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A B S T R A C T

In this article, we consider the stochastic wave equation in spatial dimension 𝑑 = 1, with linear
term 𝜎(𝑢) = 𝑢 multiplying the noise. This equation is driven by a Gaussian noise which is
white in time and fractional in space with Hurst index 𝐻 ∈ ( 1

4
, 1
2
). First, we prove that the

solution is strictly stationary and ergodic in the spatial variable. Then, we show that with
proper normalization and centering, the spatial average of the solution converges to the standard
normal distribution, and we estimate the rate of this convergence in the total variation distance.
We also prove the corresponding functional convergence result.

1. Introduction

The study of stochastic partial differential equations (SPDEs) has seen significant growth in the past four decades, with a variety
of approaches emerging in the literature. While the semigroup approach developed by Da Prato and Zabczyk in [1], and the random
field approach introduced in Walsh’s lecture notes [2] are foundational, they represent only part of the picture. A substantial body
of work is also devoted to weak solutions in the PDE sense, where one can fully utilize PDE methods and Sobolev spaces. This
broader framework, extensively detailed in recent monographs [3,4] has opened new avenues for applying SPDE techniques to a
wider range of problems.

In the present work, we will use the random field approach. This choice is motivated by the specific structure of the (mild)
solution, which allows us to exploit a variety of analytical tools. Classical equations which have been studied using the random field
approach are: the stochastic heat equation (SHE), and the stochastic wave equation (SWE). When these equations are perturbed by
a space–time Gaussian white noise, random field solutions exist only in spatial dimension 𝑑 = 1. A systematic study of SPDEs in
higher dimensions was initiated by Dalang in the seminal article [5], by considering a spatially-homogeneous Gaussian noise with
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spatial covariance given by a non-negative-definite function 𝛾 ∶ R𝑑 → [0,∞]. A typical example is the Riesz kernel 𝛾(𝑥) = |𝑥|−𝛽 with
𝛽 ∈ (0, 𝑑). The case 𝛾 = 𝛿0, where 𝛿0 is the Dirac distribution at 0, corresponds formally to the white noise in space. Subsequent
investigations revealed that the solutions to these equations have many interesting properties, such as: intermittency [6], Hölder
continuity [7], strict positivity [8], dense blow-up [9], to mention just a few. Recent investigations focus on relaxing the conditions
on the coefficients of the equation, as for instance in [10–12].

In the 1990’s, fractional Brownian motion (fBm) became a popular model for the noise in various problems in stochastic analysis.
ecall that a fBm is a zero-mean Gaussian process (𝐵(𝐻)

𝑥 )𝑥∈R with covariance

E[𝐵(𝐻)
𝑥 𝐵(𝐻)

𝑦 ] = 1
2
(|𝑥|2𝐻 + |𝑦|2𝐻 − |𝑥 − 𝑦|2𝐻 ) =∶ 𝑅𝐻 (𝑥, 𝑦),

where 𝐻 ∈ (0, 1) is the Hurst index. If 𝐻 = 1∕2, the fBm is a Brownian motion. The paths of fBm are Hölder continuous of order less
han 𝐻 , and hence, are smoother or rougher than the Brownian paths, depending on whether 𝐻 > 1∕2 or 𝐻 < 1∕2. In the ‘‘regular’’
ase 𝐻 > 1∕2, the covariance of fBm can be written as:

𝑅𝐻 (𝑥, 𝑦) = 𝐻(2𝐻 − 1)∫
𝑥

0 ∫

𝑦

0
|𝑢 − 𝑣|2𝐻−2𝑑 𝑢𝑑 𝑣, (1.1)

using the Riesz kernel 𝛾(𝑥) = 𝐻(2𝐻 − 1)|𝑥|2𝐻−2, which is the second derivative (|𝑥|2𝐻 )′′ in the sense of distributions. In the ‘‘rough’’
case 𝐻 < 1∕2, (1.1) does not hold since (|𝑥|2𝐻 )′′ is not a locally integrable function. In this case, it is useful to work with the spectral
representation:

𝑅𝐻 (𝑥, 𝑦) = 𝑐𝐻 ∫R
1[0,𝑥](𝜉)1[0,𝑦](𝜉)|𝜉|1−2𝐻𝑑 𝜉 , (1.2)

where

𝑐𝐻 =
𝛤 (2𝐻 + 1) sin(𝜋 𝐻)

2𝜋
, (1.3)

and 𝜑(𝜉) = ∫R 𝑒
−𝑖𝜉 𝑥𝜑(𝑥)𝑑 𝑥 is the Fourier transform.

The fBm is not a semi-martingale, and Itô calculus cannot be used. Two methods were proposed for developing stochastic
nalysis with respect to fBm, using either (i) Malliavin calculus, or (ii) pathwise integration (which exploits the Hölder continuity
f the paths). Pioneer works in this direction are: [13–16]. Method (i) is relevant for the present article, and can be explained
riefly as follows: we endow the space  of linear combinations of indicator functions of the form 1[0,𝑥] with the inner product
1[0,𝑥], 1[0,𝑦]⟩0

= 𝑅𝐻 (𝑥, 𝑦), so that the map 1[0,𝑥] ↦ 𝐵(𝐻)
𝑥 ∈ 𝐿2(𝛺) becomes an isometry; then, the closure 0 of  is the domain of

he Wiener integral with respect to 𝐵(𝐻). In [17], Jolis proved that 0 coincides with the fractional Sobolev space 𝑊
1
2−𝐻 ,2(R), and

herefore it is a space of distributions if 𝐻 > 1∕2, and a space of functions if 𝐻 < 1∕2. An alternative representation in [18] for the
norm ‖ ⋅ ‖0

was obtained in the case 𝐻 < 1∕2, namely:

‖𝜑‖20
= 𝐶𝐻 ∫R2

|𝜑(𝑥) − 𝜑(𝑦)|2|𝑥 − 𝑦|2𝐻−2𝑑 𝑥𝑑 𝑦, (1.4)

where 𝐶𝐻 = 𝐻(1−2𝐻)
2 . Relation (1.4) is called the Gagliardo representation and is very useful for problems in stochastic analysis, and

in particular for the present article.
SPDEs with colored noise in time have been considered for the first time in [19]. Since then, this area has been growing steadily.

owever, the basic question of existence of solutions to (SHE) or (SWE) with colored (or fractional) noise in time is still an open
roblem in the case when the noise is multiplied by a Lipschitz function 𝜎(𝑢) of the solution. The only case when it is known that
hese equations have unique solutions is the linear case, 𝜎(𝑢) = 𝑢. This case, which is known in the literature as the parabolic Anderson
odel (PAM) for the heat equation, respectively the hyperbolic Anderson model (HAM) for the wave equation, is studied using tools

rom Malliavin calculus, since the solution has an explicit Wiener chaos expansion. This method was initiated by Hu and Nualart
n [20]. Various properties of the solution have been developed in [21–23] for (PAM), respectively [24,25] for (HAM), to name just
 few of the recent references.

In the present article, we consider the (HAM) driven by a Gaussian noise 𝑊̇ which is white in time and fractional in space with
Hurst index 𝐻 ∈ ( 14 ,

1
2 ):

⎧

⎪

⎨

⎪

⎩

𝜕2𝑢
𝜕 𝑡2 (𝑡, 𝑥) =

𝜕2𝑢
𝜕 𝑥2 (𝑡, 𝑥) + 𝑢(𝑡, 𝑥)𝑊̇ (𝑡, 𝑥), (𝑡, 𝑥) ∈ R+ × R,

𝑢(0, 𝑥) = 1, 𝜕 𝑢
𝜕 𝑡 (0, 𝑥) = 0, ∀𝑥 ∈ R.

(1.5)

Formally, 𝑊̇ is a zero-mean Gaussian noise with covariance

E[𝑊̇ (𝑡, 𝑥)𝑊̇ (𝑠, 𝑦)] = 𝛿0(𝑡 − 𝑠)𝛾(𝑥 − 𝑦), where 𝛾(𝑥) = (|𝑥|2𝐻 )′′.

Rigorously, 𝑊 = {𝑊 (𝜑);𝜑 ∈ } is a zero-mean Gaussian process defined on a complete probability space (𝛺 , ,P) and indexed by
the set  of infinitely differentiable functions on R+ ×R, with compact support. The covariance of 𝑊 is inspired by (1.2) (in which

e replace 1[0,𝑥] and 1[0,𝑦] by smooth functions), and is given by:

E[𝑊 (𝜑)𝑊 (𝜓)] = 𝑐
∞

𝜑(𝑡, ⋅)(𝜉)𝜓(𝑡, ⋅)(𝜉)|𝜉|1−2𝐻𝑑 𝜉 𝑑 𝑡 =∶ ⟨𝜑, 𝜓⟩ , (1.6)
𝐻 ∫0 ∫R 

2 
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where 𝑐𝐻 is given by (1.3). Note that the noise given by Hypothesis 2 of [26] has the same spatial structure as 𝑊 , but with constant
𝐻 replaced by

𝑐′𝐻 = 1
𝜋 ∫R

1 − cos 𝑥
|𝑥|2−2𝐻

𝑑 𝑥 =
𝛤 (2𝐻 + 1) sin(𝜋 𝐻)

𝜋 𝐻(1 − 2𝐻)
=
𝑐𝐻
𝐶𝐻

, (1.7)

which means that in the Gagliardo representation (1.4) of the norm in [26], 𝐶 ′
𝐻 = 1.

We denote by  the Hilbert space defined as the completion of  with respect to the inner product ⟨⋅, ⋅⟩ . Then the map
 ∋ 𝜑 ↦ 𝑊 (𝜑) ∈ 𝐿2(𝛺) becomes an isometry which can be extended to . The process {𝑊 (𝜑);𝜑 ∈ } is an isonormal Gaussian
process, as defined in Malliavin calculus (see [27]), and  is isomorphic to 𝐿2(R+;0). Indicator functions of the form 1[0,𝑡]×[0,𝑥] lie
n  and the process {𝑊𝑡(𝑥) = 𝑊 (1[0,𝑡]×[0,𝑥])}𝑥∈R has the same distribution as

√

𝑡𝐵(𝐻), since its covariance matches (1.2).
A predictable process 𝑢 = {𝑢(𝑡, 𝑥); 𝑡 ≥ 0, 𝑥 ∈ R} is a (mild) solution to Eq. (1.5) if it satisfies the following integral equation:

𝑢(𝑡, 𝑥) = 1 + ∫

𝑡

0 ∫R
𝐺𝑡−𝑠(𝑥 − 𝑦)𝑢(𝑠, 𝑦)𝑊 (𝑑 𝑠, 𝑑 𝑦), (1.8)

where 𝐺𝑡 is the fundamental solution to the deterministic wave equation on R+ × R:

𝐺𝑡(𝑥) ∶= 1
2
1{|𝑥|<𝑡}. (1.9)

The integral on the right-hand side of (1.8) is a Dalang-Walsh integral, which was developed in [2,5] as an extension of the Itô
ntegral to multi-parameter processes, and coincides with the Skorohod integral, as observed in [28].

The existence and weak intermittency of the solution to (1.5) was proved in [29], respectively [28]. In [30], the existence of
solution was studied in a more general scenario, where 𝑢 is replaced by a Lipschitz function 𝜎(𝑢). The existence of the solution to
(PAM) with the same noise 𝑊̇ as above was obtained in [31], while the exact asymptotic behavior of its moments was established
in [32]. The existence and Hölder continuity of the solution to (PAM) with space–time fractional noise of indices 𝐻0 > 1∕2 in time
and 𝐻 < 1∕2 in space was obtained in [33], under the condition 𝐻0 + 𝐻 > 3∕4. This condition has been recently improved to
2𝐻0 +𝐻 > 5∕4 in [34]. Moreover, when (𝐻0, 𝐻) ∈ (1∕2, 1) × (1∕20, 1∕2), the condition 2𝐻0 +𝐻 > 5∕4 is necessary and sufficient for
the existence of the solution to (PAM). The same problem for (HAM) was studied in [35] under the assumption 𝐻 ∈ ( 14 ,

1
2 ). (SHE)

ith the same noise and a general Lipschitz function 𝜎(𝑢) multiplying the noise was studied in [36], under the restriction 𝜎(0) = 0;
his condition was later removed in [37]. In the case of the white noise in time, condition 𝐻 > 1∕4 is necessary for the existence of

the solution of (HAM), or (PAM); see Theorem 1.1 of [38] and Proposition 3.7 of [29].
In all these references, the noise is spatially-homogeneous, i.e. it is invariant under translations. This property is transmitted to

the solution 𝑢 in the form of strict stationarity of the process {𝑢(𝑡, 𝑥)}𝑥∈R. Without considerable effort, it is possible to prove that
this process is also ergodic. The spatial ergodicity of the solution to an SPDE was proved for the first time in [39] for the SHE with
patially homogeneous Gaussian noise (white noise in time), and a Lipshitz function 𝜎(𝑢) multiplying the noise.

In the recent years, there has been a lot of interest in examining the asymptotic behavior of the spatial average:

𝐹𝑅(𝑡) = ∫

𝑅

−𝑅

(

𝑢(𝑡, 𝑥) − 1)𝑑 𝑥. (1.10)

Since {𝑢(𝑡, 𝑥)}𝑥∈R is strictly stationary and ergodic, by Brirkoff and von Neumann mean ergodic theorem, the following law of large
umbers holds:

𝐹𝑅(𝑡)
𝑅

→ 0 a.s. and in 𝐿2(𝛺), as 𝑅 → ∞.

A natural question is to investigate if 𝐹𝑅(𝑡) satisfies also a central limit theorem. For this, a novel technique was initiated in [40],
which combines Stein’s method for normal approximation with tools from Malliavin calculus. This method was originally developed
for (SHE) with space–time white noise, and has been rapidly extended to other models. The paramount result is the Quantitative
Central Limit Theorem (QCLT), which gives an estimate for the total variation distance 𝑑𝑇 𝑉 between 𝐹𝑅(𝑡)∕𝜎𝑅(𝑡) and a standard
ormal random variable 𝑍, as a quantifier for the speed of convergence in distribution, when 𝑅 → ∞. Here, 𝜎2𝑅(𝑡) = Var (𝐹𝑅(𝑡)) is
he variance of 𝐹𝑅(𝑡). We recall that the total variation distance between random variables 𝑋 and 𝑌 is given by:

𝑑T V(𝑋 , 𝑌 ) = sup
𝐵∈(R)

|P(𝑋 ∈ 𝐵) − P(𝑌 ∈ 𝐵)|,

where (R) stands for the collections of all Borel subsets of R. The QCLT is closely related to a study of the order of magnitude of
𝜎2𝑅(𝑡), and can be extended to functional convergence.

The following table summarizes the most important contributions to date, related to the problem of QCLT for solutions to SPDEs
with spatially-homogeneous Gaussian noise, which can be white in time, fractional in time with index𝐻0 > 1∕2, or time-independent.
n some of these references, the temporal covariance of the noise can be more general, given by a non-negative-definite function
0 ∶ R → [0,∞]. For the sake of conciseness, we present only the fractional noise in time, when 𝛾0(𝑡) = |𝑡|2𝐻0−2 with 𝐻0 ∈ ( 12 , 1). In

this table, 𝛾(𝑥) denotes the spatial covariance of the noise, 𝜎2𝑅 = 𝜎2𝑅(1), and 𝑑𝑇 𝑉 = 𝑑𝑇 𝑉 (𝐹𝑅∕𝜎𝑅, 𝑍) where 𝐹𝑅 = 𝐹𝑅(1). The notation
∼ 𝑏 indicates that 𝑎 ∕𝑏 → 𝐶 when 𝑅 → ∞, and 𝑎 ≲ 𝑏 means that 𝑎 ≤ 𝐶 𝑏 , where 𝐶 > 0 is a constant.
𝑅 𝑅 𝑅 𝑅 𝑅 𝑅 𝑅 𝑅

3 
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Noise (SHE) (SWE)
White Regular in space Regular in space
in time ∙ [40]: 𝑑 = 1, 𝛾 = 𝛿0 ∙ [41]: 𝑑 = 1, 𝛾(𝑥) = |𝑥|2𝐻−2, 𝐻 ∈ [ 12 , 1)
(𝐻0 =

1
2 ) 𝜎2𝑅 ∼ 𝑅, 𝑑𝑇 𝑉 ≲ 𝑅−1∕2 𝜎2𝑅 ∼ 𝑅2𝐻 , 𝑑𝑇 𝑉 ≲ 𝑅𝐻−1

𝜎 arb. ∙ [42]: 𝛾(𝑥) = |𝑥|−𝛽 , 𝛽 ∈ (0, 𝑑) ∙ [43]: 𝑑 = 2, 𝛾(𝑥) = |𝑥|−𝛽 , 𝛽 ∈ (0, 2)
𝜎2𝑅 ∼ 𝑅2𝑑−𝛽 , 𝑑𝑇 𝑉 ≲ 𝑅−𝛽∕2 𝜎2𝑅 ∼ 𝑅4−𝛽 , 𝑑𝑇 𝑉 ≲ 𝑅−𝛽∕2

∙ [44]: 𝑑 ≤ 2, 𝛾 ∈ 𝐿1(R𝑑 )
𝜎2𝑅 ∼ 𝑅𝑑 , 𝑑𝑇 𝑉 ≲ 𝑅−𝑑∕2

Rough in space [26] Rough in space
𝑑 = 1, 𝐻 ∈ ( 14 ,

1
2 ) 𝑑 = 1, 𝐻 ∈ ( 14 ,

1
2 )

𝜎2𝑅 ∼ 𝑅, 𝑑𝑇 𝑉 ≲ 𝑅−1∕2 Open Problem 1
Fractional Regular in space [26,45], Regular in space [24]
in time ∙ 𝛾 ∈ 𝐿1(R𝑑 ) ∙ 𝑑 ≤ 2, 𝛾 ∈ 𝐿1(R𝑑 )
𝐻0 ∈ ( 12 , 1) 𝜎2𝑅 ∼ 𝑅𝑑 , 𝑑𝑇 𝑉 ≲ 𝑅−𝑑∕2 𝜎2𝑅 ∼ 𝑅𝑑 , 𝑑𝑇 𝑉 ≲ 𝑅−𝑑∕2

𝜎(𝑢) = 𝑢 ∙ 𝛾(𝑥) = |𝑥|−𝛽 , 𝛽 ∈ (0, 𝑑) ∙ 𝑑 ≤ 2, 𝛾(𝑥) = |𝑥|−𝛽 , 𝛽 ∈ (0, 𝑑)
𝜎2𝑅 ∼ 𝑅2𝑑−𝛽 , 𝑑𝑇 𝑉 ≲ 𝑅−𝛽∕2 𝜎2𝑅 ∼ 𝑅2𝑑−𝛽 , 𝑑𝑇 𝑉 ≲ 𝑅−𝛽∕2

Rough in space [26,46] Rough in space
𝑑 = 1, 𝐻 < 1

2 , 𝐻0 +𝐻 > 3
4 𝑑 = 1, 𝐻 ∈ ( 14 ,

1
2 )

𝜎2𝑅 ∼ 𝑅, 𝑑𝑇 𝑉 ≲ 𝑅−1∕2 Open Problem 2
Time- Regular in space [47] Regular in space [48]
independent ∙ 𝛾 ∈ 𝐿1(R𝑑 ) ∙ 𝑑 ≤ 2, 𝛾 ∈ 𝐿1(R𝑑 )
(𝐻0 = 1) 𝜎2𝑅 ∼ 𝑅𝑑 , 𝑑𝑇 𝑉 ≲ 𝑅−𝑑∕2 𝜎2𝑅 ∼ 𝑅𝑑 , 𝑑𝑇 𝑉 ≲ 𝑅−𝑑∕2

𝜎(𝑢) = 𝑢 ∙ 𝛾(𝑥) = |𝑥|−𝛽 , 𝛽 ∈ (0, 𝑑) ∙ 𝑑 ≤ 2, 𝛾(𝑥) = |𝑥|−𝛽 , 𝛽 ∈ (0, 𝑑)
Rough in space [47] Rough in space [49]
𝑑 = 1, 𝐻 ∈ ( 14 ,

1
2 ) 𝑑 = 1, 𝐻 ∈ ( 14 ,

1
2 )

𝜎2𝑅 ∼ 𝑅, 𝑑𝑇 𝑉 ≲ 𝑅−1∕2 𝜎2𝑅 ∼ 𝑅, 𝑑𝑇 𝑉 ≲ 𝑅−1∕2

In the case of the white noise in time (regular in space), Ref. [50] gives the CLT for a function 𝑔(𝑢(𝑡, 𝑥)) of the spatial average of the
solution to (SHE), while Refs. [51,52] studied the QCLT problem for a normalized version of the solution to (PAM) with delta initial
condition. In the case of the (SWE) with white noise in time, the spatial ergodicity of the solution was proved in [53] for dimensions
𝑑 ≤ 3, while [54,55] proved the convergence in the Wasserstein distance for the spatial average of the solution, in dimension 𝑑 > 3.

In this paper, we study the Open Problem 1 mentioned above, in the case 𝜎(𝑢) = 𝑢. We first show that the solution is strictly
tationary and ergodic in the space variable, then we prove that 𝜎2𝑅 ∼ 𝑅. The major effort is dedicated to the proof of QCLT. For
his, we use the same method as in [26] for (PAM), which relies on a second-order Poincaré inequality (Proposition 2.4 of [26]).

Due to the Gagliardo representation (1.4) of the norm ‖ ⋅ ‖0
, we encounter the problem of estimating the fourth moments of the

increments of the Malliavin derivative 𝐷 𝑢(𝑡, 𝑥), and of the rectangular increments of the second Malliavin derivative 𝐷2𝑢(𝑡, 𝑥). In the
ase of (PAM), these estimates are obtained in [26] using highly non-trivial methods, that cannot be applied for (HAM).

Our method is simpler than that of [26], and relies on the following key relation

𝐷𝑟,𝑧𝑢(𝑡, 𝑥) = 𝑢(𝑟, 𝑧)𝑣(𝑟,𝑧)(𝑡, 𝑥), (1.11)

between 𝐷 𝑢 and the solution 𝑣 = 𝑣(𝑟,𝑧) of the stochastic integral equation (of Volterra type):

𝑣(𝑡, 𝑥) = 𝐺𝑡−𝑟(𝑥 − 𝑧) + ∫

𝑡

𝑟 ∫R
𝐺𝑡−𝑠(𝑥 − 𝑦)𝑣(𝑠, 𝑦)𝑊 (𝑑 𝑠, 𝑑 𝑦), 𝑡 ≥ 𝑟, 𝑥 ∈ R. (1.12)

Relation (1.11) is valid for the solution 𝑢 of any SPDE with white noise in time, constant initial condition, and linear function 𝜎(𝑢) = 𝑢
multiplying the noise. But it may not hold for equations with colored noise in time, or time-independent noise. (Nevertheless, in
the case of (HAM) with time-independent noise, it is still possible to derive an indirect argument relating 𝐷 𝑢 and 𝑣 which leads to
estimates for the moments of 𝐷 𝑢 and its increments; see [49, Theorem 4.1].) Key properties of 𝑣(𝑟,𝑧), which lie at the core of our

ethods, are:

(i) the moments of 𝑣(𝑟,𝑧)(𝑡, 𝑥) are uniformly bounded in (𝑟, 𝑧, 𝑡, 𝑥) (see [49, Example B.2]);
(ii) 𝑣(𝑟,𝑧) satisfies the following relation (see the proof of Lemma 2.4 below4):

𝑣(𝑟,𝑧)(𝑡, 𝑥) = 2𝐺𝑡−𝑟(𝑥 − 𝑧)𝑣(𝑟,𝑧)(𝑡, 𝑥); (1.13)

(iii) the increments of 𝑣(𝑟,𝑧) have translation-invariance properties (see Lemma 2.5 below).
Properties (i) and (ii) may not hold for other models, such as (PAM); see [49, Remark B.3].

4 Properties (i) and (ii) may not hold for other models, such as (PAM); see [49, Remark B.3].
4 
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We are now ready to state the main results of the present article.

Theorem 1.1 (Spatial Ergodicity). For any 𝑡 > 0, the process {𝑢(𝑡, 𝑥)}𝑥∈R is strictly stationary and ergodic.

Theorem 1.2 (QCLT). For any 𝑡 > 0 and 𝑅 > 0,

𝑑T V
(

𝐹𝑅(𝑡)
𝜎𝑅(𝑡)

, 𝑍
)

≤ 𝐶 (2)
𝑡,𝐻𝑅

−1∕2,

where 𝐹𝑅(𝑡) is given by (1.10) and 𝐶 (2)
𝑡,𝐻 > 0 is a constant depending on 𝑡 and 𝐻 .

Theorem 1.3 (Functional CLT). Let 𝐹𝑅(𝑡) be given by (1.10). The process {𝑅−1∕2𝐹𝑅(𝑡); 𝑡 ≥ 0} converges in distribution as 𝑅 → ∞, to a
ero-mean Gaussian process {(𝑡); 𝑡 ≥ 0} with covariance

E[(𝑡)(𝑠)] = 𝐾(𝑡 ∧ 𝑠),

where 𝐾(𝑡) is given by (2.25).
Theorem 1.1 is derived from an ergodicity criterion credited to Maruyama [56]. By combining this criterion with the Gaussian–

Poincaré inequality (see e.g., [57,58]), the spatial ergodicity of the solution to (SHE) was investigated in [39]. For the solution to
(SWE), the spatial ergodicity in dimensions 𝑑 ≤ 3 was proved in [53]. However, in the paper [53], the spatial correlation function has
to be a function (or a measure), rendering the result inapplicable in our case, when the correlation is a distribution. Consequently,
ew methods must be employed to establish the validity of Theorem 1.1.

The major effort is dedicated to the proof of Theorem 1.2. Although the key mathematical tools used for this proof are
ot new, non-trivial technical computations are required. This proof is based on the second-order Gaussian–Poincaré inequality

(referenced as in e.g., [59–61]) following the strategy initially discovered in [24], and further applied/developed in [26,47–49].
By thoroughly analyzing the implementation of the Gaussian–Poincaré inequality, certain precise (but unnecessary) computations
rom [26] for (PAM) with time-dependent noise, had already been successfully eliminated in [49], when dealing with (HAM) with

time-independent noise. It turns out that the methodology of [49] is also applicable in case of (HAM) with time-dependent noise
(considered in the present article), and this procedure yields a significant reduction in the complexity of the terms yielded by the
Gaussian–Poincaré inequality. But most computations from [49] cannot be transferred directly to the case of time-dependent noise.
The contribution of this paper is to present the new arguments which are required to treat this case.

Remark 1.4. (i) In this article, we consider only the case when the noise is multiplied by the linear function 𝜎(𝑢) = 𝑢. Given
the white-in-time nature of the driving noise, the diffusion coefficient 𝑢 can be relaxed to a Lipschitz function 𝜎(𝑢) in (1.5), while
reserving existence, uniqueness, and certain regularity results, as established in [30]. A natural question arises: can the results

presented in this article be extended to the case of a general Lipschitz function 𝜎? We believe the answer is ‘‘yes’’, though the chaos
expansion method used here cannot be directly applied to the nonlinear case. While some technical adjustments may handle the
moment estimates for the solution and its Malliavin derivative, the limiting covariance, as derived in Section 2.5 below, presents a
significant challenge. Proposition 2.12 expresses the limiting covariance Cov(𝐹𝑅(𝑡), 𝐹𝑅(𝑠)) through the chaos expansion, a powerful
ool which is not available for the nonlinear case, leaving the formulation of a similar result unresolved. See Remark 2.14 for a
etailed discussion.

(ii) There are several ways of defining the solution to (SWE), including through a system of SPDEs. In the present article, we
opted for the mild form, because it straightforwardly associates to the chaos expansion via the Picard iteration. Given that the chaos
expansion plays a crucial role in our proofs, the mild formulation aligns better with our approach.

(iii) The next natural step is to consider (HAM) in dimension 𝑑 ≥ 2 driven by a Gaussian noise which is fractional in space with
urst indices 𝐻1,… , 𝐻𝑑 ∈ (0, 1). The case of (PAM) with this type of noise was studied in [62], examining carefully what happens

when some of the 𝐻𝑖’s are less than 1∕2. The case of (HAM) is significantly more involved, especially since in dimension 𝑑 ≥ 3, the
fundamental solution 𝐺 is not a function. We do not even know what is a sufficient condition for the existence of the solution. For
this reason, in the present paper, we consider only the case 𝑑 = 1.

(iv) Parameter estimation for SDEs and SPDEs is an active and modern research area (see https://sites.google.com/prod/view/
stats4spdes/), which can be traced back to [63] where estimators of the drift parameter were constructed in the case of (SHE)

ith Gaussian space–time white noise in dimension 𝑑 = 1, and Lipschitz non-linearity 𝜎(𝑢). More recently, this problem has been
considered in [64,65] for (SHE), respectively the Burgers equation, with additive noise which may be correlated in space. To our
nowledge, no results have been established so far in this direction for (SWE) or (HAM), even in the case of Gaussian space–time
hite noise.

This article is organized as follows. In Section 2, we include the preliminary results, leading to the estimates for Malliavin
derivatives of the solution, which are essential for our developments. Section 3 contains the proofs of Theorems 1.1,2.12,1.2 and
1.3.

Throughout this paper, we denote by ‖ ⋅ ‖𝑝 the 𝐿𝑝(𝛺)-norm of a random variable on the probability space (𝛺 , ,P). For any
positive integer 𝑛, we make use of the notation 𝑥𝑥𝑥𝑛 ∶= (𝑥1,… , 𝑥𝑛) for an element in R𝑛, and for any 𝑡 ∈ R, 𝑇𝑛(𝑡) stands for a subset
of [0, 𝑡]𝑛: 𝑇𝑛(𝑡) ∶= {𝑡𝑡𝑡𝑛 = (𝑡1,… , 𝑡𝑛); 0 < 𝑡1 < ⋯ < 𝑡𝑛 < 𝑡}. In all the results which are stated for fixed 𝑡 > 0 and which involve moments
of order 𝑝 ≥ 2, we denote by 𝐶 a constant that depends on (𝑡, 𝐻 , 𝑝) and may be different in each of its appearances.
5 
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2. Preliminary estimates

In this section, we present an overview of (HAM) driven by noise 𝑊̇ as above, including relevant preliminaries. We reference
xisting literature for certain results, while also introducing a few novel estimates supported by detailed proofs.

The next two identities will be used, whose proof follows from elementary calculus, and thus are omitted. Let 𝑡 > 0. Then the
ollowing two identities hold. For any 𝛼 ∈ (−1, 1),

∫R
sin2(𝑡|𝜉|)|𝜉|𝛼−2𝑑 𝜉 = 𝐶𝛼𝑡

1−𝛼 , (2.1)

where 𝐶𝛼 > 0 is a constant depending on 𝛼. For any 𝛼1 > −1,… , 𝛼𝑛 > −1,

∫𝑇𝑛(𝑡)

𝑛
∏

𝑗=1
(𝑡𝑗+1 − 𝑡𝑗 )

𝛼𝑗 𝑑 𝑡𝑡𝑡𝑛 =
∏𝑛

𝑗=1 𝛤 (𝛼𝑗 + 1)
𝛤 (|𝛼| + 𝑛 + 1) 𝑡

|𝛼|+𝑛, (2.2)

where we use the convention 𝑡𝑛+1 = 𝑡, and we denote |𝛼| =
∑𝑛
𝑗=1 𝛼𝑗 .

2.1. Properties of the solution

In this section, we present some properties of the solution that will be needed in the sequel, including the spatial strict stationarity
mentioned in Theorem 1.1.

As discussed in [35], the solution to Eq. (1.5) has the Wiener chaos expansion:

𝑢(𝑡, 𝑥) = 1 +
∑

𝑛≥1
𝐼𝑛(𝑓𝑛(⋅, 𝑡, 𝑥)),

where 𝐼𝑛 is the multiple integral with respect to 𝑊 and the kernel 𝑓𝑛(⋅, 𝑡, 𝑥) is given by:

𝑓𝑛(𝑡𝑡𝑡𝑛, 𝑥𝑥𝑥𝑛, 𝑡, 𝑥) =𝑓𝑛(𝑡1,… , 𝑡𝑛, 𝑥1,… , 𝑥𝑛, 𝑡, 𝑥)
∶=𝐺𝑡−𝑡𝑛 (𝑥 − 𝑥𝑛) ×⋯ × 𝐺𝑡2−𝑡1 (𝑥2 − 𝑥1)𝟏𝑇𝑛(𝑡)(𝑡𝑡𝑡𝑛).

In this case,

E|𝑢(𝑡, 𝑥)|2 =
∑

𝑛≥1
𝑛!‖𝑓𝑛(⋅, 𝑡, 𝑥)‖2⊗𝑛

0
,

where 𝑓𝑛(⋅, 𝑡, 𝑥) is the symmetrization of 𝑓𝑛(⋅, 𝑡, 𝑥):
𝑓𝑛(𝑡𝑡𝑡𝑛, 𝑥𝑥𝑥𝑛, 𝑡, 𝑥) = 1

𝑛!
∑

𝜌∈𝑆𝑛

𝑓𝑛(𝑡𝜌(1),… , 𝑡𝜌(𝑛), 𝑥𝜌(1),… , 𝑥𝜌(𝑛), 𝑡, 𝑥),

with 𝑆𝑛 denoting the set of all permutations on {1,… , 𝑛}.
The following result was proved in [28,29]; see [29, Theorem 3.9] or [28, Theorem 3.5].

Lemma 2.1. For any 𝐻 ∈ (1∕4, 1∕2), Eq. (1.5) has a unique solution. Moreover, for any 𝑝 ≥ 2 and 𝑡 ≥ 0,

sup
(𝑟,𝑥)∈[0,𝑡]×R

‖𝑢(𝑟, 𝑥)‖𝑝 < 𝐶 , (2.3)

where 𝐶 > 0 is a constant that depends on (𝑡, 𝑝, 𝐻).
The following result gives the spatial stationarity of 𝑢.

Lemma 2.2. For any 𝑡 > 0, the process {𝑢(𝑡, 𝑥)}𝑥∈R is strictly stationary. In particular, for any 𝑥, ℎ ∈ R,

𝑢(𝑡, 𝑥) − 𝑢(𝑡, 𝑥 + ℎ) 𝑑= 𝑢(𝑡, 0) − 𝑢(𝑡, ℎ).

Proof. We show that for any 𝑚 ≥ 1 and for any 𝑧1,… , 𝑧𝑚, ℎ ∈ R
(

𝑢(𝑡, 𝑧1),… , 𝑢(𝑡, 𝑧𝑚)
) 𝑑
=
(

𝑢(𝑡, 𝑧1 + ℎ),… , 𝑢(𝑡, 𝑧𝑚 + ℎ)
)

.

For any 𝑗 = 1,… , 𝑚, the variable 𝑢(𝑡, 𝑧𝑗 + ℎ) has the chaos expansion:

𝑢(𝑡, 𝑧𝑗 + ℎ) =
∑

𝑛≥1
∫𝑇𝑛(𝑡)×R𝑛

𝐺𝑡−𝑡𝑛 (𝑧𝑗 + ℎ − 𝑥𝑛)
𝑛−1
∏

𝑖=1
𝐺𝑡𝑖+1−𝑡𝑖 (𝑥𝑖+1 − 𝑥𝑖)

× 𝑊 (𝑑 𝑡1, 𝑑 𝑥1) …𝑊 (𝑑 𝑡𝑛, 𝑑 𝑥𝑛), (2.4)

recalling that 𝑇𝑛(𝑡) = {0 < 𝑡1 < ⋯ < 𝑡𝑛 < 𝑡}. Let 𝑊 (ℎ) = {𝑊 (ℎ)(𝜑);𝜑 ∈ (R+ ×R)} be the shifted noise, where 𝑊 (ℎ)(𝜑) = 𝑊 (𝜑(⋅ − ℎ)).
Performing the formal change of variables 𝑦𝑖 = 𝑥𝑖 − ℎ for 𝑖 = 1,… , 𝑛, we see that the multiple integral above is equal to

𝐺𝑡−𝑡𝑛 (𝑧𝑗 − 𝑦𝑛)
𝑛−1
∏

𝐺𝑡𝑖+1−𝑡𝑖 (𝑦𝑖+1 − 𝑦𝑖)𝑊
(ℎ)(𝑑 𝑡1, 𝑑 𝑦1) …𝑊 (ℎ)(𝑑 𝑡𝑛, 𝑑 𝑦𝑛).
∫𝑇𝑛(𝑡)×R𝑛 𝑖=1

6 
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Since 𝑊 is spatially homogeneous, 𝑊 (ℎ) 𝑑
= 𝑊 . Therefore, the vector of dimension 𝑚 whose 𝑗th component is given by the series

(2.4) has the same distribution as the vector whose 𝑗th component is 𝑢(𝑡, 𝑧𝑗 ). □

Lemma 2.3. For any 𝑡 > 0 and 𝑝 ≥ 2, we have

sup
0≤𝑠≤𝑡∫R

‖

‖

‖

𝑢(𝑠, 0) − 𝑢(𝑠, ℎ)‖‖
‖

2

𝑝
|ℎ|2𝐻−2𝑑 ℎ ≤ 𝐶 ,

where 𝐶 > 0 is a constant that depends on (𝑡, 𝐻 , 𝑝).

Proof. Using the uniform bound for ‖𝑢(𝑠, 𝑥)‖𝑝 given by (2.3), we have:

∫
|ℎ|>1

‖𝑢(𝑠, 0) − 𝑢(𝑠, ℎ)‖𝑝|ℎ|2𝐻−2𝑑 ℎ ≤ 𝐶 ∫
|ℎ|>1

|ℎ|2𝐻−2𝑑 ℎ <∞.

It remains to treat the integral over the set |ℎ| ≤ 1. By using the chaos expansion (2.4) for 𝑢(𝑡, 0) − 𝑢(𝑡, 𝑥), and hypercontractivity
(see e.g., [66, Corollary 2.8.14]), for any 𝑝 ≥ 2,

‖𝑢(𝑠, 0) − 𝑢(𝑠, ℎ)‖𝑝 ≤
∑

𝑛≥1
(𝑝 − 1)𝑛∕2‖𝐼𝑛(𝑓𝑛,ℎ(⋅, 0, 𝑠))‖2 =

∑

𝑛≥1
(𝑝 − 1)𝑛∕2[𝐽𝑛,ℎ(𝑠)]1∕2, (2.5)

where 𝐽𝑛,ℎ(𝑠) ∶= 𝑛!‖𝑓𝑛,ℎ(⋅, 0, 𝑠)‖2⊗𝑛 . It follows from (1.6) that

𝐽𝑛,ℎ(𝑠) = 𝑐𝑛𝐻 ∫𝑇𝑛(𝑠) ∫R𝑛
|

|

|

𝑓𝑛,ℎ(𝑡𝑡𝑡𝑛, ⋅, 𝑠, 𝑥)(𝜉1,… , 𝜉𝑛)||
|

2 𝑛
∏

𝑗=1
|𝜉𝑗 |

1−2𝐻𝑑 𝜉𝜉𝜉𝑛𝑑 𝑡𝑡𝑡𝑛

= 𝑐𝑛𝐻 ∫𝑇𝑛(𝑡) ∫R𝑛
|

|

|

1 − 𝑒−𝑖(𝜉1+⋯+𝜉𝑛)ℎ|
|

|

2 𝑛
∏

𝑗=1

|

|

|

𝐺𝑡𝑗+1−𝑡𝑗 (𝜉1 +⋯ + 𝜉𝑗 )
|

|

|

2 𝑛
∏

𝑗=1
|𝜉𝑗 |

1−2𝐻𝑑 𝜉𝜉𝜉𝑛𝑑 𝑡𝑡𝑡𝑛

= 𝑐𝑛𝐻 ∫𝑇𝑛(𝑡) ∫R𝑛
|

|

|

1 − 𝑒−𝑖𝜂𝑛ℎ||
|

2 𝑛
∏

𝑗=1

|

|

|

𝐺𝑡𝑗+1−𝑡𝑗 (𝜂𝑗 )
|

|

|

2 𝑛
∏

𝑗=1
|𝜂𝑗 − 𝜂𝑗−1|1−2𝐻𝑑 𝜂𝜂𝜂𝑛𝑑 𝑡𝑡𝑡𝑛,

where 𝑐𝐻 is given by (1.3), and by convention 𝑡𝑛+1 = 𝑠 and 𝜂0 = 0. We use the inequality |𝑎 + 𝑏|1−2𝐻 ≤ |𝑎|1−2𝐻 + |𝑏|1−2𝐻 for all
, 𝑏 ∈ R, and the identity

𝑥1
𝑛
∏

𝑗=2
(𝑥𝑗 + 𝑥𝑗−1) =

∑

𝑎𝑎𝑎𝑛∈𝐴𝑛

𝑥
𝑎𝑗
𝑗 , for all 𝑥1,… , 𝑥𝑛 ∈ R+, (2.6)

where 𝐴𝑛 is a set of multi-indices 𝑎𝑎𝑎𝑛 = (𝑎1,… , 𝑎𝑛) such that 𝑎1 ∈ {1, 2}, 𝑎𝑛 ∈ {0, 1}, 𝑎2,… , 𝑎𝑛−1 ∈ {0, 1, 2}, ∑𝑛
𝑗=1 𝑎𝑗 = 𝑛 and

𝑎𝑗 + 𝑎𝑗−1 ∈ {1, 2, 3} for any 𝑗 = 1,… , 𝑛 − 1. Then the cardinality car d(𝐴𝑛) = 2𝑛−1 (see [35, Page 7]). Hence
𝑛
∏

𝑗=1
|𝜂𝑗 − 𝜂𝑗−1|1−2𝐻 ≤

∑

𝛼𝛼𝛼𝑛∈𝐷𝑛

𝑛
∏

𝑗=1
|𝜂𝑗 |

𝛼𝑗 , (2.7)

where 𝐷𝑛 is the set of multi-indices 𝛼𝛼𝛼 = (𝛼1,… , 𝛼𝑛) with 𝛼𝑗 = (1 − 2𝐻)𝑎𝑗 for all 𝑗 = 1,… , 𝑛 and 𝑎𝑎𝑎𝑛 = (𝑎1,… , 𝑎𝑛) ∈ 𝐴𝑛. It follows that

𝐽𝑛,ℎ(𝑠) ≤ 𝑐𝑛𝐻
∑

𝛼𝛼𝛼𝑛∈𝐷𝑛
∫𝑇𝑛(𝑡)

𝑛−1
∏

𝑗=1

(

∫R
|𝐺𝑡𝑗+1−𝑡𝑗 (𝜂𝑗 )||𝜂𝑗 |

𝛼𝑗 𝑑 𝜂𝑗
)

×
(

∫R
|1 − 𝑒−𝑖𝜂𝑛ℎ|2|𝐺𝑡−𝑡𝑛 (𝜂𝑛)|2|𝜂𝑛|𝛼𝑛𝑑 𝜂𝑛

)

𝑑 𝑡𝑡𝑡𝑛.

As a result of identity (2.1) and the fact that |𝜂𝑛|𝛼𝑛 ≤ 1 + |𝜂𝑛|1−2𝐻 (since 𝛼𝑛 ∈ {0, 1 − 2𝐻}),

𝐽𝑛,ℎ(𝑠) ≤ 𝐶𝑛
∑

𝛼∈𝐴𝑛
∫

𝑡

0

(

∫R
|1 − 𝑒−𝑖𝜂𝑛ℎ|2|𝐺𝑡−𝑡𝑛 (𝜂𝑛)|2(1 + |𝜂𝑛|

1−2𝐻 )𝑑 𝜂𝑛
)

(

∫𝑇𝑛−1(𝑡𝑛)

𝑛−1
∏

𝑗=1
(𝑡𝑗+1 − 𝑡𝑗 )

1−𝛼𝑗 𝑑 𝑡𝑡𝑡𝑛−1
)

𝑑 𝑡𝑛.

Due to inequality (2.2) and the fact that 𝛤 (𝑎𝑛+ 𝑏+ 1) ≥ 𝑐𝑛𝑎,𝑏(𝑛!)
𝑎 for any 𝑎 > 0 and 𝑏 ∈ R with some constant 𝑐𝑎,𝑏 depending only on

𝑎 and 𝑏, it can be proved that

∫𝑇𝑛−1(𝑡𝑛)

𝑛−1
∏

𝑗=1
(𝑡𝑗+1 − 𝑡𝑗 )

1−𝑎𝑗 𝑑 𝑡𝑡𝑡𝑛−1 ≤ 𝐶𝑛

(𝑛!)2𝐻+1
𝑡(2𝐻+1)𝑛−2
𝑛 .

Therefore,

𝐽𝑛,ℎ(𝑠) ≤
𝐶𝑛

(𝑛!)2𝐻+1 ∫

𝑡

0 ∫R
|1 − 𝑒−𝑖𝜂𝑛ℎ|2(1 + |𝜂𝑛|

1−2𝐻 )
sin2((𝑡 − 𝑡𝑛)|𝜂𝑛|)

|𝜂𝑛|2
𝑡(2𝐻+1)𝑛−2
𝑛 𝑑 𝜂𝑛𝑑 𝑡𝑛

≤ 𝐶𝑛 𝑠(2𝐻+1)𝑛−1
|1 − 𝑒−𝑖𝜂𝑛ℎ|2(1 + |𝜂𝑛|

1−2𝐻 ) 1 𝑑 𝜂𝑛,
(𝑛!)2𝐻+1 ∫R |𝜂𝑛|2
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where the last inequality follows from the bound sin2((𝑠 − 𝑡𝑛)|𝜂𝑛|) ≤ 1. Using the fact that |1 − 𝑒−𝑖𝑥|2 = 2(1 − cos 𝑥) and the identity

∫R
(1 − cos(𝜉 𝑥))|𝑥|−𝛼−1𝑑 𝑥 = 𝐶𝛼|𝜉|

𝛼 , for any 𝛼 ∈ (0, 2),

we obtain that 𝐽𝑛,ℎ(𝑠) ≤
𝐶𝑛

(𝑛!)2𝐻+1

(

|ℎ| + |ℎ|2𝐻
)

. Plugging this inequality to (2.5), we get

‖𝑢(𝑠, 0) − 𝑢(𝑠, ℎ)‖𝑝 ≤ (|ℎ|1∕2 + |ℎ|𝐻 )
∑

𝑛≥1
(𝑝 − 1)𝑛∕2 𝐶𝑛

(𝑛!)𝐻+1∕2
=∶ 𝐶(|ℎ|1∕2 + |ℎ|𝐻 ).

This implies

∫
|ℎ|≤1

‖𝑢(𝑠, 𝑥) − 𝑢(𝑠, 𝑥 + ℎ)‖2𝑝|ℎ|2𝐻−2𝑑 ℎ ≤ 𝐶 ∫
|ℎ|≤1

(

|ℎ|1∕2 + |ℎ|𝐻
)2
|ℎ|2𝐻−2𝑑 ℎ <∞,

because 𝐻 > 1∕4. The proof of this lemma is complete. □

2.2. (HAM) with delta initial velocity

In this section, we study Eq. (1.12).
First, recall that the solution of the wave equation 𝜕2𝑤

𝜕 𝑡2 (𝑡, 𝑥) =
𝜕2𝑤
𝜕 𝑥2 (𝑡, 𝑥), 𝑡 > 𝑟, 𝑥 ∈ R with initial conditions 𝑤(𝑟, 𝑥) = 𝑢0(𝑥) and

𝜕 𝑤
𝜕 𝑡 (𝑟, 𝑥) = 𝑣0(𝑥) is given by:

𝑤(𝑡, 𝑥) = (𝐺𝑡−𝑟 ∗ 𝑣0)(𝑥) + 𝜕
𝜕 𝑡 (𝐺𝑡−𝑟 ∗ 𝑢0)(𝑥).

When 𝑢0 = 0 and 𝑣0 = 𝛿𝑧 (for fixed 𝑧 ∈ R), 𝑤(𝑡, 𝑥) = 𝐺𝑡−𝑟(𝑥 − 𝑧).
Consider now the following model:

⎧

⎪

⎨

⎪

⎩

𝜕2𝑣
𝜕 𝑡2 (𝑡, 𝑥) =

𝜕2𝑣
𝜕 𝑥2 (𝑡, 𝑥) + 𝑣(𝑡, 𝑥)𝑊̇ (𝑡, 𝑥), 𝑡 > 𝑟, 𝑥 ∈ R,

𝑣(𝑟, ⋅) = 0, 𝜕 𝑣
𝜕 𝑡 (𝑟, ⋅) = 𝛿𝑧,

(2.8)

A random field 𝑣(𝑟,𝑧) = {𝑣(𝑟,𝑧)(𝑡, 𝑥); (𝑡, 𝑥) ∈ [𝑟,∞) × R} is a (mild) solution of Eq. (2.8) if it satisfies the integral Eq. (1.12).
It can be proved that Eq. (2.8) has a unique solution (see e.g., [49, Example B.2]). Moreover, this solution has the chaos expansion:

𝑣(𝑟,𝑧)(𝑡, 𝑥) = 𝐺𝑡−𝑟(𝑥 − 𝑧) +
∑

𝑛≥1
𝐼𝑛(𝑔𝑛(⋅, 𝑟, 𝑧, 𝑡, 𝑥)), (2.9)

where 𝑔0(𝑟, 𝑧, 𝑡, 𝑥) = 𝐺𝑡−𝑟(𝑥 − 𝑧) and for 𝑛 ≥ 1,

𝑔𝑛(𝑡𝑡𝑡𝑛, 𝑥𝑥𝑥𝑛, 𝑟, 𝑧, 𝑡, 𝑥) = 𝐺𝑡−𝑡𝑛 (𝑥 − 𝑥𝑛) ×⋯ × 𝐺𝑡1−𝑟(𝑥1 − 𝑧). (2.10)

In addition, for any 𝑝 ≥ 2 and 𝑡 > 0,

sup
0≤𝑟≤𝑠≤𝑡
𝑥,𝑧∈R

‖

‖

‖

𝑣(𝑟,𝑧)(𝑠, 𝑥)‖‖
‖𝑝
< 𝐶 . (2.11)

Lemma 2.4. For any 0 ≤ 𝑟 ≤ 𝑠 ≤ 𝑡 <∞, 𝑥, 𝑧 ∈ R, and 𝑝 ≥ 2, we have:
‖

‖

‖

𝑣(𝑟,𝑧)(𝑠, 𝑥)‖‖
‖𝑝

= 2𝐺𝑠−𝑟(𝑥 − 𝑧)‖‖
‖

𝑣(𝑟,𝑧)(𝑠, 𝑥)‖‖
‖𝑝

≤ 𝐶 𝐺𝑠−𝑟(𝑥 − 𝑧). (2.12)

Proof. Fix 𝑟 > 0 and 𝑧 ∈ R. Taking account of the special form (1.9) of 𝐺, we see that 𝑔𝑛(⋅, 𝑟, 𝑧, 𝑡, 𝑥) = 2𝐺𝑡−𝑟(𝑥− 𝑧)𝑔𝑛(⋅, 𝑟, 𝑧, 𝑡, 𝑥). From
his, we deduce using the chaos expansion (2.9) that 𝑣(𝑟,𝑧) is supported on {(𝑡, 𝑥) ∈ [0,∞) × R; |𝑥 − 𝑧| < 𝑡 − 𝑟}. Thus, we can write

𝑣(𝑟,𝑧)(𝑡, 𝑥) = 𝟏{|𝑥−𝑧|<𝑡−𝑟}𝑣(𝑟,𝑧)(𝑡, 𝑥).
Recall the wave kernel 𝐺𝑡(𝑥) = 1

2 𝟏{|𝑥|<𝑡}. The indicator function in the above display is equal to 2𝐺𝑡−𝑟(𝑥 − 𝑧). This verifies (1.13).
Thus, (2.12) follows from (1.13) and (2.11). The proof of this lemma is complete. □

The next lemma presents some translation-invariance properties of 𝑣(𝑟,𝑧).

Lemma 2.5. For any 0 ≤ 𝑟 ≤ 𝑡 < ∞ and 𝑥, 𝑥′, 𝑧, 𝑧′ ∈ R, the following properties hold:

(a) 𝑣(𝑟,𝑧)(𝑡, 𝑥) 𝑑= 𝑣(𝑟,0)(𝑡, 𝑥 − 𝑧).
(b) 𝑣(𝑟,𝑧)(𝑡, 𝑥) − 𝑣(𝑟,𝑧′)(𝑡, 𝑥′) 𝑑= 𝑣(𝑟,0)(𝑡, 𝑥 − 𝑧) − 𝑣(𝑟,𝑧′−𝑧)(𝑡, 𝑥′ − 𝑧).
(c) 𝑣

(𝑟,𝑧)(𝑡, 𝑥) − 𝑣(𝑟,𝑧)(𝑡, 𝑥′) − 𝑣(𝑟,𝑧′)(𝑡, 𝑥) + 𝑣(𝑟,𝑧′)(𝑡, 𝑥′) 𝑑=
𝑣(𝑟,0)(𝑡, 𝑥 − 𝑧) − 𝑣(𝑟,0)(𝑡, 𝑥′ − 𝑧) − 𝑣(𝑟,𝑧′−𝑧)(𝑡, 𝑥 − 𝑧) + 𝑣(𝑟,𝑧′−𝑧)(𝑡, 𝑥′ − 𝑧).
8 



R.M. Balan et al.

a

Stochastic Processes and their Applications 182 (2025) 104569 
Proof. (a) This is similar to the proof of Lemma 2.2.
(b) We have the following chaos expansion:

𝑣(𝑟,𝑧)(𝑡, 𝑥) − 𝑣(𝑟,𝑧′)(𝑡, 𝑥′) = 𝐺𝑡−𝑟(𝑥 − 𝑧) − 𝐺𝑡−𝑟(𝑥′ − 𝑧′)+
∞
∑

𝑛=1
∫𝑟<𝑡1<⋯<𝑡𝑛<𝑡 ∫R𝑛

(

𝐺𝑡−𝑡𝑛 (𝑥 − 𝑥𝑛)𝐺𝑡1−𝑟(𝑥1 − 𝑧) − 𝐺𝑡−𝑡𝑛 (𝑥′ − 𝑥𝑛)𝐺𝑡1−𝑟(𝑥1 − 𝑧′)
)

𝑛−1
∏

𝑖=1
𝐺𝑡𝑖+1−𝑡𝑖 (𝑥𝑖+1 − 𝑥𝑖)𝑊 (𝑑 𝑡1, 𝑑 𝑥1) …𝑊 (𝑑 𝑡𝑛, 𝑑 𝑥𝑛). (2.13)

Performing the formal change of variables 𝑦𝑖 = 𝑥𝑖 − 𝑧 for 𝑖 = 1,… , 𝑛, we see that the multiple integral above is equal to

∫𝑟<𝑡1<⋯<𝑡𝑛 ∫R𝑛

(

𝐺𝑡−𝑡𝑛 (𝑥 − 𝑧 − 𝑦𝑛)𝐺𝑡1−𝑟(𝑦1) − 𝐺𝑡−𝑡𝑛 (𝑥′ − 𝑧 − 𝑦𝑛)𝐺𝑡1−𝑟(𝑦1 − 𝑧′ + 𝑧)
)

𝑛−1
∏

𝑖=1
𝐺𝑡𝑖+1−𝑡𝑖 (𝑦𝑖+1 − 𝑦𝑖)𝑊

(𝑧)(𝑑 𝑡1, 𝑑 𝑦1) …𝑊 (𝑧)(𝑑 𝑡𝑛, 𝑑 𝑦𝑛).

Since 𝑊
𝑑
= 𝑊 (𝑧), the series (2.13) has the same distribution as the series which gives the chaos expansion of 𝑣(𝑟,0)(𝑡, 𝑥 − 𝑧) −

𝑣(𝑟,𝑧′−𝑧)(𝑡, 𝑥′ − 𝑧).
(c) The chaos expansion of the term on the left-hand side is:

𝐺𝑡−𝑟(𝑥 − 𝑧) − 𝐺𝑡−𝑟(𝑥′ − 𝑧) − 𝐺𝑡−𝑟(𝑥 − 𝑧′) + 𝐺𝑡−𝑟(𝑥′ − 𝑧′)+
∑

𝑛≥1
∫𝑟<𝑡1<⋯<𝑡𝑛<𝑡 ∫R𝑛

(

𝐺𝑡−𝑡𝑛 (𝑥 − 𝑥𝑛) − 𝐺𝑡−𝑡𝑛 (𝑥′ − 𝑥𝑛)
)

𝑛−1
∏

𝑖=1
𝐺𝑡𝑖+1−𝑡𝑖 (𝑥𝑖+1 − 𝑥𝑖)

(

𝐺𝑡1−𝑟(𝑥1 − 𝑧) − 𝐺𝑡1−𝑟(𝑥1 − 𝑧′)
)

𝑊 (𝑑 𝑡1, 𝑑 𝑥1) …𝑊 (𝑑 𝑡𝑛, 𝑑 𝑥𝑛).
Then we perform the formal change of variables 𝑦𝑖 = 𝑥𝑖 −𝑧 for 𝑖 = 1,… , 𝑛 in the multiple integral of order 𝑛. The conclusion follows
using the fact that 𝑊 𝑑

= 𝑊 (𝑧). □

Lemma 2.6. For any 𝑝 ≥ 2, 𝑞 > 0 and 𝑡 ∈ R+, we have

sup
0≤𝑟≤𝑠≤𝑡
𝑧∈R

∫R
‖

‖

‖

𝑣(𝑟,𝑧)(𝑠, 𝑥′)‖‖
‖

𝑞

𝑝
𝑑 𝑥′ + sup

0≤𝑟≤𝑠≤𝑡
𝑥∈R

∫R
‖

‖

‖

𝑣(𝑟,𝑧
′)(𝑠, 𝑥)‖‖

‖

𝑞

𝑝
𝑑 𝑧′ ≤ 𝐶 ,

where 𝐶 > 0 is a constant that depends on (𝑡, 𝑝, 𝑞 , 𝐻).

Proof. This is a direct consequence of Lemma 2.4. □

The properties listed in the following lemma have been proved in [49]: parts (a) and (c) correspond to relations (98)–(99), ibid.
nd part (b) was shown in the proof of Lemma 5.4(c), ibid. Note that 𝑣(𝑟,𝑧) is denoted by 𝑉 (𝑟,𝑧)

1 in [49].

Lemma 2.7. For any 𝑝 ≥ 2 and 𝑡 ∈ R+, we have:

(a) sup
0≤𝑟≤𝑠≤𝑡∫R2

‖

‖

‖

𝑣(𝑟,0)(𝑠, 𝑥) − 𝑣(𝑟,ℎ)(𝑠, 𝑥)‖‖
‖

2

𝑝
|ℎ|2𝐻−2𝑑 𝑥𝑑 ℎ ≤ 𝐶,

(b) sup
0≤𝑟≤𝑠≤𝑡∫R2

‖

‖

‖

𝑣(𝑟,0)(𝑠, 𝑥) − 𝑣(𝑟,0)(𝑠, 𝑥 + ℎ)‖‖
‖

2

𝑝
|ℎ|2𝐻−2𝑑 𝑥𝑑 ℎ ≤ 𝐶,

(c)
sup

0≤𝑟≤𝑠≤𝑡∫R3

‖

‖

‖

𝑣(𝑟,0)(𝑠, 𝑥) − 𝑣(𝑟,ℎ)(𝑠, 𝑥) − 𝑣(𝑟,0)(𝑠, 𝑥 + 𝑘) + 𝑣(𝑟,ℎ)(𝑠, 𝑥 + 𝑘)‖‖
‖

2

𝑝

× |ℎ|2𝐻−2∥𝑘|2𝐻−2𝑑 𝑥𝑑 ℎ𝑑 𝑘 ≤ 𝐶 .

The next lemma is formulated similarly to Lemma 2.7, but differs in the order of the ‘‘square’’ operation and the integration
with respect to 𝑥. Despite the fact that the proofs of these two results are similar, one cannot deduce one from the other. As we will
need both lemmas, we provide the proof of Lemma 2.8.

Lemma 2.8. For any 𝑝 ≥ 2 and 𝑡 ∈ R+, we have:

(a) sup
0≤𝑟≤𝑠≤𝑡∫R

(

∫R
‖

‖

‖

𝑣(𝑟,0)(𝑠, 𝑥) − 𝑣(𝑟,ℎ)(𝑠, 𝑥)‖‖
‖𝑝
𝑑 𝑥

)2
|ℎ|2𝐻−2𝑑 ℎ ≤ 𝐶,

(b) sup
0≤𝑟≤𝑠≤𝑡∫R

(

∫R
‖

‖

‖

𝑣(𝑟,0)(𝑠, 𝑥) − 𝑣(𝑟,0)(𝑠, 𝑥 + ℎ)‖‖
‖𝑝
𝑑 𝑥

)2
|ℎ|2𝐻−2𝑑 ℎ ≤ 𝐶,

(c)
sup

0≤𝑟≤𝑠≤𝑡∫R2

(

∫R
‖

‖

‖

𝑣(𝑟,0)(𝑠, 𝑥) − 𝑣(𝑟,ℎ)(𝑠, 𝑥) − 𝑣(𝑟,0)(𝑠, 𝑥 + 𝑘) + 𝑣(𝑟,ℎ)(𝑠, 𝑥 + 𝑘)‖‖
‖𝑝
𝑑 𝑥

)2

× |ℎ|2𝐻−2
|𝑘|2𝐻−2𝑑 ℎ𝑑 𝑘 ≤ 𝐶 ,
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where 𝐶 > 0 is a constant that depends on (𝑡, 𝑝, 𝐻).

Proof. (a) The proof follows from the same argument as in that of [49, Lemma 5.5], with minor modifications. Denote by 𝐼1 and
2 the integral in (a) on the region {ℎ; |ℎ| > 1} and {ℎ; |ℎ| ≤ 1}, respectively. Then, by Lemma 2.6,

sup
0≤𝑟≤𝑠≤𝑡∫R

‖

‖

‖

𝑣(𝑟,0)(𝑠, 𝑥) − 𝑣(𝑟,ℎ)(𝑠, 𝑥)‖‖
‖𝑝
𝑑 𝑥 ≤ sup

0≤𝑟≤𝑠≤𝑡∫R

(

‖

‖

‖

𝑣(𝑟,0)(𝑠, 𝑥)‖‖
‖𝑝

+ ‖

‖

‖

𝑣(𝑟,ℎ)(𝑠, 𝑥)‖‖
‖𝑝
𝑑 𝑥

)

≤𝐶 ,

and hence

𝐼1 ≤ 𝐶 ∫
|ℎ|>1

|ℎ|2𝐻−2𝑑 ℎ = 𝐶 .

Using (1.13), we have 𝐼2 ≤ 𝐶
(

𝐼2,1 + 𝐼2,2
)

, where

𝐼2,1 ∶= sup
0≤𝑟≤𝑠≤𝑡∫|ℎ|≤1

(

∫R
𝐺𝑠−𝑟(𝑥)

‖

‖

‖

𝑣(𝑟,0)(𝑠, 𝑥) − 𝑣(𝑟,ℎ)(𝑠, 𝑥)‖‖
‖𝑝
𝑑 𝑥

)2
|ℎ|2𝐻−2𝑑 ℎ,

and

𝐼2,2 ∶= sup
0≤𝑟≤𝑠≤𝑡∫|ℎ|≤1

(

∫R
|

|

|

𝐺𝑠−𝑟(𝑥) − 𝐺𝑠−𝑟(𝑥 − ℎ)||
|

‖

‖

‖

𝑣(𝑟,ℎ)(𝑠, 𝑥)‖‖
‖𝑝
𝑑 𝑥

)2
|ℎ|2𝐻−2𝑑 ℎ.

As a result of the Cauchy–Schwarz inequality and the fact that ‖𝐺𝑠−𝑟‖2𝐿2(R)
= (𝑠 − 𝑟)∕2,

𝐼2,1 ≤ 𝐶 sup
0≤𝑟≤𝑠≤𝑡∫R2

‖

‖

‖

𝑣(𝑟,0)(𝑠, 𝑥) − 𝑣(𝑟,ℎ)(𝑠, 𝑥)‖‖
‖

2

𝑝
|ℎ|2𝐻−2𝑑 𝑥𝑑 ℎ.

The last integral is uniformly bounded, by Lemma 2.7(a). Using (2.11) and the fact that ‖𝐺𝑠−𝑟(⋅) − 𝐺𝑠−𝑟(⋅ − ℎ)‖𝐿1(R) ≤ |ℎ|, we have:

𝐼2,2 ≤ 𝐶 sup
0≤𝑟≤𝑠≤𝑡∫|ℎ|≤1

(

∫R
|

|

|

𝐺𝑠−𝑟(𝑥) − 𝐺𝑠−𝑟(𝑥 − ℎ)||
|

𝑑 𝑥
)2

|ℎ|2𝐻−2𝑑 ℎ ≤ 𝐶 ∫
|ℎ|≤1

|ℎ|2𝐻𝑑 ℎ = 𝐶 .

(b) The proof is similar to that of (a), and thus skipped.
(c) Denote by 𝐽 the left hand-side of the inequality. Then,

𝐽 ≤ 4 sup
0≤𝑟≤𝑠≤𝑡

4
∑

𝑖=1
𝐽𝑖(𝑟, 𝑠),

where

𝐽𝑖(𝑟, 𝑠) ∶= ∫R2

(

∫R
𝐹𝑖(𝑥, ℎ, 𝑘)𝑑 𝑥

)2
|ℎ|2𝐻−2

|𝑘|2𝐻−2𝑑 ℎ𝑑 𝑘, 𝑖 = 1,… , 4,

with

𝐹1(𝑥, ℎ, 𝑘)∶=𝐺𝑠−𝑟(𝑥)‖‖
‖

𝑣(𝑟,0)(𝑠, 𝑥) − 𝑣(𝑟,ℎ)(𝑠, 𝑥) − 𝑣(𝑟,0)(𝑠, 𝑥 + 𝑘) + 𝑣(𝑟,ℎ)(𝑠, 𝑥 + 𝑘)‖‖
‖𝑝
,

𝐹2(𝑥, ℎ, 𝑘)∶= |𝐺𝑠−𝑟(𝑥) − 𝐺𝑠−𝑟(𝑥 + 𝑘)|‖‖
‖

𝑣(𝑟,0)(𝑠, 𝑥 + 𝑘) − 𝑣(𝑟,ℎ)(𝑠, 𝑥 + 𝑘)‖‖
‖𝑝
,

𝐹3(𝑥, ℎ, 𝑘)∶= |𝐺𝑠−𝑟(𝑥) − 𝐺𝑠−𝑟(𝑥 − ℎ) − 𝐺𝑠−𝑟(𝑥 + 𝑘) + 𝐺𝑠−𝑟(𝑥 + 𝑘 − ℎ)|‖‖
‖

𝑣(𝑟,ℎ)(𝑠, 𝑥)‖‖
‖𝑝
,

𝐹4(𝑥, ℎ, 𝑘)∶= |𝐺𝑠−𝑟(𝑥 + 𝑘) − 𝐺𝑠−𝑟(𝑥 + 𝑘 − ℎ)|‖‖
‖

𝑣(𝑟,ℎ)(𝑠, 𝑥) − 𝑣(𝑟,ℎ)(𝑠, 𝑥 + 𝑘)‖‖
‖𝑝
.

We suppress the dependence in (𝑟, 𝑠) in the above notation for 𝐹𝑖’s.
To treat these terms, we proceed as in the proof of [49, Lemma 5.5.e)]. Since 𝐹𝑗 is a product of two terms (which involve 𝐺,

respectively 𝑣), we bound ∫R 𝐹𝑗 (𝑥, ℎ, 𝑘)𝑑 𝑥 using the Cauchy–Schwarz inequality. For the first term, since ∫R 𝐺
2
𝑠−𝑟(𝑥)𝑑 𝑥 = 𝐶, we have:

𝐽1(𝑟, 𝑠) ≤ 𝐶 ∫R3

‖

‖

‖

𝑣(𝑟,0)(𝑠, 𝑥) − 𝑣(𝑟,ℎ)(𝑠, 𝑥) − 𝑣(𝑟,0)(𝑠, 𝑥 + 𝑘) + 𝑣(𝑟,ℎ)(𝑠, 𝑥 + 𝑘)‖‖
‖

2

𝑝

× |ℎ|2𝐻−2
|𝑘|2𝐻−2𝑑 ℎ𝑑 𝑘.

By Lemma 2.7.(c), the last integral is uniformly bounded for all 0 ≤ 𝑟 ≤ 𝑠 ≤ 𝑡. Next,

𝐽2(𝑟, 𝑠) ≤ ∫R

(

∫R
|𝐺𝑠−𝑟(𝑥) − 𝐺𝑠−𝑟(𝑥 + 𝑘)|2𝑑 𝑥

)

×
(

∫R2

‖

‖

‖

𝑣(𝑟,0)(𝑠, 𝑥 + 𝑘) − 𝑣(𝑟,ℎ)(𝑠, 𝑥 + 𝑘)‖‖
‖

2

𝑝
|ℎ|2𝐻−2𝑑 ℎ𝑑 𝑥

)

|𝑘|2𝐻−2𝑑 𝑘

≤ 𝐶 ∫ |𝐺𝑠−𝑟(𝑥) − 𝐺𝑠−𝑟(𝑥 + 𝑘)|2|𝑘|2𝐻−2𝑑 𝑥𝑑 𝑘 = 𝐶(𝑠 − 𝑟)2𝐻 ≤ 𝐶 𝑡2𝐻 ,

R2
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where for the last inequality, we used Lemma 2.7.(a). For the third term,

𝐽3(𝑟, 𝑠) ≤ ∫R2

(

∫R
|𝐺𝑠−𝑟(𝑥) − 𝐺𝑠−𝑟(𝑥 − ℎ) − 𝐺𝑠−𝑟(𝑥 + 𝑘) + 𝐺𝑠−𝑟(𝑥 + 𝑘 − ℎ)|2𝑑 𝑥

)

×
(

∫R
‖

‖

‖

𝑣(𝑟,ℎ)(𝑠, 𝑥)‖‖
‖

2

𝑝
𝑑 𝑥

)

|ℎ|2𝐻−2
|𝑘|2𝐻−2𝑑 ℎ𝑑 𝑘

≤ 𝐶 ∫R3
|𝐺𝑠−𝑟(𝑥) − 𝐺𝑠−𝑟(𝑥 − ℎ) − 𝐺𝑠−𝑟(𝑥 + 𝑘) + 𝐺𝑠−𝑟(𝑥 + 𝑘 − ℎ)|2

× |ℎ|2𝐻−2
|𝑘|2𝐻−2𝑑 𝑥𝑑 ℎ𝑑 𝑘

= 𝐶(𝑠 − 𝑟)4𝐻−1 ≤ 𝐶 𝑡4𝐻−1,

where for the last inequality we used Lemma 2.6. Finally,

𝐽4(𝑟, 𝑠) ≤ ∫R2

(

∫R
|𝐺𝑠−𝑟(𝑥 + 𝑘) − 𝐺𝑠−𝑟(𝑥 + 𝑘 − ℎ)|2𝑑 𝑥

)

×
(

∫R
‖

‖

‖

𝑣(𝑟,ℎ)(𝑠, 𝑥) − 𝑣(𝑟,ℎ)(𝑠, 𝑥 + 𝑘)‖‖
‖

2

𝑝
𝑑 𝑥

)

|ℎ|2𝐻−2
|𝑘|2𝐻−2𝑑 ℎ𝑑 𝑘

= ∫R

(

∫R
|𝐺𝑠−𝑟(𝑥′) − 𝐺𝑠−𝑟(𝑥′ − ℎ)|2𝑑 𝑥

)

×
(

∫R2

‖

‖

‖

𝑣(𝑟,ℎ)(𝑠, 𝑥) − 𝑣(𝑟,ℎ)(𝑠, 𝑥 + 𝑘)‖‖
‖

2

𝑝
|𝑘|2𝐻−2𝑑 𝑥𝑑 𝑘

)

|ℎ|2𝐻−2𝑑 ℎ

≤ 𝐶 ∫R2
|𝐺𝑠−𝑟(𝑥′) − 𝐺𝑠−𝑟(𝑥′ − ℎ)|2|ℎ|2𝐻−2𝑑 𝑥𝑑 ℎ = 𝐶(𝑠 − 𝑟)2𝐻 ≤ 𝐶 𝑡2𝐻 ,

where for the last inequality we used again Lemma 2.7.(a). We refer the reader to Appendix B of [49] for the identities involving
ntegrals of the function 𝐺, which were used above. □

2.3. Malliavin derivatives and (HAM) with the delta initial velocity

In this section, we establish the connection between the Malliavin derivatives 𝐷 𝑢 and 𝐷2𝑢 and the solution 𝑣(𝑟,𝑧) of (2.8).

Lemma 2.9. Let 𝑢 be the solution to (1.5), and let 𝑣(𝑟,𝑧) be the solution to (2.8) with arbitrary (𝑟, 𝑧) ∈ R+ × R. Then,

(a) 𝐷𝑟,𝑧𝑢(𝑡, 𝑥) = 𝑢(𝑟, 𝑧)𝑣(𝑟,𝑧)(𝑡, 𝑥), for all 0 ≤ 𝑟 ≤ 𝑡 < ∞ and 𝑥, 𝑧 ∈ R.
(b) 𝐷2

(𝜃 ,𝑤),(𝑟,𝑧)𝑢(𝑡, 𝑥) = 𝑢(𝜃 , 𝑤)𝑣(𝜃 ,𝑤)(𝑟, 𝑧)𝑣(𝑟,𝑧)(𝑡, 𝑥) for all 0 ≤ 𝜃 ≤ 𝑟 ≤ 𝑡 <∞ and 𝑥, 𝑧, 𝑤 ∈ R.

Proof. We only provide the proof of (a). One can show (b) similarly. Note that the Malliavin derivative 𝐷𝑟,𝑧𝑢(𝑡, 𝑥) has the chaos
expansion: for any (𝑟, 𝑧) ∈ [0, 𝑡] × R,

𝐷𝑟,𝑧𝑢(𝑡, 𝑥) =
∑

𝑛≥1
𝑛𝐼𝑛−1(𝑓𝑛(⋅, 𝑟, 𝑧, 𝑡, 𝑥)) =

∑

𝑛≥1

𝑛
∑

𝑗=1
𝐼𝑛−1(𝑓

(𝑛)
𝑗 (⋅, 𝑟, 𝑧, 𝑡, 𝑥)), (2.14)

where

𝑓 (𝑛)
𝑗 (𝑡𝑡𝑡𝑛−1, 𝑥𝑥𝑥𝑛−1, 𝑟, 𝑧, 𝑡, 𝑥) =𝑓𝑛(𝑡1,… , 𝑡𝑗−1, 𝑟, 𝑡𝑗 ,… , 𝑡𝑛−1, 𝑥1,… , 𝑥𝑗−1, 𝑧, 𝑥𝑗 ,… , 𝑥𝑛−1, 𝑡, 𝑥)

=𝐺𝑡−𝑡𝑛−1 (𝑥 − 𝑥𝑛−1) ×⋯ × 𝐺𝑡𝑗−𝑟(𝑥𝑗 − 𝑧)𝐺𝑟−𝑡𝑗−1 (𝑧 − 𝑥𝑗−1)

× … × 𝐺𝑡2−𝑡1 (𝑥2 − 𝑥1)𝟏𝑇 𝑗𝑛−1(𝑡,𝑟)(𝑡𝑡𝑡𝑛−1),

with

𝑇 𝑗𝑛−1(𝑡, 𝑟) ∶= {𝑡𝑡𝑡𝑛−1 ∈ [0, 𝑡]𝑛−1; 0 < 𝑡1 <⋯ < 𝑡𝑗−1 < 𝑟 < 𝑡𝑗 <⋯ < 𝑡𝑛−1 < 𝑡}.

Note that the function 𝑓 (𝑛)
𝑗 (⋅, 𝑟, 𝑧, 𝑡, 𝑥) can be written as follows:

𝑓 (𝑛)
𝑗 (𝑡𝑡𝑡𝑛−1, 𝑥𝑥𝑥𝑛−1, 𝑟, 𝑧, 𝑡, 𝑥) = 𝑓𝑗 (𝑡𝑡𝑡𝑗−1, 𝑥𝑥𝑥𝑗−1, 𝑟, 𝑧)𝑔𝑛−𝑗 (𝑡𝑡𝑡𝑗∶𝑛−1, 𝑥𝑥𝑥𝑗;𝑛−1, 𝑟, 𝑧, 𝑡, 𝑥), (2.15)

where 𝑔𝑛−𝑗 is given by (2.10) with 𝑔0(𝑟, 𝑧, 𝑡, 𝑥) ∶= 𝐺𝑡−𝑟(𝑥 − 𝑧), 𝑡𝑡𝑡𝑗∶𝑛−1 ∶= (𝑡𝑗 ,… , 𝑡𝑛−1), and 𝑥𝑥𝑥𝑗∶𝑛−1 ∶= (𝑥𝑗 ,… , 𝑥𝑛−1). Because the two
functions appearing in this decomposition have ‘‘disjoint temporal supports’’ (see the footnote on page 16 of [24]) and the noise is
white in time, it follows

𝑓𝑗−1(⋅, 𝑟, 𝑧)⊗𝑘 𝑔𝑛−𝑗 (⋅, 𝑟, 𝑧, 𝑡, 𝑥) ≡ 0, for all 𝑘 = 1,… , (𝑗 − 1) ∧ (𝑛 − 𝑗).
As a result, using the product formula e.g., [27, Proposition 1.1.3], we have

( (𝑛) ) ( ) ( )
𝐼𝑛−1 𝑓𝑗 (⋅, 𝑟, 𝑧, 𝑡, 𝑥) = 𝐼𝑗−1 𝑓𝑗−1(⋅, 𝑟, 𝑧) 𝐼𝑛−𝑗 𝑔𝑛−𝑗 (⋅, 𝑟, 𝑧, 𝑡, 𝑥) ,
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Interchanging the order of summation in (2.14), we obtain:

𝐷𝑟,𝑧𝑢(𝑡, 𝑥) =
∑

𝑗≥1

∑

𝑛≥𝑗
𝐼𝑛−1(𝑓

(𝑛)
𝑗

(

⋅, 𝑟, 𝑧, 𝑡, 𝑥))

=
∑

𝑗≥1
𝐼𝑗−1

(

𝑓𝑗−1(⋅, 𝑟, 𝑧)
)
∑

𝑛≥𝑗
𝐼𝑛−𝑗

(

𝑔𝑛−𝑗 (⋅, 𝑟, 𝑧, 𝑡, 𝑥)
)

.

This justifies (a). The proof of this lemma is complete. □

2.4. Moment estimates for the malliavin derivatives

In this section, we derive some estimates for the moments of the first and second Malliavin derivatives of 𝑢(𝑡, 𝑥).
Notice that 𝑢 is adapted and the noise has independent increments in time. Therefore, 𝑢(𝑟, 𝑧) is independent of 𝑣(𝑟,𝑧). Hence, using

2.3), for any 𝑝 ≥ 2, 𝑟 ∈ [0, 𝑡] and 𝑥, 𝑧 ∈ R,

‖𝐷𝑟,𝑧𝑢(𝑡, 𝑥)‖𝑝 = ‖𝑢(𝑟, 𝑧)‖𝑝‖𝑣(𝑟,𝑧)(𝑡, 𝑥)‖𝑝 ≤ 𝐶𝑡‖𝑣
(𝑟,𝑧)(𝑡, 𝑥)‖𝑝.

A similar deduction can be done for 𝐷2𝑢(𝑡, 𝑥) and thus taking account of Lemma 2.4, we can summarize the next proposition.

Proposition 2.10. Let 𝑢 be the solution to (1.5), then for any 0 ≤ 𝑟 ≤ 𝑠 ≤ 𝑡 <∞ and 𝑥, 𝑦, 𝑧 ∈ R, the next inequalities hold:

‖𝐷𝑟,𝑧𝑢(𝑡, 𝑥)‖𝑝 ≤ 𝐶𝑡𝐺𝑡−𝑟(𝑥 − 𝑧), (2.16)

and

‖𝐷2
(𝑟,𝑧),(𝑠,𝑦)𝑢(𝑡, 𝑥)‖𝑝 ≤ 𝐶𝑡𝐺𝑡−𝑠(𝑥 − 𝑦)𝐺𝑠−𝑦(𝑦 − 𝑧), (2.17)

where 𝐶𝑡 > 0 depending only on 𝑡.
The next proposition about the estimates for the increments of the Malliavin derivatives of 𝑢(𝑡, 𝑥) will be used in the proof of

the main results. To this end, we should first introduce the following notation. For any 𝑟, 𝑠, 𝑡 ∈ R+ such that 0 ≤ 𝑟 ∨ 𝑠 ≤ 𝑡, and
𝑥, 𝑦, 𝑦′, 𝑧, 𝑧′ ∈ R, we denote

𝛥ℎ(𝑟, 𝑧, 𝑡, 𝑥) ∶= 𝐷𝑟,𝑧+ℎ𝑢(𝑡, 𝑥) −𝐷𝑟,𝑧𝑢(𝑡, 𝑥), (2.18)

and

□ℎ,ℏ(𝑟, 𝑧, 𝑠, 𝑦, 𝑡, 𝑥) ∶=𝐷2
(𝑟,𝑧+ℎ),(𝑠,𝑦+ℏ)𝑢(𝑡, 𝑥) −𝐷2

(𝑟,𝑧),(𝑠,𝑦+ℏ)𝑢(𝑡, 𝑥)
− 𝐷2

(𝑟,𝑧+ℎ),(𝑠,𝑦)𝑢(𝑡, 𝑥) +𝐷2
(𝑟,𝑧),(𝑠,𝑦)𝑢(𝑡, 𝑥). (2.19)

Proposition 2.11. For any 𝑡 ∈ R+, and 𝑝 ≥ 2, we have:

(a) sup
0≤𝑟≤𝑡∫R

sup
𝑧∈R

(

∫R
‖

‖

‖

𝛥ℎ(𝑟, 𝑧, 𝑡, 𝑥)‖‖
‖𝑝
𝑑 𝑥

)2
|ℎ|2𝐻−2𝑑 ℎ ≤ 𝐶,

(b) sup
0≤𝑟≤𝑡
𝑥′∈R

∫R3

‖

‖

‖

𝛥ℎ(𝑟, 𝑧, 𝑡, 𝑥)‖‖
‖𝑝
‖

‖

‖

𝛥ℎ(𝑟, 𝑧, 𝑡, 𝑥′)‖‖
‖𝑝
|ℎ|2𝐻−2𝑑 ℎ𝑑 𝑧𝑑 𝑥 ≤ 𝐶,

(c) sup
0≤𝑟∨𝑠≤𝑡∫R2

sup
𝑦∈R

(

∫R2

‖

‖

‖

□ℎ,ℏ(𝑟, 𝑧, 𝑠, 𝑦, 𝑡, 𝑥)‖‖
‖𝑝
𝑑 𝑥𝑑 𝑧

)2
|ℎ|2𝐻−2

|ℏ|2𝐻−2𝑑 ℎ𝑑 ℏ ≤ 𝐶,

(d) sup
0≤𝑟∨𝑠≤𝑡
𝑥∈R

(

∫R2

‖

‖

‖

□ℎ,ℏ(𝑟, 𝑧, 𝑠, 𝑦, 𝑡, 𝑥)‖‖
‖𝑝
𝑑 𝑦𝑑 𝑧

)2
|ℎ|2𝐻−2

|ℏ|2𝐻−2𝑑 ℎ𝑑 ℏ < 𝐶,

where 𝐶 > 0 is a constant that depends on (𝑡, 𝑝, 𝐻).

Proof. (a) By using Lemma 2.9(a), we can write

𝛥ℎ(𝑟, 𝑧, 𝑡, 𝑥) =𝑢(𝑟, 𝑧 + ℎ)𝑣(𝑟,𝑧+ℎ)(𝑡, 𝑥) − 𝑢(𝑟, 𝑧)𝑣(𝑟,𝑧)(𝑡, 𝑥)
=
(

𝑢(𝑟, 𝑧 + ℎ) − 𝑢(𝑟, 𝑧))𝑣(𝑟,𝑧)(𝑡, 𝑥) + 𝑢(𝑟, 𝑧 + ℎ)(𝑣(𝑟,𝑧+ℎ)(𝑡, 𝑥) − 𝑣(𝑟,𝑧)(𝑡, 𝑥)).
Then, it follows from the Cauchy–Schwartz inequality and Lemmas 2.2 and 2.5(b) that

‖

‖

‖

𝛥ℎ(𝑟, 𝑧, 𝑡, 𝑥)‖‖
‖𝑝

≤‖𝑢(𝑟, ℎ) − 𝑢(𝑟, 0)‖2𝑝‖𝑣(𝑟,𝑧)(𝑡, 𝑥)‖2𝑝
+ ‖𝑢(𝑟, 𝑧 + ℎ)‖2𝑝‖‖

‖

𝑣(𝑟,ℎ)(𝑡, 𝑥 − 𝑧) − 𝑣(𝑟,0)(𝑡, 𝑥 − 𝑧)‖‖
‖2𝑝

. (2.20)

Hence, Proposition 2.11(a) is a consequence of Lemmas 2.1, 2.3, 2.6, and 2.8(b).
(b) Using (2.20), we can write

sup
0≤𝑟≤𝑡 ∫ 3

‖

‖

‖

𝛥ℎ(𝑟, 𝑧, 𝑡, 𝑥)‖‖
‖𝑝
‖

‖

‖

𝛥ℎ(𝑟, 𝑧, 𝑡, 𝑥′)‖‖
‖𝑝
|ℎ|2𝐻−2𝑑 ℎ𝑑 𝑧𝑑 𝑥 = 𝐾1 +𝐾2 +𝐾3 +𝐾4,
𝑥′∈R
R
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where

𝐾1 ∶= sup
0≤𝑟≤𝑡
𝑥′∈R

∫R3
‖𝑢(𝑟, ℎ) − 𝑢(𝑟, 0)‖22𝑝‖𝑣(𝑟,𝑧)(𝑡, 𝑥)‖2𝑝‖𝑣(𝑟,𝑧)(𝑡, 𝑥′)‖2𝑝|ℎ|2𝐻−2𝑑 ℎ𝑑 𝑧𝑑 𝑥,

𝐾2 ∶= sup
0≤𝑟≤𝑡
𝑥′∈R

∫R3
‖𝑢(𝑟, ℎ) − 𝑢(𝑟, 0)‖2𝑝‖𝑣(𝑟,𝑧)(𝑡, 𝑥)‖2𝑝

× ‖𝑢(𝑟, 𝑧 + ℎ)‖2𝑝‖‖
‖

𝑣(𝑟,ℎ)(𝑡, 𝑥′ − 𝑧) − 𝑣(𝑟,0)(𝑡, 𝑥′ − 𝑧)‖‖
‖2𝑝

|ℎ|2𝐻−2𝑑 ℎ𝑑 𝑧𝑑 𝑥,

𝐾3 ∶= sup
0≤𝑟≤𝑡
𝑥′∈R

∫R3
‖𝑢(𝑟, 𝑧 + ℎ)‖2𝑝‖‖

‖

𝑣(𝑟,ℎ)(𝑡, 𝑥 − 𝑧) − 𝑣(𝑟,0)(𝑡, 𝑥 − 𝑧)‖‖
‖2𝑝

× ‖𝑢(𝑟, ℎ) − 𝑢(𝑟, 0)‖2𝑝‖𝑣(𝑟,𝑧)(𝑡, 𝑥′)‖2𝑝|ℎ|2𝐻−2𝑑 ℎ𝑑 𝑧𝑑 𝑥,
and

𝐾4 ∶= sup
0≤𝑟≤𝑡
𝑥′∈R

∫R3
‖𝑢(𝑟, 𝑧 + ℎ)‖22𝑝

‖

‖

‖

𝑣(𝑟,ℎ)(𝑡, 𝑥 − 𝑧) − 𝑣(𝑟,0)(𝑡, 𝑥 − 𝑧)‖‖
‖2𝑝

× ‖

‖

‖

𝑣(𝑟,ℎ)(𝑡, 𝑥′ − 𝑧) − 𝑣(𝑟,0)(𝑡, 𝑥′ − 𝑧)‖‖
‖2𝑝

|ℎ|2𝐻−2𝑑 ℎ𝑑 𝑧𝑑 𝑥.

It follows from Lemmas 2.3 and 2.6 that

𝐾1 ≤ sup
0≤𝑟≤𝑡∫R

‖𝑢(𝑟, ℎ) − 𝑢(𝑟, 0)‖22𝑝|ℎ|2𝐻−2𝑑 ℎ × sup
0≤𝑟≤𝑡
𝑧∈R

∫R
‖𝑣(𝑟,𝑧)(𝑡, 𝑥)‖2𝑝𝑑 𝑥

× sup
0≤𝑟≤𝑡
𝑥′∈R

∫R
‖𝑣(𝑟,𝑧)(𝑡, 𝑥′)‖2𝑝𝑑 𝑧 ≤ 𝐶 .

Due to Cauchy–Schwarz’s inequality and Lemmas 2.1, 2.3, 2.6, and 2.8(a), we have

𝐾2 ≤ sup
0≤𝑟≤𝑡
𝑧′∈R

‖𝑢(𝑟, 𝑧′)‖2𝑝 × sup
0≤𝑟≤𝑡
𝑧∈R

∫R
‖𝑣(𝑟,𝑧)(𝑡, 𝑥)‖2𝑝𝑑 𝑥

× sup
0≤𝑟≤𝑡

(

∫R
‖𝑢(𝑟, ℎ) − 𝑢(𝑟, 0)‖22𝑝|ℎ|2𝐻−2𝑑 ℎ

)1∕2

× sup
0≤𝑟≤𝑡

(

∫R

(

∫R
‖

‖

‖

𝑣(𝑟,ℎ)(𝑡, 𝑧′′) − 𝑣(𝑟,0)(𝑡, 𝑧′′)𝑑 𝑧′′
)2

‖

‖

‖

2𝑝|ℎ|
2𝐻−2𝑑 ℎ

)1∕2

≤ 𝐶 ,

and, with a change of variable 𝑥 − 𝑧→ 𝑥′′,

𝐾3 ≤ sup
0≤𝑟≤𝑡
𝑧′∈R

‖𝑢(𝑟, 𝑧′)‖2𝑝 × sup
0≤𝑟≤𝑡
𝑥′∈R

∫R
‖𝑣(𝑟,𝑧)(𝑡, 𝑥′)‖2𝑝𝑑 𝑧

× sup
0≤𝑟≤𝑡

(

∫R
‖𝑢(𝑟, ℎ) − 𝑢(𝑟, 0)‖22𝑝|ℎ|2𝐻−2𝑑 ℎ

)1∕2

× sup
0≤𝑟≤𝑡

(

∫R

(

∫R
‖

‖

‖

𝑣(𝑟,ℎ)(𝑡, 𝑥′′) − 𝑣(𝑟,0)(𝑡, 𝑥′′)𝑑 𝑥′′
)2

‖

‖

‖

2𝑝|ℎ|
2𝐻−2𝑑 ℎ

)1∕2
≤ 𝐶 .

Finally, preforming a change of variables (𝑥 − 𝑧, 𝑥′ − 𝑧) → (𝑥′′, 𝑧′′), and using Cauchy–Schwarz’s inequality and Lemmas 2.1 and
2.8(a),

𝐾4 ≤ sup
0≤𝑟≤𝑡
𝑧′∈R

‖𝑢(𝑟, 𝑧′)‖22𝑝 × sup
0≤𝑟≤𝑡

(

∫R

(

‖

‖

‖

𝑣(𝑟,ℎ)(𝑡, 𝑧′′) − 𝑣(𝑟,0)(𝑡, 𝑧′′)‖‖
‖2𝑝

𝑑 𝑧′′
)2

|ℎ|2𝐻−2𝑑 ℎ
)1∕2

× sup
0≤𝑟≤𝑡

(

∫R

(

∫R
‖

‖

‖

𝑣(𝑟,ℎ)(𝑡, 𝑥′′) − 𝑣(𝑟,0)(𝑡, 𝑥′′)‖‖
‖2𝑝

𝑑 𝑥′′
)2

|ℎ|2𝐻−2𝑑 ℎ
)1∕2

≤ 𝐶 .

The proof of Proposition 2.11(b) is complete.
(c) Without loss of generality, assume that 𝑟 ≤ 𝑠. Then, as a result of Lemmas 2.9(b), 2.2, 2.5(b) and 2.5(c), and Hölder’s

nequality, we deduce that
‖

‖

‖

□ℎ,ℏ(𝑟, 𝑧, 𝑠, 𝑦, 𝑡, 𝑥)‖‖
‖𝑝

≤ 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4, (2.21)

where

𝐼1 ∶= ‖𝑢(𝑟, ℎ) − 𝑢(𝑟, 0)‖3𝑝‖‖
‖

𝑣(𝑟,0)(𝑠, 𝑦 + ℏ − 𝑧) − 𝑣(𝑟,0)(𝑠, 𝑦 − 𝑧)‖‖
‖3𝑝

‖𝑣(𝑠,𝑦)(𝑡, 𝑥)‖3𝑝,
𝐼2 ∶= ‖𝑢(𝑟, 𝑧 + ℎ)‖3𝑝‖‖

‖

𝑣(𝑟,ℎ)(𝑠, 𝑦 + ℏ − 𝑧) − 𝑣(𝑟,ℎ)(𝑠, 𝑦 − 𝑧)
− 𝑣(𝑟,0)(𝑠, 𝑦 + ℏ − 𝑧) + 𝑣(𝑟,0)(𝑠, 𝑦 − 𝑧)‖ ‖𝑣(𝑠,𝑦)(𝑡, 𝑥)‖ ,
‖

‖

3𝑝 3𝑝
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𝐼3 ∶= ‖𝑢(𝑟, ℎ) − 𝑢(𝑟, 0)‖3𝑝‖𝑣(𝑟,𝑧)(𝑠, 𝑦 + ℏ)‖3𝑝‖‖
‖

𝑣(𝑠,ℏ)(𝑡, 𝑥 − 𝑦) − 𝑣(𝑠,0)(𝑡, 𝑥 − 𝑦)‖‖
‖3𝑝

,

and

𝐼4 ∶= ‖𝑢(𝑟, 𝑧 + ℎ)‖3𝑝‖‖
‖

𝑣(𝑟,𝑧)(𝑠, 𝑦 + ℏ) − 𝑣(𝑟,𝑧+ℎ)(𝑠, 𝑦 + ℏ)‖‖
‖3𝑝

× ‖

‖

‖

𝑣(𝑠,ℏ)(𝑡, 𝑥 − 𝑦) − 𝑣(𝑠,0)(𝑡, 𝑥 − 𝑦)‖‖
‖3𝑝

.

Then, preforming a change of variable (𝑧 − 𝑦, 𝑦) → (𝑧, 𝑦), and applying Lemmas 2.3, 2.6 and 2.8(b), we get

∫R2
sup
𝑦∈R

(

∫R2
𝐼1𝑑 𝑥𝑑 𝑧

)2
|ℏ|2𝐻−2

|ℎ|2𝐻−2𝑑 ℎ𝑑 ℏ

=∫R

(

∫R
‖

‖

‖

𝑣(𝑟,0)(𝑠, ℏ − 𝑧) − 𝑣(𝑟,0)(𝑠, ̃𝑧)‖‖
‖3𝑝

𝑑 ̃𝑧
)2

sup
𝑦∈R

(

∫R
‖𝑣(𝑠,𝑦)(𝑡, 𝑥)‖3𝑝𝑑 𝑥

)2
|ℏ|2𝐻−2𝑑 ℏ

× ∫R
‖𝑢(𝑟, ℎ) − 𝑢(𝑟, 0)‖23𝑝|ℎ|2𝐻−2𝑑 ℎ ≤ 𝐶 ,

with 𝐶 > 0 depending on (𝑡, 𝑝, 𝐻). Similarly, one can show that

∫R2
sup
𝑦∈R

(

∫R2
𝐼𝑘𝑑 𝑥𝑑 𝑧

)2
|ℏ|2𝐻−2

|ℎ|2𝐻−2𝑑 ℎ𝑑 ℏ < 𝐶 for all 𝑘 = 2, 3, 4.

This completes that proof of Proposition 2.11(c).
(d) Similarly as in the proof of Proposition 2.11(c), we decompose ‖□ℎ,ℏ(𝑟, 𝑧, 𝑠, 𝑦, 𝑡, 𝑥)‖𝑝 by (2.21). Then, one can deduce that

∫R2

(

∫R2
𝐼1𝑑 𝑦𝑑 𝑧

)2
|ℏ|2𝐻−2

|ℎ|2𝐻−2𝑑 ℎ𝑑 ℏ = ∫R
‖𝑢(𝑟, ℎ) − 𝑢(𝑟, 0)‖23𝑝|ℎ|2𝐻−2𝑑 ℎ

× ∫R

(

∫R
‖

‖

‖

𝑣(𝑟,0)(𝑠, ̃𝑧 + ℏ) − 𝑣(𝑟,0)(𝑠, ̃𝑧)‖‖
‖3𝑝

𝑑 ̃𝑧
)2(

∫R
‖𝑣(𝑠,𝑦)(𝑡, 𝑥)‖3𝑝𝑑 𝑦

)2
|ℏ|2𝐻−2𝑑 ℏ < 𝐶 .

Again, similar arguments can be applied to the integrations of 𝐼2, 𝐼3 and 𝐼4, and we skip them for conciseness. The proof of this
proposition is complete. □

2.5. Limiting covariance

In this section, we study the asymptotic behavior of the covariance between 𝐹𝑅(𝑡) and 𝐹𝑅(𝑠) as 𝑅 → ∞, where 𝐹𝑅(𝑡) is given by
1.10). Note that

𝜎2𝑅(𝑡) = Var (𝐹𝑅(𝑡)) = ∫

𝑅

−𝑅 ∫

𝑅

−𝑅
𝜌𝑡(𝑥 − 𝑦)𝑑 𝑥𝑑 𝑦,

where

𝜌𝑡(𝑥 − 𝑦) ∶= E
[(

𝑢(𝑡, 𝑥) − 1)(𝑢(𝑡, 𝑦) − 1)] =
∑

𝑛≥1

1
𝑛!
𝛾𝑛(𝑡, 𝑥 − 𝑦), (2.22)

and

𝛾𝑛(𝑡, 𝑥 − 𝑦) ∶= (𝑛!)2⟨𝑓𝑛(⋅, 𝑡, 𝑥), 𝑓𝑛(⋅, 𝑡, 𝑦)⟩⊗𝑛

= 𝑛!𝑐𝑛𝐻 ∫𝑇𝑛(𝑡) ∫R𝑛
𝑓𝑛(⋅, 𝑡, 𝑥)(𝜉1,… , 𝜉𝑛)𝑓𝑛(⋅, 𝑡, 𝑦)(𝜉1,… , 𝜉𝑛)

𝑛
∏

𝑗=1
|𝜉𝑗 |

1−2𝐻𝑑 𝜉𝜉𝜉𝑛𝑑 𝑡𝑡𝑡𝑛

= 𝑛!𝑐𝑛𝐻 ∫𝑇𝑛(𝑡) ∫R𝑛
𝑒−𝑖(𝜉1+⋯+𝜉𝑛)(𝑥−𝑦)

𝑛
∏

𝑗=1
|𝐺𝑡𝑗+1−𝑡𝑗 (𝜉1 +⋯ + 𝜉𝑗 )|2

𝑛
∏

𝑗=1
|𝜉𝑗 |

1−2𝐻𝑑 𝜉𝜉𝜉𝑛𝑑 𝑡𝑡𝑡𝑛

= 𝑛!𝑐𝑛𝐻 ∫𝑇𝑛(𝑡) ∫R𝑛
𝑒−𝑖𝜂𝑛(𝑥−𝑦)

𝑛
∏

𝑗=1

sin2((𝑡𝑗+1 − 𝑡𝑗 )|𝜂𝑗 |)

|𝜂𝑗 |2

𝑛
∏

𝑗=1
|𝜂𝑗 − 𝜂𝑗−1|1−2𝐻𝑑 𝜂𝜂𝜂𝑛𝑑 𝑡𝑡𝑡𝑛, (2.23)

with convention 𝑡𝑛+1 = 𝑡 and 𝜂0 = 0. This shows that 𝛼𝑛(𝑡, 𝑥 − 𝑦) and 𝜌𝑡(𝑥 − 𝑦) depend on 𝑥 and 𝑦 only through the difference 𝑥 − 𝑦.
In particular, {𝑢(𝑡, 𝑥); 𝑥 ∈ R} is a strictly stationary process with covariance function 𝜌𝑡; see Lemma 2.2.

Proposition 2.12 (Limiting Covariance). For any 𝑡 > 0 and 𝑠 > 0

lim
𝑅→∞

E[𝐹𝑅(𝑡)𝐹𝑅(𝑠)]
𝑅

= 𝐾(𝑡 ∧ 𝑠), (2.24)

where 𝐹𝑅(𝑡) is given by (1.10), and

𝐾(𝑡) = 4𝜋
∑

𝑛≥2
𝑐𝑛𝐻 ∫𝑇𝑛(𝑡) ∫R𝑛−1

𝑛−1
∏

𝑗=1

sin2((𝑡𝑗+1 − 𝑡𝑗 )|𝜂𝑗 |)

|𝜂𝑗 |2
(2.25)

×
𝑛−1
∏

|𝜂𝑗 − 𝜂𝑗−1|1−2𝐻 |𝜂𝑛−1|
1−2𝐻𝑑 𝜂𝜂𝜂𝑛−1𝑑 𝑡𝑡𝑡𝑛,
𝑗=1
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with 𝜂𝜂𝜂𝑛−1 = (𝜂1,… , 𝜂𝑛−1), 𝑡𝑡𝑡𝑛 = (𝑡1,… , 𝑡𝑛) and by convention 𝜂0 = 0. In particular, 𝜎2𝑅(𝑡)∕𝑅 → 𝐾(𝑡) > 0 as 𝑅 → ∞.

Proof. The proof is divided in three steps.
Step 1. In this step, we prove (2.24) in the case 𝑡 = 𝑠. We write

𝜎2𝑅(𝑡) =
∑

𝑛≥1

1
𝑛! ∫

𝑅

−𝑅 ∫

𝑅

−𝑅
𝛾𝑛(𝑡, 𝑥 − 𝑦)𝑑 𝑥𝑑 𝑦. (2.26)

Note that

∫

𝑅

−𝑅 ∫

𝑅

−𝑅
𝑒−𝑖𝜉(𝑥−𝑦)𝑑 𝑥𝑑 𝑦 =

|

|

|

|

|

∫

𝑅

−𝑅
𝑒−𝑖𝜉 𝑥𝑑 𝑥

|

|

|

|

|

2

=
4 sin2(𝑅|𝜉|)

|𝜉|2
= 4𝜋 𝑅𝓁𝑅(𝜉), (2.27)

where 𝓁𝑅(𝑥) ∶= (𝜋 𝑅|𝑥|2)−1 sin2(|𝑥|𝑅) is an approximation of the identity as 𝑅 → ∞; see [45, Lemma 2.1]. On the other hand, [35,
Theorem 3.2] shows that for every 𝑛 ≥ 1,

∫𝑇𝑛(𝑡) ∫R𝑛
|

|

|

|

𝑒−𝑖𝜂𝑛(𝑥−𝑦)
𝑛
∏

𝑗=1

sin2((𝑡𝑗+1 − 𝑡𝑗 )|𝜂𝑗 |)

|𝜂𝑗 |2

𝑛
∏

𝑗=1
|𝜂𝑗 − 𝜂𝑗−1|1−2𝐻

|

|

|

|

𝑑 𝜂𝜂𝜂𝑛𝑑 𝑡𝑡𝑡𝑛 <∞.

Thus, by Fubini theorem,
1
𝑛! ∫

𝑅

−𝑅 ∫

𝑅

−𝑅
𝛾𝑛(𝑡, 𝑥 − 𝑦)𝑑 𝑥𝑑 𝑦

=𝑐𝑛𝐻 ∫𝑇𝑛(𝑡) ∫R𝑛

(

∫

𝑅

−𝑅 ∫

𝑅

−𝑅
𝑒−𝑖𝜂𝑛(𝑥−𝑦)𝑑 𝑥𝑑 𝑦

) 𝑛
∏

𝑗=1

sin2((𝑡𝑗+1 − 𝑡𝑗 )|𝜂𝑗 |)

|𝜂𝑗 |2

𝑛
∏

𝑗=1
|𝜂𝑗 − 𝜂𝑗−1|1−2𝐻𝑑 𝜂𝜂𝜂𝑛𝑑 𝑡𝑡𝑡𝑛

=4𝑐𝑛𝐻 ∫𝑇𝑛(𝑡) ∫R𝑛
sin2(𝑅|𝜂𝑛|)

|𝜂𝑛|2

𝑛
∏

𝑗=1

sin2((𝑡𝑗+1 − 𝑡𝑗 )|𝜂𝑗 |)

|𝜂𝑗 |2

𝑛
∏

𝑗=1
|𝜂𝑗 − 𝜂𝑗−1|1−2𝐻𝑑 𝜂𝜂𝜂𝑛𝑑 𝑡𝑡𝑡𝑛. (2.28)

We treat separately the case 𝑛 = 1. From [49, Page 30], we know that for any 𝑡1 ∈ [0, 𝑡], 𝜃 ∈ (𝐻 , 12 ) and 𝜀 ∈ (0, 𝜋4𝑡 ),

∫R
sin2(𝑅|𝜂1|)

|𝜂1|2
sin2((𝑡 − 𝑡1)|𝜂1|)

|𝜂1|2
|𝜂1|

1−2𝐻𝑑 𝜂1 ≤ 𝐶𝜀,𝜃 ,𝐻 (𝑡 − 𝑡1)2𝑅2𝜃 + 𝐶𝜀,𝐻 .

Therefore,

lim
𝑅→∞

1
𝑅 ∫

𝑅

−𝑅 ∫

𝑅

−𝑅
𝛾1(𝑡, 𝑥 − 𝑦)𝑑 𝑥𝑑 𝑦 ≤ 4𝑐𝐻 lim

𝑅→∞
𝑅2𝜃−1

∫

𝑡

0

(

𝐶𝜀,𝜃 ,𝐻 (𝑡 − 𝑡1)2 + 𝐶𝜀,𝐻
)

𝑑 𝑡1 = 0.

Next, we examine the terms corresponding to 𝑛 ≥ 2. For any 𝑛 ≥ 2, denote

𝑔(𝑛)𝑡𝑡𝑡𝑛 (𝜂) ∶= sin2((𝑡 − 𝑡𝑛)|𝜂|)
|𝜂|2 ∫R𝑛−1

𝑛−1
∏

𝑗=1

sin2((𝑡𝑗+1 − 𝑡𝑗 )|𝜂𝑗 |)

|𝜂𝑗 |2

𝑛
∏

𝑗=1
|𝜂𝑗 − 𝜂𝑗−1|1−2𝐻𝑑 𝜂𝜂𝜂𝑛−1,

with

𝑔(𝑛)𝑡𝑡𝑡𝑛 (0) ∶= lim
𝜂→0

𝑔(𝑛)𝑡𝑡𝑡𝑛 (𝜂)

=(𝑡 − 𝑡𝑛)2 ∫R𝑛−1

𝑛−1
∏

𝑗=1

sin2((𝑡𝑗+1 − 𝑡𝑗 )|𝜂𝑗 |)

|𝜂𝑗 |2

𝑛−1
∏

𝑗=1
|𝜂𝑗 − 𝜂𝑗−1|1−2𝐻 |𝜂𝑛−1|

1−2𝐻𝑑 𝜂𝜂𝜂𝑛−1,

where the last equality is due to the fact that lim𝑥→0 sin 𝑥∕𝑥 = 1. Then, 𝑔(𝑛)⋅ (∗) is a non-negative function on 𝑇𝑛(𝑡) × R, and thus
1
𝑛! ∫

𝑅

−𝑅 ∫

𝑅

−𝑅
𝛾𝑛(𝑡, 𝑥 − 𝑦)𝑑 𝑥𝑑 𝑦

=4𝜋 𝑐𝑛𝐻𝑅∫𝑇𝑛(𝑡) ∫R𝑛
𝓁𝑅(𝜂𝑛)

𝑛
∏

𝑗=1

sin2((𝑡𝑗+1 − 𝑡𝑗 )|𝜂𝑗 |)

|𝜂𝑗 |2

𝑛
∏

𝑗=1
|𝜂𝑗 − 𝜂𝑗−1|1−2𝐻𝑑 𝜂𝜂𝜂𝑛𝑑 𝑡𝑡𝑡𝑛

=4𝜋 𝑐𝑛𝐻𝑅∫𝑇𝑛(𝑡) ∫R
𝓁𝑅(𝜂𝑛)𝑔

(𝑛)
𝑡𝑡𝑡𝑛

(𝜂𝑛)𝑑 𝜂𝑛𝑑 𝑡𝑡𝑡𝑛 = 4𝜋 𝑐𝑛𝐻𝑅∫𝑇𝑛(𝑡)

(

𝓁𝑅 ∗ 𝑔(𝑛)𝑡𝑡𝑡𝑛
)

(0)𝑑 𝑡𝑡𝑡𝑛. (2.29)

Using (2.7), we obtain that

𝑔(𝑛)𝑡𝑡𝑡𝑛 (𝜂𝑛) ≤
∑

𝛼𝛼𝛼𝑛∈𝐷𝑛

sin2((𝑡 − 𝑡𝑛)|𝜂𝑛|)
|𝜂𝑛|2

|𝜂𝑛|
𝛼𝑛

𝑛−1
∏

𝑗=1

(

∫R

sin2((𝑡𝑗+1 − 𝑡𝑗 )|𝜂𝑗 |)

|𝜂𝑗 |2
|𝜂𝑗 |

𝛼𝑗 𝑑 𝜂𝑗
)

≤ 𝐶𝑛−1
∑

𝛼𝛼𝛼𝑛∈𝐷𝑛

sin2((𝑡 − 𝑡𝑛)|𝜂𝑛|)
|𝜂𝑛|2

|𝜂𝑛|
𝛼𝑛

𝑛−1
∏

𝑗=1
(𝑡𝑗+1 − 𝑡𝑗 )

1−𝛼𝑗 , (2.30)

where for the last inequality we used (2.1). It is not difficult to see that 𝑔(𝑛)𝑡𝑡𝑡𝑛 is continuous, locally bounded and integrable on R.
Recall that 𝓁 is an approximation of the identity as 𝑅 → ∞. Hence, for any 𝑛 ≥ 2,
𝑅
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lim
𝑅→∞

(

𝓁𝑅 ∗ 𝑔(𝑛)𝑡𝑡𝑡𝑛
)

(0) = 𝑔(𝑛)𝑡𝑡𝑡𝑛 (0).

Combining (2.26) and (2.29), by using the dominated convergence theorem, we see that

lim
𝑅→∞

𝜎2𝑅(𝑡)
𝑅

= lim
𝑅→∞

4𝜋
∑

𝑛≥2
𝑐𝑛𝐻 ∫𝑇𝑛(𝑡)

(

𝓁𝑅 ∗ 𝑔(𝑛)𝑡𝑡𝑡𝑛
)

(0)𝑑 𝑡𝑡𝑡𝑛 = 4𝜋
∑

𝑛≥2
𝑐𝑛𝐻 ∫𝑇𝑛(𝑡)

𝑔(𝑛)𝑡𝑡𝑡𝑛 (0)𝑑 𝑡𝑡𝑡𝑛. (2.31)

As the dominated convergence theorem is applied in (2.31), one needs to justify the applicability. In other words, we have to
ind a sequence of functions {ℎ𝑛}𝑛≥2 on 𝑇𝑛(𝑡) such that

(

𝓁𝑅 ∗ 𝑔(𝑛)𝑡𝑡𝑡𝑛
)

(0) ≤ ℎ𝑛(𝑡𝑡𝑡𝑛) for all 𝑡𝑡𝑡𝑛 ∈ 𝑇𝑛(𝑡) and 𝑛 ≥ 1, and
∑

𝑛≥2
𝑐𝑛𝐻 ∫𝑇𝑛(𝑡)

ℎ𝑛(𝑡𝑡𝑡𝑛)𝑑 𝑡𝑡𝑡𝑛 < ∞. (2.32)

In particular, this shows that

𝐾(𝑡) = 4𝜋
∑

𝑛≥2
𝑐𝑛𝐻 ∫𝑇𝑛(𝑡)

𝑔(𝑛)𝑡𝑡𝑡𝑛 (0)𝑑 𝑡𝑡𝑡𝑛 <∞.

Thanks to (2.30) and the inequality sin2((𝑡−𝑡𝑛)|𝜂|)
|𝜂|2

≤ (𝑡 − 𝑡𝑛)2, we have:
(

𝓁𝑅 ∗ 𝑔(𝑛)𝑡𝑡𝑡𝑛
)

(0) ≤ 𝐶𝑛−1
∑

𝛼𝛼𝛼𝑛∈𝐷𝑛

𝑛−1
∏

𝑗=1
(𝑡𝑗+1 − 𝑡𝑗 )

𝛼𝑗
∫R

sin2(𝑅|𝜂𝑛|)
𝜋 𝑅|𝜂|2

sin2((𝑡 − 𝑡𝑛)|𝜂𝑛|)
|𝜂𝑛|2

|𝜂𝑛|
𝛼𝑛𝑑 𝜂𝑛

≤ 𝐶𝑛−1
∑

𝛼𝛼𝛼𝑛∈𝐷𝑛

𝑛−1
∏

𝑗=1
(𝑡𝑗+1 − 𝑡𝑗 )

𝛼𝑗 (𝑡 − 𝑡𝑛)2 ∫R
sin2(𝑅|𝜂𝑛|)
𝜋 𝑅|𝜂𝑛|2

|𝜂𝑛|
𝛼𝑛𝑑 𝜂𝑛

≤ 𝐶𝑛
∑

𝛼𝛼𝛼𝑛∈𝐷𝑛

𝑛−1
∏

𝑗=1
(𝑡𝑗+1 − 𝑡𝑗 )

1−𝛼𝑗 (𝑡 − 𝑡𝑛)2𝑅−𝛼𝑛

≤ 𝐶𝑛
∑

𝛼𝛼𝛼𝑛∈𝐷𝑛

𝑛−1
∏

𝑗=1
(𝑡𝑗+1 − 𝑡𝑗 )

1−𝛼𝑗 (𝑡 − 𝑡𝑛)2 =∶ ℎ𝑛(𝑡𝑡𝑡𝑛),

for any 𝑅 ≥ 1, where identity (2.1) is used for the second last line. As a consequence of identity (2.2) and the fact that
𝛤 (𝑎𝑛 + 𝑏 + 1) ≥ 𝐶𝑛(𝑛!)𝑎 for any 𝑎 > 0, 𝑏 ∈ R, we get:

∫𝑇𝑛(𝑡)
ℎ𝑛(𝑡𝑡𝑡𝑛)𝑑 𝑡𝑡𝑡𝑛 ≤ 𝐶𝑛

(𝑛!)2𝐻+1
(𝑡(1+2𝐻)𝑛+1 + 𝑡(1+2𝐻)𝑛+2−2𝐻 ),

which yields (2.32).
Step 2. In this step, we show that

lim
𝑅→∞

𝜎2𝑅(𝑡)
𝑅

> 0.

Recall (2.28), we have

∫

𝑅

−𝑅 ∫

𝑅

−𝑅
𝛾𝑛(𝑡, 𝑥 − 𝑦)𝑑 𝑥𝑑 𝑦 > 0,

for all 𝑛 ≥ 2, 𝑅 > 0 and 𝑡 > 0. Then, taking account of (2.29), we can write

lim
𝑅→∞

𝜎2𝑅(𝑡)
𝑅

> lim
𝑅→∞

1
2𝑅 ∫

𝑅

−𝑅 ∫

𝑅

−𝑅
𝛾2(𝑡, 𝑥 − 𝑦)𝑑 𝑥𝑑 𝑦 = 4𝜋 𝑐2𝐻 ∫0<𝑟<𝑠<𝑡

𝑔(2)𝑟,𝑠 (0)𝑑 𝑟𝑑 𝑠

=4𝜋 𝑐2𝐻 ∫0<𝑟<𝑠<𝑡 ∫R
sin2((𝑠 − 𝑟)𝜂1)

|𝜂1|2
|𝜂1|

2(1−2𝐻)𝑑 𝜂1𝑑 𝑟𝑑 𝑠

=𝐶 ∫0<𝑟<𝑠<𝑡
(𝑠 − 𝑟)4𝐻−1𝑑 𝑟𝑑 𝑠 > 0,

where 𝐶 > 0 is a constant depending on 𝐻 . For the identity on the last line, we used relation (2.1) and the fact that 𝐻 > 1∕4.
Step 3. In this step, we complete the proof of (2.24). Without loss of generality, assume that 𝑠 ≤ 𝑡. Similarly to (2.23),

E[𝐹𝑅(𝑡)𝐹𝑅(𝑠)] =
∑

𝑛≥1

1
𝑛! ∫

𝑅

−𝑅 ∫

𝑅

−𝑅
𝛾̂𝑛(𝑡, 𝑠, 𝑥 − 𝑦)𝑑 𝑥𝑑 𝑦,

where

𝛾̂𝑛(𝑡, 𝑠, 𝑥 − 𝑦) = (𝑛!)2⟨𝑓𝑛(⋅, 𝑡, 𝑥), 𝑓𝑛(⋅, 𝑠, 𝑦)⟩⊗𝑛

= 𝑛!𝑐𝑛𝐻 ∫𝑇𝑛(𝑠) ∫R𝑛
𝑒−𝑖𝜂𝑛(𝑥−𝑦)

𝑛−1
∏

𝑗=1

sin2((𝑡𝑗+1 − 𝑡𝑗 )|𝜂𝑗 |)

|𝜂𝑗 |2

sin((𝑡 − 𝑡𝑛)|𝜂𝑛|) sin((𝑠 − 𝑡𝑛)|𝜂𝑛|)
2

𝑛
∏

|𝜂𝑗 − 𝜂𝑗−1|1−2𝐻𝑑 𝜂𝜂𝜂𝑛𝑑 𝑡𝑡𝑡𝑛.

|𝜂𝑛| 𝑗=1
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The same argument as for (2.29) shows that

1
𝑛! ∫

𝑅

−𝑅 ∫

𝑅

−𝑅
𝛾̂𝑛(𝑡, 𝑠, 𝑥 − 𝑦)𝑑 𝑥𝑑 𝑦 = 4𝜋 𝑐𝑛𝐻𝑅∫𝑇𝑛(𝑠)

(

𝓁𝑅 ∗ 𝑔(𝑛)𝑡𝑡𝑡𝑛
)

(0)𝑑 𝑡𝑡𝑡𝑛,

where

𝑔(𝑛)𝑡𝑡𝑡𝑛 (𝜂) ∶= sin((𝑡 − 𝑡𝑛)|𝜂|) sin((𝑠 − 𝑡𝑛)|𝜂|)
|𝜂|2

× ∫R𝑛−1

𝑛−1
∏

𝑗=1

sin2((𝑡𝑗+1 − 𝑡𝑗 )|𝜂𝑗 |)

|𝜂𝑗 |2

𝑛
∏

𝑗=1
|𝜂𝑗 − 𝜂𝑗−1|1−2𝐻𝑑 𝜂𝜂𝜂𝑛−1.

Then, relation (2.24) follows by the dominated convergence theorem, as in Step 1. The proof of this theorem is complete. □

Remark 2.13. There might be an alternative method for proving Proposition 2.12 , which would give a different representation of
the limiting covariance. We explain this method here. If

∫R
|𝜌𝑡(𝑥)|𝑑 𝑥 <∞, (2.33)

then by the dominated convergence theorem
𝜎2𝑅(𝑡)
𝑅

= ∫R
𝜌𝑡(𝑥)

|𝐵𝑅 ∩ 𝐵𝑅(−𝑥)|
𝑅

𝑑 𝑥→ 2∫R
𝜌𝑡(𝑥)𝑑 𝑥, as 𝑅 → ∞,

where 𝐵𝑅 = [−𝑅, 𝑅] (see [45, Page 27]). Recalling definition (2.22) of 𝜌𝑡(𝑥), (2.33) follows if one can show that
∑

𝑛≥1

1
𝑛! ∫R

|𝛾𝑛(𝑡, 𝑥)|𝑑 𝑥 < ∞.

Unfortunately, we could not prove that 𝛾𝑛(𝑡, ⋅) is integrable on R.

Remark 2.14. Suppose we can exchange the order of integrals arbitrarily and treat the Diract distribution 𝛿 as a regular function.
Then, we can write

4𝜋 𝑐𝑛𝐻 ∫𝑇𝑛(𝑡)
𝑔(𝑛)𝑡𝑡𝑡𝑛 (0)𝑑 𝑡𝑡𝑡𝑛 =4𝜋 𝑐𝑛𝐻 ∫𝑇𝑛(𝑡) ∫R

𝛿0(𝜂𝑛)𝑔
(𝑛)
𝑡𝑡𝑡𝑛

(𝜂𝑛)𝑑 𝜂𝑛𝑑 𝑡𝑡𝑡𝑛

=2𝑐𝑛𝐻 ∫𝑇𝑛(𝑡) ∫R

(

∫R
𝑒−𝑖𝜂𝑛𝑥𝟏R(𝑥)𝑑 𝑥

)

𝑔(𝑛)𝑡𝑡𝑡𝑛 (𝜂𝑛)𝑑 𝜂𝑛𝑑 𝑡𝑡𝑡𝑛

= 2
𝑛! ∫R

⟨𝑓𝑛(⋅, 𝑡, 𝑥), 𝑓𝑛(⋅, 𝑡, 0)⟩𝑑 𝑥.

Thus it is natural to conjecture that

lim
𝑅→∞

1
𝑅
𝜎2𝑅 = 2∫R

Cov(𝑢(𝑡, 𝑥), 𝑢(𝑡, 0))𝑑 𝑥. (2.34)

Actually, this has been confirmed in parabolic cases (see [45,46]) and also in hyperbolic cases assuming the non-negative correlation
n space of driven noises (see [24]). The aforementioned results rely on the nonnegativity of 𝛾𝑛(𝑡, 𝑥), which does not hold in our
etting. This prevents us to provide a proof for (2.34). We expect it can be verified in the future.

3. Proofs of the main results

In this section, we present the proof of Theorems 1.1, 1.2 and 1.3.

3.1. Spatial ergodicity—Proof of Theorem 1.1

In this section, we include the proof of Theorem 1.1. Recall that the stationarity of {𝑢(𝑡, 𝑥)}𝑥∈R was proved in Lemma 2.2. In this
section, we prove that this process is also ergodic. For this, we use a version of the ergodicity criterion given by [39, Lemma 7.2],
s stated in [67, Lemma 4.2]. More precisely, we prove that:

lim
𝑅→∞

1
𝑅2

Var (𝑈𝑅) = 0, where 𝑈𝑅 = ∫

𝑅

−𝑅
𝑔
(

𝑘
∑

𝑗=1
𝑏𝑗𝑢(𝑡, 𝑥 + 𝜁𝑗 )

)

𝑑 𝑥,

where 𝑘 is an arbitrary positive integer, 𝑏1,… , 𝑏𝑘 ∈ R and 𝜁1,… , 𝜁𝑘 ∈ R are arbitrary, and 𝑔(𝑥) = cos 𝑥 or 𝑔(𝑥) = sin 𝑥.
Without loss of generality, we assume that 𝑔(𝑥) = cos 𝑥, the case when 𝑔(𝑥) = sin 𝑥 being similar. By the Gaussian–Poincaré

inequality (see e.g, [66, Exercise 2.11.1]),

Var (𝑈 ) ≤ E‖𝐷 𝑈 ‖

2 =
𝑡

E|𝐷 𝑈 −𝐷 𝑈 |

2
|𝑦 − 𝑧|2𝐻−2𝑑 𝑦𝑑 𝑧𝑑 𝑟.
𝑅 𝑅  ∫0 ∫R2

𝑟,𝑦 𝑅 𝑟,𝑧 𝑅

17 
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Using the chain rule 𝐷 𝜑(𝐹 ) = 𝜑′(𝐹 )𝐷 𝐹 , we see that

𝐷𝑟,𝑦𝑈𝑅 = ∫

𝑅

−𝑅
sin

(

𝑘
∑

𝑗=1
𝑏𝑗𝑢(𝑠, 𝑥 + 𝜁𝑗 )

)

𝑘
∑

𝑗=1
𝑏𝑗𝐷𝑟,𝑦𝑢(𝑡, 𝑥 + 𝜁𝑗 )𝑑 𝑥.

Using Minkowski inequality, Cauchy–Schwarz inequality and the fact that | sin(𝑥)| ≤ 1,

E|𝐷𝑟,𝑦𝑈𝑅 −𝐷𝑟,𝑧𝑈𝑅|
2 = ‖𝐷𝑟,𝑦𝑈𝑅 −𝐷𝑟,𝑧𝑈𝑅‖

2
2

≤

(

∫

𝑅

−𝑅

‖

‖

‖

‖

‖

‖

sin

( 𝑘
∑

𝑗=1
𝑏𝑗𝑢(𝑡, 𝑥 + 𝜁𝑗 )

) 𝑘
∑

𝑗=1
𝑏𝑗

(

𝐷𝑟,𝑦𝑢(𝑡, 𝑥 + 𝜁𝑗 ) −𝐷𝑟,𝑧𝑢(𝑡, 𝑥 + 𝜁𝑗 )
)

‖

‖

‖

‖

‖

‖2

𝑑 𝑥
)2

≤

(

∫

𝑅

−𝑅

𝑘
∑

𝑗=1
|𝑏𝑗 |

‖

‖

‖

𝐷𝑟,𝑦𝑢(𝑡, 𝑥 + 𝜁𝑗 ) −𝐷𝑟,𝑧𝑢(𝑡, 𝑥 + 𝜁𝑗 )‖‖
‖4
𝑑 𝑥

)2

,

and therefore,

Var (𝑈𝑅) ≤ 𝐶
𝑘
∑

𝑗=1
𝑏2𝑗 × sup

𝜁∈R∫

𝑡

0 ∫R2

(

∫

𝑅

−𝑅

‖

‖

‖

𝛥ℎ(𝑟, 𝑧, 𝑡, 𝑥 + 𝜁 )‖‖
‖4
𝑑 𝑥

)2

|ℎ|2𝐻−2𝑑 ℎ𝑑 𝑧𝑑 𝑟,

where 𝛥 is defined as in (2.18). Notice that Proposition 2.11(b) yields that

sup
𝜁∈R∫R2

(

∫

𝑅

−𝑅

‖

‖

‖

𝛥ℎ(𝑟, 𝑧, 𝑡, 𝑥 + 𝜁 )‖‖
‖4
𝑑 𝑥

)2

|ℎ|2𝐻−2𝑑 ℎ𝑑 𝑧

= sup
𝜁∈R∫R2

(

∫

𝑅

−𝑅 ∫

𝑅

−𝑅

‖

‖

‖

𝛥ℎ(𝑟, 𝑧, 𝑡, 𝑥1 + 𝜁 )‖‖
‖4
‖

‖

‖

𝛥ℎ(𝑟, 𝑧, 𝑡, 𝑥2 + 𝜁 )‖‖
‖4
𝑑 𝑥1𝑑 𝑥2

)

|ℎ|2𝐻−2𝑑 ℎ𝑑 𝑧

≤ sup
𝜁∈R∫

𝑅

−𝑅

(

∫R3

‖

‖

‖

𝛥ℎ(𝑟, 𝑧, 𝑡, 𝑥1)‖‖
‖4
‖

‖

‖

𝛥ℎ(𝑟, 𝑧, 𝑡, 𝑥2 + 𝜁 )‖‖
‖4
|ℎ|2𝐻−2𝑑 ℎ𝑑 𝑧𝑑 𝑥1

)

𝑑 𝑥2

≤ ∫

𝑅

−𝑅

(

sup
𝑦∈R∫R3

‖

‖

‖

𝛥ℎ(𝑟, 𝑧, 𝑡, 𝑥1)‖‖
‖4
‖

‖

‖

𝛥ℎ(𝑟, 𝑧, 𝑡, 𝑦)‖‖
‖4
|ℎ|2𝐻−2𝑑 ℎ𝑑 𝑧𝑑 𝑥1

)

𝑑 𝑥2 ≤ 𝐶 𝑅,

and thus

Var (𝑈𝑅) ≤ 𝐶 𝑅.
It follows that

1
𝑅2

Var (𝑈𝑅) ≤ 𝐶 𝑅−1 → 0, as 𝑅 → ∞.

The proof of Theorem 1.1 is complete.

3.2. Quantitative CLT—Proof of Theorem 1.2

In this section, we prove Theorem 1.2. Applying [26, Proposition 2.4], we get:

𝑑𝑇 𝑉
(

𝐹𝑅(𝑡)
𝜎𝑅(𝑡)

, 𝑍
)

≤
2
√

3
𝜎2𝑅(𝑡)

√

,

where

 = 𝐶3
𝐻 ∫[0,𝑡]3

∗
0(𝑟, 𝑠, 𝜃)𝑑 𝑟𝑑 𝑠𝑑 𝜃 ,

and

∗
0(𝑟, 𝑠,𝜃) = ∫R6

‖𝐷𝑟,𝑧𝐹𝑅(𝑡) −𝐷𝑟,𝑧′𝐹𝑅(𝑡)‖4‖𝐷𝜃 ,𝑤𝐹𝑅(𝑡) −𝐷𝜃 ,𝑤′𝐹𝑅(𝑡)‖4

× ‖𝐷2
(𝑟,𝑧),(𝑠,𝑦)𝐹𝑅(𝑡) −𝐷2

(𝑟,𝑧),(𝑠,𝑦′)𝐹𝑅(𝑡) −𝐷2
(𝑟,𝑧′),(𝑠,𝑦)𝐹𝑅(𝑡) +𝐷2

(𝑟,𝑧′),(𝑠,𝑦′)𝐹𝑅(𝑡)‖4
× ‖𝐷2

(𝜃 ,𝑤),(𝑠,𝑦)𝐹𝑅(𝑡) −𝐷2
(𝜃 ,𝑤),(𝑠,𝑦′)𝐹𝑅(𝑡) −𝐷2

(𝜃 ,𝑤′),(𝑠,𝑦)𝐹𝑅(𝑡) +𝐷2
(𝜃 ,𝑤′),(𝑠,𝑦′)𝐹𝑅(𝑡)‖4

× |𝑦 − 𝑦′|2𝐻−2
|𝑧 − 𝑧′|2𝐻−2

|𝑤 −𝑤′
|

2𝐻−2𝑑 𝑦𝑑 𝑦′𝑑 𝑧𝑑 𝑧′𝑑 𝑤𝑑 𝑤′.

Since Proposition 2.12 concludes that 𝜎2𝑅(𝑡) ∼ 𝐶 𝑅 as 𝑅 → ∞, it is enough to show that  ≤ 𝐶 𝑅.
By Minkowski’s inequality, we get ∗

0(𝑟, 𝑠, 𝜃) ≤ 0(𝑟, 𝑠, 𝜃), where 0 can be written, after a change of variables, as follows:

0(𝑟, 𝑠, 𝜃) = ∫[−𝑅,𝑅]4 ∫R6
|𝑦′|2𝐻−2

|𝑧′|2𝐻−2
|𝑤′

|

2𝐻−2‖
‖

‖

𝛥𝑧′ (𝑟, 𝑧, 𝑡, 𝑥1)‖‖
‖4
‖

‖

‖

𝛥𝑤′ (𝜃 , 𝑤, 𝑡, 𝑥2)‖‖
‖4

× ‖

‖

‖

□𝑧′ ,𝑦′ (𝑟, 𝑧, 𝑠, 𝑦, 𝑡, 𝑥3)‖‖
‖4
‖

‖

‖

□𝑤′ ,𝑦′ (𝜃 , 𝑤, 𝑠, 𝑦, 𝑡, 𝑥4)‖‖
‖4
𝑑 𝑦𝑑 𝑦′𝑑 𝑧𝑑 𝑧′𝑑 𝑤𝑑 𝑤′𝑑 𝑤′𝑑 𝑥1𝑑 𝑥2𝑑 𝑥3𝑑 𝑥4.

where 𝛥 and □ are defined as in (2.18) and (2.19), respectively.
18 
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Hence,

 ≤ 1 +2 +3 +4,

where

1 ∶= ∫0<𝑟∨𝜃 <𝑠<𝑡
0(𝑟, 𝑠, 𝜃)𝑑 𝑟𝑑 𝑠𝑑 𝜃 , 2 ∶= ∫0<𝑟<𝑠<𝜃 <𝑡

0(𝑟, 𝑠, 𝜃)𝑑 𝑟𝑑 𝑠𝑑 𝜃 ,

3 ∶= ∫0<𝜃 <𝑠<𝑟<𝑡
0(𝑟, 𝑠, 𝜃)𝑑 𝑟𝑑 𝑠𝑑 𝜃 , and 4 ∶= ∫0<𝑠<𝑟∧𝜃 <𝑡

0(𝑟, 𝑠, 𝜃)𝑑 𝑟𝑑 𝑠𝑑 𝜃 .

The estimates for 1,… ,4 are quite similar. Here we only provide a detailed deduction of the estimate for 1.

0(𝑟, 𝑠, 𝜃) ≤ 𝑇1(𝑟, 𝜃)
1
2 𝑇2(𝑠, 𝑟)

1
2
∫

𝑅

−𝑅
𝑇3(𝑠, 𝜃 , 𝑥4)

1
2 𝑑 𝑥4, (3.1)

where

𝑇1(𝑟, 𝜃) ∶= ∫R2

(

sup
𝑧∈R∫R

‖

‖

‖

𝛥𝑧′ (𝑟, 𝑧, 𝑡, 𝑥1)‖‖
‖4
𝑑 𝑥1

)2(
sup
𝑤∈R∫R

‖

‖

‖

𝛥𝑤′ (𝜃 , 𝑤, 𝑡, 𝑥2)‖‖
‖

𝑑 𝑥2
)2

× |𝑧′|2𝐻−2
|𝑤′

|

2𝐻−2𝑑 𝑧′𝑑 𝑤′ < 𝐶 ,

𝑇2(𝑠, 𝑟) ∶= ∫R2

(

sup
𝑦∈R∫R2

‖

‖

‖

□𝑧′ ,𝑦′ (𝑟, 𝑧, 𝑠, 𝑦, 𝑡, 𝑥3)‖‖
‖4
𝑑 𝑥3𝑑 𝑧

)2

|𝑦′|2𝐻−2
|𝑧′|2𝐻−2𝑑 𝑦′𝑑 𝑧′ < 𝐶 ,

and

𝑇3(𝑠, 𝜃 , 𝑥4) ∶= ∫R2

(

∫R2

‖

‖

‖

□𝑤′ ,𝑦′ (𝜃 , 𝑤, 𝑠, 𝑦, 𝑦, 𝑥4)‖‖
‖4
𝑑 𝑦𝑑 𝑤

)2
|𝑦′|2𝐻−2

|𝑤′
|

2𝐻−2𝑑 𝑦′𝑑 𝑤′ < 𝐶 ,

by using Proposition 2.11. This yields immediately that for any 0 < 𝑟 ∨ 𝜃 < 𝑠 < 𝑡,
0(𝑟, 𝑠, 𝜃) ≤ 𝐶 ∫

𝑅

−𝑅
𝑑 𝑥4 = 𝐶 𝑅,

and thus

1 = ∫{0<𝑟<𝑠∨𝜃 <𝑠}
0(𝑟, 𝑠, 𝜃)𝑑 𝑟𝑑 𝑠𝑑 𝜃 ≤ 𝐶 𝑅.

Similar arguments ensure that 𝑘 ≤ 𝐶 𝑅 for 𝑘 = 2, 3, 4. Therefore,  ≤ 𝐶 𝑅. This completes the proof of Theorem 1.2.

3.3. Functional CLT—Proof of Theorem 1.3

In this section, we include the proof of Theorem 1.3. We fix 𝑇 > 0. It suffices to show the following properties (see e.g. [68,
Theorem 7.1]):

(1) The tightness of the collection of 𝐶([0, 𝑇 ])-valued random variables {𝜎−1𝑅 𝐹𝑅(𝑟); 𝑟 ∈ [0, 𝑇 ]}𝑅∈R+
.

(2) The convergence in distribution of {𝜎−1𝑅 𝐹𝑅(𝑡1),… , 𝜎−1𝑅 𝐹𝑅(𝑡𝑚)}𝑅∈R+
to ((𝑡1),… ,(𝑡𝑚)) as 𝑅 → ∞, for all positive integer 𝑚 and

for all 0 ≤ 𝑡1 ≤ ⋯ ≤ 𝑡𝑚 ≤ 𝑇 .

Proof of tightness. By Kolmogorov–Chentsov criterion ([69, Theorem 23.7]), it is enough to prove that

‖𝐹𝑅(𝑡) − 𝐹𝑅(𝑠)‖𝑝 ≤ 𝐶 𝑅1∕2(𝑡 − 𝑠)1∕2, (3.2)

for all 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 , where 𝐶 > 0 is a constant that depends on (𝑇 , 𝑝, 𝐻). Using (1.8) and the convention 𝐺𝑡(𝑥) = 0 for 𝑡 < 0, we
write:

𝑢(𝑡, 𝑥) − 𝑢(𝑠, 𝑥) = ∫

𝑡

0 ∫R

(

𝐺𝑡−𝑟(𝑥 − 𝑦) − 𝐺𝑠−𝑟(𝑥 − 𝑦)
)

𝑢(𝑟, 𝑦)𝑊 (𝑑 𝑟, 𝑑 𝑦).

By stochastic Fubini theorem,

𝐹𝑅(𝑡) − 𝐹𝑅(𝑠) = ∫

𝑡

0 ∫R

(

∫

𝑅

−𝑅

(

𝐺𝑡−𝑟(𝑥 − 𝑦) − 𝐺𝑠−𝑟(𝑥 − 𝑦)
)

𝑑 𝑥
)

𝑢(𝑟, 𝑦)𝑊 (𝑑 𝑟, 𝑑 𝑦).

We use the following inequality: for any predictable process 𝑆,
‖

‖

‖

‖

‖

∫

𝑇

0 ∫R
𝑆(𝑡, 𝑥)𝑊 (𝑑 𝑡, 𝑑 𝑥)

‖

‖

‖

‖

‖

2

𝑝
≤ 𝐶𝑝,𝐻 ∫

𝑇

0 ∫R2
‖𝑆(𝑡, 𝑥) − 𝑆(𝑡, 𝑦)‖2𝑝|𝑥 − 𝑦|2𝐻−2𝑑 𝑥𝑑 𝑦𝑑 𝑡.

This inequality follows from the Burkholder–Davis–Gundy inequality for the stochastic integral with respect to 𝑊 (given by [29,
Theorem 2.9]) followed by Minkowski inequality for the ‖ ⋅ ‖𝑝∕2-norm. It follows that

‖𝐹 (𝑡) − 𝐹 (𝑠)‖2 ≤ 𝐶
𝑡

‖𝑆(𝑟, 𝑦) − 𝑆(𝑟, 𝑧)‖2|𝑦 − 𝑧|2𝐻−2𝑑 𝑦𝑑 𝑧𝑑 𝑟,
𝑅 𝑅 𝑝 𝑝,𝐻 ∫0 ∫R2 𝑝

19 



R.M. Balan et al.

r
2

Stochastic Processes and their Applications 182 (2025) 104569 
with 𝑆(𝑟, 𝑦) =
(

∫ 𝑅−𝑅
(

𝐺𝑡−𝑟(𝑥 − 𝑦) − 𝐺𝑠−𝑟(𝑥 − 𝑦)
)

𝑑 𝑥
)

𝑢(𝑟, 𝑦). It follows that:

‖𝐹𝑅(𝑡) − 𝐹𝑅(𝑠)‖2𝑝 ≤ 𝐶𝑝,𝐻
(

𝐼1 + 𝐼2
)

, (3.3)

where

𝐼1 ∶= ∫

𝑡

0 ∫R2

(

∫

𝑅

−𝑅

(

𝐺𝑡−𝑟(𝑥 − 𝑦) − 𝐺𝑠−𝑟(𝑥 − 𝑦) − 𝐺𝑡−𝑟(𝑥 − 𝑧) + 𝐺𝑠−𝑟(𝑥 − 𝑧)
)

𝑑 𝑥
)2

× ‖𝑢(𝑟, 𝑦)‖2𝑝|𝑦 − 𝑧|2𝐻−2𝑑 𝑦𝑑 𝑧𝑑 𝑟,
and

𝐼2 ∶= ∫

𝑡

0 ∫R2

(

∫

𝑅

−𝑅

(

𝐺𝑡−𝑟(𝑥 − 𝑧) − 𝐺𝑠−𝑟(𝑥 − 𝑧)
)

𝑑 𝑥
)2

‖𝑢(𝑟, 𝑦) − 𝑢(𝑟, 𝑧)‖2𝑝|𝑦 − 𝑧|2𝐻−2𝑑 𝑦𝑑 𝑧𝑑 𝑟.

Note that

∫

𝑅

−𝑅

(

𝐺𝑡−𝑟(𝑥 − 𝑧) − 𝐺𝑠−𝑟(𝑥 − 𝑧)
)

𝑑 𝑥 = 1
2 ∫

𝑅

−𝑅
1{𝑠−𝑟<|𝑥−𝑧|<𝑡−𝑟}𝑑 𝑥 ∈ [0, 𝑡 − 𝑠]. (3.4)

Thus, due to Lemmas 2.2 and 2.3, and the fact that 𝐺𝑠−𝑟(𝑥) ≤ 𝐺𝑡−𝑟(𝑥), we deduce that

𝐼2 ≤ 𝐶(𝑡 − 𝑠)∫

𝑅

−𝑅 ∫

𝑡

0

(

∫R
𝐺𝑡−𝑟(𝑥 − 𝑧)𝑑 𝑧

)

𝑑 𝑟𝑑 𝑥 = 𝐶(𝑡 − 𝑠)𝑅∫

𝑡

0
(𝑡 − 𝑟)𝑑 𝑟 ≤ 𝐶(𝑡 − 𝑠)𝑅. (3.5)

Next, we treat 𝐼1. By (3.4),
|

|

|

|

|

∫

𝑅

−𝑅

(

𝐺𝑡−𝑟(𝑥 − 𝑦) − 𝐺𝑠−𝑟(𝑥 − 𝑦) − 𝐺𝑡−𝑟(𝑥 − 𝑧) + 𝐺𝑠−𝑟(𝑥 − 𝑧)
)

𝑑 𝑥
|

|

|

|

|

≤ 2(𝑡 − 𝑠).

Using this bound and Lemma 2.1, we find that

𝐼1 ≤ 2(𝑡 − 𝑠)∫

𝑅

−𝑅 ∫

𝑡

0 ∫R2

(

|𝐺𝑡−𝑟(𝑥 − 𝑦) − 𝐺𝑡−𝑟(𝑥 − 𝑧)| + |𝐺𝑠−𝑟(𝑥 − 𝑦) − 𝐺𝑠−𝑟(𝑥 − 𝑧)|
)

× |𝑦 − 𝑧|2𝐻−2𝑑 𝑦𝑑 𝑧𝑑 𝑟𝑑 𝑥.
Note that |𝐺𝑡(𝑥) − 𝐺𝑡(𝑦)| ∈ {1∕2, 0} for all 𝑡 ≥ 0 and 𝑥, 𝑦 ∈ R, thus |𝐺𝑡(𝑥) − 𝐺𝑡(𝑦)| = 2|𝐺𝑡(𝑥) − 𝐺𝑡(𝑦)|2. As a result,

𝐼1 ≤ 4(𝑡 − 𝑠)
(

∫

𝑅

−𝑅 ∫

𝑡

0 ∫R2
|𝐺𝑡−𝑟(𝑥 − 𝑦) − 𝐺𝑡−𝑟(𝑥 − 𝑧)|2|𝑦 − 𝑧|2𝐻−2𝑑 𝑦𝑑 𝑧𝑑 𝑟𝑑 𝑥

+ ∫

𝑅

−𝑅 ∫

𝑡

0 ∫R2
|𝐺𝑠−𝑟(𝑥 − 𝑦) − 𝐺𝑠−𝑟(𝑥 − 𝑧)|2|𝑦 − 𝑧|2𝐻−2𝑑 𝑦𝑑 𝑧𝑑 𝑟𝑑 𝑥

)

≤ 𝐶(𝑡 − 𝑠)𝑅, (3.6)

where the last inequality is due to [49, Inequality (58)]. As a result, (3.2) follows from plugging (3.5) and (3.6) into (3.3). The
tightness of the sequence {𝜎−1𝑅 𝐹𝑅(𝑟); 𝑟 ∈ [0, 𝑇 ]}𝑅∈R+

is then established using (3.2) and the Kolmogorov–Chentsov criterion. □

Proof of finite-dimensional convergence. The proof follows the same idea as in [24, Section 4.2]. More precisely, it suffices to
show that:

Var
(⟨

𝐷 𝐹𝑅(𝑡𝑖),−𝐷 𝐿−1𝐹𝑅(𝑡𝑗 )
⟩


)

≤ 𝐶 𝑅, for any 𝑖, 𝑗 = 1,… , 𝑚.
This inequality is proved using the same argument as for  in Section 3.2, based on an estimate for Var (⟨𝐷 𝐹 ,−𝐷 𝐿−1𝐺⟩ ) for two
andom variables 𝐹 and 𝐺, which can be deduced similarly to the estimate derived for 𝐹 = 𝐺 in the proof of [26, Proposition
.4]. □
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