
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/175701/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Wu, Tong, Sun, Jia-Mu, Lai, Yu-Kun and Gao, Lin 2025. VD-NeRF: Visibility-aware decoupled neural
radiance fields for view-consistent editing and high-frequency relighting. IEEE Transactions on Pattern

Analysis and Machine Intelligence 10.1109/tpami.2025.3531417 

Publishers page: https://doi.org/10.1109/tpami.2025.3531417 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



ACCEPTED BY IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

VD-NeRF: Visibility-aware Decoupled Neural
Radiance Fields for View-Consistent Editing and

High-Frequency Relighting
Tong Wu, Jia-Mu Sun, Yu-Kun Lai, and Lin Gao∗.

Abstract—Neural Radiance Fields (NeRFs) have shown promising results in novel view synthesis. While achieving state-of-the-art
rendering results, NeRF usually encodes all properties related to geometry and appearance of the scene together into several MLP
(Multi-Layer Perceptron) networks, which hinders downstream manipulation of geometry, appearance and illumination. Recently
researchers made attempts to edit geometry, appearance and lighting for NeRF. However, they fail to render view-consistent results
after editing the appearance of the input scene. Moreover, many approaches use Spherical Gaussian (SG) or Spherical Harmonic (SH)
functions, or low-resolution environment maps to model lighting. These methods, however, struggle with high-frequency environmental
relighting. While some approaches utilize high-resolution environment maps, the strategy of jointly optimizing geometry, material, and
lighting introduces additional ambiguity. To solve the above problems, we propose VD-NeRF, a visibility-aware approach to decoupling
view-independent appearance and view-dependent appearance in the scene with a hybrid lighting representation. Specifically, we first
train a signed distance function to reconstruct an explicit mesh for the input scene. Then a decoupled NeRF learns to attach
view-independent appearance to the reconstructed mesh by defining learnable disentangled features representing geometry and
view-independent appearance on its vertices. For lighting, we approximate it with an explicit learnable environment map and an implicit
lighting network to support both low-frequency and high-frequency relighting. By modifying the view-independent appearance,
rendered results are consistent across different viewpoints. Our method also supports high-frequency environmental relighting by
replacing the explicit environment map with a novel one and fitting the implicit lighting network to the novel environment map. We
further take visibility into consideration when rendering and decoupling the input 3D scene, which improves the quality of
decomposition and relighting results and also enables more downstream applications such as scene composition where occlusions
between scenes are common. Extensive experiments show that our method achieves better editing and relighting performance both
quantitatively and qualitatively compared to previous methods.

Index Terms—Neural Radiance Fields, Inverse Rendering, Editing.

✦

1 INTRODUCTION

Neural Radiance Fields (NeRFs) [1] have shown promis-
ing results in scene reconstruction and novel view synthe-
sis. Compared with traditional geometry and appearance
representations, such as textured meshes, NeRF does not
require precise geometry and texture reconstruction and
can produce realistic rendering results. However, besides
visualization, editing is also an important task in computer
graphics. Traditional 3D modeling applications allow users
to edit mesh geometry via modifying face connections or
vertex locations and edit the appearance by painting from a
given viewpoint. Lighting conditions are also changeable by
replacing the environment map. But in conventional NeRF,
the geometry is represented by a density function that does
not well reflect the real geometry and its appearance is an
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Figure 1: Given a set of input images, we train a neural
radiance field that decouples geometry, appearance, and
lighting. Our method supports not only the geometry ma-
nipulation and appearance editing but also the rendering of
the captured or modified scene in a novel lighting condition.

entanglement of material and lighting, which increases the
difficulty of editing.

On the geometry editing side, a few methods propose to
deform neural radiance fields by deforming sample points
on a ray [2], [3], [4], [5]. For appearance editing, researchers
try to decompose geometry, material and lighting from 2D
images in an implicit way so that each component can be
edited independently. PhySG [6] and NeRD [7] use MLP
(Multi-Layer Perceptron) networks to predict BRDF (Bidi-
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rectional Reflectance Distribution Function) materials and
approximate lighting with Spherical Gaussian functions.
But their geometry is still in an implicit form and lighting
representation is smooth so high-frequency environmental
relighting is beyond their limits. For better material esti-
mation, NeRFactor [8] predicts material parameters with
a pre-trained BRDF decoder and represents lighting with
a low-resolution image, which prevents it from represent-
ing high-frequency lighting. RefNeRF [9] proposes not to
explicitly decompose BRDF materials but instead learns
view-dependent and view-independent appearance simul-
taneously. Although achieving high-quality reconstruction
results, RefNeRF [9] can only edit a scene by adjusting
its color network’s outputs and is unable to deform the
geometry or relight the input scene.

To transfer editing from one viewpoint to other view-
points seamlessly, NeuTex [10] maps sample points to a uni-
fied 2D texture space and uses traditional UV mapping to
query corresponding colors. After training, the appearance
of the scene is baked into the 2D texture image. Users can
edit the neural radiance field by painting the 2D texture
image. However, the 2D texture generated by NeuTex [10] is
usually distorted and hard to be edited. To resolve this issue,
NeuMesh [11] defines learnable geometry and appearance
features on a pre-reconstructed mesh for the scene and
learns to decompose the geometry and appearance using
two MLP networks. Unfortunately, its appearance is still
an entanglement of material and lighting so that rendered
results can be inconsistent with the input editing when
viewed from novel viewpoints and its lighting conditions
cannot be changed.

To allow view-consistent appearance editing and high-
frequency environmental relighting, including cases with
inter-object occlusions, we propose VD-NeRF, a visibility-
aware approach that decouples the geometry, appearance
and lighting of the input scene. Given a set of captured 2D
images for a scene, we first reconstruct its geometry with an
SDF (Signed Distance Field) network. Then we define the
geometry and view-independent appearance features on the
reconstructed mesh’s vertices and use the corresponding ge-
ometry network and appearance network to predict signed
distance values and appearance parameters. By baking
geometry and view-independent appearance features onto
mesh vertices, VD-NeRF can seamlessly transfer the appear-
ance editing from one viewpoint to other viewpoints and the
edited appearance is consistent across different viewpoints.
For lighting, we propose to use a hybrid representation,
composed of an explicit low-resolution environment map
for efficiency and an implicit lighting network. The explicit
environment map is responsible for low-frequency diffuse
lighting and the implicit lighting network is trained to
represent specular lighting. After training, geometry, view-
independent appearance and lighting are disentangled and
they can be separately edited without influencing other
components. This paper substantially extends our previous
conference paper [12] by taking visibility into account to
achieve more accurate decoupling, especially when there
are significant occlusions. It further enables downstream
applications such as scene composition where occlusions
between scenes commonly occur. We also substantially ex-
tended evaluation, including qualitative and quantitative

comparisons with existing methods and further ablation
study results. Our contributions can be summarized as
follows:

• A neural radiance field editing method that allows
editing of geometry, appearance and lighting. Ap-
pearance editing from one viewpoint can be seam-
lessly transferred to other viewpoints and the ren-
dered results are view-consistent after editing.

• Our lighting representation supports high-frequency
environmental relighting and produces more faithful
relighting results compared to previous methods.

• Our rendering considers visibility information with
explicit ray-mesh intersection, which avoids shape-
material ambiguity during optimization and enables
more faithful decomposition.

2 RELATED WORK

2.1 Neural Geometry Reconstruction

With the development of neural rendering [13], [14] and
implicit geometry representations [15], [16], [17], surface-
based rendering methods [18], [19], [20] are proposed to
learn geometry and appearance separately to reconstruct
an object’s geometry from 2D images by minimizing the
difference between rendered images and input images. Later
with the emergence of Neural Radiance Fields (NeRFs) [1],
researchers start to work on geometry reconstruction with
volume rendering. A pioneering work that builds the connec-
tion between implicit geometry representations and neural
radiance fields is NeuS [21], which derives an unbiased and
occlusion-aware formulation for the neural radiance field’s
density function from a signed distance function (SDF).
UNISURF [22] instead treats geometry as an occupancy
field that predicts whether a sampled point is on the object
surface and replaces the alpha value in volume rendering
with the occupancy value. Yariv et al. [23] also transform
the SDF to a density function in volume rendering and
their transformation function is the Cumulative Distribu-
tion Function (CDF) of a learnable Laplace distribution. To
reduce the requirement for the number of input images,
SparseNeuS [24] extracts 2D features from images to pro-
vide extra information for sample points in the space via
projection. To accelerate the training process of geometry
reconstruction, VOXURF [25] defines learnable features on
voxel grids similar to [26], [27] to speed up training. Ref-
NeuS [28] proposes to replace the radiance field with that
in RefNeRF [9] to distinguish view-dependent and view-
independent appearances for better geometry estimation.

2.2 NeRF Decomposition

Recently, researchers started to disentangle geome-
try, material and lighting from Neural Radiance Fields.
NeRV [29] decomposes BRDF materials under a given
lighting condition. It models direct illumination and one-
bounce indirect illumination and uses a network to predict
the visibility of the sample point. Yuan and Fujishiro [30]
approximates lighting with Spherical Gaussian (SG) func-
tions. NeRD [7] also adopts SG as its lighting representa-
tion and reduces the learning difficulty by first extracting
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Figure 2: Given a set of images, we learn a signed distance function (SDF) to reconstruct the geometry. Then, on the vertices
of the reconstructed mesh, we set up learnable geometry features lg and appearance features la, lr, lp (corresponding to
diffuse, roughness and specular components) to decompose geometry, appearance, and lighting in the scene. A sample
point’s geometry feature lwg and appearance features lwa , l

w
r , l

w
p are obtained by KNN (K-nearest neighbor) interpolation.

The geometry feature lwg and the distance to the mesh h are fed into an SDF decoder to predict its signed distance value s.
Similarly, appearance features lwa , l

w
r , l

w
p , and distance h go through several appearance decoders to predict diffuse albedo

a, roughness value r, and specular tint p. A learnable environment map Ed is integrated with the diffuse albedo to get
diffuse color cd, and the visibility of each sample point is determined by tracing the light right to the reconstructed mesh.
We also train a specular lighting decoder Fs to predict specular lighting cl, which is multiplied by the specular tint t to
produce the specular color cs. Combining cd and cs, we get the color c for this point.

view-independent material parameters and density func-
tions and applying them to the learning of view-dependent
material parameters. For more accurate material estimation,
Boss et al. [31] predict BRDF materials with a material
autoencoder pre-trained on a BRDF material dataset [32].
NeROIC [33] approximates lighting with Spherical Har-
monic (SH) coefficients and decomposes static appearance
and transient appearance. NeRFactor [8] is the first work
to learn shadow decomposition under unknown lighting
conditions. Similar to [7], it first trains a standard NeRF
network to determine the geometry. Then it predicts ma-
terial with a pre-trained BRDF decoder and optimizes its
lighting which is represented by a low-resolution image.
More recently, RefNeRF [9] implicitly decomposes view-
dependent appearance and view-independent appearance
via two separate networks and can learn high-frequency
specular reflections, but it does not decompose shadow or
lighting. Besides the works mentioned above, there are
works that decompose scenes based on other representa-
tions. PhySG [6] models geometry as an SDF network and
its lighting is approximated by a composition of several
Spherical Gaussian (SG) functions [34]. It utilizes the Disney
BRDF model [35] and assumes that the scene can only have
one single specular BRDF material, causing a performance
drop on more complex scenes. InvRender [36] further mod-
els indirect illumination with another set of SG functions to
handle more complicated appearances like inter-reflection.
TensoIR [37] also models secondary bounces by querying

the visibility and incident light using an implicit neural
networks. NMF [38] instead models secondary effects by
sampling secondary rays according to the volume rendering
quadrature weight of the current primary sample point
and the Trowbridge-Reitz distribution determined by the

normal vector and roughness value. NvdiffRec [39] and
NvdiffRecMC [40] use Deep Marching Tetrahedra [41] as
its geometry representation and learn to decompose the
input scene with differential rasterization rendering [42] and
differentiable Monte Carlo renderer. They handle high-
frequency lighting but struggle when the objects have a
highly glossy surface.

2.3 Neural Radiance Field Editing

Classified by editing targets, previous works can be
roughly divided into geometry editing and appearance edit-
ing. In terms of geometry, several works [2], [3], [5] share a
similar idea to reconstruct an explicit mesh as a proxy for
a static scene and builds correspondence between the mesh
and NeRF. By editing the mesh using As-Rigid-As-Possible
deformation [43], sample points in the rendering process are
transformed along with the mesh via barycentric coordinate
interpolation. For appearance editing, several methods [44],
[45], [46] propose to edit the appearance of NeRF by styl-
izing it with an image or text prompt. EditNeRF [47] is
the first work that allows users to edit NeRF by editing
2D images, which greatly reduces the editing difficulty. It
models a scene with a shape code and a color code. Editing
is performed by optimizing the color code. But it requires a
large dataset from the same category to generate plausible
editing results. NeuTex [10] maps sample points in a single
scene to UV coordinates and gets its color from a learnable
UV map. After training, the appearance of NeRF can be
edited by painting the UV texture. However, the learned
UV mapping is usually distorted and hard to be edited.
NeuMesh [11] reconstructs the geometry of the scene using
NeuS [21] and defines learnable geometry and appearance
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features on mesh vertices. It allows users to edit NeRF’s
appearance from 2D images by optimizing appearance fea-
tures similar to EditNeRF [47]. Since its appearance features
do not disentangle material and lighting, artifacts may occur
when observed from a different viewpoint after editing.
Our method focuses on decoupling NeRF into geometry,
appearance and lighting for independent editing, where the
geometry and view-independent appearance are encoded
on mesh vertices to ensure view consistency, and a hybrid
lighting representation is proposed to support relighting
with high-frequency environmental lighting.

3 METHOD

We propose VD-NeRF, a visibility-aware decoupled ge-
ometry, appearance and lighting editing method for NeRF
that allows view-consistent appearance editing and high-
frequency environmental relighting. We in particular take
visibility into account for more accurate decomposition.
The pipeline of our method is illustrated in Fig. 2. We
first reconstruct the geometry of the input scene (Sec. 3.1).
To enable geometry and appearance editing, we define
learnable features for geometry and appearance on the ver-
tices of the reconstructed mesh to bake view-independent
information onto the reconstructed mesh to ensure view
consistency. For lighting, we propose a hybrid lighting
representation that supports both low-frequency lighting
and high-frequency lighting. The low-frequency lighting is
modeled by an explicit environment map where each pixel
in it represents a light and all lights in the environment
map are integrated at every sample point in the scene.
For high-frequency lighting, it is costly to represent it with
a large environment map. Instead, we model it with an
implicit lighting network and encourage it to be consistent
with the explicit environment map. Under the guidance
of the reconstructed geometry and the input images, we
decouple the geometry, appearance and lighting of the scene
by optimizing the learnable features on the mesh vertices,
the learnable environment map, and the lighting network
(Sec. 3.2). After decoupling, users can edit the geometry,
appearance, and lighting of the input scene, as well as
compositing scenes (Sec. 3.3).

3.1 Geometry Reconstruction

Recent neural implicit representations [15], [16], [17]
and neural rendering techniques [1] have achieved great
success in the scene reconstruction task. In this work, we
use the Signed Distance Function (SDF) as our geometry
representation for smooth geometry reconstruction. The
SDF can be parameterized as an MLP network s = F (x ).
It takes a sample point x(t) = o + v · t as input and
outputs its signed distance s to the surface, where o is
the origin of a camera ray, v is the ray direction, and
t is the parameter that determines the sample point on
the ray. To learn the SDF from multi-view images of the
scene, we adopt the occlusion-aware and unbiased volume
rendering technique from NeuS [21] to render the SDF of
the scene. Same as NeuS, we define the geometry density

based on SDF as σ(t) = max

(
−

dΦs
dt (f(x(t))

Φs(f(x(t))
, 0

)
, where

Φs(x ) = (1 + e−sx )−1 and s is a trainable deviation param-
eter.

Generally, this formulation works well. However, for
scenes with specular reflection, a point on the surface can
present totally different colors when observed from different
viewpoints, making it hard to be learned by a single color
network conditioned on the viewpoint as NeuS does. To
fake the complicated view-dependent effects, NeuS tends
to wrongly construct a concave surface so that, from dif-
ferent viewpoints, the camera will not see the same surface
point but different points with different colors. To address
this issue, we divide the color network into two branches
following RefNeRF [9] to model view-independent appear-
ance and view-dependent appearance respectively, which
reduces the learning difficulty of the color network. The
view-independent branch takes a sample point as input and
outputs its view-independent color cd and its specular tint
p. Both the sample point and the ray direction v are fed into
the view-dependent branch to predict the view-dependent
color cl. The final color of a sample point can be formulated
as c = cd + p · cl .

To calculate the color of each camera ray C(v), we
integrate the colors of the sample points on the ray by the
volume rendering equation: C(v) =

∑N
i=1 Tiαici, where Ti

is accumulated transmittance defined as Ti =
∏i−1

j=1(1−αj);
and αi represents opaque value at point xi. We learn to
reconstruct the input scene’s geometry and appearance by
optimizing the following loss function:

Lg = Lc + λLe

=
∑
v∈V

∥∥C(v)− Ct(v)
∥∥+ λ

∑
v∈V

N∑
i=1

∥∥∥∇xv,i∥ − 1
∥∥2
2
,

(1)
where V the camera rays in a training batch. Ct(v) repre-
sents the ground truth pixel color for a ray v. xv,i is the ith
sample point on the ray v. ∥∇xv,i

∥ is the spatial norm of the
SDF network F (x)’s gradient at point xv,i.

3.2 Scene Decoupling

After reconstructing the scene’s geometry and appear-
ance, we extract a mesh using the marching cubes [48]
algorithm. To decouple geometry, appearance and lighting
components for editing, we define learnable features on
the vertices of the mesh, denoted as lg for geometry fea-
tures, la for diffuse features, lp for specular features, and
lr for roughness features. For a sample point x, its features
lg(x), la(x), lp(x), lr(x) are defined by the weighted average
of its K nearest neighbors from the reconstructed mesh
vertices as lw∗ (x) =

∑K
i=0 wi(x)l∗,i(x)∑K

i=0 wi(x)
similar to NeuMesh [11]

and PointNeRF [49]. lw∗ (x) represents the interpolated learn-
able features, i.e., lwg (x), l

w
a (x), l

w
p (x) and lr(x). the weight

wi(x) is the inverse of the distance between x and its ith
nearest neighbor xi:

wi(x) =
1

∥xi − x∥2
. (2)

Next, we use a geometry network that takes the ge-
ometry feature lwg (x) and the distance h(x) from x to the
reconstructed mesh as input to predict the signed distance
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value s of point x. The distance h(x) is also calculated
by the weighted average of the distances to its K nearest
neighbors, where the weights are defined in Eqn. 2. Simi-
larly, we feed the features lwa , l

w
p , l

w
r into separate MLPs to

infer diffuse albedo a, specular tint p, and roughness value
r. The signed distance value and appearance parameter
predictions can be formulated as follows:

s = Fg(l
w
g , h); a = Fa(l

w
a , h); p = Fp(l

w
p , h); r = Fr(l

w
r , h).

(3)
On the lighting side, the diffuse lighting is represented

by an explicit environment map Ed where each pixel can
be seen as a light source so that the diffuse color cd for a
point can be obtained by integrating all light sources in the
environment map Ed at this point via:

cd =
a

π

∫
Ω
V (ωi, x)Lin · ωidωi. (4)

where ωi is the direction of incident light Li. n is the normal
direction for point x derived by the gradient of the geometry
network Fg and · denotes dot product. V (ωi, x) represents
the visibility of point x from the ith light direction wi, which
can be effectively calculated by ray-mesh intersection:

V (ωi, x) =

{
1, ∥oωi

− x∥ ≤ ∥oωi
− xint

ωi
∥

0, ∥oωi
− x∥ > ∥oωi

− xint
ωi

∥
(5)

where ∥oωi − x∥ is the distance from the light source oωi to
the sampled point x and ∥oωi − xint

ωi
∥ is the distance from

the light source oωi
to the intersection point xint

ωi
. To avoid

infinite values, we put all light sources on a sphere with
radius 1000 to stabilize the calculation.

For specular lighting that may contain high-frequency
details, it is costly to represent it with a high-resolution
environment map and integrate the environment map and
the material parameters using the rendering equation. In-
spired by the Split-Sum [50] approximation in real-time
rendering and the recent work RefNeRF [9] that decouples
lighting from the rendering equation, we model a sample
point’s specular color cs = p · cl as the multiplication of its
specular tint p and the light color cl that comes from the
reflected direction ωr = 2(ωo · n)− ωo of the view direction
ωo = −v w.r.t. its normal direction n. Here, the light color cl
is predicted by a specular lighting decoder Fs(·) that takes
a sample point’s roughness r, the dot product cos θ = n · ωo

of the normal direction n and the view direction ωo, and the
reflected direction ωr as input:

cl = Fs(r, cos θ, ωr). (6)

Combining the diffuse color cd and the specular color cs, we
get the sample point’s color c = cd + cs and render a pixel
color using volume rendering. For training, we minimize
the following loss:

L = Lc + Lsdf + λ1Le + λ2Lgs + λ3Lec, (7)

where Lc and Le are the same as those in Eqn. 1. Lsdf is
the loss between the predicted signed distance value s at a
sample point and the ground truth signed distance value st

to the reconstructed mesh.

Lsdf =
∑
v∈V

N∑
i=1

∥∥sv,i − stv,i
∥∥2 . (8)

Unwrap

Environment MapSky Sphere

x

wo

x

Multiple Directions

Figure 3: Given a sample point in the scene (the red point),
we sample multiple directions ωo from the sample point to
points (black points on the blue frame) on the sky sphere.
We treat these directions as view directions and feed them
along with the roughness value of the sample point into the
specular lighting decoder to get the specular lighting colors
from different view directions. These predicted specular
lighting colors are unwrapped to the 2D image space as an
environment map.

Lgs is a smoothness loss that penalizes differences between
adjacent vertices’ geometry features and is defined as:

Lgs =
∑
i

∑
j∈N (i)

∥lgi − lgj∥2, (9)

where N (i) is the indices of the adjacent vertices for the ith
vertex.

Lec denotes the environment map consistency loss,
which enforces the environment map Ed to be consistent
with the specular lighting generated by the specular lighting
decoder Fs. However, our specular lighting has an implicit
representation so it is impossible to directly compare it
with diffuse lighting. Recall Eqn. 6 that the light color cl
from the reflected direction ωr at a point with roughness
r is Fs(r, cos θ, ωr). Following the approximation in Split-
Sum [50], when the reflected direction ωr is the same as
the view direction ωo, the normal direction is the same
as the reflected direction ωr and the view direction ωo, so
cos θ = cos 0 = 1. In this case, the output of the specular
lighting decoder Fs is an approximation of the environment
map as shown in Fig. 3. Thus Lec is defined as:

Lec =
P∑

j=1

||Fs(0, 1, ωoj )− Ed(ωoj )||, (10)

where P is the number of pixels in the environment map
Ed. ωoj is the jth unit vector starting from the origin to the
jth pixel’s location in Ed on an extremely large sky sphere.

3.3 Scene Editing

With geometry, appearance and lighting decoupled by
the network, our method allows users to edit each compo-
nent individually without affecting other components. For
example, lighting can be changed without influencing the
geometry or appearance. At a finer level, we can also edit
appearance parameters like diffuse albedo, roughness, and
specular tint independently. In the following, we elaborate
on how to edit each component.

3.3.1 Geometry Editing

Similar to NeuMesh [11], we apply As-Rigid-As-Possible
deformation [43] to the reconstructed mesh to deform the
scene.
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3.3.2 Appearance Editing
Our appearance editing supports editing all appearance

features, including diffuse, specular and roughness compo-
nents by painting a rendered image of the scene. Given a
painted image, we can locate the corresponding mesh ver-
tices for editing by applying raycasting from the camera to
the reconstructed mesh. The appearance features le∗ of these
vertices are then treated as trainable parameters while the
features of other vertices remain the same. The optimization
target function can be formulated as follows:

argmin
le∗

∑
v∈V e

||C#(v)− Ce(v)||, ∗ ∈ {a, r, p}, (11)

where V e denotes the corresponding camera rays of the
painted pixels. Ce(v) stands for the color of a painted pixel.
C#(v) is a rendered component’s pixel color after volume
rendering, e.g., the diffuse color cd.

3.3.3 Relighting
As mentioned in Sec. 3.2, our lighting mechanism has

two parts, namely diffuse lighting and specular lighting.
The diffuse lighting is represented by an explicit environ-
ment map and the specular lighting is represented by an
MLP network. For relighting, the diffuse lighting can be
easily changed by replacing the environment map with the
target environment map. However, as the specular lighting
has an implicit representation, it cannot be directly changed.
Instead, we optimize the specular lighting network Fs to fit
the target environment map Et by minimizing the following
loss:

Lrelight =
S∑

i=1

P∑
j=1

||Fs(0, 1, ωoj )− Et(ωoj )||, (12)

where S denotes the number of sample points on the mesh
surface, and P is the number of pixels in the target envi-
ronment map image Et. ωoj is the jth unit vector starting
from the origin to the jth light’s location in the target
environment map Et on an extremely large sphere. Note
that we make the same assumption as in Eqn. 10 that the
normal direction n is the same as the view direction ωo, so
cos θ = cos 0 = 1.

However, Eqn. 12 only works for those sample points
with small roughness values so that it can well preserve
the lighting from the environment map. Directly applying
Eqn. 12 to those sample points with large roughness values
may result in unexpected results, such as a rough surface
looking like a mirror after relighting (please refer to Fig. 17).
Thus, we construct a mipmap of the target environment map
by computing pre-filtered environment maps at different
roughness levels with pre-filter importance sampling [51]:

L(ωo) =

∫
Ω
Li(ωi) (ωi · n) dωi ≈

∑J
j=1 Li(ω

j
i )

(
ωj
i · n

)
∑J

j=1

(
ωj
i · n

)
(13)

where Li(ωi) is the light coming from direction ωi and
J is the number of sampled incident light directions. The
sampling process is determined by the roughness value
and can be quickly performed using [51]. After integrating
over incoming lighting at different roughness levels, we can

construct a mipmap of the environment map which has
a fixed roughness value at each mip level. The specular
lighting can be quickly queried from the mipmap based on
the sample points’ roughness r and the view direction ωo.
So Eqn. 12 can be further improved:

Lrelight =
S∑

i=1

P∑
j=1

||Fs(ri, 1, ωoj )−M(ωoj , ri)|| (14)

where M is the pre-filtered environment mipmap computed
by Eqn. 13 and M(ωoj , ri) is the light color viewed from
direction ωoj and interpolated by roughness ri.

3.3.4 Composition

Apart from editing a single 3D scene, our method
also supports compositing different scenes and rendering
them under a specific illumination. Taking compositing two
scenes as an example, let the reconstructed meshes for these
two scenes be Ma and Mb. For each sample point x on
a ray, we first compare the distances from this point to
the two meshes and choose the closest mesh to perform
feature interpolation and decoding in Eqn. 3 to decode the
signed distance value, the diffuse albedo, the specular tint,
and the roughness. In terms of shading calculation, to take
the occlusion between different scenes into consideration,
we determine the visibility V (ωi, x) by casting rays along
the light directions onto the merged mesh of Ma and Mb.
After calculating the colors of the sampled points, we also
transform the signed distance values of the sampled points
to opacity values and perform volume rendering to render
the corresponding pixel color.

4 RESULTS AND EVALUATIONS

4.1 Datasets and Evaluation metrics

We conduct our experiments mainly on three synthetic
datasets, NeRF Synthetic [1], Shiny Blender [9], and NeILF
synthetic [52] datasets. To evaluate the quality of the re-
constructed meshes, we use Chamfer Distance between the
reconstructed meshes and the corresponding ground truth
geometry. Regarding rendering quality, we use SSIM [53],
PSNR, and LPIPS [54] metrics to evaluate the similar-
ity between the rendered images and the corresponding
ground truth images. For editing results, we evaluate the
image quality by calculating the Fréchet Inception Distance
(FID) [55] between the image set before editing and after
editing, which has been widely used in image generation
and editing tasks. In addition, we perform qualitative exper-
iments on the real DTU [56] dataset. For training details and
the network architecture, please refer to the supplementary
material.

4.2 Scene Reconstruction

As shown in Fig. 4, unlike NeuS [21], PhySG [6] and
NvDiffRec [39], our method avoids concave surfaces in
geometry reconstruction for scenes with specular reflection
by learning view-dependent and view-independent appear-
ances separately. Quantitative results in Table 1 also show
that our method outperforms these baselines.
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(a) Input (b) NeuS (c) PhySG (d) NvDiffRec (e) Ours (f) GT

Figure 4: Qualitative comparison of geometry reconstruc-
tion. Our method can recover better surface details com-
pared to NeuS [21], PhySG [6], and NvDiffRec [39].

Table 1: Quantitative comparison of geometric reconstruc-
tion quality using Chamfer distance metric. All values have
been mutiplied by 10 for easier reading.

Dataset NeuS PhySG NvDiffRec Ours
NeRF Synthetic 0.269 0.511 0.362 0.266
Shiny Blender 0.341 0.344 0.385 0.303

We present novel view synthesis results in Fig. 5
and compare them with PhySG [6], NeRFactor [8], NvD-
iffRec [39], and NeuMesh [11]. PhySG fails to recover the
details in the scene, due to its smooth lighting representation
and its assumption that the whole scene shares the same
specular BRDF material. NeRFactor uses an environment
map of size 32 × 16 as its lighting representation, which
is unable to express sharp lighting effects. NvDiffRec may
recover incorrect geometry or material with their tetrahedral
representation. NeuMesh does not decompose lighting but
learns the appearance with a single MLP network, which
may cause wrong or blurry rendered results. Compared
with these methods, our method learns decoupled appear-
ance using two different MLP networks and uses a hybrid
lighting representation so it has a better rendering quality.
Quantitative comparisons are reported in Table 2.

4.3 Scene Decomposition

Here we show the decoupled diffuse albedo component
of different scenes and compare our results with PhySG [6],
NeRFactor [8], InvRender [36], NvDiffRec [39], and NvD-
iffRecMC [40] in Fig. 9. We also evaluate the SSIM, PSNR,
and LPIPS values between the decoupled diffuse albedo
and the ground truth albedo in Table 5. Both qualitative
and quantitative results show that our method recovers
more accurate albedo. Our full model with environment
map consistency loss (Lec) and visibility modeling achieves
better results than those obtained by the method without
either component.

(a) PhySG (b) NeRFactor (c) NvDiffRec (d) NeuMesh (e) Ours (f) GT

Figure 5: Novel view synthesis comparisons with PhySG [6],
NeRFactor [8], NvDiffRec [39], and NeuMesh [11].

4.4 Scene Editing
As mentioned in Sec. 3, we support editing on geometry,

appearance and lighting.

4.4.1 Geometry Editing
Similar to NeuMesh [11], our method supports geometry

editing by deforming the reconstructed mesh. We show
geometry editing results in Fig. 10.

4.4.2 Appearance Editing
We show appearance editing comparisons with

NeuMesh [11] in Fig. 6. NeuMesh renders plausible results
from the editing viewpoint after optimization, but the ren-
dered results from another viewpoint become inconsistent
with the input editing. This is because NeuMesh dose not
separately model light and material. Solely changing the ap-
pearance features without modifying the radiance network
cannot produce faithful editing results from novel views. In
addition, NeuMesh does not apply geometry smoothness
loss Lgs on the geometry features and may produce fuzzy
rendered results as shown in the 1st row of Fig. 6. The
effect of this smoothness loss is visualized in Fig. 12. Our
method optimizes the learnable features of diffuse albedo la
to minimize the difference between rendered diffuse color
and editing target using Eqn. 11 so the edited appearance
matches the input editing viewed from other viewpoints
and the view-dependent appearance can be preserved. We
compare the image set before editing and after editing using
the Frèchet Inception Distance (FID) [55] metric to evaluate
the image quality after editing in Table 3. Compared with
NeuMesh, our rendered images score higher in all datasets,
indicating higher image quality after editing. We show the
specular and roughness editing results that NeuMesh does
not support in the supplementary material.

4.4.3 Relighting
We compare with recent PhySG [6], InvRender [36],

NeRFactor [8], NvDiffRec [39], and NvDiffRecMC [40] that
learn to decompose geometry, material and lighting in
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Table 2: Quantitative comparison of novel view synthesis results using SSIM, PSNR, and LPIPS metrics. The best and
second results are highlighted with red and yellow shadings, respectively. “w/o Vis.” means our method without visibility
checking. “Joint” means computing the visibility by tracing the signed distance field and jointly optimizes geometry,
texture, and lighting at decomposition stage.

Methods
NeRF Synthetic Shiny Blender NeILF Synthetic

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
PhySG 20.60 0.861 0.144 26.21 0.921 0.121 24.15 0.914 0.104

NeRFactor 27.86 0.944 0.044 27.04 0.913 0.123 27.38 0.928 0.089
NvDiffRec 29.05 0.939 0.081 28.11 0.935 0.076 19.63 0.851 0.205
NeuMesh 30.94 0.951 0.043 27.20 0.949 0.082 29.04 0.941 0.059
w/o Vis. 29.18 0.959 0.035 28.79 0.967 0.072 31.07 0.958 0.061

Joint 22.34 0.875 0.109 26.46 0.918 0.117 26.46 0.906 0.094
Ours 29.26 0.954 0.031 28.84 0.969 0.078 31.21 0.955 0.050

Table 3: Quantitative comparison of appearance editing
results with NeuMesh [11] using the FID metric (the lower
the better).

Methods NeRF Synthetic Shiny Blender
NeuMesh 216.06 196.37

Ours 194.70 164.73

Table 4: Quantitative comparison of novel view synthesis
results after relighting using SSIM, PSNR, and LPIPS met-
rics. Results are averaged over ten different viewpoints with
eight different environment maps.

Methods
NeRF Synthetic Shiny Blender

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
PhySG 17.56 0.722 0.0885 18.39 0.899 0.0939

InvRender 19.72 0.770 0.0780 18.69 0.908 0.0873
NeRFactor 19.35 0.815 0.0942 19.79 0.916 0.0858
NvDiffRec 19.69 0.820 0.0771 20.70 0.889 0.113

NvDiffRecMC 20.09 0.816 0.0760 21.61 0.922 0.0988
w/o Vis. 19.98 0.811 0.0727 23.99 0.956 0.0409

Ours 20.21 0.825 0.0649 24.38 0.963 0.0537

Fig. 7. PhySG, InvRender and NeRFactor fail to express
high-frequency environmental lighting due to their smooth
or low-resolution lighting representations. NvDiffRec and
NvDiffRecMC can handle high-frequency lighting with their
high-resolution environment map but may fail to recon-
struct correct geometry or material, leading to less faithful
results. Our method extracts more accurate geometry by
separating view-dependent and view-independent appear-
ance learning, which provides better normal estimation that
benefits the shading calculation. We further propose to
use a mixture of an explicit environment map for diffuse
lighting and an implicit specular lighting network, enabling
high-quality relighting. We also evaluate the relighting
results using PSNR, SSIM, and LPIPS metrics in Table 4 by
comparing the relighting results with ground truth images
generated by Blender. Overall, our relighting results have
higher quality. Note that the NeILF dataset does not provide
ground truth environment maps for quantitative evaluation.
We show more relighting results on the NeILF [52] Synthetic
dataset and the real DTU [56] dataset in Fig. 8.

4.4.4 Composition
Our method can composite two different scenes and ren-

der them under the same lighting conditions from different
viewpoints. We show rendered results of composed scenes

in Fig. 11. Thanks to our visibility modeling, our method
can simulate the interaction between the two composited
scenes, e.g., the shadow of the chair is cast onto the hot dog
in the first row of Fig. 11.

4.5 Ablation studies

In this subsection, we evaluate several design choices in
our pipeline by conducting ablation studies on them.

4.5.1 Geometry Smoothness Loss

In Sec. 3, we apply a smoothness loss term to the geome-
try features for adjacent vertices on the reconstructed mesh.
Now we evaluate its influence on the quality of the extracted
meshes in Fig. 12. It shows that the geometry smoothness
loss encourages a smoother surface reconstruction. We also
evaluate this loss with quantitative Chamfer Distance re-
sults in Table 6, which shows the reconstructed mesh is
closer to the ground truth when this loss is applied.

4.5.2 Environment Consistency Loss

In Sec. 3, we separate the learning of the diffuse light-
ing and the specular lighting and constrain them to be
consistent with an environment consistency loss Lec. Here
we ablate how this loss influences the decoupled results in
Fig. 13. When Lec is not applied, the learned albedo com-
ponent may present unevenly distributed colors to make up
for the learned environment map with inaccurate intensity
or color. Quantitative results in Table 5 also show that the
environment consistency loss can improve the quality of the
decoupled albedo component.

4.5.3 Visibility Modeling

In Eqn. 4, we consider the visibility of each sample
point by explicitly calculating the intersection of a light
source and the reconstructed mesh. We ablate the necessity
of the visibility modeling in Fig. 14, which shows if we
do not consider visibility in the decoupling and rendering
process, the decoupled albedo may bake more shadow in
the occluded region. Quantitative evaluation in Table 5 and
Table 4 also indicates that visibility modeling can benefit the
decoupling and relighting performances.
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(a) Source Image (b) Edited Image (c) NeuMesh View #1 (d) NeuMesh View #2 (e) Ours View #1 (f) Ours View #2

Figure 6: Scene appearance editing comparison with NeuMesh [11]. NeuMesh [11] can generate plausible rendering results
from the editing viewpoint but rendered results from another viewpoint may be inconsistent with the input editing. Our
method produces more faithful editing results from both editing viewpoint and novel viewpoints.

4.5.4 Ray-Mesh Intersection Visibility

As mentioned in Sec. 3, we first reconstruct the geometry
of the input scene and compute the visibility term in the
rendering equation with the ray-mesh intersection for the
texture and lighting optimization. Another possible solution
for visibility modeling is to approximate it with transmit-
tance as done in NeRV [29] and NeRFactor [8]. To evaluate
the rationality of our ray-mesh intersection visibility, we
introduce another baseline (Joint Optimization) that com-
putes visibility by tracing the signed distance fields in the
scene decomposition stage and allows joint optimization of
the geometry, material, and lighting at the decomposition
stage. We show reconstruction results and decomposed nor-
mals by this baseline in Fig. 15. The joint optimization at
the decomposition stage in the baseline makes the inverse
rendering task more ambiguous and leads to less faithful
geometry and fuzzy appearance reconstruction. Our ray-
mesh intersection visibility is not perfectly accurate (e.g., it
might miss some thin structure) but still alleviates the shape-
appearance ambiguity and allows more accurate reconstruc-
tion and geometry decomposition. Quantitative results of
reconstruction by this baseline can be found in the “Joint”
row of Table 2 and Table 5.

4.5.5 Hybrid Lighting
We use a hybrid lighting representation of an envi-

ronment map and a lighting network. To evaluate this
representation, we compare it with a baseline that renders
both the diffuse color and specular color using the explicit
environment map with the microfacet model [57] in Fig. 16
and Table 7. The baseline struggles to reconstruct high-
frequency lighting effects and our hybrid lighting represen-
tation outperforms it in terms of reconstruction quality.

4.5.6 Mipmap Relighting.
We construct a mipmap of the target environment map

based on the roughness values for the relighting task. We
show comparisons between the relighting results with and
without mipmap interpolation in Fig. 17. The relit scenes
may have a mirror-like appearance if mipmap is not applied
while the roughness can be well preserved when we utilize
mipmap interpolation, leading to more faithful relighting
results. We also evaluate it quantitatively in Table 8 and
the rendered images of the relit scenes have a higher image
quality when the mipmap strategy is applied.

5 DISCUSSION AND CONCLUSION

In this paper, we present a geometry, appearance and
lighting editing method for neural radiance fields. The
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(a) Input (b) PhySG (c) InvRender (d) NeRFactor (e) NvDiffRec (f) NvDiffRecMC (g) Ours (h) GT

Figure 7: Scene relighting comparisons with PhySG [6], InvRender [36], NeRFactor [8], NvDiffRec [39], and NvD-
iffRecMC [40]. In each row, the input scene and target environment map are shown in the first column. In other columns,
we show relighting results by different methods and the ground truth relighting result. With the help of our reconstructed
geometry and hybrid lighting representation, our method can produce more faithful relighting results with high-frequency
details. We show more relighting comparisons in the supplementary material.



ACCEPTED BY IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

Table 5: Quantitative comparison of the decomposed albedo component using SSIM, PSNR, and LPIPS metrics. Results
are averaged over ten different viewpoints. The best and second results are highlighted with red and yellow shadings,
respectively.

Methods
NeRF Synthetic Shiny Blender NeILF Synthetic

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
PhySG 16.92 0.869 0.0945 21.55 0.849 0.132 16.70 0.860 0.161

InvRender 18.20 0.855 0.0914 19.96 0.850 0.129 19.12 0.893 0.113
NeRFactor 19.04 0.871 0.0867 20.28 0.884 0.106 17.34 0.858 0.132
NvDiffRec 19.06 0.848 0.209 19.66 0.880 0.209 14.14 0.778 0.219

NvDiffRecMC 18.53 0.875 0.176 19.80 0.855 0.125 15.70 0.860 0.162
w/o Lec 18.31 0.845 0.125 22.69 0.903 0.0976 19.04 0.880 0.124
w/o Vis. 19.58 0.863 0.107 24.74 0.926 0.0767 17.83 0.871 0.152

Joint 17.30 0.868 0.0923 20.14 0.835 0.137 18.97 0.878 0.142
Ours 19.87 0.881 0.0892 24.81 0.928 0.0694 21.56 0.907 0.076

(a) Input (b) Relit #1 (c) Relit #2 (d) Relit #3

Figure 8: Qualitative relighting results on the NeILF [52]
synthetic dataset and the real DTU [56] dataset.

Table 6: Quantitative comparison of geometric reconstruc-
tion quality using Chamfer distance metric with the baseline
that does not use the geometry smoothness loss (w/o Lgs).
All values have been mutiplied by 10 for easier reading.

Dataset NeRF Synthetic Shiny Blender
w/o Lgs 0.312 0.367
w/ Lgs 0.266 0.303

technical core is a geometry, appearance and lighting de-
coupling network that optimizes the learnable geometry
and appearance features defined on mesh vertices, the en-
vironment map, and the specular lighting network all at
once. Building upon this decoupling network, appearance
editing from a given viewpoint can be seamlessly trans-
ferred to other viewpoints. In addition, our hybrid lighting
representation composed of an explicit environment map
and an implicit lighting network can well simulate the
lighting effects in the scene and supports high-frequency
environmental relighting. Nevertheless, our approach still
has the following limitations: Firstly, our method does not

Table 7: Quantitative comparison of reconstruction results
with the explicit lighting baseline on the Shiny Blender
dataset.

Setting PSNR ↑ SSIM ↑ LPIPS ↓
Explicit 25.06 0.894 0.221
Hybrid 28.84 0.969 0.078

Table 8: Quantitative comparison of relighting results with
mipmap and without mipmap on the Shiny Blender dataset.

Setting PSNR ↑ SSIM ↑ LPIPS ↓
w/o Mipmap 19.52 0.853 0.103
w/ Mipmap 24.38 0.963 0.0537

jointly optimize the geometry in the decoupling step, which
may fail to reconstruct thin structures (see the first row
of Fig. 6). Secondly, our method does not consider inter-
reflection in rendering and decomposition and may produce
wrong decoupled results (see the first row of Fig. 18). Finally,
even though we model visibility in the decoupling process,
it is still a challenging task to decompose shadows and infer
material parameters in the occluded regions given captured
images of the 3D scene under a single fixed illumination.
The introduced visibility can only alleviate shadow baking
effects but is unable to fully decompose shadow and may
still bake shadow into appearance as shown in the second
row of Fig. 18. For future exploration, we would like to
consider more complicated lighting effects like shadows
and inter-reflections to get more accurate decomposition
results. In addition, it is also possible to combine generative
models and neural radiance field editing. For example, we
can utilize recent diffusion models [58] to help with image
editing or generate textures on neural radiance fields similar
to BiggerPicture [59], TM-Net [60], and DiffMat [61].
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(a) PhySG (b) InvRender (c) NeRFactor (d) NvDiffRec (e) NvDiffRecMC (f) Ours (g) GT

Figure 9: Albedo decomposition comparisons with PhySG [6], InvRender [36], NeRFactor [8], NvDiffRec [39], and
NvDiffRecMC [40]. In each row, we show the decoupled albedo components by different methods and the ground
truth albedo. With the help of our reconstructed geometry and hybrid lighting representation, our method can produce
decomposition results closer to the ground truth.

(a) Input (b) Edited (c) View #1 (d) View #2 (e) View #3 (f) View #4

Figure 10: We perform editing on the geometry of the input
scene by manipulating the reconstructed mesh. In each
row, the input geometry and the geometry after editing are
shown in the first two columns and we show novel view
synthesis results from four different viewpoints.
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