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We investigate the Landau-Coulomb equation and show 
an explicit blow-down mechanism for a family of initial 
data that are small-scale, supercritical perturbations of a 
Maxwellian function. We establish global well-posedness and 
show that the initial bump region will disappear in a time 
of order one. We prove that the function remains close to an 
explicit function during the blow-down. As a consequence, 
our result shows stretched exponential decay in time of the 
solution towards equilibrium. The key ingredients of our proof 
are the explicit blow-down function and a novel two-scale 
linearization in appropriate time-dependent spaces that yields 
uniform estimates in the perturbation parameter.

© 2025 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license (http://
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1. Introduction

In this paper, we show a regularization mechanism for the spatially homogeneous 
Landau-Coulomb equation [16,17]
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∂tF = ∇ · (A[F ]∇F −∇a[F ]F ), F (0, v) = Fin(v), (1.1)

where v ∈ R3, A[F ] is the anisotropic diffusion matrix, defined as

A[F ](v) := 1 
8π

∫
R3

Π(v − v′)
|v − v′| F (v′) dv′, Π(z) := Id− z ⊗ z

|z|2 ,

and a[f ] is the trace of A[F ]. The equation can also be written in non-divergence form 
as

∂tF = A[F ] : ∇2F + F 2, F (0, v) = Fin(v).

A crucial characteristic of this equation is that the diffusion term A[F ] : ∇2F and the 
drift F 2 are competing terms with the same scaling properties. This fact has made it 
challenging to settle the question of global well-posedness versus blow-up in finite time. 
Since the groundbreaking result of Guillen and Silvestre [11], we now know that solutions 
to (1.1) do not blow up if the initial data are reasonable.

The mechanisms by which the Landau equation eliminates small-scale singularities are 
not yet fully understood. Prior to [11], a major challenge in proving global well-posedness 
was the absence of mathematical tools to control perturbations with small mass, which 
could potentially grow undetected by the available physical bounds: mass, momentum, 
energy and entropy. Guillen and Silvestre in [11] identified the Fisher information as a 
Lyapunov functional of the equation, which provides a new a priori bound. This bound 
allows for global well-posedness if the initial data have bounded Fisher information or 
if the initial data are in Lp with p ≥ 3

2 [6]. Global well-posedness for (1.1) with initial 
data in Lp with p < 3/2 has been recently proven in [4,14]. In this regime, we also know 
partial space-time regularity estimates [8,9].

Given that blow-up does not occur if the initial data are reasonably well-behaved, it 
is interesting to explore the blow-down mechanism. The goal of this work is a first step 
towards the theory of supercritical initial data for the Landau-Coulomb equation, and 
an understanding of their regularization and decay to equilibrium. The current theory 
does not yet cover initial data with supercritical singularities but strong decay at infinity. 
Here, we define as subcritical all Lp-norms with p > 3

2 , as critical the L3/2-norm and 
supercritical all Lp-norms with p < 3

2 . These terms are not related to the equation’s 
scaling properties, but rather to the fact that in the subcritical regime the equation 
(1.1) has bounded coefficients, whereas this boundedness might fail in the critical and 
subcritical regime.

We begin by examining initial data with singularities that possess large super- and 
sub-critical norms and large Fisher information. We consider as initial data small-scale 
perturbations of a Maxwellian function

Fin(v) = M(v) + δαMδ(v), (1.2)
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where the Maxwellian functions are given by

M(v) = 1 
(2π)3/2

e−
1
2 |v|

2
, Mδ(v) = 1 

(2πδ)3/2
e−

|v|2
2δ . (1.3)

We restrict to the regime 0 < δ � 1 and α ∈ (1
4 ,

1
2 ). For these values of α, the perturba-

tion δαMδ has small L1-norm but large Lp-norms for all p > p0 with p0 < 3
2 depending 

on α. Hence, the perturbation is large even in spaces below the critical integrability 
(p = 3

2 for Landau-Coulomb). In particular, the L∞-norm and the Fisher information of 
Fin are diverging as δ → 0.

We briefly recall that global well-posedness for small perturbation of the steady state 
in Lp-norms with p > 3

2 has been well-known since some time [1,12,15,5,7].
Our analysis reveals the exact blow-down mechanism: on a time interval (0, t∗) the 

solution to (1.1), (1.2) is the sum of three components: a fixed Maxwellian function, 
the local singularity (emerging from the δαMδ(v) part of the initial data) and a small 
perturbation that disappears as time grows. More precisely, we show that

F (v, t) = M(v) + E(v, t) + f(t, v),

where f is some small perturbation, and E(t, v) is an explicit function given by (c0 given 
in (2.2))

E(t, v) = m(t)MT (t), T (t) := δ + 2c0t, m(t) = δαe
2 

(2π)3/2 t
. (1.4)

Let us explain what we mean by blow-down mechanism: the main players are M (the 
unit Maxwellian) and E (the explicit local singularity), while the perturbation f is the 
solution to a nonlinear problem with zero initial data. We show that f remains small in 
the time interval (0, t∗). The local singularity E, which at time t = 0 has small mass but 
is large in supercritical Lp-norms, regularizes as soon as t > 0 and gains integrability as 
time increases, uniformly with respect to δ. Note in fact that

‖E(t, ·)‖Lp ∼ δα

(δ + 2c0t)
3
2 (1− 1 

p ) .

Crucially, our argument shows that at a certain time t∗ > 0, our solution F is close to 
M and satisfies

‖F (t∗, ·) −M‖L2
M

≤ o(1), for δ → 0.

The time t∗ > 0 can be chosen uniform in δ → 0. This shows that the Landau collision 
operator has blown-down the perturbation E + f and at time t∗ the solution F is close 
to the unit Maxwellian.
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Since M is close to the global equilibrium Meq associated to the initial data Fin

Meq(v) = (1 + δα)M 1+δ1+α

1+δα
(v),

at time t∗ > 0 our solution F satisfies

‖F (t∗, ·) −Meq(·)‖L2
M

≤ o(1), for δ → 0.

After t∗, the distance between F and the equilibrium Meq decays stretched exponentially. 
This follows from existing results, for example [1].

Summarizing, our result is threefold:

1. we prove blow-down mechanism for a family of supercritical perturbations, i.e. per-
turbations that are near Maxwellians only in Lp norms with p close to 1.

2. we show that during the blowdown time the solution remains close to an explicitly 
computable function, namely M(v) + E(v), with E defined in (1.4),

3. we prove stretched exponential convergence to equilibrium, uniform in the perturba-
tion parameter δ > 0.

The main result of our manuscript is the following theorem.

Theorem 1.1. For α ∈ (1
4 ,

1
2 ) there exists δ0 ∈ (0, 1

2 ) such that for δ ∈ (0, δ0) the following 
holds: Let Fin be as defined as in (1.2). Then there exists a unique global smooth solution 
F to (1.1), which has the form

F (t, v) = M(v) + E(t, v) + f(t, v),

with E defined in (1.4). At t = t∗, where t∗ > 0 is some time of order one, specifically 
(c0 given in (2.2))

t∗ ≤ min
{

1
2 ,

1 
4c0

}
= 1

2 ,

the perturbation is small in weighted L2 norm:

‖E + f‖L2
M

≤ Cδα−
1
4 ,

and, for some λ0 > 0, decays as

‖F (t, ·) −Meq‖L2 ≤ Cδα−
1
4 e−λ0t

2/3
, t > t∗.

Here Meq is the unique equilibrium function with the same mass and second momentum 
as Fin:

Meq = (1 + δα)M 1+δ1+α

1+δα
.
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Remark 1.2. In Theorem 1.1 as well as the rest of the paper, we will denote by C, c > 0
large respectively small constants which are independent of δ, t, v and may change from 
line to line.

Several tools play a key role in our result. We do not rely on the bound of the Fisher 
information (which is indeed diverging as δ → 0) but introduce a new type of linearization 
that involves M, as well as the explicit local singularity E(t). The local blow-down profile 
represents the evolution of a small Maxwellian and solves the linear inhomogeneous heat 
equation (2.1). Hence, we can compute E(t) explicitly. The crucial technical point is 
the functional setting: we work with time-dependent Banach spaces that can measure 
explicitly the contribution coming from the large scale and the contribution from the 
time-dependent small scale. We call these two contributions respectively far-field and 
near-field. We split the perturbation f into its far-field and near-field component and 
rewrite the Landau equation as a coupled two-scale system (see (2.4)). We require the 
assumption α > 1

4 in order to be able to control the near-field perturbation such as the 
right-hand side in (3.6).

After establishing the functional framework, the estimates in the near-field and in the 
far-field rely on the coercivity provided by the large scale Maxwellian M, and on the 
monotonicity of the eigenvalues of A[M] and other related quantities.

Although we prove our theorem for the Landau-Coulomb case, similar results should 
apply for the Landau operator in the soft potential case, and for the Boltzmann equation. 
Moreover, one could inquire whether a similar blow-down mechanism applies to the 
inhomogeneous equation. It is noteworthy that the initial data considered here will lead 
to nearly self-similar blow-up for a modified Landau equation (cf. [2]):

∂tF = ∇ · (A[F ]∇F −∇a[F ]F ) + εF 2, ε > 0.

The choice of initial data (1.2) in our work was motivated by the considerations in [19] 
(see p. 19). In a similar spirit, we recall a recent result for the compressible Navier-
Stokes equation in 3-dimensional space (see [13]) with pulse initial data. The authors 
show that the initial small-scale bump will disappear in a short time, leading to global 
well-posedness of the solution which remains small in energy norms.

2. Setup of the problem and outline of the proof

2.1. Two-scale linearization

We consider initial data of the form:

Fin = M + δαMδ,
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where M is the Maxwellian with temperature 1 and Mδ the one of temperature δ
defined in (1.3). The parameter α is positive and strictly less than 1

2 . The threshold 1
2

for α implies that the Lp-norms with p < 3
2 of Fin increase as δ → 0. Note in fact that

‖Fin‖Lp = C(p,M) + C(p)δα−
3
2 (1− 1 

p ).

Let us introduce a new linearization which combines the “near-field” and “far field” 
regime. More precisely, we look for solutions of the form

F (t, v) = G(t, v) + H(t, v),

with G the far-field and H the near-field. Here, both G and H are further decomposed 
into

G(t, v) = M(v) + g(t, v),

H(t, v) = E(t, v) + h(t, v).

The explicit function E (cf. (1.4)) carries the leading-order time evolution of the pertur-
bation δαMδ and is determined by the linear problem

∂tE = c0ΔE + 2M(0)E, (2.1)

E(0, v) = δαMδ(v),

where the constant c0 is given by

c0 := sup 
‖e‖=1

〈A[M](0)e, e〉 = (3(2π) 3
2 )−1. (2.2)

We note that the problem (2.1) has the explicit solution

E(t, v) = δαe2M(0)tMδ ∗M2c0t = δαe2M(0)tMT (t),

with T (t) the sum of the variances of both Maxwellians:

T (t) = δ + 2c0t. (2.3)

While E solves (2.1), the function g + h is zero at time t = 0 and solves for t > 0

(h + g)t = Q(M + g + E + h) − c0ΔE − 2M(0)E,

where Q is the Landau-Coulomb collision operator. We decompose the above problem 
into a system of coupled nonlinear equations for a small-scale perturbation h and a 
large-scale perturbation g.
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To this end, we first introduce the bilinear operator

Q(F,G) = ∇ · (A[F ]∇G−∇a[F ]G).

Then we introduce the two-scale coupled system

∂th = Q(h, h) + Q(g, h) + Q(E, h) + Q(h,E) + Q(M, h) + Q(g,E)

+ gh + hM + gE + ME + Q(M, E) − c0ΔE − 2M(0)E,

h(0,v) = 0,

∂tg = Q(g, g) + Q(M, g) + Q(g,M)

+ Tr(A[h]∇2M) + Tr(A[h]∇2g) + Tr(A[E]∇2g) + Tr(A[E]∇2M),

g(0,v) = 0.

(2.4)

Additional crucial ingredients are the function spaces

‖h‖2
L2

μT (t)
:=

∫
R3

h2μ−1
T (t) dv, for t ≥ 0, (2.5)

‖g‖2
L2

M
:=

∫
R3

g2M−1 dv, (2.6)

where T (t) is given by (2.3) and μT (t) is the time-dependent weight:

μT (t) = T (t)
3
2 e−

|v|2
2T (t) . (2.7)

Note that for a time of order one, E(t) and μT (t) are related by the following relation:

E(t, v) ≈ δα

T 3μT (t), T (t) = δ + 2c0t.

We will often suppress the dependence on t in T (t) and just write μ or μT instead of 
μT (t) when the suppression will not be misleading.

The next theorem establishes the existence of g and h. For convenience, we will lever-
age the existence results from [11] to demonstrate the existence of g and h, thereby 
avoiding unnecessary lengthy computations. However, we emphasize that the a priori 
estimates presented later would be more than sufficient for an independent proof using 
an appropriate fixed-point argument.

Theorem 2.1. The system (2.4) is well-posed, and the functions g and h are smooth and 
radially symmetric. Moreover, for δ ∈ (0, 1

2) we have g ∈ C1([0, 1];L2
M) and ‖h(t, ·)‖L2

μ
∈

C1([0, 1]).



8 M.P. Gualdani, R. Winter / Journal of Functional Analysis 288 (2025) 110816 

Proof. Let us denote, for simplicity of notation, the linearized operators

LE(h) := Q(E, h) + Q(h,E), (2.8)

LM(g) := Q(M, g) + Q(g,M), (2.9)

and with SE and SM the terms

SE := ME + Q(M, E) − c0ΔE − 2M(0)E, (2.10)

SM := Tr(A[E]∇2M). (2.11)

With this simplified notation, the equations for g and h become

∂tg = LM(g) + A[h] : ∇2G + A[E] : ∇2g + Q(g, g) + SM,

∂th = LE(h) + h(M + g) + Eg + Q(M, h) + Q(g, h) + Q(h, h) + Q(g,E) + SE .

The existence of the unique smooth, decaying, radial solution F is guaranteed by Theo-
rem 1.1 in [11]. We also remark that the equation for h can be rewritten as

∂th = Q(F, h) + Q(F,E) + hF − 2hE − h2 + EF −EM− E2 −Q(M, E) + SE .

The equation for h in this form is a linear second order diffusion equation up to the 
dissipative term −h2, so existence of a smooth solution with ‖h(t, ·)‖L2

μ
∈ C1([0, 1]) is 

straightforward. The existence of g then follows from

g = F − E −M− h.

Here we use E(t, ·) ∈ L2
M for t ≤ 1 and δ ∈ (0, 1

2). Due to uniqueness and the rotational 
symmetry of the initial data, all functions involved are rotationally symmetric. �

Note that the previous theorem only shows the existence of smooth decaying functions 
g, h, not their smallness. The control of the size of the perturbation will be the topic of 
the next sections.

2.2. Preliminaries

To keep the paper self-contained, we recall some basic properties of the Landau-
Coulomb equation. First we recall the following identity for the operators A and a in (1.1):

∇ ·A[F ] = ∇a[F ], (2.12)

Δa[F ] = −F. (2.13)

It follows immediately that the Landau operator can be rewritten in the well-known 
non-divergence form
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Q(F,G) = ∇ · (A[F ]∇G−∇a[F ]G) = A[F ] : ∇2G + FG. (2.14)

Moreover, we recall the following formula for a[f ] if f is radially symmetric:

a[f ](v) = 1 
4π|v|

∫
B|v|

f(w) dw + 1 
4π

∫
Bc

|v|

1 
|w|f(w) dw.

This quickly yields the monotonicity of a[M ]. This observation is not novel, but we state 
it here for the sake of completeness.

Lemma 2.2. If f ∈ L1(R3) ∩ L2(R3) is radially symmetric, positive, and monotonically 
decreasing, then a[f ](v) = φ(|v|) is also radially symmetric and decreasing, i.e.

∂rφ(r) = − 1 
r2

r∫
0 

y2f(y) dy ≤ 0. (2.15)

Proof. Follows simply by using polar coordinates and taking the derivative:

∂rφ(r) = ∂r

⎛
⎝1

r

r∫
0 

y2f(y) dy +
∞ ∫
r

yf(y) dy

⎞
⎠

= − 1 
r2

r∫
0 

y2f(y) dy ≤ 0,

proving the claim since f ≥ 0. �
Moreover, we will make use of the monotonicity of the eigenvalues of A[M ]. This 

property is the content of the following Lemma. Additionally, we recall the asymptotics 
of the Eigenvalues which have been characterized in [3].

Lemma 2.3. For any v ∈ R3, the matrix A[M ](v) has two positive Eigenvalues λ1(|v|), 
λ2(|v|) and λ1, λ2 are monotone decreasing in |v|.

Moreover, the first Eigenvalue λ1 is associated with the Eigenvector v and the Eigen-
values satisfy the asymptotics

λ1(v) ∼ |v|−3,

λ2(v) ∼ |v|−1.
(2.16)

Proof. We first observe that v is an Eigenvector of A[M ](v), and the matrix is a mul-
tiple of the identity on the orthogonal space to v. Let us denote by λ1 the Eigenvalue 
corresponding to the Eigenvector v. Then the second Eigenvalue can be written as
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λ2(v) = 1
2 (TraceA[M ](v) − λ1(v)) = 1

2 (a[M ](v) − λ1(v)) .

From [10] Proposition 3.2, we have the following representation of λ1(|v|)

λ1(ρ) = 1 
3ρ3

ρ ∫
0 

M(s)s4 ds + 1
3

∞ ∫
ρ 

M(s)s ds.

We quickly verify the monotonicity of λ1 by computing

λ′
1(ρ) = − 1 

ρ4

∞ ∫
ρ 

M(s)s4ds < 0.

Moreover, we use the representation of λ2 above to find

λ′
2(ρ) = −1

2

∞ ∫
ρ 

( 1 
ρ2 s

2 − 1 
ρ4 s

4)M(s) ds < 0,

by positivity of the integrand. �
An important tool to control the growth of the weighted L2 norms for h and g are 

coercivity estimates. For the near-field h, we extract coercivity from the scale-separation, 
in particular from the term Q(M, h). For the near field g, we recall a classical coercivity 
result by Guo (Lemma 5 in [12]), translated to our functional framework. First, notice 
that our linear operator LM (cf. (2.9)) and Guo’s linear operator (here denoted for 
simplicity by LGuo) are related by the following change of function:

(−LGuo(ψ))
√
M = LMg, where

g =
√
Mψ.

(2.17)

Using these identities, LM satisfies the following coercive estimate:

Lemma 2.4. There exists a constant c̄0 > 0 such that

−
∫
R3

LM(g)gM−1 dv ≥ c̄0DM(P⊥
Mg). (2.18)

Here P⊥
Mg = (Id−PM)g with PM the projection onto the kernel of LM and DM(g)

given by

DM(g) =
∫
R3

(〈v〉−1g2 + 〈v〉−3|∇g|2)M−1 dv. (2.19)
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The kernel is given by

kerLM = {g = pM : p(v) = a + b · v + c|v|2, for some a, c ∈ R, b ∈ R3}, (2.20)

and the projection is taken with respect to the inner product associated to the norm L2
M

(cf. (2.6))

(f, g)M =
∫
R3

f(v)g(v)M−1 dv.

Proof. The proof follows directly from (Lemma 5 in [12]). We remark that constructive 
bounds for the coercivity constant exist [18]. We recall that

kerLGuo = {ψ = p
√
M : p(v) = a + b · v + c|v|2, for some a, c ∈ R, b ∈ R3},

so (2.20) follows from the relation (2.17). The projection onto the kernel can be found 
analogously. It remains to check the coercivity estimate. Guo’s estimate, in the radially 
symmetric case, reads

∫
R3

LGuo(ψ)ψ dv ≥ c0DGuo(P⊥√
Mψ),

DGuo(φ) =
∫
R3

A[M]i,j(∇iφ∇jφ + vivjφ
2) dv,

where P⊥√
M is the orthogonal projection to kerLGuo. Inserting ψ = gM− 1

2 and writing

f := P⊥
Mg =

√
MP⊥√

Mψ,

we obtain

−
∫
R3

LM(g)gM−1 dv ≥ c0

∫
R3

A[M]i,j((∇i + vi)f(∇j + vj)f + vivjf
2)M−1.

This gives us the desired coercive terms for the gradient, plus a remainder:

−
∫
R3

LM(g)gM−1 dv ≥ c0

⎛
⎝∫
R3

A[M]i,j∇if∇jfM−1 + 2
∫
R3

A[M]v⊗2f2M−1

⎞
⎠

− c0

⎛
⎝2|

∫
R3

A[M]i,jvif∇jfM−1|

⎞
⎠ .

Using Young’s inequality, the last term can be estimated by
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2

∣∣∣∣∣∣
∫
R3

A[M]i,jvif∇jfM−1

∣∣∣∣∣∣ ≤
2
3

∫
R3

A[M]i,j∇if∇jfM−1 + 3
2

∫
R3

A[M]i,jvifvjfM−1.

Combining this with the previous estimate we obtain

−
∫
R3

LM(g)gM−1 dv ≥ c̄0

∫
R3

A[M]i,j(∇if∇jf + vivjf
2)M−1 dv.

The claim then follows from (2.16). �
The next lemma summarizes elementary computations on the weight μT introduced 

in (2.7).

Lemma 2.5. The following identities hold:

∇μ−1
T = v

T
μ−1
T , ∇μ−1

T = v

|v| |∇μ−1
T |,

|∇μ
−1/2
T |2 = |v|2

T 2 μ−1
T , |∇μ

−1/4
T |2 = |v|2

16T 2μ
−1/2
T ,

∂tμ
−1
T = −c0

(
3 
T

+ |v|2
T 2

)
μ−1
T .

Proof. The identities can be verified by straightforward computations. �
3. Coercivity of the two-scale linearization

3.1. Estimates on the near-field scale

The classical result by Guo (Lemma 5 in [12]) implies a coercivity estimate for the 
linearized operator LE defined in (2.8). The coercivity provided by this estimate is rel-
atively weak and will not be used in the main result. We will only make use of the 
non-negativity of the term.

Lemma 3.1. The following estimate holds for any h ∈ L2
μ:

∫
R3

LE(h)hμ−1 ≤ 0. (3.1)

Proof. By rescaling we obtain that the statement is equivalent to
∫
R3

LM(h)hM−1 ≤ 0,

for any h ∈ L2
M. This is shown in Lemma 2.4. �
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We now turn to the coercivity estimate in the near-field. It will be provided by the 
interaction of the small-scale perturbation h with the large-scale Maxwellian M. In addi-
tion to the coercive term, we crucially make use of the non-positivity of the term (2.15).

Finally, we turn to the estimate of the source term in the near-field. Note that we set 
up the linearization such that we gain a quadratic term for small v in (3.3) below.

Lemma 3.2 (Source in the near-field). Recall the norm L2
μ introduced in (2.5). The con-

tribution of the source term SE defined in (2.10) can be estimated by
∫
R3

hSEμ
−1
T dv ≤ CmT− 1

2 ‖h‖L2
μ
. (3.2)

Proof. We use the symmetry and smoothness of M to infer

|A[M](v) −A[M](0)| + |M(v) −M(0)| ≤ C|v|2. (3.3)

This allows us to obtain the bound
∫
R3

hSEμ
−1
T dv ≤ CT

∫
R3

|h| |v|
2

T
Eμ−1

t dv

≤ CT‖h‖L2
μ

⎛
⎝∫
R3

|v|4
T 2 E2μ−1

⎞
⎠

1
2

≤ CmT‖h‖L2
μ

⎛
⎝ 1 

T
9
2

∫
R3

|v|4
T 2 e−|v|2/T

⎞
⎠

1
2

≤ CmT− 1
2 ‖h‖L2

μ
,

as claimed. �
The coercivity in the equation for h is provided by the next lemma.

Lemma 3.3. There exist constants c, C > 0 such that the following estimate holds
∫
R3

Q(M, h)hμ−1 dv ≤ −c

∫
R3

|∇h|2
〈v〉3 μ−1 dv − 1

2

∫
R3

∂tμ
−1h2 dv + C‖h‖2

L2
μ
. (3.4)

Proof. Integrating by parts, we write
∫
R3

Q(M, h)hμ−1 dv = −
∫
R3

〈A[M]∇h,∇h〉μ−1 dv −
∫
R3

〈A[M]∇h,∇μ−1〉h dv

+
∫
R3

h∇ · (A[M]) · ∇(hμ−1) dv
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= −
∫
R3

〈A[M]∇h,∇h〉μ−1 dv − 1
2

∫
R3

〈∇ · (A[M]μ−1),∇h2〉 dv

+
∫
R3

h〈∇h,∇ · (A[M])〉 dv +
∫
R3

h∇ · (A[M]) · ∇(hμ−1) dv

= −
∫
R3

〈A[M]∇h,∇h〉μ−1 dv + 1
2

∫
R3

∇2(A[M]μ−1)h2 dv

+
∫
R3

h2Mμ−1 dv

≤ −c

∫
R3

|∇h|2
〈v〉3 μ−1 dv +

∫
R3

h2Mμ−1 dv + 1
2

∫
R3

∇2(A[M]μ−1)h2 dv.

In the last step, we have used the classical bound

eA[M](v)e ≥ c|e|2
〈v〉3 , ∀e ∈ R3.

It remains to estimate the last integral. To this end, we notice that

∇2(A[M]μ−1) = −Mμ−1 + 2∇ · (A[M]) · ∇μ−1 + Tr(A[M]∇2μ−1).

At this point, we recall that due to radial symmetry (see Lemma 2.2) the following term 
is non-positive

∇ · (A[M]) · ∇μ−1 = ∇a[M ]∇(μ−1) ≤ 0,

and furthermore we have the identity

∇μ−1 = v

T
μ−1, Δμ−1 =

(
3 
T

+ |v|2
T 2

)
μ−1 = − 1 

c0
∂tμ

−1.

This allows us to obtain the upper bound

∫
R3

Q(M,h)hμ−1 dv ≤− c

∫
R3

|∇h|2
〈v〉3 μ−1 dv + 1

2

∫
R3

h2Mμ−1 dv

+ 1 
T

∫
R3

∇ · (A[M]) · vμ−1h2 dv + 1
2

∫
R3

Tr(A[M]∇2μ−1)h2 dv

+ 1
2

∫
R3

h2Mμ−1 dv
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≤− c

∫
R3

|∇h|2
〈v〉3 μ−1 dv + 1

2

∫
R3

Tr(A[M]∇2μ−1)h2 dv

+ C

∫
R3

h2Mμ−1 dv.

By Lemma 2.3, the Eigenvalues of A[M ](v) are decreasing. Therefore we can estimate

Tr(A[M]∇2μ−1) ≤ λ(v)Δμ−1,

where λ(v) is the largest Eigenvalue of A[M ](v). Since c0 in (2.2) is the Eigenvalue of 
A[M ](0), we have 0 < λ ≤ c0. The Laplacian Δμ−1 is positive, so we can bound

∫
R3

Q(M,h)hμ−1 dv ≤− c

∫
R3

|∇h|2
〈v〉3 μ−1 dv +c0

2 

∫
R3

Δμ−1h2 dv + C

∫
R3

h2Mμ−1 dv

= − c

∫
R3

|∇h|2
〈v〉3 μ−1 dv −1

2

∫
R3

∂tμ
−1h2 dv + C

∫
R3

h2Mμ−1 dv,

which finishes the proof. �
The remaining estimates of linear near-field terms are contained in the next lemma.

Lemma 3.4. The following bounds hold for some constant C > 0

∫
R3

Eghμ−1 dv ≤ C
m 

T
9
4
‖h‖L2

μ
‖g‖L2

M
, (3.5)

∫
R3

Q(g,E)hμ−1 dv ≤ C

(
m 

T
9
4
‖h‖L2

μ
‖g‖L2

M
+ m 

T
5
2
‖h‖L2

μ
‖g‖L2

M

)
. (3.6)

Proof. After substitution, the integral reads

∫
R3

Eghμ−1 dv ≤ m(t)
T 3

∫
R3

gh dv ≤ m(t)
T 3

⎛
⎝∫
R3

h2μ−1 dv

⎞
⎠

1
2
⎛
⎝∫
R3

g2μ dv

⎞
⎠

1
2

,

and we observe
∫
R3

g2μ dv ≤ CT 3/2
∫
R3

g2M−1 dv.
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This implies

∫
R3

Eghμ−1 dv ≤ C
T 3/4m

T 3

⎛
⎝∫
R3

h2μ−1 dv

⎞
⎠

1
2
⎛
⎝∫
R3

g2M−1 dv

⎞
⎠

1
2

,

and concludes the proof of (3.5).
To show (3.6) let us first write it as Q(g,E) = Tr(A[g]∇2E) + Eg using (2.14). The 

second term can be estimated like (3.5). For the first one, notice that

∇2E =
(

1 
T 2 v ⊗ v − 1 

T
Id

)
E,

and therefore

∫
R3

Tr(A[g]∇2E)hμ−1 dv ≤ sup〈A[|g|]e, e〉
∫
R3

Eh

(
1 
T

+ |v|2
T 2

)
μ−1 dv.

The term 〈A[g]e, e〉 can be estimated using (4.2) for g and T = 1. The integral ∫
R3 Ehμ−1 dv is bounded as follows

∫
R3

Ehμ−1 dv = δα
1 
T 3

∫
R3

h dv ≤ δα

T 3

⎛
⎝∫
R3

h2μ−1 dv

⎞
⎠

1/2 ⎛
⎝∫
R3

μ dv

⎞
⎠

1/2

︸ ︷︷ ︸
≤CT 3/2

≤ C
δα

T 3/2 ‖h‖L2
μ
,

while the other term is bounded by

∫
R3

Eh|v|2μ−1 dv =δα
1 
T 3

∫
R3

h|v|2 dv ≤ δα

T 3

⎛
⎝∫
R3

h2μ−1 dv

⎞
⎠

1/2 ⎛
⎝∫
R3

μ|v|4 dv

⎞
⎠

1/2

︸ ︷︷ ︸
≤CT 3/2+1

≤ C
δα

T 1/2 ‖h‖L2
μ
.

Combining the bounds gives

∫
R3

Tr(A[g]∇2E)hμ−1 dv ≤ C
δα

T 5/2 ‖h‖L2
μ
‖g‖L2

M
. �
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3.2. Estimates on the far-field scale

In this section, we provide the estimates for the linear terms in the far-field. On the 
far-field scale, we can make use of the coercivity provided by the operator LM, which is 
the content of the following lemma.

Lemma 3.5 (Far-field coercivity). The following coercivity estimate holds, where DM(g)
is given by (2.19)

∫
R3

gLM(g)M−1 dv ≤ −DM(g) + C‖g‖2
L2

M
. (3.7)

Proof. From Lemma 2.4, we directly obtain
∫
R3

gLM(g)M−1 dv ≤ −DM(P⊥
Mg).

Here P⊥
M is defined through the projection onto the kernel of LM. Now the parallel 

component satisfies the estimate

DM(PMg) ≤ C‖g‖2
L2

M
,

and for DM we have

DM(g) ≤ C
(
DM(PMg) + DM(P⊥

Mg)
)
.

Combining these estimates we obtain the claim. �
With the coercivity estimate at hand, we can control the other terms appearing in 

the equation for g.

Lemma 3.6 (Linear far-field terms). We have the following estimates (with SM as defined 
in (2.11)):

∫
R3

gA[E] : ∇2gM−1 dv ≤ −DE(g) + C
m

T
‖g‖2

L2
M
, (3.8)

∫
R3

gSMM−1 dv ≤ Cm‖g‖L2
M
, (3.9)

∫
R3

gA[h] : ∇2M dv ≤ CT‖h‖L2
μ
‖g‖L2

M
, (3.10)

where the dissipation DE(g) is given by
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DE(g) =
∫
R3

∇gA[E]∇gM−1 dv + 1
2

∫
R3

g2EM−1 dv.

Proof. For the first estimate, we integrate by parts
∫
R3

gA[E] : ∇2gM−1 dv = −
∫
R3

∇gA[E]∇gM−1 + 1
2

∫
R3

g2∇ · (∇ · (A[E]M−1)) dv

= −DE(g) +
∫
R3

g2(2∇ ·A[E]∇(M−1) + A[E] : ∇2(M−1)
)

dv,

where we have used (2.12) and (2.13) to find

∇ · (∇ ·A[E]) = ∇ · (∇a[E]) = −E.

Inserting the explicit form of E we obtain
∫
R3

gA[E] : ∇2gM−1 dv ≤ −DE(g) + C
m

T
‖g‖2

L2
M
.

The second claim follows by
∫
R3

gSMM−1 dv =
∫
R3

gA[E] : ∇2MM−1 dv

≤ Cm‖g‖L2
M

1 √
T

⎛
⎝∫
R3

1 
〈 v√

T
〉2M dv

⎞
⎠

1
2

≤ Cm‖g‖L2
M
.

Finally, the last estimate follows by
∫
R3

gA[h] : ∇2M dv ≤ C‖g‖L2
M
‖A[h]‖L∞

≤ CT‖g‖L2
M
‖h‖L2

E
,

which finishes the proof of the lemma. �
4. Estimate of the nonlinear terms

4.1. Preparatory estimates

We start with the following preparatory estimate. For the control of nonlinear terms, 
we need fine estimates on the matrix A[h] which are the content of the following lemma.
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Lemma 4.1. Assume that T ≤ 1. Then the matrix A[h] satisfies (here |e| = 1)

|〈A[h]v, v〉| ≤ 
C

1 + |v| √
T

‖h‖L2
μ
T 2, (4.1)

|〈A[h]e, e〉| ≤ a[|h|] ≤ 
C

1 + |v| √
T

‖h‖L2
μ
T, (4.2)

|A[h]v| ≤ C

1 + |v| √
T

‖h‖L2
μ
T

3
2 , (4.3)

|∇ · (A[h])| ≤ C

⎛
⎝∫
R3

|∇h|2
〈w〉3 μ−1 dw

⎞
⎠

1
2

T

1 + |v| √
T

, (4.4)

|∇ ·A[h] · v| ≤ C

⎛
⎝∫
R3

|∇h|2
〈w〉3 μ−1 dw

⎞
⎠

1
2

T
3
2

1 + |v| √
T

. (4.5)

Proof. Proof of (4.1). First note that

〈A[h]v, v〉 =
∫
R3

〈Π(v, w)w,w〉 h(w) 
|v − w| dw.

The Cauchy-Schwarz inequality implies

|〈A[h]v, v〉| ≤
∫
R3

|w|2|h(w)|
|v − w| dw ≤

⎛
⎝∫
R3

h2μ−1 dv

⎞
⎠

1/2 ⎛
⎝∫
R3

|w|4μ(w)
|v − w|2 dw

⎞
⎠

1/2

,

where μ(w) = T 3/2e−
|w|2
2T . Let us compute the last integral:

∫
R3

|w|4μ(w)
|v − w|2 dw = T

3
2

∫
R3

|w|4e− |w|2
2T

|v − w|2 dw.

Using the change of variable y = w√
T

we get

∫
R3

|w|4e− |w|2
2T

|v − w|2 dw = T 1+3/2
∫
R3

|y|4e−
|y|2
2 
∣∣∣∣ v√

T
− y

∣∣∣∣
−2

dy.

We now distinguish the cases |ṽ| ≤ 1 and |ṽ| ≥ 1 where for simplicity ṽ := |v| √
T

.
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First, assume |v| √
T
≤ 1, which allows us to estimate

∫
R3

|y|4e− |y|2
2 

|ṽ − y|2 dy =
∫

B(ṽ,1)

|y|4e− |y|2
2 

|ṽ − y|2 dy +
∫

Bc(ṽ,1)

|y|4e− |y|2
2 

|ṽ − y|2 dy

≤C

∫
B(ṽ,1)

1 
|ṽ − y|2 dy + C

∫
R3

|y|4e−
|y|2
2 dy

≤C

⎛
⎝ 1 +

∫
R3

e−|y|2y4 dy

⎞
⎠ ≤ C.

If instead |ṽ| ≥ 1, we can bound:

∫
R3

|y|4e− |y|2
2 

|ṽ − y|2 dy =
∫

B(ṽ,|ṽ|/2)

|y|4e− |y|2
2 

|ṽ − y|2 dy +
∫

Bc(ṽ,|ṽ|/2)

|y|4e− |y|2
2 

|ṽ − y|2 dy

≤Ce−
|ṽ|2
8 

∫
B(ṽ,|ṽ|/2)

1 
|ṽ − y|2 dy + C

|ṽ|2
∫
R3

|y|4e−
|y|2
2 dy

≤C

(
e−

|ṽ|2
8 |ṽ| + 1 

|ṽ|2
)

≤ CT

|v|2 .

Combining the estimates from both cases, we find

T
3
2

∫
R3

|w|4e− |w|2
2T

|v − w|2 dw ≤ CT 4

1 + |v|2
T

,

which leads to the conclusion

|〈A[h]v, v〉| ≤ CT 2

1 + |v| √
T

⎛
⎝∫
R3

h2μ−1 dv

⎞
⎠

1/2

.

Proof of (4.2) and (4.3). This estimates follows easily by noting that

|〈A[h]e, e〉| ≤
∫
R3

|h(w)| 
|v − w| dw,

after which one can adapt the steps of the proof of (4.1), and obtain the desired bound. 
An analogous argument applies to (4.3).
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Proof of (4.4). We start by rewriting

|∇ · (A[h])| ≤
∫
R3

|∇h| 
|v − w| dw =

∫
B(0,1)

|∇h| 
|v − w| dw +

∫
Bc(0,1)

|∇h| 
|v − w| dw.

For the integral in the ball we use the Cauchy-Schwarz inequality and get

∫
B(0,1)

|∇h| 
|v − w| dw ≤

⎛
⎜⎝

∫
B(0,1)

|∇h|2
〈w〉3 μ−1 dw

⎞
⎟⎠

1
2
⎛
⎜⎝

∫
B(0,1)

1 
|v − w|2μ dw

⎞
⎟⎠

1
2

≤ C

⎛
⎝∫
R3

|∇h|2
〈w〉3 μ−1 dw

⎞
⎠

1
2

T

1 + |v| √
T

.

Similarly, in the complement of the ball,

∫
Bc(0,1)

|∇h| 
|v − w| dw ≤

⎛
⎜⎝

∫
Bc(0,1)

|∇h|2
〈w〉3 μ−1 dw

⎞
⎟⎠

1
2
⎛
⎜⎝

∫
Bc(0,1)

|w|3
|v − w|2μ dw

⎞
⎟⎠

1
2

≤ C

⎛
⎝∫
R3

|∇h|2
〈w〉3 μ−1 dw

⎞
⎠

1
2

T
7
4

1 + |v| √
T

.

Since T ≤ 1, the leading order term is as claimed:

|∇ · (A[h])| ≤ C

⎛
⎝∫
R3

|∇h|2
〈w〉3 μ−1 dw

⎞
⎠

1
2

T

1 + |v| √
T

.

Proof of (4.5). We again separate the contributions of w small and large

|v∇ · (A[h])| ≤
∫
R3

|w||∇h|
|v − w| dw =

∫
B(0,1)

|w||∇h|
|v − w| dw +

∫
Bc(0,1)

|w||∇h|
|v − w| dw.

For the integral in the ball we use the Cauchy-Schwarz inequality and get

∫
B(0,1)

|w||∇h|
|v − w| dw ≤

⎛
⎜⎝

∫
B(0,1)

|∇h|2
〈w〉3 μ−1 dw

⎞
⎟⎠

1
2
⎛
⎜⎝

∫
B(0,1)

|w|2
|v − w|2μ dw

⎞
⎟⎠

1
2

,

so we obtain the estimate
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∫
B(0,1)

|w||∇h|
|v − w| dw ≤ C

⎛
⎝∫
R3

|∇h|2
〈w〉3 μ−1 dw

⎞
⎠

1
2

T
3
2

1 + |v| √
T

.

Similarly, in the complement of the ball,

∫
Bc(0,1)

|w||∇h|
|v − w| dw ≤ C

⎛
⎜⎝

∫
Bc(0,1)

|∇h|2
〈w〉3 μ−1 dw

⎞
⎟⎠

1
2
⎛
⎜⎝

∫
Bc(0,1)

|w|5
|v − w|2μ dw

⎞
⎟⎠

1
2

≤ C

⎛
⎝∫
R3

|∇h|2
〈w〉3 μ−1 dw

⎞
⎠

1
2

T
9
4

1 + |v| √
T

.

Since the leading order term is the one with T
3
2 , we have that

|v∇ · (A[h])| ≤ C

⎛
⎝∫
R3

|∇h|2
〈w〉3 μ−1 dw

⎞
⎠

1
2

T
3
2

1 + |v| √
T

. �

Lemma 4.2. For h ∈ L2
μ, there exists ψ ∈ L6(R3) such that the following estimates hold

|A[∇h](v)| ≤ CT
3
4

(
e−|v|ψ(v) + ‖h‖L2

μ
〈v〉−2

)
,

‖ψ‖L6(R3) ≤ ‖h‖L2
μ
.

(4.6)

Proof. We first rewrite

A[∇h](v) =
∫
R3

Π(v − w)
|v − w| ∇h(w) dw

= −
∫
R3

∇ ·
(Π(v − w)

|v − w| 
)
h(w) dw

=
∫
R3

h(w)(v − w)
|v − w|3 dw.

To estimate this, we split the integral as:

A[∇h](v) =
∫

B1(v)

h(w)(v − w)
|v − w|3 dw +

∫
Bc

1(v)

h(w)(v − w)
|v − w|3 dw

= J1 + J2.

For the first term we use
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|J1| ≤ CT
3
4 e−|v|

∫
B1(v)

|h(w)|μ− 1
2

|v − w|2 dw,

and hence there exists a non-negative ψ ∈ L6 such that

|J1| ≤ CT
3
4ψ(v),

‖ψ‖L6 ≤ ‖h‖L2
μ
.

For the remaining term J2, we use the straightforward estimate

|J2| ≤ C

∫
Bc

1(v)

h(w) 
〈v − w〉2 dw

≤ C‖h‖L2
μ

⎛
⎜⎝

∫
B1(v)c

μ(w) 
〈v − w〉4

⎞
⎟⎠

1
2

≤ C
‖h‖L2

μ
T

3
4

〈v〉2 .

Collecting the estimates for J1, and J2 yields the claim. �
4.2. Estimates for the nonlinear far-field terms

Lemma 4.3. Let T ≤ 1. Then, for any ε > 0, there exists C = C(ε) > 0 such that:
∣∣∣∣
∫

g3M−1 dv
∣∣∣∣ ≤ C‖g‖6

L2
M

+ εDM(g), (4.7)
∣∣∣∣
∫

A[h] : ∇2ggM−1 dv
∣∣∣∣ ≤ CT

3
4 ‖h‖L2

μ

(
‖g‖2

L2
M

+ DM(g)
)

+ CT 3‖g‖2
L2

M
‖h‖4

L2
μ

+ εDM(g), (4.8)∣∣∣∣∣∣
∫
R3

Q(g, g)gM−1 dv

∣∣∣∣∣∣ ≤ C‖g‖L2
M

(
‖g‖2

L2
M

+ DM(g)
)

+ C‖g‖6
L2

M
+ εDM(g). (4.9)

Proof. We start by proving (4.7). From the Cauchy-Schwarz inequality we infer

∣∣∣∣
∫

g3M−1 dv
∣∣∣∣ ≤ ‖g‖L2

M

(∫
(g2M− 1

2 )2 dv
) 1

2

≤ ‖g‖L2
M
‖g2M− 1

2 ‖
1
4
L1‖g2M− 1

2 ‖
3
4
L3

≤ C‖g‖
3
2
L2

M
‖g2M− 1

2 ‖
3
4
L3

≤ C‖g‖
3
2
L2

M
DM(g) 3

4

≤ C‖g‖6
L2

M
+ εDM(g).
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To prove (4.8), we first integrate by parts and obtain
∫
R3

A[h] : ∇2ggM−1 dv = −
∫
R3

∇gA[h]∇gM−1 dv −
∫
R3

vA[h]g∇gM−1 dv

−
∫
R3

∇ ·A[h]g∇gM−1 dv = −(I1 + I2 + I3).

For the estimate of I1, we use the estimate for A[h] (v̂ = v
|v| ):

|v̂A[h]v̂| ≤
T‖h‖L2

μ

〈v/
√
T 〉3

.

Since ∇g(v) ‖ v̂, we have

|I1| ≤

∣∣∣∣∣∣
∫
R3

∇gA[h]∇gM−1 dv

∣∣∣∣∣∣
≤ CT

∫
R3

|∇g|2

〈v/
√
T 〉3

M−1 dv‖h‖L2
μ

≤ CTDM(g)‖h‖L2
μ
.

The same argument applies to I2, and we obtain

|I2| ≤

∣∣∣∣∣∣
∫
R3

vA[h]g∇gM−1 dv

∣∣∣∣∣∣
≤ CT‖h‖L2

μ

∫
R3

|v||g||∇g|
〈v/

√
T 〉3

M−1 dv

≤ CT‖h‖L2
μ

∫
R3

|v|2|g|2 + |∇g|2

〈v/
√
T 〉3

M−1 dv

≤ CT‖h‖L2
μ

(
‖g‖2

L2
M

+ DM(g)
)
.

The estimate for I3 follows from (4.6). We obtain

|I3| =

∣∣∣∣∣∣
∫
R3

∇ ·A[h]g∇gM−1 dv

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫
R3

[CT
3
4

(
e−|v|ψ(v) + ‖h‖L2

μ
〈v〉−2

)
]g∇gM−1 dv

∣∣∣∣∣∣
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≤ CT
3
4 ‖h‖L2

μ

(
‖g‖2

L2
M

+ DM(g)
)

+ CT
3
4

∣∣∣∣∣∣
∫
R3

e−|v|ψ(v)g∇gM−1 dv

∣∣∣∣∣∣
≤ CT

3
4 ‖h‖L2

μ

(
‖g‖2

L2
M

+ DM(g)
)

+ CT
3
4 ‖h‖L2

μ
‖gM− 1

2 e−
1
2 |v|‖L3DM(g) 1

2

≤ CT
3
4 ‖h‖L2

μ

(
‖g‖2

L2
M

+ DM(g)
)

+ CT
3
4 ‖g‖

1
2
L2

M
‖h‖L2

μ
DM(g) 3

4

≤ CT
3
4 ‖h‖L2

μ

(
‖g‖2

L2
M

+ DM(g)
)

+ CT 3‖g‖2
L2

M
‖h‖4

L2
μ

+ εDM(g).

Finally, for the proof of (4.9), we use the non-divergence form of the equation to rewrite

∣∣∣∣∣∣
∫
R3

Q(g, g)gM−1 dv

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
R3

(A[g] : ∇2gg + g3)M−1 dv

∣∣∣∣∣∣ .

We then use (4.7) as well as (4.8) with h = g and T = 1 to infer:

∣∣∣∣∣∣
∫
R3

Q(g, g)gM−1 dv

∣∣∣∣∣∣ ≤ C‖g‖L2
M

(
‖g‖2

L2
M

+ DM(g)
)

+ C‖g‖6
L2

M
+ εDM(g). �

4.3. Estimates for the nonlinear near-field terms

We turn to the estimates of the nonlinear near-field contributions. To this end, we 
recall that h satisfies the equation introduced in (2.4).

Lemma 4.4. The following inequality holds for any ε > 0 and C = C(ε) > 0 large enough

∫
h2gμ−1 dv ≤ C‖g‖4

L2
M
‖h‖2

L2
μ

+ C
1 

T 3/2 ‖g‖L2
M
‖h‖2

L2
μ

+ ε

∫ 1 
〈v〉3μ

−1|∇h|2 dv.(4.10)

Proof. We use the Lp-interpolation

‖f‖L2 ≤ ‖f‖1/4
L1 ‖f‖3/4

L3 ,

and the Cauchy-Schwarz inequality to obtain

∫
R3

h2gμ−1 dv ≤

⎛
⎝∫
R3

g2M−1dv

⎞
⎠

1/2 ⎛
⎝∫
R3

(h2M1/2μ−1)2 dv

⎞
⎠

1/2

≤

⎛
⎝∫
R3

g2M−1dv

⎞
⎠

1/2 ⎛
⎝∫
R3

h2M1/2μ−1 dv

⎞
⎠

1/4 ⎛
⎝∫
R3

h6M3/2μ−3 dv

⎞
⎠

1/4

.
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Applying the Sobolev embedding yields

⎛
⎝∫
R3

h6M3/2μ−3 dv

⎞
⎠

1/4

≤

⎛
⎝∫
R3

|∇(hM1/4μ−1/2)|2 dv

⎞
⎠

3/4

,

which we can use to bound

∫
R3

h2gμ−1 dv ≤

⎛
⎝∫
R3

g2M−1dv

⎞
⎠

1/2 ⎛
⎝∫
R3

h2M1/2μ−1 dv

⎞
⎠

1/4

·

⎛
⎝∫
R3

M1/2μ−1|∇h|2 dv +
∫
R3

h2|∇(M1/4μ−1/2)|2
⎞
⎠

3/4

≤

⎛
⎝∫
R3

g2M−1dv

⎞
⎠

1/2 ⎛
⎝∫
R3

h2M1/2μ−1 dv

⎞
⎠

1/4

·

⎛
⎝∫
R3

1 
〈v〉3μ

−1|∇h|2 dv +
∫
R3

h2|∇(M1/4μ−1/2)|2
⎞
⎠

3/4

≤

⎛
⎝∫
R3

g2M−1dv

⎞
⎠

1/2 ⎛
⎝∫
R3

h2μ−1 dv

⎞
⎠

1/4 ⎛
⎝∫
R3

1 
〈v〉3μ

−1|∇h|2 dv

⎞
⎠

3/4

+

⎛
⎝∫
R3

g2M−1dv

⎞
⎠

1/2 ⎛
⎝∫
R3

h2μ−1 dv

⎞
⎠

1/4 ⎛
⎝∫
R3

h2|∇(M1/4μ−1/2)|2
⎞
⎠

3/4

.

We now compute the gradient of M1/4μ−1/2 to find

|∇(M1/4μ−1/2)|2 ≤ μ−1|∇M1/4|2 + M1/2|∇μ−1/2|2

≤ μ−1 + M1/2 |v|2
T 2 μ−1

≤ μ−1 + 1 
T 2μ

−1.

Using the above expression we have

∫
R3

h2gμ−1 dv ≤

⎛
⎝∫
R3

g2M−1dv

⎞
⎠

1/2 ⎛
⎝∫
R3

h2μ−1 dv

⎞
⎠

1/4 ⎛
⎝∫
R3

1 
〈v〉3μ

−1|∇h|2 dv

⎞
⎠

3/4
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+
(

1 + 1 

T
3
2

)⎛
⎝∫
R3

g2M−1dv

⎞
⎠

1/2 ∫
R3

h2μ−1 dv

≤C

⎛
⎝∫
R3

g2M−1dv

⎞
⎠

2 ∫
R3

h2μ−1 dv + ε

∫
R3

1 
〈v〉3μ

−1|∇h|2 dv

+ C

(
1 + 1 

T
3
2

)⎛
⎝∫
R3

g2M−1dv

⎞
⎠

1/2 ∫
R3

h2μ−1 dv. �

In the next lemma we show how to bound, in weighted L2-norm, the drift term h2:

Lemma 4.5. For all ε > 0 there exists C = C(ε) > 0 such that

∫
R3

h3μ−1 dv ≤ C‖h‖3
L2

μ
+ CT

15
2 ‖h‖6

L2
μ

+ ε

∫
R3

1 
〈v〉3μ

−1|∇h|2 dv. (4.11)

Proof. Similar to the previous estimate, we can bound the weighted L3 norm as

∫
R3

h3μ−1 dv ≤

⎛
⎝∫
R3

h2μ−1 dv

⎞
⎠

1/2 ⎛
⎝∫
R3

(h2μ−1/2)2 dv

⎞
⎠

1/2

≤

⎛
⎝∫
R3

h2μ−1 dv

⎞
⎠

1/2 ⎛
⎝∫
R3

h2μ−1/2 dv

⎞
⎠

1/4 ⎛
⎝∫
R3

|∇(hμ−1/4)|2 dv

⎞
⎠

3/4

≤

⎛
⎝∫
R3

h2μ−1 dv

⎞
⎠

1/2 ⎛
⎝∫
R3

h2μ−1/2 dv

⎞
⎠

1/4 ⎛
⎝∫
R3

h2|∇μ−1/4|2 dv

⎞
⎠

3/4

+

⎛
⎝∫
R3

h2μ−1 dv

⎞
⎠

1/2 ⎛
⎝∫
R3

h2μ−1/2 dv

⎞
⎠

1/4 ⎛
⎝∫
R3

μ−1/2|∇h|2 dv

⎞
⎠

3/4

≤

⎛
⎝∫
R3

h2μ−1 dv

⎞
⎠

1/2 ⎛
⎝∫
R3

h2μ−1/2 dv

⎞
⎠

1/4 ⎛
⎝ 1 

16T 2

∫
R3

h2|v|2μ−1/2 dv

⎞
⎠

3/4

+

⎛
⎝∫
R3

h2μ−1 dv

⎞
⎠

1/2 ⎛
⎝∫
R3

h2μ−1/2 dv

⎞
⎠

1/4 ⎛
⎝∫
R3

μ−1/2|∇h|2 dv

⎞
⎠

3/4

.

Since μ = T 3/2e−
|v|2
2T we have
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μ−1/2 = μ1/2μ−1 = T 3/4e−
|v|2
4T μ−1

and

|v|2μ−1/2 = |v|2 T 3/4 e
−|v|2
4T μ−1 = T 7/4 |v|2

T
e

−|v|2
4T μ−1 ≤ T 7/4μ−1,

which implies
∫
R3

h3μ−1 dv

≤

⎛
⎝∫
R3

h2μ−1 dv

⎞
⎠

1/2 ⎛
⎝T 3/4

∫
R3

h2μ−1 dv

⎞
⎠

1/4 ⎛
⎝ 1 

16T 1/4

∫
R3

h2μ−1 dv

⎞
⎠

3/4

+

⎛
⎝∫
R3

h2μ−1 dv

⎞
⎠

1/2 ⎛
⎝T 3/4

∫
R3

h2μ−1 dv

⎞
⎠

1/4
⎛
⎜⎝T 3/4

∫
R3

e−
|v|2
4T 〈v〉3︸ ︷︷ ︸

≤CT 3/2

μ−1

〈v〉3 |∇h|2 dv

⎞
⎟⎠

3/4

≤

⎛
⎝∫
R3

h2μ−1 dv

⎞
⎠

1+1/2

+ T 30/16

⎛
⎝∫
R3

h2μ−1 dv

⎞
⎠

1/2+1/4 ⎛
⎝∫
R3

μ−1

〈v〉3 |∇h|2 dv

⎞
⎠

3/4

≤

⎛
⎝∫
R3

h2μ−1 dv

⎞
⎠

3/2

+ CT 15/2

⎛
⎝∫
R3

h2μ−1 dv

⎞
⎠

3

+ ε

∫
R3

μ−1

〈v〉3 |∇h|2 dv. �

The previous estimate will be used to bound the bilinear operator Q(h, h):

Lemma 4.6. For any ε > 0, there exists C = C(ε) > 0 such that the contribution of the 
quadratic Landau-Coulomb operator to h can be estimated by

∫
R3

Q(h, h)hμ−1 dv ≤ (ε + CT‖h‖L2
μ
)
∫
R3

|∇h|2
〈v〉3 μ−1 dv + CT‖h‖4

L2
μ

+ C‖h‖3
L2

μ
. (4.12)

Proof. Integration by parts yields
∫
R3

Q(h, h)hμ−1 dv = −
∫
R3

〈A[h]∇h,∇h〉μ−1 dv − 1 
T

∫
R3

〈A[h]v,∇h〉hμ−1 dv

−
∫
R3

〈∇ · (A[h]),∇h〉 hμ−1 dv +
∫
R3

h3μ−1 dv =: I1 + I2 + I3 + I4.

We start with I1 and split the integral in two parts:
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−
∫
R3

〈A[h]∇h,∇h〉μ−1 dv = −
∫

B(0,1)

〈A[h]∇h,∇h〉μ−1 dv −
∫

Bc(0,1)

〈A[h]∇h,∇h〉μ−1 dv

= I1,1 + I1,2.

The term I1,1 can be easily estimated using (4.2):

I1,1 ≤ ‖A[h]‖L∞

∫
B(0,1)

|∇h|2μ−1 dv ≤ CT‖h‖L2
μ

∫
R3

|∇h|2
〈v〉3 μ−1 dv.

For I1,2 we use that h is radially symmetric and ∇h = v
|v| |∇h|. This yields

∫
Bc(0,1)

|〈A[h]∇h,∇h〉|μ−1 dv ≤
∫

Bc(0,1)

|〈A[h]v, v〉| |∇h|2
|v|2 μ−1 dv

≤ sup 
Bc(0,1)

|〈A[h]v, v〉||v|
∫
R3

|∇h|2
〈v〉3 μ−1 dv

≤ |v| 
1 + |v| √

T

‖h‖L2
μ
T 2

∫
R3

|∇h|2
〈v〉3 μ−1 dv

≤‖h‖L2
μ
T 2+ 1

2

∫
R3

|∇h|2
〈v〉3 μ−1 dv.

Summarizing, we obtain

|I1| ≤ CT‖h‖L2
μ

∫
R3

|∇h|2
〈v〉3 μ−1 dv.

We split the integral between a ball and its complement also in I3 and get

∫
R3

〈∇ · (A[h]),∇h〉 hμ−1 dv =
∫

B(0,1)

〈∇ · (A[h]),∇h〉 hμ−1 dv

+
∫

Bc(0,1)

〈∇ · (A[h]),∇h〉 hμ−1 dv =: I3,1 + I3,2.

The first term can be estimated by

|I3,1| ≤ ε

∫
R3

|∇h|2
〈v〉3 μ−1 dv + C

∫
B(0,1)

|∇ · (A[h])|2h2μ−1 dv
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≤
(
ε + CT 2‖h‖2

L2
μ

)∫
R3

|∇h|2
〈v〉3 μ−1 dv.

To estimate I3,2 one takes advantage of the radial symmetry of h and obtains
∫

Bc(0,1)

〈∇ · (A[h]),∇h〉 hμ−1 dv

=
∫

Bc(0,1)

〈∇ · (A[h]), v〉 |∇h|
|v| hμ−1 dv

≤ε

∫
Bc(0,1)

|∇h|2
|v|3 μ−1 dv + C

∫
Bc(0,1)

|〈∇ · (A[h]), v〉|2|v| h2μ−1 dv

≤
(
ε + CT

1
2+3‖h‖2

L2
μ

)∫
R3

|∇h|2
〈v〉3 μ−1 dv,

using (4.5) in the last integral. Summarizing, we have obtained

|I3| ≤
(
ε + CT 2‖h‖2

L2
μ

)∫
R3

|∇h|2
〈v〉3 μ−1 dv.

For I2 we use the same method as for I3, using estimate for A[hv] instead of ∇· (A[h])
and taking into account the factor 1 

T in front of the integral. We write

I2 = − 1 
T

∫
B(0,1)

〈A[h]v,∇h〉hμ−1 dv − 1 
T

∫
Bc(0,1)

〈A[h]v,∇h〉hμ−1 dv =: I2,1 + I2,2.

Similarly we above, we bound I2,1 using (4.3) and get

|I2,1| ≤ ε

∫
R3

|∇h|2
〈v〉3 μ−1 dv + C

1 
T 2

∫
B(0,1)

|A[h]v|2h2μ−1 dv

≤ ε

∫
R3

|∇h|2
〈v〉3 μ−1 dv + CT‖h‖4

L2
μ
,

while we estimate I2,2 using the fact that ∇h = v
|v| |∇h|, which yields

I2,2 ≤ ε

∫
R3

|∇h|2
〈v〉3 μ−1 dv + C

T 2

∫
Bc(0,1)

|A[h]v|2|v|h2μ−1 dv

≤ ε

∫
R3

|∇h|2
〈v〉3 μ−1 dv + CT

3
2 ‖h‖4

L2
μ
.
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Collecting the estimates we obtain the following bound for I2

|I2| ≤ ε

∫
R3

|∇h|2
〈v〉3 μ−1 dv + CT‖h‖4

L2
μ
.

We finish the proof combining the above estimates with the ones for I4 (4.11) and 
selecting the leading order terms. �

A similar method can be applied to bound Q(g, h):

Lemma 4.7. For any ε > 0 there exists a C(ε) > 0 such that

∫
R3

Q(g, h)hμ−1 dv ≤ (ε + C‖g‖L2
M

)
∫
R3

|∇h|2
〈v〉3 μ−1 dv + C

1 
T 2 ‖h‖

2
L2

μ
‖g‖2

L2
M

+ C‖g‖4
L2

M
‖h‖2

L2
μ

+ C
1 

T 3/2 ‖g‖L2
M
‖h‖2

L2
μ
. (4.13)

Proof. Integration by parts allows us to rewrite
∫
R3

Q(g, h)hμ−1 dv = −
∫
R3

〈A[g]∇h,∇h〉μ−1 dv − 1 
T

∫
R3

〈A[g]v,∇h〉hμ−1 dv

+
∫
R3

〈∇ · (A[g]),∇(μ−1h)〉 h dv.

We integrate by parts again to obtain
∫
R3

〈∇ · (A[g]),∇(μ−1h)〉 h dv =
∫
R3

gh2μ−1 dv − 1
2

∫
R3

〈∇ · (A[g]),∇h2〉 μ−1 dv

=1
2

∫
R3

gh2μ−1 dv + 1
2

∫
R3

h2∇ · (A[g])∇μ−1 dv

=1
2

∫
R3

gh2μ−1 dv −
∫
R3

h〈A[g]∇μ−1,∇h〉 dv − 1
2

∫
R3

h2 Tr(A[g]∇2(μ−1)) dv

=1
2

∫
R3

gh2μ−1 dv − 1 
T

∫
R3

h〈A[gv],∇h〉μ−1 dv − 1
2

∫
R3

h2 Tr(A[g]∇2(μ−1)) dv.

Collecting all terms, we have shown that
∫
R3

Q(g, h)hμ−1 dv = −
∫
R3

〈A[g]∇h,∇h〉μ−1 dv − 2 
T

∫
R3

〈A[g]v,∇h〉hμ−1 dv
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− 1
2

∫
R3

h2 Tr(A[g]∇2(μ−1)) dv + 1
2

∫
R3

gh2μ−1 dv =: J1 + J2 + J3.

Notice that the estimates (4.1)-(4.5) hold also if we replace h with g and set T = 1. In 
light of that, the term J1 can be estimated analogous to I1:

|J1| ≤ C‖g‖L2
M

∫
R3

|∇h|2
〈v〉3 μ−1 dv.

The term J4 has been estimated in (4.11). The term J2 is bounded by

|J2| ≤ ε

∫
R3

|∇h|2
〈v〉3 μ−1 dv + C

1 
T 2 ‖h‖

2
L2

μ
‖g‖2

L2
M
,

using (4.3). Similarly we estimate J3 by

|J3| ≤
C

T 2 ‖h‖
2
L2

μ
‖g‖2

L2
M
.

Collecting the estimates finishes the proof. �
5. ODE argument and proof of the main theorem

In this section, we conclude with the proof of Theorem 1.1. First, we use a bootstrap 
argument and the results of the previous sections to show the smallness of the perturba-
tion f at a time t∗ > 0. We recall the existence Theorem 2.1, which allows us to define, 
for R > 0, the time:

T ∗
R := sup

{
0 < t ≤ 1

2 : ‖g‖L2
M

≤ RmT (t) and ‖h‖L2
μT (t)

≤ Rδα−
1
4

}
, (5.1)

where T (t) = δ + 2c0t and m = δα with α ∈ (1/4, 1/2).

Lemma 5.1. There exists R > 0 large enough and δ > 0 small enough such that the time 
T ∗
R defined in (5.1) satisfies T ∗

R = 1
2 .

Proof. We split the proof into two parts. First we control the growth of the far-field 
perturbation g, then the size of the near-field perturbation h.

ODE argument for g: For the estimate of the time derivative of ‖g(t)‖2
L2

M
we use the 

bounds as indicated below
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1
2∂t

∫
R3

(g2)M−1 dv =
∫
R3

Q(g, g)gM−1 dv

︸ ︷︷ ︸
(4.9)

+
∫
R3

LM(g)gM−1 dv

︸ ︷︷ ︸
(2.18)

+
∫
R3

Tr(A[h]∇2M)gM−1 dv

︸ ︷︷ ︸
(3.10)

+
∫
R3

Tr(A[h]∇2g)gM−1 dv

︸ ︷︷ ︸
(4.8)

+
∫
R3

Tr(A[E]∇2g)gM−1 dv

︸ ︷︷ ︸
(3.8)

+
∫
R3

Tr(A[E]∇2M)gM−1 dv

︸ ︷︷ ︸
(3.9)

.

This yields an upper bound for the time derivative of

1
2∂t‖g‖

2
L2

M
≤C‖g‖L2

M

(
‖g‖2

L2
M

+ DM(g)
)

+ C‖g‖6
L2

M
+ εDM(g)

+
∫
R3

gLM(g)M−1 dv + CT‖h‖L2
μ
‖g‖L2

M

+ CT
3
4 ‖h‖L2

μ

(
‖g‖2

L2
M

+ DM(g)
)

+ CT 3‖g‖2
L2

M
‖h‖4

L2
μ

+ εDM(g)

−DE(g) + C
m

T
‖g‖2

L2
M

+ Cm‖g‖L2
M
.

We use (3.7) to obtain

1
2∂t‖g‖

2
L2

M
≤C‖g‖L2

M

(
‖g‖2

L2
M

+ DM(g)
)

+ C‖g‖6
L2

M
+ εDM(g)

−DM(g) + CT‖h‖L2
μ
‖g‖L2

M
+ C‖g‖2

L2
M

+ CT
3
4 ‖h‖L2

μ

(
‖g‖2

L2
M

+ DM(g)
)

+ CT 3‖g‖2
L2

M
‖h‖4

L2
μ

+ εDM(g)

−DE(g) + C
m

T
‖g‖2

L2
M

+ Cm‖g‖L2
M
.

For t ≤ T ∗
R as defined in (5.1), choosing δ > 0 small enough, we can estimate this by

1
2∂t‖g‖

2
L2

M
≤C

m

T
‖g‖2

L2
M

+ Cm‖g‖L2
M
.

For the norm of g this implies

∂t‖g‖L2
M

≤C
m

T
‖g‖L2

M
+ Cm,

and for t ≤ T ∗
R we can use the bound on g to find:
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‖g(t, ·)‖L2
M

≤CtRm2 + Cmt. (5.2)

ODE argument for h: We apply the same strategy to the time derivative of the norm of 
h:

1
2

∫
R3

(h2)tμ−1 dv =
∫
R3

Q(h, h)hμ−1 dv

︸ ︷︷ ︸
(4.12)

+
∫
R3

Q(g, h)hμ−1 dv

︸ ︷︷ ︸
(4.13)

+ 
∫
R3

LE(h)hμ−1 dv

︸ ︷︷ ︸
(3.1)

+
∫
R3

Q(M, h)hμ−1 dv

︸ ︷︷ ︸
(3.4)

+
∫
R3

Q(g,E)hμ−1 dv

︸ ︷︷ ︸
(3.6)

+
∫
R3

gh2μ−1 dv

︸ ︷︷ ︸
(4.10)

+
∫
R3

Mh2μ−1 dv +
∫
R3

gEhμ−1 dv

︸ ︷︷ ︸
(3.5)

+
∫
R3

SEhμ
−1 dv

︸ ︷︷ ︸
(3.2)

.

Inserting the estimates yields

1
2

d 
dt

∫
R3

h2μ−1
T (t) dv ≤ C(ε + T‖h‖L2

μ
+ ‖g‖L2

M
)
∫
R3

|∇h|2
〈v〉3 μ−1 dv + T‖h‖4

L2
μ

+ ‖h‖3
L2

μ

+ 1 
T 2 ‖h‖

2
L2

μ
‖g‖2

L2
M

+ ‖g‖4
L2

M
‖h‖2

L2
μ

+ 1 
T 3/2 ‖g‖L2

M
‖h‖2

L2
μ
−Dμ(P⊥

E h)

−
∫
R3

|∇h|2
〈v〉3 μ−1 dv + m 

T
9
4
‖h‖L2

μ
‖g‖L2

M
+ m 

T
5
2
‖h‖L2

μ
‖g‖L2

M

+ ‖g‖4
L2

M
‖h‖2

L2
μ

+ 1 
T 3/2 ‖g‖L2

M
‖h‖2

L2
μ

+ ε

∫
R3

|∇h|2
〈v〉3 μ−1 dv

+ ‖h‖2
L2

μ
+ m 

T
9
4
‖h‖L2

μ
‖g‖L2

M
+ CmT− 1

2 ‖h‖L2
μ
.

Using the bootstrap assumption on ‖g‖L2
M

and ‖h‖L2
μ

yields, for δ > 0 small enough

∂t‖h‖L2
μ
≤ C

(
m 

T
1
2
Rδ

1
2 (2α− 1

2 ) + C
δ2α

T
3
2

)
.

Integrating the estimate, we find for t ≤ T ∗
R that

‖h(t)‖L2
μ
≤ CmRδ

1
2 (2α− 1

2 ) + Cδ2α− 1
2 . (5.3)

Combining (5.2) and (5.3), we infer the existence of R > 0 large enough and δ > 0 small 
enough such that T ∗

R = 1
2 which proves the claim. �



M.P. Gualdani, R. Winter / Journal of Functional Analysis 288 (2025) 110816 35

With the previous lemma at hand, we are now in the position to finish the proof of 
the main theorem.

Proof of Theorem 1.1. To conclude the proof of Theorem 1.1 two things remain to show. 
The first is that at time

t∗ = min
{

1
2 ,

1 
4c0

}
,

the difference between F and M is as small as we wish in the weighted L2
M norm. First 

notice that

‖F −M‖L2
M

≤ ‖E‖L2
M

+ ‖g‖L2
M

+ ‖h‖L2
M
.

The weighted norm of g, thanks to Lemma 5.1, is bounded at t∗ by

‖g(t∗)‖L2
M

≤ Cδα.

Moreover, the norm of the local singularity E behaves as

‖E(t∗)‖2
L2

M
≤ C

δ2α

(δ + 2c0t∗)3

∫
e−

|v|2
δ+2c0t∗ e

|v|2
2 dv ≤ C δ2α.

Finally, courtesy of Lemma 5.1, we have

δ2α− 1
2 ≥ ‖h(t∗)‖2

L2
μ(t∗)

≥ c
1 

(δ + 2c0t∗)3/2

∫
h2e

|v|2
2(δ+2c0t∗) dv ≥ c

∫
h2e

|v|2
2 dv.

Summarizing,

‖(E + f)(t∗)‖L2
M

≤ Cδα−
1
4 .

Starting from the time t∗, the exponential decay of F towards the equilibrium Meq

follows directly from Theorem 1.1 in [1]. It remains to check that ‖F −Meq‖L2
M

is small 
at time t∗. Finally, we note that

‖(F −Meq)(t∗)‖L2
M

≤ ‖(F −M)(t∗)‖L2
M

+ ‖M−Meq‖L2
M

≤ Cδα−
1
4 + O(δ),

which concludes the proof. �
Data availability
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