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Abstract
Objective. Inclusion of individualised electrical conductivities of head tissues is crucial for the
accuracy of electrical source imaging techniques based on electro/magnetoencephalography and
the efficacy of transcranial electrical stimulation. Parametric electrical impedance tomography
(pEIT) is a method to cheaply and non-invasively estimate them using electrode arrays on the scalp
to apply currents and measure the resulting potential distribution. Conductivities are then
estimated by iteratively fitting a forward model to the measurements, incurring a prohibitive
computational cost that is generally lowered at the expense of accuracy. Reducing the
computational cost associated with the forward solutions would improve the accessibility of this
method and unlock new capabilities. Approach.We introduce reduced order modelling (ROM) to
massively speed up the calculations of these solutions for arbitrary conductivity values.Main
results.We demonstrate this new ROM-pEIT framework using a realistic head model with six tissue
compartments, with minimal errors in both the approximated numerical solutions and
conductivity estimations. We show that the computational complexity required to reach a
multi-parameter estimation with a negligible relative error is reduced by more than an order of
magnitude when using this framework. Furthermore, we illustrate the benefits of this new
framework in a number of practical cases, including its application to real pEIT data from three
subjects. Significance. Results suggest that this framework can transform the use of pEIT for seeking
personalised head conductivities, making it a valuable tool for researchers and clinicians.

1. Introduction

Characterising the electromagnetic activity in the
brain is essential for understanding its function in
health and disease. The preferred methods to meas-
ure this activity are electroencephalography (EEG)
and magnetoencephalography (MEG), forming the
foundation of electrical source imaging (ESI) tech-
niques. ESI methods rely on computational models
of head tissues including anatomical structure and
physical properties such as the electrical conductiv-
ity map [1]. The use of realistic and individualised

head models has been shown to greatly improve the
accuracy of these methods [2, 3]. In addition, real-
istic models aid the optimal placing of electrodes
and dosage planning in transcranial electrical stim-
ulation (TES) [4]. To generate these models, anatom-
ical structure can generally be obtained from mag-
netic resonance or computerised tomography images
using existing tools [5]. However, electrical conduct-
ivities are typically selected as a population average
for each tissue. A recent analysis has shown that con-
ductivity values in all human head tissues likely vary
significantly between individuals, challenging these
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assumptions [6]. Moreover, studies have shown that
inaccurate conductivity values lead to errors in source
localisation in EEG/MEG [2, 7–10] and current loc-
alisation in TES [11, 12]. Therefore, there exists a
need to estimate these conductivities on an individual
basis.

Parametric electrical impedance tomography
(pEIT) is a relatively affordable and non-invasive
method for estimating the conductivities of tissues
in a human head [13]. Using an array of electrodes
placed on the scalp, a small current is injected and
extracted from a subset and the electrical potential
is measured on the complementary set. This tech-
nique seeks to estimate the conductivities of head
tissues by simulating forward solutions for sets of
parameters and tuning the set to best match the elec-
trical potential measurements taken. This allows one
to characterise an individualised conductivity field.
As this model becomes more detailed, the computa-
tional expense of these simulations increases, present-
ing a serious limitation for highly realistic models
where pEIT can take days to complete on a standard
PC.

The current best effort to address computational
load is to reduce the number of solutions required
for pEIT to converge by utilising a gradient assisted
optimisation method [14]. This approach has proven
successful for estimating scalp and skull conductiv-
ities from in vivo and synthetic measurements to a
good level of accuracy [15, 16]. However, this method
requires the additional calculation of a gradient in
each iteration, which itself is computationally costly.

Furthermore, estimating the conductivity of some tis-
sues proves challenging. For example, the conductiv-
ity of the spongiform bone inside the skull has been

estimated with a coefficient of variation as large as
one [15].

In this work, we apply reduced order model-
ling (ROM) directly to pEIT to alleviate the compu-

tational demand while simultaneously allowing the
use of alternative optimisation methods for a faster
pEIT framework. ROM is a method utilised to find

approximate numerical solutions to a parameterised
boundary value problem quickly and accurately [17].
This process consists of a computationally intensive

offline training phase and a real-time online phase.
During the offline phase, a reduced order model is

constructed using solutions to the boundary value
problem at different points in a multi-dimensional
parameter space. The online phase then utilises this

model for real-time approximations of solutions for
any set of parameters. We show that this frame-
work yields significant improvements in the speed of

the estimation of all tissues in the head, assimilat-
ing the new capability to confidently estimate con-

ductivities previously unreachable with traditional
approaches.

2. Methods

2.1. Parametric EIT formulation
Parametric EIT is an ill-posed inverse problem (IP)
that results in estimates of the electrical conductivities
of tissue compartments. This is done by iteratively
minimising the squared error between the measure-
ments y ∈ RL and the conductivity-dependent simu-
lated signals U ∈ RL on L electrodes. Mathematically,
this is generally expressed as

σ̂ = argmin
σ

{
(y−U(σ))

T
(y−U(σ))

}
, (1)

where σ̂ are the estimated conductivities [16]. This
results in an optimisation process that requires
the calculation of one or more forward problems
(FPs) at each iteration and then updating σ based
on the error and the optimisation technique used
(figure 1).

The pEIT-FP is a boundary value problem gov-
erned by a Laplace equation subject to mixed bound-
ary conditions. We utilise the complete electrode
model (CEM), which represents the effect of contact
impedance between skin and electrodes in the prob-
lem [18]. The CEM requires boundary conditions
that imply that no current leaves the boundary on an
area not covered by an electrode and that the applied
current is defined for each electrode [18]. The CEM
imposes an individual contact impedance and uni-
form electrical potential across each electrode. The
formulation and numerical methods for the pEIT-FP
solution are well documented in the literature [15,
16, 18–20]. Here, we adopt the finite element (FE)
method due to its flexibility to handle arbitrarily-
shaped compartments. After discritisation, the vari-
ational formulation of the pEIT-FP considering the
CEM [18, 21] results in the system [20]

A(σ)u(σ) = b, (2)

where,

A(σ) =

[
K(σ) −B
−BT C

]
, (3a)

u(σ) =

[
un (σ)
U(σ)

]
, b=

[
0
I

]
, (3b)

un(σ) ∈ Rn is the solution vector on the n nodes
of the volumetric FE mesh and I ∈ RL is the vec-
tor of injection currents on the electrodes. The mat-
rix K(σ) ∈ Rn×n is known as the stiffness matrix
and depends on the conductivity values of each
compartment σ = {σ1,σ2, . . . ,σP}, where P is the
number of tissue compartments. The matrices B ∈
Rn×L and C ∈ RL×L encode information about the
electrodes on the surface of the domain and do
not depend on the conductivity. The entries of the
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Figure 1. Flow chart of the traditional implementation of the IP for pEIT. Here, ϵ refers to a stopping threshold, σ0 is the
initial conductivity guess and σ̂ is the estimated conductivity value. Note that each loop requires at least a full calculation of
the forward problem.

matrices K, B and the diagonal matrix C are given
by [22]

Kij =

ˆ
Ω

⟨σ∇ψi,∇ψj⟩dΩ+
L∑

l=1

1

zl

ˆ
el

ψiψjd(∂Ω) ,

(4a)

Bil =
1

zl

ˆ
el

ψid(∂Ω) , (4b)

Cll =
1

zl

ˆ
el

d(∂Ω) =
|el|
zl

, (4c)

where el represents the lth electrode, |el| its area, zl its
contact impedance, Ω is the domain (i.e. the head)
with boundary ∂Ω, and ψi is a basis function on the
nodes i = 1,2, . . . ,n.

A useful property of the matrix K(σ) is that, in
the case of homogeneous conductivities, it can be
linearly decomposed into several constituent stiff-
ness matrices Kp ∈ Rn×n, each representing a differ-
ent compartment p in the head model and independ-
ent of σ [16]. Consequently, the matrix A(σ) can be
split into P+ 1 matrices Ap ∈ R(n+L)×(n+L), i.e.

A(σ) = A0 +
P∑

p=1

σpAp, (5)

where A0 is a σ-independent matrix encoding the
information from matrices B and C and the second
term in equation (4a). It is straightforward to show
that such a decomposition holds even in the case
of anisotropic conductivities [16]. This property is
referred to as affine decomposition of the parameters
of interest (i.e. the conductivities) and it is a fun-
damental requirement for a system where ROM is
applied.

2.2. Reduced order modelling
ROM is a mathematically rigorous technique to
efficiently build a low-dimensional model mapping

changes in a set of conductivities to changes in
the solution of equation (2) [17]. This model is
constructed in an offline phase using a relatively small
number of N<< (n+ L) strategically selected solu-
tions of equation (2) with specific conductivities,
which are then used in the ‘online’ phase to find
rapid solutions for any set of conductivities. Below,
we present a brief overview of the fundamental prin-
ciples of ROM.

Taking advantage of the affine decomposition,
massively reduced versions of the Ap matrices can
be formed using the reduced model, allowing the
assembly of a reduced system in the online phase at
any point in the P-dimensional parameter spaceP ∈
RP (i.e. for any set of conductivities). This new sys-
tem can be solved in real-time, resulting in a reduced-
basis solution uN ∈ RN that is easily transformed to
ua ∈ Rn+L approximating the solution of the high-
dimensional system u.

The model is trained using a number of full-
order solutions, called snapshots, which are selec-
ted strategically across P . Judiciously choosing the
points with which to build the reduced model is
done by employing a greedy algorithm. A distin-
guishing feature of ROM is the presence of a rigor-
ous upper bound ∆(σ) on the error of the approx-
imate solutions, which guides the greedy algorithm
in the snapshot selection, acting as a proxy for the
error [17]. This bound on the error can be calcu-
lated almost instantly for any given point in P and
can therefore efficiently explore the space to guide
the next snapshot point. During each iteration of the
greedy algorithm, the bound is calculated for a finite
sample set Ξ ⊂ P and a snapshot is generated using
the conductivity set that minimises it. Ξ is chosen
to represent the entire P-dimensional space P .
Utilising the bound to select the snapshots presents
two advantages. Firstly, it allows an extremely quick
assessment of the maximum error attainable at a fine

3
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discritisation of P . Secondly, it can be used as a
stopping criterion for certifying the maximum error
in ua [17]. The relationship between the a posteriori
relative error [RE(σ)] for a given point in P and the
a posteriori relative error bound [∆RE(σ)] is [17]

RE(σ)≜ ||u(σ)−ua (σ) ||L2
||ua (σ) ||L2

⩽ ∆(σ)

||uN (σ) ||L2
≜∆RE (σ) . (6)

The reduced model takes the form of a reduced-
basis space, built using the snapshots calculated by
the greedy algorithm. To obtain the reduced system,
the full-order stiffness matrices are projected on the
space during the offline phase. This reduced-basis
space is represented by the matrix V ∈ R(n+L)×N.
To construct the orthonormal basis V we perform
a Gram–Schmidt orthonormalisation on a snapshot,
before adding it to the orthonormal basis iteratively.
We begin by selecting a random parameter vector
σ1 ∈ Ξ and computing the full-order solution u(σ1).
The first basis vector for the orthonormal space is
simply the first snapshot, which is a full-order solu-
tion (i.e. ζ1(σ1) = u(σ1)). Thereafter, the orthonor-
malised solutions ζ j(σ) for the jth snapshot are con-
catenated,

V= [u(σ1) ,ζ2 (σ2) , . . . ,ζN (σN)] , (7)

such that {σ1,σ2, . . . ,σN} ⊂ Ξ. Also known as the
transformation matrix, V relates the projected stiff-
ness matrix AN(σ) ∈ RN×N and projected independ-
ent vector bN(σ) ∈ RN with the full-order versions
through the expressions [17]

AN (σ) = VTA(σ)V, bN (σ) = VTb(σ) , (8)

resulting in the reduced system to solve

AN (σ)uN (σ) = bN (σ) , (9)

where ua(σ) = VuN(σ). It is clear from equation (8)
that, as N<< (n+ L), the dimensions of the result-
ing system are massively reduced, requiring signific-
antly fewer operations to solve. Ultimately, thismeans
that a FP can be calculated at any point in P almost
instantly. Figure 2 shows a flowchart of the greedy
algorithm, demonstrating the construction of V.

Finally, it should be noted that the calculation of
the bound relies on a σ-dependent parameter called
the stability factorβh(σ), related in the followingway

∆(σ) =
||b−A(σ)VuN (σ) ||L2

βh (σ)
. (10)

The numerator of equation (10) is known as the
residual and can be found very quickly with some
computational splitting inside the greedy algorithm.
Obtaining the stability factor, however, is a more
computationally intensive calculation requiring the

solution to a generalized eigenvalue problem [17].
Therefore, we employ a similar schema as before,
splitting it into an offline training phase and online
real-time phase. The offline phase involves creating
an interpolant using radial basis functions and inter-
polation points in P which can then be used in the
online phase for a quick evaluation of βh(σ) for any
point inP . For details on the splitting of the residual,
calculation of the bound, its offline/online decom-
position, and its calculation for a rank-deficient stiff-
ness matrix, the reader is referred to Quarteroni et al
(2016) [17, chapters 3,4,6].

2.3. Implementation and experiments
2.3.1. Set-up
We used a realistic head model discritised with 5M
tetrahedral elements and 800k nodes. The model
was based on the Colin27 atlas [23] and processed
as in previous publications [2]. A cross section is
shown in figure 3(a) depicting different tissue com-
partments, i.e. scalp, compact skull bone, spongi-
form bone, cerebrospinal fluid (CSF), grey matter
(GM) and white matter (WM). The conductivities
chosen for the synthetic measurements were uni-
form random samples within the interquartile ranges
described in table 1 for each of the tissues. The min-
imum, lower and upper quartiles and maximum val-
ues (excluding outliers) were chosen from the work
carried out by McCann et al [6]. A reduced model for
each electrode pair used was trained for conductivity
parameters within these ranges.

2.3.2. Technical implementation
For each conductivity sample, the FP was solved for
each of the 132 pairs of electrodes, where the injec-
tion and extraction electrode had 20 µA and−20 µA
current applied, respectively. All pairs are composed
of a unique injection electrode and a sink electrode
that is common for all pairs placed on the scalp above
the Sagittal suture (position Cz). This choice of elec-
trode pairs allows the flexibility to simulate any elec-
trode pair through a simple linear combination of
the solutions of the trained pairs. This linearity on
the discretised problem follows from equation (2).
Given the two systemsAu1 = b1 andAu2 = b2, a third
system Au3 = b3 can be solved using A(u1 − u2) =
(b1 − b2), where u3 = u1 − u2 and b3 = b1 − b2. For
example, signals from injection pairs 1–132 and 2–
132 can be subtracted from one another to obtain
the signals from the injection pair 1–2. For each pair,
all electrodes that were not assigned as injection/ex-
traction electrodes had an injected current of zero
set to complete the boundary conditions. These elec-
trodes measure the electric potential, as with stand-
ard pEIT protocol [15]. Electrodes were positioned
according to the ABC-128 standard layout (as used
in BioSemi products) with the addition of fiducial
electrodes placed in the nasion, inion and left and
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Figure 2. Greedy algorithm used in the offline training phase for ROM where ϵ is some stopping threshold (see text). This
algorithm guides the selection of conductivity samples in parameter space P when constructing the reduced model and relies
on an error bound∆RE(σ) evaluated over a fine sample train Ξ across P . The samples are the points at which snapshots
(full-order solutions) are taken before being orthonormalised iteratively to build V.

Figure 3. (a) Cross section of the FE mesh with compartments coloured separately. (b) Electrodes (red circles) modelled on the
surface of the scalp. (c)–(f) Selection of the first basis vectors (ζ2, ζ4, ζ7 and ζ11, respectively) for the transformation matrix V
made for an electrode pair plotted on the FE mesh. The colour indicates the value of the projected basis vector at each node that
represents the additional information being encoded.

5



J. Neural Eng. 22 (2025) 016018 M RWalker et al

right preauricular points and an electrode at the ver-
tex (Cz), resulting in 133 sensors. This layout is par-
tially displayed in figure 3(b). An average common
reference (AR) was applied to the potentials on the
electrodes.

The systems of equations (encapsulating the
mixed boundary conditions) were solved with the
preconditioned conjugate gradient (PCG) solver with
incomplete LU preconditioners [24]. They were
solved with a tolerance of 10−10 and a maximum
number of iterations of 6000. The Gaussian noise
added to the measurements had a standard deviation
of 0.82 µV, which is similar to the noise found in real
measurements [15]. The 133 electrodes were mod-
elled as 1cm diameter circles on the surface of the
scalp with an effective contact impedance of 5Ωm2.

The FE method was implemented using first-
order linear basis functions on themesh nodes as used
by Vauhkonen et al [20]. Analytical expressions of
the element matrices needed in equations (4a)–(4c)
were utilised to avoid errors due to numerical quad-
rature [25].

The ROM method was trained using the same
model, injection patterns and range of conductivit-
ies as above. We chose to train ROM for up to 100
snapshots to demonstrate the reduction in error in the
FPs and IPs. However, as will become clear, there are a
number of stopping criteria that can guide howmany
snapshots to take.

Similarly to other work [15], we have removed
some erroneous estimations from injection patterns
where the IP has either not converged or has given
an unrealistic conductivity (e.g. negative conductiv-
ities), which may occur for the traditional method
only as it is based on an unconstrained optimisation
technique.

It should be noted that the matrix A0 in
equation (5) can be further affinely decomposed into
a impedance (‘z’) independent matrix with a coeffi-
cient equal to z−1

l , l= 1, . . . ,L. In this way, zl can be
trained as an additional set of parameters. However,
we found that even across a large range of contact
impedances, the effect on the FPs and IPs was negli-
gible, as reported for EEG [26].

The reduced models generated for each electrode
pair are completely independent, similarly to the IPs
for the traditional method. Therefore, computational
work was trivially parallelised by electrode pair on
a cluster computer with 11 Intel(R) Xeon(R) X5660
CPU nodes at 2.80GHz. Each node had 12 cores and
16GB of memory per core.

2.3.3. Experiment 1 - ROM performance
Our first experiment serves two main purposes. The
first is to confirm that the pEIT-FP is meaningfully
reducible in the sense that, for small N values, ua

quickly converges to u. The second is to validate our
boundwhile simultaneously assessing its tightness. To
achieve these aims, we plotted the average and max-
imum RE(σ) and ∆RE(σ) as a function of N. The
∆RE(σ) was calculated in the training phase during
the greedy algorithm for a 6000 sample train across
P for each electrode pair. The mean and maximum
∆RE(σ) across the sample train were found for each
electrode pair and then averaged across all of them.
The RE(σ) was calculated for each electrode pair for
100 samples of P . The average RE(σ) across all elec-
trodes for each sample was found before plotting the
average and maximum across P . This was repeated
for an increasing number of snapshots.

2.3.4. Experiment 2 - IP performance
To assess how useful the ROM-pEIT framework is,
we considered two important metrics: the accur-
acy of the IP solutions and the computational cost
required to achieve them. To that end, we com-
pared our results with the best approach currently
in the field, which provides reliable estimations for
scalp and compact skull electrical conductivities [15].
This method minimises equation (1) using the
gradient-assisted quasi-Newton method. However,
this requires the calculation of the gradient of the
solution for each FP, for each of the parameters being
searched for [15, 27]. The gradient can be found
using [15]

∂A−1 (σ)b

∂σp
=−A−1 (σ)Apu, ∀p= 1, . . . ,P. (11)

From equation (11), it is clear that finding each of
the gradients requires solving another large system of
equations similar to the FP. This results in a signific-
ant overhead in terms of computational cost, espe-
cially when multiple parameters are being estimated
simultaneously. Inserting this into the loop in figure 1
shows that, for each iteration in the optimisation, the
number of large systems of equations to solve is equal
to the FP plus the number of tissues being estimated.
Henceforth, we shall refer to this method of gradient
assisted optimisation using the full-order FP as the
traditional method.

A further consequence of using the reduced sys-
tem of equations (9) is that the derivative (11)
can no longer be calculated and therefore neither
can the quasi-Newton method be utilised efficiently.
However, using quasi-Newton methods to reduce the
computational cost is no longer of concern, and we
are free to explore othermethods, such as the interior-
point optimisation approach. Although this method
requires more loops and therefore more systems to
solve than the quasi-Newton algorithm, the cost of
the new optimisation is still negligible compared to
the traditional technique. Therefore, we have chosen
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Table 1. Ranges of conductivities used to define the parameter space P where the reduced models are trained. Minimum, lower quartile
(LQ), upper quartile (UQ), and maximum (excluding outliers) reported by McCann et al [6].

Compact Spongiform
Scalp Bone Bone CSF GM WM

Min. (Sm−1) 0.136 0.0008 0.001 1.388 0.060 0.065
LQ (Sm−1) 0.303 0.002 0.013 1.450 0.268 0.092
UQ (Sm−1) 0.444 0.009 0.043 1.794 0.508 0.177
Max. (Sm−1) 0.620 0.0131 0.088 1.794 0.739 0.228

to compare the computational cost of the ROM-
pEIT framework and the traditional method by using
the number of (n+ L)× (n+ L) linear systems of
equations needed to be solved for each electrode pair.
For ROM, all of these systems are solved in the off-
line phase. Given that these systems embody the bulk
of the computational work, it is an appropriate met-
ric for comparison. Making the comparison inde-
pendent of the electrode pairs means that the savings
are the same irrespective of the injection protocols
used.

For the traditional method, the IP was run as
a three-parameter search, optimising for the scalp,
compact skull and spongiform bone simultaneously.
For the conductivities not being optimised (CSF, GM,
WM), they were fixed to the reference truth values
used to make the synthetic measurements. We chose
this format to isolate and assess the estimation of the
three conductivities stated only.

To assess the improvement in the IP, we redefined
the RE as

RE= |σ̂−σ|/σ, (12)

where σ̂ and σ are the estimated and the ground
truth scalar conductivities, respectively. The estim-
ation progress was logged at each iteration and
plotted as the RE between the estimation and the
sample parameters. The ROM IP was run as a 6-
parameter search to estimate all of the compart-
ments in the model. All optimisations were star-
ted from the centre point of the ranges specified in
table 1.

The mean of the RE in the estimation for each tis-
sue for each number of iterations (and function eval-
uations within those iterations) was calculated, and
then averaged across 10 randomly selected conduct-
ivity samples. We used 10 samples due to the compu-
tational cost of the traditional method. The IP with
ROM was then run for a further 90 samples of P
and plotted separately with the average RE across the
samples and electrodes displayed for all tissues.

To further assess the estimations, we repeated the
ROM-pEIT IP with the reduced model containing 30
snapshots for various signal-to-noise ratios (SNRs)
by increasing the standard deviation in the additive
Gaussian noise. The RE in each tissue was averaged
across all electrode pairs and samples.

2.3.5. Experiment 3 - anisotropy
It has been shown that the inclusion of the spon-
giform bone in head models reduces the error in
the EEG-FP and IP [2]. However, in the event of
missing spongiform information, the skull may be
modelled as a single compartment with anisotropic
conductivity [16, 28]. Therefore, a separate experi-
ment aimed to demonstrate the adaptation of ROM-
pEIT to model a homogeneous and anisotropic skull
conductivity.

Firstly, we modified the realistic head model by
merging the compact and spongiform bone to cre-
ate one homogeneous skull compartment. We then
trained another ROM model with the new head
modelwhere the conductivity tensor field for the skull
compartment has been transformed from a Cartesian
basis to a radial and tangential basis relative to the
centre point of the brain. The range of values used
for both radial and tangential conductivities were
from the minimum compact skull (0.002 Sm−1) to
the maximum spongiform skull (0.043 Sm−1) used
in the previous experiments. This was to accommod-
ate for a wide range of possible skull compositions,
from entirely compact skull to significant proportions
of spongiform bone.

We analysed the sensitivity of the ROM-pEIT
framework to anisotropic conductivities in the skull
by assessing the RE in each compartment. To achieve
this, we created 100 syntheticmeasurements using the
full-order model with noise. The model was adapted
by merging the compact and spongiform skull and
given an anisotropic conductivity in the same range
used for ROM. These measurements were then util-
ised to run the IP with a new reduced model, trained
with radial and tangential conductivities in the whole
skull. We plotted the RE in the estimation for each
tissue compartment to assess the sensitivity of the
reduced basis IP to the radial and tangential compon-
ents of the skull conductivity. As before, the IP was
run as a six-parameter estimation, this time estim-
ating the radial and tangential values, replacing the
compact and spongiform skull conductivities.

2.3.6. Experiment 4 - response to reference choice
A common reference electrode is standard in EEG
setups to ensure unbiased readings between amplifi-
ers. This electrode is most often fixed in place at the
vertex (electrode Cz). However, it has been suggested
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that a more flexible reference could yield fewer arti-
facts in EEG data [29]. Although choosing a reference
for the potential measurements has been investigated
thoroughly through the lens of ‘re-referencing’ tech-
niques in EEG, to our knowledge, no such analysis
has been performed for pEIT. Furthermore, although
re-referencing allows the use of AR and the reference
electrode standardisation technique, these methods
still encode the information of the originally refer-
enced potentials and, as such, are impacted heavily by
the use of realistic head models [30–32]. In this con-
text we used ROM-pEIT to investigate the impact of
the original choice of reference electrode in a situation
of missing spongiform bone information.

Firstly, we trained a reduced model with the com-
pact and spongiform bonemerged into a single whole
skull compartment. The conductivity ranges used in
training for each tissue were the interquartile ranges
in table 1 where the whole skull compartment was
trained between the lower quartile for compact bone
and upper quartile for spongiform bone.We created a
current injection protocol comprising 106 injection-
extraction electrode pairs with a single common ref-
erence. These pairs included a set of 106 unique injec-
tion electrodes, where the extraction electrodes were
selected to be the opposite side of the head (with elec-
trodes repeating no more than twice). This strategy
was chosen to obtain maximum coverage of the head
and probe deep tissues [16].We repeated the protocol
sequentially changing the reference to every electrode
position (and omitting pairs involving such an elec-
trode). This resulted in 133 sets of synthetic measure-
ments with a unique reference electrode in each set.
Next, we ran the IP for each electrode pair in the pro-
tocol in all sets, totalling over 14 000 IPs.

To assess the effect of the reference selection on
the estimations, wemonitored the standard deviation
in the IP skull estimations in each set and then plotted
this value on the reference electrode of that set, before
interpolating across the skull. We then reported the
estimations and standard deviations for the reference
electrode that has the most variability.

2.3.7. Experiment 5 - validation with real data
We use real pEIT data from 44, 46 and 52 year old
male subjects labelled Atlas Man (AM), Caucasian
Atlas (CA) and Asian Atlas (AA), respectively. The
head tissues for these subjects were segmented from
a T1-weighted MRI co-registered with a CT scan and
the FEM models were generated with the iso2mesh
package [33]. The data was acquired using a 128
sensor net from Electrical Geodesics, Inc. (EGI) with
one reference electrode (Cz) where 62 unique injec-
tion patterns were applied using a current of±20µA
at a frequency of 27Hz. Further details on the image
processing and data acquisition are described in
Fernández-Corazza et al [15]. The data was cleaned
by removing measurements from 3 bad channels and
removing patterns whose data was also noisy. This

resulted in 36, 47 and 42 patterns with usable data,
respectively, each with one injection, one extraction
and 123 measurement electrodes. The injection and
extraction electrodes were approximately diametric-
ally opposite sides of the head.

All research protocols involving human sub-
jects complied with the ethical standards in the
Helsinki Declaration of 1975 and approved by EGI’s
Institutional Review Boards. Informed consent was
obtained for each subject.

The ranges used to train the reduced models for
each subject were initially expanded to the minimum
and maximum conductivities given in table 1. We
then trained secondary reducedmodels with the con-
ductivity range for spongiform bone expanded to
[0.001, 0.3] Sm−1 to include the values estimated by
Fernández-Corazza et al [15].

To replicate those results, we first ran the IP con-
sidering the scalp, compact bone and spongiform
bone compartments to be estimated and all others
fixed to the same values used in [15] for both ranges
of conductivities. We then ran the IP considering all
compartment conductivities to be estimated simul-
taneously, for the ranges given in table 1.

3. Results

3.1. Experiment 1 - ROM performance
Figures 3(c)–(f) show a subset of the basis vectors
(i.e. ζ i for i = 2,4,7,11) that constitute the reduced
basis space. Each additional function to the first is an
orthogonal projection to the matrix V and encodes
additional information into the reduced model. In
particular, the basis vector ζ11 (figure 3(f)) shows
that after the projection there is a significant dif-
ference in electrical potential solution in the brain
between the previous sample conductivities and those
for the snapshot. Once added, this results in a reduced
model with specific information about the response
of the electrical potential in the brain to conductivity
changes in the model. This demonstrates the greedy
algorithm in action. The same effect can be seen with
the spongiform bone with respect to the bright spots
in the skull in basis vectors ζ4 and ζ11.

Figure 4 shows the average and maximum
∆RE(σ) and RE(σ) as a function of snapshots. The
∆RE(σ) was calculated across the sample set Ξ and
the RE(σ) was found for 100 conductivity samples.
It is interesting to note that the bound becomes
slightly sharper as the number of snapshots increases.
Figure 4 also demonstrates that ∆RE(σ) can be used
as a stopping criteria for the number of snapshots
used to train the model. After being set, the greedy
algorithm will stop when ∆RE(σ) for every point in
the fine sample is below the threshold stated. Using
this stopping criteria ensures that the RE(σ) in the FP
is below the threshold. However, choosing a threshold
is not trivial (see section 4) and there is a risk of unne-
cessary training of the model.
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Figure 4. Average (black lines) and maximum (red lines) relative error bound (∆RE(σ)) and relative error between full-order and
approx. solutions (RE(σ)) for a sample of parameters (averaged across electrodes) against the number of snapshots.

3.2. Experiment 2 - IP performance
Displayed in figure 5 is the average and maximum
RE in the conductivity estimations for ROM and the
traditional method across 10 samples and all elec-
trode pairs. It can be seen that there are improvements
in computational cost of the ROM-pEIT framework
compared to the traditional method. This is shown
for the first three compartments of the head model
(scalp, compact skull and spongiform bone) and the
scalp and spongiform bone separately. Focusing on
the three compartment graph (figure 5(c)), we can see
that the RE in the IP estimation averaged across com-
partments, injection patterns, samples of parameter
space improves by nearly an order of magnitude, with
the number of linear systems to solve reducing by
an order of magnitude too. The maximum error for
any injection pair for any sample is displayed in red
crosses and also demonstrates an improvement over
the average of the traditional method.

The number of injection pairs removed from the
traditional estimations due to erroneous results was
approximately 30 for two of the samples and none
for the rest. All injection pairs were preserved for the
ROM-pEIT IPs.

It is useful to separate all of the conductivities
to see which are contributing the most to the REs
seen in figure 5(c). The RE for the scalp is shown
in figure 5(a), where the improvement in compu-
tational effort due to the ROM-pEIT framework is
most apparent with a reduction in systems to solve
from 250 to 10 maintaining an order of magnitude
improvement in RE. In figure 5(b), we see that the
traditional method cannot obtain a reliable estimate
for the spongiformbonewith the optimisation imple-
mentation used.However, the ROM-pEIT framework

is able to estimate the conductivity of the spongiform
bone down to an average RE of almost 1% and amax-
imum RE of 5%.

As previously mentioned, the benefits of using
ROMbecomemost clear during a 6-parameter search
where the IP can optimise for all compartments in the
model. Figure 6 shows the average RE for ROM for
all tissue compartments as a function of the number
of snapshots used in the estimation. The figure shows
that with ROM and the optimisations it allows, the
IP is able to estimate CSF, GM and WM in the brain
to approximately a 3%, 4%, 7% RE, respectively. It is
also worth noting that the coefficient of variation in
the electrode estimations was between 0.001 and 0.1
for all tissues after 30 snapshots.

From figures 5 and 6 it is clear that the accuracy
of the IP with ROM stops improving after 30 snap-
shots. Therefore, we chose to only train the aniso-
tropic reduced model in Experiment 3 up to this
number to perform the sensitivity analysis.

Each traditional method function evaluation
required approximately 250 s for each PCG fol-
lowed by 1200 s for the full gradient calculation
(consisting of 3 additional PCGs and 3 large mat-
rix calculations). Each PCG in a greedy algorithm
took a similar time as the traditional method plus
10 s for the overhead of calculating the bound and
orthonormalising the solution to the transformation
matrix.

An additional substantial speed-up was achieved
in the greedy algorithm by utilising the reduced
model at the previous iteration to provide an ini-
tial guess for the PCG method when solving for a
snapshot. As snapshots are added to the reduced
model, the initial guess improves, leading to faster
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Figure 5. Average (black lines) and maximum (red lines) of the RE in the estimation of the conductivities across multiple
electrode pairs and for 10 sets of synthetic measurements with uniformly distributed conductivity samples. The red and black
dotted lines in each figure correspond to the traditional method and the red and black full lines with crosses and triangles
respectively are for ROM.

Figure 6. Relative error in conductivity estimation for each individual tissue compartment as a function of snapshots averaged
across 100 samples and 132 injection pairs using the ROM-pEIT method, estimating all conductivities at once.
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Figure 7. Relative error in the conductivity estimations for each tissue as a function of the standard deviation of the Gaussian
noise added to the synthetic measurements used in the ROM-pEIT IP. The reduced models for this experiment were trained for
30 snapshots and the results are displayed as an average over 100 samples and 132 electrode pairs.

Figure 8. Sensitivity Analysis across 100 samples for the reduced basis anisotropic model. The estimations are for the full
6-parameter space using 30 snapshots for each electrode pair. Each box plot shows the estimation error in a single tissue that is
labelled.

PCG solutions. Practically, this means that the time
taken for one snapshot is halved after approximately

40 snapshots.

Times varied substantially due to innate variab-
ility in compute nodes, even of the same species

and differences in convergence speeds. However, we
found that the traditional method took, on average,
30–40 h to converge using 75 function evaluations

while trivially parallelised on a cluster. Conversely,
the greedy algorithm used to train the reduced model
took only 1.5 h to reach 40 snapshots. The resulting

132 ROM-pEIT IPs (one for each pair) took approx-
imately 20 s to complete in series on a single compute

node.

Figure 7 shows the response of the IP estim-
ations for each tissue to varying intensities of
noise, while utilising the interior-point optimisa-
tion and ROM-pEIT FPs. As expected, the RE in
most tissues increase as noise increases. Of par-
ticular interest, is the RE in the spongiform bone,
which remains stable under noise that is 1.5 orders of
magnitude greater than the noise obtained from real
measurements [15].

3.3. Experiment 3 - anisotropy
The results of the sensitivity analysis described in
section 2.3.5 are displayed in figure 8. From this
analysis we can see that the framework presented
is sensitive to the tangential and radial conductivity
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components of the skull while remaining sensitive to
the inner compartments. We found that, for 30 snap-
shots, the mean∆RE(σ)was approximately 10−2 and
the mean RE(σ) was 10−4.

3.4. Experiment 4 - response to reference choice
figure 9(a) displays the ratio of spongiform bone to
compact bone in the skull from 0 to 1. This shows
the distribution of the spongiform bone within the
skull. Plotted across the skull in figure 9(b) are the
standard deviations in the estimations for the skull
compartment across electrode pairs as a function of
the reference electrode used. In other words, the col-
our at each point on the skull represents the vari-
ability in 106 IP skull estimations if the reference
electrode were placed over that point. Note that the
bright yellow areas clearly correlate with the spon-
giform bone information that is missing, indicating
that when the reference electrode is close to a mod-
elling inaccuracy, the estimations become less stable.
The generation of figure 9(b) required over 14 000 IPs
and at least 10million FPs, needing only 30min to
complete on a single PC (Intel(R) Core(TM) i5-6500
CPU at 3.20GHz). Within reason, this analysis could
not be possible without ROM-pEIT.

Table 2 contains the ground truth conductivit-
ies for the synthetic measurements and the estim-
ated conductivities with standard deviations for all
pairs when considering the reference electrode cor-
responding to the bright yellow spot in figure 9. Note
that the standard deviation is high in all compart-
ments, as well as the skull, demonstrating the impact
of incorrect skull modelling on the conductivity
estimations.

3.5. Experiment 5 - validation with real data
Table 3 shows the average and standard deviation in
the conductivity estimations obtained for the three
participants considering the full conductivity ranges
in table 1. Similarly, the values estimated consider-
ing the expanded spongiform bone range can also be
found in table 3. These values are in strong agree-
ment with the results obtained by Fernández-Corazza
et al who obtained (for AM, CA and AA, respectively)
scalp values of 249, 291, and 362mSm−1 and com-
pact skull values of 4.16, 4.22 and 4.25mSm−1 with
similar standard deviations [15]. Table 4 contains
the estimations for all tissues, found simultaneously,
considering the ranges in table 1. Note that in the
interest of lowering the standard deviations of the
estimations, we arbitrarily expanded the ranges used
to train the reduced models for all tissue compart-
ments and found no improvement. Similarly, we
increased the number of snapshots taken to build the
model up to 130 and still found no improvement over
estimations made with 40 snapshots.

It took approximately two hours to train each
of the models up to 40 snapshots and 10 s to run
all IPs for each subject. This is much faster than

the estimations obtained by Fernández-Corazza et al
[15], which took days.

4. Discussion

Wehave presented a framework for the solution of the
pEIT-FP using ROM, where we have demonstrated a
significant reduction in computational expense, res-
ulting in a framework at least 30 times faster than that
of the current state-of-the-art approach. Similarly, we
have shown that huge improvements can be achieved
in conductivity estimations for all tissues, many pre-
viously unreachable by pEIT in a reasonable time
frame due to computational effort.

4.1. Synthetic data
We have validated this approach experimentally by
testing both methods on a realistic 6-layered head
model to emulate typical use cases. In figure 5 we
compare the speed up of using the interior-point
optimisation technique with ROM-pEIT and the tra-
ditional Newtonmethod with full order system inver-
sions. Figure 5 shows this in a scenario where the
inner tissue conductivities are assumed to be known.
A more realistic scenario would be that the inner tis-
sue conductivities are unknown. In this instance, we
found that after 200 full order systems solved the error
in scalp estimations was half an order of magnitude
higher than that achieved assuming the inner con-
ductivities known (figure 5). We also found that the
spongiform bone could not be estimated reasonably
for the traditional algorithm.

For models that have been built from only T1-
weightedMRI images, where segmenting spongiform
bone in the skull accurately is not feasible, it has
been shown to reduce errors in the EEG FP and IP
when the anisotropy of the skull conductivity is con-
sidered [10]. In this context, ROM-pEIT also extends
to such a situation. Figure 8 also shows us that this
IP is more sensitive to the radial conductivity than
the tangential conductivity, which is consistent with
reported findings [16].

The interior-point optimisation afforded by the
use of ROM-pEIT FPs was chosen based on its flex-
ibility to handle large and small scale problems and
the accuracy it provided in the IP estimations. In
Experiment 2, this algorithm performed well, how-
ever, it is useful to assess its stability in the pres-
ence of different intensities of noise. Figure 7 dis-
plays the results for this analysis. For the purposes
of pEIT, this optimisation technique appears robust,
however, other methods could be explored. With the
speed of ROM-pEIT the analysis of other optim-
isation algorithms would become a less onerous
task.

Furthermore, we provided evidence that the
choice of reference electrode clearly effects the
amount of standard deviation in the estimates sub-
stantially, as shown in figure 9(b). This value is most
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Figure 9. (a) Ratio of spongiform bone to compact bone that makes up a given point in the skull. (b) Standard deviation (Sm−1)
in the skull estimations in all electrode pairs plotted as a function of the reference electrode used and then interpolated over the
skull.

Table 2. Ground truth and estimated conductivities in the situation of a missing spongiform bone compartment. Here, the synthetic
data is made with with spongiform bone information, however, the reduced models are trained without this information. This
demonstrates the reliability issues present when performing pEIT with head model inaccuracies. Units in mSm−1.

Scalp Skull CSF GM WM

True 369 (5.9/38) 1626 421 134
Est. 362± 22 8.7± 1.2 1602± 157 325± 98 101± 25

Table 3. Conductivity estimations by subject data and compartment considering all intracranial compartments fixed and using reduced
model trained in the ranges from table 1 (top three rows) and the expanded spongiform range (bottom three rows). Average and
standard deviation across electrode pairs for each subject are displayed..

Compact Spongiform
Subject Scalp (mSm−1) Bone (mSm−1) Bone (mSm−1)

AM 243± 45 5.5± 2.0 34± 14
CA 287± 62 4.8± 1.3 48± 30
AA 360± 88 4.8± 1.9 11± 17

AM 214± 58 5.5± 2.5 195± 128
CA 277± 64 4.1± 1.1 225± 103
AA 345± 98 4.8± 2.1 174± 143

Table 4. Conductivity estimations of all tissue compartments by subject utilising real data and reduced models trained in the ranges
from table 1. The average and standard deviation across electrode pairs is displayed, where all tissues are estimated simultaneously using
ROM-pEIT..

Compact Spongiform
Subject Scalp (mSm−1) Bone (mSm−1) Bone (mSm−1)

AM 237± 42 6.4± 2.5 35± 14
CA 271± 64 6.0± 2.7 45± 29
AA 337± 94 5.9± 2.8 18± 27

CSF (mSm−1) GM (mSm−1) WM (mSm−1)

AM 1455± 145 303± 278 118± 72
CA 1448± 138 231± 219 114± 63
AA 1433± 219 219± 259 99± 60

affected over areas of modelling inaccuracy and vary
by as much as 1.5 times the average. Figure 9(b)
demonstrates that errors in the potential at the ref-
erence electrode in the FP are propagated to all other
electrodes, resulting in larger standard deviations in
the estimations of each IP. Therefore, regardless of

re-referencing scheme, the original reference can have
a substantial impact whenmodelling inaccuracies are
present.

This observation has wide implications in the
field of EEG, TES and pEIT given that the refer-
ence electrode is often fixed in commercial electrode
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arrays to the centroparietal midline [29]. Therefore,
we suggest this standard practice be revisited to allow
more flexible control of the position of the reference
electrode.

It is worth noting that ROM-pEIT is useful
for a pEIT setup with any number of electrodes.
Here, we have provided a sensitivity analysis of
ROM-pEIT applied to a typical pEIT setup, how-
ever, to further assess the validity of this method-
ology under different pEIT conditions, this analysis
should be extended. This extension would include the
impact of electrode position error, different sensor
layouts and numbers, and contact impedance vari-
ability. These parameters are beyond the scope of
this paper, however, they will be subject to further
investigation.

4.2. Real data
The ROM-pEIT framework has demonstrated strong
agreement with the traditional method for the real
pEIT data from three subjects [15]. It was expec-
ted that, given the additional freedom of the other
compartments being estimated, the standard devi-
ation in the estimations across the electrode pat-
terns may reduce thanks to the entire model becom-
ing more individualised, therefore removing errors
introduced by incorrectly assigned conductivities. In
this context the ROM-pEIT framework has proven
in simulated data that searching the parameter space
of this dimensionality is trivial. However, as seen in
tables 3 and 4, the coefficient of variation of the spon-
giform bone, CSF, GM and WM all remained high.
When the ranges were expanded, the coefficient of
variation in all tissues remained approximately the
same.

Combined with the analysis of the reference
placement and the importance of anatomically cor-
rect head models, confirmed in table 2, this leads us
to hypothesise that a standard modelling assumption
could be causing the variability in the estimations of
a single subject. Given the standard deviations in the
estimations of all compartments, the assumption of a
homogeneous scalp layer could be playing a role. This
may be reasonable to challenge due to its complex
structure [34], role in EEG source localisation [35]
and fat content [36].

From these observations, an investigation into the
commonmodelling assumption of a single homogen-
eous scalp layer is warranted, and could have wide
implications for the field of EEG, which relies heav-
ily on these models. Crucially, this strongly emphas-
ises the need of pEIT and specifically the ROM-
pEIT framework to challengemodelling assumptions.
Without these tools, investigations of this nature
would be incredibly taxing.We believe the framework
we present is an essential tool for researchers in this
context.

4.3. Related work
Some efforts have been made to avoid the com-
putational expense of EIT while retrieving subject-
specific conductivity values. Akalin Acar et al [37]
and Costa et al [38] demonstrated techniques for
the simultaneous estimation of the conductivity of
the skull, modelled a single compartment, and the
location of the source of electrical activity. Others
have used a pre-calibration technique for combined
EEG andMEGwhere an initial conductivity value for
the skull is given and then tuned before the source
localisation by using somatosensory evoked poten-
tial data [39–41]. However, these techniques have
only been demonstrated for estimating the skull and
brain conductivities.Moreover, themethodpresented
in [37], which uses only EEG data, requires computa-
tional effort to converge, reported to be in the order of
days by the authors. ROM-pEIT allows all compart-
ments to be estimated simultaneously in a reasonable
time frame.

The computational costs of ESI related meth-
ods become particularly prohibitive when perform-
ing sensitivity analyses, where effects of conductiv-
ity uncertainty in specific head tissues is explored.
One way this problem has been circumvented is
through the use of generalized Polynomial Chaos
(gPC) expansions, where a result distribution is
described by a linear combination of multivariate
orthogonal polynomial basis functions and corres-
ponding coefficients [9, 42]. Similarly to ROM, this
method involves the calculation of the model output
at multiple points on a sparse grid with specific para-
meters required to weight the coefficients. This tech-
nique was utilised by Schmidt et al [42] for a sensit-
ivity analysis in TES and by Vorwerk et al [9] in EEG.
Generalised PC has also been used for a conductivity
uncertainty analysis in transcranialmagnetic stimula-
tion (TMS) andTES by Saturnino et al [43]. Although
resulting in an essential reduction in computational
effort for these experiments, they still required the
evaluations of the full FP at hundreds of points in
parameter space for gPC convergence. The frame-
work we present requires only a few dozen full order
FP evaluations to reach a low RE in the FPs and IPs.

A closely related work by Maksymenko et al also
demonstrates a reduced order technique for fast solu-
tions of the EEG FP [44]. Similarly, this framework
used a set of full-order solutions at points in para-
meter space chosen via a greedy algorithm. This
model could generate approximate lead fieldmatrices
for any conductivity set in parameter space very rap-
idly. There are, however, some notable differences
between this framework and the one that we present
in this work. Mainly, the implementation differs,
where the former is applied to the EEG FP and solved
using the Boundary Element Method with a small
number of nodes in a model with 3 tissue compart-
ments. Although it is suggested that it could equally
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be applied to FEM, this is not shown.Given the imple-
mentation in EEG, the bound in Maksymenko et al
[44] is also derived used different parameters and
cannot be compared to that obtained with ROM.

Another very closely related work is that of
Lipponen et al, where a dimensionality reduction
technique known as proper orthogonal decompos-
ition (POD) is applied to the imaging modality
of EIT [45]. POD is very closely related to ROM,
whereby a set of modes are formed from full-order
solutions with given conductivity samples. While
applied successfully in the mentioned work, there
are two major differences with the work we presen-
ted here. The first is the implementation. We applied
this work to realistic head models to extract conduct-
ivity estimates for specific tissues (pEIT), whereas,
Lipponen et al [44] integrates POD to reconstruct a
conductivity distribution in a cylindrical tank (ima-
ging EIT). Secondly, the selection of conductivity
samples to form the modes were selected via a rig-
orous error bound in this work. In the other work,
samples were chosen utilising a Bayesian prior distri-
bution with smoothness constraints.

Similarly, work by Codecasa et al [46] has merged
the techniques of ROMand gPC to perform an uncer-
tainty analysis in TMS, where the model order reduc-
tion is used to guide the selection of the conductiv-
ity samples used for the polynomial chaos expansion.
This work resulted in a significant speed up over gPC
with regression, demonstrating the power of reduced
ordermodel techniques. There are a few differences in
our work that make it distinguishable from this, such
as a bound on the approximation error, application
to pEIT, and the investigation of 3 additional tissues
(scalp, compact skull and spongiform skull).

It is worth mentioning that for studies involving
gPC, where a model is trained using hundreds of sup-
port points, all were sensitivity analyses. Due to the
nature of this work it is essential to have a highly
trained model. However, for personalised conductiv-
ity field reconstruction, there is more interest in redu-
cing the time frommeasurement to result. This is one
of the strengths of ROM-pEIT. Shown in figures 5
and 6, only 30− 40 support points per injection
pattern are required for accurate estimations in all
tissues.

McCann et al [16] showed that spongiform bone
varies between subjects and measurement techniques
and that few attempts have beenmade to measure the
conductivitity of this tissue in vivo. In addition to this
and the work by Fernández-Corazza et al [15], Aydin
et al used a pre-EEG calibration method to obtain a
value of 8.4mSm−1 [40]. Clearly, in vivo measure-
ments of this tissue remain challenging. Reasons for
this have previously included the computational bur-
den, however, with ROM-pEIT, we demonstrate that
this could also be due to modelling imperfections.
Furthermore, to the best of our knowledge, only two
studies on non-invasive in vivo estimations of the CSF

are present in the literature, with large errors in the
estimations reported [47, 48].

It is worth emphasising the difference between
imaging EIT and pEIT. For the imaging modality of
EIT, dimensionality reduction techniques have been
explored in the form of basis constraints [49] and
autoencoders [50], amongst others. Fundamentally,
these approaches are tuned towards imaging EIT,
which is a different type of problem to parametric
EIT, distinguished by how ill-posed the IP is. For
imaging, the conductivity at each pixel/voxel is recon-
structed from only a handful of electrode measure-
ments, whereas, in parametric EIT, only a handful of
conductivities are estimated fromasmany as 256 elec-
trode measurements. In the case of both aforemen-
tioned techniques, an approximate solution mani-
fold is made, similarly to ROM. However, with basis
constraints, the support points are hand selected,
whereas, with autoencoders, the number of support
points required is over 20 000 for a 16-channel sys-
tem. The ill-posed nature of imaging EIT also requires
stabilisation techniques such as Tikhonov regularisa-
tion [51]. This type of stabilisation does not apply
here.

4.4. Future work
A key feature of this work is the certified upper bound
on the error in the FP. Although it guarantees a max-
imum error for each snapshot number, its usefulness
as a stopping criteria is limited given the sharpness
of the bound. A further challenge is that drawing a
connection between the error in the FP and IP is not
trivial. However, from figures 5 and 6 it is clear that
optimal performancewas achieved after 30 snapshots.
Additionally, when the error between the full-order
and the RB signal becomes much smaller than the
noise, equation (1) becomes approximately the norm
of the noise over the electrodes. Relative to the meas-
urements, that becomes approximately 4− 5× 10−6

RE(σ) (for the noise we have used), which on figure 4
corresponds to about 30 snapshots, as observed in the
IP. For our head model, this connects the observa-
tions in the FPs and IPs and therefore we suggest 30
snapshots as the optimal number and this can serve as
a stopping criteria. However, we emphasise that this
choice in snapshot number could change depending
on the head model discritisation, level of noise in the
measurements, and the number of conductivities to
estimate (as this will affect the dimensionality of the
parameter space). When applied to the head models
of the real participants, we found no change in estim-
ation stability past 40 snapshots. This further sup-
ports the idea that we should challenge ourmodelling
assumptions. Nevertheless, a full analysis to charac-
terise this value is due.

In this work, we provided preliminary results on
the robustness of the ROM-pEIT framework with
interior-point optimisation to noise. The ranges were
chosen to far exceed typical normal values to show
that, even under low SNRs, the method still reaches
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low REs of 4× 10−3 in the scalp estimation. In the
synthetic data, we have assumed a Gaussian noise
model as is typically used to model noise in EEG
recordings [52]. Modelling more complex noise,
such as spatially and temporally correlated back-
ground noise, could be considered in future [53].
However, due to the high SNR of pEIT signals, this
is expected to make negligible difference. In future
work, we would aim to explore other noise mod-
els and non-uniform noise on the electrodes. In real
data, lock-in detection was used to isolate the signal
from the noise [15, 54, 55], however, future work
could include exploring other data post-processing
techniques to minimise noise contamination
further.

This work presents a methodology for the fast
conductivity estimation of biological tissues given an
injection of an alternating current of a given fre-
quency. The real data used in this study utilised a cur-
rent at 27Hz due to interest in frequencies related to
EEG source localisation (generally below 100Hz) and
due to constraints in the experimental set up [15].
The current was chosen to be 20µA tomaximise SNR
while keeping well below the perception threshold. It
has been shown that the frequency of the current can
affect the conductivity estimation [15], and as such
warrants a thorough analysis of its effect in future
research. ROM is particularly well placed to serve in
this analysis, given that for sufficiently low frequen-
cies the reduced models are frequency independent
due to the quasi-static approximations made in the
FP [56]. Therefore the same models could be reused
for multiple frequencies.

We demonstrated that this methodology can be
utilised in the case of anisotropic tissue conductivit-
ies. It has been shown that different injection patterns
have varying sensitivity to tangential and radial com-
ponents of anisotropic conductivities [16]. In future,
different patterns could be explored, where, again,
ROM-pEIT is well positioned to make rapid analysis
possible thanks to the linear combinations of patterns
being possible.

A time penalty incurred by ROM is the com-
putational cost associated with training the stability
factor interpolant during the offline phase, requir-
ing multiple solutions to a generalised eigenvalue
problem. This process takes approximately 15–30min
per problem (for an Intel Xeon CPU at 2.8GHz for
our model) and can be parallelised on a cluster. The
interpolant generated is source vector independent,
and therefore can be used for all electrode pairs.
Although small in comparison to the training for
ROM and the traditional method, this should still
be considered as part of the offline training pro-
cess. There exists some techniques that minimise
the computational load of this stage such as greedy
algorithms to reduce the number of interpolation
points needed [57]. Exploring these optimisations of
the framework will be work for the future. Further,

we have found that interpolating between these points
in a 6-dimensional space is a non-trivial task due to
the complexity of the resulting manifold and the pos-
sible noise in the interpolation data. We found that
the use of too many randomly selected interpolation
points led to over-fitting and consequently a poor
interpolation. The more conservative strategies sug-
gested byManzoni andNegri [57]may help tackle this
class of problem and this shall be explored in future
work.

Similarly, the fine sample train Ξ of parameter
space P used with the error bound was found to
be adequate for the purposes of this work, however,
could benefit from experimentation. Specifically, if
the sample train was even finer then this could lead
to an improvement in snapshot selection and con-
sequently a faster convergence.

In this framework, we use the L2-norm in both
the ∆RE(σ) and the projection due to its ease of
implementation. However, an equally valid ∆RE(σ)
can also be calculated using the norm of the space
containing the solution [17]. The solution to the vari-
ational formulation of the problem can be found in an
appropriate quotient Hilbert space, equipped with a
norm that can be used for this task [18]. Modifying
our framework to utilise this norm may improve the
sharpness of the bound.

McCann and Beltrachini also investigated the
effect of sutures on the EEG FP and IP and found
that omission of the sutures from a head model led to
significant source localisation errors [2]. It is unclear
how the inclusion of sutures in a realistic head model
may affect the training of the reduced order model,
however this should be considered in future models.
Moreover, with the possibility of estimating inner tis-
sue compartments, the impact of including sutures on
the estimation of the inner compartments could be
assessed.

TES has been shown to produce a greater intens-
ity and focality of the electric current at a point
of interest when highly accurate head models are
considered [11] and optimal injection patterns
are generated [58]. ROM could reduce the time
constraints involved and in an online process estimate
the conductivities and optimal injection patterns
together almost instantly. Future work could involve
producing a pipeline for TES such that the number
of measurements taken from the patient are kept to a
minimum.

One artefact of the training noticed was the
loss of orthogonality in the transformation mat-
rix after approximately 150 snapshots. This could
be due to numerical errors introduced into the
Gram–Schmidt orthonormalisation. We use the clas-
sical Gram–Schmidt process in this work, how-
ever, a well known and more numerically stable
method called the modified Gram–Schmidt method
could also be used [59]. Other numerically stable
implementations of the Gram–Schmidt process have
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been developed and these may be explored in the
future [60].

In conclusion, this new framework embodies a
fresh approach to pEIT that will change its access-
ibility and reliability, recasting its role in the gener-
ation of personalised realistic head models used for
ESI methods.

The software developed for this research can
be found here: https://github.com/09nwalkerm/
ROMpEIT.
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