
RASTAI 4, 1–23 (2025) https://doi.org/10.1093/rasti/rzaf002
Advance Access publication 2025 January 11

A complete framework for cosmological emulation and inference with
CosmoPower

H. T. Jense ,1‹ I. Harrison ,1 E. Calabrese,1 A. Spurio Mancini ,2,3 B. Bolliet ,4,5 J. Dunkley6,7 and J.
C. Hill 8

1School of Physics and Astronomy, Cardiff University, The Parade, Cardiff, Wales CF24 3AA, UK
2Department of Physics, Royal Holloway, University of London, Egham Hill, Egham TW20 0EX, UK
3Mullard Space Science Laboratory, University College London, Dorking RH 5 6NT, UK
4Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
5DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK
6Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544, USA
7Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544, USA
8Department of Physics, Columbia University, New York, NY 10027, USA

Accepted 2025 January 7. Received 2024 December 24; in original form 2024 June 4

ABSTRACT
We present a coherent, re-usablepython framework building on theCosmoPower emulator code for high-accuracy calculations
of cosmological observables with Einstein–Boltzmann codes. For detailed statistical analyses, such codes require high computing
power, making parameter space exploration costly, especially for beyond-�CDM analyses. Machine learning-enabled emulators
of Einstein–Boltzmann codes are becoming an increasingly popular solution to this problem. To enable generation, sharing,
and use of emulators for inference, we define standards for robustly describing, packaging, and distributing them. We present
software for easily performing these tasks in an automated and replicable manner and provide examples and guidelines for
generating emulators and wrappers for using them in popular cosmological inference codes. We demonstrate our framework
with a suite of high-accuracy emulators for the CAMB code’s calculations of CMB C�, P (k), background evolution, and derived
parameter quantities. We show these emulators are accurate enough for analysing both �CDM and a set of extension models
(Neff ,

∑
mν , w0wa) with stage-IV observatories, recovering the original high-accuracy spectra to tolerances well within the

cosmic variance uncertainties. We show our emulators also recover cosmological parameters in a simulated cosmic-variance
limited experiment, finding results well within 0.1σ of the input cosmology, while requiring � 1/50 of the evaluation time.

Key words: Methods: statistical – Cosmic background radiation – large-scale structure of the universe – Machine learning –
Software.

1

I
a
t
m
C
a
f
C
M
T
p
c

�

1

2

3

t
w
O
C
l
a
o
U
–
t
S
S
e

©
P
C
p

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/doi/10.1093/rasti/rzaf002/7951976 by guest on 06 February 2025
IN T RO D U C T I O N

n the last two decades, cosmological observations have become
continuous source of ever-tightening constraints on models of

he expansion and composition of the Universe. Bounds on cos-
ological parameters now come from a variety of measurements.
osmic Microwave Background (CMB) temperature, polarization,
nd lensing data from satellite and ground-based experiments –
rom e.g. Planck1 (Planck Collaboration VI 2020), the Atacama
osmology Telescope2 (ACT; Aiola et al. 2020; Choi et al. 2020;
adhavacheril et al. 2024; Qu et al. 2024b) and the South Pole

elescope3 (SPT; Balkenhol et al. 2022; Pan et al. 2023) – yield
er cent-level limits on the parameters of both the standard �CDM
osmological model and some of its possible extensions. Tests of
E-mail: jenseh@cardiff.ac.uk
https://www.cosmos.esa.int/web/planck/pla
https://act.princeton.edu/
https://pole.uchicago.edu/public/Home.html

4

5

6

7

8

2025 The Author(s).
ublished by Oxford University Press on behalf of Royal Astronomical Society. Th
ommons Attribution License (https://creativecommons.org/licenses/by/4.0/), whic
rovided the original work is properly cited.
his model will become even more stringent in the next decade
ith the new, upcoming CMB observatories such as the Simons
bservatory4 (SO; Simons Observatory Collaboration 2019) and
MB-S45 (CMB-S4 Collaboration 2016). In addition, statistics of the

ate-time distribution of matter such as galaxy lensing and clustering
dd information on cosmological parameters which track the growth
f structures caused by the matter and dark energy fields in the local
niverse. These come from a number of large-scale-structure surveys
including the Dark Energy Survey6 (DES; Abbott et al. 2022),

he Kilo-Degree Survey7 (KiDS; Heymans et al. 2021), the Hyper
uprime-Cam Survey8 (HSC; Miyatake et al. 2023; More et al. 2023;
ugiyama et al. 2023) – which will soon be overtaken by major new
xperiments such as the Vera C. Rubin Observatory’s Legacy Survey
https://simonsobservatory.org/
https://cmb-s4.org/
https://www.darkenergysurvey.org/
https://kids.strw.leidenuniv.nl/
https://hsc.mtk.nao.ac.jp/ssp/survey/

is is an Open Access article distributed under the terms of the Creative
h permits unrestricted reuse, distribution, and reproduction in any medium,



2 H. T. Jense et al.

R

o
s
T
(
t
f
e
A

d
v
u
a
g
e
o
l
a

M
B
W
b
C
L
u
a

t
T
o
a
r
c
f
c
s
a
b
a
t
d
i
2
(
e
w
a
n

d
u

9

1

1

1

1

1

1

1

o
e
i
m
a
b
p
m
s
N
t
o
t
a
w
o
c
r
t
r
t
s
w

n
w
w
m
(
S
C
(
e
e
e
b
u
e
e
f
f
f
s
o
o
l
a

e
t
<

C

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/doi/10.1093/rasti/rzaf002/7951976 by guest on 06 February 2025
f Space and Time9 (LSST; Mandelbaum et al. 2018), the Euclid
atellite10 (Scaramella et al. 2022), the Nancy Grace Roman Space
elescope11 (Eifler et al. 2021), and the SPHEREx Observatory12

Doré et al. 2014). Finally, the imprint of cosmic perturbations on
he baryonic matter is mapped by spectroscopic galaxy surveys –
rom the Baryon Oscillation Spectroscopic Survey (BOSS; Alam
t al. 2021) to the new Dark Energy Spectroscopic Instrument (DESI;
ghamousa et al. 2016; Adame et al. 2024).
The high precision available from these experiments sets strong

emands on the accuracy of theoretical modelling of their data
ectors, in particular for the upcoming next-generation of surveys,
sually labelled as Stage-IV experiments. Higher levels of physical
nd numerical accuracy in the codes which predict observables in a
iven cosmological model typically come at the expense of longer
valuation times. Full cosmological exploitation of the data relies
n many such evaluations of this ‘forward model’ when calculating
ikelihood values (and subsequent posterior estimates) and the total
mount of time required can easily become intractable.

Various works (see e.g. Aricò, Angulo & Zennaro 2022;
ootoovaloo et al. 2022; Spurio Mancini et al. 2022; Bonici,
ianchini & Ruiz-Zapatero 2023; Nygaard et al. 2023; Mauland,
inther & Ruan 2024) presented methods to speed up this process

y means of emulating the Einstein–Boltzmann codes (typically
AMB,13 Lewis, Challinor & Lasenby 2000, or class14, Blas,
esgourgues & Tram 2011; Lesgourgues 2011, which are commonly
sed to accurately compute linear-theory cosmological power spectra
nd background evolution quantities).

However, at present, each study typically generates its own emula-
or, tailored and limited to the specific need of the analysis performed.
his means that there is limited general use for the wide variety
f emulators currently existing, due to the lack of standardization
nd cross-platform support for them. Aside from applicability and
edundancy issues, the ad-hoc use emulators could also be a potential
ause of inconsistencies between different analyses, and a limitation
or model comparisons and for data combinations. There are many
ompelling reasons to expect that further advances in our under-
tanding of cosmology will necessarily come from cross-correlation
nalyses between different experiments. Such analyses maximize
oth statistical constraining power and robustness to instrument and
strophysical systematics. They also require the possibility to analyse
he different data using a single unified theoretical framework, in or-
er to make consistent predictions for the different data types during
nference. Though packages such as Cobaya15 (Torrado & Lewis
019, 2021), CosmoSIS16 (Zuntz et al. 2015), and MontePython
Audren et al. 2013; Brinckmann & Lesgourgues 2019) exist to
nable this, there are still gaps which prevent data combinations
hich would otherwise be fruitful. By making emulators portable

cross platforms and frameworks, the work presented here will enable
ovel data combinations much more easily.
Lack of consistency across emulators also limits the ability to

eploy these techniques for other applications. For example, a further
se for emulators of Einstein–Boltzmann codes lies in the possibility
ASTAI 4, 1–23 (2025)

https://www.lsstdesc.org/
0https://www.euclid-ec.org/
1https://roman.gsfc.nasa.gov/
2https://www.jpl.nasa.gov/missions/spherex
3https://github.com/cmbant/CAMB
4https://github.com/lesgourg/class public
5https://github.com/CobayaSampler/cobaya
6https://github.com/joezuntz/cosmosis

b
b
a
f
f

1

1

(

f autodifferentiation (autodiff.), a computational method of quickly
valuating partial derivatives of the outputs with respect to their
nputs. When these derivatives are known, more effective sampling

ethods such as Hamiltonian Monte Carlo (HMC), which requires
ccurately knowing the derivatives of often complex relations,
ecome trivial to include. As an example, Campagne et al. (2023)
resented a computational framework to autodifferentiate forward
odels for various cosmological observables. In their paper, they

howed how using a specific implementation of HMC known as a
o U-Turn Sampler (NUTS) can lead to statistical constraints similar

o classical Markov chain Monte Carlo (MCMC) algorithms in 1/5th
f the time. While for classical Einstein–Boltzmann codes, finding
hese derivatives is a complicated if not impossible task, this becomes

trivial option when using emulators such as neural networks, in
hich the computational models used to map between inputs and
utputs consist of multiple trivially differentiable units. This means
ommonly used software libraries from the recent machine learning
evolution, such as tensorflow or jax, are intrinsically able
o take advantage of autodiff. Piras & Spurio Mancini (2023) also
ecently presented an example of the advantages of combining au-
odifferentiable emulators with HMC posterior sampling, achieving
peed ups O(103) relative to traditional Boltzmann codes combined
ith nested sampling methods.
In this paper we address the need of standardization and mainte-

ance of cosmological emulators by devising and releasing a frame-
ork which allows one to generate, re-use, and deploy emulators
ithin the major infrastructure tools used by the cosmological com-
unity. Our work builds on, and expands, the initial CosmoPower

Spurio Mancini et al. 2022) software17 and on the development of
tage-IV emulators started in Bolliet et al. (2024). We make use of
osmoPower because of its wide range of existing applications

Balkenhol et al. 2022; Spurio Mancini & Pourtsidou 2022; Burger
t al. 2023, 2024; Farren et al. 2023; Heydenreich et al. 2023; Linke
t al. 2023; Moretti et al. 2023; Spurio Mancini & Bose 2023; Carrion
t al. 2024; Giardiello et al. 2024; Reeves et al. 2024; Qu et al. 2024a),
ut the type of packaging and interfaces applied here could also be
sed with other emulators of Einstein–Boltzmann codes (e.g. Aricò
t al. 2022; Mootoovaloo et al. 2022; Bonici et al. 2023; Nygaard
t al. 2023; Mauland et al. 2024) or other parts of astrophysical
orward models. A number of these also aim to be extensible
rameworks, as does the SWIFT-Emulator (Kugel & Borrow 2022)
or smooth particle hydrodynamics simulations. Here we focus more
pecifically on others on the definition of packaging and metadata of
ur emulators, in addition to the very general concept of extensibility
f the interface between cosmological codes and lower level machine
earning libraries for NN (in our case) or Gaussian processes, which
re also addressed in these references.

In Bolliet et al. (2024), some of us presented high-accuracy
mulators forclass.18 These emulators are capable of reproducing
he CMB primary and lensing power spectrum to precision levels

10 per cent of the statistical error bars expected from Stage-IV
MB analyses. Bolliet et al. (2024) also released emulators for
oth the linear and non-linear matter power spectrum, as well as
ackground-evolving quantities – validated using DES-Y1 and BAO
nalysis likelihoods. In this paper, as well as building the framework
or community use of these emulators, we present an equivalent suite
or CAMB that are accurate enough for Stage-IV analysis and beyond,
7https://alessiospuriomancini.github.io/cosmopower/
8Similar emulators for SPT CMB analyses were presented in Balkenhol et al.
2022).



Framework for cosmology emulation and inference 3

Figure 1. An overview of the workflow with CosmoPower: To create a new emulator (top box), we write a packaging prescription, use that to generate
training data, and from that train emulators which outputs several emulator files, for which we can easily generate plots which validate the accuracy of the
emulators. This packaging prescription and set of emulator files are then shared with the end-user (arrows), who wants to use the emulators (bottom box): the
prescription is put inside the sampling configuration file, which is given to our software wrappers, which provide the user with an MCMC chain that can be
used to find cosmological constraints. The various labels refer to the sections where these individual steps are described in this paper.

d
W
c
e
u
e
a
i

a
s

e
r
e
p

a
u
a
a

C

p
c
r

2

I
e
h
o

Table 1. Emulated quantities, ranges of scales covered, and type of emulator
employed for each of them.

Quantity Range Emulator

CT T
� 2 ≤ � ≤ 10 000 NN of log-spectra

CT E
� 2 ≤ � ≤ 10 000 NN+PCA of spectra

CEE
� 2 ≤ � ≤ 10 000 NN of log-spectra

CBB
� 2 ≤ � ≤ 10 000 NN of log-spectra

C
φφ
� 2 ≤ � ≤ 10 000 NN+PCA of log-spectra

Plin(k) 10−4 ≤ k ≤ 50 NN of log-spectra
PNL(k) 10−4 ≤ k ≤ 50 NN of log-spectra
PNL/Plin(k) 10−4 ≤ k ≤ 50 NN of spectra ratio
H (z) 0 ≤ z ≤ 20 NN of evolution
σ8(z) 0 ≤ z ≤ 20 NN of evolution
DA(z) 0 ≤ z ≤ 20 NN of evolution
derived parameters – NN of value of derived parameters

c
(
‘
p
s
i
h
m
e
p
t

2

I
B
w
p

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/doi/10.1093/rasti/rzaf002/7951976 by guest on 06 February 2025
emonstrating the emulators for cosmic-variance-limited data sets.
e release a full software suite for python that allows easy

reation, testing, and usage of CosmoPower emulators, alongside
xtensive documentation and example notebooks. This allows the
se of our CAMB and class emulators, as well as any future
xtensions or equivalents, within Cobaya and CosmoSIS, which
re some of the most commonly used frameworks for Bayesian
nference in cosmology.

A schematic summary of the new aspects introduced in this paper
nd how they map into different sections is presented in Fig. 1. More
pecifically:

(i) In Section 2 we include the details of the Einstein–Boltzmann
mulators presented in this work: our models considered, parameter
anges, emulated observables, network structure, and training param-
ters. We also present the accuracy of these emulators in recovering
ower spectra.

(ii) In Section 3 we give an overview of the packaging scheme
nd python interface we have developed for machine learning em-
lators. We give details of the specification of pre-trained emulators,
nd how these are exposed to the software. We also provide examples
nd guidance for others to create emulators using this framework.

(iii) In Section 4 we present our wrappers for the CosmoSIS and
obaya sampling software with a brief user guide.
(iv) In Section 5 we use these wrappers to run Monte Carlo

osterior estimation chains which shows our emulators recover
osmology at the observable level well within the forecast noise
anges of Stage-IV experiments.

(v) In Section 6 we summarize and conclude.

EM U LATO R S

n this section we describe the details of our emulators: what is
mulated and with which inputs, how an emulation is performed, and
ow the emulators are validated. This serves both as a full description
f the emulators released with this paper and as guidelines on the
reation of new emulators packaged and usable in the same way
e.g. for extended cosmological models). By emulator we mean a
black box’ code which is capable of ingesting a set of cosmological
arameters �θ and outputting a set of predictions for the summary
tatistics of a set of observables { �d1(�θ ), �d2(�θ), . . . , �dN (�θ)} which are
ndistinguishable (within a given tolerance) from the set which would
ave been produced by a code which explicitly implements numerical
odels of the physics relating the �d and �θ . As the emulation works

ffectively as an interpolation of the quantities �d between known
oints, we rely on the fact that the �d vary smoothly with respect to
he input parameters.

.1 Emulated quantities

n Table 1 we show the full list of quantities output by the Einstein–
oltzmann code (CAMBv.1.5.0) which we focus on emulating in this
ork. As output observables we generate the CMB temperature,
olarization, and lensing potential angular power spectra; linear and
RASTAI 4, 1–23 (2025)



4 H. T. Jense et al.

R

n
o
o

r
f
u
o
m
p
τ

a
�

v
t
w

t
e
p

m
l
e
r
w
i
i
g
i
o
p
t
t
a
t
m
o
i
t

0
a
e
σ

H

t
d
d
c
a
i
c
I
i

r

u
M
w
(
e
s
a
b
w
t
p
t
p

2

W
{
f

s

o

d

w
t
+
e
f
a
a

e
t
a
m
c
t
D
t
t
c
R

2

T
a

19see note at https://cosmologist.info/cosmomc/readme.html.

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/doi/10.1093/rasti/rzaf002/7951976 by guest on 06 February 2025
on-linear matter power spectra (and their ratio); and a limited set
f background expansion and derived perturbation quantities also
utput by the Einstein–Boltzmann code.
We compute the CMB angular power spectra in the multipole

ange 2 ≤ � ≤ 10 000 in each of TT, TE, EE, and BB combinations
or different cosmological models. In the basic configurations, we
se as inputs for our emulators the six cosmological parameters
f the standard �CDM model: the baryon density 	bh

2, the dark
atter density 	ch

2, the amplitude, and spectral index of scalar
erturbations ln(1010As) and ns , the optical depth to reionization
reio, and the Hubble constant H0 in units of km s−1 Mpc−1. We
dd additional model parameters to these for separate emulators for
CDM extension models as explained below. When not explicitly

aried, neutrinos are described by fixing Neff = 3.044, corresponding
o the contribution from the three standard model neutrino species,
ith one of them carrying a total 0.06 eV mass.
We also emulate the CMB lensing potential φφ power spectrum in

he same multipole range. For this we use the same parameter inputs
xcept for the optical depth to reionization, given that the lensing
otential power spectrum does not depend on it.
For the matter power spectrum P (k, zpk), we compute the linear
atter power spectrum Plin(k) for five input parameters: 	bh

2, 	ch
2,

n(1010As), ns , and H0, plus again the extra parameters for the
xtension models. For all matter power spectra we also treat the
edshift zpk as an input parameter, resulting in an emulator function
hich acts as Plin(k, �θ ), where �θ includes the redshift. We note that,

n principle, full emulation of the 2D P (k, zpk) would be possible
n an extension of the CosmoPower scheme. Currently we find
ood results with the current approach, which is also more efficient
n terms of avoiding passing very large training sets across a grid
f k and zpk to the emulator training. For the non-linear matter
ower spectrum, we emulate both the PNL(k) spectrum itself and
he non-linear boost PNL/Plin(k) − 1. For the emulators included in
his paper in order to account for non-linear gravitational evolution
nd baryonic feedback in the structure formation process, we emulate
he 2020 version of HMCode described in Mead et al. (2021), which
odels these processes using a semi-analytical halo model calibrated

n numerical simulations. We sample the wavenumber k at 500 points
n the range 10−4 ≤ k ≤ 50 Mpc−1 with logarithmic spacing. Note
hat we compute P (k) up to k = 100 Mpc−1 for improved accuracy.

For background evolution quantities, we use redshift in the range
≤ z ≤ 20, sampled at 5000 equally spaced points, as the modes

long which we evaluate the redshift-evolution of the Hubble param-
ter H (z), the angular diameter distance DA(z), and the clustering
8(z) for the five input parameters 	bh

2, 	ch
2, ln(1010As), ns , and

0, plus the extension model parameters where relevant. Adding
hese background quantities to our emulator packages allows for ad-
itional cosmological constraints from, e.g. BAO measurements. Ad-
itional background quantities, such as f σ8(z) ≡ −(1 + z)dσ8/dz,
an also be easily computed from these quantities, as such operations
re performed similarly in traditional Boltzmann codes. Although
n principle the derivative of an emulated function may be poorly
ontrolled, we have not found a loss in accuracy due to this operation.
n the future, the derivative of an emulated function may be included
nto the loss function for emulator training, if deemed necessary.

We also compute ten derived parameters, namely:

(i) The angular acoustic scale θ∗ at the surface of last scattering;
(ii) The matter clustering parameter σ8;
(iii) The primordial helium fraction YHe;
(iv) The redshift zreio of reionization, defined as the midpoint of

eionization described by a simple hyperbolic tangent;
ASTAI 4, 1–23 (2025)
(v) The optical depth τr,end at the end of recombination;
(vi) The redshift z∗ at the surface of last scattering;
(vii) The sound horizon scale r∗ at the surface of last scattering;
(viii) The redshift zd at the baryon drag epoch;
(ix) The sound horizon scale rd at the baryon drag epoch;
(x) The effective number of relativistic species Neff .

It is common to use θ∗, the angular scale when optical depth is
nity, or the approximate parameter θMC, as a sampled parameter in
CMC analyses of CMB data due to its lower level of covariance
ith other parameters than H0.19 As we also noted in Bolliet et al.

2024) however, CAMB and class use different points at which to
valuate the angular scale (with class defining θs as the angular
cale at maximum visibility, which is close to but not the same
s θ∗, which is used in CAMB). To maintain cross-compatibility
etween our emulators, and to remain consistent with our earlier
ork, we therefore use H0 as an input, and not θ∗. Including

hese derived parameters as emulators allow us to recover the
osterior distributions on these quantities, either directly storing
heir computed values while sampling the chain, or afterwards by
ost-processing a converged MCMC chain.

.2 Cosmological models

e provide emulators for the �CDM model with parameters
	bh

2, 	ch
2, ln(1010As), ns, H0, τreio} defined above as well as the

ollowing four extended models:

(i) �CDM+Neff : varying the effective number of relativistic
pecies Neff ;

(ii) �CDM+�mν : varying the sum of neutrino masses �mν ;
(iii) �CDM+Neff�mν : varying both the number and mass sum

f neutrinos;
(iv) �CDM+w0wa : varying the dark energy equation of state

escribed with two parameters w0 and wa .

Each of these four extension models is emulated separately,
ith the extension parameters used as additional inputs. We chose

o emulate +Neff and +�mν separately, and the combination
Neff + �mν to explore the relation between model complexity and

mulator accuracy. While, as we show later, our emulator for the
ull combination +Neff + �mν is accurate enough for cosmological
nalysis, we release the single parameter-extension model emulators
s they offer greater accuracy over the higher dimensional models.

For the non-linear PNL(k) and non-linear boost PNL/PL(k) − 1
mulators, we include the baryonic feedback parameter log TAGN

hat appears in HMCode (Mead et al. 2021) and is otherwise fixed
t its default CAMB value in the other emulators. For the remaining
odel choices, we set a primordial helium fraction set from BBN

onsistency using PRIMAT (Pitrou et al. 2018), recombination from
he CosmoRec code (Chluba & Thomas 2010; Chluba, Vasil &
ursi 2010), and reionization modelled with a simple hyperbolic

angent with a redshift width �z = 0.5. Most of these options are
he default settings in CAMB. We only changed the recombination
ode to CosmoRec, whereas the CAMB default is to use the older
ECFAST code.

.3 Training data

raining of emulators involves creating a set of output data �d at
finite sample of known parameter values �θ using the code to be



Framework for cosmology emulation and inference 5

Table 2. Table of parameter ranges over which we trained our emulators.
Compare this with the textual specification in Fig. 7. The top section of
the table refers to the background cosmology parameters used in almost all
emulators. The middle section of the table contains the redshift and baryonic
feedback parameter used only in the P (k) emulators, with their default values
from CAMB used in the CMB and background evolution emulators. The
bottom section of the table shows the ranges of the single-/two-parameter
extension model emulators, and their default values taken in the base �CDM
case. Each emulator takes in the first six parameters, and one or two extension
parameters, with the exception for C

φφ
� , and background quantities, which do

not rely on τreio.

Parameter Range Default value

	bh
2 [0.015, 0.03] –

	ch
2 [0.09, 0.15] –

ln(1010As ) [2.5, 3.5] –
ns [0.85, 1.05] –
τreio [0.02, 0.20] –
H0 (km s−1 Mpc−1) [40, 100] –

zpk [0, 5] –
log TAGN [7.3, 8.3] 7.8

Neff [1.5, 5.5] 3.044
�mν (eV) [0, 0.5] 0.06
w0 [−2, 0] −1.0
wa [−2, 2] 0.0

e
t
l
o
i
o
e
i

w
w
a
W
p
t
f
a
c
d
fi
o
r
t
p
v
b
p
t
p
e
o
b
b
t
t
�

Figure 2. An overview of the accuracy reached by a trained CT T
� emulator

given the number of training spectra used to train the emulator, for an
increasing number of input parameters. The solid coloured lines and point
represent the 68 per cent error of a CT T

� emulator trained with NS samples
(the dotted shaded lines and points show the similar behaviour observed at 99
per cent), averaged over the entire �-range. We show the full-size emulators
generated with NS = 100 000 for �CDM and NS = 120 000 for extended
models, as well as emulators with a smaller training set to show how accuracy
scales with NS and input parameters. We train emulators for �CDM (six
parameters, circles), +�mν (seven parameters, inverted triangles), and
+Neff + �mν (eight parameters, boxes), each on a random smaller subset of
the full training data set, scaling the training batch size proportional to the size
of the subset. We show how the mean emulation error decreases as the number
of training spectra increases, and increases as we increase the complexity of
the parameter space. We note, however, that scaling of emulators accuracy
with number of input parameters is non-linear, the nature and impact on the
emulated quantity of the specific parameter will matter for this behaviour.

Figure 3. Accuracy settings for CAMB, based on the settings earlier
suggested in Hill et al. (2022) and McCarthy et al. (2022). For an example
of a full yaml file, see Section A.

c
s
d
t
s

a
H
l
s

t
q
s
s

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/doi/10.1093/rasti/rzaf002/7951976 by guest on 06 February 2025
mulated (i.e. the Einstein–Boltzmann code here). These data will
hen subsequently be used in Section 2.4 for the neural network to
earn an approximate (but high accuracy) mapping between input and
utput. Training data must be generated at a high enough resolution
n the input parameters that we can smoothly interpolate between
utputs. The training data only need to be generated once, to train the
mulator, and do not need to be generated using the computationally
ntensive numerical code again in any subsequent inference.

Following Spurio Mancini et al. (2022) and Bolliet et al. (2024),
e generate NS = 105 sets of output spectra as training data, of
hich 10 per cent will be used for validating the network accuracy,

nd the rest for training. Our parameter space is shown in Table 2.
e employ Latin Hypercube (LHC) sampling for ensuring our

arameter space is evenly sampled. For extended models, we choose
o generate slightly more spectra at NS = 1.2 × 105, to compensate
or the expanded parameter space. To demonstrate the need for this
nd to provide some guidance on how to select NS , we show a
omparison of the mean prediction error versus the size of the training
ata set in Fig. 2, for a varying number of input parameters. The
gure shows that there is not a simple linear scaling with the number
f parameters. Although increasing the number of parameters always
equires a larger training set to reach the desired target accuracy,
he physical nature and range of variation of the specific additional
arameter will impact the results. For example, if we extend �CDM
arying Neff or �mν , we observe different behaviours, even if in
oth cases it is only one additional input parameter (seven input
arameters compared to six for �CDM). We explain this by noting
hat cosmological observables have different responses to different
arameters, according to the physics signature they are tracking. For
xample, the CMB CT T

� spectrum will exhibit a strong dependence
n Neff – changing both the peak position and amplitude at all scales,
ut less so on �mν which will primarily appear at scales dominated
y lensing. Hence in Fig. 2 the �CDM+Neff case requires more
raining than �CDM+�mν . When we expand further the model
o �CDM+Neff�mν (eight input parameters compared to six for

CDM), we observe a very similar behaviour to the seven-parameter
ase �CDM+Neff , because we have already covered most of the
trongly varying training region. We conclude that to achieve the
esired convergence of the emulators, the user will need to monitor
he behaviour of their specific model and perform some exploratory
tudies of how the emulators depend on the model parameters.

To meet the requirements for Stage-IV analyses, we use the CAMB
ccuracy settings suggested by Hill et al. (2022) and McCarthy,
ill & Madhavacheril (2022) as adequate for convergence of the

ikelihood value obtained from data with this level of precision,
ummarized in Fig. 3.

We iterate over each of the NS samples in our LHC, computing
he CMB, lensing, and matter power spectra, as well as background
uantities, and derived parameters with CAMB (see Table 1 for a
ummary of the outputs and their ranges), and store the results in a
tructured data file containing appropriate metadata (see Section B).
RASTAI 4, 1–23 (2025)



6 H. T. Jense et al.

R

B
f
p
B
i
b
b
e
t

2

F
a
e
t
n
t
t
s
S

f

w
t
s
t
c
p
t
w
w
a
r
e
t
v
H

r

c
t
f
w
e
s
w
i
w
t
p
d
n
d
s
s
S

w
P

f

S
g
i

i
t
s
a
I
e
c

o
p
h
o
t
a
c
s
t

2

T
c
d
t
T
d

a
f
w
A
T
c
i
f
a
a
i

a
e
N

w
X

m
e
�

v
t
s
u

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/doi/10.1093/rasti/rzaf002/7951976 by guest on 06 February 2025
ecause of our choices of parameter limits as a hypercube, a small
raction (� 1 per cent) of our samples are in unphysical parts of
arameter space and can cause issues in computations from CAMB.
ecause this number is small, these samples are simply discarded and

gnored for future processing. In practice, these regions should also
e excluded when evaluating an emulator. These kinds of parameter
ounds can be relatively complicated, however, and it is probably
asier to impose these constraints on samplers and inference software
hat interface with CosmoPower.

.4 Network design and training

ollowing Spurio Mancini et al. (2022), we implement the emulators
s dense neural networks, with four hidden layers of 512 neurons
ach. We refer to appendix A1 from Spurio Mancini et al. (2022) for
he decision on this choice of emulator design, noting that with our
ew framework, it may become easier in the future to perform more
horough experimentation with different designs. Each emulator
akes the normalized parameters as input, and maps it to normalized
pectra. We use the activation function from Alsing et al. (2020) and
purio Mancini et al. (2022):

(�x) =
[

�γ +
(

1 + e− �β��x
)−1

� (1 − �γ )

]
� �x, (1)

here � is the element-wise product. For the optimizer, we re-use
he Adam optimizer. This activation function is able to capture both
mooth and sharp features in the gradient, and was previously found
o outperform similar activation functions in other astrophysical
ontexts (Alsing et al. 2020). Although we did not investigate the
erformance with different activation functions, the ability to switch
o different activation functions and test their performance, along
ith other changes in hyperparameters, is facilitated by our frame-
ork and can be done in future work. The input and output quantities

re normalized with respect to mean and standard deviations of the
espective ranges. For most quantities, as detailed in Table 1 we
mulate the logarithm of the spectrum, as the high dynamic range of
hese values makes it easier for the emulator to reconstruct the log-
alues. We employ the same method for the background quantities
(z), σ8(z), and DA(z), where we reconstruct the logarithm of the

edshift evolution.
For the CT E

� emulator, the resulting raw spectra include zero-
rossings which make emulating the log-spectra impossible. Because
he unscaled spectra still contain a high dynamic range in values, we
ollow Spurio Mancini et al. (2022) in first decomposing the spectra
ith a principal component analysis (PCA) and then subsequently

mulating the sets of PCs. Similar to before, we decompose the CT E
�

pectra into 512 PCs. Even though they remain completely positive,
e also decompose the C

φφ
� spectra into 64 PCs. We find that this

s more effective at emulating the φφ spectra, which we explain
ith the reduced dimensionality of the information contained in

he φφ spectra. We introduce the procedure of constructing scree
lots, showing the eigenvalues associated with each PC in the
ecomposition, to identify the ‘elbow’ at which higher PC numbers
o longer carry significant weight and can be discarded. For more
etails regarding this and for guidance on decisions regarding PCA
ee Section C. With this setup, our emulator design for the CMB
pectra remains fully consistent with the original emulators from
purio Mancini et al. (2022).
For the matter power spectra Plin(k, zpk) and PNL(k, zpk),

e choose to emulate log Plin(k, zpk) and the non-linear boost
NL/Plin(k, zpk) − 1 for best performance. These quantities are

unctions of two parameters, the wavenumber k and redshift zpk.
ASTAI 4, 1–23 (2025)
imilar to previous emulators we have developed, we use k as the 1D
rid along which we sample our spectra, and use zpk as an additional
nput for our P (k) emulators.

The time it takes to train an emulator depends on many factors,
ncluding the size of the data set, the number of inputs and outputs of
he network, the hardware performance, as well as some inherently
tochastic factors in the training process. At 105 training samples for
network, we find it takes O(1h) to train a C� network on a GPU.

f no GPU hardware or the required software is available, then the
mulators can alternatively be trained on a CPU, which for the same
ase still only takes O(10h) to perform.

Of interest to a user of a pre-trained emulator, is the time spent
n generating the initial training sample compared to evaluating a
re-trained emulator. For the accuracy settings and models presented
ere, it takes CAMB about 12 s to compute either the CMB spectra
n a cluster. This is compared to evaluating the emulator, which
ook about 11 ms on an average end-user laptop without GPU-
cceleration. It should also be noted that for more complicated
osmological models, the computation performed by CAMB can be
lower, while the emulator evaluation speed does not increase unless
he architecture needs to be significantly changed.

.5 Accuracy of emulated observables

o assess the accuracy of our emulators, we perform a number of
omparisons between the observables emulated and those calculated
irectly with CAMB. This allows us to understand if we have reached
he theoretical calculation accuracy required for Stage-IV analyses.
his functionality is now fully built into our released software as
escribed later in Section 3.3.
In Fig. 4 we report the difference between direct CAMB outputs

nd emulated observables, showing contours corresponding to the
raction of our training spectra (across the full parameter space)
hich lie within a given level of agreement with the emulated values.
ll the CMB spectra reach sub-per cent accuracy (note that the
E higher values are numerical artefacts due to diving for a signal
rossing zero, see Fig. 5 for more details); the matter power spectrum
s accurate at the few per cent level relative to the CAMB prediction
or very large range of wavenumbers (also note that zpk is treated as
n input parameter, so this covers all redshifts emulated, and that the
ccuracy achieved on P (k) is helped by the relative lack of variation
n amplitude of the function as compared to C�).

For the CMB observables, as done in previous works we can
lso compute the difference relative to (or ‘in units of’) a specific
xperiment’s sensitivity which tracks the noise for each observable
XY
� with

σXY
� = (2)√

1

fsky(2� + 1)

[
(CXX

� + NXX
� )(CYY

� + NYY
� ) + (CXY

� + NXY
� )2

]
,

here for the cosmic variance limit, fsky = 1 and NXY
� = 0 for all

Y .
We show this accuracy of our emulators relative to the cos-
ic variance-limited experimental noise for �CDMin Fig. 6 and

xtended models are shown in Section E in Figs E1 to E4 (for
CDM+Neff , +�mν , +Neff�mν , and +w0wa , respectively).
All our emulators remain well within 10 per cent of a cosmic

ariance-limited experimental uncertainty range. The only exception
o this is our w0wa emulator (see Fig. E4), for which some outliers at
mall scales in the CMB emulators can reach about 80 per cent of this
ncertainty. We attribute this effect to the parameter degeneracy of



Framework for cosmology emulation and inference 7

Figure 4. A validation graph generated from our trained networks for �CDM, showing the recovery of emulated quantities for a set of 104 spectra that were
not part of the original training set. We show the error in the reconstructed CMB power spectrum in CT T

� (top-left), CT E
� (top-right), CEE

� (centre-left), CBB
�

(centre-left), C
φφ
� (bottom-left), and linear Plin(k) (bottom-right) relative to the CAMB theory curve. The bands show the 68/95/99 per cent contours (from

darkest to lightest shades). Note the different scale for TE, for which errors get blown up due to the zero-crossings of the input power spectrum.

t
w
s
r
i

3

A
p
h
t
C
f

2

i
p
w

n
g
(
p
v
s
o
a

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/doi/10.1093/rasti/rzaf002/7951976 by guest on 06 February 2025
he model, as well as the complexity of this model and the relatively
ide range of parameters we chose. However, in the absence of CMB

ensitivity to the mechanics of dark energy, and in the interest of the
ecent results from DESI (DESI Collaboration 2024), we are still
ncluding this emulator.

PAC K AG I N G D E S C R I P T I O N

s part of this release, alongside new emulators we build a packaging
rescription for CosmoPower emulators. This prescription is both
uman- and machine-readable and serves as a description of what
he emulator is capable of and its full design specifications. The
osmoPower software package20 has been updated to include a

ull parser for the packaging prescription.
0https://github.com/alessiospuriomancini/cosmopower

c
w
C

To create and train a new emulator, the packaging prescription
s designed to guide both the author and a later user through the
rocess of considering what quantities are emulated, how, and to
hat accuracy.
In this section, we describe the main steps of creating an emulator,

amely: (1) describing the input parameters and output data, and
enerating the training spectra with the Einstein–Boltzmann code,
2) detailing the specifications of the emulator and the training
arameters, and performing the training process, and (3) testing the
alidation of emulators. We follow the creation of the emulators we
pecified in Section 2, and describe how the packaging prescription
f these emulators is setup, as well as alternative options and choices
vailable for the user.

We also create and release packaging for the emulators for the
lass Einstein–Boltzmann code presented in Bolliet et al. (2024)
hich also achieve Stage-IV-level accuracy, consistent with the
AMB emulators in this work. With our included packaging, these
RASTAI 4, 1–23 (2025)



8 H. T. Jense et al.

R

Figure 5. A direct comparison of the error in the CT E
� emulator as measured

in fractional error with respect to the training spectrum (top and as in Fig. 4),
and as relative error with respect to a cosmic variance-limited noise curve
(bottom and as in Fig. 6 with more details in equation 2). The peaks in the
top figure are due to the zero-crossings of the CT E

� power spectrum, which
‘blow up’ any errors in the emulator. Using a cosmic variance limit noise
curve provides a more realistic error measure, as shown in the bottom figure,
where the inclusion of the CT T

� and CEE
� terms in the error wash out these

zeroes and provide a more reasonable assessment for the error.

e
s

3

I
p
d

a
s
w
t

t
t
u
b
n
B
e

t
t

c
t
0

d
t
d
n

n

e
a

l
t
i
‘

n
t
L
s
f

(
t
t
a
i
s

u
e
n
c
c

w
a

a
C

P

fi

T
a

w
t
w
C

o
p

e
d

a
c

s
a
r
t
c
a
c
c
L

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/doi/10.1093/rasti/rzaf002/7951976 by guest on 06 February 2025
mulators can likewise be used in the inference frameworks with the
ame level of convenience and robustness.

.1 Generating training data

n this subsection, we discuss the required prescription of the input
arameters for emulators, and for the output of quantities that are
esired to be emulated.
As mentioned above, CosmoPower uses LHC sampling, which

llows for an evenly spaced grid of sampling points that are
ufficiently distributed that the entire parameter space is covered
ith minimal variation in sampling density. In Fig. 7 we show how

o specify the LHC grid in the prescription file.
The emulated code block of the packaging contains informa-

ion about the Einstein–Boltzmann code being emulated, in particular
he name and version number. If a customized version of a code is
sed, it is possible to manually specify the import path with the
oltzmann path keyword. The inputs keyword is the list of
amed parameters which will be varied as inputs to the Einstein–
oltzmann code. extra args contains code parameters which
mbody any model choices or approximation and accuracy settings.

The samples block specifies the Ntraining training spectra
o be generated. The packaging prescription recognizes four different
ypes of parameters in the parameters block:

(i) Sampled parameters, these are the parameters that the LHC is
reated over, and are defined with a minimum–maximum pair for
he range over which the LHC is sampled, e.g. ombh2: [0.015,
.03];
(ii) Derived parameters, these are parameters that are trivially

erived from other sampled parameters, and are defined with a
ext string prescribing a python lambda function equation to
erive them directly, e.g. As: ‘lambda logA: 1.e-10 ∗
p.exp(logA)’;
(iii) Fixed parameters, these are simply defined by writing a single

umerical value that the parameter is set to, e.g. mnu: 0.06;
(iv) Computed parameters, these are parameters that we cannot

asily compute ourselves, but the Boltzmann code can, and these
re defined by simply leaving an empty tag in the parameter
ASTAI 4, 1–23 (2025)
ist. These parameters are specified by variable names available
o CosmoPower at the spectra generation stage via the python
nterfaces of the Einstein–Boltzmann codes being emulated, e.g.
YHe:’ for YHe.

Any of these types of parameters can be used as an input to a
etwork, and any of the first three types can be used as an input for
he Einstein–Boltzmann code. It is, for example, possible to create an
HC over a range of Hubble parameter H0, while using the angular
cale θ∗, as computed by the Einstein–Boltzmann code, as an input
or the emulators.

New parameters may be defined freely in accordance with (i) to
iv) above, provided the Einstein–Boltzmann code can account for
hem. This can involve either full regeneration of the LHC including
he extra parameter dimension, or by extending the existing LHC into
new dimension, with the old set of points representing a hyper-slice

n the new space. This second option will not result in a true LHC
ampling and so should be used with caution.

The networks block specifies the neural networks to be created
sing the training data. It is possible to specify multiple networks,
ach under a quantity heading, which each have their own set of
etwork properties specified as further blocks and keywords. When
reating CosmoPower networks, the current list of quantities which
an be emulated is defined and described as follows:

(i) Cl/xy: referring to (lensed) CMB angular power spectra CXY
�

ith X, Y any combination of T/E/B (CT T
� , CT E

� , CEE
� , CT B

� , CEB
� ,

nd CBB
� );

(ii) Cl/pp: CMB lensing potential spectrum for C
φφ
� , there are

lso options available for cross-spectra with primary CMB via
l/pt, Cl/pe, and Cl/pb;
(iii) Pk/lin and Pk/nonlin: Matter power spectrum for linear

lin(k) and non-linear Pnl(k);
(iv) Pk/nlboost: The non-linear boost (PNL/Plin − 1)(k) de-

ned as the non-linear boost to the linear matter power spectrum;
(v) Hubble, Omegab, Omegac, Omegam, sigma8, and DA:

he redshift-evolving quantities H (z), 	b(z), 	c(z), 	m(z), σ8(z),
nd DA(z).

It is also possible to specify derived quantities. This network
ill automatically use all parameters from the parameter block

hat are computed by the Einstein–Boltzmann code as outputs. So,
hen we specify a derived network in our emulators similar to our
T T
� emulator, we create an emulator that emulates the computation
f the ten quantities mentioned in Section 2.1 (which are the ten
arameters we listed in Fig. 7).
In Fig. 8 we show an example for the network block of an

mulator trained on primary CMB CT T
� data for 2 ≤ � ≤ 10 000. We

iscuss the choices made in this block in more detail in Section 3.2.
Once the packaging file has been set up with the sections specified

bove, it becomes easy to generate training data for networks by
alling:
python -m cosmopower generate <yamlfile>

In addition, the --resume flag can be used to increase more
amples for an already existing set of data points, if it is found
fterwards that the training set size is not large enough for training to
esult in good recovery of spectra from the emulator. When resuming
he generation of samples, any pre-existing LHC will be used (if
ompatible with the given prescription) and any pre-existing samples
re not re-generated. This can be used for continuing a run that was
ancelled or stopped before, adding new quantities that were not
omputed earlier, or increasing the number of samples beyond the
HC that was generated beforehand. One limitation of the use of



Framework for cosmology emulation and inference 9

Figure 6. A validation graph generated from our trained networks for �CDM. We show the recovered CMB power spectrum CT T
� (top-left), CT E

� (top-right),

CEE
� (centre-left), CBB

� (centre-right), C
φφ
� (bottom-left), and linear Plin(k) (bottom-right), with respect to the cosmic variance limit for C�’s, and as a fractional

difference for P (k). The bands show the 68/95/99 per cent contours (from darkest to lightest shades).

L
m
w
o
r
t

o
w
t
i
e
s

3

T
b

t
t

f
s

s
k

a
p
r

e

d

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/doi/10.1093/rasti/rzaf002/7951976 by guest on 06 February 2025
HC is the inflexibility in extending an existing LHC to include
ore samples. When a larger sample size is desired, CosmoPower
ill extend the number of samples by generating a second LHC
n the grid spanned by the halfway points of the pre-existing grid,
oughly doubling the size of the pre-existing LHC. While not perfect,
his is good enough for generating an extended set of samples.

We store the generated training data in hdf5 files, which are
ptimized for large, table-like data sets, and allow for both fast read-
rite access and good data compression. We also include the option

o automatically split the data into multiple files, to prevent memory
ssues from opening a too large a single file at once. For our �CDM
mulators, this means that we generate about 4 GB worth of training
pectra per emulator, split across ten files.

.2 Network specification and training

he networks block contains information on which emulator is to
e trained, and how the network is designed; it contains:
(i) The type of emulator, either NN for a neural network emulating
he spectra directly, or PCAplusNN for a NN emulating the PCA of
he quantity;

(ii) The list of inputs used for the network, these can be different
rom the inputs to the Boltzmann code, and hence may need to be
pecified again;

(iii) Whether the network should be trained on log-spectra;
(iv) The range of modes (sampling points) over which the output

pectrum is computed, and a text label for them (i.e. �s for C� spectra,
for P (k) spectra, and redshifts z for background quantities);
(v) The specification for traits of the neural network emulator. For

dense neural network, the traits should contain the number of nodes
er hidden layer. For a network that employs a PCA, the number of
etained PCs must be given.

(vi) The specification for the steps taken when training the
mulator (see below for details).

After the training data has been generated, training a network is
one via a similar command:
python -m cosmopower train <yamlfile>
RASTAI 4, 1–23 (2025)



10 H. T. Jense et al.

R

Figure 7. Code snippet for sampling and parameters block, compare this with
Table 2. In the example here, we setup the aforementioned six parameters to
sample over, add an intermediate parameter As , and add the ten parameters
which are derived directly from the Boltzmann code, in this case CAMB.
Note that CAMB expects the primordial amplitude As to be provided, but it is
far more common to sample over ln(1010As ) instead. By defining the logA
parameter and marking the As parameter as a derived parameter from that, we
can perfectly accomplish this. At the bottom we show the ten parameters we
derive from the Boltzmann code – in this case, they are computed by CAMB. It
is possible to use any of the parameters defined in this block as an input to the
networks, including the parameters derived from the Boltzmann code. The
extra args block would include any accuracy settings, as seen in Fig. 3.

t
(

l

l

k

i
l

l
I
o
v
o

l

Figure 8. Code snippet for network block. We setup a network
that emulates log10(CT T

� )(�θ) with our six input parameters
�θ = {

	bh
2, 	ch

2, log(1010As ), ns , h, τ
}

and � between 2 and 10 000. The
network is a fully connected dense neural network with 4 hidden layers of
512 neurons each. Our training block defines the fraction of example spectra
used for validation estimation, the learning rates of each learning step, the
batch size over which we average, any gradient accumulation steps, patience
values, and maximum number of training epochs.

s
v
r
i
e
p
t
g

t
r
w
C
t
t
e
i
i
v
p
t
t
t

c
p
e
g
t
r

s
s

i

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/doi/10.1093/rasti/rzaf002/7951976 by guest on 06 February 2025
Training depends on a variety of parameters, which are set in the
raining block of the networks prescription. These parameters

explained below) are:

(i) The learning rate, which controls the size of steps taken at each
earning epoch;

(ii) A batch size, which controls the size of a batch over which a
earning step is averaged;

(iii) The validation split, which controls how many spectra are
ept aside of validation calculation;

(iv) The number of steps used for gradient accumulation;
(v) A patience value, which controls how long a network allows

tself to be ‘stuck’ at a loss value before continuing to the next
earning iteration;

(vi) The maximum number of epochs in each learning iteration.

Each of these values can be set to either a single number or a list of
ength NL, which indicates the number of learning iterations used.
f a value is set to a single number, it is kept fixed over the course
f each learning step, otherwise CosmoPower will iterate over the
alues in the list when training. If multiple values are to be iterated
ver, these lists need to be of the same length.
CosmoPower will train a single network by iterating over these

earning iterations, each of which consists of a number of epochs
ASTAI 4, 1–23 (2025)
et by the max epoch value. A fraction of samples equal to the
alidation split is set aside each learning iteration, and the

emainder is used as the training set. The training set is then grouped
nto batches determined by the batch size value. Every epoch,
ach batch is passed through the emulator, and the trainable hyper-
arameters of the emulator are updated to reduce the loss function of
he network. If a number of gradient accumulation steps
> 1 is given, then g consecutive steps are used to compute the

otal derivative of the loss function with respect to the hyperpa-
ameters as well, which can give a better learning rate, especially
hen using a GPU for increased computation of these derivatives.
osmoPower uses the Adam optimizer to determine how to tweak

he hyperparameters, and the learning step size is multiplied by
he learning rate of this iteration. After going through a full
poch, the validation set is passed through the emulator and its loss
s computed. If the validation loss has improved throughout this
teration, then the new hyperparameters are kept. If the max epoch
alue is reached, or if the validation loss has not improved over
atience values epochs in a row, then the emulator will go to

he next learning iteration. Throughout this process, the structure of
he emulator is kept fixed, and so the output is a single emulator with
he pre-determined specifications.

Because of the large amount of freedom in choosing these values, it
an be hard to determine what settings are optimal for a good training
ass. In addition, the impact of certain decisions can wildly vary from
ither minimal to substantial. As a result, we cannot provide clear
uidance on what settings to use but there are a few rules of thumb
hat can be used when determining the training settings which we
ecommend:

(i) The validation split should be about 10–20 per cent;
(ii) Each iteration, the learning rate should go down and the batch

ize should go up – this makes the emulator learn at more precise
teps as it gets closer to a local optimum;

(iii) If a learning iteration reaches the maximum number of epochs
nstead of a patience value, that means it could have learned for



Framework for cosmology emulation and inference 11

l
s

a
d

3

T
e
a
t
t
E
e

e

v

t
o
d
a
p
O
u

4

A
w
m
m
w
e
w
p
i
t
p
t

4

T
p
w

i

:

s
c
n
w
t

e
d
t
E
c
i
n
t
t

4

W
c
C
a
n
w
a

t
p
y
p
a
l

4

I
e
u
i
t
C
t
a
t
(
C
q
m
t
o
a

5
C

W
i
c
u
q
l
a
d
p
i

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/doi/10.1093/rasti/rzaf002/7951976 by guest on 06 February 2025
onger, and it has not fully optimized yet – try to increase the batch
ize or learning rate for this iteration or an earlier one.

CosmoPower keeps track of the validation loss for every epoch,
nd saves this to a plain text file for post-training analysis and
iagnosis of training issues.

.3 Assessing accuracy

he validation loss for the emulators is only one quantity to
valuate the accuracy, but it is important to explicitly evaluate the
ccuracy of the output emulator quantities. We include functionality
o generate accuracy plots, that show the average difference between
he emulated quantity and the original quantity as computed by the
instein–Boltzmann code, relative to (‘in units of’) an observable
rror.

For a trained emulator, one can evaluate the accuracy of the
mulator by invoking the command:
python -m cosmopower show-
alidation <yamlfile>

This command will pass a fraction of all original samples through
he each trained emulator and plot the emulator error. The accuracy
f the emulated observables can be defined as either the fractional
ifference to the true value, or relative to some observational error,
s defined in e.g. equation (2). There are options to use either the
ublic Simons Observatory noise curves, presented in The Simons
bservatory collaboration (2019), or a cosmic variance-limited
ncertainty.

WRAPPER D ESCRIPTION

s an additional component for our CosmoPower extension,
e provide wrapper functionality that interfaces the basic Cos-
oPower functionality with the inference software packages Cos-
oSIS and Cobaya. Because most of the emulator specification
ill be present in the packaging prescription file, interfacing these

mulators with the sampling software is as simple as pointing the
rapper to a packaging file. The remaining interfacing is then
rovided for with these wrappers. We will show here how to
nterface the emulators with CosmoSIS and Cobaya, and show
hat these wrappers, with the emulators we have described in the
revious section, can recover parameter constraints equivalent to
hose recovered with the original Einstein–Boltzmann code.

.1 CosmoSIS

he wrapper for using CosmoPower in CosmoSIS inference
ipelines involves specifying the CosmoPowermodule in the usual
ay in the ini file:
1 [cosmopower]
2 file = path/to/interface/cosmopower
nterface.py
3 package file = /path/to/packaging/package

prescription.yaml
4 extra renames = {’cosmosis parameter name’
’network parameter name’}
The options available and their default values for the module are

pecified in its associatedmodule.yaml. In particular, we note that
are should be taken with parameter naming conventions, with any
ecessary translations specified using the extra renames key-
ord. The CosmoSIS wrapper allows for the use of CosmoPower

o compute CMB and matter power spectra, and the background
volution and derived quantities also described in Section 2.1. If
esired, it is also possible to use CosmoPower only to perform
he computation of spectra from the perturbations, and the native
instein–Boltzmann code for the (relatively) faster background cal-
ulations (e.g. by only requesting the CMB from CosmoPower and
ncluding a CAMB module with mode = background). Here we
ote that caution should be taken to not generate inconsistent results
hrough inconsistent choices of CAMB parameters when running in
his mode.

.2 Cobaya

henCosmoPower is installed, the wrapper for using it inCobaya
an be used by simply adding the cosmopower block to the
obaya configuration file. This is similar to how one normally
dds CAMB or class as their Einstein–Boltzmann code. Due to the
ew interface using the packaging prescription, the CosmoPower
rapper requires minimal settings, and a full block can look as simple

s:
1 cosmopower:
2 root dir: /path/to/packaging
3 package file: package prescription.yaml
Here, the (optional) root dir keyword points the wrapper

o the root directory where the packaging file is saved, and the
ackage file option points to the packaging prescription file that
ou want to load in. From this point, the wrapper parses the packaging
rescription, interfaces with Cobaya, loads in the emulators that
re required to compute all desired quantities, and provides the
ikelihoods with the computed quantities during the chain sampling.

.3 Fall through to native Einstein–Boltzmann code

n order to increase the robustness of the use of CosmoPower
mulators, we also include a feature which allows a given eval-
ation to ‘fall through’ to the native Einstein–Boltzmann code,
n a limited and configurable set of circumstances. By specifying
he fall through = True option in the wrapper being used,
osmoPower will check that a python module corresponding to

he emulated code and version can be imported. If so, then if
set of parameters is requested by the sampler which is outside of the

rained range of the emulator specified in the parameters block
e.g. if the prior being used is wider than the training range) then
osmoPower will give a warning, but also calculate the requested
uantities using the native Einstein–Boltzmann code. Whilst this
ay be desirable in a limited set of circumstances, care should be

aken that the expected computational cost does not overwhelm that
f augmenting the training set with a broader range of parameters
nd re-training the emulator.

C O M PA R I S O N O F R E C OV E R E D
O S M O L O G Y

e now demonstrate that we can use our emulators in parameter
nference analysis, generating posterior samples using Monte Carlo
hains with each of the Cobaya and CosmoSIS wrappers above
sing the same packaged network. In order to utilize all of the output
uantities we do this for a set of observables: primary CMB, CMB
ensing, galaxy weak lensing, and galaxy clustering. Note that this
llows for quick and easy cross-validation of the results from using
ifferent Einstein–Boltzmann codes between different inference
ackages (e.g. class in CosmoSIS and CAMB in Cobaya). This
s particularly important because leading cosmology collaborations
RASTAI 4, 1–23 (2025)



12 H. T. Jense et al.

R

Table 3. The fiducial parameters used for generating the smooth data vector.
The first six parameters refer to the cosmology, while the middle section is the
baryonic feedback parameter used in the non-linear model of CAMB. The last
parameter is specific for the extension model we tested, with a neutrino mass
for the inverted hierarchy to ensure that we could recover a closed posterior
for our +�mν emulators. The remaining accuracy settings are the same as in
Fig. 3.

Parameter Fiducial value

	bh
2 2.2383 × 10−2

	ch
2 12.011 × 10−2

H0 67.32 km s−1 Mpc−1

ns 0.966
log(1010As ) 3.0448
τ 5.43 × 10−2

log TAGN 7.8
�mν 0.12 eV

a
w

5

F
r
t
o
s
c
t

5

F
c
a
f
C

F
s
o
2
T
a

i

5

W
a
f
a
a
p
a
t
b

p
c
p
b
d
m
l
a
s
w
t
e
a
f
n
i
a
S

5

F
a
C
d
m
l
r
v
C
d
f

i
v
w
M
a
c
a
c
f
r
a
h
c
a
t

a
a
p
p
a
s
a
C
n

E
c
N

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/doi/10.1093/rasti/rzaf002/7951976 by guest on 06 February 2025
dopt different combinations of these codes while releasing results
hich we want to compare and combine.

.1 Simulated data vectors

or full validation, it is important to check that not only the emulators
ecover the cosmological observables to high accuracy, but also that
here is no inherent bias when using our emulators for estimation
f the final cosmological parameters. To do this, we can generate
imulated data for the observables we emulate with a theoretical
ovariance matrix and perform a parameter inference analysis on
hem using the wrappers described above.

.1.1 Cosmic-variance-limited CMB data

or our testing purposes, we generate a smooth data vector with
osmic-variance-limited noise (such that our conclusions apply to
ll current and future experiments). This data vector contains data
rom a fiducial cosmology (see Table 3) for the CMB power spectra
T T
� , CT E

� , and CEE
� , as well as the lensing potential spectrum C

φφ
� .

or the CMB data vector, the cosmic-variance-limited noise model is
imilar to equation (2), with NXX

� = NXY
� = 0 for all combinations

f XX and XY . We constrain our analysis to the multipole range
≤ � ≤ 6000 to mimic an idealized Stage-IV-like CMB experiment.
o explore the parameter space we add a log-likelihood function as
simple Gaussian chi-square distribution:

logL = −1

2

∑
�

(
C

pred
� − Cdata

�

σ�

)2

. (3)

Since the data vector is smooth, we expect to recover the exact
nput parameters with a final χ2 = 0.

.1.2 Stage-IV-like 3×2 pt LSS data

e also simulate a large scale structure data set for demonstrating
nd validating the P (k) emulators. This consists of 3×2 pt data
or cosmic shear, galaxy clustering, and galaxy–galaxy lensing,
s is typically constrained by experiments such as DES, HSC,
nd KiDS+BOSS+2dFLens. Here we approximate the constraining
ower of a Stage-IV LSS survey (such as LSST or Euclid), with
number of caveats. In order to be able to make use of existing

heoretical modelling and likelihoods which are implemented in
oth Cobaya and CosmoSIS we use real space data rather than
ASTAI 4, 1–23 (2025)
ower spectra (i.e. the emulated P (k) are processed into two point
orrelation functions in configuration space rather than angular
ower spectra in harmonic space) and set up the redshift and angular
inning of the data to be the same as the DES-Y1 configuration, as
escribed in Abbott et al. (2018). Likewise, we both simulate and
odel the data using the DES-Y1 model for intrinsic alignments,

inear galaxy bias, shear and redshift calibration biases etc. For
covariance matrix we create a Gaussian covariance using the
ave 2pt module of CosmoSIS. We do not contend such a model
ill be accurate for describing real Stage-IV data; here we are seeking

o understand if differences between the calculation of P (k) with
ither CosmoPower or CAMB can be detected when 3×2pt statistics
re measured with Stage-IV precision. To that end we assume a sky
raction, redshift distribution, total galaxy number density, and shape
oise as appropriate for an LSST-Y10 3×2 pt survey (as specified
n the LSST-SRDC by Mandelbaum et al. 2018) when simulating
nd analysing the data. Full details of the configuration are given in
ection D.

.2 Results

ig. 9 shows the recovered contours of Cobaya+CosmoPower
nd CosmoSIS+CosmoPower versus the Cobaya+CAMB and
osmoSIS+CAMB posteriors from a CMB cosmic-variance-limited
ata set. We show that we can reproduce the CAMB best-fitting cos-
ology and posterior distribution to < 0.1σ of the cosmic variance

imit error bars in both inference codes (note that for CosmoSIS we
e-evaluate the posterior at the same parameter samples, resulting in
isually identical contours. This facility is not as easily available in
obaya meaning a new MC chain is generated, resulting in slightly
ifferent contours). Fig. 10 shows the same result within Cobaya
or the + ∑

mν emulator as an example for an extended model.
The main advantage from running CosmoPower is the speed

ncrease over CAMB. For a simple �CDM model and the cosmic-
ariance-limited CMB data, we found that aCAMB chain took ∼ 10 h,
hile forCosmoPower it takes only ∼ 20 min to run to convergence.
ost of this speed-up comes from the fact that at this level of

ccuracy, an evaluation of a CAMB power spectrum takes ∼20 s to
ompute, while the same computation takes CosmoPower ∼0 .1 s,
t which point either the overhead of the inference software, or
omputing any non-trivial likelihood function becomes the limiting
actor. When going to beyond-�CDM models, the time it takes to
un a CAMB chain will go up due to the increased complexity or
ccuracy requirements from the computations. For CosmoPower
owever, the pre-trained emulators do not require more complicated
omputation when running these chains, and as such the time it takes
CosmoPower chain to converge will only increase slightly due to

he larger parameter space that needs to be explored.
In more realistic scenarios, additional nuisance parameters in
likelihood will complicate the inference process. Even when
likelihood itself may be fast to evaluate, the increased size in

arameter space can cause a slowdown due to the more complicated
osterior distribution shape. In some cases, this may be unavoidable,
lthough some software suites, like Cobaya, can take advantage of a
peed hierarchy to efficiently calculate the posterior density function
long slices of parameters. In such cases, using CosmoPower over
AMB is still a speedup as the block of cosmological parameters is
ow faster to evaluate and can thus be sampled more efficiently.
In many cases the nuisance parameters are separable from the

instein–Boltzmann calculations we are emulating here (e.g. the
ase of weak lensing shear and photometric redshift calibrations,
LA-model IA parameters, and linear galaxy bias described in this



Framework for cosmology emulation and inference 13

Figure 9. To illustrate that we can estimate posteriors in both Cobaya and CosmoSIS we show the same 68 per cent and 95 per cent confidence levels
for �CDM parameters from CMB cosmic-variance-limited power spectra, obtained from a full MCMC run done either with the Cobaya wrapper for
CosmoPower (solid ellipses) or with the CAMB (open ellipses) on the left for Cobaya and right for CosmoSIS. This figure also demonstrates the correct
recovery of the cosmological likelihood in each case (note that for Cobaya two separate sets of posterior samples are taken, whilst for CosmoSIS we
re-evaluate the likelihood at the same posterior samples, resulting in visually identical contours).

Figure 10. Similar to Fig. 9 but for �CDM+�mν : Left: 68 per cent and
95 per cent confidence levels for �CDM parameters from CMB cosmic-
variance-limited power spectra, obtained from a full MCMC run done either
with the Cobaya wrapper for CosmoPower (solid ellipses) or with the
existing CAMB wrapper for Cobaya (open ellipses). The dotted lines show
the fiducial value of the input data vector, and both posterior distributions
recovered this fiducial value within < 0.1σ . The CosmoPower sampler
converged within ∼ 100 min, while theCAMB sampler converged after ∼ 28 h.

s
r
t
(
a
t
i
c
n

e
C
t
i
c
(
c
w
b
s
i
l
i
S
c

6

W
i
B
e

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/doi/10.1093/rasti/rzaf002/7951976 by guest on 06 February 2025
ection). In cases where they are not, such as power spectrum terms
elated to non-linear galaxy bias calculated by Aricò et al. (2022),
hey would be required to be included in the emulator training
which will increase the time necessary to create the training set)
nd evaluation (which would not change the likelihood evaluation
ime). Adding variation of new parameters to an existing emulator
s possible, though the user would need to ensure the modelling was
onsistent between the existing ‘slice’ in parameter space and the
ew dimension added by the new parameters.
Similarly for the Stage-IV-like LSS data we find times for the

valuation of the list of P (k) s necessary with the CosmoPower-
osmoSISmodule to be ∼ 0.5 s, compared to ∼ 42 s for CAMB. In

erms of evaluating the likelihood as a whole, the need for Limber
ntegration to convert the emulated list of P (k) into the observable
orrelation functions dominates the total likelihood evaluation time
∼ 2 s) when the emulator is used. Rather than expending significant
omputational expense on a fully converged CAMB chain, in Fig. 11
e show the log posterior values calculated in a short chain using
oth CAMB and CosmoPower within CosmoSIS for the LSS data
et described in Section 5.1.2. As can be seen the relative differences
n log posterior between the numerical code and the emulator are
ess than 0.005 per cent, representing an indistinguishable difference
n estimates of posterior credible intervals and summary statistics.
ee Fig. D1 for full estimated posteriors showing the parameter
onstraining power of this data set.

C O N C L U S I O N S

e have presented a coherent framework for specifying, creat-
ng, packaging, and utilizing emulators of cosmological Einstein–
oltzmann codes, building on the CosmoPower package. These
mulators can speed up by orders of magnitude the estimation of
RASTAI 4, 1–23 (2025)



14 H. T. Jense et al.

R

Figure 11. Log posterior differences for the Stage-IV-like 3×2 pt LSS data
set described in Section 5.1.2 between estimations made using the original
CAMB Boltzmann code and the CosmoPower emulator.

p
m
t
o
c
a
w
s
m
o
d
i

o
p
C

v
t
p
(

i
i
m
K
S

C
g
s

A

H
C
a
a
(
s
S

R
t
w
o
m
a
(
(
(

t
H
(
W
I
S
i
M
p
(
B
J
(

D

T
/
p
o

R

A

A
A
A
A
A
A
A
A
A

B
B

B

B

B
B
B
C
C
C

C
C

21https://credit.niso.org/

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/doi/10.1093/rasti/rzaf002/7951976 by guest on 06 February 2025
osteriors on cosmological and nuisance parameters from experi-
ental data and hence enable investigation of models which extend

he fiducial �CDM cosmology and the checking of the robustness
f any conclusions made to a plethora of modelling choices. By
reating a specification for packaging and distributing such emulators
nd providing wrappers for their use in popular inference packages,
e hope to improve efficiency and reproducibility in cosmological

tudies, by allowing appropriate emulators to be widely used by
any different studies once they have been trained. This kind

f reproducibility across platforms will also assist in combining
ifferent data sets to improve statistical constraining power and
nvestigate more models in more detail.

We have used the framework to produce a suite of emulators
f quantities calculated by CAMBv1.5.0: CMB primary angular
ower spectra CT T

� , CT E
� , CEE

� , CBB
� ; CMB lensing power spectra

φφ
� ; linear and non-linear matter power P (k)lin, P (k)NL and a
ariety of background and derived quantities. We have demonstrated
he accuracy of the emulators at both the spectrum level and the
arameter-recovery level to accuracy appropriate for Stage-IV data
and beyond to the cosmic variance limit for the CMB spectra).

In principle, this standardization of emulator packaging extends
n scope beyond Einstein–Boltzmann codes to other numerically
ntensive codes amenable to emulation, such as interstellar medium

odels (e.g. Palud et al. 2023), supernova radiative transfer (e.g.
erzendorf et al. 2021), early-Universe re-ionization models (e.g.
chmit & Pritchard 2018) and others.
The framework described here will form a new release of the
osmoPower code, with the website https://alessiospuriomancini.
ithub.io/cosmopower/ providing full API documentation and exten-
ive demo scripts and tutorial notebooks.

C K N OW L E D G E M E N T S

TJ, IH, and EC acknowledge support from the European Research
ouncil (ERC) under the European Union’s Horizon 2020 research
nd innovation programme (Grant agreement No. 849169). ASM
cknowledges support from the Mullard Space Science Laboratory
MSSL) Science and Technology Facilities Council (STFC) Con-
olidated Grant ST/W001136/1. We acknowledge the support of the
upercomputing Wales project, which is part-funded by the European
ASTAI 4, 1–23 (2025)
egional Development Fund (ERDF) via Welsh Government. We
hank Antony Lewis for input on precision parameters and support
ith Cobaya; Jens Chluba and Yacine Ali-Haı̈moud for discussions
n recombination codes; and Joe Zuntz for discussions on Cos-
oSIS. In addition to the references in the main text we thank the
uthors and maintainers of public software codes including NumPy
Harris et al. 2020), SciPy (Virtanen et al. 2020), matplotlib
Hunter 2007), TensorFlow (Abadi et al. 2015), and GetDist
Lewis 2019).

Author contributions: We list here the roles and contributions of
he authors according to the Contributor Roles Taxonomy (CRediT)21

TJ: Conceptualization (equal), Investigation (equal), Methodology
equal), Software (lead), Validation (equal), Visualization (lead),

riting – original draft (equal). IH: Conceptualization (equal),
nvestigation (equal), Methodology (equal), Software (supporting),
upervision (supporting), Validation (equal), Visualization (support-

ng), Writing – original draft (equal). EC: Conceptualization (equal),
ethodology (supporting), Supervision (lead), Visualization (sup-

orting), Writing – original draft (equal). ASM: Conceptualization
equal), Methodology (equal), Writing – original draft (supporting).
B: Conceptualization (equal), Writing – original draft (supporting).
D: Writing – original draft (supporting). JCH: Conceptualization
supporting), Writing – original draft (supporting).

ATA AVAI LABI LI TY

he emulators underlying this article are available on github at https:
/github.com/cosmopower-organization/jense 2024 emulators. The
ython interface and documentation forCosmoPower is available
n github at https://github.com/alessiospuriomancini/cosmopower.

EFERENCES

badi M. et al., 2015, TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. Available at: https://www.tensorflow.org/

bbott T. M. C. et al., 2018, Phys. Rev. D, 98, 043526
bbott T. M. C. et al., 2022, Phys. Rev. D, 105, 023520
dame A. G. et al., 2024, preprint (arXiv:2404.03002)
ghamousa A. et al., 2016, preprint (arXiv:1611.00036)
iola S. et al., 2020, J. Cosmol. Astropart. Phys., 2020, 047
lam S. et al., 2021, Phys. Rev. D, 103, 083533
lsing J. et al., 2020, ApJS, 249, 5
ricò G., Angulo R. E., Zennaro M., 2022, Open Res. Europe, 1, 152
udren B., Lesgourgues J., Benabed K., Prunet S., 2013, J. Cosmol. Astropart.

Phys., 1302, 001
alkenhol L. et al., 2022, Phys. Rev. D, 108, 023510
las D., Lesgourgues J., Tram T., 2011, J. Cosmol. Astropart. Phys., 2011,

034
olliet B., Mancini A. S., Hill J. C., Madhavacheril M., Jense H. T., Calabrese

E., Dunkley J., 2024, MNRAS, 531, 1351
onici M., Bianchini F., Ruiz-Zapatero J., 2023, The Open J. Astrophys., 7,

14339
rinckmann T., Lesgourgues J., 2019, Phys. Dark Univ., 24, 100260
urger P. A. et al., 2023, A&A, 669, A69
urger P. A. et al., 2024, A&A, 683, A103
MB-S4 Collaboration, 2016, preprint (arXiv:1610.02743)
ampagne J.-E. et al., 2023, Open J. Astrophys., 6
arrion K., Carrilho P., Spurio Mancini A., Pourtsidou A., Hidalgo J. C.,

2024, The Open J. Astrophys., 6, 15
hluba J., Thomas R. M., 2010, MNRAS, 412, 748
hluba J., Vasil G. M., Dursi L. J., 2010, MNRAS, 407, 599



Framework for cosmology emulation and inference 15

C
D
D
E
F

G
H
H
H
H
H
K

K
L
L
L
L
M
M
M
M

M
M
M

M
M

N

P
P
P
P
P
Q

Q
R

S
S
S

S
S
S

S
T

T

T
V
Z

A
P

H

l

p

r

1

m

t

4

2

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/doi/10.1093/rasti/rzaf002/7951976 by guest on 06 February 2025
hoi S. K. et al., 2020, J. Cosmol. Astropart. Phys., 2020, 045
ESI Collaboration, 2024, preprint (arXiv:2404.03002)
oré O. et al., 2014, preprint (arXiv:1412.4872)
ifler T. et al., 2021, MNRAS, 507, 1746
arren G. S., Sherwin B. D., Bolliet B., Namikawa T., Ferraro S., Krolewski

A., 2023, preprint (arXiv:2311.04213)
iardiello S. et al., 2024, J. Cosmol. Astropart. Phys., 2024, 008
arris C. R. et al., 2020, Nature, 585, 357
eydenreich S., Linke L., Burger P., Schneider P., 2023, A&A, 672, A44
eymans C. et al., 2021, A&A, 646, A140
ill J. C. et al., 2022, Phys. Rev. D, 105, 123536
unter J. D., 2007, Comput. Sci. Eng., 9, 90
erzendorf W. E., Vogl C., Buchner J., Contardo G., Williamson M., van der

Smagt P., 2021, ApJ, 910, L23
ugel R., Borrow J., 2022, J. Open Source Softw., 7, 4240
esgourgues J., 2011, preprint (arXiv:1104.2932)
ewis A., 2019, preprint (arXiv:1910.13970)
ewis A., Challinor A., Lasenby A., 2000, ApJ, 538, 473
inke L., Heydenreich S., Burger P. A., Schneider P., 2023, A&A, 672, A185
adhavacheril M. S. et al., 2024, ApJ, 962, 113
andelbaum R. et al., 2018, preprint (arXiv:1809.01669)
auland R., Winther H. A., Ruan C.-Z., 2024, A&A, 685, A156
cCarthy F., Hill J. C., Madhavacheril M. S., 2022, Phys. Rev. D, 105,

023517
ead A. J., Brieden S., Tröster T., Heymans C., 2021, MNRAS, 502, 1401
iyatake H. et al., 2023, Phys. Rev. D, 108, 123517
ootoovaloo A., Jaffe A. H., Heavens A. F., Leclercq F., 2022, Astron.

Comput., 38, 100508
ore S. et al., 2023, Phys. Rev. D, 108, 123520
oretti C., Tsedrik M., Carrilho P., Pourtsidou A., 2023, J. Cosmol. Astropart.

Phys., 2023, 025
ygaard A., Holm E. B., Hannestad S., Tram T., 2023, J. Cosmol. Astropart.

Phys., 2023, 025
alud P. et al., 2023, A&A, 678, A198
an Z. et al., 2023, Phys. Rev. D, 108, 122005
iras D., Spurio Mancini A., 2023, Open J. Astrophys., 6
itrou C., Coc A., Uzan J.-P., Vangioni E., 2018, Phys. Rept., 754, 1
lanck Collaboration VI, 2020, A&A, 641, A6
u F. J., Surrao K. M., Bolliet B., Hill J. C., Sherwin B. D., Jense H. T.,

2024a, preprint (arXiv:2404.16805)
u F. J. et al., 2024b, ApJ, 962, 112
eeves A., Nicola A., Refregier A., Kacprzak T., Valle L. F. M. P., 2024, J.

Cosmol. Astropart. Phys., 2024, 042
caramella R. et al., 2022, A&A, 662, A112
chmit C. J., Pritchard J. R., 2018, MNRAS, 475, 1213
imons Observatory Collaboration, 2019, J. Cosmol. Astropart. Phys., 2019,

056
purio Mancini A., Bose B., 2023, The Open J. Astrophys., 6
purio Mancini A., Pourtsidou A., 2022, MNRAS, 512, L44
purio Mancini A., Piras D., Alsing J., Joachimi B., Hobson M. P., 2022,

MNRAS, 511, 1771
ugiyama S. et al., 2023, Phys. Rev. D, 108, 123521
he Simons Observatory Collaboration, 2019, J. Cosmol. Astropart. Phys.,

2019, 056
orrado J., Lewis A., 2019, Astrophysics Source Code Library,

record ascl:1910.019
orrado J., Lewis A., 2021, J. Cosmol. Astropart. Phys., 2021, 057
irtanen P. et al., 2020, Nat. Methods, 17, 261
untz J. et al., 2015, Astron. Comput., 12, 45

PPEN D IX A : FULL �C D M E M U L ATO R
RESCRIP TION

ere we present the full yaml prescription for our �CDM emulators.
1 network name: jense 2023 camb lcdm
2 path: jense 2023 camb \hl{lcdm}
3

4 # Details on the boltzmann code we emu-
ate
5 emulated code:
6 name: camb
7 version: ’’1.5.0’’
8 inputs: [ombh2, omch2, As, ns, H0, tau]
9 extra args:
10 lens potential accuracy: 8
11 kmax: 10.0
12 k per logint: 130
13 lens margin: 2050
14 AccuracyBoost: 1.0
15 lAccuracyBoost: 1.2
16 lSampleBoost: 1.0
17 DoLateRadTruncation: false
18 min l logl sampling: 6000
19 recombination model: \hl{CosmoRec}
20
21 # Details on the parameters we sam-
le and derive.
22 samples:
23 Ntraining: \hl{100000}
24
25 parameters:
26 # Our latin hypercube
27 ombh2: [0.015,0.030]
28 omch2: [0.09,0.15]
29 logA: [2.5,3.5]
30 tau: [0.02, 0.20]
31 ns: [0.85, 1.05]
32 h: [0.4,1.0]
33 # Parameters derived di-
ectly from our LHC
34 H0: ’’lambda h: h ∗ 100.0’’
35 As: ’’lambda logA: 1.e-
0 ∗ np.exp(logA)’’
36 # Parameters computed by our boltz-
ann code
37 thetastar:
38 sigma8:
39 YHe:
40 zrei:
41 taurend:
42 zstar:
43 rstar:
44 zdrag:
45 rdrag:
46 N eff:
47
48 # Details on each of the emula-
ors we want to create.
49 networks:
50 - quantity: ’’derived’’
51 type: NN
52 n traits:
53 n hidden: [512, 512, 512, 512]
54 training:
55 validation split: 0.1
56 learning rates: [1.e-2, 1.e-3, 1.e-
, 1.e-5, 1.e-6, 1.e-7]
57 batch sizes: [1000, 2000, 5000, 10000,
0000, 50000]
RASTAI 4, 1–23 (2025)



16 H. T. Jense et al.

R

1

1

1

4

2

1

1

1

4

2

1

1

1

4

2

1

1

1

4

2

1

1

1

4

,

1

1

1

A

W
a

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/doi/10.1093/rasti/rzaf002/7951976 by guest on 06 February 2025
58 gradient accumulation steps: [1, 1, 1,
, 1, 1]
59 patience values: [100, 100, 100, 100,
00, 100]
60 max epochs: [1000, 1000, 1000, 1000,
000, 1000]
61
62 - quantity: ’’Cl/tt’’
63 type: NN
64 log: True
65 modes:
66 label: l
67 range: [2,10000]
68 n traits:
69 n hidden: [512, 512, 512, 512]
70 training:
71 validation split: 0.1
72 learning rates: [1.e-2, 1.e-3, 1.e-
, 1.e-5, 1.e-6, 1.e-7]
73 batch sizes: [1000, 2000, 5000, 10000,
0000, 50000]
74 gradient accumulation steps: [1, 1, 1,
, 1, 1]
75 patience values: [100, 100, 100, 100,
00, 100]
76 max epochs: [1000, 1000, 1000, 1000,
000, 1000]
77
78 - quantity: ’’Cl/te’’
79 type: PCAplusNN
80 modes:
81 label: l
82 range: [2,10000]
83 p traits:
84 n pcas: 512
85 n batches: 10
86 n traits:
87 n hidden: [512, 512, 512, 512]
88 training:
89 validation split: 0.1
90 learning rates: [1.e-2, 1.e-3, 1.e-
, 1.e-5, 1.e-6, 1.e-7]
91 batch sizes: [1000, 2000, 5000, 10000,
0000, 50000]
92 gradient accumulation steps: [1, 1, 1,
, 1, 1]
93 patience values: [100, 100, 100, 100,
00, 100]
94 max epochs: [1000, 1000, 1000, 1000,
000, 1000]
95
96 - quantity: ’’Cl/ee’’
97 type: NN
98 log: True
99 modes:
100 label: l
101 range: [2,10000]
102 n traits:
103 n hidden: [512, 512, 512, 512]
104 training:
105 validation split: 0.1
ASTAI 4, 1–23 (2025)

e

106 learning rates: [1.e-2, 1.e-3, 1.e-
, 1.e-5, 1.e-6, 1.e-7]
107 batch sizes: [1000, 2000, 5000, 10000,
0000, 50000]
108 gradient accumulation steps: [1, 1, 1,
, 1, 1]
109 patience values: [100, 100, 100, 100,
00, 100]
110 max epochs: [1000, 1000, 1000, 1000,
000, 1000]
111
112 - quantity: ’’Cl/bb’’
113 type: NN
114 log: True
115 modes:
116 label: l
117 range: [2,10000]
118 n traits:
119 n hidden: [512, 512, 512, 512]
120 training:
121 validation split: 0.1
122 learning rates: [1.e-2, 1.e-3, 1.e-
, 1.e-5, 1.e-6, 1.e-7]
123 batch sizes: [1000, 2000, 5000, 10000,
0000, 50000]
124 gradient accumulation steps: [1, 1, 1,
, 1, 1]
125 patience values: [100, 100, 100, 100,
00, 100]
126 max epochs: [1000, 1000, 1000, 1000,
000, 1000]
127
128 - quantity: ’’Cl/pp’’
129 inputs: [ombh2, omch2, logA, ns, h]
130 type: PCAplusNN
131 log: True
132 modes:
133 label: l
134 range: [2,10000]
135 p traits:
136 n pcas: 64
137 n batches: 10
138 n traits:
139 n hidden: [512, 512, 512, 512]
140 training:
141 validation split: 0.1
142 learning rates: [1.e-2, 1.e-3, 1.e-
, 1.e-5, 1.e-6, 1.e-7]
143 batch sizes: [1000, 2000, 5000, 10000
20000, 50000]
144 gradient accumulation steps: [1, 1, 1,
, 1, 1]
145 patience values: [100, 100, 100, 100,
00, 100]
146 max epochs: [1000, 1000, 1000, 1000,
000, 1000]

PPENDI X B: DATA SET FI LE STRU CTURE

e opted to standardize the data set file structure for CosmoPower,
s a way to streamline the emulator building process for the
nd-user. At the python-interface side, we included a cosm-



Framework for cosmology emulation and inference 17

p
a

r
d
f
r
g
f

o
m
s
c
g
w
e
m
a
a

h
a
a
r
t
s
r
c
L

h
p
t
M

t
i
f
a

A
A

T
i
d
i
a
o
t

t
P
e
n
b
q

e
W
i
s

Figure C1. A scree plot, showing the unexplained variance of a PCA
compression for the various CMB quantities, as a function of the number
of retained principal components. The ‘scree’ of each line is the flat plateau
of each line. We observed that for C

φφ
� , this scree lies around 64 principal

components (vertical line), and hence a PCA compression of 64 retained
components is effective for a C

φφ
� emulator. Conversely, however, observing

the scree for CBB
� at around 100 principal components, we expected to see the

same for this quantity. We attribute the lack of an improvement in emulation
for this quantity to the presence of important features which shift in �-space
for that quantity, which would not be retained by our implementation of PCA.

F
l
r
a
s
t
t

t
s
a
m
t
i
a
s
d
o
h
e

A
S

F
o
r
γ

m
l
N
t
o
f
L

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/doi/10.1093/rasti/rzaf002/7951976 by guest on 06 February 2025
ower.Dataset class that wraps around the file structure easily
nd handles the file parsing in a safe manner.

The main file format we settled on is Hierarchical Data Format
evision 5 (HDF5), which is a file format designed to handle large
ata sets of tabular nature, something that lends itself specially well
or this issue. Via the h5py library in python, HDF5 is also a
elatively fast and memory-efficient read/write access, offering both
ood compression for hard drive storage and decompression rates
or RAM access during runtime.

The training data needs to accurately match the �d(�θ ) mapping
f our emulators well, while also being robust against potentially
issing datapoints and multithreaded reading access. We opted to

plit this mapping into two different files, a parameters file which
ontains the main LHC of the data set and is only used for spectra
eneration, and a (set of) files for the computed observable quantities,
hich are named as Cl tt.0.hdf5, Cl tt.1.hdf5, etc. for

.g. CT T
� . The quantity files are split into several files, to allow

ultithreaded write access without having to worry about data races,
nd to prevent issues when opening data files which are larger than
device’s available RAM.
The parameters file contains a header and a main body. The

eader contains an ordered list of strings for the p parameters that
re to be passed on to the Boltzmann code. The main body contains
p × N table of N samples from the LHC. Because the LHC is

elatively small in size and quick to generate, this file never needs
o be written to in different threads and can be kept as one file. It is
tored separately from the main data set in case a spectra generation
un is interrupted and needs to be resumed at a later stage, in which
ase it can be ensured that new spectra are sampled from the same
HC as before.
Each quantity file also contains a header and a main body. The

eader contains a list of M modes for the quantity, the names of the
arameters that are to be used for the emulator. In the main body,
here is a p × N array of input parameters for each spectra, and a

× N array where each M-length spectrum is stored. In addition,
here is a N -array of indices stored, the entries of which refer to the
ndices of the parameters file that each sample was computed
rom. Because quantity files are pre-allocated before they are filled,
n index of −1 indicates that a spectrum has not been computed yet.

P P E N D I X C : PR I N C I PA L C O M P O N E N T
NA LY SIS

he use of principal component analysis (PCA) can be worthwhile
n improving the accuracy of the emulator by compressing the full
ata into a smaller number of free components. While the reduction
n freedom in the output is reduced and has therefore less capacity to
ccurately recover the original spectra, the reduced dimensionality
f the output vector means that the emulator can more efficiently
rain on this reproduction.

The choice of whether or not to use PCA is not trivial, and
here is no simple test that can conclusively show that the use of
CA compression is guaranteed to be beneficial before training an
mulator. While for some cases, like CT E

� , the use of a PCA is
eeded due to the zero-crossing of the observed quantity, it may not
e obvious a priori that the use of a PCA can improve it for other
uantities as well.
It was observed in Spurio Mancini et al. (2022) that the C

φφ
�

mulator improved in accuracy when employing PCA compression.
e observed that this can be explained by making a scree plot, which

s a line plot of the eigenvalues of all retained PCA components. We
how a scree plot of the training data for our �CDM emulators in
ig. C1. By observing where this line flattens out (the ‘scree’ of the
ine), one can estimate the amount of components that need to be
etained in the PCA. For the C

φφ
� spectra, we found that this scree

ppears around 60 components, which means around 64 components
hould be sufficient to accurately decompose the 10 000 � modes of
he spectra without loss of information. Similarly, a scree plot showed
hat a few hundred components should be sufficient for CT E

� .
However, a scree plot is not necessarily conclusive. We observed

hat the CBB
� are also dense enough that about 200 PCA components

hould be capable of accurately recovering them. Upon training such
n emulator however, we found that direct emulation of CBB

� was
ore accurate than one that employed PCA compression. We think

his is due to the fact that the BB spectra contain features which vary
n � under certain parameter variations, and hence cannot be properly
ccounted for in PCA compression. Since our regular emulators were
hown to be more than accurate for physical analysis, we did not
o an in-depth analysis of this discrepancy. Further investigation,
r a different type of information compaction that does allow for
orizontal shifts in �-space, can perhaps allow for more accurate
mulators in the future.

PPENDI X D : SPECI FI CATI ON OF
TAG E-IV-LIKE 3×2 PT DATA

or assessing the accuracy of our emulation of P (k) at Stage-IV levels
f precision on LSS data, we create a data set containing angular cor-
elation functions for galaxy clustering w(θ ), galaxy–galaxy lensing
t (θ ), and cosmic shear ξ±(θ ). In addition to the fiducial cosmological
odel and parameters for �CDM shown in Table 3, we include

inear galaxy bias parameters for the lens galaxies, a two-parameter
LA model for galaxy intrinsic alignments, one-parameter per

omographic bin central shift parameters for redshift distributions
f the sources and lenses, and one parameter per tomographic bin
or multiplicative shear bias calibration of the sources. Following the
SST-SRDC (Mandelbaum et al. 2018) specification for LSST-Y10
RASTAI 4, 1–23 (2025)



18 H. T. Jense et al.

RASTAI 4, 1–23 (2025)

Figure D1. The �CDM model constraining power of the Stage-IV-like
3×2 pt large scale structure data set used to benchmark the trained P (k)
emulator. For scale we show the official DES-Y1 (Abbott et al. 2018) chain,
which use the exact same likelihood pipeline but with their real data.

w
n

t
i
b
n

o
W
o
f
E
s
p

A
E

H
b
a

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/doi/10.1093/rasti/rzaf002/7951976 by guest on 06 February 2025
e assume a redshift distribution for both sources and lenses given by
(z) ∝ z2 exp [−(z/z0)α] with α = 0.783, z0 = 0.176 and convolve

his with a Gaussian of width σz = 0.05(1 + z). Sources are placed
nto four tomographic bins and lenses placed into five tomographic
ins, all equally populated with the total number density of galaxies
gal = 27 [arcmin−2] (note that this tomographic binning is not the
ne expected for the LSST analysis, but matches the DES-Y1 model).
hen modelling the covariance we assume a σe = 0.26 and a sky area

f 14 300 deg2. In Fig. D1 we show the �CDM model constraints
rom this data set (using CosmoPower), alongside the official Dark
nergy Survey Y1 results from Abbott et al. (2018) (which use the
ame model and likelihood pipeline) to give a sense of the relative
ower.

P P E N D I X E: AC C U R AC Y P L OTS FO R
X T E N S I O N MO D E L E M U L ATO R S

ere we reproduce Fig. 6 for the extended models we consider
eyond �CDM, with all models showing acceptable levels of
ccuracy as discussed in Section 2.5.



Framework for cosmology emulation and inference 19

Figure E1. Same as Fig. 6 but for �CDM + Neff .

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/doi/10.1093/rasti/rzaf002/7951976 by guest on 06 February 2025
RASTAI 4, 1–23 (2025)



20 H. T. Jense et al.

R

Figure E2. Same as Fig. 6 but for �CDM + �mν .

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/doi/10.1093/rasti/rzaf002/7951976 by guest on 06 February 2025
ASTAI 4, 1–23 (2025)



Framework for cosmology emulation and inference 21

Figure E3. Same as Fig. 6 but for �CDM + Neff + �mν .

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/doi/10.1093/rasti/rzaf002/7951976 by guest on 06 February 2025
RASTAI 4, 1–23 (2025)



22 H. T. Jense et al.

R

Figure E4. Same as Fig. 6 but for �CDM + w0wa .

A
E

I
b
c
i
o

d
e
n

e
σ

s

b
s
l
b
a
c
c
t
l
o

l
p
t
l
S

Figure F1. A comparison of the recovery of PNL(k, z) by direct-emulation
(top panel) and by linear+boost emulators (lower panel). We note that while
both methods provide sub-per cent recovery of the non-linear matter power
spectrum, direct emulation is better than using the boost emulator, contrary
to what was found in Spurio Mancini et al. (2022). This may be down to
particularities in the specific setups used, such as parameter ranges used,
number of training samples, or other hyperparameters.

l
W
w
T
a
d

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/doi/10.1093/rasti/rzaf002/7951976 by guest on 06 February 2025
PPENDIX F: AGREEMENT O F D IFFERENT
M U L ATO R S O N C O M M O N QUA N T I T I E S

n some cases, different emulators compute quantities that are shared
etween them. For these cases, we compared their results and
hecked whether they agreed with each other and, where possible,
f one emulator could reasonably recover the validation data of the
ther emulator. We note two cases where this is of interest to us:

(i) We emulate the non-linear matter power spectrum PNL(k, z)
irectly, and, following the original suggestion from Spurio Mancini
t al. (2022), we emulate it indirectly as the linear Plin(k, z) and
on-linear boost PNL/Plin(k, z) − 1 emulators;
(ii) We emulate both the redshift evolution σ8(z) with the P (k)

mulator suite, as well as the present-day value of this parameter
8 as part of the derived parameters emulator in the CMB emulator
uite.

In both these cases, the full parameter space is not the same
etween the two emulators, for example the linear matter power
pectrum does not depend on the baryonic feedback parameter
og TAGN, while similarly the CMB emulators do not include the
aryonic feedback model, and thus σ8 as a derived parameter is
lways evaluated at log TAGN = 7.8 (see Table 2). For the former
ase, we can simply assume that the baryonic feedback is fully
aptured by the boost emulator, while for the latter case, we chose
o make the comparison across a subset of parameter space where
og TAGN = 7.8. The results of the tests shown below here are done
nly for the �CDM emulator suites.
We show the comparison of the non-linear power spectrum emu-

ators in Fig. F1. We compare the recovery of the non-linear matter
ower spectrum across 10 000 independent validation datapoints for
he direct non-linear emulator, and the indirect emulation through the
inear and boost emulators. We note that contrary to the findings of
purio Mancini et al. (2022), we find that direct emulation of the non-
ASTAI 4, 1–23 (2025)
inear matter power spectrum is better than the indirect emulators.
hile both methods reach sub-percent accuracy, direct emulation
as up to a factor 10 better, especially in the range 10−2 ≤ k ≤ 100.
hese kinds of finds may be down to many hyperparameters, such
s the range of parameters chosen, the number of training samples,
esign of the neural network itself, or training steps and step sizes. To



Framework for cosmology emulation and inference 23

F
e
c
p
d
p
p
l
t

r
b

p
e
s
fi
W
f
w
r
p
t
e
h
t
t
e
o

T

©

P

(

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/artic
igure F2. A comparison of the recovery of σ8 by the derived parameter
mulator and the redshift-evolution emulator. The top panel shows the
omparison between the true value and the emulated value, while the bottom
anel shows the fractional error in the emulator across the range of values. The
erived parameter emulator recovers σ8 to within 1.7 per cent (99.7 per cent
ercentile), while the redshift evolution emulator recovers it to within 0.15
er cent (99.7 per cent percentile). We associate the higher accuracy of the
atter emulator to the fact that its training set contains more data correlated to
his quantity.
2025 The Author(s).

ublished by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access articl

https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproductio
etain compatibility with previous CosmoPower results, we release
oth methods of non-linear power spectrum emulators.
For the value of σ8(0), which we emulated both with the derived

arameters emulator of the CMB suite, and the redshift evolution
mulator of the P (k) suite, we generated a separate validation
et across the common parameter ranges, keeping log TAGN = 7.8
xed as the derived parameters emulator did not use this parameter.
e then evaluated the σ8 derived parameter and the σ8(z = 0) bin

or the redshift evolution emulator, and compared their predictions
ith the validation results, shown in Fig. F2. We note that the

edshift evolution emulator reached better accuracy than the derived
arameter emulator, although both reached decent precision for this
est. We attribute the higher accuracy for the redshift evolution
mulator to the specifics of the training setup: since this emulator
as been trained on 1000 redshift values for each training point,
he mutual information between these values may have helped
he emulator train to higher precision than the derived parameter
mulator, which only had 10 quantities that did not have this degree
f correlation between them.

his paper has been typeset from a TEX/LATEX file prepared by the author.
RASTAI 4, 1–23 (2025)

e distributed under the terms of the Creative Commons Attribution License

n in any medium, provided the original work is properly cited.

le/doi/10.1093/rasti/rzaf002/7951976 by guest on 06 February 2025


