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ABSTRACT

In this thesis, we design, train, and test multiple Convolutional Neural Networks (CNNs) that

can take images of surface-density as inputs and estimate the Hurst parameter, H and, the

scaling exponent, S of each image. H is a measure of the power spectrum while S is a

measure of the range of the surface-density. The CNNs are trained using exponentiated

fractional Brownian motion (xfBm) fields that measure N
PIX

×N
PIX

pixels in size. We

produce three CNNs, one for each N
PIX

= 128, 64, and 32. We find that all three models

estimate H more accurately than Delta-Variance. We use these CNNs to analyse Hi-GAL

tiles, using a sliding patch, in order to produce maps of H and S. Each Hi-GAL tile has been

processed using PPMAP to produce maps of total column-density. We find that the size and

resolution of the patches, (i.e. the range of scales that the patch captures) affects the resultant

statistics. We find evidence of bimodality between sightlines with higher surface density

(Σ ≳ 32 M⊙pc−2) which correlates with a high H (≳ 0.8) and S (≳ 1), and sightlines with

lower surface-density (Σ ≲ 32 M⊙pc−2), which correlate with lower H (≲ 0.8) and S (≲ 1).

We find that this bimodality is not present when analysing maps of temperature-differential

column density. We find that when Σ ≳ 32 M⊙pc−2 the surface densities follow a power law

distribution dP/dΣ ∝ Σ−3. We also apply these CNNs to Herschel maps of the Andromeda

Galaxy (M31) that have been processed via PPMAP. We find that the distribution of H for

Andromeda has a peak at H = 0.67, which agrees with the literature.
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line is the linear fit of Ĝ(k1, k2 = 0). The slope gives an estimate of H, denoted

as HEST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

vii
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CHAPTER 1

Introduction

1.1 Introduction

It has long been suggested that the structure of the interstellar medium (ISM) is fractal in

nature and thus possesses some degree of self-similarity over a large range of length-scales

(Beech, 1987; Falgarone et al., 1991; Hetem and Lepine, 1993; Elmegreen and Falgarone,

1996; Stutzki et al., 1998; Chappell and Scalo, 2001; De La Fuente Marcos and De La

Fuente Marcos, 2006; Shadmehri and Elmegreen, 2011; Elia et al., 2018; Beattie et al.,

2019a,b; Petkova et al., 2023). This structure is also chaotic. This is mostly due to the fact that

the processes that govern the evolution of the ISM are non-linear. Such processes include:

self-gravity, magneto-hydrodynamic turbulence, and a range of non-LTE (local

thermodynamic equilibrium), thermal, radiative and chemical processes (Habing, 1968; Field

et al., 1969; Jura, 1974; Hollenbach and McKee, 1979; Mathis et al., 1983; Sternberg and

Dalgarno, 1995; Spitzer, 1998; Wolfire et al., 2003; Sternberg et al., 2014). As a result, the

structure of the ISM must be described using statistical metrics.

The main property that is of interest when we concern ourselves with fractal structures is the

fractal dimension, D. Simply, the fractal dimension of a structure in an E-dimensional space

measures how efficiently that structure fills the space. There are many different definitions of

the fractal dimension. Examples include: the box-counting dimension (otherwise known as

the Minkowski–Bouligand dimension), the perimeter-area dimension, and the Hausdorff

dimension (Schroeder, 1996). Of these, the two types of fractal dimension that have been most

commonly used to describe the ISM are: the perimeter-area fractal dimension DPA (Beech,

1987; Bazell and Desert, 1988; Falgarone et al., 1991; Hetem and Lepine, 1993; Stutzki et al.,

1998; Sanchez et al., 2005; Federrath et al., 2009; Rathborne et al., 2015) and the
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box-counting fractal dimension, DBC (Sanchez et al., 2005; Federrath et al., 2009; Elia et al.,

2018).

The names given to these two metrics suggest the method by which they are defined. The

perimeter-area method defines DPA while the box-counting method defines DBC . Federrath

et al. (2009) compare both fractal dimensions with each other and conclude that the

perimeter-area method is the less noisy of the two, a point that was also briefly mentioned in

Sanchez et al. (2005). In Chapter 2 we explain the two methods as well as the relationship

between these two fractal dimensions.

Another method that can be used to measure the fractal dimension is to calculate the

Delta-variance (Stutzki et al., 1998). The Delta-variance analysis assumes that the fractal

dimension is related to the power spectrum of the image, via the power spectral index, β. Thus

this assumes that the structure being investigated is similar to a fractional Brownian motion

(fBm) field. We refer the reader to Section 3.4 for more details on Delta-Variance, but in short,

it involves finding the variance σ2
∆(L) of the image after it has been convolved with a circular

filter, ⊙L, of length-scale L and using the relation σ2
∆ = L−2DPA . We note that since

Delta-Variance relies on a probing filter that acts at all possible length-scales it is less prone to

noise and other corrupting artefacts than a simple measurement of its power spectrum. This is

because the length-scale at which these artefacts occur can be simply ignored. We must stress

however that this filtering of noise sources is a manual procedure and must be done by eye on

a case-by-case basis, by inspecting plots of log(σ2
∆) against log(L). Even then, there is a

limitation as to how much the image can be corrupted while still being able to recover

accurate estimations of D. We explore this in Section 3.4, particularly when comparing

Figures 3.7 and Figures 3.8.

Most of the analyses we have mentioned so far have assumed that a region with a relatively

large dynamic range can be described by a single D. A structure that can be described with a

single fractal dimension is called a monofractal. This is generally applicable for isolated

structures, where each subregion can be described by the same fractal dimension no matter the

position or length scale. The reality is however that structures in the ISM do not tend to exist

in isolation and even if they do there may be overlapping substructures that possess different

fractal dimensions. As a result, the fractal dimension of a region within a structure might

differ with position and with scale. The structure is then said to be multifractal. The
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Fig. 1.1 A cartoon showing the recycling of material in the ISM. Material found in the ISM con-
denses into stars. Much of this material is recycled back into the ISM through stellar winds and
supernovae. The material that is not returned to the ISM is locked up in compact objects such
as black holes, white dwarfs, or neutron stars. Some material from the intergalactic medium
also replenishes the ISM, which is not shown here.

multifractal properties of the Galactic Plane have been explored in Elia et al. (2018) and we

briefly revisit this study in Section 3.5.

1.2 The ISM - Observations, Theory, and Background

1.2.1 The ISM

The Interstellar Medium (ISM) refers to the gas and dust that exists between stars, and it is

from this gas and dust that stars themselves form. Molecular gas condenses into stars, which

then inject material back into the ISM. Much of the material (90%) injected back into the ISM

occurs during the stars’ lifetime via stellar winds, while a smaller amount of material is

released at the end of the stars’ life, via runaway fusion (novae/supernovae). Figure 1.1 shows

a basic cartoon of how the material of the ISM is recycled. Some of the material is locked up

in compact objects, such as black holes, white dwarfs, or neutron stars. Supernovae, along

with stellar winds from massive stars (M ≳ 3M⊙), also produce the bulk of the heavy

elements that are then seeded into the ISM. A large fraction of these heavy elements end up

condensing into the grains that we call dust (Stahler and Palla, 2004).

The ISM consists of multiple different phases that are in a rough pressure equilibrium with

each other, with each of the phases having a different density, temperature, and composition.
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Since the bulk of the ISM is composed of hydrogen, then it is useful to group these phases

according to the state of the hydrogen:

Atomic/Neutral Hydrogen: The portions of the ISM that contains neutral hydrogen forms

the bulk of these phases by mass (7× 109M⊙) and is further split into two components; the

warm neutral medium and the cold neutral medium. The warm neutral medium permeates the

ISM and forms the bulk of the atomic hydrogen by volume (∼ 90%). Typical values of density

and temperature of this medium are n = 0.5 cm−3 and T = 8000 K respectively. The total

mass of the warm neutral medium is ∼ 4× 109M⊙. The cold neutral medium is found as

distinct clouds. These HI clouds typically having a density and temperature of n = 50 cm−3

and T = 80 K. The total mass of the cold neutral medium is ∼ 3× 109M⊙.

Ionised Hydrogen: The ISM that contains ionised hydrogen can also be described using two

phases; the warm ionised medium and the hot ionised medium. The warm ionised medium has

roughly the same temperature and density as the warm neutral medium with the main

difference being that the warm ionised medium consists of ionised hydrogen. The total mass

of the warm ionised medium is roughly 109M⊙. The hot ionised medium is a very hot and

rarefied phase and is formed due to supernova explosions. These supernovae produce bubbles

of expanding material which sweep out a large volume, and, eventually connect with other

supernovae remnants to create interconnected regions of this hot gas. Typical values for the

density and temperature of these hot ionised regions are n = 3× 10−3 cm−3 and

T = 5× 105 K respectively.

Molecular Hydrogen: Regions that contain molecular hydrogen are diverse, ranging from

diffuse clouds that are in pressure equilibrium with their surroundings to Giant Molecular

Clouds (GMCs), where self-gravity rather than pressure maintains the equilibrium. GMCs also

contain the majority of the Galaxy’s molecular hydrogen (80%). Since gravity plays such an

important role in maintaining a GMCs stability, this is where we see the most star formation.

The total mass of molecular hydrogen in the ISM is ∼ 2× 109M⊙. This accounts for around

25% of the mass of the ISM (Blitz, 1997). Molecular regions are the coldest and densest of all

the phases. The mean temperature in a GMC is ∼ 15 K while the mean density is 100 cm−3.

An important constituent of the ISM is dust which accounts for around 1% of the mass of the

ISM. Dust grains are solid particles that range from sub-micron to nanometre size. Dust is

particularly important to observations as it absorbs and scatters incoming starlight. The energy
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absorbed by the dust grains is then re-emitted in the infrared. As a result dust grains both

attenuate and redden observed starlight. Cold dust (10K ≤ T ≤ 40K) emission is particularly

useful as a tracer of mass in the ISM, and has been used extensively to map the hydrogen

column density along the line of sight, with the assumption that the gas to dust ratio is roughly

constant throughout the Galaxy. This dust emission is optically thin in the Far-Infrared (FIR)

and submillimetre range (101 − 103µm), across much of the Galaxy. As a result this dust

emission only depends on the emissivity, column density, and temperature. Thus by observing

the luminosity and temperature of the cold dust we can calculate the column density (Molinari

et al., 2010). Observatories capable of investigating the FIR include the InfraRed

Astronomical Satellite (IRAS) (Neugebauer et al., 1984), the Infrared Space Observatory

(ISO) (Kessler et al., 1996), Spitzer (Werner et al., 2004), and the Herschel Space Observatory

(HSO) (Pilbratt et al., 2010).

1.2.2 The ISM as observed by the Herschel Space Observatory

The Herschel Space Observatory (HSO) (Pilbratt et al., 2010) was a space telescope that was

launched on the 14th of May 2009, with the aim of taking observations of the ISM in the

far-infrared and the submillimetre range. Herschel carried three instruments; PACS

(Photometric Array Camera and Spectrometer, Poglitsch et al. (2010)), SPIRE (Spectral and

Photometric Imaging REceiver, Griffin et al. (2010)), and HIFI (Heterodyne Instrument for the

Far Infrared, De Graauw et al. (2010)). Together these three instruments produce broad band

photometry with bands centred at 70, 100, 160, 250, 350, and 500 µm (Pilbratt et al., 2010).

These wavelengths perfectly capture the peak of the dust thermal emission, and as a result are

particularly sensitive to temperature variations, which makes them useful for mapping the

temperatures and luminosities of the ISM at greater resolutions than before. Herschel has been

been able to map molecular clouds over a large range of spatial scales, ranging from the size

of the molecular clouds themselves (> 10 pc) to individual cores (< 0.1 pc) (Beuther et al.,

2014).

In this study we will mostly be working with the Via-Lactea dataset (Marsh et al., 2017). This

dataset is a result of taking the Herschel Infrared GALactic Plane survey or Hi-GAL (Molinari

et al., 2010) and applying PPMAP (Point Process Mapping) (Marsh et al., 2015) to it. The

Hi-GAL study uses the PACS and SPIRE instruments to map the entire Galactic plane in five

wavebands, with the PACS instrument providing photometric maps at the 70 and 160 µm and
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the SPIRE instrument providing the photometric maps at 250, 350 and 500 µm. The spatial

resolution in these five wavebands are 8.5′′, 13.5′′, 18.2′′, 24.9′′ and 36.3′′ respectively (Elia

et al., 2013; Marsh et al., 2017). The spatial resolution here refers to the full-width half

maximum (FWHM) of the beam size. The Hi-GAL survey mapped the entire plane of the

Galaxy, in each of these five wavebands, ranging across all Galactic longitudes

(0◦ ≤ ℓ ≤ 360◦), and approximately 1◦ above and below the plane (−1◦ ≤ b ≤ +1◦). The

Hi-GAL survey produced maps with a different pixel size for each of the wavebands. These

are 3.2′′, 4.5′′, 6.0′′, 8.0′′, and 11.5′′ for the 70, 160, 250, 350, and 500 µm wavebands

respectively. In order to derive maps of column density the standard way is to perform an SED

(Spectral Energy Distribution) fit to each pixel across the five wavelengths. Since the intensity

maps have a different pixel resolution then the pixel grid needs to be smoothed to a common

resolution and reprojected to a common pixel grid. For Herschel maps this is usually done to

the 500µm pixel grid resolution of 11.5′′. The pixel to pixel blackbody fit is then performed

according to

Iλ ≃ κλBλ(T̄ )Σ (1.1)

where κλ is the dust opacity, Bλ(T̄ ) is Planck’s law of radiation, and Σ is the integrated

column density along the line of sight. The dust opacity is approximated by,

κλ = κ300

(
λ

300µm

)−β

. (1.2)

where κ300 is the dust opacity at 300µm and β is the dust emissivity index which is set to 2

(Hildebrand, 1983; André et al., 2010; Elia et al., 2013; Arzoumanian et al., 2011; Sadavoy

et al., 2012). We can convert the total integrated column density, Σ, to that of hydrogen via

Σ = µmHN(H2) (1.3)

where µ = 2.8 is the mean molecular weight, and mH is the atomic mass of hydrogen. N(H2)

is the hydrogen column density. Fitting to this model not only provides the column density, Σ,

but also the mean line-of-sight temperature, T̄ , due to Planck’s law:

Bλ(T̄ ) =
2hc2/λ5

ehc/λkT̄ − 1
, (1.4)
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with h, c, and k being the Planck constant, the speed of light, and the Boltzmann constant

respectively.

This approach to determining the column density relies on a number of assumptions. Three of

these assumptions are as follows:

1. That the gas-to-dust mass ratio is constant. This ratio has been derived from empirical

data and is normally assumed to be 100 (Hildebrand, 1983).

2. That the dust opacity law follows κλ ∝ λ−β where β is a constant. This is seen in

Equation 1.2, where it is assumed that β = 2.

3. That the dust along the line-of-sight can be represented by a single mean vibrational

temperature.

Assumption 3. is a rather poor one as structures along the line-of-sight are typically not

isothermal. As a result, SED fitting this way tends to overestimate the contribution from the

warmer than average dust and underestimate the contribution from the cooler than average

dust (Marsh et al., 2015; Jáquez-Domı́nguez et al., 2023; Juvela, 2023). Since this method

also requires that the high resolution images from the shorter wavelength bands get smoothed

to the resolution of the low-resolution images from the longer wavelength 500µm band, then a

lot of the high-resolution information gets ignored.

Marsh et al. (2015) introduce the Point Process Mapping (PPMAP) procedure. This procedure

modifies Assumption 3. and assumes instead that there is a range of dust temperatures which

can be represented by Q discrete dust temperatures, Tq, between T
MIN

and T
MAX

, where,

T1 = T
MIN

;

Tq = F 2Tq−1, 2 ≤ q ≤ Q;

F =

(
T

MAX

T
MIN

)1/2(Q − 1)

.

The intensity is thus approximated by summing over these discrete dust temperatures,

Iλ ≃
q=Q∑
q=1

Bλ(Tq)∆τ300:q

(
λ

300µm

)−β

. (1.5)

Here, ∆τ300:q is the contribution to the optical depth at 300µm of the dust at temperature Tq,
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defined in relation to the total optical depth, τ300 as

τ300 =

Q∑
q=1

∆τ300:q. (1.6)

The goal of PPMAP is to estimate the values of ∆τ300:q. This is done by drawing random

values of ∆τ300:q from a Gaussian distribution, comparing the resulting intensities with the

observed intensities, and then adjusting ∆τ300:q accordingly. For a full mathematical

description of PPMAP we refer the reader to Marsh et al. (2015). Since PPMAP does not

require the smoothing of observational images to a common resolution, it is able to deliver

images at the finest possible resolution. Furthermore, it is able to produce both the expectation

value, ∆τ300:q, and the uncertainties, σ300:q, for each of the temperatures, Tq.

Galactic Plane surveys, such as Hi-GAL, and Via Lactea, can let us observe the differences

between the inner and outer Galaxy. One notable and observed difference is the amount of star

formation, with the outer Galaxy having less star formation than the inner Galaxy, mainly due

to the lower density of atomic and molecular hydrogen found in the outer Galaxy (Wouterloot

et al., 1990). Another major difference is line-of-sight confusion, with the outer Galaxy

having a lower degree of confusion than the inner Galaxy (Elia et al., 2013).

1.2.3 The Fractal Structure of the ISM

Multiple studies have shown that the structure of the ISM is self-similar in nature and can thus

be described as a fractal (Beech, 1987; Falgarone et al., 1991; Vogelaar and Wakker, 1994;

Elmegreen, 1997; Chappell and Scalo, 2001; Elmegreen, 2002; Elia et al., 2014, 2018). There

is evidence to support that supersonic turbulence is a major driver behind this fractal structure

(Federrath et al., 2009; Kritsuk et al., 2013; Konstandin et al., 2016; Beattie et al., 2019a,b),

with the fractal structure forming as the turbulence cascades from large-scales (where it is

injected) to small scales (where it is eventually dissipated as thermal energy). Since turbulence

lacks a specific length scale, it produces this fractal structure over a large range of scales. Thus

the range of scales of a fractal cloud can determine the injection and dissipation scales of the

turbulent energy (Elia et al., 2014). For a gas that is moving at supersonic velocities (M > 1),

the energy present in this bulk motion of the gas is dissipated to the smaller scales through

shocks. Here M refers to the mean Mach number. Turbulence can work to aid or hinder star

formation as it can provide support against gravitational collapse, or it can produce the high
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Fig. 1.2 Two examples of density PDFs from Donkov et al. (2021). The top panel shows a
log-normal PDF with a power law tail, while the bottom panel shows a log-normal PDF with
two power law tails.

density regions where star-formation occurs (Kainulainen et al., 2009; Schneider et al., 2012;

Könyves et al., 2015; Konstandin et al., 2016).

An important tool for determining whether or not turbulence is a driver for the fractal structure

is the distribution of the column density. Numerous studies have shown that this distribution

of the column-density is generally log-normal if the fractal structure is driven purely by

isothermal supersonic turbulence, however if self-gravity plays a large role one or more power

law tails also develop (Klessen et al., 2000; Vazquez-Semadeni and Garcia, 2001; Kritsuk

et al., 2011; Girichidis et al., 2014; Ward et al., 2014; Schneider et al., 2015; Krumholz and

McKee, 2020; Jaupart and Chabrier, 2020; Donkov et al., 2021; Schneider et al., 2022).

Figure 1.2 shows how this probability density distribution would look with one or two power

law tails. The column density represented here is the mass column density, ρ, while the slope

of each power law tail is given as q. The second, flatter power law tail tends to develop as

self-gravity starts to dominate the small spatial scales (≲ 1 pc), and corresponds to

rotationally supported material such as a disc (Khullar et al., 2021).
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Fig. 1.3 The relation between M and D as derived by Konstandin et al. (2016).

Some effort has been made to directly link turbulence to the fractal structure of the ISM by

relating the mean Mach number, M, to the fractal dimension, D. The Mach number is

important as it can be used to constrain the column density distribution, as well as the star

formation rate (Konstandin et al., 2016). Konstandin et al. (2016) use numerical simulations to

model driven, compressible, and isothermal turbulence, using both compressive and

solenoidal turbulence modes. These simulations are then used to derive the relation

D = 2 +
αM

2
MβM , (1.7)

where αM = −1.91± 0.001 and βM = −0.30± 0.03. Figure 1.3 shows a plot of this relation,

Beattie et al. (2019b) also use numerical simulations to derive a relation between the fractal

dimension and the mean Mach number, M. However it is important to note that the fractal

dimension here refers to the mass-length scaling dimension, Dp, which controls the

relationship between the mass, m and the length-scale, ℓ/L, by the relation

m(ℓ/L) ∼ (ℓ/L)Dp . (1.8)

Nonetheless these two studies (Konstandin et al., 2016; Beattie et al., 2019b) both find that the

fractal dimension roughly decreases as the mean Mach number increases. Since the fractal

dimension is a measure of how efficiently a structure fills its space, then this finding is
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consistent with the fact that diffuse structures with low mean Mach number have a high fractal

dimension, while structures with a high Mach number, i.e. shocks/filaments/bubbles, have a

low fractal dimension. On a more granular level, Brunt and Federrath (2014) use numerical

simulations to describe how each of the two supersonic turbulence modes (solenoidal and

compressible) can affect the density and velocity structure of molecular clouds.

In contrast, de Vega et al. (1996) suggest that fractal structure can emerge as a result of

self-gravity alone.

1.3 Why use Machine Learning?

The recent explosion in the amount of data being generated and collected in the world has

gone hand-in-hand with a large increase in the research and application of novel statistical

techniques that can handle and analyse these large amounts of data. Most notable is the

accelerated pace of research into new Machine Learning techniques and their implementation.

New and more powerful processing technology has also become more readily available, which

has made the processing and analysis of this data easier. This includes the advent of Graphical

Processing Units (GPUs) that are capable of implementing these new techniques and their

subsequent deployment on large-scale cloud computing platforms.

This vast increase in the generation of data is also seen in the field of Astronomy. For

example, the Square Kilometre Array (SKA) is a radio observatory that is projected to come

online in 2027 and when completed will generate 20 terabits of data per second while the

comparable Atacama Large Millimetre Array (ALMA) produces around 20 gigabits per

second of data1, an increase of 3 orders of magnitude. This type of increase in dataset size,

necessitates the use of algorithms that can reduce and analyse these large datasets quickly and

efficiently. As a result of this explosion in dataset sizes there has also been an increase in the

application of Machine Learning techniques to astronomical problems (Dieleman et al., 2015;

Flamary, 2016; Remez et al., 2017; Khalifa et al., 2017; Kimura et al., 2017; Postnikov,

Postnikov; Bialopetravičius et al., 2019; Dawson et al., 2019, 2021). In this thesis we leverage

these Machine Learning techniques in order to process large amounts of image data from the

Herschel Space Observatory (Pilbratt et al., 2010).

We concern ourselves with the fractal structure of the Galactic Disk and thus make use of the
1https://www.skao.int/en/explore/big-data

11

https://www.skao.int/en/explore/big-data


Herschel infrared Galactic Plane (Hi-GAL) survey (Molinari et al., 2010). This survey

consists of 163 tiles each containing a 2.4◦ × 2.4◦ area of the Galactic Plane. Each tile has

1440× 1440 pixels across 5 wavebands (70µm, 160µm, 250µm, 350µm, 500µm). The dataset

we use thus consists of 163× 1440× 1440 ≈ 3.4× 108 pixels. Each of these tiles has been

converted into maps of column-density using the PPMAP algorithm (Marsh et al., 2015, 2017).

One way of estimating fractal parameters is through the use of Delta-Variance (Stutzki et al.,

1998; Ossenkopf et al., 2008a). However, this algorithm is computationally expensive and

requires some human input (See Chapter 3 for more detail). It is also only possible to get one

value of the so-called Hurst parameter, H, for an input region, no matter the size of this

region. However, we are interested in producing maps of H in order to infer some statistics of

the fractal properties of the ISM. Using the Hi-GAL data as an input would result in ∼ 108

values of H. This is not feasible with the computationally expensive Delta-Variance and thus

an estimator that can produce values of H quickly and with a certain degree of accuracy is

required. To address this need, we have designed a Machine Learning model that can be used

as a quick and reliable estimator.

Supervised Machine Learning models, in particular Neural Networks, are a form of general

estimators that can be used to perform either classification tasks, or regression. The term

supervised simply means that before being deployed, the estimator must be trained. This is

done by running a series of inputs (known as features) and their known corresponding outputs

(known as labels) through the model, comparing the resulting outputs to the known ones, and

adjusting the model parameters as needed. In our study, the features would be images of

fractal structures while the labels would be each image’s corresponding value of H. We also

introduce an additional parameter, S, which is an exponentiation factor that controls the

scaling of the fields. Therefore each field has both H and S as labels. The training of a

Machine Learning model might be computationally expensive compared to other techniques

such as Delta-Variance, but it only needs to be done once. Once trained, a Machine Learning

model is able to estimate the labels of new inputs using less computational resources than

required to train it. See Chapter 4 for more details on how the Neural Network used in this

thesis is constructed, trained, and tested.

As a result of this increase in speed, we use a Machine Learning model called a Convolutional

Neural Network (CNN) to produce an estimator that takes subregions of the Hi-GAL derived
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tiles of column density and estimates H and S. By passing all possible subregions to the CNN

we can produce multiple values of H and S, and use these to construct maps of H and S.

Examples of the use of Machine Learning techniques in the field of astronomy include: star

cluster analysis (Lomax et al., 2018; Bialopetravičius et al., 2019), galaxy and supernova

classification (Khalifa et al., 2017; Kimura et al., 2017), image reconstruction (Flamary,

2016), the study of galaxy kinematics (Dawson et al., 2019, 2021), gravitational wave

detection (Zevin et al., 2017; Gabbard et al., 2018; George and Huerta, 2018; Shen et al.,

2019), and exoplanet detection (Shallue and Vanderburg, 2018).

1.4 Thesis Plan

In Chapter 2 we give a brief description of the theory used to describe fractal structures. We

look at some examples of fractal structures and describe some statistics that can be used to

characterise fractals. We show how to construct fractional Brownian motion (fBm) fields

using the Spectral Synthesis method and how this can be extended in order to construct

exponentiated fBm (xfBm) fields. We explain the significance of the Hurst parameter, H and

the exponentiating factor, S.

In Chapter 3 we investigate the established techniques that can be used to determine H and S.

For determining H we investigate both the Perimeter-Area method and the Delta-Variance

method. For the Delta-Variance method, we investigate the effect of the periodicity of the

fields on its performance. We also investigate the case where the fields are multi-fractal.

In Chapter 4 we propose using a Convolutional Neural Network in order to estimate the values

of H and S. We design, train and test three different CNNs with each one being able to take

images of a different linear pixel size, N
PIX

= [32, 64, 128]. We compare the performance of

these three CNNs with that of the methods explored in Chapter 3.

In Chapter 5 we apply the CNNs trained in Chapter 4 to observational data. We investigate

two datasets that have both been generated using the PPMAP algorithm (Marsh et al., 2015).

The first dataset we analyse in this chapter is one based on the Hi-GAL survey, which is a

survey of the Galactic Plane (Molinari et al., 2010; Marsh et al., 2017). We then analyse

PPMAP generated images of the Andromeda Galaxy (M31).

In Chapter 6 we summarise our conclusions and discuss future work.
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CHAPTER 2

Exponentiated Fractional Brownian Motion Fields

2.1 Preamble

We have already explained in the previous Chapter (Chapter 1) how the processes that govern

the evolution of the interstellar medium tend to be chaotic in nature. Examples of these

processes include magnetohydrodynamics, turbulence, and self-gravity. This means that the

structure of the ISM tends to be random in nature, but possess an overall statistical

self-similarity that can be seen across a large range of spatial scales (Stutzki et al., 1998;

Elmegreen, 2002; Ossenkopf et al., 2008b; Shadmehri and Elmegreen, 2011; Elia et al., 2014,

2018). In other words, the structure of the ISM has a fractal geometry.

A number of fractal models have been proposed (Voss, 1985; Hetem and Lepine, 1993;

Stutzki et al., 1998; Elmegreen, 2002; Sanchez et al., 2005; Federrath et al., 2009; Shadmehri

and Elmegreen, 2011), the majority of which build the fractal structure through numerical or

recursive means. For example, Hetem and Lepine (1993), produce three different fractals

models, two of which involve recursively subdividing a volume into smaller cubes and the

third involves an iterative process applied to a grid. Conversely, Stutzki et al. (1998), find that

observed molecular clouds have structures that are well characterised by fractional Brownian

motion (fBm) images which are a non-recursive and non-iterative way of producing fractal

structures. In this work, we focus on the fractal structures that are generated by a modified

version of fBm which we call Exponentiated Fractional Brownian Motion (xfBm).

2.2 Theory of Fractal Images

There is no hard definition of what makes an image/structure fractal. The general consensus is

that it must have a large level of detail that is self-similar over a large range of scales. There
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are two definitions of self-similarity; fractals can be either exactly self-similar (e.g. the von

Koch curve, the Sierpinski triangle), or statistically self-similar (e.g. fractal clouds, a

coastline). An exactly self-similar fractal is a pattern that repeats exactly at increasingly

smaller scales while a statistically self-similar fractal is one where the structure looks similar

at different scales but possesses a degree of randomness.

Figure 2.1 shows a von Koch curve which is an example of an exactly self-similar fractal. The

rest of Figure 2.1 (a-d) shows how the von Koch curve is constructed using a recursive

process. Starting with a straight line, (Figure 2.1a), the line is split into four equal length lines,

with the two central lines forming the two sides of an equilateral triangle (Figure 2.1b). For a

true fractal, this process is repeated on each of the resulting lines an infinite amount of times,

however since we are limited by reality we must define a lower limit to this process. In the

case of the von Koch fractal this lower limit is defined by arbitrarily halting the process, and in

the case of the fractal produced in Figure 2.1 this process is stopped after four steps. The

upper limit of the von Koch fractal and indeed many other generated fractals is simply the size

of the bounding box that the fractal resides in.

Defining this length-scale is equally important when constructing a statistically self-similar

fractal such as a 2-dimensional xfBm field. Since a 2D xfBm field is generated on a grid of

pixels, the small scale limit of this xfBm is thus the size of each pixel, while the large scale

limit will be the number of pixels. This defines the dynamic range, R, of the xfBm. The

dynamic range defines the range of spatial scales over which the fractal model applies.

When dealing with a fractal structure, it is helpful to evaluate the structure’s fractal dimension,

D. This is roughly a measure of how efficiently the structure fills its Euclidean space. There

are numerous different definitions of D, such as the Box-Counting fractal dimension, DBC ,

and the Perimeter-Area fractal dimension, DPA.

For a 2-dimensional fractal image (such as a cloud generated by fBm), the DPA is estimated

by measuring the perimeters, P , and areas, A, of a set of contours that have been constructed

at different density levels. The relation between these terms is given by,

P ∝ ADPA/2. (2.1)

Thus by plotting logP against logA we can derive DPA.
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Fig. 2.1 The iterative process that produces a von Koch curve. Each line segment is split into 4
new line segments. This is best illustrated in the differences between panels (a) and (b). This
process is then repeated for each line segment many times. A true von Koch curve is infinitely
recursive, however in the real world we must define a limit to these recursive steps.
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To calculate DBC , a grid of E-dimensional boxes are placed over the structure. For a fractal

structure with well defined edges, the number of these boxes, N(r), that cover the fractal

structure, give the fractal dimension according to,

N(r) ∝ r−DBC , (2.2)

where r is the length of each side of each box. For structures that do not have a well-defined

edge, such as a continuum astronomy image, a lower limit of the image intensity must be

defined. Elia et al. (2018) show that as this limit goes to the global minimum intensity, DBC

approaches E . Here E is simply the Euclidean dimension, in which the E-dimensional fractal

structure resides.

Of the two measures (DPA and DBC), DBC is considered the noisier as it relies on several

arbitrary factors, such as the position and orientation of the grid of boxes and, in the case of

astronomical images, the lower intensity limit that is used to define the structure. There has

been some work that attempts to relate the two measures, in particular Stutzki et al. (1998)

find that generally DPA ≃ DBC − 1. For the rest of this text we shall assume the

Perimeter-Area dimension when referring to the fractal dimension, i.e. D = DPA.

2.3 Fractional Brownian Motion

In Section 2.1 we mention that Fractional Brownian Motion fields (fBm) are a statistically

self-similar structure that have been used to characterise molecular clouds as well as the

interstellar medium (ISM) (Stutzki et al., 1998; Elmegreen, 2002; Shadmehri and Elmegreen,

2011; Elia et al., 2014, 2018). Peitgen and Saupe (1988) describe the theory behind fBm fields

and also provide several algorithms to generate them, including the mid-point displacement

method and the spectral synthesis method. All fBm and xfBm curves or fields in this work are

generated using the spectral synthesis method. The spectral synthesis method is expanded in

detail in Section 2.3.3

fBm fields are a generalisation of classical Brownian motion and are defined by three

parameters: the Euclidean dimension, E , the dynamic range, R, and the power spectral index,

β. The power spectral index, β, and the Euclidean dimension, E , can be combined into a

single parameter,
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H =
β − E
2

, (2.3)

where H is known as the Hurst parameter, and takes values 0 ≤ H ≤ 1. H can be thought of

as a smoothing parameter, where as H → 1, the curve becomes smoother and as H → 0 the

curve becomes rougher. Classical Brownian motion is a special case of fBm where H = 0.5.

Stutzki et al. (1998) show that

D ≃ (E − β)/2 = E −H. (2.4)

The dynamic range, R, describes the range of scales over which the fractal structure is

defined. In the case of the artificially generated fBm that are presented in this work, R will be

defined in terms of pixels, such that R = [1, N
PIX

]. As a result it is only necessary to define

the large scale limit of these fractals, since the small scale limit is simply a single pixel

although we must note that in an astronomical image the real lower limit will be the beam

size. This large scale limit will be the linear size of the bounding box and is given by N
PIX

.

N
PIX

is simply the number of pixels in each dimension. In this thesis we will only deal with

fields with N
PIX

= 1000, 128, 64, or 32.

2.3.1 One-dimensional (E = 1) fBm.

Figure 2.2 shows three examples of one-dimensional (E = 1) fBm curves, f(x). The top panel

shows the case for when H = 0, and the bottom panel shows the curve for when H = 1. The

middle panel shows the special case for classical Brownian motion (i.e. H = 0.5). These

curves have been generated using the same random seed so as to preserve the general shape.

We can see that when H = 1 the curve is smoothest and when H = 0 the curve is roughest.

This can also be explained using the power spectrum by way of the β parameter. A high β

means the the power spectrum has more power on large scales and results in a smooth curve.

For a lower β, there is less power on large scales and thus the curve is rougher.

The Hurst parameter H relates the typical change in f(x), i.e. ∆f , to the increment ∆x using

the simple scaling law (Peitgen and Saupe, 1988)

∆f ∝ ∆xH. (2.5)

18



Fig. 2.2 Three examples of 1-dimensional (E = 1) fractional Brownian motion curves for
differing values of H. Top: H = 0. Middle: H = 0.5. Bottom: H = 1.

This relationship splits the fBm into three regimes;

• H > 0.5: The increment, ∆f is correlated with f(x), producing a smooth curve.

• H < 0.5: The increment, ∆f is anti-correlated with f(x), producing a rough curve.

• H = 0.5: The increment is ∆f ∝
√
∆x. This is the relationship that produces Classical

Brownian motion. In this case ∆f can be approximated well by a random Gaussian

increment.

Taking the Fourier Transform of f(x) produces a power spectrum, f̂(k), where each k is a

wave-vector. x takes integer values of 1 ≤ x ≤ N
PIX

, while k takes integer values of

−N
PIX

/2 ≤ k ≤ N
PIX

/2. Here N
PIX

is the number of steps in total that have been taken in

order to produce f(x). For higher dimensions this will be the size in pixels of the resulting

field. Figure 2.3 shows the power spectra of the three curves shown in Figure 2.2. F̂ (k) in this

figure is simply F̂ (k) = ||f̂(k)||. This figure shows that there exists a power law relation

between F̂ (k) and k with exponent −β. In Figure 2.3 we distinguish between β (and by

Equation 2.3, H) used to generate f(x), that we label βTRUE , and β measured from the slope

of F̂ (k), which we label βEST . We can see that, for 1-dimensional fBm, βEST agrees with

βTRUE .

The top row of Figure 2.4 shows the distribution of x for each of the curves shown in Figure
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Fig. 2.3 The power spectra of the three curves shown in Figure 2.2. These power spectra have
been measured using a Fast Fourier Transform (FFT).

2.2. This shows an interesting property of 1-dimensional fBm, that is, that fBm generated

curves have a mean of 0 (shown by the red line) and thus have both positive and negative

values. Another feature is that as H → 0, the distribution of x becomes more Gaussian. The

bottom row shows the distribution of the random increments ∆f . These are all roughly

Gaussian with a mean of 0. The main difference between these distributions is the range of

values the ∆f takes, with this range being smaller as H → 1.

2.3.2 Two-dimensional (E = 2) fBm.

In the rest of this thesis we shall work in 2-dimensions (E = 2). Extending, f(x) to

2-dimensions we get the 2-dimensional fBm field, f(r), where r ≡ (r1, r2) is a 2-dimensional

grid of integers of values of 1 ≤ ri ≤ NPIX . NPIX is the size in pixels of each of the

dimensions of the field (i.e. N
PIX

×N
PIX

in the case of E = 2).

Figure 2.5 show 2-dimensional fBm fields for different values of H (left: H = 0, centre:

H = 0.5, right: H = 1). The fields in this Figure have N
PIX

= 1000. Similar to the 1D case,

we can see that as H → 1 the field is smooth with more large scale structure than small scale

structure. Conversely when H → 0 we can see that the field is rougher with a lot of small

scale structure and hardly any large scale structure. The three fields here have been generated

with the same random seed so as to preserve the general shape of the fields. It is also evident

that these fields are periodic. This is a consequence of the spectral synthesis method which we

shall explore in more detail in Section 2.3.3.
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Fig. 2.4 Top: The distribution of the points that make up f(x), for the three curves shown in
Figure 2.2. The red lines give the mean of the distribution which in the case of all three figures
is 0. Bottom: The distribution of the increments, ∆f , these are all Gaussian with a mean of
0 (red line). The green lines give the standard deviation of these Gaussians. The variances of
these three distributions are, 4.86× 10−1, 9.29× 10−3, and 2.11× 10−4, from left to right.

Fig. 2.5 Three 2D (E = 2) fBm images for different values of H (From left to right: H = 0,
H = 0.5, H = 1). All three fields have been generated using the same random seed in order to
preserve the same general shape.
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Fig. 2.6 The distributions of the pixel values of the 2D fBm fields shown in Figure 2.5. The
mean is shown as a red vertical line. For all fields this is shown to be 0.

Fig. 2.7 Left: A 1-dimensional (E = 1) fBm curve that has N = 106 and H = 1. Right: Its
distribution, with the mean marked with a red vertical line, which is 0

There is also a difference in the distribution of the pixel values, f(r), which is shown in Figure

2.6. Similar to the 1-dimensional case we see that the two-dimensional fields also have a mean

of 0, shown by the red vertical lines. We also see that as H → 0 the distribution of f(r) tends

towards a Gaussian. There is a slight difference in the distributions from the 1D case: As

H → 1, the distribution remains roughly Gaussian for 2D fBm compared to 1D fBm. One

possible explanation for this difference is the resolution of the curves. The 1D curves shown

in Figure 2.2 have N
PIX

= 103 total points while the 2D curves shown here have

(N
PIX

)2 = 106 total points. Figure 2.7 shows a 1D fBm with N
PIX

= 106 and H = 1 as well as

its distribution. Thus we can see that increasing the resolution of the curve does not affect its

distribution as it is still not Gaussian.

Taking the Fourier Transform of f(r) produces the power spectrum f̂(k) where k ≡ (k1, k2),

is a grid of wave-vectors taking integer values of −N
PIX

/2 ≤ ki ≤ N
PIX

/2 for each ith

direction. The top row in Figure 2.8 shows F̂ (k) of each of the fields in Figure 2.5, where
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Fig. 2.8 The top row shows the amplitudes F̂ (k) of the 2D power spectra of the fields shown
in Figure 2.5. The plots in the bottom row show a cross section of each of the 2D F̂ (k) plots in
the top row. The position of each cross-section is given by the red lines. The slope of each of
the graphs has been used to calculate βEST .

F̂ (k) = ||f̂(k)||. F̂ (k) is symmetrical around k0 = 0. By taking a cross-section through k0

we can deduce the β and thus H. In this instance we take a linear cross-section at k2 = 0

(shown by the red lines). The bottom row shows the respective plots of these cross-sections,

from which we can deduce βEST . As with the 1D case we see that βEST , agrees with βTRUE .

2.3.3 Spectral Synthesis

All of the fBm curves used in this work have been generated using the Spectral Synthesis

method, which is a non-recursive way of generating an fBm. Recursive methods are highly

dependent on the initial state of the system, and as a result are noisier than non-recursive

methods.
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We have already seen how fBm have a well defined power spectrum and thus the main idea of

spectral synthesis is that this power spectrum is constructed first, and then an Inverse Fourier

Transform is applied which generates the fBm. We shall denote an fBm field as f(r) and its

power spectrum as f̂(k).

We start with a grid of integer wave-vectors k = (k1, k2), which take values

−N
PIX

/2 ≤ ki ≤ N
PIX

/2. The power spectrum is then given by,

f̂(k) = A(k)[cosϕ(k) + i sinϕ(k)]. (2.6)

The amplitudes, A(k), are given by

A(k) =

0, if k = 0

K−1/2||k||−β/2, if k ̸= 0

(2.7)

where, K is a normalisation factor that scales the total power to unity, and β is the power-law

index. These are given by,

K =
∑
k

||k−β||; (2.8)

β = E + 2H. (2.9)

The phases, ϕ(k), are given by,

ϕ(k) = χ(k)− χ(−k) (2.10)

where χ(k) is a random variate that is drawn from a uniform distribution and takes values

0 ≤ χ(k) ≤ 2π. Equation 2.10 ensures that f̂(k) is the complex conjugate of f̂(−k). This is

done in order to ensure that f(r) only has real values. Performing an inverse Fourier

Transform on f̂(k) produces the fBm field f(r).

This process produces a field that is periodic. Since we want to model observed fields that are

not periodic, we need to deal with this periodicity. To do this we generate an intermediary

field, f ′(r′), with four times as many pixels along each axis, i.e. 1 ≤ r′i ≤ 4N
PIX

, and then

select and cut out a N
PIX

×N
PIX

section.
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2.4 Exponentiated fBm

We have already seen how fBm have a roughly Gaussian distribution with a mean of around

zero, ⟨f(r)⟩ ∼ 0. As a result fBm fields contain negative values. If we want to model fields

that are positive only (such as column density), then we need to make the fBm field positive

everywhere. There are a few ways of doing this.

The simplest way to do this is to normalise the field by shifting and scaling the field such that

it has particular values for its minimum and maximum. Common values of the minimum and

maximum are 0 and 1, respectively (Shadmehri and Elmegreen, 2011). Another way of

normalising the field is to set its minimum and mean to particular values such as 0 and 0.5

respectively. However both of these techniques tend to produce noisy results as they can be

quite sensitive to outliers.

A better technique is to exponentiate the field according to

g(r) = exp

{
Sf(r)

⟨f 2(r)⟩1/2

}
. (2.11)

S is a scaling factor that controls the dynamic range of the field, and can take any value. Since

Equation 2.11 is a one-to-one function the fractal properties of the field are unchanged. At

S = 0 the field is simply a flat field with a uniform value of unity. As S increases the dynamic

range increases and the high-intensity structures gain contrast. S is closely related to the

standard deviation of log g(r) (Peitgen and Saupe, 1988; Stutzki et al., 1998; Elmegreen,

1997; Lomax et al., 2018; Bates et al., 2020). We refer to fBm fields that have undergone this

process as Exponentiated fBm fields, or xfBm.

Figure 2.9 shows how the structure of 2D xfBm fields vary with both H and S. H decreases

from top to bottom while S increases from left to right. Shown are nine fields with

H = [0, 0.5, 1] and S = [0.1, 0.5, 2]. All nine fields have been generated with the same

random seed in order to preserve the general shape. The fields have also been normalised such

that the field has value 0 ≤ g(r) ≤ 1. Each field has had its centre of mass shifted to the centre

of the image. There are also contour lines that show the value of the field at those contours.

We can clearly see that when S increases the structure becomes less evenly distributed and the

field intensity starts to concentrate into fewer and fewer regions. This can be seen when in the
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bottom right panel (H = 0, S = 2) where the structure is mostly within a few distinct regions.

It is worth noting that for this particular example the fields are still periodic. Although H and

S differ between each image, we can still see a hint of this periodicity. These plots have

N
PIX

= 103.

Equation 2.11 also has the effect of transforming the field from one with a Gaussian

distribution into one with a roughly lognormal distribution. This is shown in Figure 2.10. The

distributions here are those of the fields shown in Figure 2.9. For each distribution we fit a

lognormal curve which is shown in red. This fit is done using the scipy.stats.lognorm

function in the SciPy package (Virtanen et al., 2020). This lognormal approximates the

peaks of the distributions very well, especially for low values of S. For higher values of S we

see that the tail of the distribution is lower than the tail of the fit. This is seen especially in

panels (c), (e), and (f). In general we find that the distributions are most similar to a lognormal

for low values of H and S. The mean and standard deviation of each lognormal fit is given by

µ and σ, respectively. We can see that σ agrees very well with S. This is due to the fact that S

can be thought of as the standard deviation of the field.

Figure 2.11 shows the power spectra of these fields, while Figure 2.12 shows a cross-section

of these power spectra taken at k1 = 0, which we denote as Ĝ(k2, k1 = 0). Ĝ(k) is the

amplitude of the power spectrum ĝ(k), i.e. Ĝ(k) = ||ĝ(k)||. The location of the cross-section

is shown by the red line in Figure 2.11. We can see that these power spectra are noisier then

the ones for non-exponentiated fBm (Figure 2.8). This level of noise increases as we increase

S, and there is a higher level of noise at high k. In spite of this noise we are still able to

estimate H very well by fitting a straight line to the curve (shown by the dashed red line in

Figure 2.12), estimating the power law exponent β, and thus obtaining an estimate of H

(which we denote as HEST ) by using Equation 2.3. The value of H used to generate the fields

is denoted by HTRUE . The value of H is estimated very well here with this estimation being

slightly worse in panel (i), which underestimates H by 0.2. The field in this panel has

HTRUE = 0 and S = 2.0.

2.4.1 Noisy xfBm fields

We also investigate the effect of noise on xfBm fields. We generate a white noise field, w(r)

with r = (r1, r2) where 1 ≤ ri ≤ N
PIX

. Each pixel in w(r) is generated from a Gaussian
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Fig. 2.9 Nine 2D xfBm fields that show how the structure varies with H and S. H increases
from the bottom to top while S increases from left to right. There are also contours that show
lines of constant intensity. All nine plots have been plotted using the same random seed to
preserve the general shape and all nine have N

PIX
= 103. Each field has also been normalised

such that the standard deviation is unity. These fields are all periodic and each one has had its
centre of mass shifted to the centre of the image.
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Fig. 2.10 The distributions of the fields shown in Figure 2.9. We have fitted a lognormal to
each of these distributions, which is given by the red curves. The mean and standard deviation
of the fitted lognormals is given by µ and σ.
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Fig. 2.11 The amplitudes, Ĝ(k), of the power spectra, ĝ(k), of g(r) shown for different values
of H and S. The red line at k2 = 0 marks the cross-section that is taken to generate the plots in
Figure 2.12.
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Fig. 2.12 The value of Ĝ(k1, k2) when k2 = 0 for the power spectra shown in Figure 2.11. The
black line is Ĝ(k1, k2 = 0) measured from g(r) while the red dashed line is the linear fit of
Ĝ(k1, k2 = 0). The slope gives an estimate of H, denoted as HEST .
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distribution with mean of 0 and standard deviation of ησg, where σg is the standard deviation

of g(r), and η is a parameter that controls how much noise is added to the field. In this section

we set η = 0.05. We then get the noisy field, g′(r), according to g′(r) = g(r) + w(r).

Figure 2.13, shows the cross-sectional amplitude of the power spectrum Ĝ′(k1, k2 = 0) for

different H and S. The solid black curves show the measured amplitude while the red dashed

line shows the linear fit. We can see that when H = 1 and log(k1) > 2 the amplitude flattens

off. This is due to the contribution of the noise to the power spectrum. Since high values of H

have less high frequency modes than lower values of H, the high frequency portion of the

power spectrum for high H is dominated by that of the white noise, which has a gradient of 0.

Thus in order to estimate H the linear fit must be done for the portion of this graph that does

not have a gradient of 0.

Table 2.1 shows the true and estimated values of H and S for the fields shown in Figure 2.13.

H is estimated from the slope of the power spectrum while, S is estimated by taking the

standard deviation of the log g′(r). We can see that S is estimated very well when

STRUE = 0.1 and STRUE = 0.5 for all cases of H, however when STRUE = 2 taking the

standard deviation underestimates S. H tends to be underestimated in all cases except for a

few of the fields, while one of the estimations is larger than the true value.

Table 2.1 Table showing the true and estimated values of each of the xfBm fields from Figure
2.13.

HTRUE HEST STRUE SEST

1.00 0.98 0.10 0.10
1.00 0.99 0.50 0.50
1.00 1.06 2.00 1.67
0.50 0.50 0.10 0.10
0.50 0.48 0.50 0.50
0.50 0.40 2.00 1.60
0.00 0.00 0.10 0.10
0.00 -0.01 0.50 0.50
0.00 -0.20 2.00 1.46

2.4.2 Summary: Noisy and non-periodic xfBm fields

We construct noisy and non-periodic xfBm fields by combining the field-generating processes

from above. First, the non-periodic xfBm field is generated. This is done by generating an

xfBm field of size 4N
PIX

× 4N
PIX

and then slicing the middle N
PIX

×N
PIX

. As before, we set
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Fig. 2.13 Plotting of Ĝ′(k1, k2 = 0) against k1. The black line shows the data while the red
dashed line shows the linear fit. For the top row (panels (a), (b), and (c)), there are two linear
portions of the plot. When log(k1) > 2 we see that the plot flattens out. This is due to the
contribution of white noise to the power spectrum, which is lending more power to the high
frequencies. Thus the linear fit was only made for log(k1) < 2.
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N
PIX

= 1000 and generate nine 2D (E = 2) fields each with a different combination of

H = [0, 0.5, 1],S = [0.1, 0.5, 2] (See Section 2.4). We then add noise to each field using the

process outlined in Section 2.4.1. This gives us a noisy, non-periodic field which we call x(r).

Taking the Fourier Transform, we get the power spectrum, x̂(k). We then calculate the

amplitudes X̂(k) = ||x̂(k)|| and set k2 = 0. H is estimated according to

X̂(k1, k2 = 0) = k
−E+2H

2
1 . (2.12)

S is estimated by taking the standard deviation of the field.

Table 2.2 shows the true, TRUE, and estimated, EST , values of H and S for each of the nine

noisy, non-periodic xfBm outlined above. The performance of these estimations is the worst

so far with both H and S being severely underestimated in all cases except for when H = 0

and S = 0.1.

Table 2.2 Table showing the true and estimated values of 9 noisy, non-periodic xfBm fields.

HTRUE HEST STRUE SEST

1.00 0.06 0.10 0.02
1.00 0.06 0.50 0.11
1.00 0.10 2.00 0.44
0.50 0.07 0.10 0.05
0.50 0.05 0.50 0.23
0.50 0.34 2.00 0.95
0.00 0.01 0.10 0.09
0.00 -0.11 0.50 0.45
0.00 -0.35 2.00 1.47

2.5 Next steps

So far we have only been dealing with fields that have N
PIX

= 1000. The next chapter deals

with the effects of N
PIX

on the estimation of these metrics. In particular we shall look at the

cases where N
PIX

= [128, 64, 32]. We shall also introduce different techniques in particular

∆-variance (Stutzki et al., 1998; Ossenkopf et al., 2008a; Elmegreen, 2002) and Machine

Learning.
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CHAPTER 3

Estimating H and S using Established Techniques

3.1 Preamble

In the previous Chapter (Chapter 2) we saw how the power spectrum of fBm and xfBm fields

vary with different parameters (H and S) and constraints (noise and periodicity). The aim in

that chapter was to investigate whether it was possible to recover the original values of H and

S that were used to generate the fields. This was done on a singular basis, using one field at a

time, however in this Chapter we aim to produce large scale statistics by estimating H and S

for many fields rather than a handful. We investigate two different techniques that have been

designed to estimate H, which are; the Perimeter-Area method (this was briefly touched upon

in Section 2.2), and the Delta-Variance method (Stutzki et al., 1998). We also investigate the

estimation of S . The next chapter (Chapter 4) is dedicated to developing our own method

using Machine Learning. We will now primarily focus on 2-dimensional (E = 2) fields that

have N
PIX

= [128, 64, 32], except where stated otherwise. The pixel sizes chosen here are

arbitrary and a machine learning model can be trained on any pixel size (with the caveat that a

smaller N
PIX

can give poorer results).

3.2 Estimating S

Lomax et al. (2018) state that the exponentiating factor, S, is simply the standard deviation of

log g(r), where g(r) is the xfBm field and r = (r0, r1) is the extent of the field and takes

values 0 ≤ ri ≤ N
PIX

. This is, by definition, a result of performing the exponentiation

according to Equation 2.11.

The montage in Figure 3.1 shows the effect of the various processes outlined in Chapter 2 on

this estimation of S. Each point on these plots represents a single xfBm field. The value of S
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that is used to generate each field is denoted as STRUE , while the estimation of S is denoted as

SEST :N
PIX

. The top row shows fields with N
PIX

= 128, the middle row shows fields with

N
PIX

= 64, and the bottom row shows fields with N
PIX

= 32. The different columns show,

from left to right:

• Pure xfBm fields, i.e. fBm fields that have then been exponentiated according to

Equation 2.11. These fields are periodic.

• xfBm fields that are non-periodic. This is done by generating an xfBm field of size

4N
PIX

× 4N
PIX

and slicing out the middle N
PIX

×N
PIX

.

• xfBm fields that have Gaussian noise added to them. This is done using the process

described in Section 2.4.1 where each pixel has a variate G added to it. G is a random

variate drawn from a Gaussian distribution with mean of 0 and a standard deviation of

0.05σRMS , σRMS being the standard deviation of the field. These fields are periodic.

• xfBm fields that are both noisy and non-periodic. In this process the field is first sliced

(to make it non-periodic), then the noise is applied.

Each field in Figure 3.1 has a randomly generated value of H and S, sampled from a uniform

distribution. S was sampled from the interval [0, 3] while H was sampled from the interval

[0, 1]. The value of H for each field is shown via the colour-bar. We also include the

root-mean-square (RMS) error, ε, for each plot. The black line represents a perfect estimation

where SEST = STRUE .

The first thing to notice is that there isn’t a large amount of difference in the accuracy of this

estimation for fields that have different values of N
PIX

. The error for pure xfBm is

non-existent, while the error within the other vertical groupings differs by at most 0.02. This is

a negligible error difference.

We can see that for pure xfBm fields this technique recovers S perfectly with 0 error. This is

due to the definition of S in this case. The worst performing grouping is the one with noisy,

non-periodic fields, with the periodicity (or lack thereof) playing a significant role in this error.

In fact if we were to add up these errors according to the standard rule

(εTOTAL)
2 = (ε1)

2 + (ε2)
2 we would find that the error of the noisy and periodic panels are

stochastic, with independent contributions from the noisy and the non-periodic parts of the

xfBm generation process.
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Fig. 3.1 Accuracy plots for different xfBm fields for estimating the value of S. The x-axis
shows the true value of S which we denote as STRUE , while the y-axis shows the estimated
value of S which we denote as SEST . The top row shows fields with N

PIX
= 128, the middle

row shows fields with N
PIX

= 64, and the bottom row shows field with N
PIX

= 32. The different
columns correspond to different versions of the xfBm fields. From left to right they are; (i):
Pure xfBm (noiseless and periodic), (ii): Non-periodic xfBm, (iii): Noisy xfBm, (iv): Noisy
and non-periodic xfBm. The black line at at SEST = STRUE represents a perfect estimator.
The RMS error is shown as ε. Each of the plots represents 1000 fields each with random H and
S. The value of H is represented by the colourbar.

36



When the field is non-periodic only, we find that S is increasingly underestimated as the

values of both S and H increase. When the field is noisy only, this estimation works

extremely well until STRUE ∼ 1.5 where S starts being severely underestimated. This is due

to the fact that as S increases, the intensity of the field becomes more concentrated in fewer

and fewer regions, leaving the rest of the field with less intensity, thus when a fairly flat noise

field is added to the image, these low intensity regions have a lower signal to noise than the

high intensity. At a particular threshold of S , these low signal-to-noise regions will make up a

larger portion of the field and thus their contribution to the measurement of the standard

deviation dominates. The right-most column shows a combination of these two effects, with a

consistent underestimation of S up until the threshold, STRUE > 1.5, at which point the

signal-to-noise dominates, resulting in serious underestimation of S.

3.3 Estimation of H using the Perimeter-Area method

The Perimeter-Area method was one of the earliest methods used to determine the fractal

dimension, D, of a structure (Mandelbrot and Cannon, 1984; Peitgen and Saupe, 1988), and

has since been popularly used to describe astronomical structures (Beech, 1987; Bazell and

Desert, 1988; Falgarone et al., 1991; Hetem and Lepine, 1993; Vogelaar and Wakker, 1994;

Sanchez et al., 2005; Rathborne et al., 2015; Marchuk et al., 2021; Petkova et al., 2023).

This method involves constructing a number, N
CONT

, of iso-density contours and then

measuring the perimeter, P , and area, A, of each contour. D is then estimated according to

Equation 2.1. We can then use Equation 2.4 to estimate H. Vogelaar and Wakker (1994) study

the limitations of this method using fBm fields and suggest a number of caveats to the process.

One suggestion by Vogelaar and Wakker (1994) is to only use contours that are ≥ 3σRMS

where σRMS is the standard deviation of the field. This is because contour placement is quite

sensitive to noise and using only ≥ 3σRMS contours is a way to eliminate low signal-to-noise

pixels. They also suggest to only include the contribution to each A, of that of contour

‘islands’ that have Ai > 25 pixels. This is generally not a problem if the images that we are

dealing with have large N
PIX

, such as N
PIX

= 1000.

Figure 3.2 shows an example of the Perimeter-Area method on a single fBm image, with

N
PIX

= 1000 and H = 0.5. The left image shows the contours used, while the image on the

right shows a plot of log10(P ) against log10(A). The red line shows the linear fit through the
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Fig. 3.2 An example of how the Perimeter-Area method of determining the fractal dimension.
Our test image is a 2-dimensional (E = 2) fBm image with parameters, H = 0.5, and N

PIX
=

1000. The left hand side shows the iso-level contours of our test field. Plotting the perimeters
and the areas of these contours produces the plot on the right. The red line shows the linear fit
to these values which are plotted as black dots. The estimated and true values of D and H are
shown. The estimation here has NCONT = 5.

points. Following the limitations outlined in Vogelaar and Wakker (1994) we find that the

estimated value of H is only 0.002 different from the true value. Vogelaar and Wakker (1994)

mention that this model can estimate D to within 0.05 for 1.2 ≤ D ≤ 1.6 and this is the case

here. The number of contours used here is N
CONT

= 5. It is quite obvious to see that much of

the image is not used.

These limitations present a problem when dealing with small fields, particularly the ones we

are interested in (i.e. ones with N
PIX

= [128, 64, 32]). In fact it is frequently the case that no

such contours exist for these fields when taking these limitations into account.

Another issue is the fact that the perimeter-area method must only contain closed contours in

order for it to work. Taking the lower limit contour > 3σRMS , as mentioned above, deals with

this, however for small fields such as ours, this can quite frequently rule out most of the field.

Another way of minimising the occurrence of open contours is to ensure the structure to be

studied is centred in the image. However real-life structures can be quite extended, and in

order to model such structures we must allow the generation of xfBm structures that extend
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beyond the boundaries of the box. For fields such as ours (N
PIX

≤ 128) we do not produce

meaningful results using Perimeter-Area. This is shown below.

Figure 3.3 shows the performance of Perimeter-Area when applied to different flavours of

xfBm. Each panel represents 1000 fields with a random H chosen from the uniform interval

[0, 1] and a random S chosen from the uniform interval [0, 3]. From top to bottom we have

fields with N
PIX

= 128, N
PIX

= 64, and N
PIX

= 32, and from left to right we have: (i): pure

xfBm (periodic and noiseless), (ii): non-periodic xfBm, (iii): noisy xfBm, and (iv): noisy and

non-periodic xfBm. The black line at HEST = HTRUE shows a perfect estimator and the

colourbar represents S. For such small fields no contours would exist if we take any of the

precautions mentioned in Vogelaar and Wakker (1994) and thus these estimations were made

using all available contours. As predicted by Vogelaar and Wakker (1994) this estimation is

fruitless and no accurate measurement of H can be found this way. This is mostly due to the

fact that. for such small contour areas, there is substantial amount of noise due to the

placement of the individual contours. Thus we do not use Perimeter-Area for our estimations.

3.4 Estimation of H using the Delta Variance method

Stutzki et al. (1998) show a more reliable way of estimating, D (and thus H) by introducing

the Delta-Variance method. Delta-variance is a generalisation of the Allan Variance (Allan,

1966) and provides a measure of the amount of structure that exists on different length-scales.

The Delta-Variance, σ2
∆(L), of a 2-dimensional field, g(r′) is the variance of the field after it is

convolved with a circular filter function, ⊙L, of length-scale L,

σ2
∆(L) =

1

2π

〈
(g ⊛⊙L)

2
〉
r′

, (3.1)

where ⊛ denotes the convolution operation. Here, we perform a coordinate transformation

such that r −→ r′ = (r′0, r
′
1) where −1/

√
2 ≤ r′i ≤ 1/

√
2, in contrast to 0 ≤ ri ≤ 1. This also

ensures that |r′| ≤ 1 under the condition that the bounding box is perfectly square.

The σ2
∆ measures the amount of substructure that exists at the scale of L, and has the

relationship, σ2
∆ ∝ Lβ−E . Thus by substituting β for H and taking the derivative w.r.t log(L)

we get,
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Fig. 3.3 Accuracy plots for the estimation of H using the perimeter-area method. Each of
the points represents an xfBm field. The black line at HEST = HTRUE represents a perfect
estimator. The top row has fields with N

PIX
= 128, the middle row has fields with N

PIX
= 64,

and the bottom row has fields with N
PIX

= 32. The different columns correspond to different
versions of the xfBm fields. From left to right they are; (i): Pure xfBm (noiseless and periodic),
(ii): Non-periodic xfBm, (iii): Noisy xfBm, (iv): Noisy and non-periodic xfBm. Each of the
plots represents 1000 fields each with random H and S. The value of S is represented by the
colourbar.
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H =
1

2
· d log(σ

2
∆)

d log(L)
. (3.2)

Plotting log(σ2
∆) against log(L) and taking the gradient we can therefore estimate H.

There is discussion to be made on the choice of the circular filter, ⊙L. Stutzki et al. (1998)

originally use a French hat filter function,

⊙l =
4

πL2


1 if |r′| ≤ L/2

−1/8 if L/2 < |r′| ≤ 3L/2

0 if |r′| > 3L/2.

(3.3)

Figure 3.4 shows what a French hat filter function looks for L = [0.1, 0.5, 1]. The top row

shows the 2-dimensional filter function, while the bottom row shows a cross-section taken at

r′1 = 0. r′1 = 0 is shown as a red line in the top row. This filter function consists of a positively

valued core (shown in yellow) and a negatively valued annulus (shown in dark blue). At a

particular L the convolution operation suppresses structures that are of a different length-scale

than L and thus taking the variance of the leftover structures we have a measure for how much

variation in the structure is at that particular length-scale.

Ossenkopf et al. (2008b) note that the discontinuities between the core, the annulus, and the

background of the French Hat filter function causes inaccurate estimations for σ2
∆ at high

frequencies. A remedy for this is to use a Mexican Hat filter function instead. The core and

annulus of the Mexican Hat filter are two Gaussians that are combined in order to remove any

discontinuity in the function. This is the filter that we use and it is given by,

⊙L(r
′) = ⊙CORE,L(r

′)−⊙ANN,L(r
′) (3.4)

⊙CORE,L(r
′) =

4

πL2
exp

(
−4r′

2

L2

)
(3.5)

⊙ANN,L(r
′) =

4

π(ν2 − 1)L2

{
exp

(
−4r′

2

ν2L2

)
− exp

(
−4r′

2

L2

)}
, (3.6)

where ν determines the ratio between the width of the annulus and the core. Ossenkopf et al.

(2008a) suggest using a value of ν = 1.5, and this is what we do here.
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Fig. 3.4 Plots showing the French Hat filter for different L. The top row shows the 2D filter,
while the bottom row shows a cross-section through the red line (r′1 = 0).

Figure 3.5 shows the Mexican Hat filter for L = [0.1, 0.5, 1]. Similar to Figure 3.4, the top row

shows the 2D filter while the bottom row shows a cross section at r′1 = 0 (shown by the red

line). This is clearly a continuous function and as a result σ2
∆(L) will not be contaminated by

the high frequency modes that are present in the Fourier space of the French Hat filter

function.

Figure 3.6 shows the difference in the power spectrum between the two filters. The top row

shows the French Hat filter function while the bottom row shows the Mexican hat filter

functions. The French hat filter function produces a number of artefacts in the power spectrum

while the Mexican Hat function is cleaner, and therefore gives a better result (Ossenkopf et al.,

2008b).

3.4.1 Periodic Fields

If the field is known to be periodic then computing the Delta-variance is quite straightforward.

Ossenkopf et al. (2008b) note that it is less computationally expensive to integrate the product

of the power spectrum of the field and that of the circular filter over k,
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Fig. 3.5 Plots showing the Mexican Hat filter for different L. The top row shows the 2D filter,
while the bottom row shows a cross-section through the red line (r′1 = 0).

Fig. 3.6 A comparison between the power spectra of the French Hat filter function and the
Mexican Hat filter function. The top row shows the power spectrum of the French hat filter
function. The bottom row shows the power spectrum of the Mexican Hat filter function. The
columns indicate different values of L.
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σ2
∆(L) =

1

2π

∫
ĝ(k)|⊙̂L|2d2k, (3.7)

where ĝ(k) is the power spectrum of the field, g(r′), ⊙̂L is the power spectrum of the filter

function, ⊙L(r
′), and k is the wavenumber. L here denotes the relative size of the filter to the

image and has values 0 ≤ L ≤ 1.

3.4.2 Non-periodic fields

If the field is non-periodic then a more complex procedure is needed. This is in order to

reduce any edge effects since Fourier Transforms assume a periodic field. The field is padded

out to twice the size (i.e 2N
PIX

× 2N
PIX

). The padded values are set to zero. The convolution

operation is then performed on just the pixels that make up the original image. If we do not

zero-pad the image, the convolution operation would wrap around the edge of the field, and

would consist of contributions from the opposite side of the field. This is more easily done

using the following process:

1. First, the convolution is split into the following four parts,

FCORE,L(r
′) = fPAD(r

′)⊛⊙CORE,L(r
′) (3.8)

FANN,L(r
′) = fPAD(r

′)⊛⊙ANN,L(r
′) (3.9)

WCORE,L(r
′) = w(r′)⊛⊙CORE,L(r

′) (3.10)

WANN,L(r
′) = w(r′)⊛⊙ANN,L(r

′). (3.11)

Here, fPAD(r
′) is the zero-padded field, while w(r′) is a mask that takes values of one

corresponding to the non-zero values of fPAD(r
′) and then zero padded to r′. Each of

these convolutional operations is calculated by taking the product of their Fourier

Transforms.

2. The four different convolutions are then combined according to,

FL(r
′) =

FCORE,L(r
′)

WCORE,L(r′)
− FANN,L(r

′)

WANN,L(r′)
(3.12)
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3. The weight parts are combined to produce a final map of weights,

WTOT,L(r
′) = WCORE,L(r

′)WANN,L(r
′). (3.13)

This map of weights gives the central pixels of the field a higher weight than the ones

closer to the edges. As a result the effect of the discontinuity at the edges of the field can

be minimised.

4. Finally the Delta-variance is calculated according to,

σ2
∆(L) =

Σ{(FL(r
′)− ⟨FL(r

′)⟩)2 ·WTOT,L(r
′)}

Σ{WTOT,L(r′)}
(3.14)

Figure 3.7 shows a set of Delta-variance plots for fBm fields. These fields are pure (i.e.

periodic and noiseless). Each of the Delta-Variance curves represents a single field with each

of the plots showing five curves, one for each of H = [0.00, 0.25, 0.50, 0.75, 1.00]. Each panel

corresponds to different N
PIX

= [128, 64, 32]. It is important that an appropriate L-range is

chosen such that a good linear fit can be made. The L-range that is chosen is different for

different N
PIX

as a valid range of L will depend on the scale of the whole field. Therefore L

must be chosen such that it is not too close to the total size of the field or to the resolution

limit. These two limits produce end effects in the curve that are not linear. These end effects

can be clearly seen in Figure 3.7. The red shaded region shows the range of L that was used to

estimate the gradient and thus H. For N
PIX

= 128, L is chosen to have values

−1.5 ≤ log10 L ≤ −0.5, when N
PIX

= 64 we choose −1.25 ≤ log10 L ≤ −0.5, and when

N
PIX

= 32 we choose −1 ≤ log10 L ≤ −0.4. We can see that from these plots that, for pure

fBm fields, Delta-Variance recovers H quite well. The estimated and true values of H are

shown in the inset of each panel.

Figure 3.8 shows Delta-variance curves for noisy and periodic xfBm fields with N
PIX

= 32

with each colour representing a different H = [0.00, 0.25, 0.50, 0.75, 1.00]. Panel (a) shows

fields with S = 0.5, panel (b) shows fields with S = 1, and panel (c) shows fields with S = 3.

The inset of each panel shows the true and estimated values of H. The coloured red area

shows the range of L that is taken to estimate the slope and thus H. For S = 0.5 we choose

−1.25 ≤ log10 L ≤ −0.75, for S = 1, we choose −1.25 ≤ log10 L ≤ −0.5, and for S = 3 we

choose −1 ≤ log10 L ≤ −0.4.
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Fig. 3.7 Delta-variance curves for pure (periodic and noiseless) fBm fields. Each of the panels
shows fBm fields which have H = [0.00, 0.25, 0.50, 0.75, 1.00] and are represented by different
colours. Panel (a) shows fields with N

PIX
= 128, panel (b) shows fields with N

PIX
= 64, and

panel (c) shows fields with N
PIX

= 32. The red shaded region shows the range of L for which
a linear fit was estimated and thus H estimated. The true and estimated values of H are shown
in the inset.

We can already see from Figure 3.8 that the estimation of H for xfBm is not as good as for

fBm (See Figure 3.7). This is due mostly to the fact that the slope is not well-defined for a

substantial number of fields. This results in such fields having a Delta-variance curve where it

is difficult to find a portion of the curve that is linear, and in some cases there are often more

than one. A good example of this is the S = 3,HTRUE = 0.25 curve in panel (c) of Figure 3.8

which is marked in orange. This curve clearly has two regions (log10(L) ≤ −0.8 and

−0.5 ≤ log10(L) ≤ −0.4) that are linear. For a number of fields that do have a well-defined

slope we often find that the estimation tends to give incorrect, or even negative, values.

Figure 3.9 shows a large scale estimation of H using Delta-variance. Each of the panels

contains 1000 xfBm fields that have been generated with a random H, chosen from the

interval [0, 1], and a random S, chosen from the interval [0, 3]. The top row indicates fields

with N
PIX

= 128, the middle row indicates fields with N
PIX

= 64, while the bottom row

indicates fields with N
PIX

= 32. One interesting feature that we can see across all panels is

that as S increases H becomes more and more underestimated. This points to a degeneracy

between high values of S and low values of H. In fact, if we have a field where H is low and S

is also low, there is more small scale structure than large scale structure, and if we have a field

where H is high and S is also high the structure is more concentrated in a few small regions.

These two fields will both have more small scale structure than large scale structure, leading to
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Fig. 3.8 Delta-variance curves for noisy and periodic xfBm fields. Each of the panels shows
xfBm fields which have H = [0.00, 0.25, 0.50, 0.75, 1.00] and are represented by different
colours. Panel (a) shows fields with S = 0.5, panel (b) shows fields with S = 1, and panel (c)
shows fields with S = 3. The red shaded region shows the range of L for which a linear fit was
estimated and thus H estimated. The true and estimated values of H are shown in the inset.
Each of the fields shown here have N

PIX
= 32.

Delta-variance underestimating H in the latter case. The main visual difference between these

two fields is that the former (low H and S) is more extended than the latter (high H and S).

We refer the reader to Figure 2.9 for a visual comparison between two such fields.

The accuracy of these estimations can no doubt be improved with careful analysis of the

Delta-variance curves. However this involves checking the curves visually and selecting the

appropriate portion of the curve for which there is a well-defined slope. This human element

adds a considerable amount of time and effort to this analysis and is thus infeasible in the case

of producing maps of H and S. Furthermore we find that Delta-variance tends to be quite

computationally expensive. The estimations for Figure 3.9 took 6 hours to produce on a

personal computer. Therefore it only makes sense to use this technique when analysis of a

single region or structure is required. In fact this is mostly what Delta-variance has been used

for, and in most studies a single value of H, β, or D is found per region. In Stutzki et al.

(1998) and Ossenkopf et al. (2008b) use it to examine the Polaris Flare determining β = 2.77

(H = 0.385), while Elia et al. (2014) use it to investigate a number of whole Hi-GAL tiles

(Molinari et al., 2010) producing single values of β for a handful of region subsets and tiles.

47



Fig. 3.9 Accuracy plots for the estimation of H using Delta-variance. Each of the points repre-
sents an xfBm field. The black line at HEST = HTRUE represents a perfect estimator. The top
row has fields with N

PIX
= 128, the middle row has fields with N

PIX
= 64, and the bottom row

has fields with N
PIX

= 32. The different columns correspond to different versions of the xfBm
fields. From left to right they are; (i): Pure xfBm (noiseless and periodic), (ii): Non-periodic
xfBm, (iii): Noisy xfBm, (iv): Noisy and non-periodic xfBm. Each of the plots represents 1000
fields each with random H and S. The value of S is represented by the colourbar. The RMS
error is given by ε which is shown in the corner of each panel.
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3.5 Multi-Fractal Analysis

So far we have assumed that the structures are inherently monofractal, i.e the fractal

dimension remains constant at all length-scales. However there is evidence to suggest that the

ISM is multi-fractal (Chappell and Scalo, 2001; Elia et al., 2018). Multifractals are a

generalisation of monofractals and describe structures where the fractal structure is

self-similar but has different scaling behaviours at different scales (Mandelbrot and Cannon,

1984; Halsey et al., 1986; Chappell and Scalo, 2001; De La Fuente Marcos and De La

Fuente Marcos, 2006). Multifractals are also needed if the structure we are observing is in

reality a superposition of more than one fractal structure each with potentially differing fractal

properties, such as those seen along the general vicinity of a particular line of sight. This

would lead to differing values of fractal dimension at different locations.

By tiling the structure with boxes of size L we can measure the generalised box counting

fractal dimension, Dq by,

Dq = lim
L→0

1

q − 1
· logZq(L)

logL
, (3.15)

where Zq(L) is a partition function and is given by,

Zq(L) =
∑
i

P q
i . (3.16)

Here Pi is the probability distribution of the pixel intensity in the ith box normalised over the

entire field. This is simply the sum of the pixel values in that box divided by the sum of all the

pixels in the field. The variable q ∈ ℜ is defined such that q = 0 recovers the Euclidean

dimension (i.e. D0 = E) (Elia et al., 2018). However it is worth noting that for the case where

the fractal structure is a set of points (as opposed to a continuous image), then q = 0 recovers

the mono-fractal dimension, D, of those points (Hentschel and Procaccia, 1983; Halsey et al.,

1986). As q → +∞, Dq characterises the scaling of the high density structures, and as

q → −∞, Dq characterises the scaling of the low density structures.

Figure 3.10 shows two plots of D20 against D−10. Each of the plots contains three groupings

of points, with each group representing xfBm fields with three different S, and with a random

H that is uniformly chosen from the interval [0, 1]. The three values of S are: S = 0.1 which
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Fig. 3.10 Plots of D20 against D−10, where each point represents an xfBm field. Each of the
plots has three distinct groupings for three particular values of S. Fields with S = 0.1 are
represented with a circle (•), fields with S = 1 are represented with a star (⋆), while fields
with S = 3 are represented with a cross (×). Each grouping contains 1000 fields. Each field
was generated with a random value of H picked from a uniform distribution in the interval
[0, 1]. The value of H is represented by the colour-bar. The panel on the left only contains
fields with N

PIX
= 100, while the panel on the right only contains fields with N

PIX
= 1000.

are represented with a circle (•); S = 1 which are represented with a star (⋆); and S = 3

which are represented with a cross (×). Each grouping has 1000 xfBm fields. The fields in the

panel on the left have N
PIX

= 100, while the field in the panel on the right have N
PIX

= 1000.

The values of H for each field are shown via the colour-bar. This is a reworking of Figure 19

found in Elia et al. (2018), but for xfBm fields. For their study Elia et al. (2018) show D20 and

D−10 of fields from: (i) 12 cloud simulations, (ii) 6 Hi-GAL tiles (Molinari et al., 2010), and

(iii) 18 fBm images with β = 2 to 4 (equivalent to H = 0 to 1). These three different sets of

data occupy different regimes in the original plot, and are thus easily distinguishable. For our

study we find that there is a fairly large area that xfBm fields can take, with this area being

more well-defined with higher N
PIX

. There is a noticeable trend for both plots where as H

decreases the fields move from a high D20, low D−10 region to a low D20, high D−10 region.

We also see this trend for when S increases, with the regions occupying a larger space. We

notice that there is quite a bit of overlap between the S = 1 group and the S = 3 group for

both plots, where low H fields with S = 1 occupy the same region as that of high H fields

with S = 3. Thus we can conclude that, due to this degeneracy, this particular plot cannot be

reliably used to distinguish between these two types of xfBm fields.
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In the next chapter we will focus on designing and constructing our own model for estimating

both H and S for noisy and non-periodic xfBm fields. The ultimate aim is to use this model to

produce maps of H and S for real-life observations. Thus we look towards Machine Learning

and design a model that is capable of producing fast and efficient estimations of both H and S.
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CHAPTER 4

The Convolutional Neural Network - Design, Training, and Testing

In this chapter we shall give a brief overview of the Convolutional Neural Network (CNN),

how it is designed, trained, tested, and deployed. We start off by defining the term Machine

Learning and how Neural Networks, including CNNs, fit within this paradigm.

4.1 Machine Learning

Consider a vector x = (x1, x2, ..., xm) that maps to a vector y = (y1, y2, ..., yn) via some

function f :

y = f(x) (4.1)

Given a known x and y, the general goal of machine learning algorithms is to determine, or at

least approximate, f . There are many Machine Learning algorithms that aim to do this.

Examples of Machine Learning algorithms include Support Vector Machines (Cortes and

Vapnik, 1995; Angulo, 2008), and Decision Trees (Breiman et al., 1984; Quinlan, 1986,

1993). The algorithm that is the focus of this work is a specialised architecture of the Neural

Network, called the Convolutional Neural Network (CNN) (LeCun et al., 1989, 1998). We

will give a brief description of the Convolutional Neural Network in the next section below.

We recommend both Bishop (1995) for a rundown of Neural Networks and the textbook by

Bishop (2006) for a more formal mathematical description of different machine learning

techniques, including CNNs.
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4.2 What is a Convolutional Neural Network?

In this section we describe what a Convolutional Neural Network (CNN) is, how it is

designed, trained, and tested. In the next chapter (Chapter 5) we then apply CNNs to

astronomical data. A Convolutional Neural Network is a specialised form of the Neural

Network that is designed to work with image data. In Equation 4.1, x is a vector that consists

of the scalar values (x1, x2, ..., xm). Since these are scalar values a Neural Network with

1-dimensional layers is needed. However if x is a matrix,

x =


x11 . . . x1m

... . . . ...

xn1 . . . xnm

 (4.2)

then a good architecture to use is the Convolution Neural Network. This is because the CNN

is good for when neighbouring values of xnm are closely correlated, such as the pixels in an

image. The CNN can also be used in the cases where x is a rank 3 tensor, such as a colour

image with 3 RGB channels or a data cube (LeCun et al., 1998). In both these cases each of

the corresponding pixels across different channels are also correlated. In this thesis we will

only consider the case where x is a 2-dimensional matrix as defined by equation 4.2 since

most of the data that will be used is in the form of 2-dimensional images.

4.2.1 Artificial Neural Network

A neural network consists of a network of units called neurons. Each neuron takes a vector of

inputs, such as x = (x1, x2, ..., xm) and outputs a single value, y,

y = f(w · x+ b). (4.3)

Here w = (w1, w2, ..., wm) is a weight vector, b is a bias and f is an activation function.

Figure 4.1 shows a graphical representation of a neuron. The activation function can represent

any nonlinear function, and can be chosen freely. Common examples of activation functions

include the Rectified Linear Unit (ReLU) (Nair and Hinton, 2010), and the logistic function.

The logistic is defined as,
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Fig. 4.1 A graphical representation of a neuron, which takes an input x = (x1, x2, ..., xm) and
outputs y = f(w · x+ b)

fLOG(x) =
1

1 + e−x
(4.4)

while the ReLU is defined as,

fReLU(x) =

0, if x ≤ 0

x, if x > 0

(4.5)

Figure 4.2 shows the ReLU and logistic activation functions in graphical form. Activation

functions serve as a way of constraining the output of the neuron, for example, the logistic

function constrains the output of a neuron to lie between 0 and 1, while the ReLU function is

linear for all positive inputs but 0 for all negative inputs. The choice of activation function

within a larger neural network can affect its performance (Bishop, 2006) and as a result we

experiment with different activation functions in order to find one that works best. In the

CNNs used in this thesis the activation function used is the ReLU. We find that the ReLU is

the activation function that gives the best performing CNN (see Section 4.4.3).

We can chain multiple neurons together to form a layer:

y = f(W · x+ b). (4.6)
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Fig. 4.2 Left: Rectified Linear Unit (ReLU) Right: Logistic or Sigmoid

Instead of one output, y, we have a vector of outputs, y = (y1, y2, ..., yu), with each yu

corresponding to the output of each neuron in the layer. The weights are now a matrix of size

u×m which takes the form,

W =


w1

...

wu

 =


w11 . . . w1m

... . . . ...

wu1 . . . wum

 (4.7)

while the bias is now a vector of the form b = (b1, b2, ..., bu). The vector function f is defined

such that each scalar output of W · x+ b is passed through an activation function f , such that

f(W · x+ b) = [f(w1 · x+ b1), f(w2 · x+ b2), ..., f(wu · x+ bu)]. Figure 4.3 shows a

graphical representation of a single layer with 3 neurons (u = 3). The layer in this example

could also serve as the output layer, as by convention the symbol, y, is reserved for the final

outputs of the model.

Layers can also be chained together, where the outputs of one layer become the inputs of the

next layer, with each layer having their own weights and biases,

y = Fl(...F2(F1(z))...) (4.8)

where each Fl(z) = fl(Wl · z+ bl). This type of network is usually referred to as an Artificial
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Fig. 4.3 A graphical representation of a single layer, consisting of 3 neurons. This layer takes
as an input a vector x = [x1, x2, . . . , xm], and outputs y = [y1, y2, y3].

Neural Network and each layer is usually referred to as a Dense layer. Dense layers can be

equivalently referred to as flat or fully connected, which are all terms that refer to the same

1-dimensional layer of neurons, where each neuron is connected to each input from the

previous layer and to each output in the next layer. Figure 4.4 shows a graphical

representation of an ANN where l = 3 (i.e . In this particular example, the input is a vector x1.

The first layer outputs x2 = f1(W1 · x1 + b1), and the second layer outputs

x3 = f2(W2 · x2 + b2). The third and final layer outputs y = f3(W3 · x3 + b3). In this

particular example the neural network outputs two scalar values y = [y1, y2].

The number of scalar outputs in y is arbitrary and depends on the type of problem at hand. For

example, in a typical binary classification problem a single output (y = y) is sufficient. In this

case it makes sense that the activation function for the final layer be the sigmoid, fLOG(x).

Thus 0 ≤ y ≤ 1 and one class can be represented when y > 0.5 and the other class is

represented when y ≤ 0.5.

The Convolutional Neural Networks that are used in this work will strictly output two values:

H and S. We do not constrain these outputs and therefore we do not put activation functions

on the final layer of our CNNs.
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Fig. 4.4 A graphical representation of a multilayer perceptron model that has three layers with
the first two layers having four neurons. The final layer is the output layer and has two neurons.
This neural network takes a vector x1 = [x1, x2, . . . xm] as an input and outputs y = [y1, y2]
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4.2.2 Convolutional Neural Network

A Convolutional Neural Network is a Neural Network where one or more of the layers

consists of a convolutional layer (LeCun et al., 1989). In a convolutional layer each node

represents a convolution operation followed by an activation function. The input to the

convolutional layer used in this thesis is a 2-dimensional matrix, of the form seen in Equation

4.2. The convolution operation works as follows. First, a subsection of the input x is selected,

xsub, and convolved with a filter G. A bias is then added and an activation function is applied,

f(xsub ⊛G+ b). (4.9)

This operation produces a single scalar value.

This operation is then repeated on a different subsection of x for all desired subsections,

keeping G, and b constant. The size of G is set as required for the task. For the rest of this

work we shall work with a filter size of 3× 3,

G =


g11 g12 g13

g21 g22 g23

g31 g32 g33

 (4.10)

The size of xsub is set by the size of the filter used. However which subset of the original

image is selected is set by the user. For each x we choose a 3× 3 window, xsub. The operation

shown in Equation 4.9 is applied. This produces a scalar value. The sliding window is then

moved over to the next subset of x and the process is repeated. The amount that this sliding

window is moved is called the stride, and is set as required. For the rest of this work we will

set the stride to be 1× 1. This means that the sliding window moves across 1 column after

each operation. After reaching the last column, the sliding window then moves 1 row down

and repeats the process. Having the stride smaller than the filter size means that each pixel will

contribute more than once to the output. It is important to note that in this explanation we have

mentioned that the sliding window does the convolution operation sequentially, however each

of these convolution operations are independent of one another and as a result can be made in

parallel. This embarrassingly parallel1 task is an ideal usecase for Graphical Processing Units

1Embarrassingly parallel tasks are ones where it is trivial to split the task into multiple subtasks that can be
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(GPUs) and as a result all the models in this thesis have been done using the GPUs.

Figure 4.5 shows how a single node performs a convolution operation on an input. x. This

convolutional node has a 3× 3 filter, G, and a 3× 3 sliding window xsub,n with a stride of

3× 3. The input to the node is a 6× 6 matrix, x. The top panel shows how the sliding window

selects the first subset xsub,1 and performs the convolution operation on it. The sliding window

then moves 3 spaces to the right to select xsub,2 and performs the convolutional operation

again. At this point the sliding window has reached the right end of the matrix, so it then

moves back to the start of the columns and moves 3 places down. It then repeats the entire

process until the sliding window reaches the bottom right of x. Since, in this example, the

stride is the same size as the filter window there will be no overlapping values of x in each

xsub. The output of the node is a 2× 2 matrix. This is shown in the bottom panel. This output

size can be controlled by modifying the stride. A larger stride will produce a smaller output

size, while a stride of 1× 1 will only reduce the output size by 2 in each dimension (one for

each side of the image). The activation function is then applied to all the resulting values,

although this is not shown in the diagram for simplicity.

Like in the Artificial Neural Network, we can chain multiple convolutional nodes to form a

layer, which we will call l. Each node in the layer will have its own different filter, Gn and

bias, bn. Since each node will output its own 2-dimensional matrix, the layer will output a

rank-3 tensor, xl+1, consisting of Nn of the 2-dimensional matrices. Here Nn refers to the

number of nodes in the layer. Thus the input to each node in layer l + 1 will be xl+1.

Convolutional layers can also be accompanied by Max Pooling layers. A Max Pooling layer is

similar in operation to a Convolutional layer with the difference being that the maximum value

of the window is outputted instead of a convolution with some filter. The outputs to a CNN

can be fed as an input vector to an Artificial Neural Network. This is the approach that is used

in this work.

4.3 Training

Since W (or G in the case of a CNN) and b are unknown quantities they need to be

determined. This is done through a process called training. Consider a training set consisting

of inputs {x0, ...,xN} and targets {t0, ..., tN}. During training a large number of these values

performed independently and in parallel.
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Fig. 4.5 An example showing how a convolutional node works. The activation function opera-
tion has been omitted for simplicity. The convolution operation in this example has a filter size
of 3× 3 with a stride of 3× 3.
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of xn are passed through the model and each of the outputs, yn is compared with the true

value, tn. This is usually done through the use of an error function. The error function used

here is the sum-of-squares error,

E(w) =
1

2

N∑
n=1

||y(xn,W)− tn||2, (4.11)

where we have absorbed G and b into W for simplicity.

By minimising E(W) we can determine the value of W for which the Neural Network is said

to be trained. Minimisation of E(W) is done numerically using gradient descent, such that

∇E(W) ≈ 0. Gradient descent is done in a series of steps. For each step, τ , the weights are

updated according to,

W(τ+1) = W(τ) +∆W(τ) (4.12)

where ∆W(τ) is the update to the weight vector’s value at that step and is given by,

∆W(τ) = −ηl∇En(W
(τ)). (4.13)

Here ηl is known as the learning rate, and it controls how big of a jump in the weight space the

step performs. When the learning rate is too small, the model takes a long time to train, if the

learning rate is too big, the model will struggle to find a minimum. It is important to note that

the minimum reached by minimising E(W) may not be a global minimum but a local one.

One way to mitigate this is to train a mode multiple times and then pick the best performing

one.

The process of calculating the gradient of the error function, ∇En(W
(τ)), is called

backpropagation. Backpropogation is done via the chain rule, which is composed of the

partial derivatives of the error function with respect to each individual weight value. We refer

the reader to Chapter 5 of Bishop (2006) for a detailed derivation on backpropagation and

gradient descent, as well as a detailed mathematical formulation of Neural Networks. Here we

perform each step τ with each data point n, however it is faster to perform each step τ with a

batch of data points. This is called batch training.

A single pass of the full data through this training process is called an epoch. Machine
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Learning models can be trained for multiple epochs, however there is a point at which the

model starts to overfit to the training data. It is therefore common practice to record the value

of the loss after each epoch which is then compared to the loss of an independent set of data

points. This set of independent data points is called the validation dataset. The loss is a metric

that is used to keep track of the performance of the model as it trains. Equation 4.11 is one

example of a loss function The loss that is determined during training is known as the training

loss while the loss determined using the validation dataset is known as the validation loss. By

comparing the training loss with the validation loss after each epoch, we can stop the training

when the validation loss stops decreasing. The model is then said to be trained and it can then

be deployed. This process is know as cross-validation.

In the case of our CNN models, we do not have a fixed size data set as the xfBm images can

be generated on the fly. As a result we define the end of an epoch after we have trained for

20,000 xfBm images. The validation loss, LV AL, is then measured using an addition 200

independently generated xfBm fields.

4.4 Constructing Our CNNs

For constructing, training and testing our Convolutional Neural Networks we use the Python

package TensorFlow (TensorFlow-Developers, 2023). TensorFlow is a package that

allows the assignment of arrays to array objects called Tensors. These Tensors can then be

allocated to Graphical Processing Units (GPUs) in order to make the training process

parallelisable. We use the sub-package Keras to build the layers. Keras provides a

high-level API that can be used to define whole layers rather than constructing the layers

manually using the Tensors. We train 3 CNNs in total. To differentiate between the 3 CNNs,

we designate them with the name CNN:N
PIX

, where N
PIX

refers to the N
PIX

×N
PIX

pixel

image that is the input for CNN:N
PIX

. The values of N
PIX

are N
PIX

= [32, 64, 128]. Each CNN

outputs a value for H and a value for S.

4.4.1 Architecture

Each CNN consists of enough Convolutional-MaxPool layer combinations to reduce the

image into a 2× 2 map. Each convolutional layer is 256 nodes wide and consists of a 3× 3

kernel with a stride of 1× 1. Each convolutional layer is then followed by a max pool layer.
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Each max pool layer has a 2× 2 kernel size with a stride of 2. The final convolutional layer of

each CNN:N
PIX

has an output shape of 2× 2× 256. This output is then flattened into a

1024-length vector. This 1024-vector is then fed into 5 additional feed-forward layers with

each feed-forward layer consisting of 256 nodes. An additional final 2-node layer is then used

to output H and S. Tables 4.1, 4.2, and 4.3 show the architecture of CNN:128, CNN:64, and

CNN:32 respectively.

Each of these models has a large number of trainable parameters with the number of trainable

parameters being dependant on the size of the model (i.e. how many layers and nodes it has).

The architecture of CNN:128 is shown in Table 4.1. This table gives the number of trainable

parameters at each layer. The Input layer does not have any trainable parameters as it is simply

loading the data in and sending it to the next layer. The Conv.1 layer is the first convolutional

layer. This layer consists of 256 different 3× 3 kernels and a single bias per kernel, making 10

trainable parameters per kernel, for a total of 2560 trainable parameters. This layer takes the

128× 128 input image and applies each of the convolutional filters to the image. This

produces 256 different maps each of size 126× 126. This reduction in size of the map is due

to the convolution filter having a stride of 1× 1, which reduces the size of the map by 2 in

each dimension. The MaxPool.1 layer simply picks the maximum value in a moving 2× 2

window, and thus has no trainable parameters. This moving window has a stride of 2× 2. As a

result, this layer halves the size of each of the 256 maps in each direction, producing an output

of size 63× 63× 256. The subsequent Conv layers have more trainable parameters than

Conv.1 and this is purely due to the fact that Conv.1 only had a single map as an input while

the rest have 256 maps as inputs. Each of the input maps will have 256 distinct trainable

kernels, thus each layer will have 2562 total trainable kernels. Each kernel has 3× 3 trainable

parameters giving 2562 × 3× 3 = 589, 824 trainable parameters. Adding a bias for each of the

maps gives an additional 256 trainable parameters giving 589, 824 + 256 = 590, 080 total

trainable parameters for that layer. This matches what we see in Table 4.1.

The output of MaxPool.5 is a tensor consisting of 256 2× 2 maps. These are then flattened by

the Flatten layer to produce a 1-dimensional vector of size 1024. This vector is then fed into

an ANN, consisting of 5 fully connected layers (See Section 4.2.1), each with 256 nodes.

Dense.1 is the first of these fully connected layers and has 262,400 trainable parameters. This

number of trainable parameters is the result of each of the 256 nodes having 1024 weights
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Table 4.1 The architecture of CNN:128. The CNN takes an 128× 128 pixel map that has been
normalised and outputs an estimate for H and S. The CNN does this by passing the image
through 5 convolutional layers and 5 fully connected layers. Each convolutional layer outputs
the convolution of a 3x3 windows with a trainable kernel and is followed by a max pooling
layer that outputs the maximum value of a 2 × 2 sliding window with a stride of 2 × 2. This
model has 2,888,962 trainable parameters.

Layer Output Size Operation Trainable Parameters
Input 128× 128× 1 input layer 0
Conv.1 126× 126× 256 3× 3 kernel 2560
MaxPool.1 63× 63× 256 2× 2 max pooling 0
Conv.2 61× 61× 256 3× 3 kernel 590080
MaxPool.2 30× 30× 256 2× 2 max pooling 0
Conv.3 28× 28× 256 3× 3 kernel 590080
MaxPool.3 14× 14× 256 2× 2 max pooling 0
Conv.4 12× 12× 256 3× 3 kernel 590080
MaxPool.4 6× 6× 256 2× 2 max pooling 0
Conv.5 4× 4× 256 3× 3 kernel 590080
MaxPool.5 2× 2× 256 2× 2 max pooling 0
Flatten 1× 1× 1024 flattens into 1D layer 0
Dense.1 1× 1× 256 fully connected 262400
Dense.2 1× 1× 256 fully connected 65792
Dense.3 1× 1× 256 fully connected 65792
Dense.4 1× 1× 256 fully connected 65792
Dense.5 1× 1× 256 fully connected 65792
Output 1×1× 2 one channel each for H and S 0

(due to input size) and a bias, giving 256× (1024 + 1) = 262, 400. All subsequent Dense

layers have 65,792 trainable parameter, which is different from Dense.1 due to the different

input sizes (256× [256 + 1] = 65792).

For each convolutional layer we apply a ReLU activation function while for the Dense layers

we do not apply any activation functions.

4.4.2 Training

An initial exploration on the training of a CNN was carried out in Bates et al. (2020) using

CNN:128. As a result, there are a few improvements in the way the CNNs in this thesis have

been trained compared to the one explored in Bates et al. (2020). This initial study is briefly

covered in the next section (Section 4.4.2.1) where we outline the training method and some

findings. In Section 4.4.2.2 we explore the improvements that were made to the training

compared to Bates et al. (2020). It is also worth noting that the CNN:128 trained in Bates

et al. (2020) uses β instead of H however since β scales linearly with H (See Equation 2.3)
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Table 4.2 The architecture of CNN:64. The CNN takes a 64× 64 pixel map as input. CNN:64
has 4 convolutional layers and 5 fully connected layers. This model has 2,298,882 trainable
parameters.

Layer Output Size Operation Trainable Parameters
Input 64× 64× 1 input layer 0
Conv.1 62× 62× 256 3× 3 kernel 2560
MaxPool.1 31× 31× 256 2× 2 max pooling 0
Conv.2 29× 29× 256 3× 3 kernel 590080
MaxPool.2 14× 14× 256 2× 2 max pooling 0
Conv.3 12× 12× 256 3× 3 kernel 590080
MaxPool.3 6× 6× 256 2× 2 max pooling 0
Conv.4 4× 4× 256 3× 3 kernel 590080
MaxPool.4 2× 2× 256 2× 2 max pooling 0
Flatten 1× 1× 1024 flattens into 1D layer 0
Dense.1 1× 1× 256 fully connected 262400
Dense.2 1× 1× 256 fully connected 65792
Dense.3 1× 1× 256 fully connected 65792
Dense.4 1× 1× 256 fully connected 65792
Dense.5 1× 1× 256 fully connected 65792
Output 1×1× 2 one channel each for H and S 0

Table 4.3 The architecture of CNN:32. The CNN takes a 32× 32 pixel map as input. CNN:32
has 3 convolutional layers and 5 fully connected layers. This model has 1,708,802 trainable
parameters.

Layer Output Size Operation Trainable Parameters
Input 32× 32× 1 input layer 0
Conv.1 30× 30× 256 3× 3 kernel 2560
MaxPool.1 15× 15× 256 2× 2 max pooling 0
Conv.2 13× 13× 256 3× 3 kernel 590080
MaxPool.2 6× 6× 256 2× 2 max pooling 0
Conv.3 4× 4× 256 3× 3 kernel 590080
MaxPool.3 2× 2× 256 2× 2 max pooling 0
Flatten 1× 1× 1024 flattens into 1D layer 0
Dense.1 1× 1× 256 fully connected 262400
Dense.2 1× 1× 256 fully connected 65792
Dense.3 1× 1× 256 fully connected 65792
Dense.4 1× 1× 256 fully connected 65792
Dense.5 1× 1× 256 fully connected 65792
Output 1×1× 2 one channel each for H and S 0
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then we can safely compare this version of CNN:128 with the final versions.

Each field that has been generated for training is normalised. This is done by first setting the

standard deviation of the field to 0.25 and the mean to 0. The reason for this is to eliminate

any biases due to scaling of the field as the CNN should estimate H and S purely on the

correlation between the pixels rather than the scale of the field as a whole. Then any pixel,

g > 1 is set to g = 1. Similarly any pixel, g < −1 is set to g = −1. This process serves two

purposes. The first is to simulate cases where pixels in observational images are oversaturated,

such as in the case of cosmic ray strikes. The second is that in order for the Neural Networks

to train efficiently and in a stable way, it is helpful to have the inputs be of a similar scale.

From a performance perspective this normalisation technique prevents certain features from

dominating the contribution to the training process, and ensures equal contributions from each

feature of each field.

4.4.2.1 Initial study of CNN:128

We shall briefly cover the initial study that explored this CNN method (Bates et al., 2020).

First a dataset of 20,000 xfBm images were generated according to Section 2.4. Each of these

xfBm field has a random value of β chosen uniformly from the interval 2 ≤ β ≤ 4 (equivalent

to 0 ≤ H ≤ 1) and a random value of S chosen uniformly from the interval 0 ≤ S ≤ 3. Each

field is also generated with a random amount of Gaussian noise. This is done according to the

process outlined in Section 2.4.1, where η is chosen from a uniform distribution in the interval

0 ≤ η ≤ 0.05. Each field has N
PIX

= 128.

At each epoch a random 70% of the fields (i.e. 14,000) are allocated as a training set. This

training set is then used to train the model, with the fields being used in batches of 32. The

remaining 30% of the fields (6,000) are allocated as a validation set. At the end of each epoch,

the training loss, LTRAIN , is recorded. The validation set is then passed through the model and

the validation loss, LV AL, is recorded. The validation loss represents the performance of the

model when it predicts on unseen data. This process of splitting the dataset into training and

validation sets is called cross-validation (Bishop, 2006). This process is repeated for a total of

500 epochs. The purpose of cross-validation is to see whether the model is overfitting to the

training data. It is ideal if the validation loss decreases during training, however, if the

validation loss starts to increase while the training loss is still decreasing, then the model has
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Fig. 4.6 Panels showing the training loss (red) and validation loss (blue) of the pathfinder
CNN:128 that was trained in Bates et al. (2020). We have panels that represent the loss of:
β (Lβ , left), S (LS , middle), the total (L = Lβ + LS , right). The pale lines represent the
actual loss values while the dark lines shows a smoothed version that is calculated by taking
the median of the surrounding 20 points.

been overfitted to the training data.

Figure 4.6 shows the values of both the validation loss (in blue) and the training loss (in red) at

every epoch for this version of CNN:128. Each of the panels in this figure show (from left to

right): the loss for H, Lβ , the loss for S , LS , and the total loss across both parameters, L,

which is simply the sum of the previous two losses (i.e. L = Lβ + LS). The pale lines

represent the actual values of the loss while the dark lines are the smoothed out version, which

is done by taking the median of a moving window consisting of 20 data points. We can see by

eye that the validation loss starts to increase at ∼ 100 epochs while the training loss remains

roughly constant until ∼ 400 epochs. At this point the training loss also starts to increase. We

therefore only work with CNNs that are trained to 100 epochs when training new models.

4.4.2.2 Final versions of CNN:128, CNN:64 and CNN:32

The final version of CNN:128 as well as CNN:64 and CNN:32 were trained slightly different

to the version of CNN:128 explored in Bates et al. (2020) and described in the previous

section. For the reasons mentioned above these new models were only trained for 100 epochs.

In the final versions, instead of generating a set number of xfBm fields that are then used for

the entire training process, we generate 20,000 entirely new xfBm fields at the beginning of

each epoch, which are used to train the CNN. These are fed in batches of 32 and are then

discarded. At the end of each epoch an additional new 200 xfBm images are generated which

serve as our validation set and thus are used to calculate the validation loss for that epoch.
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These are then discarded. A new set of 20,000 xfBm images are then generated for the next

epoch’s training set, as well as a new validation set. This process is repeated for each of the

100 epochs. This process is better at avoiding overfitting as the model never ’sees’ the same

image twice and as a result generalises well. As in the previous section, for each field, H and

S were randomly picked from the uniform intervals [0, 1] and [0, 3]. Each field is also

generated with a random amount of Gaussian noise as described in the previous section. In

addition, we also randomise the position of the centre of mass of each image. This is done

since real-life observations the ISM might not have perfectly centred structures.

Figure 4.7 shows the loss against epoch for the training of the revised version of CNN:128 as

well as for CNN:64 and CNN:32. We see that both the validation loss and the training loss for

all three models decrease systematically, without showing evidence of overfitting. The

training loss for all three models settles by the time the training is finished. The training loss

roughly decreases and does not start to increase. For CNN:64 and CNN:128 we observe that

the validation loss roughly follows the training loss quite closely. For CNN:32 we find that the

validation loss is greater than the training loss until ∼ 40 epochs after which the validation

loss becomes consistently lower than the training loss. In a truly generalised model we would

expect the validation loss to be very similar to the training loss. CNN:64 most resembles this

type of behaviour.

4.4.3 Testing

At the end of each models’ training, a further 10,000 unique N
PIX

×N
PIX

xfBm images are

generated per model, for a total of 30,000 images (10,000 N
PIX

= 128 fields for CNN:128,

10,000 N
PIX

= 64 fields for CNN:64, and 10,000 N
PIX

= 32 fields for CNN:32). These are

generated in the same way as the training and validation xfBm images and are referred to as

the testing set. These are then passed through the models in order to get an estimate of each

models’ performance. For each CNN the known values of HTRUE and STRUE are compared

with the models’ estimate, HEST and SEST , using the error function (Eq. 4.11).

Figure 4.8 shows this comparison with each panel showing the estimated value plotted against

the true value. The top row of panels shows this comparison for H while the bottom row

shows this for S. Each of the columns show comparisons for different N
PIX

. The left column

is for fields with N
PIX

= 128, the middle column is for fields with N
PIX

= 64, and the right
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Fig. 4.7 Panels showing the training loss (red) and validation loss (blue) of: CNN:128 (left
column), CNN:64 (middle column), CNN:32 (right column). Each of the rows represent the
loss of: H (LH, top row), S (LS , middle row), the total (L = LH + LS , bottom row). The
pale lines represent the actual loss values while the dark lines shows a smoothed version that is
calculated by taking the median of the surrounding 20 points.
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Fig. 4.8 Plots showing the estimated values of H and S against the true values when estimated
using each of the CNNs. Each point represents an xfBm field with a particular H and S. There
are 10,000 fields per panel. The black line at y = x represent the result given by a perfect
estimator. The top row shows HEST plotted against HTRUE while the bottom row shows SEST

plotted against STRUE . From left to right the panels in each column represent fields with
N

PIX
= 128, N

PIX
= 64, and N

PIX
= 32, respectively. The colour represents a kernel density

estimation that gives the density of the points. The root mean square error of each set of points
compared to the perfect estimator is given by ε in the inset.

column is for N
PIX

= 32. The black 45◦ line represents a perfect estimator. The colour of the

points represents their density. This is done using a kernel density estimation implementation

in the SciPy Python package (Virtanen et al., 2020). The root mean square error ε is shown in

the inset. We see that as we increase N
PIX

, then ε decreases. This is expected since the lower

N
PIX

fields are of a lower resolution and hence have less pixels for the CNN to work with. A

useful feature to look at is the spread of points along the black line, which is aided by the

colour. Notably we see that for HEST the spread of points appears roughly uniform as HTRUE

increases. By contrast, the points for SEST are more concentrated for low S and more spread

out for high S. We also notice that the models overestimate S when S ≲ 1.5 while

underestimating S when S ≳ 2. This effect is more pronounced for CNN:32.

Figure 4.9 shows box-and-whisker plots for the residuals (HEST −HTRUE and
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SEST − STRUE) of the data shown in Figure 4.8 where each set of residuals is binned into 5

different buckets. Each of the bins have width ∆H = 0.2 or ∆S = 0.6. The orange lines in

the figure show the median of the residuals in each bucket. Each box marks the lower and

upper quartile, Q1 and Q3 respectively. Each of the upper whiskers extends to highest point

less than Q3 + 1.5∆Q, where ∆Q = Q3 −Q1 is the interquartile range. Each of the lower

whiskers extends to the lowest point greater than Q1 − 1.5∆Q. The points that lie outside the

whiskers are plotted individually. The blue line represents a perfect estimator. For CNN:128

we can see that the model overestimates H when H ≲ 0.5 and underestimates H when

H ≳ 0.5. CNN:128 overestimates S for S ≲ 2.4 and underestimates S when S ≳ 2.4.

CNN:64 underestimates H for all values of H, with this underestimation being worse at low

H. CNN:64 overestimates S for S ≲ 2.10, while underestimates S when S ≳ 2.10. CNN:32

overestimates H, however this overestimation effect is small due to the larger spread of the

residuals. CNN:32 overestimates S when S ≲ 1.80 and underestimates when S ≳ 1.80. We

can also see that for S all three models have roughly the same spread of the residuals, while

for H we see that there is significant difference in the spread of the points in CNN:32

compared to CNN:64 and CNN:128. This degradation in the estimation of H could denote the

lower limit on the number of pixels in an image in order to estimate H.

Figure 4.10 shows a distribution of the residuals that were shown in Figure 4.9, with the mean

being shown with a red vertical line. The bottom row shows the residuals for S , while the top

row shows the residuals for H. The inset on the left side of each figure shows the first four

moments of each distribution. These are the mean (µ1), the standard deviation (µ2), the

skewness (µ3), and the kurtosis (µ4). We can see that the distributions are all roughly Gaussian

with a mean of ∼ 0. For S the peak of each distribution is at a higher residual value than the

mean which give the distributions a negative skewness. This is consistent with previous

finding that each of the models overestimates S. This is most evident for CNN:32

(µ3 = −0.73) and least evident for CNN:64 (µ3 = −0.28). The estimation of H made by

CNN:32 shows a slight positive skewness of µ3 = 0.22, while CNN:128 shows a slight

negative skewness of µ3 = −0.18. CNN:64 shows a negligible skewness of µ3 = 0.09.
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Fig. 4.9 Box-and-whisker plots for the residuals of the the data shown in Figure 4.8. The
top row shows HEST − HTRUE while the bottom row shows SEST − STRUE . The bins in
the top row have width ∆H = 0.2, while the bins in the bottom row have width ∆S = 0.6.
The orange lines show the median of each bin, while the blue line shows a perfect estimator.
The box extends to the upper, Q1, and lower, Q3, quartiles. The upper whisker extends to the
highest point less than Q1−1.5∆Q, while the lower whisker extends to the lowest point greater
than Q3 + 1.5∆Q, where ∆Q = Q3 − Q1. All points that lie outside this range are plotted
individually.
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Fig. 4.10 Histograms of the residuals of the estimated values of H and S that are shown in
Figure 4.8. The top row shows the distribution of the residuals for H while the bottom row
shows the distributions of the residuals for S. The red vertical line shows the mean of the
residuals. The inset on the left shows the first four moments of each distribution. These are:
the mean (µ1), the standard deviation (µ2), the skewness (µ3), and the kurtosis (4µ4).
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4.5 Application of models

In the next chapter we will apply the saved models to observations of the dust column density

of the ISM. We will compare estimations of H and S that are returned by CNN:64 and

CNN:32.

4.5.1 Caveats and Assumptions

It is important to mention a major caveat with using this method. Each CNN that has been

trained on xfBm fields inherently expects that the inputs to the CNN are also xfBm fields. As

a result we must mention the requirement that the observed data that is being put through each

model is similar to xfBm fields.
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CHAPTER 5

Applying CNN Estimator to Observations

5.1 Preamble

In the previous chapter (Chapter 4) we described and trained a set of models that can quickly

estimate H and S for images with pixel sizes of 32× 32, 64× 64, and 128× 128. In this

Chapter we apply these models to real observations of the interstellar medium in the Galactic

Plane. We also apply these models to observations of the Andromeda galaxy (M31). We

forego the use of CNN:128 and only use CNN:64 and CNN:32. Thus we will only work with

patches with pixel sizes of 32× 32 and 64× 64.

5.2 Via Lactea

The data used to investigate the Galactic Plane is the Via Lactea dataset (Marsh et al., 2017)

which is based on observations from the Herschel infrared Galactic Plane survey (Hi-GAL)

(Molinari et al., 2010). The initial Hi-GAL survey covers the area of the Galactic plane with

galactic latitude −1◦ ≲ b ≲ 1◦ and longitude −60◦ ≲ ℓ ≲ 60◦, however this was then

extended to cover the entire Galactic plane. A notable exception is the region spanning

216.5◦ ≲ l ≲ 225.5◦ where the area surveyed spans −2◦ ≲ b ≲ 0◦ since the plane of the

Galaxy is warped in this region (Elia et al., 2013). The data is organised in 163 tiles each

encompassing an 2.4◦ × 2.4◦ area of the Galactic plane. Each tile is labelled as ℓ followed by

the approximate longitude of its centre. For example tile ℓ000 is the tile that contains l = 0◦

i.e. the Galactic Centre, while the tile that contains the Anti-Centre is tile ℓ180 as it contains

l = 180◦.

The Hi-GAL data is collected using the Photodetector Array Camera and Spectrometer (PACS,

Poglitsch et al. (2010)) and Spectral and Photometric Imaging REceiver (SPIRE, Griffin et al.
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(2010)) instruments found on the Herschel Space Observatory (Pilbratt et al., 2010). Together

these instruments produced maps at five wavelengths: the PACS instrument produces maps at

70µm and 160µm, while the SPIRE instrument produces maps at 250µm, 350µm, and 500µm.

The PACS instrument has bandwidths of 60− 85µm and 125− 210µm (Poglitsch et al.,

2010), while the SPIRE instrument has bandwidths such that λ/∆λ ∼ 3 (Griffin et al., 2010).

The Via Lactea dataset consists of images of surface-density that have been generated by

using PPMAP (Point Process Mapping) on the Hi-GAL data (Marsh et al., 2017). PPMAP is an

analytical procedure that is able to produce dust temperature-dependant maps based on

multi-wavelength observations (such as Hi-GAL). For a full mathematical description of

PPMAP we refer the reader to Marsh et al. (2015). PPMAP differs from traditional SED fitting

in that it does not assume a single temperature along each line of sight, instead it gives the

contributions to the dust optical depth at 300µm, ∆τ300:q, from different temperature intervals

around Tq. The sum of each ∆τ300:q gives the total dust optical depth at 300µm,

τ300 =

q=Q∑
q=1

{
∆τ300:q

}
, (5.1)

where Q is the number of temperature intervals that are used in the PPMAP algorithm.

Table 5.1 shows the 12 temperature intervals that are used to produce the Via Lactea dataset

(Marsh et al., 2017). This table shows the values of Tq for each q as well the lower limit,

0.920Tq, and upper limit, 1.087Tq of each interval. We must also note that the temperature

interval for T1, actually represents dust below its listed lower limit of 7.36K, and likewise the

temperature interval for T12, actually represents dust above its listed upper limit of 54.3K.

Another advantage of using PPMAP over SED fitting is that SED fitting requires that the maps

be smoothed to the largest spatial resolution, which for Hi-GAL would be the 36 arcsec

resolution of the 500µm band maps. This results in a lot of the information in the

high-resolution images being ignored. PPMAP however is able to produce the

temperature-differential maps to the finest resolution by processing the Hi-GAL images at

each bands native resolution. This results in the angular size of the pixels, ϕmin = 6′′, which is

the Hi-GAL resolution at the 70µm band. This angular size corresponds to a linear size of

0.029pc[D/kpc] for a structure at distance D along the line of sight. We must stress that any

structure seen, is likely to be the superimposition of multiple structures that lie along the line
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Table 5.1 The dust temperature intervals defined in Marsh et al. (2017) and subsequently used
in this thesis and in Bates and Whitworth (2023). For each q there is a discrete dust temperature
Tq. This table also shows the lower limit, 0.920Tq, and the upper limit, 1.087Tq, of each
temperature interval. The temperature interval for T1 actually represents dust below its listed
lower limit of 7.36K, while the temperature interval for T12 actually represents dust above its
listed upper limit of 54.3K.

q 1 2 3 4 5 6
Tq/K 8.00 9.45 11.2 13.2 15.6 18.4

> 0.920Tq/K ’>7.36’ > 8.69 > 10.3 > 12.1 > 14.3 > 16.9
≤ 1.087Tq/K ≤ 8.69 ≤ 10.3 ≤ 12.1 ≤ 14.3 ≤ 16.9 ≤ 20.0

q 7 8 9 10 11 12
Tq/K 21.7 25.7 30.3 35.8 42.3 50.0

> 0.920Tq/K > 20.0 > 23.6 > 27.9 > 33.0 > 38.9 > 46.0
≤ 1.087Tq/K ≤ 23.6 ≤ 27.9 ≤ 33.0 ≤ 38.9 ≤ 46.0 ‘≤ 54.3’

of sight, each at a different physical length-scale. This can result with a structure that is

multifractal due to the possibility that each structure along the line of sight being described by

a different H and S. For simplicity, in this study we assume that each line of sight can be

described by a single monofractal.

We convert the Via Lactea data into units of surface-density (M⊙pc−2). The PPMAP process

assumes; (i) that the Hi-GAL data consists of primarily thermal emission of dust, (ii) that this

thermal emission is optically thin, and (iii) that this thermal emission follows a mass opacity

law of the form

κ(λ) = 0.11cm2g−1

(
λ

300µm

)−β

(5.2)

where β = 2 (Sadavoy et al., 2012; Marsh et al., 2017). The net dust opacity at 300µm is thus

κ300 = 0.11cm2g−1 = 2.1× 10−5pc2M−1
⊙ , (5.3)

which gives a total surface density of

Σ =
τ300
κ300

= [4.8× 104M⊙pc−2]τ300, (5.4)

and a temperature-differential surface density of

∆Σq = [4.8× 104M⊙pc−2]∆τ300:q. (5.5)
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Marsh et al. (2017) discuss the validity of assumption (ii) that the dust emission is optically

thin. This is valid over most of the Galactic Plane at the Herschel wavebands used here, with

the lower wavelengths being the least compatible with this assumption. For 70µm and 160µm,

the fractions of pixels for which the optical depth > 1 are ∼ 10−4 and ∼ 10−6. These regions

of high optical depth are mostly confined to localised regions in dense molecular clouds. Since

in this study we are more interested in large scale statistics, this violation of assumption (ii)

has a negligible effect on our results. However, it is still important to keep this caveat in mind.

Figure 5.1 shows temperature -differential surface density maps for the Galactic Centre, which

consist of the ℓ002, ℓ000, and ℓ358 tiles. Each of the panels show surface density maps for the

following dust-temperature intervals:

(a). T ≤ 12.1K. This is calculated by summing the contributions to the surface densities

from q = [1, 2, 3], i.e.
∑3

q=1{∆Σq}.

(b). 12.1K ≤ T ≤ 14.3K. This corresponds to the surface density maps, ∆Σ4, at

temperature interval T4.

(c). 14.3K ≤ T ≤ 16.9K. This corresponds to ∆Σ5, at T5.

(d). 16.9K ≤ T ≤ 20.0K. This corresponds to ∆Σ6, at T6.

(e). 20.0K ≤ T ≤ 23.6K. This corresponds to ∆Σ7, at T7.

(f ). T > 23.6K. This is calculated by summing the contributions to the surface densities

from q = [8, 9, 10, 11, 12], i.e.
∑12

q=8{∆Σq}.

Panels (a) and (b) show a discontinuity between the three tiles. This discontinuity is more

pronounced between the ℓ002 and ℓ000 tiles. This is a consequence of the ℓ002 and ℓ358

having less dust than ℓ000. This results in a lower signal to noise than in other maps and

therefore the estimates of the surface density are uncertain. Panels (c) through (f) have a

sufficiently high signal to noise such that there isn’t such a pronounced discontinuity. The

PPMAP algorithm returns NaN (Not a Number) values for pixels that do not have enough

information to evaluate a surface-density at that temperature interval. These NaN values are

located mostly at the edge of the tiles but there are a few interior regions that contain these

NaN values. We can see a few examples of these NaN regions in Figure 5.1 mostly in the ℓ002

tile with the ℓ002 tile of panel (f) (T > 23.6K) having the largest examples of these regions.
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Fig. 5.1 Images of the temperature-differential surface-density, ∆Σq, for the Hi-GAL tiles ℓ002,
ℓ000, and ℓ358, which show an approximately 7◦ × 2◦ region surrounding the Galactic Centre.
Each panel shows the surface density at a different range of dust temperature: (a) shows ∆Σ1+
∆Σ2 + ∆Σ3 for T ≤ 12.1K; (b) shows ∆Σ4 for 12.1K ≤ T ≤ 14.3K; (c) shows ∆Σ5

for 14.3K ≤ T ≤ 16.9K; (d) shows ∆Σ6 for 16.9K ≤ T ≤ 20.0K; (e) shows ∆Σ7 for
20.0K ≤ T ≤ 23.6K; and (f) shows ∆Σ8 +∆Σ9 +∆Σ10 +∆Σ11 +∆Σ12 for T > 23.6K.

The total column density, Σ, for the same three tiles is shown on Figure 5.2. The total column

density for each tile is obtained using Equation 5.4. This total column density does not have

any of the discontinuities that are present between the tiles shown in Figure 5.1. The stitching

of the tiles was done using the ReProject package (Robitaille et al., 2020).

5.3 Estimating H and S of the total column density using the CNN models.

For each of the 163 tiles of total surface density, Σ, we create maps of H and S using CNN:64

and CNN:32. Each pixel in the H and S maps is generated as follows:

1. First a N
PIX

×N
PIX

size patch is isolated from the surface density tiles.

2. The patch is then normalised such that the standard deviation of the field is 0.25 and the

mean is 0. Each pixel with value, g > 1, is set to g = 1, and each pixel with value
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Fig. 5.2 The total surface density, Σ, for the same three tiles shown in Figure 5.1 (ℓ002, ℓ000,
and ℓ358). ℓ is the Galactic

Table 5.2 A table showing the parameters that affect the estimations of H and S .

HN
PIX

×ϕmin SN
PIX

×ϕmin N
PIX

ϕmin ϕmax

H64×6 S64×6 64 6′′ 384′′

H32×12 S32×12 32 12′′ 384′′

H32×6 S32×6 32 6′′ 192′′

g < −1 is set to g = −1. This is the same normalisation process that is done to the

training data during the training of the CNNs (See Section 4.4.2). This normalisation

ensures that the patches are of the same scale as the training data.

3. The normalised N
PIX

×N
PIX

size patch is then inputted into CNN:N
PIX

and a single

value of H and S is recorded.

4. The process is repeated for all available patches.

The maps of H and S depend on two parameters: the angular size of each pixel, ϕmin; and the

patch size N
PIX

. ϕmin of the raw surface density tiles is 6′′, however we also use rebinned

surface density tiles such that ϕmin = 12′′. This degrades the resolution but increases the

signal-to-noise. ϕmin determines the size of the smallest structures that can be resolved, which

is ∼ 2ϕmin. N
PIX

determines the size of the largest structure that can be resolved, which is

ϕmax = N
PIX

ϕmin. This is because ϕmax is the angular size of each patch.

For each combination of ϕmin and N
PIX

we denote the resulting values of H and S as

HN
PIX

×ϕmin and SN
PIX

×ϕmin . For example using patches of angular pixel size of ϕmin = 6′′ with

CNN:32 produces the H32×6 and S32×6 maps. Table 5.2 shows the values of the different

parameters for each of the different estimations of H and S that are used here.
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5.4 H and S for the Galactic Centre

Figure 5.3 show the H and S maps for the three tiles that are closest to the Galactic Centre

(ℓ002, ℓ000, ℓ358). These are the same three tiles that are shown in Figures 5.1 and 5.2. Panels

(a) and (b) show H64×6 and S64×6 respectively, thus capturing the statistics of the substructure

at scales between ϕmin ∼ 6′′ and ϕmax ∼ 384′′. Panels (c) and (d) show H32×12 and S32×12

which capture the substructure between ϕmin ∼ 12′′ and ϕmax ∼ 384′′. Panels (e) and (f) show

H32×6 and S32×6 which capture the substructure between ϕmin ∼ 6′′ and ϕmax ∼ 192′′. The

contours represent lines of constant surface density given at the values of

log10(Σ/[M⊙pc−2]) = [1.2, 1.8, 2.4].

5.4.1 Comparing maps of H and S generated with the same patch size, ϕmax, but different

dynamic range of angular scales, ϕmax/ϕmin.

The mapping that produces H64×6 and S64×6 (top row of Figure 5.3), uses patches of angular

size ϕmax = 384′′. This is the same for the mapping that produces H32×12 and S32×12 (middle

row of Figure 5.3. On the other hand the dynamic range of angular scales of the two mappings

are different. H64×6 and S64×6 have a larger dynamic range (ϕmax/ϕmin = 64) than H32×12 and

S32×12 (ϕmax/ϕmin = 32). Consequently the mapping for H64×6 and S64×6 does not ignore the

substructures between 6′′ and 12′′, while the mapping for H32×12 and S32×12 does.

There is a morphological similarity between the maps ofH64×6 (panel (a)) and H32×12 (panel

(c)), however we can see that, in general, H64×6 > H32×12. This increase in H implies that

there is an amount of substructure between scales ∼ 6′′ and ∼ 12′′ that systematically steepens

the power spectrum (See Chapter 2).

There is also a morphological similarity between the maps of S64×6 (panel (b)) and S32×12

(panel (d)) where we also see that, in general, S64×6 > S32×12. This implies that the

substructures that exist between ∼ 6′′ and ∼ 12′′ have a higher surface-density than the more

extended substructures present in the map. This is expected if the small-scale substructures

tend to be nested within the larger ones.
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Fig. 5.3 H and S maps for the three tiles closest to the Galactic Centre (ℓ002, ℓ000, ℓ358).
The left column shows the different maps of H , while the right column shows the different
maps of S . The top row (panels (a) and (b)) shows the values generated by applying CNN:64
to patches of resolution ϕmin = 6′′ and angular size ϕmax = 384′′. These patches have a pixel
size of 64 × 64. The middle row (panels (c) and (d)) shows the values generated by applying
CNN:32 to patches of resolution ϕmin = 12′′ and angular size ϕmax = 384′′. These patches
originally have a pixel size of 64× 64 but have been rebinned to 32× 32 in order to pass them
through CNN:32. The bottom row (panels (e) and (f)) shows the values generated by applying
CNN:32 to patches of resolution ϕmin = 6′′ and angular size ϕmax = 192′′. The patches have
a pixel size of 32 × 32. The contours show lines of constant surface density at values of
log10(Σ/[M⊙pc−2]) = [1.2, 1.8, 2.4].
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5.4.2 Comparing maps of H and S generated with the same dynamic range of angular scales,

ϕmax/ϕmin, but different patch size, ϕmax.

In the previous section (Section 5.4.1) we compared H32×12 and S32×12 (middle row of Figure

5.3) with H64×6 and S64×6 (top row of Figure 5.3). Here we compare H32×12 and S32×12

(middle row of Figure 5.3) with H32×6 and S32×6 (bottom row of Figure 5.3). H32×12 and

S32×12 have the same dynamic range of angular scales as H32×6 and S32×6, which is

ϕmax/ϕmin = 32. The maps of H32×6 and S32×6 have been generated using a smaller patch size

(ϕmax = 192′′) compared to the patch size used to generate maps of H32×12 and S32×12

(ϕmax = 384′′). The mapping for H32×6 and S32×6 takes into account the substructures

between 6′′ and 12′′, while the mapping for H32×12 and S32×12 ignores them. The mapping for

H32×6 and S32×6, however, ignores the substructures between 192′′ and 384′′ which are taken

into account when estimating H32×12 and S32×12.

The maps of H32×12 (panel (c)) and H32×6 (panel (e)) have similar morphology but H32×6 is

generally larger than H32×12, with H32×6 having values mostly in the interval [0.8, 1.0], and

H32×12 having values in the interval [0.6, 0.8]. This is due to H32×6 having a steeper power

spectrum.

The maps of S32×12 and S32×6 are also morphologically similar. We can see clearly that the

map of S32×6 has more well-defined structure, which is due to the smaller angular size of the

patches (∼ 192′′) as opposed to the larger patch size of S32×12 (∼ 384′′). If we were to

convolve the S32×6 map with a circular beam of width ∼ 384′′, the resulting map would look

very similar to S32×12.

5.5 H and S for the Whole Galactic Plane.

5.5.1 The Distributions of H and S.

Figure 5.4 shows H and S compared to each other as well as their distributions. The top row

shows the distributions of: (a) H32×6; (b) H32×12; (c) H64×6. The middle row shows the

distributions of: (d) S32×6; (e) S32×12; (f) S64×6. The bottom row shows two-dimensional

distributions of: (g) H32×6 against S32×6; (h) H32×12 against S32×12; (i) H64×6 against S64×6.

For H32×6 (panel (a)) and S32×6 (panel (d)), the angular scales between 6′′ and 192′′ are

considered whilst the angular scales between 192′′ and 384′′ are not. This means that the
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power spectrum is biased towards larger wavenumbers and is thus steeper. This gives a larger

H. This is shown in panel (a) where H ∼ 1. Panel (d) shows that S32×6 is relatively small

(S ∼ 0.9). This is a result of the relatively small dynamic range (ϕmax/ϕmin = 32).

For H32×12 (panel (b)) and S32×12 (panel (e)), the angular scales between 12′′ and 384′′ are

considered whilst the angular scales between 6′′ and 12′′ are not. This means that the power

spectrum is biased towards the smaller wavenumbers and is thus shallower. This gives a

smaller H. Panel (b) shows this where we see that in general H32×12 < H32×6. Panel (e) shows

that, similarly to S32×6 in panel (d), S32×12 is also small with most of the values of S ≲ 0.9.

This is not surprising since the dynamic range is also relatively small (ϕmax/ϕmin = 32). The

main difference we see between H32×6 and S32×6, and H32×12 and S32×12 is the emergence of

a bimodality in the distributions of H32×12 and S32×12. Panel (h) suggests this bimodality has

peaks at (H32×12,S32×12) ∼ (0.9, 0.9) and (H32×12,S32×12) ∼ (0.6, 0.4).

For H64×6 (panel (c)) and S64×6 (panel (f)), the angular scales between 6′′ and 384′′ are

considered. This means that the power spectrum has contributions from both the large and

small wavenumbers. This is reflected in the broader distribution of H64×6 compared to those

of H32×12 and H32×6. There is also a large dynamic range (ϕmax/ϕmin = 64) which gives a

broad distribution of S. Similar to H32×12 and S32×12, H64×6 and S64×6 show a bimodality.

We split this bimodality into two modes which we call the ‘monolithic mode‘ and the

‘undulating mode‘. The monolithic mode represents lines of sight with large angular scales

being dominant, which give a large H ≳ 0.8, and with large scaling parameter, which gives

large S ≳ 1. The undulating mode represents lines of sight with a broader range of angular

scales, giving H ≲ 0.8, and lower scaling parameter, which gives S ≲ 1). When CNN:32 is

operated on patches with ϕmin = 6′′ and ϕmax = 192′′ the distinction between the two lines of

sight is weak since the small dynamic range (ϕmax/ϕmin = 32) does not capture the large range

of angular scales of the undulating mode, while the small ϕmax, does not capture the large

angular scale of the monolithic mode. Operating CNN:32 on patches with larger angular

scales i.e. ϕmin = 12′′, and ϕmax = 384′′, causes the monolithic mode to be better captured,

which results in the bimodality starting to emerge. With CNN:64 we see that, in addition to

the monolithic mode being captured (due to ϕmax = 384′′), the undulating mode is being

captured too. This is due to the larger dynamic range (ϕmax/ϕmin = 64). This causes an even

clearer bimodality.
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Fig. 5.4 Top: Distributions of: (a) H32×6; (b) H32×12; and (c) H64×6. Middle: Distributions
of: (d) S32×6; (e) S32×12; (f) S64×6. Bottom: Two-dimensional distributions of: (g) H32×6

against S32×6; (h) H32×12 against S32×12; (i) H64×6 against S64×6. The ordinate axes for the
distributions in panels (a) to (f) have been divided by 107. The bins in panels (a) to (c) have
size ∆H = 6.70 × 10−3. The bins in panels (d) to (f) have size ∆S = 1.80 × 10−2. The
contours in panels (g) to (i) are at values of 103, 104, and 7× 104.
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5.5.2 H and S compared to the surface density.

Figure 5.5 shows two-dimensional distributions of: (a) H32×6, (b) H32×12, and (c) H64×6

against log10(Σ/[M⊙pc−2]) on the top row; and (d) S32×6, (e) S32×12, and (f) S64×6 against

log10(Σ/[M⊙pc−2]) on the bottom row, where Σ is the surface density in units of M⊙ pc−2.

We can see that H and S tend to increase with surface density, with this relationship being the

clearest for H64×6 and S64×6 mapping and the weakest for H32×6 and S32×6. The strength of

this correlation mirrors the emergence of the bimodality in the distributions seen in the

previous section (Section 5.5.1). For example, the (ϕmin, ϕmax) = (6′′, 384′′) mapping shows

the strongest correlation with surface density and the strongest bimodality. For pixels that

have a large surface-density, the structure surrounding that pixel has a steep power spectrum

(which results in a large H) and a large variation of the surface density (which results in a

large S). Thus these large surface-density pixels correspond to the monolithic mode, while the

low surface-density pixels correspond to the undulating mode. These two modes are clearly

seen in Figure 5.5, particularly in panels (b) and (c). These two regimes meet at approximately

log10(Σ/[M⊙pc−2]) = 1.5, which corresponds to Σ ≈ 32 M⊙pc−2. Therefore we can say that

the monolithic mode corresponds to high surface density, Σ ≳ 32 M⊙pc−2, and the undulating

mode corresponds to low surface density, Σ ≲ 32 M⊙pc−2.

The monolithic mode of Σ ≳ 32 M⊙pc−2 corresponds to a visual extinction of AV ≳ 2.1 mag.

Numerous studies have shown that there is a threshold of visual extinction above which

self-gravity plays an important role in molecular clouds, with the most recent studies revising

this threshold to AV ∼ 2.5 mag (Kainulainen et al., 2009; Girichidis et al., 2014; Schneider

et al., 2015, 2022). Our threshold value of AV ∼ 2.1 mag is only slightly lower than the

threshold found in the literature, and therefore there is some degree of agreement. This

suggests that the monolithic mode is equivalent to this visual extinction regime, representing

regions where self-gravity is important, and are thus undergoing star formation. These regions

have surface-density distributions that have a power-law tail at higher surface densities. On

the other hand the undulating mode describes the more turbulent regions that exist at the lower

surface densities. These turbulent regions produce a log-normal distribution of surface-density.
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Fig. 5.5 Two-dimensional distributions of H and S against the surface density, Σ. Top row:
Distributions of (a) H32×6, (b) H32×12, and (c) H64×6 against log10(Σ/[M⊙pc−2]). Bottom row:
Distributions of (d) S32×6, (e) S32×12, and (f) S64×6 against log10(Σ/[M⊙pc−2]). The bin sizes
for each variable are: ∆H = 6.70× 10−3, ∆S = 1.80× 10−2, and ∆ log10(Σ) = 1.44× 10−2.
The contours are at values of 103, 104, and 7× 104.
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5.5.3 H and S compared to Galactic longitude.

Figure 5.6 shows two-dimensional distributions of: (a) H32×6, (b) H32×12, and (c) H64×6

against Galactic longitude, ℓ, on the top row; (d) S32×6, (e) S32×12, and (f) S64×6 against ℓ on

the middle row; and (g) the surface density, log10(Σ/[M⊙pc−2]) against ℓ on the bottom row.

Each of the black dots show the mean values for each of the 163 tiles i.e. the black dots in the

top row show the mean of H, the black dots in the middle row show the mean S, and the black

dots in the bottom panel show the mean of log10(Σ/[M⊙pc−2]). The distributions have been

generated such that there are 163 bins (equal to the number of Hi-GAL tiles). This sets the bin

sizes to ∆H = 9.2× 10−3, ∆S = 2.3× 10−2, ∆ log10Σ = 1.9× 10−2 M⊙pc−2, and

∆ℓ = 2.21◦. The red vertical dashed lines in panel (g) represent the longitudes of the tangent

lines to the following spiral arms of the Galaxy: the Scutum Arm (ℓ ∼ 32◦); the Sagittarius

Arm (ℓ ∼ 51◦); the Carina Arm (ℓ ∼ 282◦); the Centaurus Arm (ℓ ∼ 308◦); and the Norma

Arm (ℓ ∼ 327◦) (Hou and Han, 2014, 2015). There are some features at these longitudes

however there are similar features at other longitudes where there are no arms, such as at

ℓ ∼ 80◦ and at ℓ ∼ 170◦.

The central parts of the Galaxy are generally more dense than the outer parts. This is seen

quite clearly in Figure 5.6g, where the outer region (90◦ ≲ ℓ ≲ 270◦) has a lower surface

density than the rest of the Galactic plane (i.e. towards the Galactic centre). The monolithic

mode (large values of H and S) represents dense regions (Section 5.5.2) and as a result we see

from panels (a) to (f) that the monolithic mode is mostly present in the central regions of the

Galaxy while the undulating mode (smaller values of H and S) is mostly present in the outer

regions of the Galaxy. Similar to previous findings we see that the two different modes are

most prevalent for H64×6 (panel (c)) and S64×6 (panel (f)), and least prevalent for H32×6 (panel

(a)) and S32×6 (panel (d)).

5.5.4 Temperature Differential Surface Densities

In Section 5.2 we discussed the temperature-differential surface density fields that the PPMAP

process produces as well as how these were used to generate high-resolution maps of surface

density. In Figure 5.1 we showed examples of these temperature-differential surface-density

maps for the three tiles closest to the Galactic centre (ℓ002, ℓ000, and ℓ358). Figure 5.7 shows

distributions of the temperature surface density maps for all 163 tiles for different dust
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Fig. 5.6 Two-dimensional distributions of: Top: (a) H32×6, (b) H32×12, and (c) H64×6 against
Galactic longitude, ℓ; Middle: (d) S32×6, (e) S32×12, and (f) S64×6 against ℓ; Bottom: (g)
the surface density, log10(Σ/[M⊙pc−2]) against ℓ. Here, ℓ is measured in degrees, with 0◦

being the Galactic centre. For each of the Hi-GAL tiles we produce the mean of H, S and
log10(Σ/[M⊙pc−2]) for that tile. This is shown by the black dots. There are 163 bins for ℓ, with
each bin roughly corresponding to each Hi-GAL tile. Each of the red dashed vertical lines in
panel (g) represent the longitudes of the tangent lines to the spiral arms of the Galaxy (Hou and
Han, 2014, 2015). These are (from left to right): the Scutum Arm (ℓ ∼ 32◦); the Sagittarius
Arm (ℓ ∼ 51◦); the Carina Arm (ℓ ∼ 282◦); the Centaurus Arm (ℓ ∼ 308◦); and the Norma Arm
(ℓ ∼ 327◦). The bin sizes are ∆H = 9.2 × 10−3, ∆S = 2.3 × 10−2, ∆ log10Σ = 1.9 × 10−2,
and ∆ℓ = 2.21◦.
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temperature and different total surface density thresholds. The black histograms show the

distributions of the surface-density for all dust-temperatures. The blue histograms show the

distributions of the surface density for dust that has temperature above a

separatrix-temperature, TS , while the red histograms show the distribution of the

surface-density for dust that has temperature below TS . This separatrix-temperature is a way

to explore whether or not the two structural modes, (i.e. the monolithic or undulating modes),

are associated with different temperature intervals, given that the monolithic mode seems to be

correlated with higher surface densities than the undulating mode. Each column of panels in

Figure 5.7 shows the distributions for different separatrix temperatures. These are, from left to

right, TS = 12.1 K, 14.3 K, 16.9 K, 20.0 K, and 23.6 K.

The top row of Figure 5.7 shows the distributions for all the available pixels. The number of

pixels here are ∼ 2× 108. The bottom two rows show the distributions for the surface density

where the only pixels considered are ones that have a total surface-density, Σ, above a certain

threshold. For the middle row this threshold is Σ > 23 M⊙pc−2. This threshold corresponds to

a visual extinction of AV ≳ 1 mag. The number of pixels that satisfy this threshold is

∼ 5× 107. For the bottom row this threshold is Σ > 180 M⊙pc−2, which corresponds to a

visual extinction of AV ≳ 8 mag. This surface-density threshold is chosen as it is the

surface-density above which we observe high rates of low-mass star formation (Johnstone

et al., 2004; Könyves et al., 2015; Marsh et al., 2016; Ladjelate et al., 2020; Howard et al.,

2021). This total surface threshold is visible in the bottom two rows as the vertical cutoff on

the black histograms.
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Fig. 5.7 Panels showing different distributions for the surface-density. Each panel shows three histograms. The black histograms show the
distributions of the surface-density at all dust-temperatures. The blue histograms show the distributions of the surface density of the dust above a
separatrix-temperature, TS . The red histograms show the distributions of the surface-density of the dust below TS . Each column of panels shows
a different TS . From left to right the separatrix temperature has values TS = 12.1 K, 14.3 K, 16.9 K, 20.0 K, and 23.6 K. Each row of panels
shows the distributions for pixels at different total surface-density, Σ, thresholds. In the top row are histograms for all pixels (∼ 2 × 108 pixels).
The middle row shows histograms where only the pixels with Σ > 23M⊙pc−2 have been considered (∼ 5 × 107 pixels). The bottom row shows
histograms where only the pixels with Σ > 180 M⊙pc−2 have been considered (∼ 3× 105 pixels).
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It is important to note that the blue and red histograms in each panel do not necessarily sum to

the black histogram. This is because for each pixel, the total surface density, Σ, is the sum of

both the surface density of the dust at T < TS and the surface density of the dust at T > TS .

As a result these two surface densities are individually less than the total surface density and

must thus occupy lower (i.e. different) surface density bins in their respective histograms.

This also means that the blue and red histograms are not necessarily confined to be below the

black histogram. This can easily be seen in the bottom two rows of Figure 5.7 where the blue

and red histograms extend to surface-density values that are less than the vertical cutoff of the

black histograms.

For all plots we see that, above a particular value of surface-density, all the histograms follow

a power law. This power law holds for both the cooler and warmer dust temperatures and

takes the form
dP

dΣ
∝ 1

Σ3
. (5.6)

In the top row of Figure 5.7 we see that at low surface-density the histograms roughly follow a

log-normal distribution. This only shows clearly in the top row as once the surface-density

cutoff is applied, the lower surface-density regime is not adequately sampled. This suggests

that neither the monolithic mode or undulating mode are associated with a particular

temperature regime.

5.6 Measuring H and S for M31, the Andromeda Galaxy.

In this section we describe results from applying CNN:32 to the Andromeda Galaxy (M31).

The map of column density used here is one analysed by Whitworth et al. (2019). In

Whitworth et al. (2019), observations from Herschel are analysed by the PPMAP algorithm in

order to provide a high physical resolution map of optical depth with a pixel resolution of 4′′.

Since M31 is at a distance of ∼ 0.78 Mpc, this arcsecond resolution corresponds to a spatial

resolution of ∼ 15 pc across each pixel. The pixel size of the map is 2250× 500, which

corresponds to an area of 2.50◦ × 0.56◦. This map of optical depth is then converted to a

column density in units of M⊙pc−2 using a modified version of Equation 5.4,

Σcos(i) =
τ300
κ300

, (5.7)
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Fig. 5.8 A map of the column density of the Andromeda given in M⊙pc−2. The grid shows the
equatorial coordinate system, given in terms of the right ascension, α, and the declination, δ.
The data used here is from Whitworth et al. (2019)

where we have replaced the column density, Σ, with its projection, Σcos(i). This is done to

account for the inclination of M31. Here, i is the inclination angle, where i = 0◦ is for a face

on galaxy and i = 90◦ is for an edge on galaxy. For the Andromeda Galaxy i = 77.7◦. For the

mass opacity index of dust at 300 µm, we use κ300 = 2.7 cm2 g−1 = 5.6× 10−4 pc2 M−1
⊙

from Whitworth et al. (2019). This gives

Σ =
τ300

κ300 cos(i)
= [8.4× 103 M⊙pc−2]τ300. (5.8)

Figure 5.8 shows the resulting column density map of M31 given in the units of M⊙pc−2. We

overlay a grid that shows the equatorial coordinate system given in terms of right ascension, α,

and declination, δ. In this image we can clearly see the three rings of Andromeda with the

middle ring clearly contributing the bulk of the disk as well as having the regions with the

highest column density. It is important to note that this map contains far more NaN

(Not-a-Number) pixels than the Hi-GAL tiles used in the previous Section, with

approximately 65% of the pixels in the M31 image being NaN pixels. Moreover in the

Hi-GAL tiles the NaN regions were mostly confined to the outside of the maps with minimal

large NaN regions within each tiles. In contrast the M31 map contains quite large NaN regions

interspersed within the disk of the galaxy, with multiple regions of column density data

completely separated from the main bulk of the disk. This necessitates a different treatment of

these NaN values compared to the treatment of the NaNs in the Hi-GAL tiles.
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The CNN architecture used for CNN:32 has the consequence of giving values of NaN as the

output if even a single NaN pixel is present in the input map. As a result of this, the equivalent

NaN region in the resultant map (of H and S) is expanded by at least an additional N
PIX

/2

where N
PIX

is the pixel size of the CNN patches (See Section 5.3). Applying this treatment to

the map of M31 would lead to maps of H and S with even larger regions of NaN values

compared to the already large NaN regions in the column density map. Thus the process of

applying CNN:32 is modified by first replacing every NaN pixel with a zero. These replaced

pixels ensure that CNN:32 returns numerical values for H and S in place of NaNs. The

column density map is then split into N
PIX

×N
PIX

patches and each of these patches are

normalised and passed through CNN:32. The normalisation process is the same normalisation

process that was done for the patches in the Hi-GAL tiles (See Section 5.3). For each pair of

H and S values generated for each patch an efficiency value is calculated by dividing the

number of replaced pixels, NRP, i, in patch i by the total number of pixels in each patch

(N
PIX

)2, i.e. (NRP, i)/(NPIX
)2. The resulting H and S maps contain values of H and S where

the efficiency value is greater than a particular threshold value. Here we set the threshold

value to be 0.2. This means that we only consider patches where less than 20% of pixels were

originally NaN-values.

In this analysis we set N
PIX

= 32. Since the pixel resolution is 4′′, then ϕmin = 4′′ and

ϕmax = 128′′. In terms of spatial distances these become rmin = 15 pc and rmax = 240 pc

respectively. It is straightforward to determine these spatial resolutions as the Andromeda

Galaxy, and hence the material intersecting most of the lines of sight, is at a constant distance

of D ≈ 0.78 Mpc. This is in contrast to the analysis that was done on the Milky Way Plane as

in that case it is highly likely that the column density contains contributions from material that

is at different distances along the line of sight.

Figure 5.9 shows the resulting map of H. We can see that the centre of the galaxy tends to

have a low H compared to the rings, while the dense regions in the rings have a high H. The

region with the highest H is the region at (α ∼ 0h46m, δ ∼ 42◦10′) which is within the

outermost ring. This is consistent with a power spectrum dominated by large wavelengths.

The regions with the lowest H are the small isolated regions around the edges of the disk and

between the rings. These isolated regions tend to produce patches with NaN-values, which are

then converted to zeros before being inputted into the CNN. These zeros would make the patch
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Fig. 5.9 A map of H for M31.

appear to have rougher structures than patches with high column density and would thus have

a power spectrum that is steeper at the short wavelengths. This would produce a relatively low

H. We refer the reader to Figure 2.9 to have a rough idea of what these regions look like.

Figure 5.10 shows the resulting map of S. We have flipped the colourbar so that the darker

colours represent high S. This is different from Figure 5.9 where the darker colours represent

low H. This was done in order to provide a better contrast of the isolated regions against the

white background, which is a direct result of these isolated regions having high values of S.

These high values S can also be explained by the abundance of zero pixels in their patches.

These pixels provide a relatively large contrast between them and the non-zero pixels which

results in a relatively large S. Figure 2.9 shows a region with high S, for comparison. Low

values of S are more present within the contiguous portions of the disk, i.e. the rings. This

implies that these regions have a relatively low contrast and as a result have a low variance in

column density across neighbouring regions. We note that regions of high H tend to have low

S and vice versa. This is shown more clearly in Figure 5.11.

Figure 5.11 shows the distributions of H and S for M31. The left panel shows the distribution

of H, while the middle panel shows the distribution of S . The peak of each of these

distributions have been marked with a red line. The right panel shows a two-dimensional

distribution of H against S. The peak of this 2D distribution corresponds to the peaks of the

1D distributions and is at (H = 0.67,S = 1.08). This value of H = 0.67 corresponds to a

fractal dimension of D = 1.33. This agrees with other measurements of fractal dimension in

the ISM, which generally find 1.2 ≲ D ≲ 1.5 (Beech, 1987; Bazell and Desert, 1988;
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Fig. 5.10 A map of S for M31. We have flipped the colourbar to provide enough contrast for
the isolated regions of high S to show against the background.

Dickman et al., 1990; Falgarone et al., 1991; Vogelaar and Wakker, 1994; Sanchez et al., 2005;

Marchuk et al., 2021). The 2D distribution also confirms that there is a negative correlation

between H and S where high values of H tend to have low values of S. This was previously

noted in the maps of H and S (Figures 5.9 and 5.10). This is in contrast with what was found

for the Milky Way Galaxy, which generally had a positive correlation between H and S

(Figure 5.4). We also find no evidence of any bimodality in these distributions, however this is

not too surprising since the spatial resolution is much larger than that used in the analysis of

the Milky Way. This larger spatial resolution means that any information that is needed to

tease out the smaller undulating mode is mostly present at a smaller scale than that of a single

pixel, i.e. 15 pc. This implies that the process that produces the undulating mode is of a scale

< 15 pc. In Section 5.5.2 we postulate that this undulating mode is due to turbulence.

Figure 5.12 shows 2D distributions of H and S against log10(Σ/[M⊙pc−2]). The panel on the

left shows H against log10(Σ/[M⊙pc−2]) while the panel on the right shows S against

log10(Σ/[M⊙pc−2]). We see that the peak at H = 0.67 and S = 1.08 coincides with a column

density peak at log10(Σ/[M⊙pc−2]) ∼ 0.3, which gives Σ ∼ 2 M⊙pc−2. If we compare this

image with Figure 5.5 we see that there are some similarities. For H against

log10(Σ/[M⊙pc−2]) we see that all plots generally form an inverted L shape, consisting of two

regions meeting at a peak at a relatively high H. For S we see that the peak tends to be at low

S but there is a steep upwards trend towards high values of S.
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Fig. 5.11 The distribution of H and S values for the map of M31 shown in Figure 5.9. Left:
Histogram showing the distribution of H. The peak is at H = 0.67 and is shown as a vertical
red line. Each bin has size ∆H = 1.95× 10−2. Middle: Histogram showing the distribution of
S. The peak is at S = 1.08. Each bin has size ∆S = 4.17× 10−2. Right: A two-dimensional
distribution of H against S. The bin sizes here are ∆H = 3.90× 10−2 and ∆S = 8.35× 10−2.
The contours show lines of constant density at the following values: 2× 102, 103, and 3× 103.

Fig. 5.12 Two-dimensional distributions of: Left: H against the column density,
log10(Σ/[M⊙pc−2]), and Right: S against log10(Σ/[M⊙pc−2]). The contours are the same
as those in Figure 5.11. The bins for H and S are the same as in Figure 5.11. The column
density bins are ∆ log10Σ = 4.74× 10−2.
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5.7 Caveats and Assumptions

We must mention multiple assumptions that we have made in the analysis of both the Milky

Way plane and the Andromeda Galaxy. One important assumption is made when we assume a

constant mass opacity index at 300µm, κ300. It is highly likely that κ300 varies spatially within

both the Milky Way Galaxy and Andromeda. This is because there are both variations in the

amount of dust in the ISM as well as a variation in the metallicity (Wenger et al., 2019;

Galliano et al., 2021). The assumption that κ300 is constant has two implications. The first is

that we assume that κ300 is the same for each pixel, and thus there is a linear conversion from

the dust optical-depth τ300 and the surface density, Σ (See Equation 5.4). The second

implication is that κ300 is constant along the line of sight. This is an assumption that is made

as part of the PPMAP algorithm (Marsh et al., 2015, 2017; Whitworth et al., 2019; Bates and

Whitworth, 2023).

We must also stress that although the same techniques have been applied to both Andromeda

and the Milky Way, these two analyses are conducted under very different circumstances. The

Milky Way analysis has been done from inside the Galaxy and encompasses a wide range of

distances, with many structures being superimposed along the line-of-sight, while the

Andromeda analysis has been done from an external point-of-view, with the distances to the

structures within the galaxy being roughly equal and thus comparable.

Another few assumptions are made with respect to the fractal structure. Firstly, this analysis

assumes that each patch that is inputted into the CNNs can be described as an xfBm field.

xfBm fields are mono-fractal, (H does not change with spatial scale or position), however

there is a strong possibility that the ISM is multi-fractal (Elia et al., 2014, 2018; Robitaille

et al., 2020), and thus each patch can not be described by a single H. Each particular line of

sight also includes the contributions from multiple fractal structures and thus cannot be

described by a single H either. These issues might be mitigated by higher resolution images

such that there is less confusion between neighbouring structures.

5.8 Chapter Summary

To summarise, we create maps of H and S using the maps of total surface density of both the

Milky Way Plane and M31. The maps of total surface density have been generated by
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applying the PPMAP algorithm (Marsh et al., 2015, 2017) on Hi-GAL data (Molinari et al.,

2010). We assign an N
PIX

×N
PIX

area patch around each of the pixels in these surface density

maps. We then pass this patch through the appropriate CNN in order to assign an estimated

value of both H and S to that pixel. We compare the maps of H and S to each other, to the

column density, Σ, and (in the case of the Galactic Plane) to the galactic longitude, ℓ. In

addition to passing N
PIX

= 32 and N
PIX

= 64 sized patches to their respective CNNs, we also

pass N
PIX

= 64 patches to CNN:32 by rebinning the resolution of each patch to a pixel size of

32× 32. As a result each pixel gets assigned three values of H and three values of S.

The distributions of the estimates for H and S (Figure 5.4) shows evidence of bimodality in

the plane of the Milky Way, with peaks centred at (H,S) ∼ (0.9, 0.9), which we call the

monolithic mode, and (H,S) ∼ (0.6, 0.4), which we call the undulating mode. The terms

’monolithic’ and ’undulating’ roughly describe, in simple terms, the structures that these

values of H and S produce. Structures with (H,S) ∼ (0.9, 0.9) have a smooth, monolithic

structure, while structures with (H,S) ∼ (0.6, 0.4) have a rough, undulating structure with

notable substructures. We find that these two modes occupy different regimes in the column

density space that are separated by a point at Σ ∼ 32M⊙pc−2, with the monolithic mode

corresponding to Σ ≳ 32M⊙pc−2 and the undulating mode corresponding to Σ ≲ 32M⊙pc−2.

We find that the monolithic mode represents regions where self-gravity is important (and are

thus undergoing star formation), while the undulating mode represents regions where

turbulence is dominant. Since the monolithic mode is associated with denser regions we see

that this mode is mostly present in the Galactic centre, while the undulating mode is present in

the outer parts of the Galaxy. This bimodality is only present when the original patch is of

pixel size N
PIX

= 64, regardless of whether we’ve used CNN:32 (by rebinning the image) or

CNN:64.

We try to find evidence of these two modes by exploring the surface-density at different

temperature bins (Figure 5.7). These temperature-differential surface densities are generated

using the PPMAP algorithm (Marsh et al., 2015, 2017). We compare contributions at different

surface-densities and temperatures in order to find evidence of these modes. Since the

monolithic mode is associated with a higher surface density, we investigate whether the

distributions for the surface densities show any differences at different surface density and

temperature cutoffs. We find no obvious differences in the distributions at high surface
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densities.

We then apply CNN:32 to a surface-density map of the Andromeda Galaxy (M31). We find no

evidence of the previous bimodality in the distributions of H and S . This is probably due to

the larger length-scale of the patches, which is approximately 15pc. Instead, we find that there

is a peak at (H,S) = (0.67, 1.08), with a negative correlation between H and S. This peak

also coincides with a peak at column density, Σ ∼ 2M⊙pc−2. The value of the peak at

H = 0.67 corresponds to a fractal dimension of D = 1.33, which is in agreement with the

current literature.
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CHAPTER 6

Conclusions

6.1 Summary and Conclusions

We have trained and tested three Convolutional Neural Networks (CNNs) using exponeniated

fractional Brownian motion (xfBm) images. xfBm images are a modified form of fBm images

and are described using three parameters: the Hurst parameter H, the scaling parameter S and

the pixel size of the image, N
PIX

. The Hurst parameter is related to the perimeter-area fractal

dimension, DPA = 2−H, and to the power-law exponent, β, of the power spectrum via

β = 2(1 +H). Each of the CNNs, which we name CNN:128, CNN:64, CNN:32, takes as an

input a 2-dimensional N
PIX

×N
PIX

pixel sized image and produces an estimate for H and S.

The three CNNs differ only by N
PIX

, with values of N
PIX

= 128, 64, and 32. We use the

naming convention of CNN:N
PIX

, when referring to a particular CNN.

We compare the performance of the CNNs with that of widely used estimators of H such as

the Perimeter-Area method and Delta-Variance. We find that, when trained, the CNNs

outperform both methods in both speed and accuracy. We find that the difference in accuracy

between Delta-Variance and the CNNs becomes greater when operating on images with

smaller N
PIX

. We also note that the CNNs estimate S as well as H, and while S is analogous

to the standard deviation of the field, we find that using the CNNs produces a more accurate

estimation of S than simply taking the standard deviation of the field.

If we consider the angular size of each pixel as being ϕmin × ϕmin, then we can assume that the

CNNs capture structures with a range of scales between ϕmin and ϕmax = N
PIX

ϕmin. Thus we

can use N
PIX

to set the range of angular scales of the image that is being analysed. There is a

trade-off to consider here. At large N
PIX

, the CNNs are more accurate as they can use more

pixels in their calculations. This, however, assumes that the image is mono-fractal (i.e. H is
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constant everywhere) and thus we have to assume that there is no confusion between different

structures with different H and S. A smaller N
PIX

gives a more localised estimation of H and

S, albeit a less accurate one.

We apply CNN:64 and CNN:32 to images of surface density of the interstellar medium (ISM)

of the Galactic Plane. The images used here are those of the Hi-GAL survey, which have been

further processed into maps of the total column density using the PPMAP algorithm. These

maps have an angular resolution of 6′′ per pixel. For each pixel in these maps we take the

surrounding N
PIX

×N
PIX

patch as an input to the CNNs and assign the resulting value of H

and S to that pixel. When we apply CNN:64 and CNN:32 to these maps we label the results as

’64× 6’ and ’32× 6’ respectively. These have (ϕmin, ϕmax) = (6′′, 384′′) and (6′′, 192′′)

respectively. In addition we also apply CNN:32 to a N
PIX

= 64 patch by degrading this patch

to a resolution of 32× 32 pixels. This gives ϕmin = 12′′ and ϕmax = 384′′. The results here are

labelled ’32× 12’.

We find that regions of higher surface density (Σ ≳ 32 M⊙pc−2) correlate with large H

(≳ 0.8) and S (≳ 1). We call this the monolithic mode. The high H of this mode implies a

steep power spectrum, with power being more concentrated in the larger scales, while the high

S implies a large range of surface densities. These regions are more commonly found towards

the Galactic Centre, i.e in the inner parts of the Galaxy.

Regions of low surface density (Σ ≲ 32 M⊙pc−2) correlate with small H (≲ 0.8) and S (≲ 1).

The lower H implies a shallower power spectrum and thus we expect to see more small scale

structure than in the monolithic mode. The lower S implies a smaller range of surface

densities. These regions are more commonly found in the outer portions of the Galaxy, as well

as other regions where the surface density is lower. We call this the undulating mode.

The PPMAP algorithm also produces maps of the surface-density in different dust temperature

intervals. We compare the distributions of surface-density at dust temperatures above and

below a given separatrix temperatures, TS . The values of the separatrix temperatures used are

TS = 12.1 K, 14.3 K, 16.9 K, 20.0 K, and 23.6 K. We find that both the cooler dust and the

warmer dust have surface densities that have a power-law relation, of the form, dP/dΣ ∝ Σ−3

at large surface-densities. This is independent of TS . We observe that the median dust

temperature is ∼ 20 K. This can be seen at the point at which the distributions for both the

cooler and warmer dust-temperature surface-densities are roughly equivalent. We find no
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evidence of the two modes (monolithic and undulating) in the temperature-differential

surface-density distributions.

We also apply CNN:32 to a map of the Andromeda Galaxy (M31). This map is a Herschel

derived map of surface-density that has been produced using PPMAP. The pixel resolution

here is 4′′, which gives ϕmin = 4′′ and ϕmax = 128′′. We convert this to spatial distances of

rmin = 15 pc and rmax = 240 pc respectively, due to the relatively constant distance to M31

of D ≈ 0.78 Mpc. We note that this is different to the analysis of the Milky Way Plane in two

ways: firstly, the column density of the Milky Way Plane likely has contributions from

material at different distances along the line of sight, and secondly, the distance to the material

in the Milky Way is generally less than that of M31 and thus the spatial resolution of each

pixel in M31 is likely much larger than that of the Milky Way.

The distributions of H and S in M31 have peaks at H = 0.67 and S = 1.08, with H and S

having an anti-correlation. H = 0.67 is equivalent to D = 1.33, which agrees with the current

literature (Beech, 1987; Bazell and Desert, 1988; Dickman et al., 1990; Falgarone et al., 1991;

Vogelaar and Wakker, 1994; Sanchez et al., 2005; Marchuk et al., 2021). These peaks (in both

H and S) correspond to a peak in the surface-density distribution of Σ ∼ 2 M⊙pc−2.

6.2 Future Work

Fractal structure is not limited to surface density. These CNN models can also be applied to

maps of temperature or velocity. Maps of density need not be a continuous field either. The

kernel density estimation of a set of points (for example a star cluster) can also be used as an

input to the model.

There are also avenues in which the xfBm models can be extended. Features such as dense

cores, and filaments can be added.

We must also mention that the field of Machine Learning is accelerating quickly. In fact, by

the time of this writing, the CNN architecture have already been expanded upon; namely by

autoencoders and by generative transformers. This is an exciting field and the usage of these

new models can be used for more complex dynamical systems (e.g. the addition of the time

domain, the training of which necessitates the numerical simulation of the ISM).
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