑡,𝑡+22 

for the same four models reported in Tables 3.5.1 and 3.5.2. The second column 

demonstrating the 𝐻𝐴𝑅 model estimation result again reveals the importance of 

volatility persistence, with the effects of all lagged realized volatilities, indicated by 

𝑅𝑉𝑡, 𝑅𝑉𝑡−5,𝑡, and 𝑅𝑉𝑡−22,𝑡, significant at the 5% level. Across the third, fourth, and 

fifth columns, the drift burst variables systematically fail to predict the monthly 

realized variance, even for the occurrence of positive bursts. 
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Table 3.5.3. The impact of drift bursts on monthly realized variance forecasts 

 

Notes: This table reports the regression estimation results for investigating the impact of 

different drift burst measures on monthly realized variance, 𝑅𝑉𝑡,𝑡+22, forecasts. The 

detailed information of these models and the sample are as in the notes of Table 3.5.1. 

 

Constant 0.251 0.248 0.249 0.084 

 (5.27) (5.26) (5.24) (0.62) 

  𝑅𝑉𝑡 0.296 0.290 0.289 0.290 

 (11.29) (11.39) (11.23) (12.54) 

  𝑅𝑉𝑡−5,𝑡 0.270 0.274 0.272 0.260 

 (7.94) (7.90) (8.01) (8.33) 

 𝑅𝑉𝑡−22,𝑡 0.190 0.190 0.191 0.170 

 (3.40) (3.42) (3.45) (2.74) 

 𝑁𝐷𝐵𝑡
+   -0.061    

   (-1.09)    

 𝑁𝐷𝐵𝑡
−   0.087    

    (1.63)    

 𝑉𝐷𝐵𝑡
+    0.032   

    (0.40)   

 𝑉𝐷𝐵𝑡
−    0.070   

    (1.41)   

 𝐼𝐷𝐵𝑡
+     -0.038 

     (-0.92) 

 𝐼𝐷𝐵𝑡
−     0.063 

     (1.26) 

 𝑅2 0.589 0.589 0.589 0.598 

 

The above models that exploit the impacts of drift bursts on realized variance 

(𝑅𝑉)  forecasting are controlled for the daily, weekly, and monthly lags of 𝑅𝑉. Recent 

studies argue that 𝑅𝑉 overestimates the return variance as it may also capture the drift 

burst variation (Laurent et al. 2022c; Andersen et al. 2023). Therefore, the right-hand 

side of these drift burst regressions may be subject to the double counting issue of the 

explanatory variable information. To address this problem, I modify these regression 

models by replacing all 𝑅𝑉 lags with the lags of the recent 𝑅𝑖𝑐𝑒𝑉 variance estimator 

proposed by Laurent et al. (2022c). 𝑅𝑖𝑐𝑒𝑉, simply defined as half of the sum of 

squared first order difference of returns, is robust to the drift burst variation thus 

including this variance measure is devoid of any overlapping of the drift burst 
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information in the explanatory variables in the regression models. The first-order 

difference of returns denotes the difference between itself and the previous 

observation. The intuition is that the first-order difference detrends return data thus 

reducing the impact of drift bursts, which are associated with extreme trends, on 

volatility estimation. 

The results (attached in Appendix A.4.) show that the effects of drift bursts on the 

realized variance forecast based on the modified models are again generally not 

significant, which is consistent with those from the original models. Additionally, I 

also further modify the regression models by using 𝑅𝑖𝑐𝑒𝑉 for the forecast target. This 

ensures that we forecast a more accurately estimated volatility. The results again 

reveal weak effects of drift bursts on 𝑅𝑖𝑐𝑒𝑉 forecasts, similar to the insignificant 

impacts of bursts on 𝑅𝑉.  

The sample correlation between 𝑅𝑉 and 𝑅𝑖𝑐𝑒𝑉 equals 99.33%. Given the high 

degree of similarity in these two volatility estimators inherent in the S&P 500 returns, 

it is hardly surprising that the effects of drift burst on volatility forecasting are not 

sensitive to the different choices of volatility estimators in the models. The weak 

impact of drift bursts on volatility forecasting is quite counter-intuitive since large 

price moves are expected to exhibit a leverage effect on volatility, with positive return 

reducing volatility and negative return increasing volatility. The interpretation of this 

puzzling result is left for future research. 

Realized variance is calculated using high-frequency returns and is therefore 

inevitably subject to bias due to microstructure noise. Although various methods have 

been applied in the literature to address this bias, these methods require certain 

assumptions regarding the microstructure noise structure (Jacod et al. 2009; Hansen 

and Lunde, 2006; Podolskij and Vetter 2009; Aït-Sahalia et al. 2012; Lee and 



166 

 

Mykland 2012; Hautsch and Podolskij 2013; Christensen et al. 2014). As suggested 

by Andersen and Bollerslev (1998), the option-implied variance, derived from the 

options prices, is not affected by the microstructure noise present in high-frequency 

stock price returns thus does not depend on specific hypotheses about the 

microstructure noise structure. Due to the superior measurement performance of 

implied variance in the presence of microstructure noise, I also consider forecasting 

implied variance.  

The implied variance measure of the S&P 500 index is defined in the literature by 

the squared CBOE implied variance index 𝑉𝐼𝑋2, which is the variance of the S&P 

500 index derived from the S&P 500 options using the Black–Scholes formula. 

Realized variance measures the historical volatility while implied variance estimates 

the volatility expected by investors in the future. Implied variance has important 

applications in financial markets. This volatility measure indicates the investors’ fear 

of the risk of the S&P 500 index. Traders use implied variance to identify potential 

opportunities. For example, high implied variance might indicate a good time to sell 

options, while low implied variance could be a buying opportunity. Implied variance 

is a key component in options pricing models, such as the Black-Scholes model. It 

helps determine the premium of an option, influencing trading strategies and hedging. 

This chapter studies the impact of drift bursts on implied variance, measured by 𝑉𝐼𝑋2. 

Since the end-of-day 𝑉𝐼𝑋𝑡
2 captures investors’ expectation of the realized variance of 

the S&P 500 index over the next month, my analysis of the effect of bursts on 𝑉𝐼𝑋𝑡
2 is 

consistent with the study of the impact of drift bursts on the monthly realized variance 

forecast. Of course, one can also synthesize daily and weekly realized variance using 

the CBOE 1-Day Volatility Index (VIX1D Index) and or implied variance from end-
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of-day option prices. This chapter focuses on forecasting the popular one-month 

implied variance 𝑉𝐼𝑋2, which is consistent with monthly realized variance.  

To explore the effects of different burst measures on 𝑉𝐼𝑋𝑡
2, I consider four 

regression models. All models contain the S&P 500 index option implied variance at 

the close of day 𝑡, 𝑉𝐼𝑋𝑡
2 as the response variable (response variable means the 

dependent variable or forecast target in the model), including the daily lag of implied 

variance, denoted by 𝑉𝐼𝑋𝑡−1
2 . The inclusion of this lag tries to take into account the 

autocorrelation in the daily time series of 𝑉𝐼𝑋𝑡
2. These four models differ in the drift 

burst variables that are included. The first model excludes all drift burst information 

as regarded as the benchmark. The second model uses the drift burst occurrence, and 

the third model is based on the drift burst variation. The fourth model depends on the 

mutual-excitation intensities of drift bursts. Consistent with the realized variance 

model, these implied variance models are estimated in the logarithmic form. The 

results for these models estimated by the alternative WLS method demonstrate 

qualitatively similar conclusions and are reported in Appendix A.4.  

Table 3.5.4 reports the parameter estimates and the coefficient of determination 

for the four regression models that exploit the effects of different drift burst 

information variables on the implied variance at the close of day 𝑡, indicated by 𝑉𝐼𝑋𝑡
2. 

The second column of Table 3.5.4 contains the estimation results for the model that 

solely depends on the daily lag of the implied variance, indicated by 𝑉𝐼𝑋𝑡−1
2 . This is 

the model that studies if the daily implied variance is persistent. As the results show, 

the coefficient on 𝑉𝐼𝑋𝑡−1
2  is significant at the 5% level, suggesting that the daily S&P 

500 option implied variance is strongly persistent. The third column shows the results 

for the model that exploits the information of the positive and negative drift burst 
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occurrence, indicated by 𝑁𝐷𝐵𝑡
+ and 𝑁𝐷𝐵𝑡

−, respectively. It can be seen from this 

column that 𝑁𝐷𝐵𝑡
− significantly increases 𝑉𝐼𝑋𝑡

2 while the impact of 𝑁𝐷𝐵𝑡
+ on 

implied variance is not significant at any reasonable level. The significance of 𝑁𝐷𝐵𝑡
− 

may be interpreted by noting that large price drops increase investors’ fears of 

downside risk, thus, investors tend to hedge this risk via trading in S&P 500 index 

options, increasing the 𝑉𝐼𝑋 index.  

 

Table 3.5.4. The impact of drift bursts on implied variance 

 

This table reports the regression estimation results for investigating the impact of different 

drift bursts measure on the implied variance, which is defined by the squared daily close 

value of the Chicago Board Options Exchange (CBOE) S&P 500 implied variance index 

𝑉𝐼𝑋𝑡
2. All regressions contain 𝑉𝐼𝑋𝑡

2 as the dependent variable and 𝑉𝐼𝑋𝑡−1
2  as the 

independent variable, where 𝑉𝐼𝑋𝑡−1
2  denotes the lagged daily implied variance. The first 

column contains the variables used in the regression models. The second column reports 

the coefficient estimation results and measure of fit (𝑅2) for the model that depends on 

𝑉𝐼𝑋𝑡−1
2 . The third column shows the results for the models that exploit the occurrence of 

drift bursts, 𝑁𝐷𝐵𝑡
+ and 𝑁𝐷𝐵𝑡

−, Equations (3.2.13) and (3.2.14). The fourth column contains 

the results for the regression that uses the variation of bursts, 𝑉𝐷𝐵𝑡
+ and 𝑉𝐷𝐵𝑡

−, Equations 

(3.3.1) and (3.3.2). The fifth column reports the results of the specifications that are based 

on the mutual-excitation intensity of bursts, 𝐼𝐷𝐵𝑡
+ and 𝐼𝐷𝐵𝑡

−, Equations (3.4.3) and (3.4.4) 

The sample is the S&P 500 E-mini future transaction prices and the daily close of the 

CBOE VIX index from June 2003 to December 2020. 

 

Constant 0.014 0.010 0.014 0.004 

 (3.55) (2.55) (2.95) (0.62) 

  𝑉𝐼𝑋𝑡−1
2  0.907 0.902 0.893 0.905 

 (52.13) (53.28) (54.38) (52.30) 

 𝑁𝐷𝐵𝑡
+   -0.018    

   (-0.73)    

 𝑁𝐷𝐵𝑡
−   0.110    

    (7.71)    

 𝑉𝐷𝐵𝑡
+    0.028   

    (0.55)   

 𝑉𝐷𝐵𝑡
−    0.152   

    (2.46)   

 𝐼𝐷𝐵𝑡
+     -0.004 

     (-1.38) 

 𝐼𝐷𝐵𝑡
−     0.006 

     (2.84) 

 𝑅2 0.963 0.964 0.966 0.964 
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The fourth column reports the estimation results for the models that exploit the 

effect of the positive and negative drift burst variations (𝑉𝐷𝐵𝑡
+ and 𝑉𝐷𝐵𝑡

−) on 𝑉𝐼𝑋𝑡
2. 

The impact of 𝑉𝐷𝐵𝑡
+ is not significant, which contrasts with the positive effect of 

𝑉𝐷𝐵𝑡
− and significant at the 5% level. This result is consistent with that of the 

occurrence measure, again corroborating that negative drift bursts, which are 

associated with large price drops, lead to a significantly higher degree of fear among 

market participants while positive bursts have limited effects on the market fears. The 

final column exhibits the impact of mutually-exciting intensity of positive bursts and 

negative bursts, denoted 𝐼𝐷𝐵𝑡
+ and 𝐼𝐷𝐵𝑡

−, on the implied variance 𝑉𝐼𝑋𝑡
2. I again 

observe an asymmetric effect, with 𝐼𝐷𝐵𝑡
+ not significantly affecting 𝑉𝐼𝑋𝑡

2 and 𝐼𝐷𝐵𝑡
− 

significantly increasing 𝑉𝐼𝑋𝑡
2 (at the 1% level). This suggests that days with a higher 

probability of negative drift burst occurrence leads to higher implied variance at the 

close of the day, whereas days with a chance of positive drift bursts almost have no 

influence on implied variance.
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3.6. Impact on the variance risk premium 

The variance risk premium is a phenomenon in the variance swap markets. The 

variance swap is an over-the-counter financial derivative. The seller of the two parties 

involved in a variance swap transaction will pay an amount based on the realized 

variance of the underlying asset. The buyer who wants to hedge the risk will pay a 

fixed amount, called the strike, specified at the start of the contract. At the end of the 

contract, the net payoff to the counterparties will depend on the difference between 

the actual, realised variance over the life of the swap contract and the strike variance.  

Based on the historical trading data, the variance swap strike is observed to be 

greater than the realised variance, on average. In other words, the buyer of variance 

commonly ends up with a loss on the trade while the seller profits. This is also 

observed in volatility swap markets, where a forward contract on the future standard 

deviation of a given underlying asset. One reason for this phenomenon may be that 

swap buyers tend to dislike risk or be risk averse such that they are willing to pay 

extra money to hedge against the risk of the underlying assets in the future as they 

lock the risk in the future. This indicates that the loss of the swap buyer is the 

premium they pay for their risk aversion, and this premium is conventionally termed 

the variance risk premium (𝑉𝑅𝑃).  

𝑉𝑅𝑃 has been investigated extensively in financial studies and has been found to 

have important implications for volatility prediction and asset return forecasting 

(Bollerslev et al. 2009; Carr and Wu 2009; Arisoy 2010; Bollerslev et al. 2014; 

Prokopczuk and Simen 2014; Feunou et al. 2018; Li and Zinna 2018; Kilic and 

Shaliastovich 2019; Pyun 2019). In financial research, the 𝑉𝑅𝑃 of an asset is 

generally proxied by the discrepancy between the implied and realized variance. The 

option implied variance, calculated from option prices, is a proxy for the swap strike 
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but is more accessible than swap strikes as options are publicly traded on exchanges. 

For the S&P 500 index-based variance swap contract with a one-month maturity, the 

variance risk premium is proxied by: 

𝑉𝑅𝑃𝑡 = 𝑉𝐼𝑋𝑡
2 − 𝐸(𝑅𝑉𝑡,𝑡+22), (3.6.1) 

where 𝑉𝑅𝑃𝑡 denotes the proxied variance risk premium for the swap contract that 

starts from the opening of day 𝑡 + 1 and ceases at the end of day 𝑡 + 22, with 22 

indicating the number of business days of one month. 𝑉𝐼𝑋𝑡
2 is the squared Chicago 

Board Options Exchange (CBOE) S&P 500 option implied variance index at the close 

of day 𝑡, which proxies the swap strike initially agreed by participants, according to 

the no-arbitrage theories by Carr and Madan (1998), Demeterfi et al. (1999), and 

Britten‐Jones and Neuberger (2000), and 𝐸(𝑅𝑉𝑡,𝑡+22) is the expected next-month 

realized variance of the underlying asset (over the life of the swap contract). 

Following Caporin et al. (2017), 𝐸(𝑅𝑉𝑡,𝑡+22) is proxied by the exponentials of the 

fitted value of the model that uses logarithmic next-month realized variance 𝑅𝑉𝑡,𝑡+22 

as the dependent variable, along with a constant, the logarithmic realized variance of 

the previous month, 𝑅𝑉𝑡−22,𝑡, and the logarithmic realized variance of the previous 

three month, 𝑅𝑉𝑡−66,𝑡, as the independent variables.  

The daily realized variance 𝑅𝑉𝑡 for constructing these monthly realized 

volatilities, defined previously as the sum of squared 5-minute returns from 9:30 to 

16:00 EST, is multiplied by the ratio between the sum of squared close-to-close S&P 

500 daily returns and the average of 𝑅𝑉𝑡 in the sample. This follows Caporin et al. 

(2017) which is meant to take into account the contribution of overnight returns to the 

total variance. This scaling makes this section comparable to and consistent with the 

previous ones. Both 𝐸(𝑅𝑉𝑡,𝑡+22) and 𝑉𝐼𝑋 are converted to the annualized percentage. 
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My findings in section 3.5 show that negative drift bursts have almost no impact 

on next-month realized variance while the negative bursts strongly increase the end-

of-day implied variance, implying that negative bursts might widen the gap between 

the implied and realized variance thus increasing the variance risk premium. 

Additionally, negative bursts may be associated with large negative returns, therefore 

increasing the investors’ willingness to hedge the downside risk. This intuition also 

suggests that the negative drift bursts might increase 𝑉𝑅𝑃.  

Financial studies related to 𝑉𝑅𝑃 centre on showing that 𝑉𝑅𝑃 contributes 

importantly to future returns and volatility of the underlying asset (Bollerslev et al. 

2009; Bollerslev et al. 2014; Prokopczuk and Simen 2014; Feunou et al. 2018; Kilic 

and Shaliastovich 2019). Studies also investigate the factors that may influence the 

𝑉𝑅𝑃. Empirical studies by Carr and Wu (2009) show that the market portfolio, the 

size factor, and the book-to-market factor, introduced by Fama and French (1993), 

cannot explain 𝑉𝑅𝑃. Consistent with the results from theoretical models that non-

Gaussian shocks to fundamentals have a substantial impact on risk premium (Barro 

2006; Gabaix 2012; Drechsler 2013), Todorov (2010) makes use of a parametric 

model and shows that price jumps are linked to the variation in the variance risk 

premium. Caporin et al. (2017) also find that positive contemporaneous jumps 

(cojumps) among individual stocks increase 𝑉𝑅𝑃, and negative cojumps decrease 

𝑉𝑅𝑃. To the best of my knowledge, the investigation of the impact of drift bursts on 

the variance risk premium is novel in the literature.  

The time series of the variance risk premium (𝑉𝑅𝑃) in my sample is shown in 

Figure 3.6.1. As expected, 𝑉𝑅𝑃 is often positive and becomes much higher for the 

subprime mortgage crisis and pandemic recessions, similar to the findings in the 

related literature (Bollerslev et al. 2014; Caporin et al. 2017; Feunou et al. 2018; Kilic 
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and Shaliastovich 2019) and consistent with the intuition that extreme downside price 

moves dramatically raises the demand of options, leading to an increase in the implied 

variance thus levelling up the 𝑉𝑅𝑃. There are somewhat extreme negative 𝑉𝑅𝑃 

observations also during the period of the subprime mortgage crisis and pandemic 

recessions, which are also observed by these previous studies, but there lacks an 

explanation of the reason for their presence.  

 

Figure 3.6.1. Variance risk premium. 

 
Notes: The figure reports the daily variance risk premium, computed as in Equation (3.6.4), 

using the Chicago Board Options Exchange's CBOE Volatility Index 𝑉𝐼𝑋 and expected 

monthly realized variance from the S&P 500 E-mini futures. The expected monthly realized 

variance is calculated by the exponentials of the fitted value of the model that uses 

logarithmic next-month realized variance as the dependent variable, along with a constant, the 

logarithmic realized variance of the previous month, and the logarithmic realized variance of 

the previous three months as the independent variables. The sample length is from June 2003 

to December 2020. 
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To study the impact of drift bursts on the variance risk premium (𝑉𝑅𝑃), I consider 

four regressions, with the dependent variable of these regressions uniformly set as 

𝑉𝑅𝑃𝑡 of day 𝑡. All models include the one-day lag of this premium, indicated by 

𝑉𝑅𝑃𝑡−1, as an explanatory variable, and differ in the drift burst variables are used. The 

first model is the baseline model which only contains 𝑉𝑅𝑃𝑡−1. This model uses the 

persistence effect of 𝑉𝑅𝑃 and is also applied in Caporin et al. (2017). The second 

model augments the first model by including recent positive and negative drift burst 

occurrences 𝑁𝐷𝐵𝑡
+ and 𝑁𝐷𝐵𝑡

−. The third is the regression that is based on the return 

variation caused by positive and negative drift bursts, indicated by 𝑉𝐷𝐵𝑡
+ and 𝑉𝐷𝐵𝑡

−. 

The fourth model explores the effect of mutual-excitation intensity of positive and 

negative drift bursts, 𝐼𝐷𝐵𝑡
+ and 𝐼𝐷𝐵𝑡

−.  

Since the dependent variable 𝑉𝑅𝑃 is constructed using monthly realized variance, 

the residuals of the regression may be autocorrelated, which results in underestimation 

of the variance of coefficient estimates and exaggerates the 𝑡-statistics of the 

coefficient, leading to an unreliable test of significance. To reduce this bias, the 

statistical inference of the coefficient is based on the Heteroskedasticity and 

Autocorrelation Consistent (𝐻𝐴𝐶) Standard Errors with the number of the lags equal 

to 2 × (21 + 1), where 21 is the size of overlapping window of two neighbouring 

realized variance. The detail of 𝐻𝐴𝐶 calculations can be found in the appendix of 

Chapter 2. 

Table 3.6.1 reports the results for these four models, including the coefficient 

estimation, along with the goodness of fit. The dependent variable of these models is 

the variance risk premium 𝑉𝑅𝑃𝑡. The first column contains the independent variables 
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that are used in the regression models. Each of the subsequent four columns reports 

the estimated coefficients and the measure of fit 𝑅2 for one of the four models.  

Table 3.6.1. The impact of drift bursts on the variance risk premium 

 

This table reports the estimation results for four regressions, aiming to investigate the 

impact of different drift burst measures on variance risk premium. The dependent variable 

for all models is uniformly set as 𝑉𝑅𝑃𝑡, which is the variance risk premium on day 𝑡, and 

all these models include an independent variable 𝑉𝑅𝑃𝑡−1, which is the one-day lag of the 

variance risk premium. The first column contains the names of the explanatory variables 

used in the regression. The second column contains results for the model that depend on the 

one-day lag of variance risk premium. The third column reports the results for the model 

that uses the occurrence of positive and negative bursts, 𝑁𝐷𝐵𝑡
+ and 𝑁𝐷𝐵𝑡

−. The fourth 

column is for the specification that includes the variation of positive and negative drift 

bursts, 𝑉𝐷𝐵𝑡
+ and 𝑉𝐷𝐵𝑡

−, Equations (3.3.1) and (3.3.2), and the fifth column contains 

results for the model that is based on the mutual-excitation intensity of positive and 

negative bursts, 𝐼𝐷𝐵𝑡
+ and 𝐼𝐷𝐵𝑡

−, Equations (3.4.3) and (3.4.4), respectively. The sample 

data is S&P 500 E-mini future prices and daily close of the CBOE VIX index from June 

2003 to December 2020. 

 

Constant 0.102 0.075 0.089 -0.126 

 (2.98) (2.03) (2.44) (-1.28) 

 𝑉𝑅𝑃𝑡−1 0.851 0.848 0.826 0.840 

 (30.45) (29.58) (22.85) (28.44) 

 𝑁𝐷𝐵𝑡
+   0.415    

   (0.52)    

 𝑁𝐷𝐵𝑡
−   0.419    

    (3.28)    

 𝑉𝐷𝐵𝑡
+    0.610   

    (1.22)   

 𝑉𝐷𝐵𝑡
−    0.121   

    (3.02)   

 𝐼𝐷𝐵𝑡
+     -0.042 

     (-1.46) 

 𝐼𝐷𝐵𝑡
−     0.075 

     (3.19) 

 𝑅2 0.723 0.725 0.737 0.725 

 

The second column of the table contains the estimation results for the model that 

only relies on the one-day lagged variance risk premium, 𝑉𝑅𝑃𝑡−1. This is a variable 

measured by monthly implied and realized variance but with a one-day lag. The 

coefficient on 𝑉𝑅𝑃𝑡−1 is positive and significant at the 1% level and the measure of 

fit, 𝑅2, of the model is 0.78, which is very high, implying that the daily 𝑉𝑅𝑃 is highly 
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persistent and this effect explains a substantial proportion of the variation of the 𝑉𝑅𝑃 

time series. This is consistent with Caporin et al. (2017), who find that 𝑉𝑅𝑃 is 

positively and significantly correlated with its daily lag and the regression model 

exploiting this effect enjoys a large goodness of fit. The third column presents the 

model that uses the information on positive and negative drift burst occurrences, 

denoted by 𝑁𝐷𝐵𝑡
+ and 𝑁𝐷𝐵𝑡

−. As the results show, 𝑁𝐷𝐵𝑡
+ reduces 𝑉𝑅𝑃 but this effect 

is not statistically significant. 𝑁𝐷𝐵𝑡
− has a significant and positive impact, at the 5% 

level, on 𝑉𝑅𝑃. The fourth column presents the estimation results for the regression 

model that is based on positive and negative drift burst variation, 𝑉𝐷𝐵𝑡
+ and 𝑉𝐷𝐵𝑡

−. I 

find that the impact of 𝑉𝐷𝐵𝑡
+ on 𝑉𝑅𝑃 is not statistically distinguishable from zero, 

and 𝑉𝐷𝐵𝑡
− has a significant and positive impact on 𝑉𝑅𝑃. 

The fourth column of Table 3.6.1 contains the estimation results of the model that 

includes the mutually-exciting intensity of positive and negative bursts, 𝐼𝐷𝐵𝑡
+ and 

𝐼𝐷𝐵𝑡
−. 𝐼𝐷𝐵𝑡

+ does not play an important role in explaining the premium, consistent 

with the effect of 𝑁𝐷𝐵𝑡
+ reported in the second column of the table. I observe a strong 

positive effect of 𝐼𝐷𝐵𝑡
−, in line with the significance of 𝑁𝐷𝐵𝑡

− and 𝑉𝐷𝐵𝑡
−. Given the 

high degree of similarity in the information on intensity and occurrence (both are 

based on the arrival information of drift bursts), it is not surprising that these two 

measures perform fairly similarly in explaining 𝑉𝑅𝑃. The strong positive effects of all 

these four negative burst measures on 𝑉𝑅𝑃 are consistent with the intuition that the 

presence of large negative return increase the investors’ risk aversion as investors 

dislike downside risk. 

 Additionally, my conclusion of the significance of drift bursts in explaining 𝑉𝑅𝑃 

is not altered for alternative transformations of 𝑉𝑅𝑃 proposed by Carr and Wu (2009), 
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including the volatility risk premium defined by 𝑠𝑞𝑟𝑡_𝑉𝑅𝑃 = √𝑉𝐼𝑋𝑡
2 −

√𝐸(𝑅𝑉𝑡,𝑡+22), and the log variance risk premium 𝑙𝑜𝑔_𝑉𝑅𝑃 =

log[𝑉𝐼𝑋𝑡
2 𝐸(𝑅𝑉𝑡,𝑡+22)⁄ ]. The results are attached in Appendix A.4. 

The above results on the impact of various drift burst measures on 𝑉𝑅𝑃 are based 

on the minimum threshold of detecting drift bursts suggested by Christensen et al. 

(2022). To reduce the false positives, I consider higher thresholds for detecting drift 

bursts including 4.5 and 5, which are also considered in Christensen et al. (2022). A 

higher threshold also allows one to detect those drift bursts that may be larger in size 

and more impactful. However, these drift bursts are extremely rare. For example, the 

test statistic with a threshold equal to 5 only detects 5 positive bursts and 12 negative 

bursts out of 4544 days. This is too rare to allow appropriate estimation of the mutual-

excitation intensity. Thus, the analysis of the effects of the Hawkes (1971) mutual-

excitation intensity, with drift bursts tested at thresholds 4.5 and 5, is excluded. 

Table 3.6.2 reports the results of the coefficient estimation and measure of fit for 

models that harness the information of the occurrence measure of positive and 

negative bursts (𝑁𝐷𝐵𝑡
+ and 𝑁𝐷𝐵𝑡

−) and exploit the variation of positive and negative 

bursts (𝑉𝐷𝐵𝑡
+ and 𝑉𝐷𝐵𝑡

−), for explaining the variance risk premium (𝑉𝑅𝑃). Columns 

two and three contain the estimation results of these two models for the drift burst test 

statistics with a threshold equal to 4.5. The coefficient estimates on these occurrences 

and return variations of drift bursts including 𝑁𝐷𝐵𝑡
+, 𝑁𝐷𝐵𝑡

−, 𝑉𝐷𝐵𝑡
+ and 𝑉𝐷𝐵𝑡

−, 

together with their statistical significance are qualitatively very consistent with those 

variables in Table 3.6.1. Specifically, the coefficients on positive burst measures 

(𝑁𝐷𝐵𝑡
+ and 𝑉𝐷𝐵𝑡

+) are not significant, while these on negative drift burst variables 

(𝑁𝐷𝐵𝑡
− and 𝑉𝐷𝐵𝑡

−) significantly increase 𝑉𝑅𝑃 at the 5% level. These consistent 
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results imply that my findings of the effects of drift burst occurrence and variation on 

𝑉𝑅𝑃 are robust when bursts are identified using the threshold 4.5.  

 

Table 3.6.2. The impacts of drift bursts detected by thresholds of 4.5 and 5 

on the variance risk premium  

 

Notes: This table replicates the results of Table 3.6.1 which investigates the 

impact of different drift burst measures on the variance risk premium, with 

the threshold of testing bursts of 4.5 and 5. All variables and models are the 

same as in Table 3.6.1, except for mutually exciting intensities that are not 

included. 

 

threshold 4.5 5 

Constant 0.090 0.097 0.098 0.101 

 (2.65) (2.79) (2.87) (2.95) 

 𝑉𝑅𝑃𝑡−1 0.848 0.835 0.850 0.850 

 (29.32) (25.47) (30.46) (30.46) 

 𝑁𝐷𝐵𝑡
+ 0.880  -0.429  

 (0.52)  (-1.29)  
 𝑁𝐷𝐵𝑡

− 0.642  1.616  
  (2.47)  (1.97)  
 𝑉𝐷𝐵𝑡

+  0.690  -0.315 

 
 (1.68)  (-2.73) 

 𝑉𝐷𝐵𝑡
−  0.103  0.132 

 
 (3.02)  (2.03) 

 𝑅2 0.725 0.734 0.724 0.724 

 

The fourth and fifth columns of Table 3.6.2 present the impacts of drift burst 

occurrences and variations on 𝑉𝑅𝑃 with the threshold for testing drift bursts raised to 

5. Again, 𝑁𝐷𝐵𝑡
− and 𝑉𝐷𝐵𝑡

− lead to significantly higher 𝑉𝑅𝑃 at the 5% level. The 

results also reveal that 𝑉𝐷𝐵𝑡
+ has a significant and negative effect on 𝑉𝑅𝑃 at the 5% 

level. This significance of 𝑉𝐷𝐵𝑡
+ contrasts with the weak evidence of 𝑉𝐷𝐵𝑡

+ reported 

in the left panel of Table 3.6.2 and Table 3.6.1, suggesting that the positive burst 

variation detected by increasing the threshold is important in predicting 𝑉𝑅𝑃. This 

may be because the positive bursts detected by a high threshold might be related to 

very large positive price movements that strongly decrease the investors’ fears.
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3.7. Conclusion 

The constant and linear drift-diffusion models studied in Chapter 2 are unable to 

explain the stylized fact of short-lived and explosive drifts including gradual jumps 

and flash crashes or spikes in the intraday stock price patterns. To identify drift bursts, 

I apply the test statistic proposed by Christensen et al. (2022). Consistent with 

Christensen et al. (2022), my results show that the occurrence of drift bursts is not 

frequent. Drift bursts can be decomposed into positive and negative components, with 

the positive bursts capturing the positive gradual jumps and flash spikes and the 

negative counterparts identifying negative gradual jumps and flash crashes. I also find 

that the majority of drift bursts are associated with gradual jumps, due to the scarcity 

of flash crashes and flash spikes in the stock market. I find that the presence of drift 

bursts contributes approximately 20% of daily price variation on average, according 

to the return variation measure attributed to drift bursts. This novel burst variation 

measure also shows that drift bursts differ in magnitude over the sample and their 

levels are much greater in the subprime mortgage crisis and pandemic recessions. 

Motivated by my observation of the clustering behaviour of drift bursts, I apply 

the mutual-excitation Hawkes (1971) process to model the arrival intensity of drift 

bursts. The model estimation results reveal significant self-exciting characteristics of 

both positive and negative drift bursts, and that positive and negative bursts mutually 

excite each other asymmetrically, with the impact from the negative bursts to positive 

drift bursts being much stronger.  

As drift bursts are found often associated with large price returns relative to other 

intraday returns, they may impact volatility. I investigate if drift bursts forecast 

volatility. All three measures of drift bursts studied in this chapter, including 

occurrence, return variation, and intensity are applied to forecast volatility. 
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Surprisingly, the results show that both positive and negative drift bursts tend to have 

a very little impact on future realized variance (𝑅𝑉). However, I find that drift bursts 

have an impact on the volatility expected by investors measured by 𝑉𝐼𝑋. Negative 

drift bursts lead to a significantly higher 𝑉𝐼𝑋 at the close of that day for all three drift 

burst variables. This may be because negative returns may raise the fear of investors. 

But, it is still puzzling that drift bursts affect 𝑉𝐼𝑋, but not 𝑅𝑉. 

I also investigate the impact of drift bursts on the variance risk premium (𝑉𝑅𝑃), 

which is used in the literature to gauge the degree of investors’ risk aversion. My 

empirical results show that across all three measures of drift bursts, negative bursts 

significantly increase 𝑉𝑅𝑃 while positive drift bursts do not significantly affect 𝑉𝑅𝑃. 

The positive and significant effect of negative drift bursts is explained by noting that 

the large negative returns increase risk aversion. I also observe that the effect of 

positive drift burst variation becomes significant and negative when drift bursts are 

tested using a stricter threshold, which is in line with the intuition that a very large 

positive return can lower risk aversion.
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Chapter 4. Empirical evidence of stock codrift variation 

and its implications for market volatility prediction 

 

Abstract 

This chapter examines contemporaneous drift variation (codrift variation) among 

individual stocks. I show, through a Monte Carlo study, that applying a coexceedance 

criterion to a univariate drift test by Shi and Phillips (2024) is feasible to detect codrift 

variation. However, one should not expect to detect all stocks that are associated with 

a codrift variation. My empirical results provide evidence of a relationship between 

market drift variation and underlying stock codrift variation. Importantly, I show that 

stock codrift variation helps forecast market-level volatility: Codrift variation among 

stocks have positively predict market volatility. Finally, I show that models exploiting 

the effects of codrift variation lead to significantly better out-of-sample market 

volatility forecasting performance.  
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4.1. Introduction 

Recently, non-parametric tests employing high-frequency data have been developed 

to detect whether, in addition to a volatility diffusion, the variation of asset prices is also 

driven by drift. Tests which explicitly identify drifts have been developed by Flora and 

Renò (2020), Andersen et al. (2023), Laurent et al. (2022), and Christensen et al. (2022). 

The seminal work in this area is Laurent et al. (2022) and Shi and Phillips (2024) who 

separate realised measures of volatility into a component driven by continuous price 

changes and another component driven by drift variation.  

The application of these non-parametric tests to various markets has supported the 

presence of price drift variation. For example, drift variation in equity indices and 

individual stocks have been documented in Jagannathan et al. (2019), Bellia et al. 

(2020), Flora and Renò (2020), Jagannathan et al. (2022), Christensen et al. (2022), and 

Laurent et al. (2022), among others. Moreover, evidence for the presence of drift 

variation in foreign exchange and Treasury bond markets is documented in Christensen 

et al. (2022) and Flora and Renò (2020). 

Jumps are sudden large price moves, which are larger than what can be interpreted 

by the drift-diffusion model alone. Contemporaneous jump (cojump) variation among 

underlying stocks may indicate systematic large price move, which challenges the 

functionality of portfolio for diversification. Motivated by the importance of cojumps, 

literature investigates the contemporaneous jump variation among underlying stocks of 

a market portfolio or (Gilder et al. (2014).  

However, little research has studied the simultaneous drift variation, termed 

contemporaneous drift variation (codrift variation), across different stocks. The 

importance of codrift variation is not ignorable. Codrift variation may capture the 

common bubbles and crashes, as drift variation are found to play a role in measuring 
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price bubbles and crashes (Christensen et al. 2022; Jagannathan et al. 2022; Shi and 

Phillips 2024). Since common bubbles and crashes cannot be diversified away, they 

have important implications for portfolio selection and asset allocation. Boninsegna and 

Candelon (2024) find that when common bubbles explode, while some techniques exist 

to diversify risk in individuals’ portfolios, stock bubbles can erode all investors’ profits. 

Anderson and Brooks (2014) demonstrate that much of the common variation in stock 

returns that can be attributable to market risk is due to common bubbles as opposed to 

being driven by fundamentals. Malceniece et al. (2019) show that a collective crash can 

increase the cost of capital for companies. Kole et al. (2006) analysis shows that in the 

presence of systematic crashes, the diversification possibilities erode rapidly, causing 

investors who face short sales constraints to withdraw from equity markets. Longin and 

Solnik (2001) show that equity market correlations increase after a common crash in the 

market, dampening the diversification potential of portfolio managers.   

In this chapter, I explore codrift variation among individual stocks. Specifically, I 

investigate three research questions associated with codrift variation. The first equation 

is straightforward: how to detect codrift variation among stocks? As far as I am aware, 

there is no such method of detecting codrift variation in the literature. My first 

contribution is to demonstrate, through a Monte Carlo simulation study, that it is 

possible to detect codrift variation among stocks by applying the coexceedance rule to 

the univariate drift variation test by Shi and Phillips (2024). However, I show that using 

this codrift variation testing approach, one should not expect to detect all common drift 

variations comprising a codrift variation. Additionally, I also find that this codrift 

variation testing method may uncover some moderate and small systematic drift in the 

market that are not able to find via applying the single drift variation test to the market 

portfolio index. 
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My second research question is: is there an association between codrift variation 

among the underlying stocks and drift variation in the market portfolio? I refer to codrift 

variation which involves the market portfolio as systematic codrift variation since they 

represent non-diversifiable codrift variation. Intuitively, a systematic codrift variation 

results from market-level factors initiating a codrift variation amongst the underlying 

stocks, which is ultimately reflected as a drift variation in the market portfolio.  

My second contribution is to document that there is an association between drift 

variation in the market portfolio and codrift variation among the underlying stocks. The 

number of stocks detected to be involved in a systematic codrift variation identified by 

our coexceedance-based detection methods is often moderate relative to the number of 

stocks included in my sample. However, given the evidence from my Monte Carlo 

study, I argue that the moderate numbers are consistent with the occurrence of 

systematic codrift variation, and it is very unlikely that they indicate independent or 

idiosyncratic drifts. Importantly, the results suggest there is a relationship between large 

drift variation in the market portfolio and large codrift variation in the underlying 

stocks. In other words, market-level factors are able to generate simultaneous drift 

variation in stock prices. 

I also document non-systematic codrift variation which involve relatively large 

numbers of stocks. I am unable to explain these as being industry-specific codrift 

variation or related to drift variation in (proxies for) the Fama and French (FF) SMB 

and HML factors (Fama and French 1992,1993). I conclude that these non-systematic 

codrift variation are misclassified and result from a failure to detect some moderate and 

small drift variation in the market portfolio. Therefore, systematic codrift variation are 

likely to be more common than is suggested by the number of drift variation detected in 

the market portfolio. 
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Forecasting price volatility has important implications for the financial industry for 

asset pricing (Black and Scholes 1973), derivative pricing (Duffie et al. 2000), asset 

allocation (Merton 1969), and risk management (Christoffersen and Diebold 2000). 

Laurent et al. (2024) show that market drift variation positively predicts market 

volatility. Given the clear link between drift variation in the market portfolio and codrift 

variation among the underlying stocks, codrift variation should also predict market 

volatility. Therefore, my third research question is: do stock codrift variation forecast 

the volatility of the market portfolio? 

My third contribution is to uncover the forecasting significance of codrift variation. 

Our empirical evidence shows that codrift variation in stocks positively predict the 

volatility of the market portfolio. Additionally, I also find the stock codrift variation 

outperform the market drift variation in forecasting market volatility for both in-sample 

and out-of-sample performance. The reason why codrift variation are more important 

may be that they can reflect some small and moderate drift variation that are unable to 

detect from the market portfolio index. 

The rest of the chapter is organized as follows. Section 4.2 introduces the theories 

and methods to testing stock codrift variation. Section 4.3 presents the simulation study 

of evaluating the efficacy of the codrift variation test. Section 4.4 contains the data 

description of the market portfolio and individual stocks. Section 4.5 investigate the 

links between stock codrift variation and market drift variation. Section 4.6 discusses 

the implications of codrift variation for volatility forecasting. Section 4.7 concludes.
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4.2. Codrift variation identification 

 

4.2.1.  Realized drift variation 

This chapter assumes that the log prices 𝑝𝑡 follow an Ito semi-martingale process, 

 

𝑑𝑝𝑡 = 𝜇𝑡𝑑𝑡 + 𝜎𝑠𝑑𝑊𝑡 + 𝐽𝑡𝑑𝑁𝑡, 0 ≤ 𝑡 ≤ 𝑇, (4.2.1) 

where 𝜇𝑡 is the drift coefficient, already introduced in Chapter 3, 𝜎𝑠 is a càdlàg and 

strictly positive volatility coefficient, 𝑊𝑡 is a standard Brownian motion, 𝐽𝑡 represents 

the random jump size at time 𝑡, and 𝑁𝑡 is an independent Poisson counting process 

with a time-varying intensity. 

As in Chapters 2 and 3, I assume that the log prices 𝑝𝑡𝑖 are observed at 𝑀 equally 

spaced intervals spanning the period (0, T), 0 = 𝑡0 < 𝑡1 < 𝑡2… < 𝑇. The distance 

between two consecutive observation times is then denoted by Δ = 𝑡𝑖 − 𝑡𝑖−1 = 1 𝑀⁄ . 

The returns computed using log prices at equally spanned observation times may be 

written as 𝑟𝑡𝑖 = 𝑝𝑡𝑖 − 𝑝𝑡𝑖−1, with 𝑖 = 1,2, … ,𝑀. 

The quadratic variation for the cumulative return process 𝑟𝑡 = 𝑝𝑡 − 𝑝0, is given 

by, 

 

QV(0, T) = ∫ 𝜎𝑠
2𝑑𝑠

𝑇

0

+ ∑ 𝐽𝑠
2

0<𝑠≤𝑇

, (4.2.2) 

where ∫ 𝜎𝑠
2𝑑𝑠

𝑇

0
 is the integrated volatility, and ∑ 𝐽𝑠

2
0<𝑠≤𝑡  is the sum of squared jumps 

that occurred between time 0 and time 𝑇. Andersen and Bollerslev (1998) define the 

realized variance or variation over the period (0, T), by the summation of the 𝑀 high-

frequency intradaily squared returns, 
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𝑅𝑉𝑡 =∑𝑟𝑡𝑖
2

𝑀

𝑖=1

. (4.2.3) 

As shown by Andersen and Bollerslev (1998) and Barndorff-Nielsen and 

Shephard (2002), 𝑅𝑉𝑡 converges to the quadratic variation as the interval between 

observations gets smaller, 

 

𝑅𝑉𝑡 =∑𝑟𝑡𝑖
2

𝑀

𝑖=1

→∫ 𝜎𝑠
2𝑑𝑠

𝑇

0

+ ∑ 𝐽𝑠
2

0<𝑠≤𝑇

  as Δ → 0. (4.2.4) 

Note that the quadratic variation, Equation (4.2.2), does not contain the integrated 

drift variation, indicated by ∫ (𝜇𝑠)
2𝑑𝑠

𝑇

0
. This is because the integrated drift variation 

will be ignorable relative to the integrated volatility as the sampling interval becomes 

small (Laurent and Shi 2020; Christensen et al. 2022; Laurent et al. 2024; Shi and 

Phillips 2024). The negligibility of integrated drift variation with a diminishing 

sampling interval, results in a challenge of its measurement. However, nonzero drifts 

(𝜇𝑡 ≠ 0) do exist in the log prices as price trends and are important to financial 

applications. Christensen et al. (2022) demonstrate that drift variation form an integral 

part of price dynamics across currencies, fixed-income investments, equities, and 

commodities; Laurent and Shi (2020) argue that ignoring drift variation can lead to 

significant finite sample bias in realized variance and severe size distortion in jump 

testing. Laurent et al. (2024) find the usefulness of drift variation in forecasting 

volatility. 

Shi and Phillips (2024) and Laurent et al. (2024) allow for nonparametric 

identification of the integrated drift variation. Specifically, they define realized drift 

variation by, 



188 

 

 

𝑅𝐷𝑉𝑡 = 𝑀∑𝑟𝑡𝑖

𝑀

𝑖=2

𝑟𝑡𝑖−1 , (4.2.5) 

where 𝑅𝐷𝑉𝑡 denotes the realized drift variation of day 𝑡, and they uncover that for 

Δ → 0,  

 

𝑅𝐷𝑉𝑡 →∫ (𝜇𝑠)
2𝑑𝑠

𝑇

0

. (4.2.6) 

The above asymptotic property indicates that the realized drift variation can capture 

the integrated drift variation. As discussed in Laurent et al. (2024), realized drift 

variation is robust to jumps. This is because jumps indeed will be asymptotically 

eliminated in the realized drift via the same mechanism which eliminates the bias in 

bipower variation, that is the product of two consecutive returns.  

The realized drift is the central insight on which the theoretical and empirical 

results of this chapter build. Of course, nothing prevents the estimates of the squared 

drift variation defined by Equation (4.2.6) from becoming negative in a given finite 

sample. Therefore, following the suggestion of Shi and Phillips (2024), I truncate the 

actual empirical measurements at zero, 

 

𝑅𝐷𝑉𝑡
+ = max(𝑅𝐷𝑉𝑡, 0). (4.2.7) 

where 𝑅𝐷𝑉𝑡
+ denotes the positively truncated realized drift variation. 

 

 

 

 

 



189 

 

4.2.2.  Testing for drift variation 

The time series properties and forecasting value of the drift variation have been 

extensively studied by Laurent et al. (2024). The empirical results discussed by 

Laurent et al. (2024) rely on the above simple nonparametric drift variation estimates 

defined by positively truncated realized drift. As mentioned, the theoretical 

justification for this measurement is based on the notion of increasingly lower 

frequency, Δ → 0. Of course, any practical implementation with a fixed sampling 

interval, or Δ > 0, is invariably subject to measurement error. The nonnegativity 

truncation in Equation (4.2.7) alleviates part of this finite sample issue by eliminating 

theoretically infeasible negative estimates for the squared drift variation. However, 

the resulting drift variation series in Laurent et al. (2024) arguably also displays an 

unreasonably large number of nonzero small positive values. It may be desirable to 

treat these small drift variations as measurement errors, linking only large values of 

𝑅𝐷𝑉𝑡
+ with the drift variation. This section provides a theoretical framework for 

doing so. 

The distributional results developed by Laurent et al. (2024) and extended in Shi 

and Phillips (2024), imply that, in the absence of drift variation, the following statistic 

is, 

 

𝑍𝑡 =
𝑅𝐷𝑉𝑡

√𝑅𝑖𝑐𝑒𝑄𝑡 ∗ 𝑀
→ 𝑁(0,1), (4.2.8) 

for Δ → 0, where 𝑅𝑖𝑐𝑒𝑄𝑡 that appears in the denominator is a realized quarticity 

measure proposed by Laurent et al. (2024) with 𝑅𝑖𝑐𝑒𝑄𝑡 =
𝑀

6
∑  (𝑟𝑡𝑖 −
𝑀
𝑖=2

𝑟𝑡𝑖−1)
2
(𝑟𝑡𝑖−1 − 𝑟𝑡𝑖−2)

2
. The “significant” drift variation may therefore be identified by 

comparing the test statistics (𝑍𝑡) to the standard normal distribution.  
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As in Shi and Phillips (2024), I detect the “significant” drift variation by the 

realization of 𝑍𝑡 in excess of a critical value, 

 

𝑅𝐷𝑉𝑡
∗ = max(𝑅𝐷𝑉𝑡, 0) 𝐼𝑍𝑡>Φ1−α 2⁄−1 , (4.2.9) 

where 𝑅𝐷𝑉𝑡
∗ denotes the significant realized drift variation estimator, 𝐼𝑥 denotes the 

indicator function and Φ𝑥
−1 denotes the inverse cumulative function of the normal 

distribution, α indicates the two-tailed significance level. Note that for Φ1−α 2⁄
−1 > 0, 

the definitions in Equations (4.2.9) automatically guarantee that 𝑅𝐷𝑉𝑡
∗ is positive. Of 

course, the nonnegativity truncation imposed in Equation (4.2.7) underlying the 

empirical drift variation measurements employed in Laurent et al. (2024) corresponds 

directly to α = 1.  

 

 

4.2.3.  Testing for codrift variation 

Stock codrift variation indicate the tendency for drifts to arrive simultaneously 

among different stocks. As already discussed in the Introduction, codrift may help 

identify the large price comovement in asset returns, which is important to risk 

diversification of portfolios. I take one approach to codrift testing for individual 

stocks. Specifically, I use the following co-exceedance rule: 

 

∑𝐼
𝑅𝐷𝑉𝑡

(𝑗)
>0
{
≥ 2 Codrift variation
≤ 1 No Codrift variation

𝑁

𝑗=1

 , 

where 𝐼
𝑅𝐷𝑉𝑡

(𝑗)
>0

 is an indicator function taking the value one when a realized drift 

variation is larger than zero for asset 𝑗 on day 𝑡. I use the coexceedance rule in 
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conjunction with the test of Shi and Phillips (2024) introduced above. Note that this 

codrift variation test is not able to identify intraday codrift variation. The intraday 

version of the codrift variation test could be constructed by applying the co-

exceedance rule to the test statistic proposed by Christensen et al. (2022). However, I 

do not build this intraday codrift test in this chapter since the minimum available 

sampling frequency of my individual stock data (1 minute) is too sparse for this test. 

Of course, intraday codrift variation could a more accurate in terms of timing and are 

left for future research.
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4.3. Monte Carlo study 

This section aims to study the efficacy of the co-exceedance rule for detecting co-

drift variation among individual assets. I consider the number of 41 assets, to be 

consistent with my later empirical analysis for 41 Dow Jones Industry (historical) 

constituents. I conduct a multivariate Monte Carlo simulation study to examine the 

functionality of the codrift variation test. The simulation results presented below are 

not intended to be comprehensive, but to reflect my empirical application of the 

codrift variation test. 

 

4.3.1.  Simulation set-up 

I generate log prices for 41 assets from a modified version of the multivariate 

model used in Barndorff-Nielsen et al. (2011). My modifications insert a common 

intraday volatility pattern 𝑓𝑡 as in Gilder et al. (2014) and use a drift component as in 

Shi and Phillips (2024) and Laurent et al. (2024). When 𝑓𝑡 = 1 and the common drift 

component, indicated by 𝜙(𝑥)𝑀𝑡, are constant, for all 𝑡, our model has the same 

notation and equations as Barndorff-Nielsen et al. (2011). My simulated model is: 

 

𝑑𝑌𝑡
(𝑗)
= 𝜙(𝑥)𝑀𝑡𝑑𝑡 + 𝑓𝑡 (𝑑𝑉𝑡

(𝑗)
+ 𝑑𝐹𝑡

(𝑗)
) + 𝐽𝑡, (4.3.1) 

𝑑𝑉𝑡
(𝑗)
= 𝜌(𝑗)𝜎(𝑗)𝑑𝐵𝑡

(𝑗)
, 

𝑑𝐹𝑡
(𝑗)
= √1 − (𝜌(𝑗))2𝜎𝑡

(𝑗)
𝑑𝑊𝑡, 
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where 𝑗 = 1,2,3,… ,41, 𝑑𝐵𝑡
(𝑗)

 and 𝑑𝑊𝑡 are independent Brownian motions, and 

𝜙(𝑥)𝑀𝑡 denotes the systematic drift component for all 41 stocks. The instantaneous 

volatility of the continuous components is 𝜎𝑡
(𝑗)
= exp (𝛽0

(𝑗)
+ 𝛽1

(𝑗)
𝜚𝑡
(𝑗)
) with 𝑑𝜚𝑡

(𝑗)
=

𝛼(𝑗)𝜚𝑡
(𝑗)
𝑑𝑡 + 𝑑𝐵𝑡

(𝑗)
. The multiplicative term 𝑓𝑡 introduces a U-shape intraday 

volatility pattern. I follow Andersen et al. (2012) and model 𝑓𝑡 according to 

Hasbrouck (1999) where, 

 

𝑓𝑡 = 𝐶 + 𝐴𝑒𝑥𝑝(−𝑎𝑡) + 𝐵𝑒𝑥𝑝(−𝑏(1 − 𝑡)), 𝑡 ∈ [0,1], (4.3.2) 

with 𝐴 = 0.75, 𝐵 = 0.25, 𝐶 = 0.8893, 𝑎 = 10, and 𝑏 = 10. As stated by Andersen 

et al. (2012), these parameters mean that volatility at 𝑡 =  0 is three times the 

volatility at 𝑡 =  0.5 and volatility at 𝑡 =  1 is 1.5 times the volatility at 𝑡 =  0.5. 

The innovation correlation (statistical leverage) for the continuous component of 𝑌𝑡
(𝑗)

 

and 𝜚𝑡
(𝑗)

 is given by 𝜌𝑡
(𝑗)

 and there is a perfect correlation between the continuous 

components of the innovations in 𝑌𝑡
(𝑙)

and 𝑌𝑡
(𝑚)

. The correlation between the 

continuous components of 𝑌𝑡
(𝑙)

and 𝑌𝑡
(𝑚)

 is √1 − (𝜌(𝑙))2 √1 − (𝜌(𝑚))2. 𝐽𝑡 indicates 

price jumps. Following Andersen et al. (2023), 𝐽𝑡 is a compound Poisson process with 

the intensity 𝑝𝑥 =  1/5 and the size 𝛿𝑡 ∼ 𝑁(0, 𝜎𝐽
2), where 𝜎𝐽 =  0.9%. 

I use the following parameter values (𝛽0
(𝑗)
, 𝛽1
(𝑗)
, 𝛼(𝑗), 𝜌(𝑗)) =

(−5 16⁄ , 1 8⁄ ,− 1 40⁄ ,−0.83), for all 𝑖. Except for the common drift component 

𝜙(𝑥)𝑀𝑡𝑑𝑡, these are identical to those used in Barndorff-Nielsen et al. (2011) and 

Gilder et al. (2014). For this drift component, the function, 𝜙(𝑥) takes a value of 

either -1 or 1 with equal probability, and common drift variation coefficient, 𝑀𝑡, is 

specificized through a drift burst model, as in Christensen et al. (2022), Laurent et al. 
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(2024), and Shi and Phillips (2024), and is also the same drift burst model introduced 

in Chapter 3, 

𝑀𝑡 = 𝜇
𝑒(1 − 𝑡)−𝛼. (4.3.3) 

Following Laurent et al. (2024), I fix 𝛼 = 0.9 and only allow this drift process to be 

controlled through the 𝜇𝑒 parameter only. A zero-drift model can be obtained by 

setting 𝜇𝑒 = 0. Consistent with Laurent et al. (2024), volatility bursts are not 

considered in this simulation, and I use the same volatility trajectory for all models 

(and all replications) for ease of comparison. 

Following Laurent et al. (2024), I allow the drift parameter 𝜇𝑒 to vary between 0 

and 0.0071 so that the daily price change (absolute) is from 0 to 5%. The values of 𝜇𝑒 

are not very informative except that the larger they are the stronger the drift. For ease 

of comparison and to offer more economically meaningful insights, I report the 

average daily returns caused by 𝜇𝑒 rather than the values of 𝜇𝑒 themselves, for my 

later analysis related to the size and power evaluation of the drift and codrift variation 

tests. 

To simulate prices from the above differential Equation (4.3.1), I use its Euler 

discretisation. I simulate prices every second for 104 days, where I assume that there 

are 390 min in a day to match our empirical data. Hence, for each trading day, I 

simulate prices at times 𝑡𝑖  =  𝑖/𝑛, for 𝑖 = 1,… , 𝑛 and 𝑛 = 23400. In addition, I 

introduce microstructure noise by adding an i. i. d. random variable to the (log) price 

so that I sample, 

 

𝑃𝑡𝑖
(𝑗)
= 𝑌𝑡𝑖

(𝑗)
+ 𝜀𝑡𝑖

(𝑗)
, (4.2.4) 
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where 𝑃𝑡,𝑖
(𝑗)

 is the log price of asset 𝑖 sampled on day 𝑡 at intraday time j, 

𝜀𝑡𝑖
(𝑖)
~𝑁𝐼𝐷 (0, (𝜔𝑡𝑖

(𝑗)
)
2
) and (𝜔𝑡𝑖

(𝑗)
)
2

= 0.001∑ (𝜎𝑡
(𝑗)(𝑡𝑘 𝑛⁄ )

2𝑛
𝑘=1 . A noise-to-signal 

ratio of 0.001 is consistent with the estimates in Hansen and Lunde (2006). Following 

Laurent et al. (2024) and Shi and Phillips (2024), the simulated stock data is finally 

resampled at the 5-minute frequency for evaluating the efficacy of the codrift 

variation test. 

 

 

4.3.2.  Simulation results 

The efficacy of the codrift variation test based on the co-exceedance rule is 

evaluated by its size and power performance. The size of the test denotes the 

maximum probability of incorrectly rejecting the null hypothesis of no codrift when it 

is true. The power of the test is the probability that the test correctly rejects the null 

hypothesis when the alternative hypothesis that a codrift exists is true. A lower size or 

a higher power indicates more satisfactory testing performance. Literature has applied 

the single test to detect the drift variation in the market portfolio. For the comparison, 

I also include the size and power analysis for applying a single drift variation test to 

the log prices of the market portfolio, which are proxied by aggregating the simulated 

log prices of those 41 stocks. 

Table 4.2.1 reports the size and power of the single test of the market drift 

variation and the stock codrift variation test calculated on the simulated data. The 

column “Truncated drift” contains the power and size assessments related to the 

positively truncated realized drift of the market prices without pretesting. The 

columns named “Drift test” and “Codrift test” present the evaluation results of the 
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market drift variation test and stock codrift variation test, respectively, with the 

nominal significance level of these two tests uniformly set at 5%. The first column 

contains the different daily returns caused by the respective drift variations. A daily 

return of 0% indicates there is zero drift variation. Daily returns of 0.1% to 5% are 

caused by increased drift variation coefficients from 𝜇𝑒 = 0.00016 (small drift 

variations) to 0.0031 (large drift variations). The notation “med.no” in the second 

column denotes the median of the number of stocks detected to be involved in the 

codrift variation.  

 

Table 4.3.1. Simulated size and power of the drift variation and codrift variation tests 

 

Notes: This table reports the simulated size and power of the market drift variation and 

stock codrift variation tests. The first column contains the absolute daily returns from 0% to 

5% caused by an increased level of a drift variation from zero. The column “Truncated 

drift” contains the results related to the market drift variation, estimated by the positively 

truncated realized drift without pretesting. The columns “Drift test” and “Codrift test” 

present the results of the market drift variation test and the stock codrift variation test, 

respectively, with the nominal significance level of these two tests uniformly set at 5%. 

“med.no” denotes the median of the number of stocks detected to be involved in the codrift 

variation. 

 

  Truncated drift Drift test Codrift test 

Daily return 0% size 0.508 0.052 0.625 

 med.no   2 

     

Absolute daily return 0.1% power 0.511 0.072 0.728 

 med.no   3 
     

Absolute daily return 0.5% power 0.631 0.161 0.863 

 med.no   5 

     

Absolute daily return 1% power 0.844 0.264 0.986 

 med.no   10 
     

Absolute daily return 2% power 0.900 0.886 1.000 

 med.no   23 
     

Absolute daily return 5% power 0.986 0.914 1.000 

 med.no   38 
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The first row reports the size of the positively truncated realized drift, the drift 

variation test with the 5% nominal level, and the codrift variation test with the 5% 

level when the drift variation is absent. I observe the drift variation test on the market 

is very close to the nominal size of 5%. This is consistent with Shi and Phillips 

(2024), who find that there is almost no size distortion of the drift variation test. The 

size of the codrift variation test, however, is larger than that of both the positive 

truncated drift variation and the single drift variation test at 5% normal level, 

indicating that the codrift variation test may be noisier than the market drift variation 

test for detecting a common drift variation. 

The remaining rows contain the power performance of the positively truncated 

market drift variation, the market drift test, and the codrift variation test, as the daily 

average return increases from 0.1% to 5% due to a larger drift variation. The powers 

of both the positively truncated market drift variation and the market drift variation 

test are close to one when the return becomes large. This suggests the good power of 

these two methods for identifying large drift variation. However, when the drift 

variation is small and moderate, which leads to 0.1% and 0.5% returns, the powers of 

the market drift variation test appear not satisfactory, 0.072 and 0.16. This indicates 

the difficulty of the market drift variation test in finding small and moderate 

systematic drift variations in the market.  

The power of the stock codrift test also increases with the level of return. The 

median number of stocks associated with codrift variation increases when return is 

larger in magnitude but is always smaller than the overall number of stocks (41). This 

indicates the difficulty in identifying all common drifts comprising a codrift when 

using the coexceedance-based detection methods, which may be due to the impact of 

idiosyncratic characteristics of individual stocks. For example, drift variations in the 
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stock with a larger volatility may be more difficult to detect. Compared to the market 

drift variation test, the codrift variation test exhibits much better power performance, 

especially for small and moderate drift variations (0.1% and 0.5% return levels). 

Moreover, the power of the codrift variation test is even greater than that of the 

positively truncated market drift variation, which does not depend on the statistical 

test. These results suggest that the stock codrift variation test can be more powerful 

than either testing or truncating drift variation from the overall market portfolio index 

alone, in terms of identifying small and moderate common drift variations in the 

market.
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4.4. Data 

I obtain tick-by-tick transaction prices of the SPDR S&P 500 Growth ETF (SPY) 

from Tick Data Inc. SPY is used as a proxy for the portfolio of the US stock market. 

As already introduced in Chapter 2, the sample ranges from January 2, 1997, to 

September 21, 2021, with 6222 trading days. The SPY Tick data is cleaned as in 

Chapter 2.  

I retrieve data of individual stocks from Pi-trading Inc. The sample contains 1-

minute transaction prices from December 2002 to July 2019. For the choice of the 

stocks, I consider all stocks that were ever a constituent of the Dow Jones Industry 

Average Index between December 2002 to July 2019, for 𝑇 = 3220 days. Of the 

distinct constituents of the Dow Jones Industry Average over this period, I retain for 

our analysis the 41 that were continuously available for at least four years (Dow Inc. 

is excluded due to insufficient observations). These large-cap stocks represent a 

significant portion of the U.S. equity market. To be aligned with the sample period of 

individual stocks, the observations on SPY outside December 2002 to July 2019 are 

discarded. 

I also obtain data of some other ETFs from Pi-trading Inc.: iShares Russell 2000 

Index Fund (IWM), iShares S&P 500 Value Index Fund (IVE), and iShares S&P 500 

Growth Index Fund (IVW). The sample length of these assets is uniformly set as 

December 2002 to July 2019, same as the sample period for the 41 individual stocks 

and SPY. Following Chapter 2 and 3, the prices of all of these stock and ETF are 

uniformly sampled at the 5-minute frequency from 9:30 to 16:00 (EST). Typically, the 

five-minute frequency is to alleviate the distortion from market microstructure noise 

(Ait-Sahalia et al. 2005; Bandi and Russell 2006; Hansen and Lunde 2006; Andersen 

et al. 2007b; Bandi and Russell 2008).
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4.5. The stock codrift variation 

This section aims to explore my second research equation of this chapter: are the 

codrift variation among the underlying stocks associated with the drift variation in the 

market portfolio? To clarify terminology, codrift variation involving the market 

portfolio proxy are said to be systematic codrift variation, whilst codrift variation 

amongst the individual stocks that exclude the market proxy are said to be non-

systematic codrift variation.  

 

 

4.5.1.  Drift variations in the market and individual stocks 

Before examining the presence of codrift variation based on the co-exceedance 

approach, I summarize results from applying the single drift test to the individual 

securities and SPY. The following Figure 4.5.1 depicts the proportion of sample days 

with significant drift variations detected in stocks and SPY. The dashed line denotes 

the percentage of drift variation in SPY while the red stars are those for stocks. 

Figure 4.5.1. Proportion of sample days with significant drift variation detected 

 
Notes: This figure depicts the proportion of sample days with significant drift variations in 

stocks and SPY. The dashed line denotes the percentage of drift variation in SPY while the red 

stars are that of stocks. 
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As the results show, drift variations are rare in market portfolios, with 4.2% of 

sample length. The significant drift variations appear to be more in individual stocks 

than in the market portfolio, which may be due to the idiosyncratic drift variation 

component in these stocks. 

 

 

 

4.5.2.  Codrift variation among individual stocks 

Table 4.5.1 summarizes the codrift variation detected by the coexceedance-based 

codrift variation detection method for the 41 stocks. In Table 4.5.1, I report the codrift 

variation days, the median numbers of stocks found to be involved in the codrift 

variation, and the mean proportions of drift variations detected in the individual 

stocks which are involved in a codrift variation. The significance level for SPY drift 

variation testing is always fixed at 5%. Panel A summarises the results for all codrift 

variation, whilst Panels B and C summarise the results for systematic and non-

systematic codrift variation, respectively. As the table shows, across all significance 

levels, a majority of codrift variation are non-systematic, with a relatively low 

proportion (about 5 %) of individual stock drifts being involved in systematic codrift 

variation. However, the median number of stocks involved in systematic codrift 

variation is significantly higher than the median number involved in non-systematic 

codrift variation for most detection methods. This provides answers to research 

question two: yes, there appears to be an association between drift variations in the 

market portfolio and codrift variation among the underlying stocks. 
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Table 4.5.1. Summary of codrift variation detected by coexceedance codrift detection 

method.  

 

Notes: Panel A contains results for all codrift variation. Panel B contains results for 

systematic codrift variation. Panel C contains results for non-systematic codrift variation. 

The significance levels for testing drift in the market portfolio proxied by the SPDR S&P 

500 ETF is fixed at 5%. Two sample Wilcoxon rank sum tests were conducted to test for a 

difference in the median number of stocks involved in systematic and non-systematic 

codrift variation. A * next to the median number of stocks involved in a systematic/non-

systematic codrift indicates that the median is significantly larger at the 1% level.  

Sig. stock Days Min no. stks Med. no. stks Max no. stks Codrifts (%) 

Panel A: All Codrift variation  

5.00% 2141 2 3 18 76.1 

1.00% 1365 2 3 11 58.9 

0.10% 687 2 2 10 40.8 

0.05% 571 2 2 8 37.7 

0.01% 359 2 2 6 30.3 

Panel B: Systematic Codrift variation  

5.00% 131 2 6* 18 4.7 

1.00% 116 2 4* 10 5.0 

0.10% 85 2 3* 10 5.1 

0.05% 75 2 3* 8 5.0 

0.01% 54 2 3* 6 4.6 

Panel C: Non-systematic Codrift variation     

5.00% 2010 2 3 14 71.5 

1.00% 1249 2 3 11 53.9 

0.10% 602 2 2 8 35.8 

0.05% 496 2 2 8 32.7 

0.01% 305 2 2 6 25.7 

 

My Monte Carlo simulations in Section 4.3 demonstrates that it is difficult to 

detect all common drift variations comprising a codrift variation when using the 

coexceedance-based detection methods. This was true whether the common drift 

variations were large or small. Hence, although a moderate proportion of stocks were 

detected to be involved in the systematic codrift variation, they could represent true 

systematic codrift variation and more stocks (if not all) are involved in the systematic 

codrift variation.  
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4.5.3.  Small drift variations in the market portfolio 

One reason for detecting non-systematic codrift variation that involve a large 

number of stocks might be because they occur concomitantly with small, undetected, 

drifts in the market proxy. To investigate the likelihood of a type II error in the 

detection of a small drift variation in the market proxy when a large number of stocks 

are found to be involved in a non-systematic codrift variation, I calculate the p-values 

of the single drift variation test applied to the SPY and examine whether non-

systematic codrift variation are associated with low p-values. Small p-values, greater 

than the significance level of 2.5% (one-tail), would be indicative of type II errors.  

Table 4.5.2 summarises the number of non-systematic codrift variation and the 

maximum, median and minimum number of stocks detected to be involved in the non-

systematic codrift variation when the p-values for the SPY are 5%, 25%, 37.5% and 

50% (one-tail). I also report the number of non-systematic codrift variation associated 

with these p-values in the SPY which involve more than 5 stocks, where I consider 5 

or more stocks to be a large number. The p-value below the median row indicates the 

two sample Wilcoxon rank test for the difference in the median number of the 

associated stocks and non-associated stocks. The significance level for detecting 

codrift variation is fixed at 5% two-tail or 2.5% one-tail, but I confirm that the results 

are qualitatively similar for more conservative significance levels. 

Table 4.5.2. Non-systematic codrift variation associated with p-values in the SPY which are 

less than 5%, 25%, 37.5%, and 50%.  

Notes: The significance level for detecting codrift is fixed at 5%. 

SPY p-value (one tail) <5% <25% <37.5% <50% 

No. 61 475 743 1018 

No. (>5) 26 138 176 199 

Max. 14 14 14 14 

Med. 5 4 4 4 

p-value (<0.0001) (<0.0001) (<0.0001) (<0.0001) 

Min. 2 2 2 2 
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As the table shows, there is some evidence of non-systematic codrift variation 

involving large numbers of stocks being associated with type II errors in the detection 

of drift variation in the market portfolio proxy. By comparing Table 4.5.2 with Panel 

C of Table 4.5.1, it can be seen that many of the non-systematic codrift variation 

detected to involve more than 5 stocks are associated with p-values in the SPY for 

these less strict p-values. And for all of these scenarios, non-systematic codrift 

variation involving the maximum number of stocks are associated with a p-value for 

the SPY. Moreover, the median number of stocks associated with larger p-values of 

SPY is significantly greater than that of non-associated stocks. These findings indicate 

the link between large stock codrift variation with small market drift variation. This 

result may be interpreted by noting that, as found in my simulation results, the codrift 

variation test can be much more powerful than the drift variation test in detecting 

systematic drift variations. 

 

4.5.4.  Non-systematic codrift variation 

After taking into consideration the non-systematic codrift variation that are likely 

to have been misclassified, there remain some that involve relatively large numbers of 

stocks. Table 4.5.3 explores two further possible explanations. The first is that they 

represent industry codrift variation. If all the stocks involved in a non-systematic 

codrift are from the same industry, then I refer to the non-systematic codrift variation 

as industry codrift variation. The second is that the codrift variation could be a result 

of sensitivity to other risk factors. In particular, I explore whether these codrift 

variation occur concomitantly with drifts in proxies for the FF SMB and HML factors 

(Fama and French 1992,1993).
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Table 4.5.3. Summary of industry codrift variation (Panel A) and codrift variation with the Fama and French SMB and HML factors (Panel B). 

 

Notes: In Panels A and B, the number of industry and FF codrift variation are reported along with the maximum, median and minimum number of stocks 

detected to be involved in the industry and FF codrift variation. In Panel A column 1, the number of stocks belonging to each industry is also reported. In 

Panel B, only FF codrift variation that occur in isolation of codrift variation with the market portfolio are reported, i.e., the association between drift 

variations in the SMB and HML factors and non-systematic codrift variation in the stocks is reported. In addition, I also report FF codrift variation in which 

both the SMB and HML factors drift (SMB and HML).  

 Stks 

No. codrift 

variation Median no. stks pval Min no. stks Max no. stks 

Panel A: Industry codrift variation     
Industry       
Finance, Insurance 

and Real Estate 9 431 2 - 2 6 

Manufacturing 24 1117 2 - 2 8 

Other 2 14 2 - 2 2 

Retail Trade 4 129 2 - 2 3 

Services 2 11 2 - 2 2 

Transportation, 

Communications,  

Electric, Gas and 

Sanitary service 3 27 2 - 2 2 

 

Panel B: Industry codrift variation     
FF factor       
SMB - 168 4 (0.0071) 2 9 

HML - 49 4 (0.0109) 2 8 

SMB and HML - 4 3 (0.6173) 2 5 
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To examine industry codrift variation, the stocks were sorted into 6 industry 

portfolios by SIC code. I used the industry allocations available from the website of the 

U.S. Securities and Exchange Commission. In Panel A of Table 4.5.3, I report the 

number of stocks belonging to each of the 6 industries, the number of industry codrift 

variation detected and the maximum, median and minimum number of stocks detected 

to be involved in each type of industry codrift variation. From Panel A, it can be seen 

that my sample of stocks is concentrated in the manufacturing industry. Thus, some of 

our non-systematic codrift variation which involve relatively large numbers of stocks 

might be explained by codrift variation occurring exclusively amongst the stocks within 

this industry. However, I do not find any evidence for this. The maximum number of 

stocks involved in the Manufacturing industry codrift variation tends to be low (<8 

stocks), with many of the codrift variation involving just 2 stocks. The membership of 

stocks to the remaining industries is relatively low so codrift variation in these 

industries cannot explain non-systematic codrift variation involving large numbers of 

stocks. 

In order to construct FF factor proxies, I follow Bannouh et al. (2012) in using 

intraday returns for ETFs that proxy small capitalisation, value and growth portfolios. 

Specifically, the SMB mimicking portfolio is formed by taking returns from the SPY 

and subtracting returns from the iShares Russell 2000 Index Fund (IWM). The HML 

mimicking portfolio is formed by taking returns on the iShares S&P 500 Value Index 

Fund (IVE) and subtracting returns from the iShares S&P 500 Growth Index Fund 

(IVW). Panel B of Table 4.5.3 reports the number of codrift variation between the SMB 

and HML factors and the stocks. To ensure that I isolate the influence from the FF 

factors, the FF codrift variation reported exclude times where the SMB and HML 

factors codrift with the SPY. However, I do report codrift variation in which both the 
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SMB and HML factors drift variations. I report the maximum, median and minimum 

number of stocks detected to be involved in the FF codrift variation. And I also report 

the p-value for comparing the median number of stocks related to these factor-based 

codrift variation with that of the remaining codrift variation. 

From Panel B of Table 4.5.3, I do not find that codrift variation with the FF factor 

proxies explain non-systematic codrift variation involving large numbers of stocks. In 

general, the number of stocks involved in the FF codrift variation is low. Moreover, the 

difference between the median number of stocks associated with these factor-based 

codrift variation with that of the remaining codrift variation is not statistically 

significant, as indicated by the large p-values. These findings are unable to explain these 

as being a consequence of industry codrift variation or codrift variation associated with 

the FF, SMB, and HML risk factors. Hence, more systematic codrift variation might 

occur than is suggested by the drifts detected in the proxy for the market portfolio.
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4.6. The impact of codrift variation on volatility forecasting 

Volatility forecasting is important to the financial markets. Investors can use 

volatility data to align their portfolios with expected returns. Volatility is also an 

important input for investment, option pricing, and financial market regulation. 

Laurent et al. (2024) show that drift variations in the market positively predict the 

market’s volatility. Given the strong link between the codrift variation among stocks 

and the drift variation in the market proxy, codrift variation among stocks might also 

lead to a higher market volatility. Motivated by this reason, this section tests the 

hypothesis that codrift variation positively forecast market volatility. 

 

4.6.1.  Model set-up 

As in Chapters 2 and 3, I employ the Heterogeneous Autoregressive (HAR) type 

model suggested by Corsi (2009) for volatility forecasting. The original HAR model is 

the HAR-RV model, which exploits the effect of volatility persistence via the lags of 

daily, weekly, and monthly realized variance. The HAR-RV model has been widely 

applied to forecasting volatility due to its superior out-of-sample performance 

compared to autoregressive moving average models. This chapter uses the HAR-RV 

model as a benchmark model for exploring the impact of market drift variations on 

future market volatility. 

Model 1- 𝐇𝐀𝐑-𝐑𝐕 model:  

 

𝑅𝑉𝑡,𝑡+ℎ = 𝛽0 + 𝛽𝑑 𝑅𝑉𝑡 + 𝛽𝑤 𝑅𝑉𝑡−5,𝑡 + 𝛽𝑚 𝑅𝑉𝑡−22,𝑡 + 𝜀𝑡, (4.6.1) 

where  
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𝑅𝑉𝑡−ℎ,𝑡 =
1

h
∑𝑅𝑉𝑡−𝑖

ℎ

𝑖=1

, ℎ = 1,2, … , 

and 𝑅𝑉𝑡,𝑡+ℎ is the ℎ-day ahead average cumulative volatility, 

 

𝑅𝑉𝑡,𝑡+ℎ =
1

h
∑𝑅𝑉𝑡+𝑖

ℎ

𝑖=1

. 

Laurent et al. (2024) show that including the realized drift variation in the HAR-RV 

model significantly improves the in-sample and out-of-sample volatility forecast. 

They propose the following RDV+ model, 

Model 2- 𝐑𝐃𝐕+ model: the RDV+ model is formulated by including daily drift 

variation component to the HAR-RV model, 

 

𝑅𝑉𝑡,𝑡+ℎ = 𝛽0 + 𝛽𝑟𝑑
+  𝑅𝐷𝑉𝑡

+ + 𝛽𝑑 𝑅𝑉𝑡 + 𝛽𝑤 𝑅𝑉𝑡−5,𝑡 + 𝛽𝑚 𝑅𝑉𝑡−22,𝑡 + 𝜀𝑡, (4.6.2) 

where 𝑅𝐷𝑉𝑡
+ denotes the positive truncated realized drift variation, Equation (4.2.5). 

If the drift variation does not affect future volatility, we would expect to find 𝛽𝑟𝑑
+ = 0. 

Laurent et al. (2024) also consider weekly and monthly lags of realized drift variation. 

In this chapter, I focus on the daily lag only, to better evaluate the impact of a single 

drift variation on future volatility. The regression results that include the weekly and 

monthly components are attached in Appendix A.5. 

As mentioned, the positively truncated realized drift may be subject to bias due to 

measurement errors, and a pretested realized drift variation may be more robust to this 

bias. Motivated by this, I modify the RDV+ model by substituting the 𝑅𝐷𝑉𝑡
+ 

component with its statistically significant version, 𝑅𝐷𝑉𝑡
∗, Equation (4.2.7). The 
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significance level for testing the realized drift variation is set as 5%, following 

Laurent et al. (2022a). 

Model 3- 𝐑𝐃𝐕∗ model: the RDV∗ model is formulated by including recent 

pretested daily realized drift variation to the HAR-RV model, 

 

𝑅𝑉𝑡,𝑡+ℎ = 𝛽0 + 𝛽𝑟𝑑𝑣
∗  𝑅𝐷𝑉𝑡

∗ + 𝛽𝑑 𝑅𝑉𝑡 + 𝛽𝑤 𝑅𝑉𝑡−5,𝑡 + 𝛽𝑚 𝑅𝑉𝑡−22,𝑡 + 𝜀𝑡. (4.6.3) 

If drift variation does not predict future volatility, it is expected to see 𝛽𝑟𝑑𝑣
∗ = 0. 

As discussed in the previous section, the codrift variation among stocks is closely 

related to the drift variation in the market portfolio. Therefore, the stock codrift 

variation might also lead to an increase in market volatility. To teat this hypothesis, I 

formulate the following coRDV model by augmenting the RDV∗ model by including 

the stock codrift variation. 

Model 4- 𝐜𝐨𝐑𝐃𝐕 model: this model exploits the information from stock codrift 

variation, 

 

𝑅𝑉𝑡,𝑡+ℎ = 𝛽0 + 𝛽𝑟𝑑𝑣
∗  𝑅𝐷𝑉𝑡 + 𝛽𝑟𝑑𝑣

𝑐  𝑐𝑜𝑅𝐷𝑉𝑡 + 𝛽𝑑 𝑅𝑉𝑡 + 𝛽𝑤 𝑅𝑉𝑡−5,𝑡 + 𝛽𝑚 𝑅𝑉𝑡−22,𝑡

+ 𝜀𝑡,    (4.6.4) 

where 𝑐𝑜𝑅𝐷𝑉𝑡 is defined by the mean of contemporaneous realized drift variation 

among the 41 individual stocks, which is to estimate the stock codrift variation. If 

there is no impact of the stock codrift variation on the market portfolio’s volatility, we 

would expect to observe 𝛽𝑟𝑑𝑣
𝑐 = 0. 
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4.6.2.  In-sample results 

Table 4.6.1 reports the results of in-sample estimation and goodness of fit, for the 

HAR-RV, RDV+, RDV∗, and coRDV models, defined in the previous section. The 

column head contains the coefficient names in these models. Each row reports the 

estimation results for one model. The tables include four panels for the daily, weekly, 

monthly, and quarterly realized variance forecasts, respectively. The first row of each 

panel contains the estimation results for the HAR-RV model, which depends on the 

daily, weekly, and monthly volatility lags. I observe that the coefficients of these three 

volatility lags, indicated by 𝛽𝑑, 𝛽𝑤, and 𝛽𝑚, are positive and significant at the 5% 

level for all of these forecast horizons, implying statistically significant volatility 

persistence. This finding is consistent with Corsi (2009). The second row of these four 

panels reports the estimation results for the RDV+ model exploiting the impact of the 

positively truncated realized drift estimator on volatility forecasting. I find that the 

coefficient of this version of the realized drift (𝛽𝑟𝑑𝑣
+ ) is overwhelmingly positive for 

these forecast horizons. 𝛽𝑟𝑑𝑣
+  is significant at the 5% level for the shorter two horizons 

(h = 1 and h = 5) and the longest horizon (h = 66). This indicates that the recent drift 

variation can significantly increase future volatility. Compared to the HAR-RV model, 

the goodness of fit, indicated by 𝑅2, of the RDV+ model is 2.1% higher, indicating 

that including market drift variation also helps explain more of the changes in future 

volatility than the model that contains only realized variance. The usefulness of drift 

variation for stock market volatility forecasting is consistent with the findings of 

Laurent et al. (2024).  
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Table 4.6.1. In-sample estimation results for drift and codrift variation models for realized 

variance forecasting 

 

Notes: This table reports the in-sample coefficient estimation and goodness of fit for the 

different models for daily (h=1), weekly (h=5), monthly (h=22), and quarterly realized 

variance forecast (h=66). The first row of each panel contains the results for the 

Heterogeneous Autoregressive with realized variance (HAR-RV) model, Equation (4.6.1). 

The second row of each panel reports the results of the RDV+ model which augments the 

HAR-RV by including the positively truncated realized drift variation, Equation (4.6.2). The 

third row of these panels presents the results of the RDV∗, which is the specification 

including the realized drift variation pretested by the 5% critical value, Equation (4.6.3). 

The final row in each panel reports the results of the coRDV model which adds the 

contemporaneous realized drift variation to the RDV∗ model, Equation (4.6.4). The brackets 

are the Heteroskedasticity- and autocorrelation-consistent (HAC) robust t-statistics by 

Newey and West (1987). The estimation for the intercept is not reported. 

 

   𝛽𝑟𝑑𝑣
+   𝛽𝑟𝑑𝑣

∗   𝛽𝑟𝑑𝑣
𝑐   𝛽𝑑  𝛽𝑤  𝛽𝑚  𝑅2 

h=1 

    0.528 0.320 0.113 0.529 
   (6.14) (4.34) (2.07)  

1.211   0.486 0.328 0.107 0.540 
(1.96)   (5.55) (4.55) (1.94)  
 0.059  0.528 0.320 0.113 0.529 
 (0.07)  (6.10) (4.35) (2.07)  

 -0.060 0.088 0.497 0.306 0.119 0.547 
  (-0.07) (2.18) (6.25) (4.39) (2.21)   

h=5 

    0.372 0.354 0.189 0.632 
   (6.86) (4.21) (2.70)  

1.314   0.327 0.367 0.178 0.640 
(2.30)   (6.52) (4.28) (2.56)  

 -0.264  0.370 0.357 0.190 0.633 
 (-0.52)  (6.70) (4.24) (2.75)  

 -0.378 0.059 0.355 0.350 0.187 0.642 
  (-0.74) (2.89) (6.70) (4.26) (2.72)   

h=22 

    0.210 0.353 0.236 0.561 
   (5.32) (2.23) (2.66)  

0.395   0.199 0.355 0.232 0.563 
(1.27)   (4.46) (2.27) (2.65)  
 -0.250  0.211 0.352 0.238 0.562 
 (-0.47)  (5.26) (2.22) (2.73)  

 -0.383 0.070 0.206 0.333 0.235 0.573 

  (-0.73) (2.94) (4.55) (2.32) (2.74)   

h=66 

    0.133 0.221 0.247 0.305 
   (4.02) (2.51) (4.27)  

0.436   0.122 0.224 0.242 0.306 
(1.93)   (3.62) (2.58) (4.21)  
 -0.176  0.134 0.220 0.250 0.305 
 (-0.47)  (3.97) (2.49) (4.38)  

 -0.329 0.096 0.124 0.204 0.239 0.319 
  (-0.86) (1.86) (3.42) (2.65) (4.35)   

 

The third row of each panel presents the RDV∗ model which uses the realized 

drifts pretested at the 5% significance level. As the results show, the coefficient of the 
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pretested realized drift variation, denoted by 𝛽𝑟𝑑𝑣
∗ , is not significant at any reasonable 

levels over the forecast horizons considered, and in all cases, the gain in 𝑅2 from 

including this variable is very small, 0.1%. These results suggest that the significant 

drift variation provides limited information on forecasting volatility, which reconciles 

the findings in Chapter 3, where I find that the volatility forecasting value of the drift 

variation is weak when the drift variation is pretested using the method in Christensen 

et al. (2022). My results from both drift variation testing approaches in Shi and 

Phillips (2024) and Christensen et al. (2022) consistently indicate that significant drift 

variation does not help anticipate volatility. The limited impact of the significant drift 

variation on volatility forecasting is also found by Laurent et al. (2022a), who 

demonstrate that the significant realized drift variation is less useful than positively 

truncated realized drift variation for anticipating volatility. The reason why significant 

drift variation fails to forecast volatility may be explained by noting that, as found in 

my simulation results, although pretesting drift variation alleviates the nonzero values 

due to the measurement error, it may also neglect a large number of moderate and 

small systematic drift variations, which could contain important information on future 

volatility. 

The last row of each panel reports the coRDV model, which is based on the recent 

stock codrift variation (𝑐𝑜𝑅𝐷𝑉𝑡). Across all of these horizons, 𝑐𝑜𝑅𝐷𝑉𝑡 significantly 

increases future volatility at the 10% level for daily and quarterly forecasts, and at the 

1% level for weekly and monthly forecasts, which contrasts with consistently weak 

evidence of the market's significant realized drift across all three horizons. The 𝑅2 of 

the coRDV model always ranks highest for the forecast horizons considered, even 

greater than that of the RDV+ model, which includes some small and moderate market 

drift variations by not testing for market drift variation. These results suggest that 
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codrift variation among underlying stocks may be more important than market drift 

variations for the market volatility forecasting. This superiority of codrift variation 

may be interpreted by noting that, as revealed in my simulation analysis, the codrift 

variation can better capture small and moderate systematic drift variations in the 

market, compared to the drift variations of the market portfolio. In other words, 

codrift variation can uncover some small and moderate systematic drift variations that 

are not detectable by looking at the market portfolio as a whole. These small and 

moderate systematic drift variations could improve market volatility forecasting.  

 

4.6.3.  Out-of-sample results 

My in-sample analysis evaluates model performance by comparing the fitted 

values to the actual realized variance, using all available data up to and including 𝑇. 

However, this procedure could draw an overly optimistic picture of the model 

forecasting ability, because the least squared error method tends to take pains to avoid 

large prediction errors and is thus susceptible to overfitting. 

An out-of-sample analysis may more realistically uncover the model forecasting 

ability. We can estimate the model based on data up to and including today, construct 

a forecast of tomorrow's realized variance, wait until tomorrow, record the forecast 

error defined as the difference between the realized variance forecast with the actual 

realized variance, re-estimate the model, make a new forecast of the next day and so 

forth. At the end of this exercise, we would have a sample of forecast errors, which 

would be truly out-of-sample and would provide a more realistic picture of the 

model's performance. 
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However, evaluating real-time forecasts is very time-consuming. Researchers 

commonly resort to "pseudo", or "simulated", out-of-sample analysis, which means 

mimicking the procedure described in the last paragraph, using some historical date 

earlier than the end of the sample as a starting point. The resulting forecasting errors 

are then used to get an estimate of the model's out-of-sample forecasting ability. In 

this chapter, I rely on this pseudo-out-of-sample forecasting method, following the 

implementation of this approach in the literature (Corsi 2009; Duong and Swanson 

2015; Patton and Sheppard 2015; Bollerslev et al. 2016; Andersen et al. 2023). 

Specifically, I consider the ℎ-step-ahead cumulative realized variance forecasts for the 

SPY starting on December 15, 2006, through to the end of the sample. The forecasts 

are based on re-estimating the parameters of the different models each day with a 

fixed length Rolling Window (RW) comprised of the previous 1000 days, as well as 

an Increasing Window (IW) or expanding window based on all of the available 

observations. The sample sizes for the increasing window for the SPY thus range from 

1000 to 3201 days.  

The following two loss functions are applied for measuring the forecast error of 

the different models: 

(a) mean square error (MSE),  

 

MSE(𝑅𝑉𝑡,𝑡+ℎ, 𝐹𝑡,𝑡+ℎ) = (𝑅𝑉𝑡,𝑡+ℎ − 𝐹𝑡,𝑡+ℎ)
2
, 

(b) gaussian Quasi-likelihood (QLIKE) loss function: 

 

QLIKE(𝑅𝑉𝑡,𝑡+ℎ, 𝐹𝑡,𝑡+ℎ) =
𝑅𝑉𝑡,𝑡+ℎ
𝐹𝑡,𝑡+ℎ

− ln
𝑅𝑉𝑡,𝑡+ℎ
𝐹𝑡,𝑡+ℎ

− 1, 
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where 𝐹𝑡,𝑡+ℎ denotes the ℎ-day-ahead forecast. The MSE and QLIKE are both unbiased 

loss functions (Patton 2011) and are widely applied by key research (Bollerslev et al. 

2016; Andersen et al. 2023). A model with a loss function lower than another model 

on average indicates that this model generates smaller forecast errors thus more 

accurate forecasts.  

Table 4.6.2 reports the ratio of the average MSE and QLIKE for the different 

models, relative to the losses of the HAR-RV model, for daily, weekly (h=5), monthly 

(h=22), and seasonal realized variance forecast (h=66).  

Table 4.6.2. Out-of-sample realized variance forecast losses. 

 

Notes: This table reports the average MSE and QLIKE for the different models relative to 

the losses of the HAR-RV model, for daily (h=1), weekly (h=5), monthly (h=22), and 

quarterly realized variance forecast (h=66). The HAR-RV model denotes the Heterogeneous 

Autoregressive with realized variance (HAR-RV ) model, Equation (4.6.1). The RDV+ 

model denotes the model that augments the HAR-RV by including the positively truncated 

realized drift, Equation (4.6.2). The RDV∗ is the specification which includes the HAR-RV 

model the realized drift pretested by the 5% critical value, Equation (4.6.3). The coRDV is 

the model which adds the realized drift to the HAR-RV model, Equation (4.6.4). The lowest 

loss in each row is indicated in bold. 

 

      HAR-RV  RD+  RD∗ coRD 

h=1 RW MSE 1.000 0.971 1.002 0.987 

  QLIKE 1.000 0.955 0.998 0.985 

 IW MSE 1.000 0.961 1.000 0.986 

  QLIKE 1.000 0.966 1.000 0.941 

h=5 RW MSE 1.000 0.980 1.005 0.974 

  QLIKE 1.000 0.987 1.002 0.974 

 IW MSE 1.000 0.974 1.009 0.973 

  QLIKE 1.000 0.981 1.002 0.942 

h=22 RW MSE 1.000 0.990 1.002 0.965 

  QLIKE 1.000 0.990 1.000 0.981 

 IW MSE 1.000 0.992 1.004 0.954 

  QLIKE 1.000 0.996 1.000 0.953 

h=66 RW MSE 1.000 0.996 1.003 0.960 

  QLIKE 1.000 0.996 1.002 0.987 

 IW MSE 1.000 0.997 1.002 0.950 

    QLIKE 1.000 0.999 1.000 0.973 
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The RDV+ model outperforms the HAR-RV model for all of these different 

scenarios while the RDV∗ model tends to fail to improve on the standard HAR. This 

again reflects the importance of including moderate and small realized drift for 

volatility forecasting. Aside from some mixed evidence for the daily forecast, the 

coRDV model systematically exhibits the lowest average loss, which supports the 

superiority of including codrift variation in terms of volatility forecasting. 

Of course, my samples of the forecast losses may be naturally subject to sampling 

variability. Sampling variability refers to the fact that the average loss will vary from 

one sample to the next. Therefore, it is important to use statistical tests to account for 

these variances when concluding whether the results of the average loss comparisons 

found in the sample data can be inferred as true for the full population. Therefore, I 

consider testing the difference in the loss function between two models via the 

Diebold–Mariano-West (DMW) statistic developed by Diebold and Mariano (1995) 

and West (1996), with adjustment to the Newey and West (1987) Heteroskedasticity 

and Autocorrelation Corrected (HAC) standard errors with lags set as 2(ℎ − 1). 

Table 4.6.3 contains forecasting results tested by the DMW statistic. Each column 

contains the value of the DMW test statistic from comparing one pair of forecasting 

models. The left-most column compares the standard HAR-RV with the model that 

includes the recent contemporary realized drift (𝑐𝑜𝑅𝐷𝑉𝑡). The DMW test statistic is 

positive across all forecast horizons, and I also see that this coRDV model, with few 

exceptions, significantly outperforms HAR-RV. This indicates the superior out-of-

sample performance of the codrift variation information over the lags of realized 

variance. The middle column compares models that differ in the daily drift variation 

information. The first model uses the drift variation of the market proxy, estimated by 
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the positively truncated realized drift (𝑅𝐷𝑉𝑡
+), while the second model uses stock 

codrift variation (𝑐𝑜𝑅𝐷𝑉𝑡). I observe that 𝑐𝑜𝑅𝐷𝑉𝑡 performs on par with 𝑅𝐷𝑉𝑡
+ at 

daily forecast but outperforms 𝑅𝐷𝑉𝑡
+ at other horizons. This again supports the better 

forecasting power of codrift variation among stocks over the drift variations of the 

market proxy, which does not alter the conclusions from my in-sample analysis. 

Table 4.6.3. Out-of-sample realized variance forecast losses. 

 

Notes: This table reports different pair comparisons of the models for the daily (h=1), 

weekly (h=5), monthly (h=22), and quarterly (h=66) realized variance forecast 

performance. The HAR-RV model denotes the Heterogeneous Autoregressive with realized 

variance (HAR-RV ) model, Equation (4.6.1). The RDV+ model denotes the model that 

augments the HAR-RV by including the positively truncated realized drift, Equation (4.6.2). 

The RDV∗ is the specification which includes the HAR-RV model the realized drift variation 

pretested by the 5% critical value, Equation (4.6.3). The coRDV is the model which adds 

the codrift variation to the RDV∗ model, Equation (4.6.4).  

 

       HAR-RV vs. coRDV  RDV+ vs. coRDV  RDV∗ vs. coRDV 

h=1 RW MSE 1.767 -0.821 1.639 

  QLIKE 1.686 -0.107 4.071 

 IW MSE 1.286 -0.302 2.552 

  QLIKE 4.725 1.596 4.374 

h=5 RW MSE 1.676 0.466 1.269 

  QLIKE 3.539 0.946 1.459 

 IW MSE 1.715 0.063 1.767 

  QLIKE 4.375 2.528 3.863 

h=22 RW MSE 2.949 1.896 1.987 

  QLIKE 2.436 0.726 1.973 

 IW MSE 4.933 3.643 2.098 

  QLIKE 6.286 5.866 2.897 

h=66 RW MSE 2.247 2.037 2.772 

  QLIKE 2.929 1.533 2.157 

 IW MSE 5.704 5.105 2.648 

    QLIKE 6.081 5.892 2.502 

 

The final column of the table compares a forecasting model that includes recent 

pretested market drift variation information with the coRDV model that contains codrift 

variation. The information in stock codrift variation significantly improves out-of-

sample forecast performance over the significant market drift variation, corroborating 

that stock codrift variation is superior to market drift variation for volatility forecasting. 
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4.7. Conclusion 

Although price drift variation have been investigated in various markets, very few 

studies have studied codrift variation or the tendency of drift variation to occur 

simultaneously among different markets or assets. However, codrift variation may 

estimate the common bubbles and crashes, which are hard to diversify and thus have 

important implications for portfolio selection and asset allocation. This chapter 

explores codrift variation among the underlying stocks of S&P 500 index. I show, 

through a Monte Carlo study, that applying a co-exceedance criterion to a univariate 

drift variation test by Shi and Phillips (2024) is feasible to detect codrift variation 

among stocks, although one should not expect to detect all stocks that are involved 

with codrift variation. Empirical evidence shows a association between drift variation 

in the market portfolio proxy and codrift variation in the underlying stocks. 

Volatility forecasting is important to risk management, asset pricing, and pricing 

derivatives. Laurent et al. (2024) find that drift variations positively forecast market 

volatility. Given the strong relationship between market drift variation and stock 

codrift variation, I also investigate the impact of codrift variation on market volatility. 

The results show that codrift variation lead to significantly higher market volatility. 

Importantly, stock codrift variation lead to better in-sample and out-of-sample market 

volatility forecasts than market drift variations. An explanation is that codrift variation 

among stocks may capture some small and moderate systematic drift variations that 

are not detectable in the market portfolio index. 
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Chapter 5. Conclusion 

The logarithmic prices of financial assets are conventionally assumed to follow a 

drift-diffusion process with jumps. Since drift is asymptotically dominated by 

diffusion and jumps in high-frequency logarithmic prices, drifts have received little 

attention in the high-frequency literature. Chapter 2 shows that ignoring drifts may 

result in finite sample biases in the estimation of positive and negative realized 

semivariances and the semivariance-based signed jump estimator proposed by 

Barndorff-Nielsen et al. (2008), along with the microstructure noise robust versions of 

these estimators. I modified these realized estimators and jump test statistics using the 

same approach as Laurent and Shi (2020), and my finite sample theory for the 

modified volatility estimators and simulations shows significant improvement in the 

estimation accuracy of good and bad volatility, together with signed jumps.  

The volatility forecasting results using both original and modified realized 

variance and bipower variation lead to volatility dependence effects. However, 

positive and negative realized semivariances exhibit an asymmetric effect on volatility 

forecasting while both modified positive and negative semivariances positively affect 

future volatility similarly. While the original signed jump estimator forecasts volatility 

asymmetrically, the modified estimator exhibits almost no forecasting significance. 

Based on the forecasting results of the modified estimators, I conclude that good and 

bad volatility may have similar positive impacts on future volatility and that signed 

jumps do not predict volatility, which are quite different from the findings in the 

existing literature. I show that the asymmetric impacts on future volatility of good and 

bad volatility and signed jumps found in the literature are almost exclusively due to 

the drift-related bias in the signed semivariance and signed jump estimators. 
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Chapter 2 studies the daily constant and linear drift, but does not consider 

intraday drift bursts, which are short-lived and explosive drift during a trading day. 

Recent literature argues that it is costly to neglect drift bursts in the price dynamic 

because drift bursts can model price fast bubbles and crashes. To help understand the 

dynamics of drift bursts, Chapter 3 investigates their time series behaviours. The 

results using the Hawkes process uncover that both positive and negative drift bursts 

exhibit self-exciting characteristics, and the negative drift bursts can excite positive 

drift bursts, but not vice versa. Motivated by the forecasting importance of drift found 

in Chapter 2, Chapter 3 also investigates the impacts of drift bursts on future 

volatility. The results show that positive drift bursts are not important for predicting 

both realized and implied variance, and negative drift bursts have a weak impact on 

realized variance, but significantly increase the implied variance. I show that negative 

drift bursts also leads to an increase in the variance risk premium. 

Although the drift variation for one single asset is extensively studied in the 

literature, little research has investigated the codrift variation among various assets. 

Chapter 4 analyses the codrift variation across the most important underlying stocks 

of the US stock market. I show that it is feasible to detect codrift variation among 

stocks by applying a coexceedance criterion to a univariate drift test introduced by Shi 

and Phillips (2024). The results show that stock codrift variations detected using this 

method are often related to the market drift variation and thus are hard to diversify. 

Given the close relationship between market drift variation and underlying stock 

codrift variation, along with the significance of market drift variation in market 

volatility forecasting, I investigate the impact of codrift variation on market volatility. 

My results suggest that codrift variation among underlying stocks leads to 

significantly higher market volatility, and the models that use codrift variation 
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information significantly outperform those exploiting the impacts of market drift 

variation for out-of-sample market volatility forecast. 

There are some potential extensions of this thesis. First, it will be interesting to 

extend the data of all chapters to broader markets such as bond, crude oil and crypto 

markets. Second, signed jumps have also been found useful for option pricing, 

forecasting credit spreads, bond risk premium, and cross-sectional returns in the 

literature. Later research may study whether the significance of signed jumps found in 

these studies is artificially shaped by the bias in the estimators due to a nonzero drift. 

Third, it is worthwhile to investigate if drift bursts predict equity risk premium. The 

downside drift bursts in Chapter 3 may be associated with large price drops. Risk-averse 

equity owners will demand a high equity premium to compensate for the extreme losses. 

Therefore, the downside drift bursts might play a role in explaining the equity risk 

premium. Fourth, multivariate modelling for drift bursts across different markets can 

be an interest to future research. For example, an extension of Chapter 3 could be 

developing multivariate Hawkes models to measure the drift burst contagion across 

global markets. Specifically, this model could study, if a drift burst in one region of the 

world, increases the intensity of drift both in the same region (self-excitation) as well 

as in other regions (cross-excitation). 
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Appendix 

 

A.1. Mathematical proofs for Chapter 2 

Proof of Lemma 2.2.1. 

Proof. (i) Under the constant drift-diffusion model, Equation (2.3.2), 𝑟𝑡𝑖 = 𝜇Δ +

𝜎√Δℇ𝑡𝑖  with ℇ𝑡𝑖~𝑁(0,1), the distribution of the return is normal, 𝑟𝑡𝑖 ~𝑁(𝜇Δ, 𝜎
2Δ). The 

probability that 𝑟𝑡𝑖 is positive equals, 

ℙ(𝑟𝑡𝑖 > 0) = 1 − Φ(
−𝜇√Δ

𝜎
) 

where ℙ(∙) denotes the probability of an argument and 𝛷(𝑥) is the cumulative distribution 

function of the standard normal distribution. 

The expected frequency of 𝑟𝑡𝑖 > 0 over an observation window 𝑡 = 1…𝑀 equals the 𝑀 

multiplying the probability that a return is positive, denoted by, 

𝑀ℙ(𝑟𝑡𝑖 > 0) = 1 −Φ(
−𝜇√Δ

𝜎
) 

= 𝑀 [1 − Φ(
−𝜇√Δ

𝜎
)], 

The expected frequency of 𝑟𝑡𝑖 < 0 for the observation window 𝑡 = 1…𝑀 can be obtained by 

multiplying 𝑀 with the chance of a negative return, 

𝑀ℙ(𝑟𝑡𝑖 < 0) = 𝑀Φ(
−𝜇√Δ

𝜎
). 

(ii) If drift is zero (𝜇 = 0), then Φ(−𝜇√Δ 𝜎⁄ ) = 1 2⁄ . Thus, the expected frequency 

of 𝑟𝑡𝑖 > 0 and that of 𝑟𝑡𝑖 < 0, 
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𝑀ℙ(𝑟𝑡𝑖 > 0) = 𝑀ℙ(𝑟𝑡𝑖 < 0) =
𝑀

2
  ∎ 

Proof of Proposition 2.2.1. 

Proof. (i) Give that the return 𝑟𝑡𝑖 follows the content drift-diffusion model, Equation 

(2.3.2), 𝑟𝑡𝑖 = 𝜇Δ + 𝜎√Δℇ𝑡𝑖  with ℇ𝑡𝑖~𝑁(0,1) and Δ = 1 𝑀⁄ , we have 𝑟𝑡𝑖 ~𝑁(𝜇Δ, 𝜎
2Δ). Let 

𝑟𝑡𝑖|𝑟𝑡𝑖 > 0 denotes the return conditional on its positive, then 𝑟𝑡𝑖|𝑟𝑡𝑖 > 0 follows a truncated 

normal distribution, with 

𝔼(𝑟𝑡𝑖|𝑟𝑡𝑖 > 0) = 𝜇Δ + 𝜎√Δ ∙

𝜑 (
−𝜇√Δ
𝜎 )

1 − Φ(
−𝜇√Δ
𝜎 )

 

𝕍(𝑟𝑡𝑖|𝑟𝑡𝑖 > 0) = (𝜎√Δ)
2
∙

[
 
 
 
 

1 +

−𝜇√Δ
𝜎 𝜑 (

−𝜇√Δ
𝜎 )

1 − Φ(
−𝜇√Δ
𝜎 )

−

(

 
 

𝜑 (
−𝜇√Δ
𝜎 )

1 − Φ(
−𝜇√Δ
𝜎 )

)

 
 

2

]
 
 
 
 

 

where 𝔼(∙) and 𝕍(∙) denote the mean and variance of the argument, 𝜑(𝑥) is the probability 

density function of the standard normal distribution 

𝜑(𝑥) =
1

√2π
exp (−

1

2
𝑥2), 

and 𝛷(𝑥) is the respective cumulative distribution function. 

Since the volatility 𝜎𝑠 equals a constant 𝜎 for 𝑟𝑡𝑖 ~𝑁(𝜇Δ, 𝜎
2Δ), we have the expected 

integrated volatility equals, 

𝔼(∫ 𝜎s
2𝑑𝑠

𝑡

𝑡−1

) = ∫ 𝔼(𝜎s
2)𝑑𝑠

𝑡

𝑡−1

= 𝑀𝜎2Δ = 𝜎2. 

The expected bias in the positive realized semivariance (𝑅𝑆𝑡
+) is 
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𝔼(𝑅𝑆𝑡
+ −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

) 

= 𝔼(∑𝑟𝑡𝑖
2𝐼𝑟𝑡𝑖>0

𝑀

𝑖=1

) −
1

2
𝜎2 

Due to the linearity of expectation, we have 

𝔼(𝑅𝑆𝑡
+ −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

) 

= 𝑀 × 𝔼(𝑟𝑡𝑖
2𝐼𝑟𝑡𝑖>0

) −
1

2
𝜎2 

= 𝑀 × ℙ(𝑟𝑡𝑖 > 0)𝔼(𝑟𝑡𝑖
2|𝑟𝑡𝑖 > 0) −

1

2
𝜎2 

= 𝑀 × ℙ(𝑟𝑡𝑖 > 0) [𝔼[𝑟𝑡𝑖|𝑟𝑡𝑖 > 0]
2
+ 𝕍[𝑟𝑡𝑖|𝑟𝑡𝑖 > 0]] −

1

2
𝜎2 

ℙ(𝑟𝑡𝑖 > 0) = 1 − Φ(
−𝜇√Δ

𝜎
), according to Lemma 2.3.1 

= 𝑀 × [1 − Φ(
−𝜇√Δ

𝜎
)]

{
 
 

 
 

[
 
 
 
 

𝜇Δ + 𝜎√Δ ×

𝜑 (
−𝜇√Δ
𝜎 )

1 − Φ(
−𝜇√Δ
𝜎 )

]
 
 
 
 
2

+ (𝜎√Δ)
2
×

{
 
 

 
 

1 +

−𝜇√Δ
𝜎 𝜑 (

−𝜇√Δ
𝜎 )

1 − Φ(
−𝜇√Δ
𝜎 )

−

[
 
 
 
 𝜑 (

−𝜇√Δ
𝜎 )

1 − Φ(
−𝜇√Δ
𝜎 )

]
 
 
 
 
2

}
 
 

 
 

}
 
 

 
 

−
1

2
𝜎2 
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= 𝑀 × [1 − Φ(
−𝜇√Δ

𝜎
)]

{
 
 

 
 

𝜇2Δ2 + 2𝜇Δ𝜎√Δ ∙

𝜑 (
−𝜇√Δ
𝜎 )

1 −Φ(
−𝜇√Δ
𝜎 )

+ (𝜎√Δ)
2

+ (𝜎√Δ)
2

−𝜇√Δ
𝜎 𝜑 (

−𝜇√Δ
𝜎 )

1 − Φ(
−𝜇√Δ
𝜎 )

}
 
 

 
 

−
1

2
𝜎2 

= 𝜇2Δ [1 − Φ(
−𝜇√Δ

𝜎
)] + 𝜇𝜎√Δ𝜑 (

−𝜇√Δ

𝜎
) + 𝜎2 [1 − Φ(

−𝜇√Δ

𝜎
)] −

1

2
𝜎2 

(ii) The bias ratio of the positive realized semivariance (𝑅𝑆𝑡
+) equals, 

𝔼(𝑅𝑆𝑡
+ −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

) /
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

 

= {𝜇2Δ [1 − Φ(
−𝜇√Δ

𝜎
)] + 𝜇𝜎√Δ𝜑 (

−𝜇√Δ

𝜎
) + 𝜎2 [1 − Φ(

−𝜇√Δ

𝜎
)] −

1

2
𝜎2} /

1

2
𝜎2 

=
2𝜇2Δ

𝜎2
[1 − Φ(

−𝜇√Δ

𝜎
)] +

2𝜇√Δ

𝜎
𝜑 (
−𝜇√Δ

𝜎
) + 2 [1 − Φ(

−𝜇√Δ

𝜎
)] − 1 

=
2𝜇2Δ

𝜎2
[1 − Φ(

−𝜇√Δ

𝜎
)] +

2𝜇√Δ

𝜎
𝜑 (
−𝜇√Δ

𝜎
) − 2Φ(

−𝜇√Δ

𝜎
) + 1. 

 

(iii) Let 𝑟𝑡𝑖|𝑟𝑡𝑖 < 0 denotes the return conditional on its negative. Given that 𝑟𝑡𝑖

~𝑁(𝜇Δ, 𝜎2Δ), then 𝑟𝑡𝑖|𝑟𝑡𝑖 < 0 follows a truncated normal distribution with the mean and 

variance defined by, 

𝔼(𝑟𝑡𝑖|𝑟𝑡𝑖 < 0) = 𝜇Δ − 𝜎√Δ ∙

𝜑 (
−𝜇√Δ
𝜎 )

Φ(
−𝜇√Δ
𝜎 )
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𝕍(𝑟𝑡𝑖|𝑟𝑡𝑖 < 0) = (𝜎√Δ)
2
∙

[
 
 
 
 

1 +

𝜇√Δ
𝜎 𝜑 (

−𝜇√Δ
𝜎 )

Φ(
−𝜇√Δ
𝜎 )

−

(

 
 
𝜑 (
−𝜇√Δ
𝜎 )

Φ(
−𝜇√Δ
𝜎 )

)

 
 

2

]
 
 
 
 

. 

The expected bias in the negative realized semivariance (𝑅𝑆𝑡
−) is 

𝔼(𝑅𝑆𝑡
− −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

) 

= 𝔼(∑𝑟𝑡𝑖
2𝐼𝑟𝑡𝑖<0

𝑀

𝑖=1

) −
1

2
𝜎2 

Due to the linearity of expectation, we have 

𝔼(𝑅𝑆𝑡
− −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

) 

= 𝑀𝔼(𝑟𝑡𝑖
2𝐼𝑟𝑡𝑖<0

) −
1

2
𝜎2 

= 𝑀ℙ(𝑟𝑡𝑖 < 0)𝔼(𝑟𝑡𝑖
2|𝑟𝑡𝑖 < 0) −

1

2
𝜎2 

= 𝑀ℙ(𝑟𝑡𝑖 < 0) [𝔼[𝑟𝑡𝑖|𝑟𝑡𝑖 < 0]
2
+ 𝕍[𝑟𝑡𝑖|𝑟𝑡𝑖 < 0]] −

1

2
𝜎2 

ℙ(𝑟𝑡𝑖 < 0) = Φ(
−𝜇√Δ

𝜎
), according to Lemma 2.3.1 

= 𝑀Φ(
−𝜇√Δ

𝜎
)

{
 
 

 
 

[
 
 
 
 

𝜇Δ − 𝜎√Δ

𝜑 (
−𝜇√Δ
𝜎 )

Φ(
−𝜇√Δ
𝜎 )

]
 
 
 
 
2

+ (𝜎√Δ)
2

{
 
 

 
 

1 +

𝜇√Δ
𝜎 𝜑 (

−𝜇√Δ
𝜎 )

Φ(
−𝜇√Δ
𝜎 )

−

[
 
 
 
 𝜑 (

−𝜇√Δ
𝜎 )

Φ(
−𝜇√Δ
𝜎 )

]
 
 
 
 
2

}
 
 

 
 

}
 
 

 
 

−
1

2
𝜎2 
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= 𝑀Φ(
−𝜇√Δ

𝜎
)

[
 
 
 
 

𝜇2Δ2 − 2𝜇Δ𝜎√Δ

𝜑 (
−𝜇√Δ
𝜎 )

Φ(
−𝜇√Δ
𝜎 )

+ (𝜎√Δ)
2
+
𝜇(𝜎√Δ)

2
√Δ

𝜎
×

𝜑 (
−𝜇√Δ
𝜎 )

Φ(
−𝜇√Δ
𝜎 )

]
 
 
 
 

−
1

2
𝜎2 

= [𝜇2ΔΦ(
−𝜇√Δ

𝜎
) − 2𝜇𝜎√Δ𝜑 (

−𝜇√Δ

𝜎
) + Φ(

−𝜇√Δ

𝜎
)𝜎2 +

𝜇𝜎2√Δ

𝜎
× 𝜑(

−𝜇√Δ

𝜎
)] −

1

2
𝜎2 

= 𝜇2ΔΦ(
−𝜇√Δ

𝜎
) − 𝜇𝜎√Δ𝜑 (

−𝜇√Δ

𝜎
) + Φ(

−𝜇√Δ

𝜎
)𝜎2 −

1

2
𝜎2 

 

(vi) The bias ratio of the negative realized semivariance (𝑅𝑆𝑡
−) equals, 

𝔼(𝑅𝑆𝑡
− −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

) /
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

 

= {𝜇2ΔΦ(
−𝜇√Δ

𝜎
) − 𝜇𝜎√Δ𝜑 (

−𝜇√Δ

𝜎
) + Φ(

−𝜇√Δ

𝜎
)𝜎2 −

1

2
𝜎2} /

1

2
𝜎2 

=
2𝜇2Δ

𝜎2
Φ(
−𝜇√Δ

𝜎
) −

2𝜇√Δ

𝜎
𝜑 (
−𝜇√Δ

𝜎
) + 2Φ(

−𝜇√Δ

𝜎
) − 1  ∎ 

 

Proof of Corollary 2.2.1. 

Proof. According to Proposition 2.1.1, when drift is zero 𝜇 = 0, the biases of both 

positive and negative realized semivariance are zero.  

For 𝜇 = 0, the bias in 𝑅𝑆𝑡
+ equals, 

𝔼(𝑅𝑆𝑡
+ −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

) 
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= 02Δ [1 − Φ(
−𝜇√Δ

𝜎
)] + 0𝜎√Δ𝜑 (

−𝜇√Δ

𝜎
) + 𝜎2 [1 − Φ(

−0√Δ

𝜎
)] −

1

2
𝜎2 

= 𝜎2 [1 −
1

2
] −

1

2
𝜎2 = 0, 

the bias ratio of 𝑅𝑆𝑡
+ equals, 

𝔼(𝑅𝑆𝑡
+ −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

) /
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

 

= 0/
1

2
𝜎2 = 0, 

the bias in 𝑅𝑆𝑡
− equals, 

𝔼(𝑅𝑆𝑡
− −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

) 

= 02ΔΦ(
−𝜇√Δ

𝜎
) − 0𝜎√Δ𝜑(

−𝜇√Δ

𝜎
) + Φ(

−0√Δ

𝜎
)𝜎2 −

1

2
𝜎2 

=
1

2
𝜎2 −

1

2
𝜎2 = 0, 

and the bias ratio of 𝑅𝑆𝑡
− equals, 

𝔼(𝑅𝑆𝑡
− −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

) /
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

 

= 0/
1

2
𝜎2 = 0  ∎ 

 

Proof of Corollary 2.2.2. 

Proof. According to Proposition 2.1 of Laurent and Shi (2020), the bias ratio of realized 

variance equals 
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𝔼(𝑅𝑉𝑡 −∫ 𝜎s
2𝑑𝑠

𝑡

𝑡−1

) ∫ 𝜎s
2𝑑𝑠

𝑡

𝑡−1

⁄ =
𝜇2Δ

𝜎2
. 

For any 𝜇 > 0, the bias ratio of 𝑅𝑆𝑡
+ is, 

𝔼(𝑅𝑆𝑡
+ −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

)
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

⁄  

=
2𝜇2Δ

𝜎2
[1 − Φ(

−𝜇√Δ

𝜎
)] +

2𝜇√Δ

𝜎
𝜑 (
−𝜇√Δ

𝜎
) − 2Φ(

−𝜇√Δ

𝜎
) + 1 

Because 𝜑(𝑥) > 0 (all output values the probability density function of the standard 

normal distribution may produce are positive), we have 

𝔼(𝑅𝑆𝑡
+ −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

)
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

⁄  

>
2𝜇2Δ

𝜎2
[1 − Φ(

−𝜇√Δ

𝜎
)] − 2Φ(

−𝜇√Δ

𝜎
) + 1 

Given that −Φ(𝑥) > −1 2⁄  for 𝑥 < 0, we have 

𝔼(𝑅𝑆𝑡
+ −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

)
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

⁄  

>
2𝜇2Δ

𝜎2
[1 −

1

2
] − 2 ×

1

2
+ 1 

=
𝜇2Δ

𝜎2
= 𝔼(𝑅𝑉𝑡 −∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

) ∫ 𝜎s
2𝑑𝑠

𝑡

𝑡−1

⁄  

 

For any 𝜇 < 0, the bias ratio of 𝑅𝑆𝑡
+ is, 

𝔼(𝑅𝑆𝑡
+ −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

)
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

⁄  
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=
2𝜇2Δ

𝜎2
[1 − Φ(

−𝜇√Δ

𝜎
)] +

2𝜇√Δ

𝜎
𝜑 (
−𝜇√Δ

𝜎
) − 2Φ(

−𝜇√Δ

𝜎
) + 1 

<
2𝜇2Δ

𝜎2
[1 −

1

2
] +

2𝜇√Δ

𝜎
𝜑 (
−𝜇√Δ

𝜎
) − 2 ×

1

2
 + 1 

<
2𝜇2Δ

𝜎2
[1 − Φ(

−𝜇√Δ

𝜎
)] +

2𝜇√Δ

𝜎
𝜑 (
−𝜇√Δ

𝜎
) 

Given that −Φ(𝑥) < −1 2⁄  and 𝜑(𝑥) > 0 for 𝑥 > 0, we have 

𝔼(𝑅𝑆𝑡
+ −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

)
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

⁄  

<
2𝜇2Δ

𝜎2
[1 −

1

2
] +

2𝜇√Δ

𝜎
𝜑 (
−𝜇√Δ

𝜎
) 

<
2𝜇2Δ

𝜎2
[1 −

1

2
] + 0 

=
𝜇2Δ

𝜎2
= 𝔼(𝑅𝑉𝑡 −∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

) ∫ 𝜎s
2𝑑𝑠

𝑡

𝑡−1

⁄ .  ∎   

 

Proof of Corollary 2.2.3. 

For any 𝜇 > 0, the bias ratio of 𝑅𝑆𝑡
− is, 

𝔼(𝑅𝑆𝑡
− −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

)
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

⁄  

=
2𝜇2Δ

𝜎2
Φ(
−𝜇√Δ

𝜎
) −

2𝜇√Δ

𝜎
𝜑 (
−𝜇√Δ

𝜎
) + 2Φ(

−𝜇√Δ

𝜎
) − 1 

Given that Φ(𝑥) < 1/2 and 𝜑(𝑥) > 0 for 𝑥 < 0, 
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𝔼(𝑅𝑆𝑡
− −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

)
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

⁄  

<
2𝜇2Δ

𝜎2
×
1

2
+ 0 + 2 ×

1

2
− 1 

=
𝜇2Δ

𝜎2
= 𝔼(𝑅𝑉𝑡 −∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

) ∫ 𝜎s
2𝑑𝑠

𝑡

𝑡−1

⁄ .  

 

For any 𝜇 < 0, the bias ratio of 𝑅𝑆𝑡
− is, 

𝔼(𝑅𝑆𝑡
− −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

)
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

⁄  

=
2𝜇2Δ

𝜎2
Φ(
−𝜇√Δ

𝜎
) −

2𝜇√Δ

𝜎
𝜑 (
−𝜇√Δ

𝜎
) + 2Φ(

−𝜇√Δ

𝜎
) − 1 

Given that Φ(𝑥) > 1/2 and 𝜑(𝑥) > 0 for 𝑥 > 0, 

𝔼(𝑅𝑆𝑡
− −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

)
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

⁄  

>
2𝜇2Δ

𝜎2
×
1

2
+ 0 + 2 ×

1

2
− 1 

=
𝜇2Δ

𝜎2
= 𝔼(𝑅𝑉𝑡 −∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

) ∫ 𝜎s
2𝑑𝑠

𝑡

𝑡−1

⁄ .  ∎ 

 

Proof of Corollary 2.2.4. 

Proof. According to Proposition 2.3.1, under the drift-diffusion process, Equation (2.3.2) 

with 𝜇 = 𝜇∗, the bias in 𝑅𝑆𝑡
+ is, 
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𝔼(𝑅𝑆𝑡
+ −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

) 

= (𝜇∗)2Δ [1 − Φ(
−𝜇∗√Δ

𝜎
)] + 𝜇∗𝜎√Δ𝜑 (

−𝜇∗√Δ

𝜎
) + 𝜎2 [1 − Φ(

−𝜇∗√Δ

𝜎
)] −

1

2
𝜎2 

Since 1 − Φ(−𝑥) = Φ(𝑥), then 

𝔼(𝑅𝑆𝑡
+ −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

) 

= (𝜇∗)2ΔΦ(
𝜇∗√Δ

𝜎
) + 𝜇∗𝜎√Δ𝜑 (

−𝜇∗√Δ

𝜎
) + 𝜎2Φ(

𝜇∗√Δ

𝜎
) −

1

2
𝜎2 

Given that 𝜑(−𝑥) = 𝜑(𝑥), we have 

𝔼(𝑅𝑆𝑡
+ −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

) 

= (𝜇∗)2ΔΦ(
𝜇∗√Δ

𝜎
) + 𝜇∗𝜎√Δ𝜑 (

𝜇∗√Δ

𝜎
) + 𝜎2Φ(

𝜇∗√Δ

𝜎
) −

1

2
𝜎2 

 

Based on Proposition 2.3.1, for the drift-diffusion process, Equation (2.3.2), with 𝜇 = −𝜇∗, 

the bias in 𝑅𝑆𝑡
− is, 

𝐸 (𝑅𝑆𝑡
− −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

) 

= (𝜇∗)2ΔΦ(
−𝜇√Δ

𝜎
) + 𝜇∗𝜎√Δ𝜑(

𝜇∗√Δ

𝜎
) + Φ(

𝜇∗√Δ

𝜎
)𝜎2 −

1

2
𝜎2, 

which is the bias in 𝑅𝑆𝑡
+ with 𝜇 = 𝜇∗. This symmetric property holds for the bias ratio, and 

the proofs are trivial ∎ 
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Proof of Lemma 2.3.2. 

With an even number of intraday returns 𝑀, the median is taken halfway between the middle 

two values, exactly half of 𝑀 returns are negative and half positive. ∎ 

 

Proof of Proposition 2.3.2. 

By exchangeability of return 𝑟𝑡𝑖 for 𝑖 = 1,2, … ,𝑀, the centred returns 𝑟𝑡𝑖 − �̂�𝑡 for 𝑖 =

1,2, … ,𝑀 are identically distributed to each other. Comparing the joint distribution 

of (𝑟𝑡1 − �̂�𝑡, 𝑟𝑡2 − �̂�𝑡, … , 𝑟𝑡𝑀 − �̂�𝑡) with that of (−𝑟𝑡1 + �̂�𝑡, −𝑟𝑡2 + �̂�𝑡, … , −𝑟𝑡𝑀 + �̂�𝑡) and 

using the symmetry of normal distributions, the centred returns 𝑟𝑡𝑖 − �̂�𝑡  are 

each symmetrically distributed about zero. 

The bias of the modified positive realized semivariance bias(𝑅𝑆+) is 

bias(𝑅𝑆+) = 𝐸 {∑[(𝑟𝑡𝑖 − �̂�𝑡)𝐼(𝑟𝑡𝑖 − �̂�𝑡 > 0)]
2

𝑀

𝑖=1

−
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

}
1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

⁄  

= {𝐸 {∑[(𝑟𝑡𝑖 − �̂�𝑡)𝐼(𝑟𝑡𝑖 − �̂�𝑡 > 0)]
2

𝑀

𝑖=1

} −
𝑀

2
𝜎2Δ}

𝑀

2
𝜎2Δ⁄ . 

From Lemma 2.3.2, the expected number of positive returns equals 𝑀/2, and 𝑟𝑡𝑖 − �̂�𝑡 are 

identically distributed to each other. Therefore, the bias of 𝑅𝑆+, 

bias(𝑅𝑆+)=
𝑀

2
𝐸 {[(𝑟𝑡𝑖 − �̂�𝑡)𝐼(𝑟𝑡𝑖 − �̂�𝑡 > 0)]

2
}
𝑀

2
𝜎2Δ⁄

− 1= 𝐸 {[(𝑟𝑡𝑖 − �̂�𝑡)𝐼(𝑟𝑡𝑖 − �̂�𝑡 > 0)]
2
} 𝜎2Δ⁄ − 1. 

Since 𝑟𝑡𝑖 − �̂�𝑡 are each symmetrically distributed about 0, we have 
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bias(𝑅𝑆+) = 𝐸 {[(𝑟𝑡𝑖 − �̂�𝑡)𝐼(𝑟𝑡𝑖 − �̂�𝑡 > 0)]
2
} 𝜎2Δ⁄ − 1

= 𝐸 {[(𝑟𝑡𝑖 − �̂�𝑡)𝐼(𝑟𝑡𝑖 − �̂�𝑡 < 0)]
2
} 𝜎2Δ⁄ − 1 = 𝐸 {(𝑟𝑡𝑖 − �̂�𝑡)

2
} 𝜎2Δ⁄ − 1. 

Hence, bias(𝑅𝑆+) = bias(𝑅𝑆−) = bias(𝑅𝑉). ∎ 

 

 

Proof of Proposition 2.5.1. 

Proof.  

According to Lemma 2.5.1, in the absence of jumps, the bias in the signed jump estimator 𝐽𝑡
Δ 

equals, 

𝐽𝑡
Δ − 0 

= 𝔼(𝑅𝑆𝑡
+ −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

) − 𝔼(𝑅𝑆𝑡
− −

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

). 

By substituting the results of the biases in 𝑅𝑆𝑡
+ and 𝑅𝑆𝑡

− under the constant drift-diffusion 

model (Proposition 2.3.1), we have 

𝐽𝑡
Δ − 0 

= 𝜇2Δ [1 − Φ(
−𝜇√Δ

𝜎
)] + 𝜇𝜎√Δ𝜑 (

−𝜇√Δ

𝜎
) + 𝜎2 [1 − Φ(

−𝜇√Δ

𝜎
)] −

1

2
𝜎2

− [𝜇2ΔΦ(
−𝜇√Δ

𝜎
) − 𝜇𝜎√Δ𝜑 (

−𝜇√Δ

𝜎
) + 𝜎2Φ(

−𝜇√Δ

𝜎
) −

1

2
𝜎2] 
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= 𝜇2Δ − 𝜇2ΔΦ(
−𝜇√Δ

𝜎
) + 𝜇𝜎√Δ𝜑(

−𝜇√Δ

𝜎
) + 𝜎2 − 𝜎2Φ(

−𝜇√Δ

𝜎
) −

1

2
𝜎2

− 𝜇2ΔΦ(
−𝜇√Δ

𝜎
) + 𝜇𝜎√Δ𝜑(

−𝜇√Δ

𝜎
) − 𝜎2Φ(

−𝜇√Δ

𝜎
) +

1

2
𝜎2 

= 𝜇2Δ + 𝜎2 − 2𝜇2ΔΦ(
−𝜇√Δ

𝜎
) + 2𝜇𝜎√Δ𝜑 (

−𝜇√Δ

𝜎
) − 2𝜎2Φ(

−𝜇√Δ

𝜎
). 

 

If 𝜇 > 0, 

𝐽𝑡
Δ − 0 

= 𝜇2Δ + 𝜎2 − 2𝜇2ΔΦ(
−𝜇√Δ

𝜎
) + 2𝜇𝜎√Δ𝜑 (

−𝜇√Δ

𝜎
) − 2𝜎2Φ(

−𝜇√Δ

𝜎
) 

Given that −Φ(−𝑥) > −1 2⁄  for 𝑥 > 0, we have 

𝐽𝑡
Δ − 0 

> 𝜇2Δ + 𝜎2 − 2𝜇2Δ ×
1

2
+ 2𝜇𝜎√Δ𝜑 (

−𝜇√Δ

𝜎
) − 2𝜎2 ×

1

2
 

= 2𝜇𝜎√Δ𝜑(
−𝜇√Δ

𝜎
) > 0. 

 

If 𝜇 < 0, 

𝐽𝑡
Δ − 0 

= 𝜇2Δ + 𝜎2 − 2𝜇2ΔΦ(
−𝜇√Δ

𝜎
) + 2𝜇𝜎√Δ𝜑 (

−𝜇√Δ

𝜎
) − 2𝜎2Φ(

−𝜇√Δ

𝜎
) 

Given that −Φ(−𝑥) < −1 2⁄  for 𝑥 < 0, we have 
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𝐽𝑡
Δ − 0 

< 𝜇2Δ + 𝜎2 − 2𝜇2Δ ×
1

2
+ 2𝜇𝜎√Δ𝜑 (

−𝜇√Δ

𝜎
) − 2𝜎2 ×

1

2
 

= 2𝜇𝜎√Δ𝜑(
−𝜇√Δ

𝜎
) < 0. 

Based on the above results of the nonzero bias in 𝐽𝑡
Δ in the presence of a nonzero 𝜇. We have 

for 𝜇 > 0 and any 𝜎 > 0, the bias ratio of 𝐽𝑡
Δ equals (𝐽𝑡

Δ − 0)/0 = +∞, and when 𝜇 < 0 and 

any 𝜎 > 0, the bias ratio of 𝐽𝑡
Δ equals (𝐽𝑡

Δ − 0)/0 = −∞.  ∎ 

 

 

Proof of Corollary 2.5.1. 

Proof.  

If 𝜇 = 𝜇∗ 

𝐽𝑡
Δ − 0 

= (𝜇∗)2Δ + 𝜎2 − 2(𝜇∗)2ΔΦ(
−𝜇∗√Δ

𝜎
) + 2𝜇∗𝜎√Δ𝜑 (

−𝜇∗√Δ

𝜎
) − 2𝜎2Φ(

−𝜇∗√Δ

𝜎
) 

= (𝜇∗)2Δ + 𝜎2 − 2(𝜇∗)2Δ [1 − Φ(
𝜇∗√Δ

𝜎
)] + 2𝜇∗𝜎√Δ𝜑 (

𝜇∗√Δ

𝜎
) − 2𝜎2 [1 − Φ(

𝜇∗√Δ

𝜎
)] 

= (𝜇∗)2Δ + 𝜎2 − 2(𝜇∗)2Δ + 2(𝜇∗)2ΔΦ(
𝜇∗√Δ

𝜎
) + 2𝜇∗𝜎√Δ𝜑 (

𝜇∗√Δ

𝜎
) − 2𝜎2

+ 2𝜎2Φ(
𝜇∗√Δ

𝜎
) 
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= −(𝜇∗)2Δ − 𝜎2 + 2(𝜇∗)2ΔΦ(
𝜇∗√Δ

𝜎
) + 2𝜇∗𝜎√Δ𝜑 (

𝜇∗√Δ

𝜎
) + 2𝜎2Φ(

𝜇∗√Δ

𝜎
) 

If 𝜇 = −𝜇∗ 

𝐽𝑡
Δ − 0 

= (−𝜇∗)2Δ + 𝜎2 − 2(−𝜇∗)2ΔΦ(
−(−𝜇∗)√Δ

𝜎
) + 2(−𝜇∗)𝜎√Δ𝜑 (

−(−𝜇∗)√Δ

𝜎
)

− 2𝜎2Φ(
−(−𝜇∗)√Δ

𝜎
) 

= (𝜇∗)2Δ + 𝜎2 − 2(𝜇∗)2ΔΦ(
𝜇∗√Δ

𝜎
) − 2𝜇∗𝜎√Δ𝜑 (

𝜇∗√Δ

𝜎
) − 2𝜎2Φ(

𝜇∗√Δ

𝜎
) 

= − [−(𝜇∗)2Δ − 𝜎2 + 2(𝜇∗)2ΔΦ(
𝜇∗√Δ

𝜎
) + 2𝜇∗𝜎√Δ𝜑 (

𝜇∗√Δ

𝜎
) + 2𝜎2Φ(

𝜇∗√Δ

𝜎
)], 

which equals the negative sign of the bias in 𝐽𝑡
Δ when 𝜇 = 𝜇∗. ∎ 

 

Proof of Proposition 2.3.2. 

Proof.  

The bias of the modified positive realized semivariance bias(𝑅𝑆+) is 

𝐽𝑡
Δ ∗ − 0 

= [𝑅𝑆𝑡
+ ∗ − (

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

)] − [𝑅𝑆𝑡
− ∗ − (

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

)] 

From Proposition 2.3.2, the bias in 𝑅𝑆+ ∗ equals the bias in 𝑅𝑆− ∗, therefore, 

𝐽𝑡
Δ ∗ − 0 

= [𝑅𝑆𝑡
+ ∗ − (

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

)] − [𝑅𝑆𝑡
+ ∗ − (

1

2
∫ 𝜎s

2𝑑𝑠
𝑡

𝑡−1

)] = 0  ∎ 
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A. 2. Weighted Least Square Illustration for Chapter 2 

This section explains the motivation and calculation of using the Weighted Least 

Square (WLS) estimation method in this chapter. For the illustration, I consider the 

estimation of the 𝐽𝛥 model as an example. The traditional method for estimating the 

𝐽𝛥 model relies on the Ordinary Least Square (OLS) method (e.g., Andersen et al. 

2007b; Corsi 2009). To implement this method, for example, for the 𝐽𝛥 model, first 

substitute the realized measures from the sample into this model, 

𝑅𝑉23 = 𝛽0 + 𝛽𝑗∆  𝐽22
∆ + 𝛽𝑑 𝑅𝑉22 + 𝛽𝑤 𝑅𝑉̅̅ ̅̅𝑤,22 + 𝛽𝑚 𝑅𝑉̅̅ ̅̅𝑚,22 + 𝜖23, 

𝑅𝑉24 = 𝛽0 + 𝛽𝑗∆  𝐽23
∆ + 𝛽𝑑 𝑅𝑉23 + 𝛽𝑤 𝑅𝑉̅̅ ̅̅𝑤,23 + 𝛽𝑚 𝑅𝑉̅̅ ̅̅𝑚,23 + 𝜖24, 

⋮ 

𝑅𝑉𝑛 = 𝛽0 + 𝛽𝑗∆  𝐽𝑛−1
∆ + 𝛽𝑑 𝑅𝑉𝑛−1 + 𝛽𝑤 𝑅𝑉̅̅ ̅̅𝑤,𝑛−1 + 𝛽𝑚 𝑅𝑉̅̅ ̅̅𝑚,𝑛−1 + 𝜖𝑛. 

Note that the dependent variable starts from 𝑅𝑉23 as the calculation of the 

respective independent variable 𝑅𝑉̅̅ ̅̅𝑚,𝑡 requires a minimum of 21 observations. The 

matrix presentation of the above equations is, 

[
 
 
 
 
𝑅𝑉23
𝑅𝑉24
⋮
⋮
𝑅𝑉𝑛 ]

 
 
 
 

=

[
 
 
 
 
 
1 𝐽22

∆ 𝑅𝑉22 𝑅𝑉̅̅ ̅̅𝑤,22 𝑅𝑉̅̅ ̅̅𝑚,22

1 𝐽23
∆ 𝑅𝑉23 𝑅𝑉̅̅ ̅̅𝑤,23 𝑅𝑉̅̅ ̅̅𝑚,23

⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮
1 𝐽𝑛−1

∆ 𝑅𝑉𝑛−1 𝑅𝑉̅̅ ̅̅𝑤,𝑛−1 𝑅𝑉̅̅ ̅̅𝑚,𝑛−1]
 
 
 
 
 

[

𝛽0
𝛽d
𝛽w
𝛽m

] +

[
 
 
 
 
𝜖23
𝜖24
⋮
⋮
𝜖𝑛 ]
 
 
 
 

. (A. 2.1) 

This can be rewritten more simply as: 

𝑦 = 𝑋𝛽 + 𝜖, (A. 2.2) 
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where 𝑦 =

[
 
 
 
 
𝑅𝑉23
𝑅𝑉24
⋮
⋮
𝑅𝑉𝑛 ]

 
 
 
 

, 𝑋 =

[
 
 
 
 
 
1 𝐽22

∆ 𝑅𝑉22 𝑅𝑉̅̅ ̅̅𝑤,22 𝑅𝑉̅̅ ̅̅𝑚,22

1 𝐽23
∆ 𝑅𝑉23 𝑅𝑉̅̅ ̅̅𝑤,23 𝑅𝑉̅̅ ̅̅𝑚,23

⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮
1 𝐽𝑛−1

∆ 𝑅𝑉𝑛−1 𝑅𝑉̅̅ ̅̅𝑤,𝑛−1 𝑅𝑉̅̅ ̅̅𝑚,𝑛−1]
 
 
 
 
 

, 𝛽 = [

𝛽0
𝛽d
𝛽w
𝛽m

], and 𝜖 =

[
 
 
 
 
𝜖23
𝜖24
⋮
⋮
𝜖𝑛 ]
 
 
 
 

. The OLS estimator of 𝛽 (�̂�𝑂𝐿𝑆) is the solution to minimize the sum of squared 

residuals defined by, 

(𝑦 − 𝑋𝛽)′(𝑦 − 𝑋𝛽), 

and the solution of this minimization problem is  

�̂�𝑂𝐿𝑆 = (𝑋
′𝑋)−1𝑋′𝑦. (A. 2.3) 

The residuals based on the above OLS solution of coefficients (𝑒𝑂𝐿𝑆) are defined by, 

𝑒𝑂𝐿𝑆  = 𝑦 − 𝑋�̂�𝑂𝐿𝑆, (A. 2.4) 

The fitted value (or predicted value) of 𝑦 is defined by, 

�̂�𝑂𝐿𝑆 =

[
 
 
 
 
𝑅�̂�23

𝑂𝐿𝑆

𝑅�̂�24
𝑂𝐿𝑆

⋮
⋮

𝑅�̂�𝑛
𝑂𝐿𝑆]
 
 
 
 

= 𝑋�̂�𝑂𝐿𝑆. (A. 2.5) 

One important (Gauss-Markov) assumption of Ordinary Least Square (OLS) is 

that the conditional variance of the disturbances should be fixed across the sample 

period (or homoskedasticity). For example, the OLS for the 𝐽𝛥 model assumes the 

conditional variance of the disturbances of the 𝐽𝛥 model to be fixed across the sample 

period, that is, E(𝜖𝜖′|𝑋) = 𝜎2𝐼, where 𝜎2 is the level of conditional variance and is 

fixed, and 𝐼 indicates the identity matrix of size 𝑛 − 22. However, as documented in 

the literature (e.g., Corsi et al. 2008; Patton and Sheppard 2015), the assumption of 
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homoskedasticity may be not realistic as the variance of the disturbances of the HAR 

model may vary substantially across the sample period (or heteroskedasticity) and is 

correlated its lagged value (or autocorrelation). For example, the disturbances of the 

HAR model around the 2008 financial crisis are generally greater than other tranquil 

periods (due to volatility changes much more dramatically during this period).  

To check if heteroskedasticity is present, the left panel of Figure A.2.1 reports the 

scatter plot of residuals (𝑒𝑂𝐿𝑆) and fitted value (�̂�𝑂𝐿𝑆) for the 𝐽𝛥 model estimated by 

the OLS method for the SPY sample of this chapter. 7 As the panel shows, the spread 

of the residuals is increasing as the fitted values changes. This implies that the level of 

the conditional volatility of the disturbances is likely to change dramatically across 

the sample period and increases with the level of the fitted values.  

Figure A.2.1. The scatter plots for residuals and fitted value for the 𝐽𝛥 model 

 

Notes: The left panel reports the scatter plot of residuals (𝑒𝑂𝐿𝑆) and fitted value (�̂�𝑂𝐿𝑆) for the 

𝐽𝛥 model estimated by the Ordinary Least Square (OLS) method. The residuals (𝑒𝑂𝐿𝑆) and 

fitted value (�̂�𝑂𝐿𝑆) are obtained by Equation (A.2.4) and Equation (A.2.5), respectively. The 

right panel reports the scatter plot of weighted residuals (𝑒𝑊𝐿𝑆
𝑤 ) and fitted value (�̂�𝑊𝐿𝑆) for the 

𝐽𝛥 model estimated by the Weighted Least Square (WLS) method. The weighted residuals 

(𝑒𝑊𝐿𝑆
𝑤 ) and fitted value (�̂�𝑊𝐿𝑆) are obtained by Equation (A.2.9) and Equation (A.2.10), 

respectively. The data used for computing these residuals and fitted values is SPDR S&P 500 

ETF from 1997 to 2021. 

 
7 Here, I only report the results for the 𝐽Δ model in Figure A.1. But I confirm that the results for the 

remaining models lead to similar patterns. 
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Since the level of the conditional volatility of the disturbances possibly changes 

across the sample period and is consistent with the level of the fitted values, 

estimation by OLS has the disadvantage that the resulting estimates focus primarily 

on fitting periods of high RV and place little weight on low RV periods. To overcome 

this, Weighted Least Squares (WLS) may be a solution. WLS attempts to provide a 

more efficient alternative to OLS by putting less weight on disturbances which are 

likely to have a large variance and more weight on disturbances which are likely to 

have a small variance. If each weight 𝑤 is inversely proportional to the conditional 

variance of the corresponding disturbances, then the WLS estimator is more efficient 

than the OLS estimator.  

Motivated by the positive relationship between the volatility of the residuals and 

the level of OLS fitted values, Patton and Sheppard (2015) suggest using the inverse 

of the OLS fitted values as the weights. Specifically, for the 𝐽𝛥 model, first obtain the 

OLS fitted value �̂�𝑂𝐿𝑆 from Equation (A.5). Then calculate the weights by the inverse 

value of each element in �̂�𝑂𝐿𝑆. The matrix form of the weights is defined by the 

matrix with the weights on the diagonal and zeroes everywhere else, 

𝑊 =

[
 
 
 
1/𝑅�̂�23

𝑂𝐿𝑆 0 ⋯ 0

0 1 𝑅�̂�24
𝑂𝐿𝑆⁄ ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1/𝑅�̂�𝑛

𝑂𝐿𝑆]
 
 
 

. (A. 2.6) 

Finally, based on the weights 𝑊, the WLS estimator of 𝛽 (�̂�𝑊𝐿𝑆) is the solution to the 

minimization problem of the weighted sum of squared residuals, 

(𝑦 − 𝑋𝛽)′𝑊(𝑦 − 𝑋𝛽), 

and the solution of this minimization problem is  
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�̂�𝑊𝐿𝑆 = (𝑋
′𝑊𝑋)−1𝑋′𝑊𝑦. (A. 2.7) 

The residuals (𝑒𝑊𝐿𝑆
𝑤 ) based on the above WLS estimated coefficients �̂�𝑊𝐿𝑆 are defined 

by, 

𝑒𝑊𝐿𝑆 = 𝛼𝑊(𝑦 − 𝑋�̂�𝑊𝐿𝑆), (A. 2.8) 

and the weighted residuals (𝑒𝑊𝐿𝑆
𝑤 ) are defined by, 

𝑒𝑊𝐿𝑆
𝑤 = 𝛼𝑊(𝑦 − 𝑋�̂�𝑊𝐿𝑆), (A. 2.9) 

where the component 𝛼 = 1/[1 (𝑛 − 22)⁄ ∑ 𝑤𝑗
𝑛−22
𝑗=1 ] (with 𝑤𝑗 indicating the 𝑗th 

diagonal elements of the 𝑊 matrix) is a scale which ensures that the average weight 

equals one (1 (𝑛 − 22)⁄ ∑ {𝛼𝑤𝑗}
𝑛−22
𝑗=1 = 1), and this facilitates comparing the WLS-

weighted residuals 𝑒𝑊𝐿𝑆
𝑤  with the above OLS (unweighted) residuals 𝑒𝑂𝐿𝑆. The fitted 

value (or predicted value) of 𝑦 is defined by, 

�̂�𝑊𝐿𝑆 =

[
 
 
 
 
𝑅�̂�23

𝑊𝐿𝑆

𝑅�̂�24
𝑊𝐿𝑆

⋮
⋮

𝑅�̂�𝑛
𝑊𝐿𝑆]
 
 
 
 

= 𝑋�̂�𝑊𝐿𝑆. (A. 2.10) 

To check if heteroskedasticity is reduced for weighted WLS residuals 𝑒𝑊𝐿𝑆
𝑤 , the 

right panel of Figure A.1 reports the scatter plot of weighted WLS residuals (𝑒𝑊𝐿𝑆
𝑤 ) 

and fitted value (�̂�𝑊𝐿𝑆) for the HAR model estimated by the WLS method. 8 

Comparing the left panel with the right panel, the deviation of the weighted WLS 

residuals (𝑒𝑊𝐿𝑆
𝑤 ) is much smaller than that of the OLS residuals (𝑒𝑂𝐿𝑆) as the fitted 

values changes. This implies that the heteroskedasticity of the weighted disturbances 

is reduced across the sample period. Motivated by the superiority of such WLS 

 
8 Here, I only report the results for the 𝐽𝛥 model in Figure A.1. But I confirm that the results for the 

remaining models in this chapter lead to similar patterns. 
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estimation method in terms of treating the heteroskedasticity of disturbances, I use 

apply this WLS estimation method for estimating all models throughout this chapter. 

The population of coefficients 𝛽 is unknown and the estimate of these coefficients 

(e.g., �̂�𝑊𝐿𝑆) is used for testing certain hypotheses about the population of coefficients 

𝛽.  

To explore the impact of the predictors on the future realized variance is weak or 

strong, this chapter tests the null hypothesis that the population of coefficient 𝛽 is zero 

and the alternative hypothesis that the population of coefficient 𝛽 is not zero. To test 

these hypotheses, the distribution (type of probability distribution, mean, variance) of 

�̂�𝑊𝐿𝑆 must be known. To obtain the type of probability distribution of �̂�𝑊𝐿𝑆, first, 

obtain a formulation of �̂�𝑊𝐿𝑆 by Equation (A.2.7) and Equation (A.2.2),  

�̂�𝑊𝐿𝑆 = 𝛽 + (𝑋
′𝑊𝑋)−1𝑋′𝑊𝜖. (A. 2.11) 

From Equation (A.2.11), it can then be seen that the type of probability distribution of 

�̂�𝑊𝐿𝑆 is consistent with that of disturbances 𝜖. As often, the type of probability 

distribution of disturbances 𝜖 is assumed to be (multivariate) normal. Therefore, the 

type of probability distribution of the WLS estimated coefficients �̂�𝑊𝐿𝑆 is also a 

multivariate normal distribution. From Equation (A.2.11), it can also be easily 

calculated that the mean of the distribution of �̂�𝑊𝐿𝑆 (𝐸(�̂�𝑊𝐿𝑆)) equals 𝛽, 

𝐸(�̂�𝑊𝐿𝑆) = 𝛽 (A. 2.12) 

(Note that 𝐸((𝑋′𝑊𝑋)−1𝑋′𝑊𝜖) = (𝑋′𝑊𝑋)−1𝑋′𝑊𝐸(𝜖) = 0 as one of the Gauss-

Markov assumptions states that the disturbances average out to 0 for any values of 𝑋). 

From Equation (A.2.11), the variance-covariance of the coefficients �̂�𝑊𝐿𝑆 is 
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𝐸 ((�̂�𝑊𝐿𝑆 − 𝛽)(�̂�𝑊𝐿𝑆 − 𝛽)′) and can be obtained by substituting �̂�𝑊𝐿𝑆 with 𝛽 +

(𝑋′𝑊𝑋)−1𝑋′𝑊𝜖, 

𝐸 ((�̂�𝑊𝐿𝑆 − 𝛽)(�̂�𝑊𝐿𝑆 − 𝛽)′) = (𝑋
′𝑊𝑋)−1𝑋′𝑊𝐸(𝜖𝜖′)𝑊′𝑋(𝑋′𝑊𝑋)−1. (A. 2.13) 

The proportion 𝑋′𝑊𝐸(𝜖𝜖′)𝑊′𝑋 in the middle of the right-hand side of the above 

Equation (A.2.13) need to be estimated (Equation (A.2.13) is also known as the 

‘sandwich’ estimator with two (𝑋′𝑊𝑋)−1 as upper and lower breads and 

𝑋′𝑊𝐸(𝜖𝜖′)𝑊′𝑋 as meat in the middle). To estimate the ‘meat’ proportion 

𝑋′𝑊𝐸(𝜖𝜖′)𝑊′𝑋, I use the heteroskedasticity and autocorrelation consistent (HAC) 

estimator by Newey and West (1987a). The HAC estimator is robust to estimation bias 

due to the heteroskedasticity and autocorrelation of the variance of disturbances. 

Specifically, the HAC estimator for 𝑋′𝑊𝐸(𝜖𝜖′)𝑊′𝑋 is given by, 

𝑋′𝑊𝐸(𝜖𝜖′)𝑊′ =
𝑛

𝑛 − 𝑘
∑ (𝑤𝑗𝑒𝑊𝐿𝑆,𝑗)

2
𝑥𝑗
′

𝑛−22

𝑗=1

𝑥𝑗

+
𝑛

𝑛 − 𝑘
∑(1 −

𝑙

𝐿 + 1
)

𝐿

𝑙=1

∑ 𝑤𝑗𝑤𝑗−𝑙𝑒𝑊𝐿𝑆,𝑗𝑒𝑊𝐿𝑆,𝑗−𝑙(𝑥𝑗
′𝑥𝑗−𝑙

𝑛−22

𝑗=𝑙+1

+ 𝑥𝑗−𝑙
′ 𝑥𝑗) 

(A. 2.14) 

where 𝑥𝑗 is the 𝑗th row of the 𝑋 matrix, 𝑒𝑊𝐿𝑆,𝑗 is the 𝑗th row of the 𝑒𝑊𝐿𝑆 vector, 𝑤𝑗 is 

the 𝑗th diagonal elements of the 𝑊 matrix, and 𝑘 is the number of predictors 

(including the constant) in the model (e.g., 𝑘 = 4 for the JΔ model), and 𝐿 is the 

number of lags for compensating the estimation bias risen by the autocorrelation. 

Following Corsi and Renò (2012), I set the number of lags 𝐿 equal to 2(ℎ + 1), 

where ℎ is the lead length (or the forecast horizon) of the dependent variable of the 

model (e.g., for the 𝐽𝛥 model, 𝐿 = 4 as ℎ = 1). By substituting Equation (A.2.14) to 
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Equation (A.2.13), the HAC variance-covariance matrix for �̂�𝑊𝐿𝑆 can be obtained. I 

use notation 𝑉𝐶�̂�𝐻𝐴𝐶 to indicate this HAC variance-covariance matrix.  

In summary, the results of the distribution of information on �̂�𝑊𝐿𝑆 show that �̂�𝑊𝐿𝑆 

is distributed multivariate normal with mean equal to 𝛽 and variance-covariance 

matrix equal to 𝑉𝐶�̂�HAC. Then, the test statistics 𝛵𝑠𝑡𝑎𝑡 for testing the hypotheses about 

the coefficients 𝛽 are calculated by 𝛵𝑠𝑡𝑎𝑡 = �̂�𝑊𝐿𝑆⊘diag(𝑉𝐶�̂�𝐻𝐴𝐶), where “⊘” 

indicates the Hadamard division (Hadamard division is a binary operation that takes 

in two matrices of the same dimensions and returns a matrix of the divided 

corresponding elements), “diag” denotes the Matrix-to-vector diag operator (e.g., 

diag(𝑉𝐶�̂�HAC) returns a vector of the diagonal entries of 𝑉𝐶�̂�HAC). For the HAR 

model, the population of the coefficients 𝛽 and 𝛵𝑠𝑡𝑎𝑡 can be presented by, 

𝛽 = [

𝛽0
𝛽d
𝛽w
𝛽m

] and 𝛵𝑠𝑡𝑎𝑡 =

[
 
 
 
𝑇𝑠𝑡𝑎𝑡,0
𝑇𝑠𝑡𝑎𝑡,𝑑
𝑇𝑠𝑡𝑎𝑡,𝑤
𝑇𝑠𝑡𝑎𝑡,𝑚]

 
 
 

. 

Based on this formulation of 𝛽 and 𝛵𝑠𝑡𝑎𝑡, the hypotheses for each of the 

coefficients in the matrix 𝛽 can be tested based on the corresponding test statistic in 

the matrix 𝛵𝑠𝑡𝑎𝑡. For example, one can test the null & alternative hypotheses of 𝛽d by 

the value of 𝑇𝑠𝑡𝑎𝑡,𝑑. If 𝑇𝑠𝑡𝑎𝑡,𝑑 is larger than 1.96, the false positive (or the probability 

of mistaken rejection of a null hypothesis) is smaller than 0.05 (two-tail). The 

probability of a false positive is based on the p-value that corresponds to 𝑡 =  1.96 

with the degree of freedom df =  𝑛 − 22 − 𝑘 = 6222 − 22 − 4 = 6196 for the 

student 𝑡-distribution is approximately 0.05 (As often, to account for small sample 

bias, standard normal distribution is often replaced with the student 𝑡-distribution). As 

the risk of false positive is small, one can reject the null hypothesis that the population 
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of 𝛽d is zero thus accepting the alternative hypothesis that the population of 𝛽d is 

different from zero.  

The goodness of fit of a statistical model describes how well it fits a set of 

observations. To measure the goodness of fit, this chapter uses the coefficient of 

determination, denoted 𝑅2. 𝑅2 is defined by, 

𝑅2 = 1 −
∑ (𝑦𝑗 − �̂�𝑊𝐿𝑆,𝑗)

2𝑛−22
𝑗=1

∑ (𝑦𝑗 −
1

𝑛 − 22 
∑ 𝑦𝑗
𝑛−22
𝑗=1 )

2
𝑛−22
𝑗=1

 
(A. 2.15) 

where 𝑦𝑗 is the 𝑗th row of the 𝑦 matrix and �̂�𝑊𝐿𝑆,𝑗 is the 𝑗th row of the �̂�𝑊𝐿𝑆 matrix. 
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A. 3. More empirical results for Chapter 2 

Table A.3.1. In-sample estimation results of the volatility models for weekly 

forecast 

 

Notes: The table provides in-sample parameter estimates and measures of fit for the 

volatility models with volatility and signed jump estimators for weekly forecast. 

The brackets report the Heteroskedasticity and Autocorrelation Consistent (HAC) t-

statistics. 𝐻𝐴𝑅∗ is a specification which uses the realized variance, Equation 

(2.7.3), 𝑅𝑆∗, Equation (2.7.4), is based on modified semivariances, 𝐵𝑉∗ is model 

that depends on modified bipower variation, Equation (2.7.7), 𝐽𝛥∗ and 𝐽± ∗, are the 

models where the modified signed jump estimators are applied, Equations (2.7.5) 

and (2.7.6). The intercept is not reported.  
   𝐻𝐴𝑅  𝑅𝑆  𝐵𝑉  𝐽Δ  𝐽± 

𝛽𝐽
Δ     -0.294  

    (-4.96)  

𝛽𝐽
+      -0.301 

     (-5.52) 

𝛽𝐽
−      -0.444 

     (-3.58) 

𝛽𝑑
+   0.009    

  (0.19)    

 𝛽𝑑
−  0.873    

  (11.58)    

 𝛽𝐶   0.440 0.446 0.434 

   (12.78) (13.15) (10.36) 

 𝛽𝑑 0.425     

 (13.38)     

𝛽𝑤  0.374 0.373 0.365 0.366 0.369 

 (8.57) (8.73) (9.03) (9.11) (9.32) 

𝛽𝑚  0.113 0.109 0.117 0.119 0.115 

 (2.61) (2.57) (2.70) (2.77) (2.69) 

R2 0.598 0.618 0.603 0.618 0.618 
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Table A.3.2. In-sample estimation results of the volatility models for monthly 

forecast 

 

Notes: The table provides in-sample parameter estimates and measures of fit for the 

volatility models with volatility and signed jump estimators for monthly forecast. 

The brackets report the Heteroskedasticity and Autocorrelation Consistent (HAC) t-

statistics. 𝐻𝐴𝑅∗ is a specification which uses the realized variance, Equation 

(2.7.3), 𝑅𝑆∗, Equation (2.7.4), is based on modified semivariances, 𝐵𝑉∗ is model 

that depends on modified bipower variation, Equation (2.7.7), 𝐽𝛥∗ and 𝐽± ∗, are the 

models where the modified signed jump estimators are applied, Equations (2.7.5) 

and (2.7.6). The intercept is not reported.  
   𝐻𝐴𝑅  𝑅𝑆  𝐵𝑉  𝐽Δ  𝐽± 

𝛽𝐽
Δ     -0.234  

    (-6.53)  

𝛽𝐽
+      -0.172 

     (-2.55) 

𝛽𝐽
−      -0.319 

     (-2.84) 

𝛽𝑑
+   0.024    

  (0.53)    

 𝛽𝑑
−  0.606    

  (7.89)    

 𝛽𝐶   0.303 0.312 0.297 

   (6.59) (6.77) (6.24) 

 𝛽𝑑 0.210     

 (3.81)     

𝛽𝑤  0.366 0.331 0.332 0.334 0.335 

 (4.74) (5.90) (5.69) (5.80) (5.71) 

𝛽𝑚  0.158 0.128 0.136 0.133 0.133 

 (2.27) (1.85) (1.97) (1.90) (1.90) 

R2 0.447 0.447 0.429 0.439 0.440 
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Table A.3.3. In-sample estimation results of the modified volatility models for 

weekly forecast 

 

Notes: The table provides in-sample parameter estimates and measures of fit for the 

volatility models with modified volatility and signed jump estimators for weekly 

forecast. The brackets report the Heteroskedasticity and Autocorrelation Consistent 

(HAC) t-statistics. 𝐻𝐴𝑅∗ is a specification which uses the modified realized 

variance for Equation (2.7.3), 𝑅𝑆∗ modifies Equation (2.7.4) based on modified 

semivariances, 𝐵𝑉∗ is alternative specification of Equation (2.7.7) that depends on 

modified bipower variation, 𝐽𝛥∗ and 𝐽± ∗ are the modified versions of Equations 

(2.7.5) and (2.7.6), where the modified signed jump estimators are applied. The 

intercept is not reported.  
   𝐻𝐴𝑅∗  𝑅𝑆∗  𝐵𝑉∗  𝐽Δ ∗  𝐽± ∗ 

𝛽𝐽
Δ∗     -0.210  

    (-3.13)  

𝛽𝐽
+ ∗      -0.015 

     (-0.16) 

𝛽𝐽
− ∗      -0.586 

     (-1.69) 

𝛽𝑑
+ ∗   0.051    

  (0.64)    

 𝛽𝑑
− ∗  0.397    

  (2.98)    

 𝛽𝐶
∗   0.201 0.367 0.200 

   (2.47) (7.59) (2.30) 

 𝛽𝑑
∗  0.203     

 (2.49)     

𝛽𝑤
∗   0.483 0.475 0.478 0.408 0.471 

 (6.76) (6.55) (6.66) (5.46) (6.75) 

𝛽𝑚
∗   0.161 0.156 0.164 0.105 0.157 

 (3.20) (3.13) (3.28) (1.67) (3.25) 

R2 0.590 0.592 0.592 0.336 0.594 
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Table A.3.4. In-sample estimation results of the modified volatility models for 

monthly forecast 

 

Notes: The table provides in-sample parameter estimates and measures of fit for the 

volatility models with modified volatility and signed jump estimators for monthly 

forecast. The brackets report the Heteroskedasticity and Autocorrelation Consistent 

(HAC) t-statistics. 𝐻𝐴𝑅∗ is a specification which uses the modified realized 

variance for Equation (2.7.3), 𝑅𝑆∗ modifies Equation (2.7.4) based on modified 

semivariances, 𝐵𝑉∗ is alternative specification of Equation (2.7.7) that depends on 

modified bipower variation, 𝐽𝛥∗ and 𝐽± ∗ are the modified versions of Equations 

(2.7.5) and (2.7.6), where the modified signed jump estimators are applied. The 

intercept is not reported.  
   𝐻𝐴𝑅∗  𝑅𝑆∗  𝐵𝑉∗  𝐽Δ ∗  𝐽± ∗ 

𝛽𝐽
Δ∗     -0.063  

    (-0.88)  

𝛽𝐽
+ ∗      -0.079 

     (-1.06) 

𝛽𝐽
− ∗      -0.418 

     (-1.30) 

𝛽𝑑
+ ∗   -0.016    

  (-0.20)    

 𝛽𝑑
− ∗  0.358    

  (3.29)    

 𝛽𝐶
∗   0.146 0.168 0.153 

   (2.24) (3.28) (2.18) 

 𝛽𝑑
∗  0.148     

 (2.29)     

𝛽𝑤
∗   0.402 0.392 0.400 0.287 0.393 

 (4.40) (4.23) (4.27) (2.75) (4.24) 

𝛽𝑚
∗   0.177 0.172 0.178 0.128 0.173 

 (2.47) (2.42) (2.52) (1.81) (2.46) 

R2 0.442 0.443 0.443 0.104 0.442 
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A. 4. More empirical results for Chapter 3 

Table A.4.1. The impact of drift bursts on daily realized variance forecasts with model 

estimated by the Weighted Least Square method 

 

This table reports the results of coefficient estimation and goodness of fit (adjusted 𝑅2) for 

the four models that investigate the impacts of different drift burst measures on daily 

realized variance 𝑅𝑉𝑡,𝑡+1 forecasts. The row head contains the variables used in these 

models. All regressions contain 𝑅𝑉𝑡, 𝑅𝑉𝑡−5,𝑡, and 𝑅𝑉𝑡−22,𝑡 as the independent variables, 

where 𝑅𝑉𝑡, 𝑅𝑉𝑡−5,𝑡, and 𝑅𝑉𝑡−22,𝑡 indicate the lagged daily, weekly, and monthly average 

realized variance, Equation (3.5.1). The first column reports the results of the model that 

depends on 𝑅𝑉𝑡, 𝑅𝑉𝑡−5,𝑡, and 𝑅𝑉𝑡−22,𝑡. The second column shows the results for the models 

that exploit the occurrence of drift bursts, 𝑁𝐷𝐵𝑡
+ and 𝑁𝐷𝐵𝑡

−, Equations (3.2.13) and 

(3.2.14). The third column contains the results for the regression that uses the variation of 

bursts, 𝑉𝐷𝐵𝑡
+ and 𝑉𝐷𝐵𝑡

−, Equations (3.3.1) and (3.3.2). The fourth column reports the 

results of the specifications that are based on mutual-excitation of bursts, 𝐼𝐷𝐵𝑡
+ and 𝐼𝐷𝐵𝑡

−, 

Equations (3.4.3) and (3.4.4). The sample is S&P 500 E-mini future transaction prices from 

June 2003 to December 2020. 

 

Constant 0.163 0.177 0.161 0.111 

 (3.37) (3.62) (3.68) (1.45) 

  𝑅𝑉𝑡 0.579 0.577 0.641 0.577 

 (13.02) (12.97) (14.37) (13.00) 

  𝑅𝑉𝑡−5,𝑡 0.341 0.342 0.302 0.341 

 (5.58) (5.60) (5.62) (5.60) 

 𝑅𝑉𝑡−22,𝑡 0.036 0.035 0.032 0.034 

 (1.23) (1.22) (1.18) (1.17) 

 𝑁𝐷𝐵𝑡
+   -0.316   

   (-2.48)   
 𝑁𝐷𝐵𝑡

−   -0.013   
    (-0.11)   
 𝑉𝐷𝐵𝑡

+    -1.058  

    (-3.93)  

 𝑉𝐷𝐵𝑡
−    -0.748  

    (-1.93)  

 𝐼𝐷𝐵𝑡
+     -0.017 

     (-0.67) 

 𝐼𝐷𝐵𝑡
−     0.025 

     (1.44) 

 𝑅2 0.574 0.574 0.596 0.574 
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Table A.4.2. The impact of drift bursts on weekly realized variance forecasts with model 

estimated by the Weighted Least Square method 

 

This table reports the results of coefficient estimation and goodness of fit (adjusted 𝑅2) for 

the four models that investigate the impacts of different drift burst measures on weekly 

realized variance 𝑅𝑉𝑡,𝑡+5 forecasts. The row head contains the variables used in these 

models. All regressions contain 𝑅𝑉𝑡, 𝑅𝑉𝑡−5,𝑡, and 𝑅𝑉𝑡−22,𝑡 as the independent variables, 

where 𝑅𝑉𝑡, 𝑅𝑉𝑡−5,𝑡, and 𝑅𝑉𝑡−22,𝑡 indicate the lagged daily, weekly, and monthly average 

realized variance, Equation (3.5.1). The first column reports the results of the model that 

depends on 𝑅𝑉𝑡, 𝑅𝑉𝑡−5,𝑡, and 𝑅𝑉𝑡−22,𝑡. The second column shows the results for the models 

that exploit the occurrence of drift bursts, 𝑁𝐷𝐵𝑡
+ and 𝑁𝐷𝐵𝑡

−, Equations (3.2.13) and 

(3.2.14). The third column contains the results for the regression that uses the variation of 

bursts, 𝑉𝐷𝐵𝑡
+ and 𝑉𝐷𝐵𝑡

−, Equations (3.3.1) and (3.3.2). The fourth column reports the 

results of the specifications that are based on mutual-excitation of bursts, 𝐼𝐷𝐵𝑡
+ and 𝐼𝐷𝐵𝑡

−, 

Equations (3.4.3) and (3.4.4). The sample is S&P 500 E-mini future transaction prices from 

June 2003 to December 2020. 

 

Constant 0.442 0.429 0.355 -0.083 

 (5.02) (4.90) (3.98) (-0.21) 

  𝑅𝑉𝑡 0.256 0.256 0.570 0.486 

 (3.18) (3.12) (11.51) (12.27) 

  𝑅𝑉𝑡−5,𝑡 0.469 0.467 0.311 0.353 

 (4.84) (4.79) (4.89) (5.24) 

 𝑅𝑉𝑡−22,𝑡 0.099 0.101 0.049 0.053 

 (1.69) (1.72) (0.96) (0.98) 

 𝑁𝐷𝐵𝑡
+   -0.246   

   (-1.62)   
 𝑁𝐷𝐵𝑡

−   0.448   
    (1.67)   
 𝑉𝐷𝐵𝑡

+    -0.819  

    (-2.87)  

 𝑉𝐷𝐵𝑡
−    -0.869  

    (-1.54)  

 𝐼𝐷𝐵𝑡
+     0.027 

     (0.22) 

 𝐼𝐷𝐵𝑡
−     0.092 

     (1.38) 

 𝑅2 0.636 0.635 0.653 0.634 
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Table A.4.3. The impact of drift bursts on monthly realized variance forecasts with model 

estimated by the Weighted Least Square method 

 

This table reports the results of coefficient estimation and goodness of fit (adjusted 𝑅2) for 

the four models that investigate the impacts of different drift burst measures on monthly 

realized variance 𝑅𝑉𝑡,𝑡+22 forecasts. The row head contains the variables used in these 

models. All regressions contain 𝑅𝑉𝑡, 𝑅𝑉𝑡−5,𝑡, and 𝑅𝑉𝑡−22,𝑡 as the independent variables, 

where 𝑅𝑉𝑡, 𝑅𝑉𝑡−5,𝑡, and 𝑅𝑉𝑡−22,𝑡 indicate the lagged daily, weekly, and monthly average 

realized variance, Equation (3.5.1). The first column reports the results of the model that 

depends on 𝑅𝑉𝑡, 𝑅𝑉𝑡−5,𝑡, and 𝑅𝑉𝑡−22,𝑡. The second column shows the results for the models 

that exploit the occurrence of drift bursts, 𝑁𝐷𝐵𝑡
+ and 𝑁𝐷𝐵𝑡

−, Equations (3.2.13) and 

(3.2.14). The third column contains the results for the regression that uses the variation of 

bursts, 𝑉𝐷𝐵𝑡
+ and 𝑉𝐷𝐵𝑡

−, Equations (3.3.1) and (3.3.2). The fourth column reports the 

results of the specifications that are based on the mutual-excitation intensity of bursts, 

𝐼𝐷𝐵𝑡
+ and 𝐼𝐷𝐵𝑡

−, Equations (3.4.3) and (3.4.4). The sample is S&P 500 E-mini future 

transaction prices from June 2003 to December 2020. 

 

Constant 1.057 1.033 0.973 -0.912 

 (4.03) (4.08) (3.67) (-0.56) 

  𝑅𝑉𝑡 0.187 0.181 0.394 0.176 

 (2.64) (2.60) (5.59) (3.04) 

  𝑅𝑉𝑡−5,𝑡 0.395 0.401 0.294 0.372 

 (3.02) (3.05) (3.23) (3.24) 

 𝑅𝑉𝑡−22,𝑡 0.103 0.103 0.068 0.088 

 (1.20) (1.20) (0.84) (0.96) 

 𝑁𝐷𝐵𝑡
+   -0.301   

   (-1.35)   
 𝑁𝐷𝐵𝑡

−   0.766   
    (1.63)   
 𝑉𝐷𝐵𝑡

+    -0.619  

    (-1.44)  

 𝑉𝐷𝐵𝑡
−    -0.507  

    (-2.96)  

 𝐼𝐷𝐵𝑡
+     0.090 

     (0.28) 

 𝐼𝐷𝐵𝑡
−     0.433 

     (1.40) 

 𝑅2 0.449 0.449 0.439 0.467 
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Table A.4.4. The impact of drift bursts on option implied variance with model estimated by 

the Weighted Least Square method  

 

This table reports the regression estimation results for investigating the impact of different 

drift bursts measure on the implied variance, which is defined by the squared daily close 

value of the Chicago Board Options Exchange (CBOE) S&P 500 implied variance index 

𝑉𝐼𝑋𝑡
2. All regressions contain 𝑉𝐼𝑋𝑡

2 as the dependent variable and 𝑉𝐼𝑋𝑡−1
2  as the 

independent variable, where 𝑉𝐼𝑋𝑡−1
2  denotes the lagged daily implied variance. The head of 

each row contains the variables used in the regression models. The first column reports the 

coefficient estimation results and measure of fit (𝑅2) for the model that depends on 𝑉𝐼𝑋𝑡−1
2 . 

The second column shows the results for the models that exploit the occurrence of drift 

bursts, 𝑁𝐷𝐵𝑡
+ and 𝑁𝐷𝐵𝑡

−, Equations (3.2.13) and (3.2.14.) The third column contains the 

results for the regression that uses the variation of bursts, 𝑉𝐷𝐵𝑡
+ and 𝑉𝐷𝐵𝑡

−, Equations 

(3.3.1) and (3.3.2). The fourth column reports the results of the specifications that are based 

on the mutual excitation intensity of bursts, 𝐼𝐷𝐵𝑡
+ and 𝐼𝐷𝐵𝑡

−, Equations (3.4.3) and (3.4.4) 

The sample is the S&P 500 E-mini future transaction prices and the daily close of the 

CBOE VIX index from June 2003 to December 2020. 

 

Constant 0.053 0.040 0.060 -0.022 

 (2.81) (2.17) (3.22) (-0.39) 

  𝑉𝐼𝑋𝑡−1
2  0.876 0.871 0.837 0.874 

 (29.87) (29.94) (25.77) (29.93) 

 𝑁𝐷𝐵𝑡
+   -0.026   

   (-0.24)   
 𝑁𝐷𝐵𝑡

−   0.375   
    (5.09)   
 𝑉𝐷𝐵𝑡

+    0.439  

    (1.19)  

 𝑉𝐷𝐵𝑡
−    0.317  

    (3.46)  

 𝐼𝐷𝐵𝑡
+     -0.008 

     (-0.85) 

 𝐼𝐷𝐵𝑡
−     0.018 

     (2.72) 

 𝑅2 0.931 0.932 0.936 0.931 
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Table A.4.5. The impact of drift bursts on daily realized variance forecasts with a drift 

burst robust volatility estimator 

 

This table reports the results of coefficient estimation and goodness of fit (adjusted 𝑅2) for 

the four models that investigate the impacts of different drift burst measures on daily 

realized variance 𝑅𝑖𝑐𝑒𝑉𝑡,𝑡+1 forecasts. The row head contains the variables used in these 

models. All regressions contain 𝑅𝑖𝑐𝑒𝑉𝑡, 𝑅𝑖𝑐𝑒𝑉𝑡−5,𝑡, and 𝑅𝑖𝑐𝑒𝑉𝑡−22,𝑡 as the independent 

variables, where 𝑅𝑖𝑐𝑒𝑉𝑡, 𝑅𝑖𝑐𝑒𝑉𝑡−5,𝑡, and 𝑅𝑖𝑐𝑒𝑉𝑡−22,𝑡 indicate the lagged daily, weekly, and 

monthly average drift burst robust volatility estimators, Equation (3.5.1). The first column 

reports the results of the model that depends on 𝑅𝑖𝑐𝑒𝑉𝑡, 𝑅𝑖𝑐𝑒𝑉𝑡−5,𝑡, and 𝑅𝑖𝑐𝑒𝑉𝑡−22,𝑡. The 

second column shows the results for the models that exploit the occurrence of drift bursts, 

𝑁𝐷𝐵𝑡
+ and 𝑁𝐷𝐵𝑡

−, Equations (3.2.13) and (3.2.14). The third column contains the results 

for the regression that uses the variation of bursts, 𝑉𝐷𝐵𝑡
+ and 𝑉𝐷𝐵𝑡

−, Equations (3.3.1) and 

(3.3.2). The fourth column reports the results of the specifications that are based on the 

mutual excitation intensities of bursts, 𝐼𝐷𝐵𝑡
+ and 𝐼𝐷𝐵𝑡

−, Equations (3.4.3) and (3.4.4). The 

sample is S&P 500 E-mini future transaction prices from June 2003 to December 2020. 

 

Constant 0.461 0.463 0.463 0.461 

 (47.00) (45.51) (46.79) (7.76) 

  𝑅𝑖𝑐𝑒𝑉𝑡 0.545 0.548 0.549 0.544 

 (29.02) (28.27) (28.67) (29.19) 

  𝑅𝑖𝑐𝑒𝑉𝑡−5,𝑡 0.282 0.282 0.282 0.281 

 (12.85) (12.78) (12.85) (12.79) 

 𝑅𝑖𝑐𝑒𝑉𝑡−22,𝑡 0.122 0.120 0.120 0.121 

 (6.69) (6.55) (6.60) (6.48) 

 𝑁𝐷𝐵𝑡
+   -0.134   

   (-2.47)   
 𝑁𝐷𝐵𝑡

−   0.019   
    (0.43)   
 𝑉𝐷𝐵𝑡

+    -0.109  

    (-1.49)  

 𝑉𝐷𝐵𝑡
−    -0.015  

    (-0.27)  

 𝐼𝐷𝐵𝑡
+     -0.025 

     (-1.22) 

 𝐼𝐷𝐵𝑡
−     0.013 

     (1.34) 

 𝑅2 0.741 0.741 0.741 0.741 
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Table A.4.6. The impact of drift bursts on weekly realized variance forecasts with a drift 

burst robust volatility estimator 

 

This table reports the results of coefficient estimation and goodness of fit (adjusted 𝑅2) for 

the four models that investigate the impacts of different drift burst measures on weekly 

realized variance 𝑅𝑖𝑐𝑒𝑉𝑡,𝑡+5 forecasts. The row head contains the variables used in these 

models. All regressions contain 𝑅𝑖𝑐𝑒𝑉𝑡, 𝑅𝑖𝑐𝑒𝑉𝑡−5,𝑡, and 𝑅𝑖𝑐𝑒𝑉𝑡−22,𝑡 as the independent 

variables, where 𝑅𝑖𝑐𝑒𝑉𝑡, 𝑅𝑖𝑐𝑒𝑉𝑡−5,𝑡, and 𝑅𝑖𝑐𝑒𝑉𝑡−22,𝑡 indicate the lagged daily, weekly, and 

monthly average drift burst robust volatility estimators, Equation (3.5.1). The first column 

reports the results of the model that depends on 𝑅𝑖𝑐𝑒𝑉𝑡, 𝑅𝑖𝑐𝑒𝑉𝑡−5,𝑡, and 𝑅𝑖𝑐𝑒𝑉𝑡−22,𝑡. The 

second column shows the results for the models that exploit the occurrence of drift bursts, 

𝑁𝐷𝐵𝑡
+ and 𝑁𝐷𝐵𝑡

−, Equations (3.2.13) and (3.2.14). The third column contains the results 

for the regression that uses the variation of bursts, 𝑉𝐷𝐵𝑡
+ and 𝑉𝐷𝐵𝑡

−, Equations (3.3.1) and 

(3.3.2). The fourth column reports the results of the specifications that are based on the 

mutual-excitation intensities of bursts, 𝐼𝐷𝐵𝑡
+ and 𝐼𝐷𝐵𝑡

−, Equations (3.4.3) and (3.4.4). The 

sample is S&P 500 E-mini future transaction prices from June 2003 to December 2020. 

 

Constant 0.543 0.541 0.543 0.435 

 (30.88) (30.48) (30.77) (3.74) 

  𝑅𝑖𝑐𝑒𝑉𝑡 0.423 0.420 0.423 0.420 

 (20.57) (20.02) (20.32) (21.39) 

  𝑅𝑖𝑐𝑒𝑉𝑡−5,𝑡 0.300 0.303 0.300 0.295 

 (9.83) (9.93) (9.89) (9.77) 

 𝑅𝑖𝑐𝑒𝑉𝑡−22,𝑡 0.171 0.171 0.171 0.165 

 (5.30) (5.30) (5.32) (4.90) 

 𝑁𝐷𝐵𝑡
+   -0.076   

   (-1.47)   
 𝑁𝐷𝐵𝑡

−   0.069   
    (1.69)   
 𝑉𝐷𝐵𝑡

+    -0.028  

    (-0.35)  

 𝑉𝐷𝐵𝑡
−    0.009  

    (0.18)  

 𝐼𝐷𝐵𝑡
+     -0.015 

     (-0.33) 

 𝐼𝐷𝐵𝑡
−     0.095 

     (1.64) 

 𝑅2 0.737 0.737 0.737 0.738 
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Table A.4.7. The impact of drift bursts on monthly realized variance forecasts with a drift 

burst robust volatility estimator 

 

This table reports the results of coefficient estimation and goodness of fit (adjusted 𝑅2) for 

the four models that investigate the impacts of different drift burst measures on monthly 

realized variance 𝑅𝑖𝑐𝑒𝑉𝑡,𝑡+22 forecasts. The row head contains the variables used in these 

models. All regressions contain 𝑅𝑖𝑐𝑒𝑉𝑡, 𝑅𝑖𝑐𝑒𝑉𝑡−5,𝑡, and 𝑅𝑖𝑐𝑒𝑉𝑡−22,𝑡 as the independent 

variables, where 𝑅𝑖𝑐𝑒𝑉𝑡, 𝑅𝑖𝑐𝑒𝑉𝑡−5,𝑡, and 𝑅𝑖𝑐𝑒𝑉𝑡−22,𝑡 indicate the lagged daily, weekly, and 

monthly average drift burst robust volatility estimators, Equation (3.5.1). The first column 

reports the results of the model that depends on 𝑅𝑖𝑐𝑒𝑉𝑡, 𝑅𝑖𝑐𝑒𝑉𝑡−5,𝑡, and 𝑅𝑖𝑐𝑒𝑉𝑡−22,𝑡. The 

second column shows the results for the models that exploit the occurrence of drift bursts, 

𝑁𝐷𝐵𝑡
+ and 𝑁𝐷𝐵𝑡

−, Equations (3.2.13) and (3.2.14). The third column contains the results 

for the regression that uses the variation of bursts, 𝑉𝐷𝐵𝑡
+ and 𝑉𝐷𝐵𝑡

−, Equations (3.3.)1 and 

(3.3.2). The fourth column reports the results of the specifications that are based on the 

mutual-excitation intensities of bursts, 𝐼𝐷𝐵𝑡
+ and 𝐼𝐷𝐵𝑡

−, Equations (3.4.3) and (3.4.4). The 

sample is S&P 500 E-mini future transaction prices from June 2003 to December 2020. 

 

Constant 0.629 0.625 0.626 0.338 

 (15.37) (15.45) (15.29) (1.16) 

  𝑅𝑖𝑐𝑒𝑉𝑡 0.288 0.281 0.280 0.283 

 (11.18) (11.26) (11.09) (12.49) 

  𝑅𝑖𝑐𝑒𝑉𝑡−5,𝑡 0.274 0.280 0.277 0.263 

 (7.90) (7.88) (7.98) (8.47) 

 𝑅𝑖𝑐𝑒𝑉𝑡−22,𝑡 0.198 0.199 0.199 0.180 

 (3.44) (3.48) (3.50) (2.88) 

 𝑁𝐷𝐵𝑡
+   -0.039   

   (-0.70)   
 𝑁𝐷𝐵𝑡

−   0.110   
    (1.06)   
 𝑉𝐷𝐵𝑡

+    0.055  

    (0.70)  

 𝑉𝐷𝐵𝑡
−    0.093  

    (1.29)  

 𝐼𝐷𝐵𝑡
+     -0.030 

     (-0.40) 

 𝐼𝐷𝐵𝑡
−     0.081 

     (1.55) 

 𝑅2 0.588 0.588 0.588 0.596 
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Table A.4.8. The impact of drift bursts on the volatility risk premium 

 

This table reports the estimation results for four regressions, aiming to investigate the 

impact of different drift burst measures on volatility risk premium. The dependent variable 

for all models is uniformly set as 𝑠𝑞𝑟𝑡_𝑉𝑅𝑃𝑡, which is the volatility risk premium of day 𝑡, 

and all these models include an independent variable 𝑠𝑞𝑟𝑡_𝑉𝑅𝑃𝑡−1, which is the one-day 

lag of the volatility risk premium. The head of each row contains the names of the 

explanatory variables used in the regression. The first column contains results for the model 

that depend on the one-day lag of variance risk premium. The second column reports the 

results for the model that uses the occurrence of positive and negative bursts, 𝑁𝐷𝐵𝑡
+ and 

𝑁𝐷𝐵𝑡
−. The third column is for the specification that includes the variation of positive and 

negative bursts, 𝑉𝐷𝐵𝑡
+ and 𝑉𝐷𝐵𝑡

−, Equations (3.3.1) and (3.3.2), and the fourth column 

contains results for the model that is based on the mutual-excitation intensities of positive 

and negative bursts, 𝐼𝐷𝐵𝑡
+ and 𝐼𝐷𝐵𝑡

−, Equations (3.4.3) and (3.4.4), respectively. The 

sample data is S&P 500 E-mini future prices and daily close of the CBOE VIX index from 

June 2003 to December 2020. 

 

Constant 0.039 0.036 0.042 0.004 

 (8.24) (7.82) (6.89) (0.17) 

 𝑠𝑞𝑟𝑡_𝑉𝑅𝑃𝑡−1 0.899 0.897 0.884 0.888 

 (101.32) (94.86) (59.07) (87.25) 

 𝑁𝐷𝐵𝑡
+   -0.009   

   (-0.15)   
 𝑁𝐷𝐵𝑡

−   0.086   
    (5.01)   
 𝑉𝐷𝐵𝑡

+    0.041  

    (1.07)  

 𝑉𝐷𝐵𝑡
−    0.016  

    (3.14)  

 𝐼𝐷𝐵𝑡
+     -0.007 

     (-1.13) 

 𝐼𝐷𝐵𝑡
−     0.012 

     (3.29) 

 𝑅2 0.808 0.810 0.812 0.809 
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Table A.4.9. The impact of drift bursts on the logarithm variance risk premium 

 

This table reports the estimation results for four regressions, aiming to investigate the 

impact of different drift burst measures on variance risk premium. The dependent variable 

for all models is uniformly set as 𝑙𝑜𝑔_𝑉𝑅𝑃𝑡, which is the logarithm variance risk premium 

of day, and all these models include an independent variable 𝑙𝑜𝑔_𝑉𝑅𝑃𝑡−1, which is the one-

day lag of the logarithm variance risk premium. The head of each row contains the names 

of the explanatory variables used in the regression. The first column contains results for the 

model that depend on the one-day lag of variance risk premium. The second column reports 

the results for the model that uses the occurrence of positive and negative bursts, 𝑁𝐷𝐵𝑡
+ 

and 𝑁𝐷𝐵𝑡
−. The third column is for the specification that includes the variation of positive 

and negative bursts, 𝑉𝐷𝐵𝑡
+ and 𝑉𝐷𝐵𝑡

−, Equations (3.3.1) and (3.3.2), and the fourth column 

contains results for the model that is based on the mutual-excitation intensity of positive 

and negative bursts, 𝐼𝐷𝐵𝑡
+ and 𝐼𝐷𝐵𝑡

−, Equations (3.4.3) and (3.4.4), respectively. The 

sample data is S&P 500 E-mini future prices and daily close of the CBOE VIX index from 

June 2003 to December 2020. 

 

Constant 0.042 0.040 0.042 0.053 

 (9.84) (9.55) (9.76) (3.84) 

 𝑙𝑜𝑔_𝑉𝑅𝑃𝑡−1 0.901 0.900 0.900 0.896 

 (119.30) (120.15) (114.29) (110.95) 

 𝑁𝐷𝐵𝑡
+   -0.055   

   (-1.59)   
 𝑁𝐷𝐵𝑡

−   0.075   
    (6.32)   
 𝑉𝐷𝐵𝑡

+    0.002  

    (0.14)  

 𝑉𝐷𝐵𝑡
−    0.005  

    (3.88)  

 𝐼𝐷𝐵𝑡
+     -0.011 

     (-1.80) 

 𝐼𝐷𝐵𝑡
−     0.006 

     (3.76) 

 𝑅2 0.812 0.815 0.812 0.812 
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A. 5. More empirical results for Chapter 4 

Table A.5.1. In-sample estimation results of models with daily, weekly, and monthly 

market drift bursts lags 

 

Notes: This table presents the results of the model that includes daily, weekly, and monthly 

lags of positively truncated drift bursts, indicated by 𝑅𝐷𝑡
+. 

 

𝑅𝑉𝑡,𝑡+ℎ = 𝛽0 + 𝛽𝑟𝑑,𝑑
+  𝑅𝐷𝑡

+ + 𝛽𝑟𝑑,𝑤
+  𝑅𝐷𝑡−5,𝑡

+ + 𝛽𝑟𝑑,𝑚
+  𝑅𝐷𝑡−22,𝑡

+ + 𝛽𝑑  𝑅𝑉𝑡 + 𝛽𝑤  𝑅𝑉𝑡−5,𝑡
+ 𝛽𝑚 𝑅𝑉𝑡−22,𝑡 + 𝜀𝑡 . 

 

The brackets are the Heteroskedasticity- and autocorrelation-consistent (HAC) robust t-

statistics by Newey and West (1987). The estimation for the intercept is not reported. 

 

  𝛽𝑟𝑑,𝑑
+   𝛽𝑟𝑑,𝑤

+   𝛽𝑟𝑑,𝑚
+   𝛽𝑑  𝛽𝑤  𝛽𝑚  𝑅2 

h=1 0.982 1.399 -0.716 0.483 0.298 0.124 0.540 

 (1.33) (1.00) (-0.52) (5.59) (3.80) (2.14)  

h=5 1.315 0.360 -1.773 0.331 0.349 0.235 0.640 
 (2.38) (0.26) (-0.71) (6.75) (4.24) (2.42)  

h=22 0.604 -0.343 -3.074 0.196 0.334 0.358 0.568 

 (2.50) (-0.33) (-0.68) (4.48) (2.12) (2.35)  

h=66 0.320 -1.247 8.828 0.127 0.253 -0.028 0.306 

 (2.52) (-0.89) (0.86) (3.28) (2.09) (-0.09)   

 

 

Table A.5.2. In-sample estimation results of models with daily, weekly, and monthly 

market drift bursts lags 

 

Notes: This table presents the results of the model that includes daily, weekly, and monthly 

lags of pretested drift bursts, indicated by 𝑅𝐷𝑡. 
 

𝑅𝑉𝑡,𝑡+ℎ = 𝛽0 + 𝛽𝑟𝑑,𝑑  𝑅𝐷𝑡 + 𝛽𝑟𝑑,𝑤  𝑅𝐷𝑡−5,𝑡 + 𝛽𝑟𝑑,𝑚 𝑅𝐷𝑡−22,𝑡 + 𝛽𝑑  𝑅𝑉𝑡 + 𝛽𝑤  𝑅𝑉𝑡−5,𝑡
+ 𝛽𝑚 𝑅𝑉𝑡−22,𝑡 + 𝜀𝑡 . 

 

The brackets are the Heteroskedasticity- and autocorrelation-consistent (HAC) robust t-

statistics by Newey and West (1987). The estimation for the intercept is not reported. 

 

  𝛽𝑟𝑑,𝑑  𝛽𝑟𝑑,𝑤  𝛽𝑟𝑑,𝑚  𝛽𝑑  𝛽𝑤  𝛽𝑚  𝑅2 

h=1 0.324 -1.387 1.458 0.525 0.328 0.105 0.530 

 (0.36) (-1.36) (0.57) (6.13) (4.47) (2.31)  

h=5 -0.109 -1.035 2.012 0.365 0.370 0.169 0.636 
 (-0.27) (-0.75) (0.57) (6.77) (4.56) (2.93)  

h=22 -0.154 -0.438 -0.671 0.211 0.345 0.254 0.562 

 (-0.74) (-0.26) (-0.15) (5.29) (2.21) (3.24)  

h=66 -0.145 -1.181 4.699 0.131 0.221 0.218 0.301 

 (-0.75) (-0.71) (0.57) (4.14) (2.26) (3.04)   
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Table A.5.3. In-sample estimation results of models with daily, weekly, and monthly codrift 

variations lags 

 

Notes: This table presents the results of the model that includes daily, weekly, and monthly 

lags of pretested drift bursts and codrift variations, indicated by 𝑅𝐷𝑡 and 𝑐𝑜𝑅𝐷𝑡. 
 

𝑅𝑉𝑡,𝑡+ℎ = 𝛽0 + 𝛽𝑟𝑑,𝑑  𝑅𝐷𝑡 + 𝛽𝑟𝑑,𝑤  𝑅𝐷𝑡−5,𝑡 + 𝛽𝑟𝑑,𝑚 𝑅𝐷𝑡−22,𝑡 + 𝛽𝑟𝑑,𝑑
𝑐  𝑐𝑜𝑅𝐷𝑡

+ 𝛽𝑟𝑑,𝑤
𝑐  𝑐𝑜𝑅𝐷𝑡−5,𝑡 + 𝛽𝑟𝑑,𝑚

𝑐  𝑐𝑜𝑅𝐷𝑡−22,𝑡 + 𝛽𝑑  𝑅𝑉𝑡 + 𝛽𝑤  𝑅𝑉𝑡−5,𝑡
+ 𝛽𝑚 𝑅𝑉𝑡−22,𝑡 + 𝜀𝑡 , 

 

The brackets are the Heteroskedasticity- and autocorrelation-consistent (HAC) robust t-

statistics by Newey and West (1987). The estimation for the intercept is not reported. 

 

  𝛽𝑟𝑑,𝑑  𝛽𝑟𝑑,𝑤  𝛽𝑟𝑑,𝑚  𝛽𝑟𝑑,𝑑
𝑐   𝛽𝑟𝑑,𝑤

𝑐   𝛽𝑟𝑑,𝑚
𝑐   𝛽𝑑  𝛽𝑤  𝛽𝑚  𝑅2 

h=1 0.149 -1.441 1.758 0.065 0.073 0.042 0.495 0.289 0.091 0.549 

 (0.18) (-1.42) (0.61) (1.17) (0.68) (0.54) (6.33) (4.09) (1.87)  

h=5 -0.138 -1.004 1.845 0.035 0.008 0.249 0.341 0.334 0.104 0.656 
 (-0.37) (-0.46) (0.44) (1.41) (0.11) (1.67) (7.21) (4.42) (1.52)  

h=22 -0.299 -0.580 -1.488 0.024 0.119 0.294 0.191 0.288 0.154 0.600 

 (-1.29) (-0.41) (-0.30) (1.77) (1.33) (1.52) (4.66) (2.06) (1.40)  

h=66 -0.293 -1.737 -2.355 0.016 -0.007 0.935 0.108 0.183 -0.037 0.364 

 (-1.12) (-0.94) (-0.54) (2.40) (-0.10) (1.32) (3.75) (2.15) (-0.17) 
 

 


